Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

RENESAS TECHNICAL UPDATE

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Renesas Technology Corp.

Product Category	MPU/MCU		Document No.	TN-SH7-A729A/E	Rev.	1.00
Title	Correction of errors in the SH7280 Group Hardware Manual		Information Category	Technical Notification		
Applicable Product	SH7280 Group SH7243 Group	All lots	Reference Document	SH7280 Group Hardw Rev1.00 REJ09B0393-0100	are Manu	lal

We would like to inform you of the corrections in the above listed hardware manuals.

Please refer to the following for details.

<Addition and corrections>

Section 1 Overview

• The following has been added to the specification of bus state controller (BSC) in table 1.1, SH7286, SH7285, and SH7243 Features.

[After change]

SRAM, SRAM with byte selection, SDRAM and burst ROM (clock synchronous or asynchronous) can be directly connected by specifying memories connecting to each area. Furthermore, address/data multiplexed I/O (MPX) interface is supported.

Specification of power supply voltage in table 1.1, SH7286, SH7285, and SH7243 Features, has been revised as follows.

[Before change] VCC: 3.0 to 3.6 V or 4.5 to 5.5 V, AVCC: 4.5 to 5.5 V

[After change] VCC : 3.0 to 5.5 V, AVCC: 4.5 to 5.5 V DrVcc : 3.0 to 3.6 V (USB in use) : 3.0 to 5.5 V (USB not in use)

(c) 2009. Renesas Technology Corp., All rights reserved.

Section 3 MCU Operating Modes

• Boundary addresses between on-chip RAM (24KB) (Modes 0 and 1) and reserved area shown in figures 3.3 and 3.5 in section 3.4, Address Map have been revised as follows.

[Before change] H'FFF8 7FFF H'FFF8 8000

[After change] H'FFF8 5FFF H'FFF8 6000

• Boundary addresses between on-chip RAM (8KB) (Modes 0 and 1) and reserved area shown in figure 3.7 in section 3.4, Address Map have been revised as follows.

[Before change] H'FFF8 2FFF H'FFF8 3000

[After change] H'FFF8 1FFF H'FFF8 2000

Section 5 Exception Handling

• Table 5.6 Bus Cycles and Address Errors in section 5.3.1, Address Error Sources has been revised as follows.

[Before change]

Data read/write	CPU, DMAC, or DTC	Word data accessed from even address	None (normal)
reau/write	of DTC	Word data accessed from odd address	Address error occurs
		Longword data accessed from a longword boundary	None (normal)
		Longword data accessed from other than a long-word boundary	Address error occurs
		Byte or word data accessed in on-chip peripheral module space*	None (normal)
		Longword data accessed in 16-bit on-chip peripheral module space*	None (normal)
	peripheral module space*	Longword data accessed in 8-bit on-chip peripheral module space*	None (normal)
		External memory space accessed when in single chip mode	Address error occurs

Data read/write	CPU, DMAC, or DTC	Word data accessed from even address	None (normal)
reau/write	of DTC	Word data accessed from odd address	Address error occurs
		Longword data accessed from a longword boundary	None (normal)
		Longword data accessed from other than a long-word boundary	Address error occurs
		Double-longword data accessed from a double-longword boundary	None (normal)
		Double-longword accessed from other than a double-long-word boundary	Address error occurs
		Byte or word data accessed in on-chip peripheral module space*	None (normal)
		Longword data accessed in 16-bit on-chip peripheral module space*	None (normal)
		Longword data accessed in 8-bit on-chip peripheral module space*	None (normal)
		External memory space accessed when in single chip mode	Address error occurs

Section 6 Interrupt Controller (INTC)

• Table 6.2 Register Configuration in section 6.3, Register Descriptions has been revised as follows.

[Before change]

Register Name	Abbreviation	R/W	Initial Value	Address	Access Size
Interrupt control register 0	ICR0	R/W	*1	H'FFFE0800	16, 32
Interrupt control register 1	ICR1	R/W	H'0000	H'FFFE0802	16, 32
IRQ interrupt request register	IRQRR	R/(W) ^{* 2}	H'0000	H'FFFE0806	16, 32
Bank control register	IBCR	R/W	H'0000	H'FFFE080C	16, 32
Bank number register	IBNR	R/W	H'0000	H'FFFE080E	16, 32
Interrupt priority register 01	IPR01	R/W	H'0000	H'FFFE0818	16, 32
Interrupt priority register 02	IPR02	R/W	H'0000	H'FFFE081A	16, 32
Interrupt priority register 05	IPR05	R/W	H'0000	H'FFFE0820	16, 32
Interrupt priority register 06	IPR06	R/W	H'0000	H'FFFE0C00	16, 32
Interrupt priority register 07	IPR07	R/W	H'0000	H'FFFE0C02	16, 32
Interrupt priority register 08	IPR08	R/W	H'0000	H'FFFE0C04	16, 32
Interrupt priority register 09	IPR09	R/W	H'0000	H'FFFE0C06	16, 32
Interrupt priority register 10	IPR10	R/W	H'0000	H'FFFE0C08	16, 32
Interrupt priority register 11	IPR11	R/W	H'0000	H'FFFE0C0A	16, 32
Interrupt priority register 12	IPR12	R/W	H'0000	H'FFFE0C0C	16, 32
Interrupt priority register 13	IPR13	R/W	H'0000	H'FFFE0C0E	16, 32
Interrupt priority register 14	IPR14	R/W	H'0000	H'FFFE0C10	16, 32
Interrupt priority register 15	IPR15	R/W	H'0000	H'FFFE0C12	16, 32
Interrupt priority register 16	IPR16	R/W	H'0000	H'FFFE0C14	16, 32
Interrupt priority register 17	IPR17	R/W	H'0000	H'FFFE0C16	16, 32
Interrupt priority register 18	IPR18	R/W	H'0000	H'FFFE0C18	16, 32
USB-DTC transfer interrupt	USDTENDRR	R/(W) ^{*2}	H'0000	H'FFFE0C50	16, 32

Register Name	Abbreviation	R/W	Initial Value	Address	Access Size
Interrupt control register 0	ICR0	R/W	1	H'FFFE0800	16, 32
Interrupt control register 1	ICR1	R/W	H'0000	H'FFFE0802	16
IRQ interrupt request register	IRQRR	R/(W) *2	H'0000	H'FFFE0806	16
Bank control register	IBCR	R/W	H'0000	H'FFFE080C	16, 32
Bank number register	IBNR	R/W	H'0000	H'FFFE080E	16
Interrupt priority register 01	IPR01	R/W	H'0000	H'FFFE0818	16, 32
Interrupt priority register 02	IPR02	R/W	H'0000	H'FFFE081A	16
Interrupt priority register 05	IPR05	R/W	H'0000	H'FFFE0820	16
Interrupt priority register 06	IPR06	R/W	H'0000	H'FFFE0C00	16, 32
Interrupt priority register 07	IPR07	R/W	H'0000	H'FFFE0C02	16
Interrupt priority register 08	IPR08	R/W	H'0000	H'FFFE0C04	16, 32
Interrupt priority register 09	IPR09	R/W	H'0000	H'FFFE0C06	16
Interrupt priority register 10	IPR10	R/W	H'0000	H'FFFE0C08	16, 32
Interrupt priority register 11	IPR11	R/W	H'0000	H'FFFE0C0A	16
Interrupt priority register 12	IPR12	R/W	H'0000	H'FFFE0C0C	16, 32
Interrupt priority register 13	IPR13	R/W	H'0000	H'FFFE0C0E	16
Interrupt priority register 14	IPR14	R/W	H'0000	H'FFFE0C10	16, 32
Interrupt priority register 15	IPR15	R/W	H'0000	H'FFFE0C12	16
Interrupt priority register 16	IPR16	R/W	H'0000	H'FFFE0C14	16, 32
Interrupt priority register 17	IPR17	R/W	H'0000	H'FFFE0C16	16
Interrupt priority register 18	IPR18	R/W	H'0000	H'FFFE0C18	16
USB-DTC transfer interrupt	USDTENDRR	R/(W) ²	H'0000	H'FFFE0C50	16

• Table 6.3 Interrupt Request Sources and IPR01, IPR02, and IPR05 to IPR18 in section 6.3.1, Interrupt Priority Registers 01, 02, 05 to 18 (IPR01, IPR02, IPR05 to IPR18) has been revised as follows.

