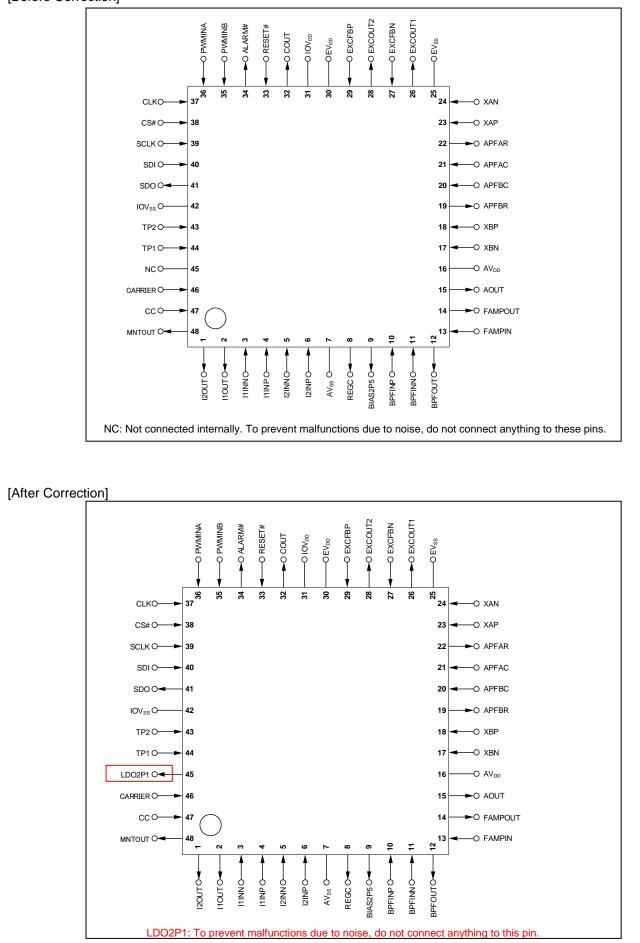
RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation


Product Category	Resolver Digital Converter IC	Document No.	TN-RDC-A0001A/E	Rev.	1.00	
Title	Change of the function of a pin and correctio	Information Category	Technical Notification			
		Lot No.				
Applicable Product	RAA3064002GFP RAA3064003GFP	All	Reference Document Resolver-to-Digital Convertorence User's Manual: Hardware (r03uz0002ej0100)			0

This document is to notify you of the change of the function of pin 45, the correction of errors in the user's manual of the applicable products. The function of pin 45 was changed from non-connection (NC) to LDO2P1 in Table1.3 (2/2), Figure 1.2, and Figure 2.3 in the above hardware manual. The errors in Table1.1, Table 1.3 (1/2), Figure 2.4, Figure 4.1, and Figure 4.2 were also corrected, and the description of section 4.1 was changed.

Page 5/51: Figure 1.2 Pin Assignment (Top View) was corrected as follows.

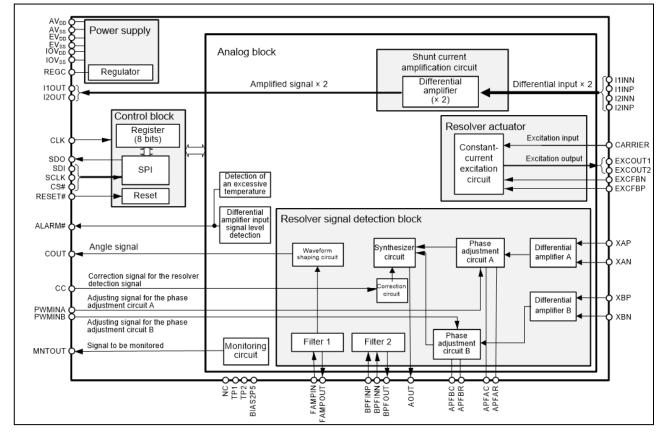
[Before Correction]

