RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	uct MPU/MCU Jory		Document No.	TN-RL*-A€ÍÎA/E ∰Rev.∰1.00
Title	Correction for Incorrect Description Notice RI Descriptions in the Hardware User's Manual Changed	L78/I1D Rev. 2.00	Information Category	Technical Notification
Applicable Product	RL78/I1D R5F117xxx	Lot No. All lots	Reference Document	RL78/I1D User's Manual: Hardware Rev.2.00 R01UH0474EJ0200 (Jan. 2015)
This docume	nt describes misstatements found in the RL78/	/I1D User's	Manual: Hardwar	e Rev.2.00 (R01UH0474EJ0200).
0				
Corrections				
100	Applicable Item		Applicable Page	e Contents
1.6 Out Numb functio	line of Functions oer of event input of event link controller in outli on table	ine of	Page 15	Incorrect descriptions revised
3.1 Mer Figure	mory Space. Last address of the Data flash n e 3 - 1 Memory Map (R5F117xA (x = 6, 7, A, B	nemory , G))	Page 45	Incorrect descriptions revised
3.2.5 E range ir Table List (2	xtended special function registers. Manipulable n subsysytem clock supply mode control regist 3 - 9 Extended Special Function Register (2nd 2/5)	e bit er d SFR)	Page 67	Incorrect descriptions revised
6.3.2 S Figure	ystem clock control register (CKC) e 6 - 3 Format of System clock control register	(CKC)	Page 136	Incorrect descriptions revised
6.7 Res 6.7 R	sonator and Oscillator Constants esonator and Oscillator Constants		Pages 178 to 180	Description method changed
8.3.5 R Figure (RTC)	eal-time clock control register 1 (RTCC1) e 8 - 8 Format of Real-time clock control registe C1) (3/3)	er 1	Page 298	Note added
15.3.4 (Figure (COM	15.3.4 Comparator filter control register (COMPFIR) Figure 15 - 5 Format of Comparator filter control register (COMPFIR)			34 Incorrect descriptions revised
15.3.5 (Figure (CON	15.3.5 Comparator output control register (COMPOCR) Figure 15 - 6 Format of Comparator output control register (COMPOCR)		Page 435	Incorrect descriptions revised
19.3.3 V	Vector Table and Figure 19 - 4 in 19 3 3. Vector Table		Page 650	Incorrect descriptions revised
19.4.2 I	Normal Mode		Page 662	Incorrect descriptions revised
30.8.3	Procedure for accessing data flash memory		Page 826	Incorrect descriptions revised
34.1 Ab	34.1 Absolute Maximum Ratings			

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Ratings of analog input voltage 34.3.2 Supply current characteristics

Note of LS (low-speed main) mode (MCSEL = 1)

Page 856

Page 864

Incorrect descriptions revised

Incorrect descriptions revised

No.	Corrections and Applicable Items			Pages in this document
	Document No.	English	R01UH0474EJ0200	for corrections
1	 Outline of Functions Number of event input of event link co outline of function table 	ntroller in	Page 15	Page 3
2	3.1 Memory Space. Last address of the memory Figure 3 - 1 Memory Map (R5F117xA B,G))	ne Data flash (x = 6, 7, A,	Page 45	Page 4
3	3.2.5 Extended special function register Manipulable bit range in subsysytem c mode control register Table 3 - 9 Extended Special Functior (2nd SFR) List (2/5)	s lock supply n Register	Page 67	Page 5
4	6.3.2 System clock control register (CK Figure 6 - 3 Format of System clock c (CKC)	C) ontrol register	Page 136	Page 6
5	 6.7 Resonator and Oscillator Constants resonators for which the operation is ve oscillator constants 6.7 Resonator and Oscillator Constant 	. Delete the rified and their ts	Pages 178 to 180	Page 7
6	8.3.5 Real-time clock control register 1 Added notes Figure 8 - 8 Format of Real-time clock register 1 (RTCC1) (3/3)	(RTCC1)	Page 298	Page 8
7	15.3.4 Comparator filter control register Figure 15 - 5 Format of Comparator fil register (COMPFIR)	(COMPFIR) Iter control	Pages 433 and 434	Page 9
8	15.3.5 Comparator output control regist (COMPOCR) Figure 15 - 6 Format of Comparator o register (COMPOCR)	er utput control	Page 435	Page 10
9	19.3.3 Vector Table Text and Figure 19 - 4 in 19.3.3. Vector	or Table	Page 650	Page 11
10	19.4.2 Normal Mode Text and Figure 19 - 16 in 19.4.2. Nor	mal Mode	Page 662	Page 12
11	30.8.3 Procedure for accessing data fla Setup time for each main clock mode	sh memory	Page 826	Page 13
12	34.1 Absolute Maximum Ratings Ratings of analog input voltage		Page 856	Page 14
13	34.3.2 Supply current characteristics Note of LS (low-speed main) mode (M	1CSEL = 1)	Page 864	Page 15

