LENESANS

J19s

7
<
O
S
-
O

R-IN32M4-CL3 Series

User’s Manual: TCP/IP stack

- R-IN32M4-CL3

All information of mention is things at the time of this document publication, and Renesas
Electronics may change the product or specifications that are listed in this document without
a notice. Please confirm the latest information such as shown by website of Renesas

Document number : R18UZ0079EJ0100

Issue date : Aug 31, 2021 q r m

Renesas Electronics
www.renesas.com

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High

Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade,

as indicated below.

—_

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment;
and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems
whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should
not use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in
this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its
majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Instructions for the use of product

In this section, the precautions are described for over whole of CMOS device.
Please refer to this manual about individual precaution.
When there is a mention unlike the text of this manual, a mention of the text takes first priority

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in
the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through
current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LS| are indeterminate and the states of register settings and pins are
undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the moment when power is supplied until the power reaches the level at which resetting has
been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these
addresses; the correct operation of LS| is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching

the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset,
ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a
clock signal produced with an external resonator (or by an external oscillator) while program execution is in
progress, wait until the target clock signal is stable.

* Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.
All rights reserved.
- Ethernet is a registered trademark of Fuji Xerox Co., Ltd.
- |IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc.
» TRON is an acronym for "The Real-time Operation system Nucleus".
* ITRON is an acronym for "Industrial TRON".
» WITRON is an acronym for "Micro Industrial TRON".
* TRON, ITRON, and uITRON do not refer to any specific product or products.
» EtherCAT® and TwinCAT® are registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.
+ CC-Link IE Field and CC-Link IE TSN are registered trademarks of Mitsubishi Electric Corporation.
- Additionally all product names and service names in this document are a trademark or a registered trademark which
belongs to the respective owners.

How to use this manual

1. Purpose and target readers

This manual is intended for users who wish to understand the functions of Industrial Ethernet network LSI “R-IN32”
for designing application of it.
It is assumed that the reader of this manual has general knowledge in the fields of electrical engineering, logic circuits,

and microcontrollers.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur
within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer
to the text of the manual for details.

The mark “<R>" means the updated point in this revision. The mark “<R>" let users search for the updated
point in this document.

Related The related documents indicated in this publication may include preliminary versions. However,

Documents preliminary versions are not marked as such. Please be understanding of this beforehand. In addition,
because we make document at development, planning of each core, the related document may be the
document for individual customers. Last four digits of document number(described as ****) indicate
version information of each document. Please download the latest document from our web site and

refer to it.

Documents related to R-IN32M4-CL3

Document Name Document Number

R-IN32M4-CL3 User's Manual R18UZ0073EJ****
R-IN32M4-CL3 User's Manual: Gigabit Ethernet PHY R18UZ0075EJ****
R-IN32M4-CL3 User’'s Manual: Board R18UZ0074EJ****
R-IN32M4-CL3 Programming Manual: Driver R18UZ0076EJ****
R-IN32M4-CL3 Programming Manual: OS R18UZ0072EJ****
R-IN32M4-CL3 User's Manual CC-Link IE Field R18UZ0071EJ****
R-IN32M4-CL3 User's Manual TCP/IP stack This Manual

2. Notation of Numbers and Symbols

Weight in data notation: Left is high-order column, right is low-order column
Active low notation:
xxxZ (capital letter Z after pin name or signal name)
or xxx N (capital letter N after pin name or signal name)
or xxnx (pin name or signal name contains small letter n)
Note:
explanation of (Note) in the text
Caution:
Item deserving extra attention
Remark:
Supplementary explanation to the text

Numeric notation:

Binary --+ xxxx , xxxxB or n’bxxxx (n bits)
Decimal -+ xxxx
Hexadecimal --- xxxxH or n’hxxxx (n bits)

Prefixes representing powers of 2 (address space, memory capacity):
K (kilo)--- 2'9=1024
M (mega)--- 220 = 10242
G (giga)- 2°°=1024°
Data Type:
Word --- 32 bits
Halfword --- 16 bits
Byte -+ 8 bits

Contents

1o OVBIVIBW ...ttt ettt s et s h e e s e s e s e e et e e e b e e R e e e R e e e e e e e san e e n e e r e nne e e nneas 1
1.1 FRATUTES ...ttt et ettt b e bt e b ettt h e bt bt a et besa e bttt en 1
1.2 G2 S 1o Ta) 4 TSP US 1
1.3 DeVElOPMENT ENVITONIMENLeeitieiiieeiereeiteestieeteeestreertreesseeestseesseeessseessseessseessseessseessseessseessseessseessseenssessssesnsses 2

1.3.1 DEVEIOPIMENLE TOOIS ...eiiueiieieiieiiiieeie ettt ettt e st e e st esaee sttt e ssbeessseessbeeasseessseeasseesssaessseesnsaesnseesnseeanseens 2
1.3.2 Evaluation DOArd..........cccoouiiiiiiiiiiieecee et 2
1.3.3 DeVelOPMENE PIOCEAUIE......cciuiiiiiieiiiecieeeiee ettt et e teesteesteesebeesbeessseessseessseessseessseesnsaessseesnseennseens 3

2. Basic conCePts Of TCP/IP STACKuviiiieiiiiiieiiiee et e e e e e e e e e e e st e e e e e e e e sennbnaneeaaeeeananes 4

2.1 (31011 2SR 4
2.1.1 PIOTOCOL. ...ttt e e 4
2.1.2 PIOtOCOL SEACK. ...ttt e e 4
2.13 TP AAAIESS ...ttt et 5
2.1.4 MAC (Media Access CONtrol) addressccueeeiereerieniieriieie et eiesee ettt eae e seeeseeesseeseessesssesseessaesens 5
2.1.5 POTE TIUIMDET ...ttt ettt e 5
2.1.6 Big endian and 1ittle @NAIANccceeiiiiiiieiieie et sttt et neeesaenreenean 5
2.1.7 PACKEL. ...ttt et 5
2.1.8 HOSE Q0 TIOAE ... e 5
2.1.9 Address Resolution ProtoCol (ARP)c..eeieiiieiiieiieie ettt sttt et ssaenees 6
2.1.10 Internet PrOtOCO] (IP)cuioiieieeieeiieeiieeee ettt ettt ettt ettt e et e e ae s eeesatesseenseenseenseessenseenseensenn 6
2.1.11 Internet Control Message ProtoCol (ICMP)coviiiiiiieiiieiieieeie ettt 6
2.1.12 Internet Group Management Protocol (IGMP)cooiiiieiieiiiiecieee et 6
2.1.13 User Datagram ProtoCol (UDP)cuoiuieiiiiieiieiieeiesit ettt ettt e saeeaeesseessesnsessaenseensens 6
2.1.14 Transmission Control ProtoCol (TCP) c....ccuviiiiiiiiiecieeciee ettt e ve e e v e e veeeavee s 6
2.1.15 Dynamic Host Configuration Protocol (DHCP)cccoevuieiiiiieiesierieseee et 6
2.1.16 Hyper Text Transfer ProtoCol (HTTP).....ccoooiiiiiieiiet ettt es 7
2.1.17 File Transfer ProtoCOL (FTP).....cc.oviiiiiiieieee ettt st ae et enseeneessaenseensees 7
2.1.18 Domain Name SYStem (DINS)......ccueiiiiieiieiie ettt ettt sttt e e e s aeseaesaeesseeseenseensesssesseenseensens 7
2.1.19 SOCKEL ...ttt ettt h et h ettt ene 7
2.1.20 Blocking and NON-DIOCKING...........ccueiiiiieiieie ettt te e aeseesatesseeseenseensesnsesseenseensens 7
2.1.21 Callback fUNCHON.......c.eiiiiiiiiicic et 7
2.1.22 TASK COMEEXL.....uitiieiititeiete ettt sttt e en e ene 8
2.1.23 RESOUICE ... s 8
2.1.24 IMITU ettt e b et b ettt h et b et b et et 8
2.1.25 LSS ettt et et 8

Contents -1

2.1.26 IP 1eassembly - frAgIMENTooiiiiiitieeee ettt sttt a ettt ebe e b naean 8

2.2 Architecture 0f NetWork SYSIEIMcc.ovuiiiiiiiiiiciiiei ettt st 9
2.2.1 Block diagram of NETWOIK SYSTEIMc.ceveiiriiiiiiieiieicieietee sttt 9
23 Directory and file OrZanizZationcceeieieieiiiiinineee ettt ettt st sttt saesa e st ne 11
3. Overview functions of TCP/IP StACK ..o 14
3.1 PrOtOCOL STACK. ...ttt ettt st sttt 14
3.1.1 TP 1OAULE. ...ttt ettt 14
3.12 ARP IIOAUIE. ...ttt 16
3.13 UDP MOAUIE ..ottt ettt 16
3.1.4 TCP MOAUIE ..ottt 19
3.2 NEtWOTK AEVICE AIIVET ...ttt ettt 24
3.2.1 DIEVICE SITUCTUTE ...ttt ettt ettt ettt et s et b st s et n et b e nese et enenenes 24
322 INEETEACE ...ttt ettt 26
323 PACKEE TOULINE ..eevieiieiieie ettt ettt et et et e teeaaesaaessee st esseenseensessse s eenseenseensesnsesnsesneeseenseenseans 31
324 | 0010 o) 0T 1) G U1 o T ST 32
325 T NET_DEV information registration eXample..........ccoecveeierierieneriieeiesieseesieeieeeeseeesseesseesesnesenesens 32
33 MEMOTY MANAZEIMENIEceuvieiutiietieetieetee et etee et e e ebee et e e eteesabeeebtesbeeebeesabaeesbeesabeeenseesnbeeenseesabeeenseesabaesnseennne 33
3.3.1 NEIWOTK DULTET ... e e 34
332 APT NEtWOTK DULTET ... 36
34 MeMOTY PrOCESSING L/ O .oouiieiieiieiieie ettt ettt et s e st e st e st enseenseessesssesseeseenseensesnsesnnennes 37
34.1 MeEMOTY PrOCESSINE 1/ O ettt ettt et e st e seesseenseenseesaeeseenseensennsesneenees 37
3.5 Ethernet deVICE AIIVETccoiiiiiiiiiiiiieicreeeee ettt ettt st st ene e 39
3.5.1 Ethernet device dIiVET SITUCTUIEceiuivveuiriiieiiriieeieetetee ettt ettt 39
352 Ethernet device driver APLc...cooiiiiiiiiicice ettt 40
353 CONTIGUIATION ..ottt ettt ettt ettt et e st e s et e st este e s teeseeesee s aenseenseessesseesseesseenseanseansensaenseenseensennsesnsesans 52
3.54 Cautions regarding Ethernet device AriVer.........oooiiiiieiieiieiesieeee e e 53
3.6 PHY QIIVET ...ttt st sttt sttt st b e s et a e et s e et et 54
3.6.1 PHY dIIVEr AP ..ottt 55
3.6.2 Link event NOtHICATION.c.ccuivieuiiiiieiirtieeere ettt 59

4. Network CONfIGUIATIONooiiiiii et e b e e e b e e e s b e e e eanes 60
4.1 Configuration Of TCP/IP StACK.........ccuieiiiieiieieeie ettt ettt ettt et e e et e sseesseesseesseenseenseessessaenseensenn 60
4.1.1 CONTIGUIATION LISttieuiieiiieiieiieettese ettt ettt et e et este et e et e esteesaesseesseesseenseanseensessaenseenseensennsesnnenees 60
412 TP AAATESS ...ttt ettt 62
4.13 DIEVICE DITIVET ...ttt ettt et b et a et a et b s b s nes 62
4.1.4 Information table Of ProtoCOl STACKcccuiviiiieii ettt ees 62
4.1.5 Network information Management TESOUITESccveerrerrreruereerseerseeseesessessaesseesseessesssesssesseesseessesssenns 63

Contents -2

5. Description of application programming iNterfaceooeiiiiiiiiiiiii e 64

5.1 Initialization Of ProtoCOL STACKiccuieiiiieiieieee ettt e s st e s st e steenseenseesseesaenseensean 64
52 Network INtErface APL.......c.coooiiiiiiiiiiice ettt 65
53 Network Device Control APL.........cccoiiiiiiiiieiiieree ettt 71
54 Socket APL (UN@Et3 COMPAIDIC)ecuviriieiieiieiieieeie ettt sttt ettt et ssaesteesseeseensesnsessaesseenseenseensenns 74
5.5 Socket APL (BSD COMPALIDIC)eiieriieiieiieiieieeie sttt ettt sttt et este et e esaeste e se et e ensesnsessnesseenseenseensenns 89
5.5.1 IMOQULE OVETVIEW ...ttt sttt ettt ettt n e nes &9
552 IMOQULE STTUCTUTES ...ttt ettt ettt ettt a ettt n et n et en e nes 90
553 APT LIST ettt h et ne 91
554 Detail for €aCh APciiiiiiii e 92
5.55 L0 Ted (1A o) o4 T) 1 SRR 120
5.5.6 L TT o) o0) A 1088115 o) 4 SRR 121
5.5.7 Implementation of BSD appliCatiOnc.eecueicierieriieriieieeie ettt et eesie et eaestesee s eseeeteenseeneessaenseesens 123
5.6 OLRET AP ..ottt et 127
LT N\ L= o104 Q= o] o] =1 o o SRR 133
6.1 DHECP CLENIL ..ottt sttt sttt e b et ene st a et ne e 133
6.1.1 DHCP CLENE AP ..ottt sttt st s s ene 134
6.2 FTP SEIVET ..o s 136
6.2.1 FTP SEIVET APL ..ottt ettt sttt ebe et s n e nene 140
6.2.2 RESIIICTION TEITIIS ...ttt ettt ettt ettt ettt eb e st s e ebe s e et ene s e e e enesaennenens 141
6.3 HTTP SEIVET....cuiiiiiiiiiiiiiieeee e et b s et 142
6.3.1 HTTP Srver APc.ooiiiiiiiii e s 146
6.3.2 HTTP SEIVEL SAMPLE ...oouvieiiieiiieiieciiesiieie ettt ettt ettt e et esse e beesseeasessaesseesseenseenseensesnsesssenseensenn 160
6.4 DINS CHENE ...ttt ettt ettt et et eb et 161
6.4.1 DINS CHENE AP ...ttt sttt st ne et n e ene 162
6.5 DHCP client @XteNdEdc.eoiiiiiiiiiieiicieeretee ettt sttt 165
6.5.1 DHCP client extended APL............ccciiiiiiiiieiieeneeesceee ettt 167
6.5.2 DHCEP client extended INfOrMAtION............ceoueieiiiieineieinceeeseee ettt s 172
6.6 PANG CLICNE ...ttt ettt ettt et e et e st et e e s e esseesaesetesseenseenseanseassensaenseenseensesnsessnesneanseenseenseans 174
6.6.1 PIng CHENt AP ..ottt sttt s n e s ene 175
6.7 SNTP CLEIL....ceetiierteeeee ettt ettt b et a st a e a et n e aeene e aes 176
6.7.1 SNTP CHENE APL ...ttt 177
6.8 SHIANG LIDIATY ...t eutieeieeie ettt ettt ettt et et et e et e e et e st ee s e esseenseensesasesseesseanseanseanseesseessenseenseenseensesnsesnnennes 178
7. Tutorial by sample appliCationo e eeaa e 185
7.1 Descriptions Of SAMPIE SOTEWATEveeecviiiiiieiie ettt e st e et ee s teeebeesbeeenbeessseesnseesnseesnsaens 185
7.2 Hardware CONMMECTIONc.eiiiuiiieiiientieeec ettt sttt et sttt sae e et a e sa e b st eaeennennen 185
73 Board TP address SETHMEeeviiiiiiiiieieeeete ettt sttt ettt ea e et e e b e e be et s atesaeesbeenbe e et eneeene 186

Contents -3

7.3.1 Setting for use a fixed TP address........cueiiiiiiirieiieiee e e 186
7.3.2 Setting for use DHCP fUNCHIONeoviiiiiiiiiiiiieiteeeee ettt 188
7.4 DEMONSIIALION.eiuiiiiitiieeieei ettt ettt st b e st ea et e e s et b e sae bt e e e e sa e b s aeene e eneen 189
7.4.1 WEDSEIVET ...ttt ettt st eb ettt be et e bt e at et e e et saeene et s nnens 189
7.4.2 Control by the MAC CONIIOIIET......ccuvieiuieeiiiierie ettt ecte et erte et eesee e eeesteeebaeeteeetaeeseeessaeenseesnsseenseennns 190
7.4.3 BISDD SOCKET ...ttt et ettt a e s ea et nnens 193
7.4.4 Non-Blocking COMMUNICALIONSccuerieriiriiriiniriieiieieiente sttt ettt sttt s ennes 197
Y o] o<1 o o 1SR PPPPPPPPPINS 198
8.1 PaCKEt fOTMAL.......o.iiiiiiiiiieiee ettt sttt ettt 198
8.2 Constant AN MACTOc.eruiiiiiriiieieteeteet ettt ettt ettt ettt 205
8.3 EITOT COAE LISt ...ttt ettt sttt ettt 207
8.4 APT LISt ettt ettt et r e 208
8.5 RESOUICE LISttt ettt st ettt et 210
8.5.1 | QT 1) 0 o) [TSR 210
8.5.2 HAardware ISRc..oooiiiiecee ettt ettt s s ene 211

Contents -4

LENESAS

R-IN32M4-CL3 Series R18UZ0079EJ0100

, _ Rev.1.00
User’s Manual: TCP/IP stack Aug 31, 2021

1. Overview
This document explains TCP/IP and UDP/IP protocol stacks for R-IN32M4-CL3.

Function summary and Application Programming Interface (API) and application samples of TCP/IP protocol stack

provided by Renesas are described in this document.

1.1 Features

TCP/IP stack is a compact stack optimized for R-IN32M4-CL3.

1.2 Key Functions

TCP/IP stack has key functions as follows:

e [Pv4, ARP, ICMP, IGMPv2, UDP, TCP protocol

e DHCEP client, DNS client, FTP server, HTTP server
e TCP/IP configuration

e TCP fast retransmit and fast recovery

e [P reconstructure and fragmentation

e Multiple network interface

e Source code for network applications

e Source code for network device drivers

e Protocol stack provided in library

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 1 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

1. Overview

1.3 Development environment

The development environment of TCP/IP protocol stack is described here.

1.3.1

Development tools

The sample software has been confirmed to work with the following tool chain.
This sample software adopts Arm® Cortex® Microcontroller Software Interface Standard (CMSIS)

Regarding the detailed information, please refer to the documentation of CMSIS.

Table 1.1 Development tools

LSI Tool IDE Compiler Debugger ICE
Chain
R-IN32M4-CL3 IAR IAR Embedded Workbench for Arm I-Jet
V8.42.1 ~ Latest Version (Please use the latest version) I-jet Trace for
(IAR Systems) Arm Cortex-M
(IAR Systems)

Table 1.2 CMSIS version

R-IN32M4-CL3
Version V4.5.0
1.3.2 Evaluation board

Operation of the TCP/IP stack sample application can be confirmed on the "R-IN32M4-CL3 evaluation board"
manufactured by Shimafuji Electric Incorporated and the "TS-R-IN32M4-CL3 evaluation board" manufactured by
TESSERA TECHNOLOGY INC.

Please get more detail from Renesas or Shimafuji Electric Incorporated WEB site.

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

Page 2 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 1. Overview

1.3.3 Development procedure

Standard development procedure is as follows:

1. Merge TCP/IP stack program and samplesoft which has driver/middleware.
2. Modify net_cfg.c to configure network parameter (IP address, socket definition) and how to call initialize routine.

3. Make the execution file by build (compile & link), after application program is created.

The relationship among files is showed at Fig. 1.1.