Register Name		Bit		
	Bits 15 to 12	Bits 11 to 8	Bits 7 to 4	Bits 3 to 0
Interrupt priority register 01	IRQ0	IRQ1	IRQ2	IRQ3
Interrupt priority register 02	IRQ4	IRQ5	IRQ6	IRQ7
Interrupt priority register 05	Reserved	Reserved	ADI0	ADI1
Interrupt priority register 06	DMAC0	DMAC1	DMAC2	DMAC3
Interrupt priority register 07	DMAC4	DMAC5	DMAC6	DMAC7
Interrupt priority register 08	CMT0	CMT1	BSC	WDT
Interrupt priority register 09	MTU0 (TGI0A to TGI0D)	MTU0 (TCI0V, TGI0E, TGI0F)	MTU1 (TGI1A, TGI1B)	MTU1 (TCI1V, TCI1U)
Interrupt priority register 10	MTU2 (TGI2A, TGI2B)	MTU2 (TCI2V, TCI2U)	MTU3 (TGI3A to TGI3D)	MTU3 (TCI3V)
Interrupt priority register 11	MTU4 (TGI4A to TGI4D)	MTU4 (TCI4V)	MTU5 (TGI5U, TGI5V, TGI5W)	POE2 (OEI1, OEI2)
Interrupt priority register 12	MTU3S (TGI3A to TGI3D)	MTU3S (TCI3V)	MTU4S (TGI4A to TGI4D)	MTU4S (TCI4V)
Interrupt priority register 13	MTU5S (TGI5U, TGI5V, TGI5W)	POE2 (OEI3)	IIC3 ^{*1}	Reserved
Interrupt priority register 14	Reserved	Reserved	Reserved	SCIF3
Interrupt priority register 15	Reserved	Reserved	Reserved	Reserved
Interrupt priority register 16	SCI0	SCI1 ^{*1}	SCI2	Reserved
Interrupt priority register 17	SSU ^{*1}	SCI4 ^{*1}	ADI2 ^{*2}	Reserved
Interrupt priority register 18	USB ^{*1}	RCAN ^{*2}	EP1-FIFO full DTC transfer end ^{*1}	EP2-FIFO empty DTC transfer end ^{*1}

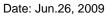

Register Name	Bit					
	Bits 15 to 12	Bits 11 to 8	Bits 7 to 4	Bits 3 to 0		
Interrupt priority register 01	IRQ0	IRQ1	IRQ2	IRQ3		
Interrupt priority register 02	IRQ4	IRQ5	IRQ6	IRQ7		
Interrupt priority register 05	Reserved	Reserved	ADI0	ADI1		
Interrupt priority register 06	DMAC0	DMAC1	DMAC2	DMAC3		
Interrupt priority register 07	DMAC4	DMAC5	DMAC6	DMAC7		
Interrupt priority register 08	CMI0	CMI1	BSC	WDT		
Interrupt priority register 09	MTU2_0 (TGIA_0 to TGID_0)	MTU2_0 (TCIV_0, TGIE_0, TGIF_0)	MTU2_1 (TGIA_1, TGIB_1)	MTU2_1 (TCIV_1, TCIU_1)		
Interrupt priority register 10	MTU2_2 (TGIA2, TGIB_2)	MTU2_2 (TCIV_2, TCIU_2)	MTU2_3 (TGIA_3 to TGID_3)	MTU2_3 (TCIV_3)		
Interrupt priority register 11	MTU2_4 (TGIA_4 to TGID_4)	MTU2_4 (TCIV_4)	MTU25 (TGIU_5, TGIV_5, TGIW_5)	POE2 (OEI1 OEI2)		
Interrupt priority register 12	MTU2S_3 (TGIA_3 to TGID_3)	MTU2S_3 (TCIV_3)	MTU2S_4 (TGIA_4 to TGID_4)	MTU2S_4 (TCIV_4)		
Interrupt priority register 13	MTU2S_5 (TGIU_5, TGIV_5, TGIW_5)	POE2 (OEI3)	IIC3 ^{*1}	Reserved		
Interrupt priority register 14	Reserved	Reserved	Reserved	SCIF3		
Interrupt priority register 15	Reserved	Reserved	Reserved	Reserved		
Interrupt priority register 16	SCI0	SCI1 ^{*1}	SCI2	Reserved		
Interrupt priority register 17	SSU ^{*1}	SCI4 ^{*1}	ADI2 ^{*2}	Reserved		
Interrupt priority register 18	USB ¹¹ (USI0, USI1)	RCAN_ET ^{*2}	EP1-FIFO full DTC transfer end [™] (USBRXI)	EP2-FIFO empty DTC transfer end (USBTX1)		

Table 6.4, Interrupt Exception Handling Vectors and Priorities in section 6.5, Interrupt Exception Handling Vector Table and Priority, has been revised as follows.

[Before change]

٠

USB	EP1-FIFC	ofull DTC transfer end
	end) empty DTC transfe
MTU2	MTU0	TGIA_0
		TGIB_0
		TGIC_0
		TGID_0
		TCIV_0
		TGIE_0
		TGIF_0
	MTU1	TGIA_1
		TGIB_1
		TCIV_1
		TCIU_1
	MTU2	TGIA_2
		TGIB_2
		TCIV_2
		TCIU_2
	MTU3	TGIA_3
		TGIB_3
		TGIC_3
		TGID_3
		TCIV_3
	MTU4	TGIA_4
		TGIB_4
		TGIC_4
		TGID_4
		TCIV_4
	MTU5	TGIU_5
		TGIV_5
		TGIW_5
MTU2S	MTU3S	TGIA_3
1020	MI 000	
		TGIB_3 TGIC_3
		TGID_3
		TCIV_3
	MTU4S	TGIA_4
		TGIA_4
		TGIC_4
		TGID_4
		TCIV_4
	MTU5S	TGIU_5
		TGIV_5
		TGIW_5
		10100_3

USB	USBRXI)	full DTC transfer en
	EP2-FIFÓ	
MTU2	end (USBT MTU2_0	TGIA 0
		TGIA_0
		TGIC_0
		TGID_0
		TCIV_0
		TGIE_0
		TGIF_0
	MTU2_1	TGIA_1
		TGIB_1
		TCIV_1
		TCIU_1
	MTU2_2	TGIA_2
		TGIB_2
		TCIV_2
		TCIU_2
	MTU2_3	TGIA_3
		TGIB_3
		TGIC_3
		TGID_3
		TCIV_3
	MTU2_4	TGIA 4
		TGIB 4
		TGIC 4
		TGID 4
		TCIV_4
	MTU2_5	TGIU_5
	_	TGIV_5
		TGIW 5
		1011/_0
MTU2S	MTU2S_3	TGIA 3S
		TGIA_3S
		TGIC_3S
		TGID_3S
MTU2S	MTU2S_4	TCIV_3S
1011020	WH 020_4	TGIA_4S
		TGIB_4S
		TGIC_4S
		TGID_4S
	MTUOO	TCIV_4S
	MTU2S_5	TGIU_5S
		TGIV_5S
		TGIW_5S

• The following has been added to section 6.10, Usage Note.

[After change]

6.10.2 When NMI is not in Use

When NMI is not in use, the pin should be fixed to high with the resistance connected to Vcc.

Section 7 User Break Controller (UBC)

- The following paragraphs have been added to section 7.5, Usage Note.
 - [After change]
 - 9. Do not set a pre-execution break at an instruction that follows DIVU or DIVS. If a break is set at the instruction after DIVU or DIVS, an interrupt or exception during the execution of DIVU or DIVS will cause suspension of the DIVU or DIVS instruction, but the pre-execution break for the next instruction will still occur.
 - 10. Do not set a pre-execution and post-execution break at the same address. For example, if a pre-execution break on channel_0 and a post-execution break on channel_1 are set for the same address, the pre-execution break on channel 0 will cause the match flag for the condition for the post-execution break on channel 1 to be set.

Section 8 Data Transfer Controller (DTC)

• Note in section 8 has been revised as follows.

[Before change]

Note: When the transfer information is stored in the on-chip RAM, the RAME bit in RAMCR must be set to 1.

[After change]

Note: When the transfer information is stored in the on-chip RAM, the RAME bit in SYSCR1 must be set to 1.

• Table 8.2 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs in section 8, Data Transfer Controller (DTC), has been revised as follows.