Corrections in the User's Manual: Hardware

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/I1D User's Manual: Hardware Rev.2.00 Correction for Incorrect Description Notice

Document Number	Date	Description
TN-RL*-A€Í Î A/E	Oct. 29, 2015	First edition issued No.1 to 13 in corrections (This notice)

Date: Oct. 29, 2015

1. <u>1.6 Outline of Functions</u>

Number of event input of event link controller in outline of function table (Page 15)

Incorrect:

(omitted)

Data transfer controller (DTC)		16 sources	20 sources	19 sources	20 sources	23 sources
Event link controller	(ELC)	Event input: <u>13,</u> Event trigger output: 5	Event input: 17 Event trigger output: 5	Event input: <u>16,</u> Event trigger output: 7	Event input: 17 Event trigger output: 7	Event input: 20 Event trigger output: 7
Vectored interrupt	Internal	22	22	24	24	24
sources	External	3	5	5	5	8
Key interrupt		-	3	-	3	4

(omitted)

Correct:

(omitted)

Data transfer controller (DTC)		16 sources	20 sources	19 sources	20 sources	23 sources			
Event link controller	(ELC)	Event input: 15, Event trigger output: 5	Event input: 17 Event trigger output: 5	Event input: 17, Event trigger output: 7	Event input: 17 Event trigger output: 7	Event input: 20 Event trigger output: 7			
Vectored interrupt	Internal	22	22	24	24	24			
sources	External	3	5	5	5	8			
Key interrupt		-	3	-	3	4			

2. <u>3.1 Memory Space. Last address of the Data flash memory</u> Figure 3 - 2 Memory Map (R5F117xA (x = 6, 7, A, B, G)) (Page 45)

Incorrect:

(omitted)

F4000H	E Reserved $\widehat{\uparrow}$
F3FFFH F2000H	Mirror 8 KB
F1FFFH	Reserved
F1800H	Data flash memory 2 KB
F0FFFH F0800H	Reserved
F07FFH	Extended special function register (2nd SFR) 2 KB

(omitted)

Date: Oct. 29, 2015

Correct:

(omitted)

F4000H	Reserved 着
F3FFFH	Mirror
F2000H	8 KB
F1FFFH	Reserved
F1800H	
F17FFH	Data flash memory
F1000H	2 KB
FOFFFH	Reserved
F0800H	Reserved
F07FFH	Extended special function register (2nd SFR) 2 KB

<u>3.2.5 Extended special function registers. Manipulable bit range in</u> <u>subsysytem clock supply mode control register</u> Table 3 - 9 Extended Special Function Register (2nd SFR) List (2/5) (Page 67)

Incorrect:

Table 3 - 9 Extended Special Function Register (2nd SFR) List (2/5)