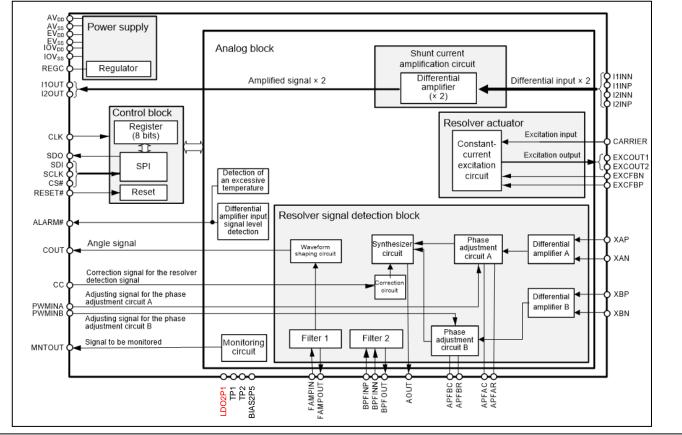
Page 7/51

The description for pin 45 in Table 1.3 List of Pin Functions (2/2) was corrected as follows.

[Before Correction]

Pin No.	Pin Name	Input/ Output	Function	Туре	Power Supply	During and after a Reset
45	NC	_	_			_


Pin No.	Pin Name	Input/ Output	Function	Туре	Power Supply	During and after a Reset
45	LDO2P1	Output	Signal for monitoring the power supply to the internal circuit (non-connection)	Analog	AVDD	Pull Down



Page 10/51

Figure 2.3 Internal Block Diagram was corrected as follows.

[Before Correction]

Page 3/51

The order code in Table 1.1 was corrected as follows.

[Begore Correction]

Package	Operating Temperature Range	Order Code		
48-pin plastic LQFP	-40°C to +85°C	RAA3064002GFP#BA0		
48-pin plastic LQFP	-40°C to +105°C	RAA3064003GFP#BA0		

[After Correction]

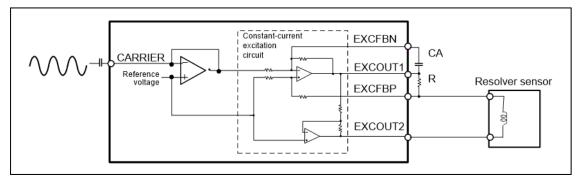
Package	Operating Temperature Range	Order Code		
48-pin plastic LQFP	-40°C to +85°C	RAA3064002GFP#AA0 RAA3064002GFP#BA0 RAA3064002GFP#HA0		
48-pin plastic LQFP	-40°C to +105°C	RAA3064003GFP#AA0 RAA3064003GFP#BA0 RAA3064003GFP#HA0		

Page 6/51

The states of pins 8, 12, and 14 during and after a reset in Table 1.3 (1/2) List of Pin Functions (1/2) were corrected as follows.

[Before Correction]

Pin No.	Pin Name	Input/ Output	Function	Туре	Power Supply	During and after a Reset
8	REGC	Output	Capacitor connection pin for reference voltage (pulling down to GND by 0.1 µF is recommended.)	Analog	AV_{DD}	Hi-Z
12	BPFOUT	Output	Output from the amplifier of filter 2	Analog	AV_{DD}	Hi-Z
14	FAMPOUT	Output	Output from the amplifier of filter 1	Analog	AV_{DD}	Hi-Z

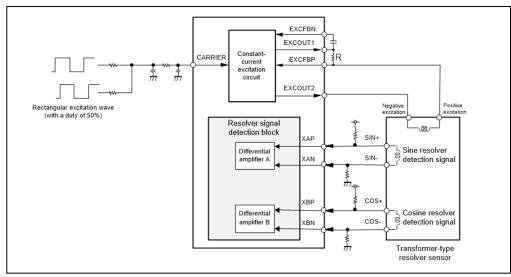

Pin No.	Pin Name	Input/ Output	Function	Туре	Power	During and after a Reset
		Output			Supply	aller a Reset
8	REGC	Output	Capacitor connection pin for reference voltage	Analog	AV_{DD}	Pull Down
			(pulling down to GND by 0.1 μ F is recommended.)			
12	BPFOUT	Output	Output from the amplifier of filter 2	Analog	AV_{DD}	Pull Down
14	FAMPOUT	Output	Output from the amplifier of filter 1	Analog	AV_{DD}	Pull Down