UITRON header file TCP/IP stack header
file

Files created or

modified by user Files modified by user if it is needed

(Samples are ready)

Application program file OS configuration file TC_P/ IP stack ° Start up routine file
configuration file

S : !
(e dge_b> -
- kernel_id.h net_cfg.c : I

. I
‘ Compile] ‘ |
Object files | .
jectiies | HW-RTOS driver TCP/IP stack library » . . o _ |
library file file ' Link information file Makefile or IDE :
> o)
. |
| ! I
‘ Link . ‘ .
|
o ~ I
Brecutonfle | T TTrTorTermee—e
8 Files created by user i i
. Files produced by Renesas Electronics
Fig. 1.1 The figure of relationship among files
R18UZ0079EJ0100 Rev.1.00 RENESAS Page 3 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 2. Basic concepts of TCP/IP stack

2. Basic concepts of TCP/IP stack

2.1 Glossary

211 Protocol

Protocol is a set of rules that determines the method and the procedure of transmitting data between networks. TCP/IP
stack adopts this protocol (=communication rule). These rules are called Request For Comments (abbreviation: RFC)”,

its specification is published.

21.2 Protocol stack

Choose a necessary protocol in order to implement functions on network, and a protocol stack is a prescribed hierarchy
of software layers. The following figure shows the hierarchy in TCP/IP stack.

TCP/IP hierarchical model TCP/IP stack hierarchical model

Application layer
[API]

'd N\
Transport layer TCP] [UDP
. J
4 N\
[IGMP] [ICMP]
Nerwork layer IP
. J

[ARP]

Data link layer [

Ethernet Driver]

Hardware

Fig. 2.1 Figure of TCP/IP hierarchical model and TCP/IP stack hierarchical model

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 4 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 2. Basic concepts of TCP/IP stack

213 IP address

Each node on the network has a specific logical number, it is called “IP address”. IP address has 32 bit address space,
be represent as 192.168.1.32.

(1) Broadcast address

Broadcast means that the same data is simultaneously sent (broadcast communication) to all of the nodes in one
network. The address is allocated particularly to broadcast called “Broadcast address” . Ordinarily in “Broadcast
address” , all bits use 1 IP address “255.255.255.255.

(2) Multicast address

Contrary to the broadcast that send data to all nodes, a special address is used to send data to a specific group only, is

called “Multicast address” .

214 MAC (Media Access Control) address

Contrary to a logical address “IP address”, a physical address specify to an installed hardware in order to identify
network devices such as LAN card is called “MAC address”. “MAC address” has 48-bit address space and to be notated
12-34-56-78-9A-BC or 12:34:56:78:9A:BC.

215 Port number

In network communication, a number identifies a program of communication partners is called “Port number” . The
node that communicate through TCP/IP has IP address that corresponds to the address inside the network, but in order to

communicate with more than one node at the same time, we use port number in the range from 0 to 65535 as auxiliary

address.
2.1.6 Big endian and little endian
The way multibyte numerical data is stored in memory is called “Endian” . “Big endian” refers to the way that

store the most significant byte in the sequence. “Little endian” refers to the way that store the least significant byte in
the sequence
It is determined that the header information is transmitted by ~ “big endian” through TCP/IP.

217 Packet

The Unit of data transceiver is called “packet”. The packet includes 2 kinds of information. One contains actual stored
data (data area) and the other contains the information used to manage as the information of source or destination of that

data, error checking information (header area).

218 Host and node

Host refers to the computer that communicates on the network. And the connection points in a network such as server,

client, hub, router, access point etc. are called “node” .

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 5 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 2. Basic concepts of TCP/IP stack

2.1.9 Address Resolution Protocol (ARP)

A protocol used to translate the physical address (MAC address) from logical address (In case of TCP/IP, that is IP
address) is called “ARP” .

2110 Internet Protocol (IP)

The protocol which executes the communication between nodes or node and gateway is called “IP (IP protocol)” .
“IP (IP protocol)” is an very important protocol of the upper layer. The role of “IP” is to transfer data to the
destination through the router based on the IP address without however ensuring their delivery, thus, ensuring the
reliability of data is upper layer’s responsibility

“IP address” mentioned above is placed in the header of this “IP protocol”.

21.1 Internet Control Message Protocol (ICMP)

A protocol provides the function that is to notify errors occurred in IP network communication and verify the state of
network status is called “ICMP” . There are echo request and echo reply messages are called Ping which most well-
known.

2112 Internet Group Management Protocol (IGMP)

The protocol executes IP Multicast is called “IGMP” . We can usually send the same data to many different hosts

efficiently.

2.1.13 User Datagram Protocol (UDP)

A protocol provides the connectionless mode datagram communication service is called “UDP” . IP does not have
interface with application. “UDP” is the protocol which helps to use that function from application. As a result, there
is no way to notify that packets have arrived to the partner and the order of arrived packets may be changed so UDP does

not sure the reliability of data.

2.1.14 Transmission Control Protocol (TCP)

A protocol which provides connection mode stream communication service is called “TCP” . “TCP” is known
as upper layer of IP protocol, which provides a reliable communication as flow control, retransmission, error correction

and sequence control.

2.1.15 Dynamic Host Configuration Protocol (DHCP)

When connecting to a network, a protocol which assigns automatically the necessary information such as IP address is
called “DHCP” . Touse “DHCP” ,we have to prepare DHCP server and on server side, it’s necessary to prepare
some [P addresses for DHCP client in advance (Address pool).

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 6 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 2. Basic concepts of TCP/IP stack

2.1.16 Hyper Text Transfer Protocol (HTTP)

A protocol used to transfer the contents such as HTML file of homepage or website is called “HTTP” . “HTTP”
not only can transfer HTML file but also can send binary data which are displayed on WEB browser such as JPEG, GIF,
PNG, ZIP file.

2.1.17 File Transfer Protocol (FTP)

We call the protocol which transfer files between hosts is “FTP” .

2.1.18 Domain Name System (DNS)

A name resolution mechanism which can exchange host name into IP address or IP address into host name (domain) is
called DNS. In case of using “DNS” , it is possible to look up the host name based on IP address or look up IP address

from the host name.

2119 Socket

An endpoint for communication which applications use for communicating TCP/IP is called “socket”. “Socket” is
constructed by IP address and port number. The applications, through specifying the socket to establish a connection, can
transceive data without caring about any details of communication procedure. There are varieties of sockets depending on
the protocol used in communication side. TCP socket uses TCP protocol to communicate data and UDP socket uses UDP
protocol to communicate data. In TCP/IP stack, we use ID number to identify the socket which becomes an operational

objective. The application utilizes ID number to invoke socket API.

2.1.20 Blocking and non-blocking

When calling some function, if it does not return until the action has completed, that is called “Blocking mode” and if
it returns immediately without waiting for its completion, that is called “Non-blocking mode”.

For instance, in the socket API ofjiNe3, the task calling the rcv_soc function in “Blocking mode” is placed in the
waiting status until that action completes (until data can be received). Calling the rcv_soc function in “Non-blocking
mode” will return immediately with an E. WBLK error code and the completion of that action (EV_RCV_SOC) is
notified to callback function.

By default, the TCP/IP stack sockets are in “Blocking mode”, and in order to switch to “Non-blocking mode”, we have

to use cfg_soc function and set up registration of callback function and callback event flag.

21.21 Callback function

The function used for notifying the status of protocol stack to the applications asynchronously is called “Callback
function” .

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 7 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 2. Basic concepts of TCP/IP stack

2.1.22 Task context

All API functions of TCP/IP stack must be called from Task context.
Do not call the system call which is in status of waiting for tasks such as slp_tsk from network callback function.
Besides, do not call all API functions of TCP/IP stack from network callback function.

2.1.23 Resource

The resource used in a program is called “Resource”. There include tasks, semaphores are called “Kernel objects” and
memory.

*¢Please make reference to OS User Guide on details of “Kernel object” such as tasks, semaphores.

2.1.24 MTU

In communication network, MTU (Maximum Transfer Unit) is a value indicating the maximum amount of data that
can be transferred by one-time transfer. Moreover, MTU also shows the maximum data size of the frame in data link
layer. In addition, the minimum value indicated by MTU is 68 bytes.

Specifying the maximum data size depends on the protocol used in data link layer and in Ethernet interface generally
uses 1500 bytes.

2.1.25 MSS

MSS (Maximum Segment Size) indicates the maximum data size of TCP packet. Therefore, MSS value can be
calculated by the following formula.

MSS = MTU- (IP Header size+ TCP Header size (normally 40 bytes))

In case of Ethernet interface, the value of MSS is generally 1460 bytes.

2.1.26 IP reassembly - fragment

The maximum size of an IP packet is 64K bytes. However, in order that MTU of communication interface becomes a
smaller value than the original, it’s necessary that IP module must divide IP packet into smaller pieces to send. This
processing is called “IP fragmentation” and divided IP packet is called “IP fragment”.

Moreover, IP module of receiver side needs to combine the divided “IP fragment” and we call this process is “IP

reassembly”.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 8 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 2. Basic concepts of TCP/IP stack

2.2 Architecture of Network system

2.21 Block diagram of network system
N
[Application program
[e N] J
4 N
E TCP/IP stack
atimtimt)
© © © Application interface
u 2
(9]
SOCKETO SOCKETT SOCKETN G’
Device_num0 Device numT Device_numN 3
—+
\ A,
<
) = = 5)
TCP/IP protocol stack ~~—
gNET[0] gNET[Device numN-T1]
gNET DEVI[0] gNET DEV[Device numN-T1]
gNET_ADRI[O0] gNET_ADR[Device nhumN-T]
gNET_CFGI[0] gNET_CFG[Device_ numN-T1]
. L/
(S 95 ~)
& Network device control API &]
ge] o o e
Y a S >
\ ol Network buffer '3 iz ‘0 “)
Q S >
< < - o
Network device driver Network device driver
(Device number = 1) (Device number = N)
[Network device (ex: Ethernet)] [Network device (ex: PPP)]
Fig. 2.2 Block diagram of network system
e Application program
The application program is used for network communication. It includes application protocols such as DHCP, FTP,
Telnet, HTTP etc.
R18UZ0079EJ0100 Rev.1.00 RENESAS Page 9 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 2. Basic concepts of TCP/IP stack

e Application Interface
Providing the interface (API) to utilize various network services such as transmission / reception of data or establishing
connection to remote host.

In case of normal application, we have to specify socket ID and device number before using Application Interface.

e TCP/IP protocol stack
This program handles the network protocols such as TCP, UDP, ICMP, IGMP, IP and ARP.

e Network device control API
In network system, maybe there exist various network devices. Every device needs a device driver. And the network
device control API absorbs the difference between these devices, provides interface in order to access unifiedly. Using

device number from application program before accessing to the devices.

e Network device driver
A program that control network device. The content integration is different depending on the device.
In TCP/IP stack, it is provided standard Ethernet driver device.

e Network device
The hardware that execute the transmission and reception of actual network data. This refers to Ethernet, PPP (RS-
232), and WLAN etc.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 10 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

2. Basic concepts of TCP/IP stack

2.3 Directory and file organization

These files as below are included in TCP/IP stack.

(1) Header File
/Source/Middleware/uNet3/Inc/

net_sup.h Default configuration macro for TCP/IP protocol stack

net_def.h TCP/IP protocol stack definition (for internal control)

net_sts.h Definition of network information management (for internal control)
net_sts_id.h Definition of network information management ID

net_hdr.h Definition of the necessary information to use TCP/IP protocol stack

Please include this header file in source file of applications.

(2) Library files

This folder stores the library that has already built the TCP/IP protocol stack in various processor mode, and the

project files are used to build.
[/Library/IAR/

libunet3.a TCP/IP protocol stack library

libunet3bsd.a TCP/IP protocol stack library (BSD interface)
libunet3snmp.a TCP/IP protocol stack library (SNMP interface)

(3) Ethernet device driver file

/Source/Driver/ether_uNet3/
DDR_ETH.c
DDR_PHYO0.c
DDR_PHY1.c

/Source/Driver/ethsw/
ethsw.c

/Include/ ether_uNet3/
DDR_ETH.h
DDR_PHY.h
COMMONDEF.h

/Include/ ethsw/
ethsw.h

Ethernet driver
PHY driver for LAN1
PHY driver for LAN2

Ethernet Switch driver

Ethernet driver header

PHY driver common header

Ethernet driver common definition header

Ethernet Switch driver header

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 11 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

2. Basic concepts of TCP/IP stack

(4) Application protocol source file

/Source/Middleware/uNet3/NetApp/
dhcp_client.h
dhcp_client.c
ftp_server.h
ftp_server.c
http_server.h
http_server.c
dns_client.h
dns_client.c
ping_client.h
ping_client.c
sntp_client.h
sntp_client.c
net_strlib.h
net_strlib.c

/Source/Middleware/uNet3/NetApp/ext/
dhcp_client.h
dhcp_client.c

/Source/Middleware/uNet3/NetApp/cfg/
ftp_server_cfg.c
ftp_server_cfg.h
http_server_cfg.h

/Source/Middleware/uNet3/snmp/
inc/snmp.h
inc/snmp_ber.h
inc/snmp_def.h
inc/snmp_lib.h
inc/snmp_mac.h
inc/snmp_mib.h
inc/snmp_net.h
src/snmp_mib_dat.c

DHCP client macro, prototype, definition etc.
DHCP client source code

FTP server macro, prototype, definition etc.
FTP server source code

HTTP server macro, prototype, definition etc.
HTTP server source code

DNS client macro, prototype, definition etc.
DNS client source code

ICMP echo request macro, prototype, definition etc.
ICMP echo request (ping) source code.
SNTP client macro, prototype, definition etc.
SNTP client macro source code.

String library function definition.

String library function source code.

DHCP client extended version macro, prototype, definition etc.

DHCP extended version client source code

FTP server configuration
FTP server configuration header
FTP server configuration header

SNMP Headers

SNMP BER

SNMP constants, prototypes, definitions, etc.
SNMP Library Configurations

SNMP Macro Definition

SNMP MIB definition

Definition for SNMP TCP/IP

SNMP MIB definition

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 12 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 2. Basic concepts of TCP/IP stack

(5) Sample source file

/Source/Project/uNet3_sample/

cgi_sample.c
DDR_ETH_CFG.h
html.h
kernel_cfg.c
kernel_id.h

main.c

net_cfg.c
net_sample.c

/Source/Project/uNet3_nonblock/

DDR_ETH_CFG.h
nonblock_sample.c
kernel_cfg.c
kernel_id.h

main.c

net_cfg.c
net_sample.c

/Source/Project/uNet3_bsd/

DDR_ETH_CFG.h
socket_command.c
kernel_cfg.c
kernel_id.h

main.c

net_cfg.c
net_sample.c

/Source/Project/uNet3_mac/

console.c
DDR_ETH_CFG.h
kernel_cfg.c
kernel_id.h

main.c

net_cfg.c
net_sample.c

/Source/Project/uNet3_snmp

cgi_sample.c
DDR_ETH_CFG.h
html.h
kernel_cfg.c
kernel_id.h

main.c

net_cfg.c
net_sample.c
snmp_cfg.c
snmp_mib_cfg.c

CGil application sample

Ethernet driver configuration header
HTML data

OS resources configuration file

OS resources ID definition file

Main function

TCP/IP stack configuration file
Network application sample

Ethernet driver configuration header

Echo server sample that works non-blocking
OS resources configuration file

OS resources ID definition file

Main function

TCP/IP stack configuration file

Network application sample

Ethernet driver configuration header

Operation check program using a serial console
OS resources configuration file

OS resources ID definition file

Main function

TCP/IP stack configuration file

Network application sample

Test program using serial console
Ethernet driver configuration header
OS resources configuration file

OS resources ID definition file

Main function

TCP/IP stack configuration file
Network application sample

CGil application sample

Ethernet driver configuration header
HTML data

OS resources configuration file

OS resources ID definition file

Main function

TCP/IP stack configuration file
Network application sample

SNMP configuration file

MIB definition file

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 13 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3. Overview functions of TCP/IP stack

3.1 Protocol stack

3.1.1 IP module

The IP module only receives and handles the arrived packets which has destination IP address matches with the TP

address of local host. Other packets are not handled.

(1) IP Option

TCP/IP stack supports router warning option of internal IGMP in IP option only. IP options which do not support will

be ignored. .

(2) TTL (Time to Live)

Default value of TTL in TCP/IP stack is set CFG_IP4 TTL(64). This value may be changed by using net_cfg(). In
case of using net_cfg() to change the value of TTL, TTL value of all sockets are changed. In case that we want to change

TTL value of each socket, please use cfg_soc().

(3) TOS (Type Of Service)
In TCP/IP stack, TOS is set CFG_IP4_TOS (0).

(4) Broadcast

Maybe receive broadcast or not depending on using net_cfg(). The initial value is set that ready to not receive. Always
can transmit broadcast. The broadcast setting is effective for all sockets but we cannot set up whether receive broadcast
by socket unit.

Regarding to transceive broadcast, please use UDP socket.

(5) Multicast

In order to allow multicast reception, we use net cfg() and register at the address of the multicast group which join to.
Multicast group address may be registered by CFG_NET MGR MAX (8).

Always can send multicast. The multicast setting is effective for all sockets but we cannot set up whether receive
multicast by socket unit.

TL used for transferring multicast is set CFG_1P4 MCAST TTL (1). This value can also be changed by using
net_cfg().

Do not support multicast loopback.

Regarding to transceive of multicast, please use UDP socket.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 14 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

(6) MTU
In TCP/IP stack, CFG_PATH MTU (1500 byte) is set as default value of MTU. This value can be configured by the

configurator.

(7) 1P reassembly / fragment

In TCP/IP stack, maximum size of IP packet is 1500 byte as default (This value is related to the value of network
buffer). In order to increase the size of IP packet to maximum, we need to enlarge the network buffer. For example, in
case that transceive 2048byte of UDP data, we need to increase the value of network buffer larger than the value is
calculated from this formula (control header size (100 bytes) + IP header size (20bytes) + UDP header size (8bytes) +
2048).

The default value of IP reassembly process timeout is CFG_IP4 IPR TMO(10 seconds). If the reassembly process
cannot complete within this timeout, the reassembly process is cancelled, the ICMP error message (type 11: packet

discarded by time excess) is sent to remote host.

The default number of times of the IP reassembly process is set CFG_NET IPR_ MAX(2). CFG_NET IPR MAX

value expresses a value which host can execute IP reassembly process at the same time.

(8) IGMP

In TCP/IP stack, the timeout until the “report (reply)” message is sentto “query (group inquiry)” (from router)
is set by CFG_IGMP_REP_TMO (10 seconds)

TCP/IP stack supports IGMPv2 and also supports IGMPv1 compatible function.

In case of getting query of IGMPv1, it will be changed into IGMPv1 mode and then processed. After that, within a
certain time period, if there is no IGMPv1 message, it will be back to IGMPv2 mode. Timeout for returning from IGMPv
1 to IGMPv 2 is set by CFG_IGMP_V1_ TMO (400 seconds).

(9) ICMP
TCP/IP stack supports messages of “echo response” , “echo request” , “time excess” .
R18UZ0079EJ0O100 Rev.1.00 ;?;ENES&S Page 15 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.1.2 ARP module

(1) Resolve ip address

TCP/IP stack will manage the mapping of IP address of host and physical address (MAC address). The administration
table (conversion table) of this mapping is called ARP cache. ARP cache size is set by CFG_NET ARP MAX (8).

When sending IP packet to network, in case that there exists a compatible IP address which refers to ARP cache, it will
send a packet to the destination that is the physical address has been recorded there. In case that there is no existing IP
address, IP packet will be stored temporarily in queue, then, send broadcast ARP request packets. After receiving ARP
response packets from remote host, record a received physical address in ARP cache newly. Then, remove IP packet
from queue, send the packet to the newly acquired physical address.