	Extended Special Function Register			Manip			
Address	(2nd SFR) Name	Symbol	R/W	1-bit	8-bit	16-bit	After Reset
F00F1H	Peripheral reset control register 0	PRR0	R/W	V	\checkmark	_	00H
F00F2H	Middle-speed on-chip oscillator frequency select register	MOCODIV	R/W	_	\checkmark	_	00H
F00F3H	Subsystem clock supply mode control register	OSMC	R/W	_	\checkmark	—	00H
F00F5H	RAM parity error control register	RPECTL	R/W	\checkmark	\checkmark	—	00H
F00F8H	Regulator mode control register	PMMC	R/W	\checkmark	\checkmark	—	00H

(omitted)

Correct:

Table 3 - 9 Extended Special Function Register (2nd SFR) List (2/5)

	Extended Special Function Register			Manip			
Address	(2nd SFR) Name Symbol R/W		R/W	1-bit	8-bit	16-bit	After Reset
F00F1H	Peripheral reset control register 0	PRR0	R/W	V	1	_	00H
F00F2H	Middle-speed on-chip oscillator frequency select register	MOCODIV	R/W	_	V	_	00H
F00F3H	Subsystem clock supply mode control register	OSMC	R/W	V	\checkmark	_	00H
F00F5H	RAM parity error control register	RPECTL	R/W	\checkmark	1	_	00H
F00F8H	Regulator mode control register	PMMC	R/W	\checkmark	\checkmark	—	00H

4. <u>6.3.2 System clock control register (CKC)</u> Figure 6 - 3 Format of System clock control register (CKC) (Page 136)

Incorrect:

Figure 6 - 3 Format of System clock control register (CKC)

(omitted)

MCM1	Main on-chip oscillator clock (foco) operation control
0	High-speed on-chip oscillator clock
1	Middle-speed on-chip oscillator clock

(omitted)

Note 1. Bits 7, 5, and 1 are read-only.

Note 2. Changing the value of the MCM0 bit is prohibited while the CSS bit is set to 1.

Correct:

Figure 6 - 3 Format of System clock control register (CKC)

(omitted)

MCM1 Note2	Main on-chip oscillator clock (foco) operation control
0	High-speed on-chip oscillator clock
1	Middle-speed on-chip oscillator clock

(omitted)

Note 1. Bits 7, 5, and 1 are read-only.

Note 2. Changing the value of the MCM0 bit and MCM1 bit are prohibited while the CSS bit is set to 1.

<u>6.7 Resonator and Oscillator Constants. Delete the resonators for</u> <u>which the operation is verified and their oscillator constants</u> <u>6.7 Resonator and Oscillator Constants (Pages 178 to 180)</u>

Incorrect:

The resonators for which the operation is verified and their oscillator constants are shown below.

- Caution 1. The constants for these oscillator circuits are reference values based on specific environments set up for evaluation by the manufacturers. For actual applications, request evaluation by the manufacturer of the oscillator circuit mounted on a board. Furthermore, if you are switching from a different product to this microcontroller, and whenever you change the board, again request evaluation by the manufacturer of the oscillator circuit mounted on the new board.
- Caution 2. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the RL78 microcontroller so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Figure 6 - 22 Example of External Circuit

(omitted)

Correct:

For the resonators for which the operation is verified and their oscillator constants, refer to the target product page of the Renesas Electronics website.

- Caution 1. The constants for these oscillator circuits are reference values based on specific environments set up for evaluation by the manufacturers. For actual applications, request evaluation by the manufacturer of the oscillator circuit mounted on a board. Furthermore, if you are switching from a different product to this microcontroller, and whenever you change the board, again request evaluation by the manufacturer of the oscillator circuit mounted on the new board.
- Caution 2. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the RL78 microcontroller so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Figure 6 - 22 Example of External Circuit

(Delete the resonators for which the operation is verified and their oscillator constants on pages 179 and 180.)

