Date: Nov. 6, 2012

## **RENESAS TECHNICAL UPDATE**

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

| Product<br>Category    | MPU/MCU                                                                                |         | Document<br>No.         | TN-R8C-A026A/E         | Rev. | 1.00 |
|------------------------|----------------------------------------------------------------------------------------|---------|-------------------------|------------------------|------|------|
| Title                  | R8C/LAxx Group Descriptions Complemented and Revised in the User's Manual: Hardware    |         | Information<br>Category | Technical Notification |      |      |
| Applicable<br>Products | R8C/LA3A Group<br>R8C/LA5A Group<br>R8C/LA6A Group<br>R8C/LA8A Group<br>R8C/LAPS Group | Lot No. | Reference<br>Document   |                        |      |      |

Descriptions in the User's Manual: Hardware have been complemented or revised for the above applicable products.

The functions described below do not exist in some MCUs. Refer to the applicable User's Manual: Hardware for details.

## 1. CPU clock when exiting stop mode or power-off 2 mode

The clock divided by 8 specified by bits CM36 and CM37 in the CM3 register is used as the CPU clock when the MCU exits stop mode or power-off 2 mode by a peripheral function interrupt. For more details, refer to the CM3 and CM0 register diagrams in the User's Manual: Hardware.

2. Pin states in stop, power-off 0, and power-off 2 modes.

The following shows pin states in stop, power-off 0, and power-off 2 modes.

| Pin                                           | Stop Mode                                                     | Power-Off 0 Mode                   | Power-Off 2 Mode                                                     |  |
|-----------------------------------------------|---------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|--|
| I/O port                                      | Retain the status<br>immediately before<br>entering stop mode | High impedance                     | Retain the status<br>immediately before<br>entering power-off 2 mode |  |
| When selecting XIN, XOUT functions (CM13 = 1) | Comply with the settings of P9_0 and P9_1                     | High impedance                     | Comply with the settings of P9_0 and P9_1                            |  |
| XCIN, XCOUT                                   | Oscillation stops (high impedance)                            | Oscillation stops (high impedance) | Oscillate                                                            |  |
| When selecting COM, SEG, COMEXP functions     | Output low                                                    | Output low                         | Output low                                                           |  |
| When selecting the VL3 function               | Output high                                                   | High impedance                     | Output high                                                          |  |
| When selecting the VL2 function               | High impedance                                                | High impedance                     | High impedance                                                       |  |
| When selecting the VL1 function               | High impedance                                                | High impedance                     | High impedance                                                       |  |

## 3. Note on timer RJ

When using pulse period measurement mode, if timer RJ underflow and an active edge input in the measurement pulse causes timer RJ to reload occur simultaneously, the 8 high-order bits of the measurement value retained in the read-out buffer become invalid.



 Incorrect descriptions in the R8C/LA3A Group, R8C/LA5A Group User's Manual: Hardware, Rev.1.00 (R01UH0024EJ0100)

The program example to enter power-off 0 mode in section 10.9.4 Power-Off 0 Mode has been revised as shown below.

• Program example to enter power-off 0 mode

BCLR 1, FMR0 ; CPU rewrite mode disabled

MOV.B #02H, POMCR0 ; Select power-off 0, WUKP1 input enabled

MOV.B #88H, POMCR0 ; Fixed value
MOV.B #15H, POMCR0 ; Fixed value
MOV.B #92H, POMCR0 ; Fixed value
MOV.B #25H, POMCR0 ; Fixed value

NOP

NOP

NOP

NOP ; Enter power-off 0 mode

BSET 1, PRCR ; Software reset

BSET 3, PM0

Incorrect descriptions in the R8C/LAPS Group User's Manual: Hardware, Rev.1.00 (R01UH0168EJ0100)
 The XIN clock input oscillation frequency, system clock frequency, and CPU clock frequency listed in Table 25.2
 Recommended Operating Conditions in section 25.2 Recommended Operating Conditions have been revised as shown below.

Table 25.2 Recommended Operating Conditions

(Vcc = 1.8 to 5.5 V and Topr = - 20 to 85°C (N version), unless otherwise specified.)

| Symbol  | Parameter                             | Conditions          | Standard |      |      | Unit  |
|---------|---------------------------------------|---------------------|----------|------|------|-------|
|         |                                       |                     | Min.     | Тур. | Max. | Offic |
| f(XIN)  | XIN clock input oscillation frequency | 2.7 V ≤ Vcc ≤ 5.5 V | 2        | _    | 20   | MHz   |
|         |                                       | 2.0 V ≤ VCC < 2.7 V | 2        | _    | 10   | MHz   |
|         |                                       | 1.8 V ≤ Vcc < 2.0 V | 2        | _    | 8    | MHz   |
| _       | System clock frequency                | 2.7 V ≤ Vcc ≤ 5.5 V | _        | _    | 20   | MHz   |
|         |                                       | 2.0 V ≤ VCC < 2.7 V | _        | _    | 10   | MHz   |
|         |                                       | 1.8 V ≤ Vcc < 2.0 V | _        | _    | 8    | MHz   |
| f(BCLK) | CPU clock frequency                   | 2.7 V ≤ Vcc ≤ 5.5 V | 0        | _    | 20   | MHz   |
|         |                                       | 2.0 V ≤ VCC < 2.7 V | 0        | _    | 10   | MHz   |
|         |                                       | 1.8 V ≤ Vcc < 2.0 V | 0        | _    | 8    | MHz   |