[Before change]

Origin of	Origin of Activation
activation Source	Source
•	•
RCAN	RM0_0
•	•
•	•
USB	USRDTCEND
	USTDTCEND
:	:
MTU2S_CH3	TGISA_3
	TGISB_3
	TGISC_3
	TGISD_3
MTU2S_CH4	TGISA_4
	TGISB_4
	TGISC_4
	TGISD_4
	TCISV_4
MTU2S_CH5	TGISU_5
	TGISV_5
	TGISW_5

Origin of Activation	Origin of Activation
Source	Source
:	:
RCAN_ET	RM0_0
:	:
USB	EP1 FIFO FULL as DTC activation source (USBRXI) EP2 FIFO EMPTY as DTC activation source (USBTXI)
:	•
MTU2S_CH3	TGISA_3S
	TGISB_3S
	TGISC_3S
	TGISD_3S
MTU2S_CH4	TGISA_4S
	TGISB_4S
	TGISC_4S
	TGISD_4S
	TCISV_4S
MTU2S_CH5	TGISU_5S
	TGISV_5S
	TGISW_5S

Section 10 Direct Memory Access Controller (DMAC)

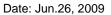
• Section 10.3.9, DMA Extension Resource Selectors 0 to 3 (DMARS0 to DMARS3), has been revised as follows.

[Before change]

DMARS can specify transfer requests from eight SCIF sources, two IIC3 sources, two A/D sources, five MTU2 sources and two CMT sources.

[After change]

DMARS can specify transfer requests from among two SCIF sources, two IIC3 sources, one A/D source, five MTU2 sources, two CMT sources, two USB sources, one RCAN_ET source and two SSU sources.



• Table 10.4, DMARS Settings in section10.3.9, DMA Extension Resource Selectors 0 to 3 (DMARS0 to DMARS3), has been revised as follows.

[Before change]

Peripheral Module	!
USB	EP1FIFO
	EP2FIFO
RCAN	RM0_0
SSU	SSTXI
	SSRXI
SCIF_3	TXI3
	RXI3
IIC3	TXI
	RXI
A/D converter_0	ADI0
MTU2_0	TGI0A
MTU2_1	TGI1A
MTU2_2	TGI2A
MTU2_3	TGI3A
MTU2_4	TGI4A
CMT_0	CMT_0
CMT_1	CMT_1

Peripheral Module	•
USB	USBRXI
000	USBTXI
RCAN_ET	RM0_0
SSU	SSTXI
	SSRXI
SCIF 3	TXI3
50II _5	RXI3
IIC3	ТХІ
1105	RXI
A/D converter_0	ADI0
MTU2_0	TGIA_0
MTU2_1	TGI A_1
MTU2_2	TGI A_2
MTU2_3	TGI A_3
MTU2_4	TGI A_4
CMT_0	CMI0
CMT_1	CMI1

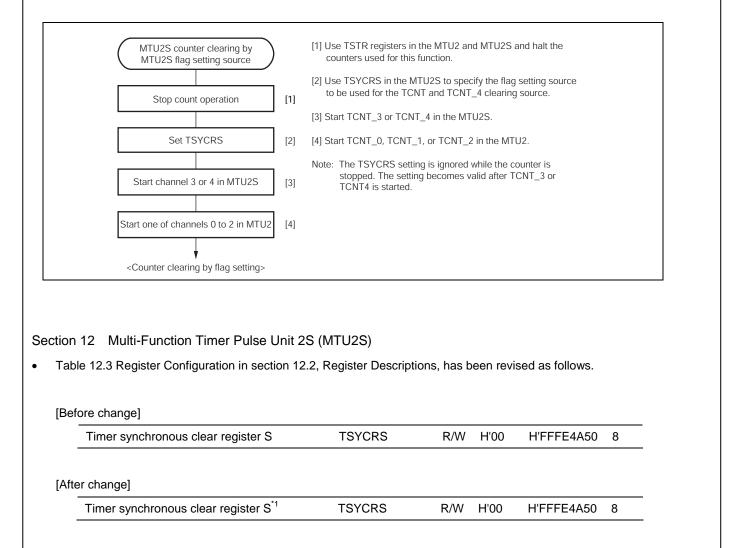
• Table 10.8, Selecting On-Chip Peripheral Module Request Modes with RS3 to RS0 Bits, has been revised as follows.

[Before change]

CHCR	DM	ARS	DMA Transfer	DMA Transfer	Transfer	Transfer	
RS[3:0]	MID	RID	Request Source	Request Signal	Source	Destination	Bus Mode
1000	100000	01	USB receive	EP1 FIFO full transfer request	USBEPDR1	Any	Cycle steal
		10	USB transmit	EP2 FIFO empty transfer request	Any	USBEPDR2	_
	100001	10	RCAN	RM0 (RCAN receive interrupt)	MB0 to MB31	Any	Cycle steal
	:	:	:	:	:	:	:
	111000	11	MTU2_0	TGI0A	Any	Any	Cycle steal or burst
	111001	11	MTU2_1	TGI1A	Any	Any	
	111010	11	MTU2_2	TGI2A	Any	Any	
	111011	11	MTU2_3	TGI3A	Any	Any	
	111100	11	MTU2_4	TGI4A	Any	Any	
	111110	11	CMT_0	Compare match 0	Any	Any	Cycle steal or burst
	111111	11	CMT_1	Compare match 1	Any	Any	_

DM	ARS	DMA Transfer	DMA Transfer	Transfer	Transfer	
MID	RID	Request Source	Request Signal	Source	Destination	Bus Mode
100000	01	USB receive	EP1 FIFO full transfer request (USBRXI)	USBEPDR1	Any	Cycle steal
	10	USB transmit	EP2 FIFO empty transfer request (USBTXI)	Any	USBEPDR2	_
100001	10	RCAN_ET	RM0 (RCAN_ET receive interrupt)	MB0 to MB31	Any	Cycle steal
:	:	:	:	:	:	:
111000	11	MTU2_0	TGIA_0	Any	Any	Cycle steal or burst
111001	11	MTU2_1	TGIA_1	Any	Any	
111010	11	MTU2_2	TGIA_2	Any	Any	
111011	11	MTU2_3	TGIA_3	Any	Any	
111100	11	MTU2_4	TGIA_4	Any	Any	
111110	11	CMT_0	Compare match transfer request 0	Any	Any	Cycle steal or burst
111111	11	CMT_1	Compare match transfer request 1	Any	Any	_
	MID 100000 100001 100001 111000 111001 111010 111100 111110	$\begin{array}{c} 100000 & 01 \\ \hline 10 \\ \hline 11 \\ \hline 11000 & 11 \\ \hline 11100 & 11 \\ \hline 11100 & 11 \\ \hline 111110 \\ \hline 1111110 \\ \hline 111110 \\ \hline 1111110 \\ \hline 111110 \\ \hline 1111110 \\ \hline 11111110 \\ \hline 1111110 \\ \hline 1111110 \\ \hline 11111110 \\ \hline 11111110 \\ \hline 11111110 \\ \hline 11111110 \\ \hline 1111111111$	MID RID Request Source 100000 01 USB receive 10 USB transmit 100001 10 RCAN_ET : : : 111000 11 MTU2_0 111001 11 MTU2_1 111010 11 MTU2_3 111100 11 MTU2_4 111110 11 CMT_0	MID RID Request Source DMA Transfer Request Signal 100000 01 USB receive EP1 FIFO full transfer request (USBRXI) 10 USB transmit EP2 FIFO empty transfer request (USBTXI) 100001 10 RCAN_ET RM0 (RCAN_ET receive interrupt) 1100001 10 RCAN_ET RM0 (RCAN_ET receive interrupt) 111000 11 MTU2_0 TGIA_0 111001 11 MTU2_1 TGIA_1 111010 11 MTU2_3 TGIA_3 111100 11 MTU2_4 TGIA_4 111100 11 CMT_0 Compare match transfer request 0	MIDRIDRequest SourceDMA Transfer Request SignalTransfer Source10000001USB receiveEP1 FIFO full transfer request (USBRXI)USBEPDR1 USBEPDR110USB transmitEP2 FIFO empty transfer request (USBTXI)Any10000110RCAN_ETRM0 (RCAN_ET receive interrupt)MB0 to MB31 ister11100011MTU2_0TGIA_0Any11100111MTU2_1TGIA_1Any11101111MTU2_3TGIA_3Any11110011MTU2_4TGIA_4Any11110011MTU2_4TGIA_4Any11110111CMT_0Compare match transfer request Any 00	MIDRipRequest SourceDMA Transfer Request SignalTransfer SourceTransfer Destination10000001USB receiveEP1 FIFO full transfer request (USBRXI)USBEPDR1Any10USB transmitEP2 FIFO empty transfer request (USBTXI)AnyUSBEPDR210000110RCAN_ETRM0 (RCAN_ET receive interrupt)MB0 to MB31Any1100011MTU2_0TGIA_0AnyAny1110011MTU2_1TGIA_1AnyAny1110111MTU2_3TGIA_3AnyAny11110011MTU2_4TGIA_4AnyAny11110011MTU2_4TGIA_4AnyAny11110011MTU2_4TGIA_4AnyAny11110111CMT_0Compare match transfer request Any 0AnyAny