6. <u>8.3.5 Real-time clock control register 1 (RTCC1). Added notes</u> Figure 8 - 8 Format of Real-time clock control register 1 (RTCC1) (3/3) (Page 298)

Incorrect:

Figure 8 - 8 Format of Real-time clock control register 1 (RTCC1) (3/3)

(omitted)

RWAIT	Wait control of real-time clock				
0	Sets counter operation.				
1	Stops SEC to YEAR counters. Mode to read or write counter value.				
This bit cor Be sure to As the counturn back to After RWAI value is end When the in until RWAI	It rols the operation of the counter. write 1 to it to read or write the counter value. hter (16-bit) is continuing to run, complete reading or writing within one second and b 0. IT is set to 1, it takes up to one f_{RTC} clock cycle before reading/writing the count abled (RWST = 1). hternal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow T = 0, then counts up.				
	when it wrete a value to eccend count register, it will not keep the overflow event				

However, when it wrote a value to second count register, it will not keep the overflow event.

Correct:

١

Figure 8 - 8 Format of Real-time clock control register 1 (RTCC1) (3/3)

(omitted)

RWAIT	Wait control of real-time clock	
0	Sets counter operation.	
1	Stops SEC to YEAR counters. Mode to read or write counter value.	
This bit cor	trols the operation of the counter.	
Be sure to	write 1 to it to read or write the counter value.	
As the cour	nter (16-bit) is continuing to run, complete reading or writing within one second and	
turn back to	50.	
After RWA	T is set to 1, it takes up to one f_{RTC} clock cycle before reading/writing the count	
value is en	abled (RWST = 1).	
When the i	nternal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow $T = 0$, then counter up	
	i – O, then counts up.	
However, v	when it wrote a value to second count register, it will not keep the overnow event.	
Note 1. When	the RWAIT bit is set to 1 within one cycle of f_{RTC} clock after setting the RTCE bit to 1.	, the
	The being set to T may take up to two cycles of the operating clock (IRTC).	
Note 2. Whe mode	n the RWAII bit is set to 1 within one cycle of f _{RTC} clock after release from the star e (HALT mode, STOP mode, or SNOOZE mode), the RWST bit being set to 1 may	idby take
up to	two cycles of the operating clock (f _{RTC}).	

<u>15.3.4 Comparator filter control register (COMPFIR)</u> Figure 15 - 5 Format of Comparator filter control register (COMPFIR) (Pages 433 and 434)

Incorrect:

Figure 15 - 5 Format of Comparator filter control register (COMPFIR)

(omitted)

Note 1. If bits C1FCK1 to C1FCK0, C1EPO, and C1EDG are changed, a comparator 1 interrupt and an event signal to the ELC may be generated. Change these bits only after setting the ELSELR19 register for the ELC to 0 (not linked to comparator 1 output). In addition, clear bit 5 (**CPMIF1**) in interrupt request flag register 1H (IF1H) to 0.

If bits C1FCK1 to C1FCK0 are changed from 00B (no comparator 1 filter) to a value other than 00B (comparator 1 filter enabled), allow the time for sampling four times to elapse until the filter output is updated, and then use the comparator 1 interrupt request or the event signal to the ELC.

Note 2. If bits C0FCK1 to C0FCK0, C0EPO, and C0EDG are changed, a comparator 0 interrupt and an event signal to the ELC may be generated. Change these bits only after setting the ELSELR18 register for the ELC to 0(not linked to comparator 0 output). In addition, clear bit 4 (<u>CPMIF0</u>) in interrupt request flag register 1H (IF1H) to 0.

If bits COFCK1 to COFCK0 are changed from 00B (no comparator 0 filter) to a value other than 00B (comparator 0 filter enabled), allow the time for sampling four times to elapse until the filter output is updated, and then use the comparator 0 interrupt request or the event signal to the ELC.

Correct:

Figure 15 - 5 Format of Comparator filter control register (COMPFIR)

(omitted)

Note 1. If bits C1FCK1 to C1FCK0, C1EPO, and C1EDG are changed, a comparator 1 interrupt and an event signal to the ELC may be generated. Change these bits only after setting the ELSELR19 register for the ELC to 0 (not linked to comparator 1 output). In addition, clear bit 5 (CMPIF1) in interrupt request flag register 1H (IF1H) to 0.