Besides, ARP entry information is held in the cache table for a maximum of ARP_CLR_TMO (20 minutes).

(2) Address conflict detection

According RFC5227, TCP/IP stack will check whether Ipv4 address is non-duplicative in the same link. This feature is
performed by API is called from application, when LAN interface boot up or link status changes.

After setting the IP address of the interface, the other host had set the same IP address, then the detected the conflict,
TCP/IP stack will notify the application.

"ARP Probe" can detect whether the IP address that you will use is not already in use.
Other host did not respond to ""ARP Probe" (IP address conflict is not), TCP/IP stack notify the other hosts that to use
this IP address from now by sending the "ARP Announce".

313 UDP module

UDP executes the transceiver of data without connecting to remote host.

(1) Sending data

Before sending data, we should use con_soc and associate a socket with a source address (IP address, port number).

After that, we use snd_soc() to send data. The flow snd_soc() processing is described in the diagram as below.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 16 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

{ snd_soc() }

v

Copy data into
Network buffer

A4
{UDP packet construction}

4
No
ARP entry existence mﬁj
Yes ARP solution
-
4
Yes
IP fragmentation Data length>1472
No
A4
{ dev_snd() }
ARP timeout
\ J

E_TMOUT
{ Return jq ,,,,,,,,,,,,

Fig. 3.1 The flow of snd_soc processing of UDP socket

4. The application data is copied into network buffer, adding UDP header such as port number,IP address of remote
host,then construct UDP packet.

5. In case that cannot resolve MAC address of remote host by ARP protocol, it will return E TMOUT error.

6. In default, the maximum size of transmission data is set 1472 bytes (CFG_PATH_MTU (1500 bytes) - IP header
size- UDP header size). In case of sending data with larger size than this, we need to set network buffer size.
Regarding the details, please refer to the item of IP reassembly/fragment

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 17 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

(2) Data reception

Data reception is executed by using rcv_soc(). The flow of rev_soc() processing is described in the diagram as
below.

[rev_soc() }

Y
Is UDP packet is No
enable?
Y
Yes Receive UDP packet
v Wait UDP packet

Copy UDP packet into
application buffer

\/ Timeout

E_TMOUT
Return |-

Fig. 3.2 The flow of rcv_soc processing of UDP socket

7. If UDP packet has not been received yet, enter a state of waiting for UPD packet reception. At that time, if it
exceeds timeout of receiving socket, it will return E TMOUT.

8. Ifreceived packet size is smaller than requested data size, copy into application buffer. In case that received packet
with bigger size, just copy the request size into application buffer. Remaining part will be ignored.

9. In default, maximum size of reception data is set 1472 bytes (CFG_PATH_MTU (1500 bytes) - IP header size-

UDP header size). In case of receiving data with larger size than this, we need to set network buffer size. Regarding
the details, please refer to the item of IP reassembly/fragment.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 18 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

314 TCP module

TCP is different from UDP. TCP is connection mode, so it can allocate sending party and channels before transceiving

data. TCP sequence is described in the diagram as below.

Create Socket

con_soc()
SOC_CLI

con_soc()
SOC_SER

Connection error

{ Waiting for passive open] { Waiting for active open }

con_soc() completion

- Connection is established
Possible to transceive data by

k Establish connection

con_soc() snd_soc / rcv_soc
SOC_TCP_SHT
) L con_soc() Interrupt connection or
Disconnect transmission SOC_TCP_CLS finished connection
>
con_soc() Y
SOC_TCP_CLS w
While disconnecting
J cls_soc() completion

Fig. 3.3 TCP sequence

(1) Establishing connection

There are two modes of TCP connection, active and passive connection. Active connection that requires connect to
remote host by itself. On the contrary, passive connection that wait for the connection from remote host.
Use con_soc() to connect, and need to specify active connection by SOC_CLI and passive connection by SOC_SER.

(2) Connection completion

In order to disconnect the connection, we use cls_soc(). Specify SOC_TCP_CLS in order to disconnect all the

connection completely, and SOC_TCP_SHT to disconnect the transmit direction only.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 19 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

(3) Data transmission

Use snd_soc() to send data. The flow of snd_soc() processing is described as below.

[snd_soc() }

4

Transmission
buffer is empty?

Transmission buffer
empty waiting

Yes

v

Copy application data into

Waiting timeout or
Transmission
process interrubtion

transmission buffer

Y

Return Return

(size of copied data) (error)

Fig. 3.4 TCP socket—Flow of snd_soc processing

10. Copy data of application into TCP transmission buffer. If copy is successful, TCP protocol will send data. If remote
host received data, all data in TCP transmission buffer will be clear.

e TCP transmission buffer

It is necessary to specify transmission buffer size when create TCP socket. Buffer size ranges from 4 bytes to 32
kilobytes and is specified as a power of 2 (1024, 2048, 4096, and so on).

(4) Data reception

Use rcv_soc() to send data. Received TCP packet firstly will be registered at TCP reception buffer. When rcv_soc() is
called, it will be copied from TCP reception buffer into application buffer.

e TCP reception buffer (Window buffer)

It is necessary to specify reception buffer size when create TCP socket. Buffer size ranges from 4 bytes to 32 kilobytes
and is specified as a power of 2 (1024, 2048, 4096, and so on).

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 20 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

(5) Retransmission timeout

Timer sequence of resending is described in the diagram as below.

Host 1 Host 2 Host 1 Host 2
SYN DATA
— RTT
| calculation
. SYN RTO = 3s.
................. DATA
""" | X \
RTO = 6s.
o SN * DATA RTO=05s.
""""""""" »l
..... »
RTO = 12s. RTO = 1s.
...... DATA
........... al
RTO = 2s.
RTO = 60s.
A) SYN retransmission B) DATA retransmission

Fig. 3.5 An example of retransmission timer

In TCP, if there are not response of ACK packet within a certain time for any reason, segment without response will be
sent again. The waiting time until retransmission action is executed is called “RTO” (Retransmission Time Out).
Initial value of RTO is called “RTT” (Round Trip Time),is “4 times+ a”
trip to the other). RTO value is increased twice every time resending action is done.

When retransmit SYN like the above A diagram, it uses CFG_TCP_RTO_INI (3 seconds) due to RTT value is not
set. In the above B diagram of data retransmission, it calculates RTT value based on the previous successful transmission,
that’s 500 milliseconds.

RTO scope is set from CFG_TCP_RTO_MIN (500 ms) to CFG_TCP_RTO_MAX (60 s).

of “Time that packet makes round

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 21 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

(6) Connection timeout

Connection timer sequence is described in the below diagram.

Host 1 Host 2 Host 1 Host 2
SYN Timer ON 1 con_soc() SYN
\ ‘ m‘ Timer ON
SYN/ACK N
. syn
—o | v e
75 s.
Timer OFF | s
E,TMOUT Timeout
A) TCP connection success B) TCP connection timeout

Fig. 3.6 An example of connection timeout

When call con_soc(), if this timer completes from starting up to three-way handshake timed out, it will return E_ OK
(A). If finish timeout, it will return E TMOUT (B).

Timeout value of connection process (3-way handshake) is set CFG_TCP_CON_TMO (75 seconds).

When create TCP socket, it can specify blocking timeout used in connection. If this value runs out of time,

connection process will be interrupted immediately and con_soc() will return E TMOUT.

(7) Transmission timeout

Transmission timeout is set CFG_TCP_SND TMO (64 seconds). While communicating data, if there is no response
from the partner even though passes CFG_TCP_SND TMO, the connection will be disconnected.

(8) Disconnection timeout

Timeout of disconnection process is set CFG_TCP_CLS TMO (64 seconds). If cls_soc() does not complete at
CFG_TCP_CLS_TMO, connection will be forcibly disconnected and cls_soc() will return E TMOUT.

<When create TCP socket, it can specify blocking timeout used in connection. If this value runs out of time,
connection process will be interrupted immediately and cls_soc() will return E TMOUT.

(9) Delay ACK timeout
Delay ACK timeout is set CFG_TCP_ACK TMO (200 milliseconds).

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 22 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

(10) TCP congestion control
TCP/IP stack supports fast retransmit and fast recovery. Number of duplicate ACK is set CFG_TCP_DUP_CNT (4).

(11) Maximum Segment Size (MSS)
MSS is set CFG_TCP_MSS (1460 bytes).

(12) Keep Alive
TCP/IP stack supports TCP Keep Ailve.

Get ACK -----——-—-
N
() N .

-— e o \

i T4

‘ s

to t t t t | : to
o ‘" —— Close o
Start of non communication Start of non communication

Keep on sending Keep Alive ¢ times

to = The time of activation Keep—Alive
t; = The interval of transmission Keep—Alive
¢ = The number of transmission Keep—Alive

Fig. 3.7 Operation TCP Keep Alive

If Keep Alive feature is enabled (¢ > 0), after to seconds in non-communication state, start the transmission of Keep
Alive packet to the destination host.

Until it is transmitted c times, or get ACK from destination, TCP/IP stack will continue to send the Keep Alive packets
at intervals of t1 seconds.

If no response is obtained in ¢ times Keep Alive packet, then TCP/IP stack close TCP connection.

It does not disconnect TCP connection automatically if Keep Alive feature is disable (c = 0)

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 23 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.2 Network device driver

Because protocol stack will access to device driver through T NET_DEYV structure, so the information as device
name, device number, the functions of device driver must be registered in T_NET_DEYV structure in advance. Protocol
stack specify and access to the device which is registered in T_NET_DEYV by device number.

3.2.1 Device structure

typedef struct t_net_dev {
uB name[8]; [* Device name*/
UH num; /* Device number */
UH type; I* Device type */
UH sts; /*Reserve*/
UH flg; /*Reserve */
FP ini; /*Pointer to dev_ini function*/
FP cls; /* Pointer to dev_cls function*/
FP ctl; /* Pointer to dev_ctl function*/
FP ref; /* Pointer to dev_ref function*/
FP out; /* Pointer to dev_snd function®/
FP cbk; /* Pointer to dev_cbk function*/
uw *tag; /* Reserve*/
union cfg; /* MAC address */
UH hhdrsz; /* Device header size */
UH hhdrofs; [* Position writing network buffer */
VP opt; /* Driver extension area */

} T_NET_DEV;

(1) Device number

Set unique number to specify device. Protocol stack will use this number to access to the device. Device number

should be numbered consecutively from 1.

(2) Device name

Set the name in order to specify the device. The length of device name should be under 8 bytes long.
For example: eth0, eth1 etc.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 24 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

3. Overview functions of TCP/IP stack

(3) Device type

Set type of network device. There are some as below.

Device type Meaning
NET_DEV_TYPE_ETH Ethernet device
NET DEV_TYPE PPP PPP device

(4) Function of driver device

Device driver needs to support the below functions. These functions are called from appropriate protocol stack.

Prototype Description Requirement
ER dev_ini(UH dev_num) Device initialization Require
ER dev_cls(UH dev_num) Device release No require
ER dev_snd(UH dev_num, T_NET BUF *pkt) | Send packet to network Require
ER dev_ctl(UH dev_num, UH opt, VP val) Device control No require
ER dev_ref(UH dev_num, UH opt, VP val) Device status acquisition No require
void dev_cbk(UH dev_num, UH opt, VP val) Notify event from device (callback function) No require

(5) MAC address
Set unique value to specify hardware.
union {
struct {
UB mac[6]; /* MAC address */
eth;
} cfg;

(6) Device header size

Header size of network device header size is set.

(7) Position writing network buffer

Network buffer data offset is set.

(8) Driver extension area

Device driver-specific parameter. Set to NULL (0) if unused.

R18UZ0079EJ0100 Rev.1.00 RENESAS
Aug 31, 2021

Page 25 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.2.2 Interface
dev_ini Device initialization
[Format]
ER ercd = dev_ini(UH dev_num);
[Parameter]
UH dev_num Device number

[Return value]

ER ercd Successful completion (E_OK) or error code
[Error code]
E_ID Device number is wrong
E_OBJ Already initialized
E_PAR lllegal value setin T_NET_DEV
<0 Other errors (implementation dependent)
[Explanation]

Initialize device. This function is called to initialize device from protocol stack. Before calling this function, it is
necessary to register device information in T NET DEV.

dev_cls Device release
[Format]
ER ercd = dev_cls(UH dev_num);
[Parameter]
UH dev_num Device number

[Return value]

ER ercd Successful completion (E_OK) or error code
[Error code)
E_ID Device number is wrong
E_OBJ Already released
[Explanation]

Release device.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 26 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

dev_ctl Device control
[Format]
ER ercd = dev_ctl(UH dev_num, UH opt, VP val);
[Parameter]
UH dev_num Device number
UH opt Control code
VP val Value to be set

[Return value]

ER ercd Successful completion (E_OK) or error code
[Error code)
E_ID Device number is wrong
E_PAR lllegal parameter
E_OBJ Already released
[Explanation]

The operation of this function is implementation dependent.

dev_ref Device status acquisition
[Format]
ER ercd = dev_ref(UH dev_num, UH opt, VP val);
[Parameter]
UH dev_num Device number
UH opt Status code
VP val Acquire value

[Return value]

ER ercd Successful completion (E_OK) or error code
[Error code]
E_ID Device number is wrong
E_PAR lllegal parameter
E_OBJ Already released
[Explanation]

The operation of this function is implementation dependent.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 27 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

dev_snd Packet transmission
[Format]
ER ercd = dev_snd (UH dev_num, T_NET_BUF *pkt);
[Parameter]
UH dev_num Device number
T_NET_BUF *pkt Pointer to network buffer

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]

E_WBLK Packet is registered in queue (not error)

E_ID Device number is wrong

E_PAR lllegal parameter

E_TMOUT Packet transmission timed out

E_OBJ Device status was wrong already
[Explanation]

This function transmits packet to Ethernet.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 28 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

An example of integration

ER dev_snd(UH dev_num, T_NET_BUF *pkt)
{
/* Copy to Ethernet frame (IP/TCP/UDP/Payload) */
memcpy(txframe, pkt->hdr, pkt->hdr_len);

/* Transmit to network */
xmit_frame(txframe);
return E_OK;

In the above example, the process of protocol stack is blocked by device driver. The next example shows the example

that using queue and no blocking.

Non-blocking example
ER dev_snd(UH dev_num, T_NET_BUF *pkt)

{

queue_tx(pkt); I* register packet in queue */
return E_WBLK; /* Non-blocking */

}

void queue_tx_task(void)
{
dequeue_tx(pkt); /* Removing packet from queue */
/* Copy to Ethernet frame (IP/TCP/UDP/Payload) */
memcpy(txframe, pkt->hdr, pkt->hdr_len);
xmit_frame(txframe); /* Transmit to network */

if (transmission timeout) {

pkt->ercd = E_TMOUT; /* Set time out */

}
net_buf_ret(pkt);

}

In dev_snd transmission process is not executed, packet will register in queue and return E. WBLK. Actual packet

transmission process is executed by another task and release of network buffer is also executed there too.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 29 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

dev_cbk Device event notification
[Format]
void dev_cbk(UH dev_num, UH opt, VP val);
[Parameter]
UH dev_num Device number
UH opt Event code
UH val Event value

[Return value]
None

[Error code]
None

[Explanation]

This function is to notify an event to the application from device driver. This function is implementation dependent.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 30 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.2.3 packet routing

To send a packet to the upper protocol stack from device driver, it uses the following API.
$¢This API cannot be used from Applications.

net_pkt_rcv Sending packet to protocol stack
[Format]
void net_pkt_rcv(T_NET_BUF *pkt);
[Parameter]
T_NET_BUF *pkt Pointer to network buffer

[Return value]
None

[Error code]
None

[Explanation]
This function is to send packet to the upper protocol. The below example shows the example for sending packet to
upper protocol stack from device driver.

Example

/* Network buffer allocation */
T_NET_BUF *pkt;
net_buf get(&pkt, len, TMO);

/* Set received Ethernet header to network buffer */
pkt->hdr = pkt->buf + 2;

pkt->hdr_len = ETH_HDR_SZ;

memcpy(pkt->hdr, rx_frame, pkt->hdr_len);

/* Set received IP payload to network buffer */

pkt->dat= pkt->hdr + pkt->hdr_len;

pkt->dat_len = rx_frame_len — pkt->hdr_len;
memcpy(pkt->dat, rx_frame + pkt->hdr_len, pkt->dat_len);

/* Device information setting*/
pkt->dev = dev;

/* Transfer network buffer to protocol stack */
net_pkt_rcv(pkt);

Release of network buffer is executed by net_pkt rcv(). net pkt rcv() must be called from task context.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 31 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.24 Loopback interface

TCP/IP stack provides a loopback interface that wrap back packets in network device drivers. By using
DDR LOOPBACK NET.c, packets sent from that interface are notified to the TCP/IP stack.

Unlike the general loopback interface (represented by 127.0.0.1), the TCP/IP stack sets static IP and MAC addresses.
To use the loopback interface with the TCP/IP stack, select Loopback as the device type when registering the
configurator interface.

To receive a packet from the loopback interface, the destination of the packet must be the assigned IP address. Address
resolution using ARP is also performed when using the loopback interface.

3.2.5 T_NET_DEV information registration example

T NET DEV information registration example is showed as bellows.

T_NET_DEYV information registration example
T_NET_DEV gNET_DEV][] = {
{
"lanQ", /* Device Name */
1, /* Device Number */
NET_DEV_TYPE_ETH, /* Device Type */
0, [* Status */
0, I* Flags */
eth_ini, [* Device Init */
eth_cls, /* Device Close */
eth_ctl, /* Device Configure */
eth_sts, /* Device Status */
eth_snd, /* Device Transmit */
eth_cbk, /* Device Callback */
0,
{{{ 0x12, 0x34, 0x56, 0x78, Ox9A, 0xBC }}}, /* MAC Address */
ETH_HDR_SZ, /* Link Header Size */
CFG_NET_BUF_OFFSET /* Network buffer data Offset */
}
5
R18UZ0079EJ0100 Rev.1.00 ;?,ENESJ!S Page 32 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.3 Memory management

In protocol stack, it uses network buffer in memory management. By using network buffer, it can allocate the empty
block of memory actively. The following diagram shows an example of memory allocation. First, device driver which
receives data from hardware will use API network buffer, then allocate memory (net buf get). Next, it will set necessary

information in allocated memory and then send packet to the upper layer protocol stack (net pkt rcv).

Protocol stack

Memory pool
,,,,,, A . Memory block 0
@ net_pkt_rev() Memory block 1
Send packet to upper layer @ net buf get()
Memory allocation
Device driver - >
@ set necessary
information in t_net_buf B
A
(D Data reception Memory block N
Hardware
Fig. 3.8 Memory allocation diagram
R18UZ0079EJ0O100 Rev.1.00 ;?ENES&S Page 33 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.3.1 Network buffer

In TCP/IP stack uses network buffers to send and receive packets. The network buffer is implemented using the
memory allocator provided by the OS. The network buffer size and the number of network buffers can be defined by

each application according to the communication volume and MTU size.

TCP/IP stack calls the net_memini (), net memget (), net memret (), net_memext () APIs for network buffer
initialization, acquisition, release, and termination procedures. In addition, the maximum size of the network buffer that
can be acquired must be set in CFG_NET BUF SZ in advance.