Section 11 Multi-Function Timer Pulse Unit 2 (MTU2) Section 11.3.9, Timer Synchronous Clear Register (TSYCR), has been revised as follows. • [Before change] Section 11.3.9 Timer Synchronous Clear Register (TSYCR) TSYCR is an 8-bit readable/writable register that specifies conditions for clearing TCNT_3 and TCNT_4 in the MTU2S in synchronization with the MTU2. The MTU2S has one TSYCR in channel 3 but the MTU2 has no TSYCR. [After change] Section 11.3.9 Timer Synchronous Clear Register S (TSYCRS) TSYCRS is an 8-bit readable/writable register that specifies conditions for clearing TCNT_3 and TCNT_4 in the MTU2S in synchronization with the MTU2. The MTU2S has one TSYCRS in channel 3 but the MTU2 has no TSYCRS. • Note has been added to section 11.3.23, Time Gate Control Register (TGCR) as follows. [After change] Do not set the FB bit to 0 when the BDC bit is set to 1 in MTU2S. Section 11.4.10, MTU2-MTU2S Synchronous Operation, has been revised as follows. ٠ [Before change] (2) MTU2S Counter Clearing Caused by MTU2 Flag Setting Source (MTU2-MTU2S Synchronous Counter Clearing) The MTU2S counters can be cleared by sources for setting the flags in TSR_0 to TSR_2 in the MTU2 through the TSYCR_3 settings in the MTU2S. (a) Example of Procedure for Specifying MTU2S Counter Clearing by MTU2 Flag Setting Source Figure 11.85 shows an example of procedure for specifying MTU2S counter clearing by MTU2 flag setting source. [1] Use TSTR registers in the MTU2 and MTU2S and halt the MTU2S counter clearing by counters used for this function. MTU2 flag setting source [2] Use TSYCR_3 in the MTU2S to specify the flag setting source to be used for the TCNT_3 and TCNT_4 clearing source. [1] Stop count operation [3] Start TCNT_3 or TCNT_4 in the MTU2S. Set TSYCR 3 [2] [4] Start TCNT_0, TCNT_1, or TCNT_2 in the MTU2. Note: The TSYCR_3 setting is ignored while the counter is stopped. The setting becomes valid after TCNT_3 or Start channel 3 or 4 in MTU2S [3] TCNT4 is started. Start one of channels 0 to 2 in MTU2 [4] <Counter clearing by flag setting>


[After change]

(2) MTU2S Counter Clearing Caused by MTU2 Flag Setting Source (MTU2-MTU2S Synchronous Counter Clearing)

The MTU2S counters can be cleared by sources for setting the flags in TSR_0 to TSR_2 in the MTU2 through the TSYCRS settings in the MTU2S.

(a) Example of Procedure for Specifying MTU2S Counter Clearing by MTU2 Flag Setting Source

Figure 11.85 shows an example of procedure for specifying MTU2S counter clearing by MTU2 flag setting source.

*1 For details on registers, refer to section 11.3.9, Timer Synchronous Clear Register (TSYCR) and figure 11.85 in section 11, Multi-Function Timer Pulse Unit 2 (MTU2).

Section 13 Port Output Enable 2 (POE2)

• Table 13.1, Pin Configuration in section 13.2, Input/Output Pins has been revised as follows.

[Before change]

Pin Name	Symbol	I/O	Function
Port output enable input pins 0 to 3	POE0 to POE3	Input	Input request signals to place high-current pins (PE9/TIOC3B, PE11/TIOC3D, PE12/TIOC4A, PE13/TIOC4B, PE14/TIOC4C, and PE15/TIOC4D) for MTU2 in high-impedance state
Port output enable input pins 4 to 7	POE4 to POE7	Input	Input request signals to place high-current pins (PE5/TIOC3BS, PE6/TIOC3DS, PE0/TIOC4AS, PE1/TIOC4BS, PE2/TIOC4CS, PE3/TIOC4DS, PD10/TIOC3BS, PD11/TIOC3DS, PD12/TIOC4AS, PD13/TIOC4BS, PD14/TIOC4CS, PD15/TIOC4DS, PD29/TIOC3BS, PD28/TIOC3DS, PD27/TIOC4AS, PD26/TIOC4BS, PD25/TIOC4CS, and PD24/TIOC4DS) for MTU2S in high-impedance state
Port output enable input pin 8	POE8	Input	Inputs a request signal to place pins (PE0/TIOC0A, PE1/TIOC0B, PE2/TIOC0C, and PA3/TIOC0D) for channel 0 in MTU2 in high-impedance state

[After change]

Pin Name	Symbol	I/O	Function
Port output enable input pins 0 to 3	POE0 to POE3	Input	Input request signals to place high-current pins (PE9/TIOC3B, PE11/TIOC3D, PE12/TIOC4A, PE13/TIOC4B, PE14/TIOC4C, and PE15/TIOC4D) for MTU2 in high-impedance state
Port output enable input pins 4 to 7	POE4 to POE7	Input	Input request signals to place high-current pins (PE5/TIOC3BS, PE6/TIOC3DS, PE0/TIOC4AS, PE1/TIOC4BS, PE2/TIOC4CS, PE3/TIOC4DS, PD10/TIOC3BS, PD11/TIOC3DS, PD12/TIOC4AS, PD13/TIOC4BS, PD14/TIOC4CS, PD15/TIOC4DS, PD29/TIOC3BS, PD28/TIOC3DS, PD27/TIOC4AS, PD26/TIOC4BS, PD25/TIOC4CS, and PD24/TIOC4DS) for MTU2S in high-impedance state
Port output enable input pin 8	POE8	Input	Inputs a request signal to place pins (PE0/TIOC0A, PE1/TIOC0B, PE2/TIOC0C, and PE3/TIOC0D) for channel 0 in MTU2 in high-impedance state

Section 15 Watchdog Timer (WDT)

• The following has been added to section 15.5, Usage Note.

[After change]

15.5.5 WDTOVF Signal

Leave the pin open when WDTOVF not in use. Do not pull down WDTOVF.

If pulling-down is required, use a resistance of $1M\Omega$ or more.

[Befc	ore change]									
			Bit: 7	6	5	4	3	2	1	0
			EIC) -	-	-	SPB1IO	SPB1DT	-	SPB0DT
		Initial va		0	0	0	0	-	0	1
		F	}/W: R/V	v -	-	-	R/W	R/W	-	W
Bit	Bit Name	Initial Value	R/W	Descrip	tion					
:	:	:	:						:	
2	SPB1DT	Undefined	R/W	should	es the o be ena tion). V the S0 evel is	data o bled Vhen CK pi outp	output t by the output n. out	hrough SPB1I0) bit	SCK pin in the serial port. Output (for details, refer to the SPB1IO bit the SPB1DT bit value is output
:	:	:	:						:	
[Afte	r change]	Initial va F	Bit: 7 EIC alue: 0 R/W: R/V) - 0	5 - 0 -	4 - 0 -	3 SPB1IO 0 R/W	2 SPB1DT W	1 - 0 -	0 SPBODT 1 W
Bit	Bit Name	Initial Value	R/W	Descrip	tion					
:	:	:	:						:	
2	SPB1DT	Undefined	W	should	es the o be ena tion). V the S0 evel is	data o Ibled Vhen CK pi s outp	output t by the output n. out	hrough SPB1I0) bit	SCK pin in the serial port. Output (for details, refer to the SPB1IO bit the SPB1DT bit value is output
		•	•						:	

• The following has been added to (2) of section 16.4.3, Clock Synchronous Mode.

[After change]

However, in the case of reception only, output of the clock signal will continue until an overrun error occurs or the RE bit is cleared to 0. If reception operation for n characters of data is to proceed, select an external clock as the clock source. If an internal clock has to be used, set RE = 1 and TE = 1, and then transmit n characters of dummy data while receiving the n characters of data for reception.

Section 17 Serial Communication Interface with FIFO (SCIF)

• Table 17.2, Register Configuration in section 17.3, Register Descriptions, has been revised as follows.