If bits C1FCK1 to C1FCK0 are changed from 00B (no comparator 1 filter) to a value other than 00B (comparator 1 filter enabled), allow the time for sampling four times to elapse until the filter output is updated, and then use the comparator 1 interrupt request or the event signal to the ELC.

Note 2. If bits C0FCK1 to C0FCK0, C0EPO, and C0EDG are changed, a comparator 0 interrupt and an event signal to the ELC may be generated. Change these bits only after setting the ELSELR18 register for the ELC to 0(not linked to comparator 0 output). In addition, clear bit 4 (CMPIFO) in interrupt request flag register 1H (IF1H) to 0. If bits C0FCK1 to C0FCK0 are changed from 00B (no comparator 0 filter) to a value other than 00B (comparator 0 filter enabled), allow the time for sampling four times to elapse until the filter output is updated, and then use the comparator 0 interrupt request or the event signal to the ELC.

<u>15.3.5 Comparator output control register (COMPOCR)</u> Figure 15 - 6 Format of Comparator output control register (COMPOCR) (Page 435)

Incorrect:

Figure 15 - 6 Format of Comparator output control register (COMPOCR)

(omitted)

- Note 2. If C1IE is changed from 0 (interrupt request disabled) to 1 (interrupt request enabled), since bit 5 (<u>CPMIF1</u>) in interrupt request flag register 1H (IF1H) may set to 1 (interrupt requested), clear <u>bit 0</u> (<u>CPMIF1</u>) in interrupt request flag register <u>2H(IF2H</u>) to 0 before using an interrupt.
- Note 3. If COIE is changed from 0 (interrupt request disabled) to 1 (interrupt request enabled), since <u>bit 5 (CPMIF0</u>) in interrupt request flag register 1H (IF1H) may set to 1 (interrupt requested), clear bit 4 (<u>CPMIF0</u>) in interrupt request flag register 1H(IF1H) to 0 before using an interrupt.

Correct:

Figure 15 - 6 Format of Comparator output control register (COMPOCR)

- Note 2. If C1IE is changed from 0 (interrupt request disabled) to 1 (interrupt request enabled), since bit 5 (CMPIF1) in interrupt request flag register 1H (IF1H) may set to 1 (interrupt requested), clear bit 5 (CMPIF1) in interrupt request flag register 1H(IF1H) to 0 before using an interrupt.
- Note 3. If C0IE is changed from 0 (interrupt request disabled) to 1 (interrupt request enabled), since bit 4 (CMPIF0) in interrupt request flag register 1H (IF1H) may set to 1 (interrupt requested), clear bit 4 (CMPIF0) in interrupt request flag register 1H(IF1H) to 0 before using an interrupt.

9. <u>19.3.3 Vector Table</u> Text and Figure 19 - 4 in 19.3.3. Vector Table (Page 650)

Incorrect:

19.3.3 Vector Table

When the DTC is activated, one set of control data from among the 24 control data sets is selected according to the <u>4 lower-order bits</u> of values read from the location in the vector table which is assigned to the corresponding activation source, and the selected control data are read from the DTC control data area.

(omitted)

Correct:

19.3.3 Vector Table

When the DTC is activated, one set of control data from among the 24 control data sets is selected according to the 8 lower-order bits of values read from the location in the vector table which is assigned to the corresponding activation source, and the selected control data are read from the DTC control data area.

Figure 19 - 4 Start Address of Control Data and Vector Table

Example: When DTCBAR is set to FBH.

10. <u>19.4.2 Normal Mode</u>

Text and Figure 19 - 16 in 19.4.2. Normal Mode (Page 662)

Incorrect:

- (1) Example 1 of using normal mode: Consecutively capturing A/D conversion results The DTC is activated by an A/D conversion end interrupt and the value of the A/D conversion result register is transferred to RAM.
 - · The vector address is FFB09H and control data is allocated at FFBA0H to FFBA7H
 - Transfers 2-byte data of the A/D conversion result register (FFF1EH, FFF1FH) to 80 bytes of FFD80H to FFDCEH of RAM

(omitted)