Network buffer organization (T_NET BUF)
typedef struct t_net_buf {

uw *next; /*Reserve */
ID mpfid; /* 1D memory pool */
T_NET *net; /* Network interface */
T_NET_DEV *dev; /* Network device */
T_NET_SOC *s0C; /* Socket */
ER ercd; /* Error code */
UH flg; /* Flag used to control protocol stack */
UH seq; I* Fragment sequence®/
UH dat_len; [* Data size of packet */
UH hdr_len; [* Header size of packet */
UB *dat; /* Showing data position in packet (buf) */
UB *hdr; [* Showing header position in packet (buf) */
UB buf(]; [* Actual packet*/
} T_NET_BUF;

The TCP/IP stack uses T NET BUF to transceive packet between protocol and device driver or the protocols.
In TCP/IP, the actual packet data are stored in ‘buf’,**dat’,**hdr’, ‘hdr len’,’dat len’ are used to access to that.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 34 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

3. Overview functions of TCP/IP stack

(1) The access between protocol stack and device driver by network buffer

Member Send (protocol stack->driver) Receive (driver->protocol stack)
dev This is set for &gNET_DEV[dev_num-1]. This is set for &GNET_DEV[eth_dev_num-1]
dev_num is specified by application. eth_dev_num is set at initialization.
ercd This shows the reason why driver fails to Not used.
send. If driver succeed to send, this remains
the size specified by protocol stack.
flg This controls whether hardware checksum | This controls whether hardware checksum is
is enabled or disabled; enabled or disabled;
- HW_CS_TX_IPH4(0x0040) - HW_CS_TX_IPH4(0x0040)
(IP header checksum) (IP header checksum)
- HW_CS_TX_DATA(0x0080) - HW_CS_RX_DATA(0x0020)
(payload data checksum) (payload data checksum)
If above checksum result has an error, please
set below bits:
- HW_CS_IPH4_ERR(0x0100)
(IP header checksum error)
- HW_CS_DATA_ERR(0x0200)
(payload data checksum error)
hdr/hdr_len This is set the head address and size of This Is set the head address and size of frame
frame data which protocol stack sends. data which driver received data.
Driver sends data addressed between hdr (In the case of Ethernet frame, header size is 14
and hdr_len offset. Bytes)
dat/dat_len Not used. This is set head address of data and data size
following the frame header received by driver.
(In the case of Ethernet, dat shows the position
shifted from hdr to hdr_len offset.)
buf[] Packet
This stores actual packet data.
buf[0] and buf[1] are 4Byte alignments control buffer.
The data to send or receive can be written upper buf[2].

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

Page 35 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.3.2 API network buffer

$XThis API network buffer cannot be used from application.

net_buf get Network buffer allocation
[Format]
ER ercd = net_buf_get(T_NET_BUF **buf, UH len, TMO tmo);
[Parameter]
T_NET_BUF **buf Address of buffer that allocate memory
UH len Number of allocating bytes
UH tmo Timeout specification

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]

E_PAR Set wrong parameter value
E_NOMEM Unable to allocate memory
E_TMOUT Timeout

[Explanation]

Allocate memory from memory pool. Allocated buffer address returns to buf.

net_buf ret Network buffer release
[Format]
void net_buf_ret(T_NET_BUF *buf);
[Parameter]
T_NET_BUF *buf Address of buffer that free memory

[Return value]
None

[Error code]
None

[Explanation]
Give back memory to the memory pool. If the socket is associated with network buffer, notify the free memory event
to the socket.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 36 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.4 Memory processing | / O

Comparison and writing process of contiguous memory occurred in the protocol are able to defined by user, so that it
does not depend on device or compilation environment.

For devices with features DMA, Processing memory copy can use the DMA transfer instead of the memcpy() of
standard library.

3.4.1 Memory processing | / O
s<memory I/O API must be defined in application always.

net_memset Fill block of memory
[Format]
void* net_memset(void* d, int ¢, SIZE n);
[Parameter]
void* d Pointer to the block of memory to fill
int c Value to be set
SIZE n Number of bytes to be set
[Return value]
void* d Pointer to the block of memory to fill
[Explanation]

If the memory settings are successful, please return the destination pointer that is specified in the argument.

net_memcpy Copy bytes in memory
[Format]
void* net_memcpy(void* d, const void* s, SIZE n);
[Parameter]
void*® d Pointer to the destination of memory
const void*® s Pointer to the source of data
SIZE n Number of bytes to copy
[Return value]
void* d Pointer to the destination of memory
[Explanation]

If the memory copies are successful, please return the destination pointer that is specified in the argument.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 37 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

net memcmp ~ Compare two blocks of memory
[Format]
int net_memcmp(const void* d, const void* s, SIZE n);
[Parameter]
const void*® d pointer to blocks of memory1
const void*® S pointer to blocks of memory2
SIZE n Number of bytes to compare
[Return value]
int Comparison result
[Explanation]

Please return 0 if the same value in the specified number of bytes. Otherwise, please return the non-zero.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 38 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5 Ethernet device driver

This device driver is for Ethernet MAC or Ethernet Switch included in R-IN32. Ethernet device driver is used by

calling from network device driver.

This device driver functions are showed below.

- PHY mode set/get

- PHY speed set/get

- Receive frame filtering

- Dynamic configuration for multicast address filter
- Raw data send/receive API

- Direct MAC mode / Ether Switch mode

- Blocking transmit / non-blocking transmit

- VLAN

351 Ethernet device driver structure

Ethernet device driver operates with PHY driver which controls MDIO interface. This driver structure is showed

below.

Network Application

Ethernet Driver

TXTask RX Task
PHYQ Driver PHY1 Driver
LinkTask || Link Task

MAC Controller

Fig.3.9 Ethernet device driver structure

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 39 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.2 Ethernet device driver API
3.5.2.1 Ethernet driver initialization - eth_ini()
[Prototype]
ER eth_ini(UH dev_num)
[Operation]
Initialize Ethernet driver
[Parameter]
UH dev_num Device number (1)
[Return value]
ER E OK Success initialization
E ID Undefined device number
E PAR Invalid device number
Others Task wake up error, PHY driver initialization error
[Explanation]

This API initialize PHY and MAC controller, and wake up the task which controls Ethernet driver. This function

must be called before Ethernet driver is used.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 40 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.2.2 Ethernet driver closed - eth_cls()

[Prototype]

ER eth _cls(UH dev_num)
[Operation]

Ethernet driver is closed
[Parameter]

UH dev_num Device number (1)
[Return value]

ER E OK Exit without error
[Explanation]

PHY, MAC controller stops.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 41 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.2.3 Ethernet frame transmit - eth_snd()
[Prototype]
ER eth snd(UH dev_num, T NET BUF *pkt)
[Operation]
Ethernet frame transmit
[Parameter]
UH dev_num Device number(1)
UH pkt->hdr Address for transmit data
UB* pkt->hdr_len Transmit data length
[Return value]
ER E OK Success for transmit
E TMOUT Link down
E WBLK Non-blocking reception
(Only when non-blocking transit)
E NOMEM No enough memory
E SYS MAC controller error
[Explanation]

When blocking transmit, this function returns after waits the interrupt for transmit complete. When non-blocking
transmit, this function returns with E. WBLK after transmit success. If E WBLK is returned, Ethernet driver calls back

“eth_raw_snddone()” function when Ethernet frame transmit completed.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 42 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.24 Ethernet frame transmit end report - eth_raw_snddone()
[Prototype]
void eth raw_snddone(T _NET BUF *pkt)
[Operation]
Ethernet frame transmit complete call-back function
[Parameter]
T NET BUF* pkt pkt specified to eth_snd()
ER pkt->ercd Transmit result
[Return value]
void
[Explanation]

Ethernet driver is called when non-blocking transmit is completed. This function needs to be registered by

application before it’s used. How to registration is showed below.

/* Function body of transmit complete note */
void eth raw_snddone(T NET BUF *pkt)

{
}

/* Registration to transmit completion report function */
eth_ctl(1, ETH_OPT _RAW_SNDDONE, (VP)eth _raw_snddone);

The TX task must not be stopped, because this function operates under TX task.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 43 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.2.5 Ethernet frame reception report - eth_raw_rcv()
[Prototype]
void eth raw_rcv(VP fram, UH len)
[Operation]
Ethernet frame reception report function
[Parameter]
VP fram Reception data address
UH len Reception data length
[Return value]
void
[Explanation]

When Ethernet driver receive a frame, this function is called. This function needs to be registered to application before
it is used. Registration example shows below.

/* Receive report function */
void eth raw_rcv(VP p, UH len)
{

}

/* Receive report function registration */
eth_ctl(1, ETH_OPT _RAW_RXFNC, (VP)eth_raw_rcv);

Rx task must not be stopped because this function operates Rx task. If Ethernet driver is shared with TCP/IP stack, this
function is called in driver earlier than in TCP/IP stack. Therefore, received frame data cannot be modified.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 44 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

3. Overview functions of TCP/IP stack

3.5.2.6

[Prototype]

ER set phy mode(PHY MODE *mode)

PHY ability setting - set_phy_mode()

[Operation]
PHY ability setting
[Parameter]
PHY MODE* mode PHY ability
Uw mode->mode Speed / Duplex
UB mode->nego Auto-negotiation on(TRUE)/off(FALSE)
UB mode->ch Target PHY channel
[Return value]
ER E OK Success
E PAR Invalid parameter
others PHY driver configuration error
[Explanation]

Application can configure PHY ability anytime. The configuration of speed and duplex is selected from Table. 3.1.

Target PHY is configured to ETH INT MII PHYO or ETH INT MII PHY1.

struct PHY MODE pmod;
pmod.mode = LAN AUTO ABILITY;
pmod.nego = TRUE;
pmod.ch = ETH INT MII PHYO;
set phy mode (&pmod) ;

Table. 3.1 PHY ability setting

Value Description
LAN_10T_HD 10M/Half-duplex
LAN_10T_FD 10M/Full-duplex
LAN_100TX_HD 100M/Half-duplex
LAN_100TX_FD 100M/Full-duplex
LAN_1000T_HD 1G/Half-duplex
LAN_1000T_FD 1G /Full-duplex
LAN_AUTO_ABILITY Auto select
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 45 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.2.7 Get PHY ability - get_phy_mode()

[Prototype]
ER get phy mode(PHY MODE *mode)
[Operation]
Get PHY ability
[Parameter]
PHY MODE* mode PHY ability
[Return value]
ER E OK Success
E PAR Invalid parameter
others PHY driver ability get error
[Explanation]

This function is used to get PHY ability (speed, duplex, auto-negotiation on/off), and link status. Application can get
PHY ability anytime. Example is showed below.

struct PHY MODE pmod = {0};

/* Target PHY is set by ETH INT MII PHYO or ETH INT MII PHY1l */
pmod.ch = ETH INT MII PHYO;
get phy mode (&pmod) ;

pmod.mode shows PHY ability (reference Table. 3.1).
pmod.nego shows auto-negotiation enabled(TRUE) or disabled(FALSE).

pmod.link shows link-up(TRUE) or link-down(FALSE).

If a PHY is link-down, please notice that PHY ability shows invalid value.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 46 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.2.8 Multicast address filter mode setting - set_mcast_filter_mode()

[Prototype]

ER set mcast_filter mode(UINT mode)
[Operation]

Set multicast address filter mode
[Parameter]

UINT mode Filter mode
[Return value]

ER E OK Success

E PAR Invalid parameter

[Explanation]

Filter mode has three modes showed below.

Value Mode
MCRX_MODE_ALLOW All multicast address receive mode
MCRX_MODE_DENY Denied to receive multicast address mode
MCRX_MODE_FILTER Specified multicast address receive mode

Caution 1 When independent address is set, choose MCRX MODE_FILTER.
Caution 2 After MCRX MODE DENY is set, already registered multicast address is deleted all.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 47 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.2.9 Add multicast address filter - add_mcast_filter()

[Prototype]
ER add_mcast_filter(MAC_FILTER *adr)
[Operation]
Add multicast address to receive
[Parameter]
MAC FILTER* adr Multicast address to receive
UB adr->mac[6] Multicast address to add
UB adr->bitnum Valid bit number (0, 40-48)
[Return value]
ER E OK Success
E PAR Invalid parameter
[Explanation]

Filter mode must be set to MCRX MODE FILTER to add multicast address for receive.

Multicast address is shown as combination with lower 23 bits of class D IP address (1% octets is
0xE0~0xEF(224~239)) and upper 25 bits (0x01.0x00.0x5¢.0x00/25). Application has to calculate receive MAC address
from entering multicast IP address. Valid bits are specified 40 bits (5 octets) to 48 bits bit-by-bit. If 0 is set, it seems to be
no valid bits (equal 48).

In case that all MAC address 01:00:5e:00:01:* (* is any value) can be received, the example is showed below.

MAC FILTER adr;
UB macadr[] = {0x01, 0x00, 0x5e, 0x00, 0x01, 0x00};

memcpy(&adr.mac[0], macadr, 6);
adr.bitnum = 40;
add mcast_filter(&adr);

Note: Please add the multicast address (224.0.0.1) which targeget all nodes. If this address is not added, receive
operation can’t work.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 48 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.2.10 Call back event from Ethernet driver

[Prototype]
void eth_cbk(UH dev_num, UH opt, VP val)
[Operation]
Call back event from Ethernet driver
[Parameter]
UH dev_num Device number
UH opt Event type
VP val Event description
[Return value]
void
[Explanation]

This function is defined by network application. It is possible to control operation for asynchronous event or specific
application operation by registering call back function to device configuration (T_NET DEV gNET DEV]]).

Event type and contents are showed below.

Event type Event contents Factor
EV_CBK_DEV_INIT Always 0 When Ethernet driver is initialized
EV_CBK_DEV_LINK Link down:0, Link up:1 When link status is changed

Caution Currently, link event cannot be detected.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 49 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

3. Overview functions of TCP/IP stack

3.5.2.11 Ethernet driver option setting - eth_ctl()

[Prototype]

ER eth _ctl(UH dev_num, UH opt, VP val)
[Operation]

Ethernet driver option setting
[Parameter]

UH dev_num Device number

UH opt Option type

VP val Setting value
[Return value]

ER E OK Success

E PAR Invalid parameter

[Explanation]

This function calls Ethernet driver or PHY driver setting function. Available options are showed below.

Option type

Description

Available value

ETH_OPT_PHY_MODE

PHY ability

same as set_phy_mode()

ETH_OPT_MCRX_MODE

Multicast address filter mode setting

same as set_mcast_filter_mode()

ETH_OPT_MCRX_ADR

Add multicast address filter

same as add_mcast_filter()

ETH_OPT_RAW_RXFNC

Ethernet frame receive report

same as eth_raw_rcv()

ETH_OPT_RAW_SNDDONE

Frame tranmit completaion report

same as eth_raw_snddone()

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 50 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

3. Overview functions of TCP/IP stack

3.5.2.12 Get Ethernet driver option - eth_sts()

[Prototype]

ER eth_sts(UH dev_num, UH opt, VP val)
[Operation]

Get Ethernet driver option
[Parameter]

UH dev_num Device number

UH opt Option type

VP val Option contents
[Return value]

ER E OK Success

E PAR Invalid value

[Explanation]

This function calls Ethernet driver and PHY driver functions. Available option is below.

Option type

Option contents

Available value

ETH_OPT_PHY_MODE

Get PHY ability

same as get_phy_mode()

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

Page 51 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.5.3 Configuration
Following configuration is written to DDR_ETH_CFG.h depends on purpose.

#define PHY ADRO
LANI1 PHY address for R-IN32M4-CL3

#define PHY ADRI
LAN2 PHY address for R-IN32M4-CL3

#define PROMISCUOUS_ FILTER MODE
Promiscuous filter mode. (0: receive all frames, 1: receive only self-station frame)

#define ETH_ EARLY _TX ENA
Early transmit mode. (0: disabled, 1: enabled)
If early transmit mode is enabled, it seems finish transmitting as soon as data was transmitted to FIFO in MAC

controller.

#define ETH_TX ASYNC
Non-blocking transmit mode. (0: disabled, 1: enabled)
If non-blocking mode is enabled, transmission is operated by send task of Ethernet drive.

#define USE_ ETHSW
Ethernet switch is used or not. (0: not used, 1: used)

#define USE_ETHSW_MGTAG
Ethernet switch management tag is used or not. (0: not used, 1: used)

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 52 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.54 Cautions regarding Ethernet device driver

3541 TCP/UDP hardware checksum function

Ethernet device driver uses hardware checksum function of R-IN32. Therefore, checksum calculation is not operated
inside protocol stack.

T NET_BUF structure member “flg” and global variable gNet[device number-1].flag can control whether checksum
operation is used or not.

Following ensamples show how hardware checksum function is enabled.

Enables receive hardware checksum
T NET BUF *pkt;

pkt->flg |= (HW_CS_RX IPH4 | HW_CS_RX DATA);

Enables transmit hardware checksum
T NET *net;

net = &gNET[eth devnum-1];

/* set hardware checksum flag */

net->flag |= (HW CS TX IPH4 | HW CS TX DATA);

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 53 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.6 PHY driver

Ethernet driver and PHY driver I/F are defined to global variable PHY 10 gPHY IO[]. gPHY 1O[] is arrays to define

some PHYSs.

PHY driver API registered to this variable is called from Ethernet driver. Last element of gPHY IO[] arrays must be
set 0 to all of PHY IO member and terminated. PHY IO member is described below.

typedef struct phy io {

UW phy id;
UW phy adr;

ER (*phy ini) (ID flg, UW id, UW adr);

ER (*phy ext) (void);

ER (*phy set mode) (UW mode, UB nego);

ER (*phy get mode) (UWN *mode, UB *nego, UB *1link);

}PHY I0;
Member Description
phy _id PHY ID (ID number of LAN1~LAN4. If target is LAN1, this member is 1)
phy_adr PHY address
phy _ini Initialize function
phy_ext Exit function
phy_set_mode PHY ability setting function
phy_get_mode PHY ability getting function
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 54 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.6.1 PHY driver API
3.6.1.1 Initialize PHY driver - phy_ini()
[Prototype]
ER phy ini(ID flg, UW id, UW adr)
[Operation]
Initialize PHY driver
[Parameter]
ID flg Event flag ID
Uuw id PHY ID
uUw adr PHY address
[Return value]
ER E OK Success
Others Error when task start
[Explanation]

This function is called from Ethernet driver when eth_ini() function is executed. Event flag ID gives Ethernet driver

link event. PHY ID gives event pattern when link event is noticed.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 55 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.6.1.2 Exit PHY driver - phy_ext()

[Prototype]
ER phy ext(void)

[Operation]
Exit PHY driver

[Parameter]

void

[Return value]
ER E OK Success
Others Error when task finish

[Explanation]

This function is called from Ethernet driver when eth_cls() function is executed. This driver terminates link task.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 56 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.6.1.3 PHY ability setting - phy_set_mode()

[Prototype]
ER phy set mode(UW mode, UB nego)

[Operation]
PHY ability setting

[Parameter]

Uw mode Speed, duplex
UB nego Auto negotiation enabled(TRUE) / disabled(FALSE)

[Return value]
ER E OK Finished

[Explanation]

This function is called from Ethernet driver when set phy mode() function is executed. Speed and duplex has the
value referred from Table. 3.2. This value is different from Ethernet driver API set_phy mode() parameter speed and

duplex. Default value is PHY AUTO_ABILITY when PHY driver has been initialized.

Table. 3.2 PHY ability setting

Settings Description
PHY_10T_HD 10M/Half-duplex
PHY_10T_FD 10M/Full-duplex
PHY_100TX_HD 100M/Half-duplex
PHY_100TX_FD 100M/Full-duplex
PHY_1000T_HD 1G/Half-duplex
PHY_1000T_FD 1G /Full-duplex
PHY_AUTO_ABILITY Auto selected
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 57 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.6.1.4 Get PHY ability - phy_get_mode()

[Prototype]
ER phy get mode(UW *mode, UB *nego, UB *link)
[Operation]
Get PHY ability
[Parameter]
UwW#* mode Speed and duplex
UB* nego Auto negotiation enabled / disabled
UB* link Link up / down
[Return value]
ER E OK Finished
[Explanation]

This function is called from Ethernet driver when get phy mode() function is executed. Speed and duplex has the

value referred from Table. 3.2. This value is different from Ethernet driver API set phy mode() parameter speed and

duplex.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 58 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 3. Overview functions of TCP/IP stack

3.6.2 Link event notification

Rx task in Ethernet driver waits for receiving frame or changing link event state. The event shows link state change is
set (set_flg()) by link task in PHY driver or interrupt handler.