:

•

Channel	Register Name	Abbreviation	R/W	Initial Value Address	Address	Access Size
3	:	:	:	:	:	:
	Serial port register_3	SCSPTR_3	R/W	H'0050	H'FFFE9820	16
	:	:	:	:	:	•
[After ch	ange]					
-	nange] Register Name	Abbreviation	R/W	Initial Value Address	Address	Access Size
[After ch Channel 3	• -	Abbreviation	R/W	Initial Value Address	Address :	Access Size

:

:

:

:

• Section 17.3.11, Serial Port Register (SCSPTR), has been revised as follows:

[Before change]

The CPU can always read and write to SCSPTR. SCSPTR is initialized to H'0050 by a power-on reset.

	Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Initial value:	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	SCKIO 0	SCKD		OSPB2DT 0
	R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit	Bit Name	Init Val		F	R/W	Desc	ription										
:	•											:					
2	SCKDT	C		R/W		Indic spec the S the S 0: Inp	ified by SCK pir	e inpu / the S n. The bit se put da	SCKIC SCK tting. ata is	D bit. F pin st Howe low lev	For ou atus i ver, S vel	he se itput, t s reac	he S0 I from	CKDT I the S	bit va CKD⊺	lue is ī bit re	output is output to gardless in the PF
:	:											:					
0	SPB2DT	C)	R/W	I	Indica used TXD The I bit se	as ser pin is s RXD pi etting. I out/out	e inpu rial po set to in stat Howe put da	ut data orts. In outpu tus is ver, R ata is	a of the put/ou it, the read fi XD inj low lev	utput i SPB2 rom th put ar vel	s spea 2DT bi ne SP	cified t valu B2DT	by the le is ou bit reg	SPB: tput t gardle	2IO bit o the ess of	te TXD p t. When t TXD pin. the SPB2 the PFC
						1: Inp	out/out	put da	ata is	ingii ie							
[After	r change]					1: Inp	out/out	put da	ata is	Ingrie							
-	r change] CPU can alwa	ays rea	ad an	d write	e to S			-				'00xx	by a	power-	on re	set.	
-		ays rea	14	13	e to S		R. SC:	SPTR	is init	ializeo	d to H	5	4	3	2	1	0
-	CPU can alwa	15	-	13	12	CSPT 11	R. SCS 10	SPTR 9	is init 8	ializeo	d to H 6	5		3 SCKIO	2	1 SPB2IC	
-	CPU can alwa		14	13			R. SC:	SPTR	is init	ializeo	d to H	5	4	3	2 SCKDT	1	
The (CPU can alwa Bit: Initial value:	15 - 0	14 - 0 R	13 - 0	12 - 0 R	11 - 0 R	R. SCS 10 -	9 - 0 R	is init 8 - 0	ializeo	d to H 6 -	5 - 0	4	3 SCKIO 0	2 SCKDT —	1 SPB2IC 0	SPB2DT —
-	CPU can alwa Bit: Initial value: R/W: Bit	15 - 0 R	14 - 0 R	13 - 0 R	12 - 0 R	11 - 0 R	R. SCS 10 - 0 R	9 - 0 R	is init 8 - 0	ializeo	d to H 6 -	5 - 0	4	3 SCKIO 0	2 SCKDT —	1 SPB2IC 0	SPB2DT —
The	CPU can alwa Bit: Initial value: R/W: Bit	15 - 0 R	14 - 0 R	13 - 0 R	12 - 0 R	CSPT 11 0 R Desc SCK Indic spec the S of the PFC. 0: Inf	R. SCS 10 - 0 R cription Port D ates th ified by SCK pir e SCKI	SPTR 9 - 0 R 0 R 0 Content	ut/out SCKIC settin ata is	out da D bit. F pin st g. Hov	ta of t For ou atus i wever	5 0 R : : : : : : : : : : :	rial po the S0	3 SCKIO 0 R/W	2 SCKDT W W	1 0 R/W	SPB2DT —
The	CPU can alwa Bit: Initial value: R/W: Bit Name	15 - 0 R Initial Value	14 - 0 R	13 - 0 R R/W	12 - 0 R	CSPT 11 0 R Desc SCK Indic spec the S of the PFC. 0: Inf	R. SCS	SPTR 9 - 0 R 0 R 0 Content	ut/out SCKIC settin ata is	out da D bit. F pin st g. Hov	ta of t For ou atus i wever	5 0 R : : : : : : : : : :	rial po the S0	3 SCKIO 0 R/W	2 SCKDT W W	1 0 R/W	SPB2DT - W /output is output to gardless

• Description (1) in figure 17.11, Sample of Flowchart for Transmitting Serial Data, has been revised as follows.

[Before change]

(1) SCIF status check and transmit data write:

Read SCFSR and check that the TDFE flag is set to 1, then write transmit data to SCFTDR. Read 1 from the TDFE and TEND flags, then clear these flags to 0.

[After change]

(1) SCIF status check and transmit data write:

Read SCFSR and check that the TDFE and TEND flags are set to 1, then write transmit data to SCFTDR. Read 1 from the TDFE and TEND flags, then clear these flags to 0.

• Description (1) in figure 17.16, Sample Flowchart for Transmitting/Receiving Serial Data, has been revised as follows.

[Before change]

(1) SCIF status check and transmit data write:

Read SCFSR and check that the TDFE flag is set to 1, then write transmit data to SCFTDR. Read 1 from the TDFE and TEND flags, then clear these flags to 0. The transition of the TDFE flag from 0 to 1 can also be identified by a TXI interrupt.

[After change]

(1) SCIF status check and transmit data write:

Read SCFSR and check that the TDFE and TEND flags are set to 1, then write transmit data to SCFTDR and clear the TDFE and TEND flags to 0. The transition of the TDFE flag from 0 to 1 can also be identified by a TXI interrupt.

Section 18 Synchronous Serial Communication Unit (SSU)

• Table 18.6, Communication Modes and Pin States of SSCK Pin, has been revised as follows.

[Before change]

		Register Setting		Pin State
Communication Mode	SSUMS	MSS	SCKS	SSCK
SSU communication	0	0	0	_
mode			1	Input
	-	1	0	
			1	Output
Clock synchronous	1	0	0	
communication mode			1	Input
	-	1	0	
			1	Output

Regi	ster Setting	Pin State
SSUMS	MSS	SSCK
0	0	_
		Input
	1	—
		Output
1	0	
		Input
_	1	
		Output
	SSUMS	SSUMS MSS 0 0 1 1 1 0

Section 20 A/D Converter (ADC)

• Section 20.3.1, A/D Control Registers 0 to 2 (ADCR_0 to ADCR_2), has been revised as follows.

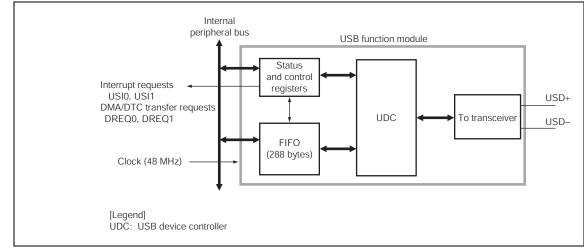
7	ADST			
		0	R/W	A/D Start When this bit is cleared to 0, A/D conversion is stopped and the A/D converter enters the idle state. When this bit is set to 1, A/D conversion is started. In single-cycle scan mode, this bit is automatically cleared to 0 when A/D conversion ends on the selected single channel. In continuous scan mode, A/D conversion is continuously performed for the selected channels in sequence until this bit is cleared by software, a reset, or in software standby mode or module standby mode.
•	•	•	•	:
[Aft	er change]			
Bit	Bit Name	Initial Value	R/W	Description
7	ADST	0	R/W	A/D Start When this bit is cleared to 0, A/D conversion is stopped and the A/D converter enters the idle state. When this bit is set to 1, A/D conversion is started. In single-cycle scan mode, this bit is automatically cleared to 0 when A/D conversion ends on the selected single channel. In continuous scan mode, A/D conversion is continuously performed for the selected channels in sequence until this bit is cleared by software, a reset, or in software standby mode.
:	•	•	•	:

Section 24 I/O Ports

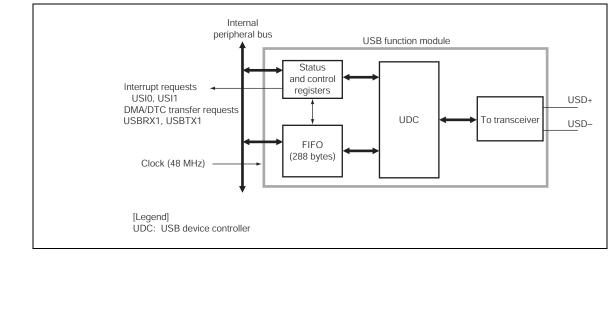
• The following has been added to section 24, I/O Ports.