Figure 19 - 16 Example 1 of using normal mode: Consecutively capturing A/D conversion results

Date: Oct. 29, 2015

Correct:

- (1) Example 1 of using normal mode: Consecutively capturing A/D conversion results The DTC is activated by an A/D conversion end interrupt and the value of the A/D conversion result register is transferred to RAM.
 - $\cdot\,$ The vector address is FFB09H and control data is allocated at FFBA0H to FFBA7H
 - Transfers 2-byte data of the A/D conversion result register (FFF1EH, FFF1FH) to 80 bytes of FFD80H to FFDCEH of RAM 40 times

(omitted)

Figure 19 - 16 Example 1 of using normal mode: Consecutively capturing A/D conversion results

11. <u>30.8.3 Procedure for accessing data flash memory</u> Setup time for each main clock mode (Page 826)

Incorrect:

30.8.3 Procedure for accessing data flash memory

The data flash memory is initially stopped after a reset ends and cannot be accessed (read or programmed). To access the memory, perform the following procedure:

<1> Write 1 to bit 0 (DFLEN) of the data flash control register (DFLCTL).

<2> Wait for the setup to finish for software timer, etc.

The time setup takes differs for each main clock mode.

- <Setup time for each main clock mode>
- HS (high-speed main) mode: <u>5 ms</u>
- · LS (low-speed main) mode: 720 ns
- · LP (low-power main) mode: 720 ns
- · LV (low-voltage main) mode: 10 ms
- <3> After the wait, the data flash memory can be accessed.

(omitted)

Correct:

30.8.3 Procedure for accessing data flash memory

The data flash memory is initially stopped after a reset ends and cannot be accessed (read or programmed). To access the memory, perform the following procedure:

<1> Write 1 to bit 0 (DFLEN) of the data flash control register (DFLCTL).

- <2> Wait for the setup to finish for software timer, etc.
 - The time setup takes differs for each main clock mode. <Setup time for each main clock mode>
 - HS (high-speed main) mode: 5 µs
 - · LS (low-speed main) mode: 720 ns
 - · LP (low-power main) mode: 720 ns
 - · LV (low-voltage main) mode: 10 μs
- <3> After the wait, the data flash memory can be accessed.

12. <u>34.1 Absolute Maximum Ratings</u> Ratings of analog input voltage (Page 856)

Incorrect:

Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD} , AV _{DD}	V _{DD} =AV _{DD}	-0.3 to +4.6	V

(omitted)

1				
Analog input voltage	Vaii	ANI16 to ANI18	-0.3 to V_{DD} + 0.3 and -0.3 to $AV_{\text{REF}}(\text{+})$ + 0.3 $\frac{\text{Note 2}}{\text{Note 2}}$	V
	V _{Al2}	ANI0 to ANI13	-0.3 to AV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 Note 2	V
	Vai3	Operational amplifier input pin	-0.3 to AV _{DD} + 0.3 ^{Note 2}	V

Note 1. Connect the REGC pin to V_{SS} via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 4.6 V or lower.

Note 3. Do not exceed AV_{REF} (+) + 0.3 V in case of A/D conversion target pin.

(omitted)

Correct:

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD} , AV _{DD}	V _{DD} =AV _{DD}	-0.3 to +4.6	V

(omitted)

Analog input voltage	V _{AI1}	ANI16 to ANI18	-0.3 to V_{DD} + 0.3 and -0.3 to $AV_{\text{REF}}(+)$ + 0.3 $^{Note\ 2.3}$	V
	V _{AI2}	ANI0 to ANI13	-0.3 to AV_{DD} + 0.3 and -0.3 to AV_{REF}(+) + 0.3 $\frac{\text{Note 2, 3}}{\text{Note 2, 3}}$	V
	VAI3	Operational amplifier input pin	-0.3 to AV _{DD} + 0.3 ^{Note 2}	V

Note 1. Connect the REGC pin to V_{SS} via a capacitor (0.47 to 1µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 4.6 V or lower.

Note 3. Do not exceed AV_{REF} (+) + 0.3 V in case of A/D conversion target pin.