The event flag ID (1% argument) in set flg(id, ptn) has specified event flag ID when PHY driver starts. The event bit
pattern (2" argument) has logical OR “PHY_LINK_EVT” and PHY ID. PHY LINK EVT means link event, PHY ID is

specified when PHY driver starts.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 59 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

4. Network configuration

4. Network configuration

It’s explained to configure TCP/IP protocol stack in this chapter.

4.1 Configuration of TCP/IP stack

TCP/IP stack parameters such as IP address and transmission buffer size can be configured by editing net_cfg.c.

4.1.1

The following is configurable parameter list.

Configuration list

The application can modify macro values defined as “#define CFG_XXX” (XXX is any), and cannot modify other

macros or variables directly. Almost initial values are defined by “DEF_ XXX macro.

Configuration content [Unit] Definition Initial Minimum | Maximum
value value value

The number of data link devices CFG_NET_DEV_MAX 1 1 2
The maximum number of all protocol sockets CFG_NET_SOC_MAX 10 1 1000
The maximum number of TCP sockets (*1) (*3) CFG_NET_TCP_MAX 5 0 1000
The number of ARP entries CFG_NET_ARP_MAX 8 1 32
The number of multicast entries CFG_NET_MGR_MAX 8 1 100
The number of IP reassembly queues CFG_NET_IPR_MAX 2 1 16
Maximum network buffer size [Byte] (*2) CFG_NET_BUF_Sz 8192 2048 8192
The number of network buffers CFG_NET_BUF_CNT 8 2 31
Network buffer data offset (not allowed to change) (*2) | CFG_NET_BUF_OFFSET | 2 42 42
MTU size (*2) (*4) CFG_PATH_MTU 1500 576 1500
The number of ARP retry (*4) CFG_ARP_RET_CNT 3 0 10
Timeout value for ARP retry [ms] (*4) CFG_ARP_RET_TMO 1000 500 10000
Clear timeout of ARP cache [ms] (*4) CFG_ARP_CLR_TMO 1200000 | 1000 3600000
TTL value of IP header (*4) CFG_IP4_TTL 64 1 255
TOS value of IP header (*4) CFG_IP4_TOS 0 0 255
Waiting time IP fragment packet [ms] (*4) CFG_IP4_IPR_TMO 10000 100 60000
TTL value of multicast IP header (*4) CFG_IP4_MCAST_TTL 1 1 255
Timeout value of IGMPv1 [ms] (*4) CFG_IGMP_V1_TMO 40000 40000 120000
Timeout value of IGMP report [ms] (*4) CFG_IGMP_REP_TMO 10000 10000 30000
MSS(TCP/IPv4) (MTU-IP header-TCP header) (*4) CFG_TCP_MSS 1460 536 1460
TCP/RTO (retry timeout) initial value [ms] (*4) CFG_TCP_RTO_INI 3000 2000 3000
TCP/RTO (retry timeout) minimum value [ms] (*4) CFG_TCP_RTO_MIN 500 200 500
TCP/RTO (retry timeout) maximum value [ms] (*4) CFG_TCP_RTO_MAX 60000 30000 60000
TCP transmission buffer size [Byte] (*3) (*4) (*5) CFG_TCP_SND_WND 1024 1024 8192
TCP reception buffer size [Byte] (*4) (*5) CFG_TCP_RCV_WND 1024 1024 8192
Duplicate ACK number of retry beginning [reception CFG_TCP_DUP_CNT 4 1 10
count] (*4)

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 60 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

4. Network configuration

Configuration content [Unit] Definition Initial Minimum | Maximum
value value value
TCP/SYN transmission timeout [ms] (*4) CFG_TCP_CON_TMO 75000 10000 75000
TCP/data transmission timeout [ms] (*4) CFG_TCP_SND_TMO 64000 10000 64000
TCP/FIN transmission timeout [ms] CFG_TCP_CLS_TMO 75000 10000 75000
TCP/2MSL timeout [ms] (*4) (unused) CFG_TCP_CLW_TMO 20000 0 20000
TCP/delay ACK transmission period [ms] (*4) CFG_TCP_ACK_TMO 200 200 1000
TCP/Keep-Alive notification count (in case of 0 Keep- | CFG_TCP_KPA_CNT 0 0 100
Alive is disabled)
TCP/Keep-Alive notification period [ms] CFG_TCP_KPA_INT 1000 1000 60000
Non-communication time until TCP/Keep-Alive starts CFG_TCP_KPA_TMO 7200000 | 10000 14400000
[ms]
The queuing number of reception packet (*4) CFG_PKT_RCV_QUE 1 1 10
Received sequence guaranteed queuing number CFG_TCP_RCV_0OSQ_M |6 - -
AX
Received packet checksum verification invalid flag CFG_PKT_CTL_FLG 0 - -
Waiting time ARP PROBE packet transmission [ms] CFG_ARP_PRB_WAI 1000 1000 3000
The number of ARP PROBE packet transmission CFG_ARP_PRB_NUM 3 1 6
ARP PROBE packet transmission period (minimum) CFG_ARP_PRB_MIN 1000 100 1000
[ms]
ARP PROBE packet transmission period (maximum) CFG_ARP_PRB_MAX 2000 200 2000
[ms]
Waiting time ARP ANNOUNCE packet [ms] CFG_ARP_ANC_WAI 2000 200 2000
The number of ARP ANNOUNCE packet transmission | CFG_ARP_ANC_NUM 2 1 4
ARP ANNOUNCE packet transmission period [ms] CFG_ARP_ANC_INT 2000 200 2000

In the setting item whose unit is [millisecond], it is reflected as an approximate value depending on the accuracy of the

timer used.

*1: Must be less than or equal to CFG_NET _SOC_MAX. Also, the difference from CFG_NET SOC_MAX is the

maximum number of non-TCP sockets.

*2: The size of the network buffer must be larger than the total size of the network buffer management structure size
(44Byte), MTU, data link header size (14Byte for Ethernet), and network buffer data write position (default 2Byte).

*3: The TCP send buffer uses the global variable UB gTCP_SND BUF [] in common regardless of the device used.
gTCP_SND_BUF [] determines this size by CFG_TCP_SND WND x CFG_NET TCP_MAX. If you use multiple
devices with different TCP send buffer sizes, you need to set gTCP_SND BUF [] according to the maximum

value.

*4: It can be set for each device to be used. Set device number -1 as an index in gNET_CFG [].

*5: The buffer size ranges from 4 bytes to 32 kilobytes and is specified as a power of 2 (1024, 2048, 4096, and so on).

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 61 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

4. Network configuration

412 IP address

Set up IP address. Because every network device needs an IP address, please register CFG_ NET DEV_MAX part for

IP address.

The following is the example for set up of IP address:192.168.1.10, gateway : 192.168.1.1, subnet mask:

255.255.255.0.

T_NET_ADR gNET_ADR]] = {
{ [* forDevice1 */
0x0, /* Must be 0 */
0x0, /* Must be 0 */
0xCOAB8000A, /* Setting IP address 192.168.1.10 */
0xCOA80001, /* Gateway 192.168.1.1 */
OxFFFFFFOO, /* Subnet mask 255.255.255.0 */

41.3 Device Driver

Set device driver. Please register CFG_NET DEV_MAX part for device driver.

T_NET_DEV gNET_DEV[] = {
{3
}

Please refer to 3.2 Network device driver for more details.

4.1.4 Information table of protocol stack

Set global variable of protocol stack as below.

const VP net_inftbl[] = {

0, /* Necessarily specify 0%/

(VP)gNET_SOC, /* Set NULL in case of not using socket */
(VP)gNET_TCP, /* Set NULL in case of not using socket*/
(VP)gNET_IPR, /* Set NULL in case of not using IP reassembly function */
(VP)gNET_MGR, /* Set NULL in case of not using IGMP*/
(VP)gTCP_SND_BUF, /* Set NULLin case of not using TCP socket*/

b

R18UZ0079EJ0100 Rev.1.00 RENESAS
Aug 31, 2021

Page 62 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

4. Network configuration

4.1.5 Network information management resources

In the TCP/IP stack, in order to manage network information, it is necessary to prepare an information management

area according to the number of devices and sockets with wide area variables as shown below.

T_NET_STS_DEV

net_cfg_sts_dev[CFG_NET_DEV_MAX]

Device information

T_NET_STS_IFS

net_cfg_sts_ifsSfCFG_NET_DEV_MAX]

TCP/IP information

T_NET_STS_IFS

net_cfg_sts_ifs_ tmp[CFG_NET_DEV_MAX]

TCP/IP information (Temporary)

T _NET_STS_ARP

net_cfg_sts_arp[CFG_NET_ARP_MAX]

ARP information

T_NET_STS_SOC

net_cfg_sts_soc[CFG_NET_SOC_MAX]

Socket information

VP

net_cfg_sts_ptr[4 + CFG_NET_DEV_MAX]

Status pointer

VP

net_cfg_sts_ptr_tmp[4 + CFG_NET_DEV_MAX]

Status pointer

T_NET_STS_CFG

T_NET_STS_CFG gNET_STS_CFG ={
net_cfg_sts_dey,
net_cfg_sts_ifs,
net_cfg_sts_ifs_tmp,
net_cfg_sts_arp,
net_cfg_sts_soc,
net_cfg_sts_ptr,
net_cfg_sts_ptr_tmp,
0

Network information management
table

R18UZ0079EJ0100 Rev.1.00 RENESAS

Aug 31, 2021

Page 63 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5. Description of application programming interface

5.1 Initialization of protocol stack

To use TCP/IP protocol stack, the initialization of protocol stack and initialization of network device are needed.

Basically initialization is as follows:

Example of initialization code
/* Initialization of protocol stack */
ercd = net_ini();
if (ercd I= E_OK) {
return ercd;
}
I* Network device initialization (device number N) */
ercd = net_dev_ini(N);
If (ercd = E_OK) {
return ercd;

}

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 64 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.2 Network Interface API

net_ini Initialization of TCP/IP protocol stack

[Format]
ER ercd = net_ini(void);

[Parameter]
None

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]
<0 Initialization failure

[Explanation]
Initialize the resource to be used by protocol stack. Kernel objects (tasks, memory pools, semaphores) to be used by
protocol stack are also created and initialized simultaneously. Besides, the initial value is set in global variable used in
protocol stack.

In case of using protocol stack, it needs to issue this API prior to any other API.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 65 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

net_cfg Parameter setting of network interface
[Format]
ER ercd = net_cfg(UH num, UH opt, VP val);
[Parameter]
UH num Device number
UH opt Parameter code
VP val Value to set

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]

E_NOSPT Wrong parameter code

E_ID Wrong parameter code

E_NOMEM Too many multicast table
[Explanation]

Set up forIP address and subnet mask, broadcast address, multicast and others.

Setting sample

net_cfg(1, NET_BCAST_RCYV, (VP)1); /* enable broadcast reception */

Parameter code Data type Meaning

NET_IP4_CFG T_NET_ADR Set IP address, subnet mask, gateway. Please hand pointer
of T_NET_ADR to val.

NET_IP4_TTL uB Set TTL (Time to Live)
Default is set 64.

NET_BCAST_RCV uB Set whether to receive broadcast or not. Set 1 to receive
and 0 to not receive.

NET_MCAST_JOIN uw Register IP address of multicast group to join

NET_MCAST_DROP uw Set IP address of multicast group to drop

NET_MCAST_TTL UB Set TTL to be used in multicast transmission

NET_ACD_CBK Callback function In this field, set the callback function to notify that it has

pointer detected an IP address conflict during operation.
Notification feature is enabled by this setting of conflict
detection.
R18UZ0079EJ0100 Rev.1.00 ;ENES,Q.S Page 66 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

net_ref Reference parameter for network interface
[Format]
ER ercd = net_ref(UH num, UH opt, VP val);
[Parameter]
UH num Device number
UH opt Parameter code
VP val Pointer to buffer of the value to get

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]

E_NOSPT Wrong parameter code
E_ID Wrong device number
[Explanation]

Verify the basic setting of IP address and subnet mask, broadcast address and others.

Setting sample
UB bcast;
net_ref(1, NET_BCAST_RCV, (VP)&bcast); /* reception status of broadcast */

Parameter code Data type Meaning
NET_IP4_CFG T_NET_ADR Get IP address, subnet mask, gate-way. Please hand
pointer of T_NET_ADR to val
NET_IP4_TTL UB Get TTL (Time to Live).
NET_BCAST_RCV UB Get the receive status of broadcast
NET_MCAST_TTL UB Get TTL broadcast transmission
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 67 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

net_acd Detection IP Address Confliction
[(API]
ER ercd = net_acd(UH dev_num, T_NET_ACD *acd);
[Parameter]
UH num Deviec Number
T_NET_ACD *acd Address Conflict Information
[Return Value]
ER ercd Success (E_OK) or Error Code
[Error Code]
E_ID Illegal Device Number
E_PAR lllegal Parameter
E_OBJ Call Duplicate or Call host IP undefined
E_TMOUT Time out ARP transmit
E_SYS Detect IP address conflict
E_OK No Detect IP address conflict
[DESCRIPTION]

This API is done in the device specified by dev_num, IP address conflict detection.

If it detects a conflict for the IP address, MAC address of the other party is stored in the conflict information of the
argument.

If you want to detect conflicts in asynchronous IP address separately, you will need to register a callback function ()
API net_cfg with this API.

Note : Function is recommended that a maximum of about 10 seconds, call a dedicated task to attempt the detection of
address conflicts.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 68 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

acd_cbk Callback IP address conflict detected.

[(API]
ER acd_cbk(T_NET_ACD* acd);
[Parameter]
T_NET_ACD *acd Address Conflict Information
[Return Value]
ER ercd Success (E_OK) or Error Code
[DESCRIPTION]

This function is called when it detects an IP address conflict during operation. The conflict is stored what conflict
information of the argument MAC address of the host that.

If the IP address for the conflict, continue to use the IP address in the host itself, please return the E_OK. Otherwise,
please return the E_SYS.

Callback function is called on the task that received the ARP packet (the task that receives the Ethernet driver).
Therefore, the callback function should be terminated immediately. Also, the callback function is not called while the IP

address is being detected (net_acd () is being executed).

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 69 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

Use Cases

#define ID_DEVNUM_ETHER 1 /* Device number */

/* Callback function at the time of detecting address conflicts */
ER acd_detect(T_NET_ACD * acd)

{

return E_OK;

/* Network Initialize Function */

ER net_setup(void)

{
ER ercd;
T_NET_ACD acd;

ercd = net_ini();
if (ercd != E_OK) {
return ercd;
}
ercd = net_dev_ini(ID_DEVNUM_ETHER);
if (ercd != E_OK) {
return ercd;

/* Detect IP Address Conflict */
ercd = net_acd(ID_DEVNUM_ETHER, &acd);
if (ercd == E_OK) {

/* No Information IP Address conflict */

}
else if (ercd == E_SYS) {

}else {
/* Failed to detect IP address conflict */

}

return ercd;

[* Callback function at the time of detecting IP address conflicts */
net_cfg(ID_DEVNUM_ETHER, NET_ACD_CBK, (VP)acd_detect);

/* MAC address is conflict a host of acd.mac IP address */

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 70 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

53 Network Device Control API

The Network Device Control API provides interface to access unifiedly from application to device driver. For each

device, it specifies a device number to access this API. Device number is the specific number to identify the device.

net_dev_ini Network device initialization
[Format]
ER ercd = net_dev_ini(UH dev_num);
[Parameter]
UH dev_num Device number

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]
<0 Initialization failure

[Explanation]
Use dev_num to initialize a specific device. In fact, net_dev_ini uses dev_ini of driver device to initialize the device.

If it completes normally, it can handle the packet through that network device.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 71 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

net_dev_cls Release network device
[Format]
ER ercd = net_dev_cls(UH dev_num);
[Parameter]
UH dev_num Device number

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]
<0 Failure

[Explanation]
Release specific device by using dev_num. In fact, net_dev_cls will release device by using dev_cls of device driver.

net_dev_ctl Network device control
[Format]
ER ercd = net_dev_ctl(UH dev_num, UH opt, VP val);
[Parameter]
UH dev_num Device number
UH opt Control code
VP val Value to set

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]
<0 Failure

[Explanation]
Control the specific device by using dev_num. Because net_dev_ctl only calls dev_ctl of device driver, the actual

actions depend much on integration of driver device.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 72 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

net_dev_sts Acquire the status of network device
[Format]
ER ercd = net_dev_sts(UH dev_num, UH opt, VP val);
[Parameter]
UH dev_num Device number
UH opt Status code
VP val Getting value

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]
<0 Failure

[Explanation]
Acquire the status of specific device by using dev_num. Because net _dev_sts only calls dev_ref of device driver, the

detailed action depends on integration of device driver.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 73 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

5.4

Socket API (uNet3 compatible)

Application uses socket API to exchange TCP/UDP data with remote host.

When creating socket or connecting, it’s necessary to use device number to specify network device to connect. In case

specify device number 0, it means that

“Don’t specify device” , the interface selection action between socket and

network device is different depending on transmission or reception. Besides, when creating socket, if it specify device

number beside 0, it don’t need to specify device number when connecting.

For example, in the system is constructed by N network devices (N is more than 2) with the using socket APIs, show

in the below it.

Device number when

Device number when

Device in use

(SYN reception)

creating (3¢1) connecting (3¢2)
Socket transmission action 0 0 Device number 1(top)
con_soc() of snd_soc() and TCP | 0 N Device number N
client N ANY Device number N
(SYN transmission)
Socket reception action 0 0 Notified device (33)
con_soc() of rcv_soc() and TCP 0 N Device number N
server N ANY Device number N

X1
X2

con_soc() APL
X3

Specify by host->num argument of con_soc() APIL.

Specify by host->num argument of con_soc() API. In case of receiving through UDP socket, do not need to call

The socket which does not specify device number even when creating or connecting socket, if port number and

protocol are matched, it can receive packet from any device. The socket in this case uses the device notified

packet in subsequent operation.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 74 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

cre_soc Socket generation

[Format]
ER ercd = cre_soc(UB proto, T_NODE *host);
[Parameter]
UH proto Protocol type
T_NODE *host Information of local host

[Return value]
ER ercd ID of generated socket (>0) or error code

[Error code]

E_ID Unable to generate socket (exceed maximum number of socket)
E_PAR ‘host’ is wrong
E_NOSPT ‘proto’ is wrong

[T_NODE]

Specify local port number and device interface to use.

UH port Port number Port number of local host. Specify the value from 1 to 65535 or PORT_ANY.
In case that PORT_ANY is specified, it will determine port number by protocol
stack.

UH ver IP version Specify 0 (use IP_VER4)

uB num Device number Specify device number of the device it want to use

uw ipa IP address Specify 0 (use local IP address)

[proto]

Protocol type of socket to create
IP_PROTO_TCP TCP socket
IP_PROTO_UDP UDP socket

[Explanation]
This API creates the socket of specified protocol.