[After change]

24.7 Usage Notes


24.7.1 Handling of Unused Pins

Unused pins should be connected to Vcc or GND by resistors and fixed to the high or low level. PF0 to PF11 should be connected to Avcc or Avss by resistors. However, handling of the NMI, USD+, USD-, EXTAL, XTAL, USBXTAL, WDTOVF, TRST, TMS, TCK, TDO and TDI signals should be in accord with the descriptions for the corresponding modules.


Section 25 USB Function Module

• Figure 25.1, Block Diagram of USB, has been revised as follows.

[After change]

• Note have been added to table 25.1, Pin Configuration and Functions, in section 25.2, Pin Configuration.

Note: * In the case of $3.0 \le Vcc \le 3.6V$, DrVcc = Vcc or $3.0 \le DrVcc \le 3.6V$

In the case of 3.6 \leq Vcc \leq 5.5 V, DrVcc \leq 3.6 V < Vcc

• Notes in section 25.3.18, USBDMA Transfer Setting Register (USBDMAR), has been modified as follows.

[Before change]

- Note: 1. Before setting this bit, set the DME bit in DMAOR to start DMA transfer or set the DTCE0 bit in DTCERA to start DTC transfer.
 - 2. Before setting this bit, set the DME bit in DMAOR to start DMA transfer or set the DTCE1 bit in DTCERA to start DTC transfer.

[After change]

- Notes: 1. Before setting this bit, set the DME bit in DMAOR to start DMA transfer or set the DTCE0 bit in DTCERA to start DTC transfer. When the DME bit in DMAOR and DTCE0 bit in DTCERA are not set, EP2-FIFO empty DTC transfer end interrupt (the TXF bit in USDTENDRR) will occur.
 - Before setting this bit, set the DME bit in DMAOR to start DMA transfer or set the DTCE1 bit in DTCERA to start DTC transfer. When the DME bit in DMAOR and DTCE1 bit in DTCERA are not set, EP1-FIFO full DTC transfer end interrupt (the RXF bit in USDTEDRR) will occur.
- Table 25.3, Interrupt Sources, has been modified as follows.

EP2TR

EP2EMPTY

:

:

5

4

:

:

USBIFR1

Bulk-IN

:

:

(EP2)

[Before ch	nange]					
Register	Bit	Transfer Type	Interrupt Source	Description	Interrupt Request Signal	DMAC/DTC Activation by USB Request	
USBIFR0	7	(Status)	BRST	Bus reset	USI0 or USI1	×	
	6	Bulk-OUT (EP1)	EP1FULL	EP1FIFO full	USI0 or USI1	DREQ0 ^{*1}	
	5	Bulk-IN	EP2TR	EP2 transfer request	USI0 or USI1	×	
	4	(EP2)	EP2EMPTY	EP2 FIFO empty	USI0 or USI1	DREQ1 ^{*2}	
	:	:	:	:	:	:	
USBIFR1	:	:	:	:	:	:	
[After cha	nge]						
Register	Bit	Transfer Type	Interrupt Source	Description	Interrupt Request Signal	DMAC/DTC Activation by USB Request	
USBIFR0	7	(Status)	BRST	Bus reset	USI0 or USI1	×	
	6	Bulk-OUT (EP1)	EP1FULL	EP1FIFO full	USI0 or USI1	USBRXI ^{*1}	
	5		EP2TR	EP2 transfer	USIO or USI1	~	

request

EP2 FIFO empty

:

:

USI0 or USI1

USI0 or USI1

:

:

×

USBTXI^{*2}

:

:

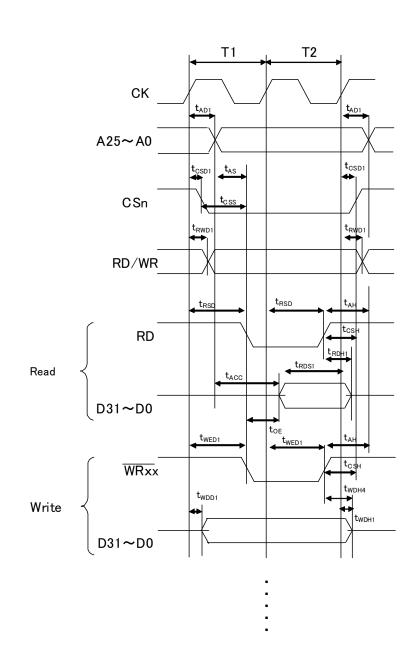
Section 31, Electrical Characteristics

• Table 31.7, Bus Timing, has been revised as follows.

[Before change]

lá o reo	Oursels 1	-	50 MHz*		-	
Item	Symbol	Min.	Max.	Unit	Figure	
Address delay time 1	t _{AD1}	1	20	ns	Figures 31.11 to 31.35 31.38	
Address delay time 2	t _{AD2}	1/2t _{cyc} + 1	$1/2t_{cyc} + 20$	ns	Figure 31.18	
Address delay time 3	t _{AD3}	1/2t _{cyc} + 1	$1/2t_{cyc} + 20$	ns	Figures 31.36, 31.37	
Address setup time	t _{AS}	0	—	ns	Figures 31.11 to 31.14 31.18	
Address hold time	t _{AH}	0		ns	Figures 31.11 to 31.14	
BS delay time	t _{BSD}	_	20	ns	Figures 31.11 to 31.32 31.36, 31.38	
CS delay time 1	t _{CSD1}	1	20	ns	Figures 31.11 to 31.35 31.38	
CS delay time 2	t _{CSD2}	1/2t _{cyc} + 1	1/2t _{cyc} + 20	ns	Figures 31.36, 31.37	
Read write delay time 1	t _{RWD1}	1	20	ns	Figures 31.11 to 31.35 31.38	
Read write delay time 2	t _{RWD2}	1/2t _{cyc} + 1	$1/2t_{cyc} + 20$	ns	Figures 31.36, 31.37	
Read strobe delay time	t _{RSD}	1/2t _{cyc} + 1	$1/2t_{cyc} + 20$	ns	Figures 31.11 to 31.15 31.17 to 31.18, 31.38	
Read data setup time 1	t _{RDS1}	1/2t _{cyc} + 20	_	ns	Figures 31.11 to 31.15 31.17, 31.38	
Read data setup time 2	t _{RDS2}	20	—	ns	Figures 31.16, 31.19 to 31.29	
Read data setup time 3	t _{RDS3}	1/2t _{cyc} + 20	_	ns	Figure 31.18	
Read data setup time 4	t _{RDS4}	1/2t _{cyc} + 20		ns	Figure 31.36	
Read data hold ime 1	t _{RDH1}	0	_	ns	Figures 31.11 to 31.15 31.17, 31.38	
Read data hold ime 2	t _{RDH2}	5	_	ns	Figures 31.16, 31.19 to 31.22, 31.27 to 31.29	
Read data hold ime 3	t _{RDH3}	0	_	ns	Figure 31.18	
Read data hold ime 4	t _{RDH4}	1/2t _{cyc} + 5		ns	Figure 31.36	
Write enable delay ime 1	t _{WED1}	1/2t _{cyc} + 1	1/2t _{cyc} + 20	ns	Figures 31.11 to 31.15 31.38	
Write enable delay ime 2	$t_{\rm WED2}$	_	20	ns	Figure 31.17	
Write data delay ime 1	t _{WDD1}	_	20	ns	Figures 31.11 to 31.17 31.38	
Write data delay ime 2	t _{WDD2}	_	20	ns	Figures 31.23 to 31.26 31.30 to 31.32	
Vrite data delay ime 3	t _{WDD3}	_	$1/2t_{cyc} + 20$	ns	Figure 31.36	