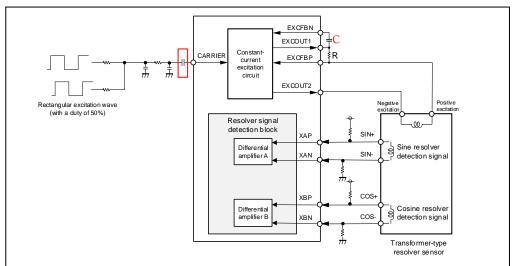


Page 11/51

Figure 2.4 Resolver Actuator was corrected as follows.

[Before Correction]

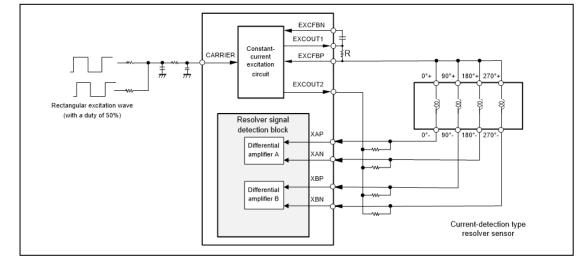


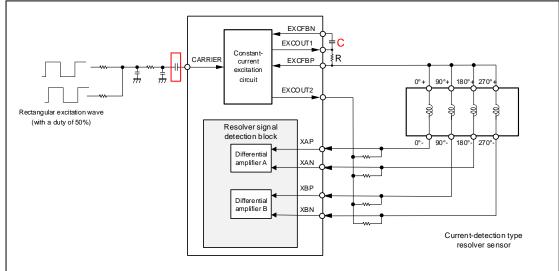


Page 31/51

Figure 4.1 Example of Connection to a Transformer-Type Resolver Sensor is corrected as follows.

[Before Correction]





Page 31/51

Figure 4.2 Example of Connection to a Current-Detection Type Resolver Sensor was corrected as follows.

[Before Correction]

Page 31/51

The description of section 4.1, Basic Operation for Conversion of Signals from Resolver was corrected as follows.

[Before Correction]

This IC can be used to drive a single-phase excitation input and two-phase output type resolver sensor, and to convert the signals from the resolver sensor to digital signals.

Angle information can be obtained from the signal output by a resolver by using this IC with a host MCU. A rectangular excitation wave is output by the host MCU to drive the resolver. The rectangular excitation wave is converted to a sine wave by an external low-pass filter and input to this IC. The constant-current excitation circuit then outputs a constant current in accord with the period of the cycle for driving the resolver. Driven by the excitation signal, the resolver outputs the two-phase signals it has detected to this IC. Connection between the resolver sensor and this IC varies with the type of resolver sensor. Figures 4.1 and 4.2 show examples of the connections.

[After Correction]

This IC can be used to drive a single-phase excitation input and two-phase output type resolver sensor, and to convert the signals from the resolver sensor to digital signals.

Angle information can be obtained from the signal output by a resolver by using this IC with a host MCU. A rectangular excitation wave is output by the host MCU to drive the resolver. The rectangular excitation wave is converted to a sine wave by an external low-pass filter and input to this IC through a capacitor. The constant-current excitation circuit then outputs a constant current in accord with the period of the cycle for driving the resolver. Driven by the excitation signal, the resolver outputs the two-phase signals it has detected to this IC. Connection between the resolver sensor and this IC varies with the type of resolver sensor. Figures 4.1 and 4.2 show examples of the connections.

End of document