Example of creating TCP socket
T_NODE host;
host.num =1;

host.port = 7;

host.ver = IP_VER4;

host.ipa = INADDR_ANY;
cre_soc(IP_PROTO_TCP, &host);

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 75 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

del_soc Delete socket

[Format]
ER ercd = del_soc(SID sid);
[Parameter]
SID sid ID is used to identify socket
[Return value]
ER ercd Successful completion (E_OK) or error code
[Error code]
E_ID Wrong ID number
E_NOEXS Socket does not exist (Socket has not been created yet)
E_OBJ Status of socket is wrong
[Explanation]

This API deletes the specified ID socket. When delete TCP socket, please call cls_soc() in advance and close the
socket.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 76 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

con_soc Socket connection
[Format]
ER ercd = con_soc(SID sid, T_NODE *host, UB con_flg) ;
[Parameter]
SID sid ID is used to identify socket
T_NODE *host Information of remote host
UB con_fig Connection mode
[Return value]
ER ercd Successful completion (E_OK) or error code
[Error code]
E_ID Wrong ID number
E_NOEXS Socket does not exist (Socket has not been created yet)
E_PAR Host or con_flg is wrong
E_OBJ Socket status is wrong (for example, calling this API for the socket which has already
connected)
E_TMOUT Connection process is out of time
E_WBLK Processed by non-blocking mode
E_CLS Refuse the connection from remote host
E_RLWAI Connection process is interrupted
E_QOVR con_soc() is already executing
[T_NODE]
Specify remote host and device interface to use.
UH port Port number Port number of remote host
(from 1 to 65535)
UH ver IP version Specify 0
uUB num Device number Device number of the device that wants to use
uw ipa IP address IP address of remote host
[con_fig]

Specify the waiting for connection (server) or the active connection (client).
Usually specify 0 for UDP socket.

SOC_CLI
SOC_SER

Connect to remote host (active connection)
Wait for connection (passive connection)

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 77 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

[Explanation]
This API has different behavior depending on using protocol.

In the course of TCP, establish the connection to remote host, in case of UDP, associate the socket with the destination
of data transmission.

An example for the connection of TCP server socket
T_NODE remote = {0}; /* clear by 0 */
con_soc(SID, &remote, SOC_SER);

An example for the connection of TCP client socket
T_NODE remote;

remote.port = 100; /* Port number of remote host */
remote.ver = IP_VER4;
remote.num = 1; [*Specify device number to use */

remote.ipa = ip_aton(“192.168.11.1”); /*IP address of remote host */
con_soc(SID, &remote, SOC_CLI);

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 78 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

cls_soc Socket disconnetion
[Format]
ER ercd = cls_soc(SID sid, UB cls_flg);
[Parameter]
SID sid ID is used to identify socket
uB cls_fig Disconnetion mode

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]

E_ID Wrong ID number
E_NOEXS Socket does not exist (Socket has not been created yet)
E_PAR ‘cls_flg is wrong
E_OBJ Socket status is wrong (Such as when calling this API in the status of disconnection)
E_TMOUT Disconnection process is out of time
E_WBLK Processed by non-blocking mode
E_CLS Forced termination of the connection from remote host
E_RLWAI Disconnection process is interrupted
E_QOVR cls_soc() is executing already
[cls_flg]

This parameter is only valid for TCP socket
SOC_TCP_CLS Disconnect socket (End the connection)
SOC_TCP_SHT Disable transmission process only. Reception is possible. (In case that want to stop the

connection completely after using SOC_TCP_SHT to discontinue the transmission
process only, it need to use SOC_TCP_CLS to disconnect completely.)

[Explanation]
This API has different behavior depending on using protocol.
In case of TCP, stop the connection to remote host, in case of UDP, clear the information of the destination or the

source of data associated with socket. (After that, it cannot send UDP data).

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 79 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

cfg_soc Set parameter of socket
[Format]
ER ercd = cfg_soc(SID sid, UB code, VP val) ;
[Parameter]
SID sid ID is used to identify socket
uUB code Parameter code
VP val Value to set
[Return value]
ER ercd Successful completion (E_OK) or error code
[Error code]
E_ID Wrong ID number
E_NOEXS Socket does not exist (Socket has not been created yet)
E_NOSPT Wrong parameter code
E_PAR Wrong parameter value
E_OBJ Status of socket is wrong
[Explanation]

This API can set parameter as below. Please cast and then hand the setting value to VP type.

Example of setting

UB ttl = 32;

cfg_soc(SID, SOC_IP_TTL, (VP)ttl);

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 80 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

Parameter code Data type

Meaning

SOC_TMO_CON TMO Calling timeout of con_soc

SOC_TMO_CLS TMO Calling timeout of cls_soc

SOC_TMO_SND TMO Calling timeout of snd_soc

SOC_TMO_RCV TMO Calling timeout of rcv_soc

SOC_IP_TTL UB Set TTL of IP header (Time to Live)

SOC_IP_TOS UB Set TOS of IP header (Type of Server)

SOC_CBK_HND Pointer for function Register callback function

SOC_CBK_FLG UH Set bit pattern of callback event flag (Value to set is as
below)

SOC_PRT_LOCAL UH Change Local Port Number

SOC_UDP_RQSZ UB Change the receive queue size of the UDP socket (*)

(*) The receive queue size for UDP sockets is typically 1. If change this value, may lose packets that are already being

received. If set the receive queue size to 0, packets will not be received.

Callback event flag bit Meaning
EV_SOC_CON Set con_soc() in non-blocking mode
(only TCP socket)
EV_SOC_CLS Set cls_soc() in non-blocking mode
(only TCP socket)
EV_SOC_SND Set snd_soc() in non-blocking mode
EV_SOC_RCV Set rcv_soc() in non-blocking mode

Regarding callback event flag bit, it can set a multiple bit. In case of setting it multiple, set by OR. An example of

setting is as below.

Ex: ercd = cfg_soc(ID socket, SOC_CBK FLG, (VP)(EV_SOC CONIEV_SOC SNDJEV_SOC RCVIEV_SOC CLY));

Socket event set in non-blocking disables socket timeout of that event.

When enable callback event flag bit, it is necessary to register callback function in SOC_CBK_ HND. Regarding

callback function, please refer to the following.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 81 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

soc_cbt Callback function
[Format]
UW soc_cbt(SID sid, UH event, ER ercd);
[Parameter]
SID sid ID is used to identify socket
UH event Callback event flag bit
ER ercd Error code

This callback function is called out from TCP/IP stack. However, in case of execution API socket of non-blocking
mode, if API process is necessary to enter the waiting sate, it will return E. WBLK value without enter. This time, it will
be notified from TCP/IP stack that the process of callback function has completed.

Call back event flag bit Error code Meaning
(event) (ercd)
EV_SOC_CON E_OK con_soc() process completes normally
<0 con_soc() process completes with error. Regarding error content of
this time, please refer to error code of con_soc().
EV_SOC_CLS E_OK cls_soc() process completes normally
<0 cls_soc() process complete with error. Regarding error content of this

time, please refer to error code of cls_soc().
EV_SOC_SND >0 UDP socket :
snd_soc()process completes normally

TCP socket :

In case of TCP transmission buffer is available, it will show the
available size by ‘ercd’ value. Again, snd_soc() is called and then it
can copy transmission data into TCP transmission buffer.

<=0 snd_soc() process completes normally. Regarding error content of this
time, please refer to error code of snd_soc().

EV_SOC_RCV >0 UDP socket :

There is receipt data in UDP socket. Shows receipt data size by ‘ercd’

value. Again, it can call rcv_soc() to receive data.

TCP socket :
There exists receipt data in TCP socket. Shows receipt data size by
‘ercd’ value. Again, it can call rcv_soc() to receive data.

<=0 rcv_soc() process completes normally. Regarding error content of this

time, please refer to error code of rcv_soc().

$¢Prohibit to call all API functions of TCP/IP stack from callback function. (Please think callback unction the same as

interrupting handler and use it).

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 82 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

ref_soc Refer parameter of socket
[Format]
ER ercd = ref_soc(SID sid, UB code, VP val) ;
[Parameter]
SID sid ID is used to identify socket
uUB code Parameter code
VP val Pointer for buffer of the value to get
[Return value]
ER ercd Successful completion (E_OK) or error code
[Error code]
E_ID Wrong ID number
E_NOEXS Socket does not exist (socket has not been created yet)
E_NOSPT Wrong parameter code
E_PAR Wrong parameter value (in case that val is NULL)
E_OBJ Socket status is wrong (Cannot refer to socket)

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 83 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

[Explanation]
Refer the parameters as below. Please cast and then hand the setting value to VP type.

Example of getting remote host information

T NODE remote;
ref_soc(SID, SOC_IP_ REMOTE, (VP)&remote);

Parameter code Data type Meaning

SOC_TMO_CON TMO Calling timeout of con_soc

SOC_TMO_CLS TMO Calling timeout of cls_soc

SOC_TMO_SND TMO Calling timeout of snd_soc

SOC_TMO_RCV TMO Calling timeout of rcv_soc

SOC_IP_LOCAL T_NODE Getting Port number and IP address of local host

SOC_IP_REMOTE T_NODE Getting port number and IP address of remote host

SOC_IP_TTL UB Getting TTL (Time to Live)

SOC_IP_TOS uUB Getting TOS (Type Of Service)

SOC_RCV_PKT_INF T_RCV_PKT_INF Get the latest packet information received by the UDP
socket.
In the case of TCP socket, get the connection destination
information when the connection is established

SOC_PRT_LOCAL UH Reference Local Port Number

For the socket having both multicast address and unicast address, to know IP address of the last received packet, please

refer to the below.

Example of getting received IP address

T_RCV_PKT_INF rcv_pkt_inf;
ref_soc(SID, SOC_RCV_PKT_INF, (VP)&rcv_pkt_inf);
if(rev_pkt_inf.dst_ipa == MULTICASTADDRESS) {

I* received by multicast address */

In the case of TCP socket, the connection destination information is set in the member variables of src_ipa and
src_port, and the IP address and port number information of the local node is set in the member variables of dst ipa and

dst_port.

This reflects the information at the time when the TCP connection was established as the remote host information

regardless of the server connection or client connection.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 84 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

abt_soc Abort the socket process
[Format]
ER ercd = abt_soc(SID sid, UB code);
[Parameter]
SID sid ID is used to identify socket
UB code Control code
[Return value]
ER ercd Successful completion (E_OK) or error code
[Error code]
E_ID Wrong ID number
E_NOEXS Socket does not exist (socket has not been created yet)
[Explanation]

This API can cancel waiting status of con_soc, cls_soc, snd_soc, rcv_soc. Cancelled API returns E RLWALI .

Control code Meaning
SOC_ABT_CON Discontinuation of con_soc() process
SOC_ABT_CLS Discontinuation of cls_soc() process
SOC_ABT_SND Discontinuation of snd_soc() process
SOC_ABT_RCV Discontinuation of rcv_soc() process
SOC_ABT_ALL Process discontinuation of all sockets
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 85 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

snd_soc Data transmission

[Format]
ER ercd = snd_soc(SID sid, VP data, UH len);

[Parameter]
SID sid ID is used to identify socket
VP data Pointer to the transmit data
UH len Size of the transmit data

[Return value]
ER ercd Actual transmitted data size (>0) or error code

[Error code]
E_ID Wrong ID number
E_NOEXS Socket does not exist (socket has not been created yet)
E_PAR Wrong transmitted data or data size for transmission is not specified.
E_OBJ Socket status is wrong
E_TMOUT Transmission process is out of time
E_WBLK Processed by non-blocking mode
E_CLS TCP socket disconnected
E_RLWAI Transmission process is interrupted
E_NOMEM Memory is not enough
E_QOVR snd_soc() is executing already
EV_ADDR Destination default G/W unknown

[Explanation]

This API transmits data to remote host. When the process succeeds, it will return the actual transmitted data size.

Besides that case, it will return

error code.

In case of TCP socket, this API will copy data into protocol stack inside, and return that copied size. (Returned data

size is less than len specified by argument) . Please refer to ’3.1.4 TCP module” for details.

In case of UDP socket, data will be transmitted to network and return that transmitted size. Please refer to “3.1.3 UDP

module” for details.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 86 of 211

R-IN32M4-CL3 Series Use

r's Manual TCP/IP stack 5. Description of application programming interface

rcv_soc Data reception
[Format]
ER ercd = rcv_soc(SID sid, VP data, UH len);
[Parameter]
SID sid ID is used to identify socket
VP data Pointer to receipt data
UH len Receipt data size
[Return value]
ER ercd Actual received data size (>0) or error code
[Error code]
E_ID Wrong ID number
E_NOEXS Socket does not exist (socket has not been created yet)
E_PAR Wrong receipt data or receipt data size is not specified.
E_OBJ Socket status is wrong
E_TMOUT Receipt process timed out
E_WBLK Processed by non-blocking mode
E_CLS TCP socket disconnected
E_RLWAI Reception process is interrupted
E_QOVR rcv_soc() is executing already
0 Received up to the end of TCP socket data
[Explanation]

This API receive data which

is sent from remote host.

In case of TCP, the maximum receivable size to receive is “Reception buffer size” specified by the configurator. Please
refer to ”3.1.4 TCP module” for details.

In case of UDP, the maximum receivable size to receive is 1472 bytes (MTU default - IP header size - UDP header
size). Please refer to “3.1.3 UDP module” for details.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 87 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

soc_ext Stop process of socket all at once
[Format]
ER ercd = soc_ext(UH dev_num);
[Parameter]
UH dev_num Target device ID

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]
E_PAR Invalid device ID

[Explanation]

Stops the operation of the socket during API execution or communication and returns the socket to the initial state.

Network device to be stopped is specified in the argument dev_num, but if DEV_ANY is specified, all sockets are
targeted.

When the API is executed, the running socket API returns E RLWAL

For TCP sockets, the session will be reset during the session. In addition, not only TCP and UDP, but also send and
receive packets held by the socket are released immediately.

After the API ends, the socket returns to the initial state (the state after socket generation), but various socket options

set by the application such as callback, non-blocking, and timeout are retained.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 88 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5 Socket API (BSD compatible)

TCP/IP stack has the socket API for the BSD interface too. Thus, it is possible to easily divert the existing network
applications using BSD sockets API.

551 Module overview

5.5.11 Position of the POSIX specification

TCP/IP stack is supported the socket API which is equivalent to the 4.4BSD-Lite. For supported API list, please refer
the section 5.5.3 API list.

5512 The difference to uNet3 socket API

In addition to the POSIX-compliant sockets API, also provides the features that did not combine in pNet3 socket.
e Multiple call of socket API

e select() function

e Loop back address

e Multicast group with socket unit

e Listen queue of TCP socket

e Socket error

5513 Compatibility of symbol name

The APIs, structures, and macros are added the unique prefix "unet3 " in order to avoid a symbol collision by the
compiler environment.

By including sys/socket.h, the symbol name of the POSIX standard, which is used in application, be replaced with to
these symbols with unique prefix. So application source codes based on BSD socket can be run as is.

The notation in this document has been using the POSIX standard symbol, because of considering the readability.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 89 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

552 Module structures

e Markers
' BSD Socket Application ! P 3
: ! ! Task !
__ R —
Function
BSD Socket API | Data)
: Y
| : N
i ! BSD Socket
! 1
| ! management data
| : J
I 1
I 1
! 1
prmmm e ity i
| BSD Wrapper Task ' Callback function
1 1
uNet3 extended uNet3 API Peoo o ST !
l«—— TCP/IP Timer task |
API | :
uNet3 Socket |1 T
management data
Fig. 5.1 Module structure for BSD socket
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 90 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

5.5.3 API list

Table 5.1 API list

API Function Include header
unet3_bsd_init Initialize the TCP/IP and BSD stack “sys/socket.h”
get_ermo Get the errno of each task “sys/errno.h”
socket Create an end point for communication “sys/socket.h”
bind Put a name for socket “sys/socket.h”
listen Wait the connection on the socket “sys/socket.h”
accept Accept connection to the socket “sys/socket.h”
connect Connect to the socket “sys/socket.h”
send Send message to the socket “sys/socket.h”
sendto Send message to the socket “sys/socket.h”
recv Receive message from the socket “sys/socket.h”
recvfrom Receive message from the socket “sys/socket.h”
shutdown Close the part of the full-duplex connection “sys/socket.h”
close Close the descriptor (socket) “sys/ unistd.h”
select Multiplexing of synchronous | / O “sys/ select.h”
getsockname Get the name of the socket “sys/socket.h”
getpeername Get the name of the peer socket “sys/socket.h”
getsockopt Get the socket options “sys/socket.h”
setsockopt Set the socket options “sys/socket.h”
ioctl Control the device (socket) “sysl/ioctl.h”
inet_addr Internet address manipulation routines “arpalinet.h”
inet_aton Internet address manipulation routines “arpalinet.h”
inet_ntoa Internet address manipulation routines “arpalinet.h”
if_nametoindex Mapping name and index of the network interface “net/if.h”
if_indextoname Mapping name and index of the network interface “net/if.h”
rresvport Get the socket which is bound to port “sys/unistd.h”
getifaddrs Get the address of the interface “sys/types.h”
freeifaddrs Release the interface information “sys/types.h”
inet_pton Convert IPv4/IPv6 addresses from text format to binary | “arpal/inet.h”

format
inet_ntop Convert IPv4/IPv6 addresses from binary format to text | “arpal/inet.h”
format

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 91 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

554 Detail for each API
5541 unet3 _bsd init

Please refer the section 5.5.7.7 Initialization

5.54.2 get_errno

Please refer the section 5.5.6.3 Error handling

5543 socket (Create an end point for communication)

[Format]
#include “sys/socket.h”
int socket(int domain, int type, int protocol);

[Parameter]
int domain Domain
int type Communication type
int protocol Protocol

[Return value]

int Generated socket FD. On error, -1.
[errno]
ENOMEM Over the generation possible number of sockets
Message buffer is depleted
EINVAL Invalid parameter
EINTR Waiting state was forcibly released
[Explanation]

e The domain can be specified only AF_INET or AF_INET®6.

e The communication type can be specified only SOCK_STREAM or SOCK_DGRAM.

e Protocol parameter is not used, so any value is possible.

e The number of sockets (sum of for TCP and UDP) that can be generated at the same time is the value defined by

“#define CFG_NET_SOC_MAX".

e The number of TCP sockets that can be generated at the same time is the value defined by “#define CFG_NET _

TCP MAX”.

e The local port of socket cannot be set to 0. Therefore the socket immediately after generation is assigned the

temporary local port number.

R18UZ0079EJ0100 Rev.1.00 RENESAS
Aug 31, 2021

Page 92 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5544 bind (Put a name for the socket)

[Format]
#include “sys/socket.h”
int bind(int sockfd, const struct sockaddr *addr, unsigned int addrlen);

[Parameter]
int sockfd Socket FD
const struct sockaddr * addr Local address
unsigned int addrlen Local address length

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]

EINVAL Invalid parameter

ENOMEM Message buffer is depleted

EBADF Socket FD cannot be done “bind”

EPIPE Socket FD is invalid

EAFNOSUPPORT Unsupported address family

EADDRINUSE Address is already in use

EADDRNOTAVAIL Address is not available

EINTR Waiting state was forcibly released
[Explanation]

e To start the receive operation, user needs to run the bind() function in advance with specifying the socket of the
target. In here, the receive operation means a standby connection of TCP (listen()) and the reception of UDP packet

(recv (), recvfrom ()).

e User can bind() to wellknown port (1-1023) also.

[AF_INET]
e Local address should be set as struct sockaddr_in type.
e [P address (IPv4) for the local address can be specified only the address which is set to device or INADDR ANY
(unspecified).
e Ifuser sets the PORT ANY (0) to the port number of the local address, a port number is assigned in the protocol

stack.
e The local address length can be specified only sizeof(struct sockaddr_in) (=16).

e The member “sin_len” with struct sockaddr_in type is not used, so any value is possible.