$B\phi = 50 \text{ MHz}^*$								
Item	Symbol	Min.	Max.	Unit	Figure			
Write data hold time 1	t _{WDH1}	1		ns	Figures 31.11 to 31.17, 31.38			
Write data hold time 2	t _{WDH2}	1		ns	Figures 31.23 to 31.26, 31.30 to 31.32			
Write data hold time 3	t _{WDH3}	1/2t _{cyc} + 1		ns	Figure 31.36			
WAIT setup time	t _{WTS}	1/2t _{cyc} + 20		ns	Figures 31.12 to 31.18			
WAIT hold time	t _{WTH}	1/2t _{cyc} + 10		ns	Figures 31.12 to 31.18			
RAS delay time 1	t _{RASD1}	1	20	ns	Figures 31.19 to 31.35			
RAS delay time 2	t _{RASD2}	1/2t _{cyc} + 1	1/2t _{cyc} + 20	ns	Figures 31.36, 31.37			
CAS delay time 1	t _{CASD1}	1	20	ns	Figures 31.19 to 31.35			
CAS delay time 2	t _{CASD2}	1/2t _{cyc} + 1	1/2t _{cyc} + 20	ns	Figures 31.36, 31.37			
DQM delay time 1	t _{DQMD1}	1	20	ns	Figures 31.19 to 31.32			
DQM delay time 2	t _{DQMD2}	1/2t _{cyc} + 1	1/2t _{cyc} + 20	ns	Figures 31.36, 31.37			
CKE delay time 1	t _{CKED1}	1	20	ns	Figure 31.34			
CKE delay time 2	t _{CKED2}	1/2t _{cyc} + 1	1/2t _{cyc} + 20	ns	Figure 31.37			
AH delay time	t _{AHD}	1/2t _{cyc} + 1	1/2t _{cyc} + 20	ns	Figure 31.15			
Multiplexed address delay time	t _{MAD}	_	20	ns	Figure 31.15			
Multiplexed address hold time	t _{MAH}	1		ns	Figure 31.15			
DACK, TEND delay time	t _{DACD}		Refer to peripheral modules	ns	Figures 31.10 to 31.31, 31.35, 31.37			
FRAME delay time	t _{FMD}	1	20	ns	Figure 31.16			


Item	Symbol	Min.	Max.	Unit	Figure
Address delay time 1	t _{AD1}	1	18	ns	Figures 31.11 to 31.3
Address delay time 2	t _{AD2}	1/2t _{cyc} + 1	1/2t _{cyc} + 18	ns	Figure 31.18
Address delay time 3	t _{AD3}	1/2t _{cyc} + 1	1/2t _{cyc} + 18	ns	Figures 31.36, 31.37
Address setup time	t _{AS}	0		ns	Figures 31.11 to 31.14, 31.18
Address hold time	t _{AH}	0		ns	Figures 31.11 to 31.1
BS delay time	t _{BSD}	_	18	ns	Figures 31.11 to 31.32, 31.36
CS delay time 1	t _{CSD1}	1	18	ns	Figures 31.11 to 31.3
CS delay time 2	t _{CSD2}	1/2t _{cyc} + 1	1/2t _{cyc} + 18	ns	Figures 31.36, 31.37
CS setup time	t _{CSS}	0	_	ns	31.11 to 31.14
CS hold time	t _{CSH}	0		ns	31.11 to 31.14
Read write delay time 1	t _{RWD1}	1	18	ns	Figures 31.11 to 31.3
Read write delay time 2	t _{RWD2}	$1/2t_{cyc} + 1$	1/2t _{cyc} + 18	ns	Figures 31.36, 31.37
Read strobe delay time	t _{RSD}	1/2t _{cyc} + 1	1/2t _{cyc} + 18	ns	Figures 31.11 to 31.3
Read data setup time 1	t _{RDS1}	1/2t _{cyc} + 14		ns	Figures 31.11 to 31.1
Read data setup time 2	t _{RDS2}	14		ns	Figures 31.19 to 31.29, 31.27 to 31.29
Read data setup time 3	t _{RDS3}	1/2t _{cyc} + 14		ns	Figure 31.18
Read data setup time 4	t _{RDS4}	1/2t _{cyc} + 14		ns	Figure 31.36
Read data hold time 1	t _{RDH1}	0		ns	Figures 31.11 to 31.15, 31.17
Read data hold time 2	t _{RDH2}	2	_	ns	Figures 31.16, 31.19 to 31.22, 31.27 to 31.29
Read data hold time 3	t _{RDH3}	0		ns	Figure 31.18
Read data hold time 4	t _{RDH4}	1/2t _{cyc} + 5		ns	Figure 31.36
Write enable delay time 1	t _{WED1}	1/2t _{cyc} + 1	1/2t _{cyc} + 18	ns	Figures 31.11 to 31.1
Write enable delay time 2	t _{WED2}	_	18	ns	Figure 31.17
Write data delay time 1	t _{WDD1}	_	18	ns	Figures 31.11 to 31.1
Write data delay time 2	t _{WDD2}		18	ns	Figures 31.23 to 31.26, 31.30 to 31.32
Write data delay time 3	t _{WDD3}		1/2t _{cyc} + 18	ns	Figure 31.36

$B\phi = 50 \text{ MHz}^*$							
Item	Symbol	Min.	Max.	Unit	Figure		
Write data hold time 1	t_{WDH1}	1	15	ns	Figures 31.11 to 31.17		
Write data hold time 2	t _{WDH2}	1		ns	Figures 31.23 to 31.26, 31.30 to 31.32		
Write data hold time 3	t _{WDH3}	$1/2t_{cyc} + 1$	_	ns	Figure 31.36		
Write data hold time 4	t_{WDH4}	0	_	ns	Figure 31.11 to		
					31.14		
Read data access time	t _{ACC}	Tcyc x (n+1.5)	_	ns	Figure 31.11 to		
		-33			31.14		
Access time from read	t _{OE}	Tcyc x (n+1)		ns	Figure 31.11 to		
strobe		-31			31.14		
WAIT setup time	t _{WTS}	1/2t _{cyc} + 18	_	ns	Figures 31.12 to 31.18		
WAIT hold time	t _{WTH}	$1/2t_{cyc} + 2$	_	ns	Figures 31.12 to 31.18		
RAS delay time 1	t _{RASD1}	1	18	ns	Figures 31.19 to 31.35		
RAS delay time 2	t _{RASD2}	1/2t _{cyc} + 1	1/2t _{cyc} + 18	ns	Figures 31.36, 31.37		
CAS delay time 1	t _{CASD1}	1	18	ns	Figures 31.19 to 31.35		
CAS delay time 2	t _{CASD2}	1/2t _{cyc} + 1	1/2t _{cyc} + 18	ns	Figures 31.36, 31.37		
DQM delay time 1	t _{DQMD1}	1	18	ns	Figures 31.19 to 31.32		
DQM delay time 2	t _{DQMD2}	$1/2t_{cyc} + 1$	1/2t _{cyc} + 18	ns	Figures 31.36, 31.37		
CKE delay time 1	t _{CKED1}	1	18	ns	Figure 31.34		
CKE delay time 2	t _{CKED2}	1/2t _{cyc} + 1	1/2t _{cyc} + 18	ns	Figure 31.37		
AH delay time	t _{AHD}	$1/2t_{cyc} + 1$	1/2t _{cyc} + 18	ns	Figure 31.15		
Multiplexed address delay time	t _{MAD}	-	18	ns	Figure 31.15		
Multiplexed address hold time	t _{MAH}	1		ns	Figure 31.15		
DACK, TEND delay time	tDACD		Refer to peripheral modules	ns	Figures 31.11 to 31.32, 31.36, 31.39		
FRAME delay time	t _{FMD}	1	18	ns	Figure 31.16		

• Figures 31.11 to 31.14 have been added as follows. [After change]

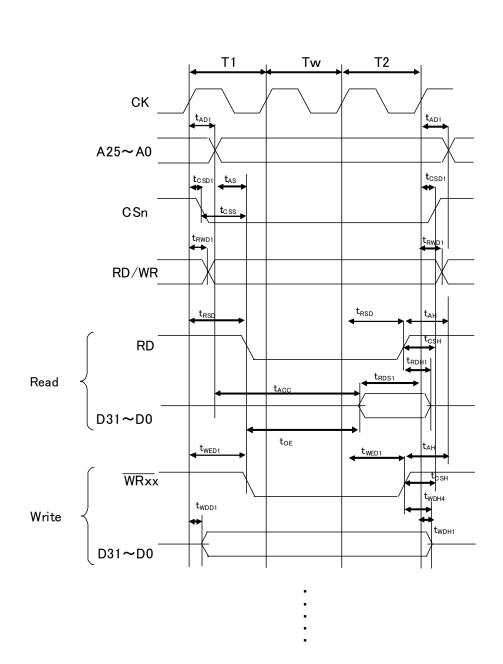


Figure 31.12 Normal Space Basic Bus Cycle (Software Wait 1)