13. <u>34.3.2 Supply current characteristics</u> Note of LS (low-speed main) mode (MCSEL = 1) (Page 864)

Incorrect: $(T_A = -40 \text{ to } + 85 \degree \text{C}, 1.6 \text{ V} \le AV_{DD} = V_{DD} \le 3.6 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V})$ $(T_A = +85 \text{ to } +105 \degree \text{C}, 2.4 \text{ V} \le AV_{DD} = V_{DD} \le 3.6 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V})$ (1/4)										
Parameter	r Symbol Conditions MIN. TYP. MAX						MAX.	Unit		
Supply current Note 1	I _{DD1}	Operation mode	HS (high-speed main) mode	$f_{IH} = 24 \text{ MHz}^{\text{Note 3}},$ $T_A = -40 \text{ to } +105$ °C	Basic operation	V _{DD} = 3.0V		1.4		mA
(omitted)										

				f _{MX} = 4 MHz Note 3 ,	Normal	V - 2 0 V	Square wave input	0.6	1.1	mA
		LS (low-speed	T _A = -40 to +85 °C	operation	on v DD = 3.0 v	Resonator connection	0.6	1.2		
		(MCSEL = 1)	f _{MX} = 4 MHz ^{Note 3} ,	Normal	Vaa = 2.0.V	Square wave input	0.6	1.1		
				T _A = -40 to +85 °C	operation	ion v 00 - 2.0 v	Resonator connection	0.6	1.2	
			f _{MX} = 1 MHz ^{Note 2} ,	Normal	V - 20V	Square wave input	100	190	μA	
			LP (low-power	T _A = -40 to +85 °C	operation	n $v_{DD} = 3.0 v$	Resonator connection	136	250	
			(MCSEL = 1)	f _{MX} = 1 MHz ^{Note 2} ,	Normal	V	Square wave input	100	190	
		T _A =	T _A = -40 to +85 °C	operation	ration	Resonator connection	136	250		

(omitted)

- Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.

(omitted)

Date: Oct. 29, 2015

Correct:

$\begin{array}{l} (T_{A} = .40 \text{ to } + 85 \ ^{\circ}\text{C}, \ 1.6 \ V \leq AV_{DD} = V_{DD} \leq 3.6 \ V, \ V_{SS} = AV_{SS} = 0 \ V) \\ (T_{A} = +85 \ \text{to } +105 \ ^{\circ}\text{C}, \ 2.4 \ V \leq AV_{DD} = V_{DD} \leq 3.6 \ V, \ V_{SS} = AV_{SS} = 0 \ V) \end{array}$

Parameter	Symbol		Conditions						MAX.	Unit
Supply current Note 1	I _{DD1}	Operation mode	HS (high-speed main) mode	$f_{IH} = 24 \text{ MHz}^{\text{Note 3}}, T_A = -40 \text{ to } +105 ^{\circ}C$	Basic operation	V _{DD} = 3.0V		1.4		mA
										1

	(C	omitted)					
	<u> </u> '	l'	<u> </u>	<u> </u>		<u> </u>	
	f _{MX} = 4 MHz- ^{Note 2} ,	Normal	Voc = 3.0 V	Square wave input	0.6	1.1	mA
LS (low-speed	T _A = -40 to +85 °C	operation	VDD - 3.0 V	Resonator connection	0.6	1.2	
(MCSEL = 1)	f _{MX} = 4 MHz ^{-Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input	0.6	1.1	1
` ´	T _A = -40 to +85 °C	operation		Resonator connection	0.6	1.2	1
	f _{MX} = 1 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input	100	190	μA
LP (low-power	T _A = -40 to +85 °C	operation		Resonator connection	136	250	1
(MCSEL = 1)	f _{MX} = 1 MHz ^{Note 2} ,	Normal		Square wave input	100	190	1
(T _A = -40 to +85 °C	operation	$v_{DD} = 2.0 v$	Resonator connection	136	250	1

(1/4)

(omitted)

- Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.