[AF _INET6]
o Set the local address with struct sockaddr _in6 type.
e For the IP address (IPv6) of the local address, only the address set in the device or INOGADDR ANY INIT

(unspecified) can be specified.

o If specify a link-local address for the IP address (IPv6) of the local address, specify a network interface number
other than 0 for the scope ID.

e Ifset PORT ANY (0) for the port number of the local address, assign the port number in the protocol stack.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 93 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

e Only sizeof (struct sockaddr in6) (= 28) can be specified for the local address length.
e The value does not matter because the member "sin6_len" of type struct sockaddr in6 is not used.

e Unlike POSIX, if the device specified by bind has multiple IPv6 addresses, the address specified by bind may not be
selected depending on the address scope during socket communication.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 94 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5545 listen (Wait the connection on the socket)

[Format]
#include “sys/socket.h”
int listen(int sockfd, int backlog);

[Parameter]
int sockfd Socket FD
int backlog Back log
[Return value]
int Result of process. If success, 0 or on error, -1.
[errno]
EINVAL Invalid parameters, connected TCP socket FD
ENOMEM Message buffer is depleted
EBADF Socket FD cannot be done “listen”
EPROTONOSUPPORT Unsupported protocol (not TCP)
EINTR Waiting state was forcibly released
[Explanation]

e TCP socket becomes to the state for waiting connection.
e The socket FD can be specified only the socket FD of TCP.
e The maximum number for back log is #define CFG_NET TCP _MAX - 1.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 95 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5546 accept (Accept connection to the socket)

[Format]
#include “sys/socket.h”

int accept(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

[Parameter]
int
struct sockaddr *
unsigned int *

sockfd Socket FD
addr Remote address (output)
addrlen Remote address length (input/output)

[Return value]

int The connected socket FD. On error, -1.
[errno]
EINVAL Invalid parameter
ENOMEM Message buffer is depleted
EBADF The socket is not “listen”
EAGAIN The socket is not connected. (During asynchronous execution)
ETIMEDOUT Timeout (if the timeout is set)
EINTR Waiting state was forcibly released
[Explanation]

e The socket FD can be specified only the socket FD of TCP that listen() function had been successful.

e The remote address is stored as struct sockaddr_in * type if the address family is AF_INET and struct sockaddr in6
* type if the address family is AF_INET6.

o [If the specified remote address length is too small, only the data for the specified address length is copied to addr,
sockaddr_in type size (16 bytes) when the address family is AF_INET, and AF_INET6 when the address family is
AF_INET. Stores the size of sockaddr_in6 type (28 bytes).

e Ifno socket is connected, accept () blocks processing until it is connected remotely.

e See 5.5.7.6 TCP socket errno use case for errno for TCP Sockets.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 96 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

5.54.7

[Format]

#include “sys/socket.h”

connect (Connect to the socket)

int connect(int sockfd, const struct sockaddr *addr, unsigned int addrlen);

[Parameter]
int sockfd Socket FD
const struct sockaddr * addr Remote address
unsigned int addrlen Remote address length

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]

EINVAL Invalid parameter

ENOMEM Message buffer is depleted

EBADF The socket cannot be “connect”

EHOSTUNREACH Attempted to connect to an inaccessible node

ECONNREFUSED The connection was refused

EAFNOSUPPORT Unsupported address family

EISCONN Already connected.

Socket is under listen.

EALREADY Already connected.

EAGAIN The socket is under connection. (During asynchronous execution)

ETIMEDOUT Timeout (if the timeout is set)

EINTR Waiting state was forcibly released
[Explanation]

The behavior or operation for connect() is different by the socket FD protocol or send/receive operation.
In the case of the connection of TCP socket, SYN is sent to the remote address and try to do communication..

In the case of the sending of UDP socket, the remote address is set as the destination address. However if the

different destination address with sendto() is specified, the destination address for sendto() is used.
If you a remote address family (sa_family) are specified to AF_ UNSPEC, these settings will be cleared.

Unlike the POSIX specification, there is no filtering function by remote address for the receiving operation of the
UDP socket.

Unlike the POSIX specification, in the connect() for TCP socket with the asynchronous setting, user cannot issue the
connect() again after the connection is completed. For example after confirmed EAGAIN for connect() and be
guaranteed the writable status by select(), sending/receiving data becomes possible, because TCP session has been
established at that point in time.

If connect () is issued for a TCP socket that is set asynchronously and then the connect () process ends, the behavior
when the next connect () is issued is that the return value is 0 when the connection is successful, and errno is set last
time. It will be the error number that was given. Conversely, if the connection fails, the return value = -1, and errno
is the error number of the error cause. In addition, the connect () process that returns these results does not perform
the connection process (handshake), so if you want to perform the connection process again, you need to issue

connect () again.

Use the socket option "SO_SNDTIMEOQ" to set a timeout for connect ().

R18UZ0079EJ0100 Rev.1.00

RENESAS Page 97 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5548 send (Send message to the socket)

[Format]
#include “sys/socket.h”
int send(int sockfd, const void *buf, unsigned int len, int flags);

[Parameter]
int sockfd Socket FD
const void * buf Address for sending data
unsigned int len Length for sending data
int flags Flag

[Return value]
int Byte number which is sent. On error, -1.

[errmo]
EINVAL Invalid parameter (address is not set in buf)
ENOMEM Message buffer is depleted

Cannot get the network buffer corresponding to “len”, or the value of “len” is 0.
EBADF The socket cannot be “send” (TCP not connected / CLOSED)
EPIPE Socket FD is invalid
EDESTADDRREQ Unsetting the address (UDP socket)
EACCESS Broadcast refusal because broadcast transmission is not permitted
EAGAIN Sending (during asynchronous execution)
ETIMEDOUT Timeout (if the timeout is set)
EINTR Waiting state was forcibly released
[Explanation]

e The length for sending data can be specified the value from 1 to 65535.

e The flag is not used, so any value is possible.

e The sending 0 byte UDP data cannot be sent, unlike the POSIX specification.

e Ifthe USE_APLBUEF bit is specified for the flag, transmission is possible regardless of the network buffer setting

size.

o If specify the USE_APLBUEF bit in the flag, the API will try to send until the len size transmission is complete or an
error occurs, during which the application must ensure the consistency of the area indicated by buf.

e See 5.5.7.6 TCP socket errno use case for errno for TCP Sockets.

(*) The lower layer queue refers to the IP layer address resolution processing or the link layer asynchronous
transmission processing.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 98 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5549 sendto (Send message to the socket)

[Format]
#include “sys/socket.h”

int sendto(int sockfd, const void *buf, unsigned int len, int flags, const struct sockaddr *dest_addr, unsigned int

addrlen);
[Parameter]
int sockfd Socket FD
const void * buf Address for sending data
unsigned int len Length for sending data
int flags Flag
const struct sockaddr * dest_addr The destination address
unsigned int addrlen Length of the destination address

[Return value]

int Byte number which is sent. On error, -1.
[errmo]
EINVAL Invalid parameter (address is not set in buf)
ENOMEM Message buffer is depleted
Cannot get the network buffer corresponding to “len”
EBADF The socket cannot be “sendto” (TCP not connected / CLOSED)
EPIPE Socket FD is invalid
EDESTADDRREQ Unsetting the address (UDP socket)
EACCESS Broadcast refusal because broadcast transmission is not permitted
EAGAIN The socket is under sending. (During asynchronous execution)
ETIMEDOUT Timeout (if the timeout is set)
EINTR Waiting state was forcibly released
[Explanation]

e The length for sending data can be specified the value from 1 to 65535.

e The flag is not used, so any value is possible.

e In the case of TCP socket, the destination address and length of it is not used

e The sending 0 byte UDP data cannot be sent, unlike the POSIX specification.

e Ifthe USE APLBUEF bit is specified for the flag, transmission is possible regardless of the network buffer setting

size.

o If specify the USE_APLBUEF bit in the flag, the API will try to send until the len size transmission is complete or an

error occurs, during which the application must ensure the consistency of the area indicated by buf.

(*) The lower layer queue refers to the IP layer address resolution processing or the link layer asynchronous

transmission processing.

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS Page 99 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.10 recv (Receive message from the socket)

[Format]
#include “sys/socket.h”
int recv(int sockfd, void *buf, unsigned int len, int flags);

[Parameter]
int sockfd Socket FD
void * buf Address for receiving buffer
unsigned int len Length for receiving buffer
int flags Flag
[Return value]
int Byte number which is received (included 0). On error, -1.
[errmo]
EINVAL Invalid parameter (address is not set in buf)
ENOMEM Message buffer is depleted
Cannot get the network buffer corresponding to “len”
EBADF The socket cannot be “recv” (TCP not connected / CLOSED)
EPIPE Socket FD is invalid
EAGAIN The packet had not received yet. (During asynchronous execution)
ETIMEDOUT Timeout (if the timeout is set)
EINTR Waiting state was forcibly released
[Explanation]

e IfMSG PEEK is specified for the flag, the packet is fetched without being deleted from the receive queue of the

socket. So the next time you call an incoming call, you can get the same packet.

o Ifthe USE APLBUEF bit is specified in the flag, reception is possible regardless of the network buffer setting size,
but the application must guarantee the consistency of the area indicated by buf until the packet is received.

e The length for received buffer can be specified the value from 1 to 65535.

o [If there are not any received packets, the recv() function blocks the processes until reception of packet.
e If not yet connected to the remote as TCP socket, recv () will result in an error.

e Ifin disconnected condition from remote with TCP socket, recv() returns 0.

e See 5.5.7.6 TCP socket errno use case for errno for TCP Sockets.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 100 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.11 recvfrom (Receive message from the socket)

[Format]

#include “sys/socket.h”
int recvfrom(int sockfd, void *buf, unsigned int len, int flags, struct sockaddr *src_addr, unsigned int *addrlen);

[Parameter]
int sockfd Socket FD
void * buf Address for receiving buffer
unsigned int len Length for receiving buffer
int flags Flag
struct sockaddr * src_addr Source address
unsigned int * addrlen Length of source address

[Return value]

int Byte number which is received (included 0). On error, -1.
[errno]
EINVAL Invalid parameter (address is not set in buf)
ENOMEM Message buffer is depleted
Cannot get the network buffer corresponding to “len”
EBADF The socket cannot be “recvfrom” (TCP not connected / CLOSED)
EPIPE Socket FD is invalid
EAGAIN The packet had not received yet. (During asynchronous execution)
ETIMEDOUT Timeout (if the timeout is set)
EINTR Waiting state was forcibly released
[Explanation]

The length for received buffer can be specified the value from 1 to 65535.

The flag is not used, so any value is possible.

If there are not any received packets, the recvfrom() function blocks the processes until reception of packet.
If not yet connected to the remote as TCP socket, recvfrom () will result in an error.

If in disconnected condition from remote with TCP socket, recvfrom () returns 0.

For the TCP socket, Source address and Length of source address is not used.

The source address is stored as struct sockaddr in * type if the address family is AF_INET and struct sockaddr in6
* type if the address family is AF_INET6.

If the specified source address length is too small, only the data for the specified address length is copied to
src_addr, and if the address family is AF_INET, the size of sockaddr _in type (16 bytes), AF_INET®6 If sockaddr in6
type size (28 bytes) is stored.

For TCP sockets, the source address and address length are not used.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 101 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.12 shutdown (Close the part of the full-duplex connection)

[Format]
#include “sys/socket.h”
int shutdown(int sockfd, int how);

[Parameter]
int sockfd Socket FD
int how Direction for disconnection

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]

EINVAL Invalid parameter

ENOMEM Message buffer is depleted

EBADF The socket cannot be “shutdown”

EPIPE Not be connected (TCP socket)

EINTR Waiting state was forcibly released
[Explanation]

e The Direction for disconnection can be specified only SHUT WR or SHUT RDWR.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 102 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.13 close (Close the descriptor (socket))

[Format]
#include “sys/unistd.h”
int close(int fd);

[Parameter]

int fd Socket FD
[Return value]

int Result of process. If success, 0 or on error, -1.
[errmo]

EINVAL Invalid parameter

ENOMEM Message buffer is depleted

EBADF The socket cannot be “close”

EINTR Waiting state was forcibly released
[Explanation]

e If TCP socket had not disconnected yet, socket will close after disconnect TCP session.

e The closed socket FD cannot use until generate again.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 103 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.14 select (Multiplexing of synchronous 1/O)

[Format]
#include “sys/select.h”
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);

[Parameter]
int nfds The value that maximum value in the socket FD included in the
readfds and writefds, plus 1
fd_set * readfds Socket FD set to monitor whether readable
fd_set* writefds Socket FD set to monitor whether writable
fd_set * exceptfds Socket FD set to monitor the exception (not supported)
struct timeval * timeout Monitor timeout

[Return value]

int The number of the socket FD which is writable or readable. On timeout, 0. On error, -1.
[errno]

EINVAL Invalid parameter

ENOMEM Message buffer is depleted

EBADF Socked FD that cannot be “select” is set.
[Explanation]

e The “exceptfds” is not used.

o Unlike the POSIX specification, in the execution of select() for the socket FD immediately after generation, it is
writable for UDP socket (unreadable if not received the packet), or readable for TCP socket (unwritable).

e select () returns the number of socket FDs set by updating all three argument fdsets only when the status of the

monitored socket (Read / Write only) is enabled. These arguments are not updated in the event of a timeout or error,
so the application should first verify the return value.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 104 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.15 getsockname (Get the name of the socket)

[Format]
#include “sys/socket.h”
int getsockname(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

[Parameter]
int sockfd Socket FD
struct sockaddr * addr Buffer to store the socket address
unsigned int * addrlen Size of buffer to store the socket address

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]
EINVAL Invalid parameter
ENOMEM Message buffer is depleted
EBADF The socket cannot be “getsockname”
EINTR Waiting state was forcibly released
[Explanation]

e *addrlen must be set to the size of sockaddr_in (16 bytes or more) if the address family is AF_INET and the size of
sockaddr in6 (28 bytes or more) if the address family is AF_INET6.

e The socket address determined by the time that issued the following API.
bind()
connect()
accept()
send/sendto()
recv/recvfrom()

The socket address becomes the undefined value if these API failed.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 105 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.16 getpeername (Get the name of the peer socket)

[Format]
#include “sys/socket.h”
int getpeername(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

[Parameter]
int sockfd Socket FD
struct sockaddr * addr Buffer to store the remote address
unsigned int * addrlen Size of buffer to store the remote address

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]

EINVAL Invalid parameter

ENOMEM Message buffer is depleted

EBADF The socket cannot be “getpeername”

ENOTCONN The address is not set.

EINTR Waiting state was forcibly released
[Explanation]

e *addrlen must be set to the size of sockaddr in (16 bytes or more) if the address family is AF_INET and the size of
sockaddr_in6 (28 bytes or more) if the address family is AF_INET6.

e In the case of TCP, user can get the remote address only for connected socket.

e In the case of UDP, user can get the remote address only for the socket which had set the address by “connect” or

“sendto”, or the socket had already got a packet.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 106 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.17 getsockopt (Get the socket options)

[Format]
#include “sys/socket.h”
int getsockopt(int sockfd, int level, int optname, void *optval, unsigned int *optlen);

[Parameter]
int sockfd Socket FD
int level Option level
int optname Option name
void * optval Buffer to store the value got
unsigned int * optlen Size of buffer to store the value got

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]

EINVAL Invalid parameter

ENOMEM Message buffer is depleted

EBADF The socket cannot be “getsockopt”

EPROTONOSUPPORT Unsupported option

EINTR Waiting state was forcibly released
[Explanation]

e SOL SOCKET, IPPROTO_IP, IPPROTO_TCP, and IPPROTO _IPV6 can be specified for the option level.

e The option name that user can get for each option level, please refer to 5.5.5 Socket option.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 107 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.18 setsockopt (Set the socket options)

[Format]
#include “sys/socket.h”

int setsockopt(int sockfd, int level, int optname, const void *optval, unsigned int optlen);

[Parameter]
int
int
int
const void *
unsigned int

sockfd Socket FD

level Option level

optname Option name

optval Buffer for the value to set

optlen Size of buffer for the value to set

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]

EINVAL Invalid parameter

ENOMEM Message buffer is depleted

EBADF The socket cannot be “setsockopt”

EPIPE Socket FD is invalid

EPROTONOSUPPORT Unsupported option

EINTR Waiting state was forcibly released
[Explanation]

e - SOL SOCKET, IPPROTO IP, IPPROTO_TCP, and IPPROTO_IPV6 can be specified for the option level.

e The option name that user can get for each option level, please refer to 5.5.5 Socket option

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 108 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.19 ioctl (Control the device (socket))

[Format]
#include “sys/ioctl.h”
int ioctl(int d, int request, ...);

[Parameter]
int d Socket FD
int request Request

Request parameter

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]

EINVAL Invalid parameter (address is not set in buf)

EBADF Specified socket descriptor is invalid

ENOMEM Message buffer is depleted

EFAULT Cannot expand the request parameters

EINTR Waiting state was forcibly released

e The following parameters can be set in the request.

Request Code
FIONBIO Non-blocking communication settings 1 (setting), O (release)
FIONREAD Get the number of bytes of received packets held by the (unsigned int *)&nread
socket

e Regarding the non-blocking communication seeting, please refer to 5.5.6.1 Non-blocking setting
e For the value that can be acquired with the FIONREAD option, the received packet size (overall size) held in the
receive window buffer is set in the case of a TCP socket. For UDP sockets, the size of the next received packet

block (only at the beginning) is set.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 109 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.20 inet_addr (Internet address manipulation routines)

[Format]
#include “arpalinet.h”
unsigned int inet_addr(const char *cp);

[Parameter]
const char * cp The dot notation IP address

[Return value]
int IP address binary value after conversion (network byte order)

[erro]
Not set

[Explanation]

e If the fail to convert happen, the return value is set to 0.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 110 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.21 inet_aton (Internet address manipulation routines)

[Format]
#include “arpalinet.h”
int inet_aton(const char *cp, struct in_addr *inp);

[Parameter]
const char * cp The dot notation IP address
struct in_addr * inp Buffer to store IP address binary value after conversion (network byte

order)

[Return value]
int Result of process. If success, 0 or on error, -1.

[errno]
Not set

[Explanation]

o Ifthe fail to convert happen, the return value is set to -1.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 111 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.22 inet_ntoa (Internet address manipulation routines)

[Format]
#include “arpalinet.h”
char *inet_ntoa(struct in_addr in);

[Parameter]
struct in_addr in IP address binary value (network byte order)

[Return value]
Int The dot notation IP address after conversion

[erro]
Not set

[Explanation]

e The area that stores the converted dot notation IP address is stored in a statically allocated buffer and returned, so if

you call this function again after this, the character string will be overwritten.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 112 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

5.5.4.23

[Format]
#include “net/if.n”
unsigned int if_nametoindex(const char *ifname)

if _nametoindex (Mapping name and index of the network interface)

[Parameter]
const char * ifname

Interface name

[Return value]

unsigned int Interface index. On error, 0.
[erro]

ENXIO Nonexistent interface name
[Explanation]

e The interface name is set by the device name (gNET DEV[index-1].name [8]) to be used in the TCP/IP protocol

stack.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 113 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.24 if _indextoname (Mapping name and index of the network interface)

[Format]
#include “net/if.n”
char *if_indextoname(unsigned int ifindex, char *ifname)

[Parameter]
unsigned int ifindex Interface index
char * ifname Buffer for storing the interface name

[Return value]

int Result of process. If success, ifname value, or on error, NULL.
[errno]
ENXIO Nonexistent interface index
[Explanation]
e The interface name is set by the device name (gNET DEV[index-1].name [8]) to be used in the TCP/IP protocol
stack.
R18UZ0079EJ0100 Rev.1.00 ;?.LEMESQS Page 114 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.25 rresvport (Get the socket which is bound to port)

[Format]
#include “sys/unistd.h”
int rresvport(int *port)

[Parameter]
int * port Buffer to store port number

[Return value]

int The socket FD which is bound to port. If socket is not existing, return -1.
[errmo]
Not set
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 115 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.26 getifaddrs (Get the address of the interface)

[Format]
#include “sys/types.h”
int getifaddrs(struct ifaddrs **ifap)

[Parameter]

struct ifaddrs** ifap The start address of the interface information list

[Return value]

int Result of process. If success, 0 or on error, -1.