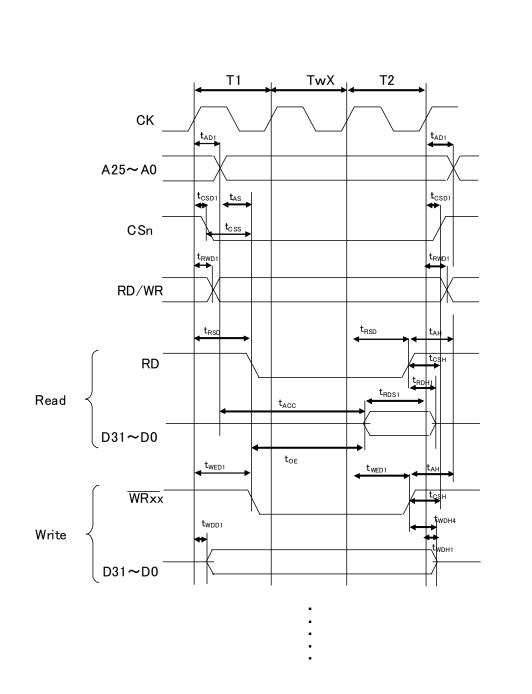
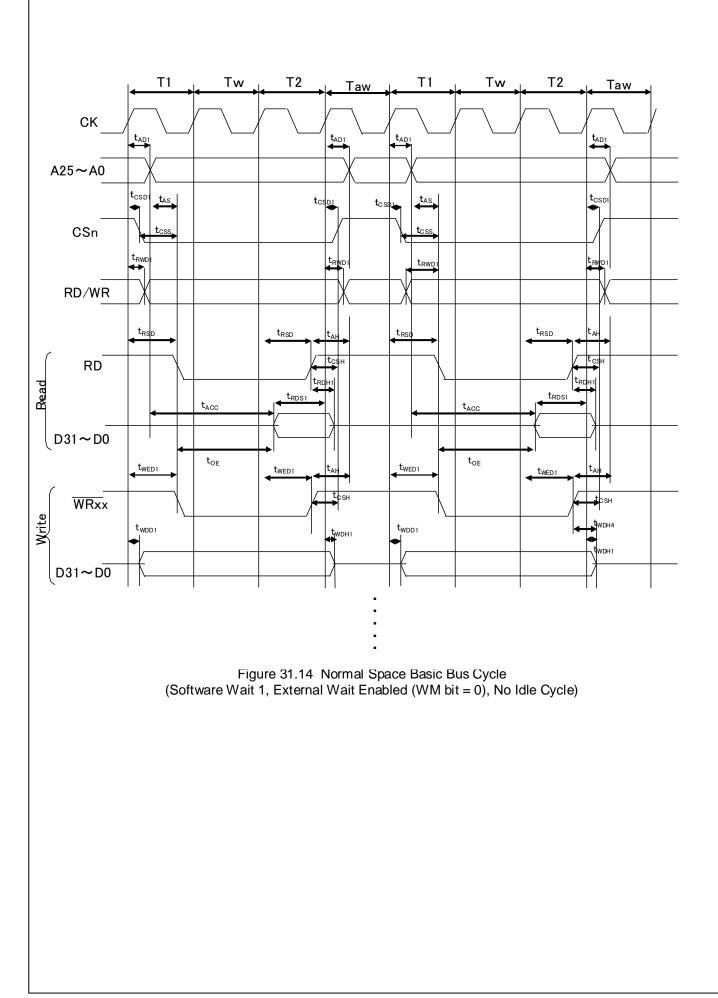



Figure 31.13 Normal Space Basic Bus Cycle (Insertion of External Wait 1)

Date: Jun.26, 2009

Table 31.17, I2C Bus Interface 3 Timing in section 31.3.13, IIC3 Module Timing, has been revised as follows. ٠

[Before change]

			Spe				
Item	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	Figure
SCL input cycle time	t _{SCL}		12 t _{pcyc} + 600	_	_	ns	Figure 31.54
SCL input high pulse width	t _{SCLH}		3 t _{pcyc} + 300	—	_	ns	-
SCL input low pulse width	t _{SCLL}		5 t _{pcyc} + 300	_	_	ns	
SCL, SDA input rise time	t _{Sr}		_	_	300	t _{pcyc} * ¹	-
SCL, SDA input fall time	t _{Sf}		_	_	1 t _{pcyc}	ns	-
SCL, SDA input spike pulse removal time* ²	t _{SP}		_	_	1 t_{pcyc}	ns	-
SDA input bus free time	t _{BUF}		5	_	_	t _{pcyc} *1	
Start condition input hold time	t _{STAH}		3	_	_	t _{pcyc} *1	
Retransmit start condition input setup time	t _{STAS}		3	_	_	t _{pcyc} *1	-
Stop condition input setup time	t _{stos}		3	—	_	t _{pcyc} *1	•
Data input setup time	t _{SDAS}		1 t _{pcyc} + 20	—	_	ns	•
Data input hold time	t _{SDAH}		0	—	_	ns	•
SCL, SDA capacitive load	Cb		0	_	400	pF	
SCL, SDA output fall time*3	t _{Sf}		20 + 0.1 cb	—	250	ns	•

			Spec				
Item	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	Figure
SCL input cycle time	t _{SCL}		12 t _{pcyc} * ¹ + 600	_	_	ns	Figure 31.54
SCL input high pulse width	t _{SCLH}		3 t _{pcyc} * ¹ + 300	_	_	ns	
SCL input low pulse width	t _{SCLL}		5 t _{pcyc} * ¹ + 300	_	_	ns	
SCL, SDA input rise time	t _{Sr}		_	_	300	ns	
SCL, SDA input fall time	t _{Sf}		_	_	300	ns	
SCL, SDA input spike pulse removal time* ²	t _{SP}		_	_	$5 t_{\text{pcyc}}^{*2}$	t _{pcyc} * ¹	
SDA input bus free time	t _{BUF}		5	_	_	t _{pcyc} * ¹	
Start condition input hold time	t _{STAH}		3	_	_	t _{pcyc} * ¹	
Retransmit start condition input setup time	t _{STAS}		3	_	_	t _{pcyc} *1	-
Stop condition input setup time	t _{stos}		3	_	_	t _{pcyc} * ¹	
Data input setup time	t _{SDAS}		1 t _{pcyc} * ¹ + 20	_	_	ns	
Data input hold time	t _{SDAH}		0	_	_	ns	
SCL, SDA capacitive load	Cb		0	_	400	pF	
SCL, SDA output fall time $\!\!\!\!^{\star^3}$	t _{Sf}		20 + 0.1 cb	_	250	ns	

Table 31.24, Flash Memory Characteristics in section 31.7, Flash Memory Characteristics, has been revised as follows.

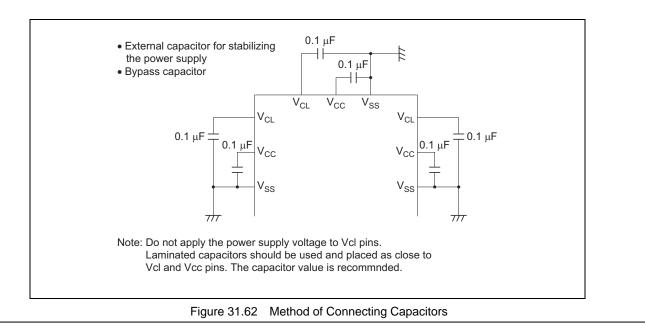
[Before change]

ltem	Symbol	Min.	Тур.	Max.	Unit
Write time *1*2	t _P		1	10	ms/128 bytes
Erase time *1*3*4	t _E	_	0.6	1.5	s/byte
Number of rewrite times	N_{WEC}	_	_	100	times

[After change]

ltem	Symbol	Min.	Тур.	Max.	Unit
Write time *1*2	t _P	_	2	20	ms/256 bytes
Erase time *1*3*4	t _E	_	0.6	1.5	s/byte
Number of rewrite times	N_{WEC}	—	_	100	times

• Section 31.8, Notes on Usage, has been added as follows.


[After change]

31.8.1 Method of connecting capacitors

This LSI includes an internal voltage step-down circuit which is capable of automatically adjusting the power supply voltage downward to an optimum level. Connect a capacitor between the Vcl pin (the internally stepped-down voltage) and Vss pin to stabilize the internal voltage.

Figure 31.62 shows how the external capacitor should be connected. The external capacitor should be placed in the vicinity of the pin. Do not apply the power supply voltage to the Vcl pin.

Laminated ceramic capacitors should be connected between all pairs of Vcc and GND pins as bypass capacitors. The bypass capacitors should be placed as close to the power supply and ground pins as is possible. For crystal-oscillation related capacitors, see 4.9.1, Notes on Board Design. The values of both bypass capacitors and stabilizing capacitors for the internal voltage should be within the range from 0.02 μ F to 0.33 μ F.