[errmo]
ENOMEM Error as getting the stored area of intereface information

[Explanation]

e This function gets the interface information for the part of the number of devices (CFG_DEV_MAX) that are set in

the application as chain.
e If successfully completed, the following values are stored in “ifap”.
(*ifap)->ifa_next : The pointer of the next structure of interface information is stored. If the last element, this field

is NULL.
(*ifap)->name : The pointer to the interface name is stored.
(*ifap)->ifa_flags : The device number is stored.
(*ifap)->ifa_addr : The IP address of the device is stored as the sockaddr type pointer.
(*ifap)->ifa_netmask : The subnet mask of the device is stored as the sockaddr type pointer.
(* ifap)-> ifa_ifu.ifu broadaddr stores the device broadcast address as a sockaddr type pointer. If the IP address of
(* ifap)->ifa_addr is AF_INET®6, (* ifap)->ifa_ifu.ifu_broadaddr will be NULL.

(*ifap)->ifa_ifu.ifu_dstaddr, (*ifap)->ifa_data : No use.

e After successful completion, user will need to release the interface information list in the freeifaddrs() function,

because the interface information list is dynamically allocated.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 116 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.27 freeifaddrs (Release the interface information)

[Format]
#include “sys/unistd.h”
void freeifaddrs(struct ifaddrs *ifa)

[Parameter]
struct ifaddrs™ ifap The start address of the interface information list

[Return value]
void

[erro]
Not set

[Explanation]

e This function relase the interface information list which was got by getifaddrs() function.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 117 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.28 inet_pton (Convert IPv4/IPv6 addresses from text format to binary format)

[Format]
#include “arpalinet.h”
int inet_pton(int af, const char *src, void *dst);

[Parameter]
int af Address family
const char * src Network address string
void * dst Storage buffer for network address structure

[Return value]

int Result of process. If success, 0 or on error, -1.
[errno]
EINVAL Invalid parameter (address is not set in buf)

EAFNOSUPPORT Unsupported address family

[Explanation]
e Only AF INET and AF_INET®6 can be specified as the address family. If you specify a value other than AF INET
or AF_INETS6, -1 is returned as the return value.

e If the string specified in src is not the correct network address notation for the address family, dst will contain all Os
for each member of the network address structure and a return value of 1.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 118 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.4.29 inet_ntop (Convert IPv4/IPv6 addresses from binary format to text format)

[Format]
#include “arpalinet.h”
const char *inet_ntop(int af, const void *src, char *dst, unsigned int size);

[Parameter]
int af Address family
const void * src Network address structure
char * dst Conversion result string storage buffer
unsigned int size Storage buffer length of conversion result character string

[Return value]

const char * Pointer to dst. NULL in case of error
[errmo]
EINVAL Invalid parameter (address is not set in buf)
EAFNOSUPPORT Unsupported address family
ENOSPC Insufficient storage buffer size
[Explanation]

e Only AF_INET and AF_INET6 can be specified as the address family.

e Ifthe conversion fails, NULL is returned as the return value.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 119 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

555 Socket option

The following figure shows the list of option which can be set or got by setsockopt() or getsockopt()API. If anything

other than the specified options, The function setsockopt() and getsockopt() will return -1.

Table 5.2 Socket option

Option name Type Function

SOL_SOCKET level

SO_ACCEPTCONN int Get the LISTEN state of TCP socket. For Get only.

SO_BROADCAST int Affect only to UDP broadcast transmission operation. For Get or
Set.

SO_DOMAIN int Get the socket domain. For Get only.

SO_ERROR int Get the socket error. For Get only.

SO_KEEPALIVE (*1) int Enable the Keep-Alive function of TCP socket. For Set only.

SO_RCVBUF int Set the receive buffer. For TCP, it is a byte number of received
window. For UDP, it is treated as a number of received packets
(queue size). For Get or Set.

SO_RCVBUFFORCE int Same as for SO_RCVBUF.

SO_RCVTIMEO timeval Set the received timeout of socket. For Get or Set.

SO_SNDTIMEO timeval Set the sending timeout of socket. For Get or Set.

SO_TYPE int Get socket type. For Get only.

SO_REUSEADDR int Allow local port duplicate bind for UDP sockets. GET / SET.

IPPROTO_|P level

IP_ADD_MEMBERSHIP ip_mreqgn Join the multicast group. For UDP socket only. For Set only.

IP_DROP_MEMBERSHIP ip_mregn Drop from the multicast group. For Set only.

IP_MTU int Get path MTU. For Get only.

IP_MULTICAST_TTL int TTL setting for multicast sending packet. For Get or Set.

IP_MULTICAST_IF ip_mregn Device settings for multicast sending packet. For Get or Set.

IP_MULTICAST_LOOP int Loopback settings for multicast sending packet. For Get or Set.

IP_TOS int TOS setting for IP sending packet. For Get or Set.

IP_TTL int TTL setting for IP sending packet. For Get or Set.

IPPROTO_TCP level

TCP_KEEPCNT (*1) int Set the number of times of TCP Keep-Alive probe. For Set only.

TCP_KEEPIDLE (*1) int Set the non-communication interval of TCP Keep-Alive started. For
Set only.

TCP_KEEPINTVL (*1) int Set the sending interval for TCP Keep-Alive probe. For Set only.

TCP_MAXSEG int Set the MSS value of TCP socket. For Get or Set.

IPPROTO_IPV6 level

IPV6_ADD_MEMBERSHIP ipv6_mreq | Join a multicast group. Only valid for UDP sockets. SET only.

IPV6_DROP_MEMBERSHIP ipv6_mreq | Multicast group withdrawal. SET only.

(* 1)TCP Keep Alive enable / disable (SO_KEEPALIVE) must be set before connecting TCP.
Also, TCP Keep Alive enable / disable and other Keep Alive settings are shared by all sockets.

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS Page 120 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

5.5.6

5.5.6.1

Support function

Non-blocking setting

By using ioclt() function, user can set the call for socket API to non-blocking (or blocking). At the initial state, all of

APIs are set as blocking. In the case of non-blocking setting, API may return -1, and set EAGAIN to error number. The

following table shows API lists that non-blocking setting is available, the condition that error number becomes to

EAGAIN, and the operation that application should behave.

The timeout setting by socket option doesn’t affect to the API with non-blocking. And for the API of TCP/IP stack

with BSD socket, the calling task may become the sleep state even under non-blocking setting, because of the spec

through the inter-task communication.

Table 5.3 non-blocking API

API Condition Application behavior
connect In the case of TCP socket, the return TCP socket continues to wait SYN/ACK from remote and
value is “-1”, and error number is resend SYN during the stipulated time, after returned -1. The
EAGAIN, always. TCP socket is monitored by writefds, because of becoming
writable by select at the time of receiving the SYN / ACK.
User does not need to run connect again after becoming
writable.
accept If there is no socket has been The TCP socket is monitored by readfds, because of
connected to the listen socket, the becoming readable by select at the time of receiving the SYN
return value becomes “-1”, and error from remote. User should run accept again after becoming
number becomes EAGAIN. readable.
send In the case that it is TCP socket and EAGAIN means that the packet couldn’t be sent by the
sendto the sending buffer is full, error number | condition of socket. (Then also packet is not sent.).
becomes EAGAIN.
In the case that it is UDP socket and
the socket is under sending, error
number becomes EAGAIN.
recv If packet has not received yet, error The socket is monitored by readfds, because of becoming
recvfrom number becomes EAGAIN. readable by select at the time of receiving packet from
remote. User should run recv again after becoming readable.
5.5.6.2 Loopback

If a local loopback address (127.0.0.1 ~ 127.255.255.254) is specified as the destination address, the packet is sent is
notified to the network interface.

In the TCP/IP stack with BSD, loopback address does not have a specific device interface, it is treated as a send-only

address. So, it is not possible to run the bind() function for loopback address.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 121 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.5.6.3 Error handling

Symbol errno is the only global variables. This value is updated in accordance with the error that occurred during the
API execution. If user wants to run the API from multiple tasks, it is recommended that user gets the last of errno that

occurred within a task with using get _errno() function, in order to guarantee the integrity of errno.

[Format]
#include “sys/errno.h”
int get_errno(void)

[Parameter]
void

[Return value]
int The last of errno that occurred within a task called from this API.

[errno]
Not set

[Explanation]

e errno of each task is stored in the global variable UW tsk_errno[] which is the application prepared. User needs to

pre-set the maximum number of tasks in this array element.

Table 5.4 errorno list

errno Value Explanation

EINTR 4 API wait state was forcibly released

ENXIO 6 Interface is not existed.

EBADF 9 Socket FD is invalid.

ENOMEM 12 Out of memory

EACCESS 13 Deny access to requested processing

EFAULT 14 Parameter error

ENODEV 19 A fatal abnormality(or unknown) in the system

EINVAL 22 Parameter error

EPIPE 32 Socket object is invalid

EAGAIN 35 Run the blocking processing

EALREADY 37 Processing of already running

EDESTADDRREQ 39 Need a destination set

EPROTONOSUPPORT 43 Function is not supported

EAFNOSUPPORT 47 Address family is not supported

EADDRINUSE 48 Address is already in use

EADDRNOTAVAIL 49 Address is not available

EISCONN 56 Socket is already connected

ENOTCONN 57 Socket is not connected

ETIMEDOUT 60 Time out

ECONNREFUSED 61 Connection is denied

EHOSTUNREACH 65 Attempted to connect to an inaccessible node
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 122 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

5.5.7 Implementation of BSD application

5.5.7.1

Source code

Application which uses the BSD sockets needs to bind 4 files (unet3_iodev.c, unet3_option.c, unet3_socket.c,
unet3_wrap.c) in the folder “Middleware/uNet3/bsd/” to the application project.

Middleware
I
+——uNet3
+—bsd
+—unet3_lodev. ¢
+—unet3_option. c
+—unet3_socket. ¢
+—unet3_wrap.c

In addition, user will need to link library for BSD called “libunet3bsd.a”.

Library

|
——ARM or GCC or IAR

+——1|ibunedbsd. a

/% Library for BSD socket */

55.7.2 Include path

Application which uses the BSD sockets needs to add the directry “unet3 posix” and “inc” in the folder

“Middleware/uNet3/bsd/” as a include path in the setting.

Middleware
|
+——uNet3
+——bsd

I
+—unet3_posix
[
|

+—=inc

/* Include base folder for BSD socket */

/% Include base folder of uNet3 socket */

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 123 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

55.7.3 Configuration

In the TCP/IP stack with BSD, the maximum number of sockets and the number of the task of application is needed to
macro defined in unet3_cfg.h, in advance.

The maximum number of sockets
#define BSD_SOCKET MAX

The maximum number of sockets, regardless of the protocol, shows the number of sockets that application generates at
the same time (including also listen backlog). This macro definition is used for definition of the management table
number of BSD socket and fd_set type, which will be described later. This value must be the same value as the pNet3
socket maximum number (CFG_NET SOC MAX).

Number of application tasks
#define NUM OF TASK ERRNO

The number of application tasks is the task number that can be generated in the kernel. This macro definition is used to
the management table number of error number, which will be described later. This value, regardless of the use or non-use
of BSD, should be set the number of generatable task.

5574 Resource definition

Application which uses the BSD sockets needs to prepare a table for managing information.

BSD socket management table
T UNET3 BSD SOC gNET BSD_SOC[BSD SOCKET MAX];

BSD socket management table defines a global variable as T UNET3 BSD SOC-type array that the number of
elements is BSD SOCKET MAX.

Error number management table
UW tsk errno[NUM OF TASK ERRNO];

Error number management table defines a global variable as T UNET3 BSD SOC-type array that the number of
elements is NUM_OF TASK ERRNO.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 124 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

5. Description of application programming interface

5.5.7.5

Kernel objects

Kernel objects that TCP/IP stack with BSD uses, is as follows.

Resource name Use ID
Task BSD Wrapper task ID TSK_BSD_API
Loopback device task ID_LO_IF_TSK
Mailbox Communication between the BSD Wrapper task ID MBX_BSD_REQ
Communication between the loopback device task | ID_LO_IF_MBX
Memory pool Message buffer ID MPF_BSD_MSG
5.5.7.6 TCP socket errno use case

If another API execution or communication event occurs during execution of send (), recv (), and accept () on the TCP

socket and the original API that was waiting is terminated, the return value and errno at this time. Is shown in the table

below.

Executing send (), recv (), and accept () means waiting for a free send buffer, waiting for a packet to be received, and

waiting for a TCP passive connection, respectively.

Event send recv accept
Return errno Return errno Return errno
value value value
Continue | — -1 EBADF -1 EINTR
Execute close () .
waiting
Execute shutdown (WR) Continue | — Continue | — Continue | —
waiting waiting waiting
Continue | — 0 — Continue | —
Execute shutdown (RDWR) . .
waiting waiting
) Continue | — 0 —
FIN reception »
waiting
RST reception -1 EBADF -1 EBADF
Socket options -1 ETIMEDOUT -1 ETIMEDOUT -1 ETIMEDOUT
Timer expired
TCP timer expired -1 ETIMEDOUT -1 ETIMEDOUT
R18UZ0079EJ0100 Rev.1.00 ;ENESQS Page 125 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5577 Initialization

Application needs to initialize the BSD module by calling the unet3 bsd_init() function, before
using the BSD sockets API. In addition, before this BSD module initialization, the initialization of the uNet3 and
device driver are needed to be completed successfully.

[Format]
#include “sys/socket.h”
ER unet3_bsd_init(void)

[Parameter]

void

[Return value]

ER Result of process. If success, E_OK. or if error, error code.
[errno]
E_SYS Failed to initialize the process of kernel objects

Example of use

ER net_sample(void)

{
/* Initialize TCP/IP Stack */
ER ercd;

ercd = net_ini();
if (ercd = E_OK) {
return ercd;

[* Initialize Ethernet Driver */
ercd = net_dev_ini(1);
if (ercd 1= E_OK) {

return ercd;

/* BSD wrapper */
ercd = unet3_bsd_init();

return ercd;

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 126 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

5.6 Other API
htons Convert 16 bit value to network byte order
[Format]
UH htons(UH val);
[Parameter]
UH val 16 bit value host byte order
[Return value]
UH 16 bit value to network byte order
htonl Convert 32 bit value to network byte order
[Format]
UW htonl(UW val);
[Parameter]
uw val 32 bit value host byte order
[Return value]
uw 32 bit value network byte order
ntohs Convert 16 bit value to host byte order
[Format]
UH ntohs(UH val);
[Parameter]
UH val 16-bit value network byte order
[Return value]
UH 16-bit value host byte order
ntohl Convert 32 bit value to host byte order
[Format]
UW ntohl(UW val);
[Parameter]
uw val 32 bit value network byte order
[Return value]
uw 32 bit value host byte order
R18UZ0079EJ0100 Rev.1.00 RENESAS Page 127 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

ip_aton Convert an IPv4 address string in dot-notation to 32 bit value
[Format]
UW ip_aton(const char *str);
[Parameter]
char str Pointer to IPv4 address string in dot-notation

[Return value]
uw >0 Successful completion (32 bit value after converting)

[Error code]

0 Wrong IP address is specified
ip_ntoa Convert 32-bit value IPv4 address to IPv4 address string in dot-notation
[Format]
void ip_ntoa(const char *str, UW ipaddr);
[Parameter]
char str Pointer that accepted IP address string after converting
uw ipaddr 32-bit value IP address
[Return value]
None
[Explanation]

If the process completes successfully, the character string will be set in str, but str will be NULL if the error occurs.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 128 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

ip_byte2n Convert IPv4 address array to 32 bit value

[Format]
UW ip_byte2n(char *ip_array);
[Parameter]
char ip_array Pointer to byte value array of IP address

[Return value]
uw >0 Successful completion (32-bit value after converting)

[Error code]

0 Wrong IP address is specified
ip_n2byte Convert 32 bit value IPv4 address to array
[Format]
void ip_n2byte(char *ip_arry, UW ip);
[Parameter]
char ip_array Pointer to byte value array of IP address
uw ip 32-bit value IP address
[Return value]
None
[Explanation]

After completing successfullyl, value is set in asip_array. In case of error, ip_array turns into NULL.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 129 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

arp_set Setting static ARP entries
[Format]
ER ercd = arp_set(UH dev_num, UW ip, UB *mac);
[Parameter]
UH dev_num Device number
uw ip IPv4 address
UB *mac MAC address

[Return value]
ER ercd Normal termination (E_OK) or error code

[Error code]

E_ID lllegal device number
E_PAR lllegal IPv4 address and MAC address
E_NOMEM ARP cache is full

[Explanation]

Register a static entry in the ARP cache. For dev_num, specify the device number that connects to the network where
the address exists.

Set the IP address and MAC address of the corresponding host for ip and mac, respectively. The MAC address is set in
a UB type 6-byte array with big endianness. E NOMEM is returned if the ARP cache is already full due to dynamic or

other static entries. In that case, the application should set an entry or increase the size of the ARP cache before

communication.
arp_ref ARP cache reference

[Format]
ER ercd = arp_ref(UH dev_num, UW ip, UB *mac);

[Parameter]
UH dev_num Device number
uw ip Search target IPv4 address
uB *mac Search result MAC address

[Return value]
ER ercd Normal termination (E_OK) or error code

[Error code]

E_ID lllegal device number
E_NOEXS There is no corresponding address
[Explanation]

Refers to the MAC address in the ARP cache. For dev_num, specify the device number that connects to the network
where the address exists.
For ip, specify the IP address of the referenced host. If the corresponding IP address is found, copy the 6-byte MAC

address to the argument mac.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 130 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

arp_req Send ARP request
[Format]
ER ercd = arp_req(UH dev_num, UW ip);
[Parameter]
UH dev_num Device number
uw ip Search target IPv4 address

[Return value]
ER ercd Normal termination (E_OK) or error code

[Error code]

E_ID lllegal device number

E_OBJ The device itself does not have an address (not started)

E_NOMEM Network buffer cannot be secured

E_PAR Address cannot be resolved on the corresponding device (loopback, PPP, etc.)
[Explanation]

Application sends an ARP request at any time. This process does not wait for an ARP response.
When a normal ARP response is obtained, the response content is saved in the ARP cache. Applications can reference
this using arp_ref ().

arp_clr Clear ARP cache

[Format]
ER ercd = arp_clr(void);

[Parameter]
None

[Return value]
ER ercd Normal termination (E_OK)

[Error code]

None

[Explanation]
Deletes all ARP cache entries. The application can clear the ARP cache when the network changes physically (after
link down / link up is detected) or when the IP address changes.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 131 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 5. Description of application programming interface

arp_del Delete ARP entry
[Format]
ER ercd = arp_del(UH dev_num, UW ip);
[Parameter]
UH dev_num Device number
uw ip Delete target IPv4 address

[Return value]
ER ercd Normal termination (E_OK) or error code

[Error code]
E_ID lllegal device number

[Explanation]
Deletes the statically configured ARP entry from the cache. The entry to be deleted is the specified IP address and
statically registered by the application. Dynamically retrieved entries are not deleted.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 132 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

6. Network application

6. Network application

6.1 DHCP client

DHCEP client obtains IP address information which is used in network from DHCP server. Acquired IP address is

assigned to the host.
SE THIS FUNCTION OF RENEW, RELEASE, DECLINE, FEATURES INFORM. FOR DHCP EXTENDED
VERSION, SEE THE EXTENDED VERSION “6.5 DHCP client extended”.

(1) Host address information

typedef struct t_host_addr {

uw ipaddr;
uw subnet;
uw gateway;
uw dhcp;
uw dns[2];
uw lease;
uw t1;

uw t2;

UB mac[6];
UH dev_num;
UB state;
SID socid;

}T_HOST_ADDR;

[* IP address */

[* Subnet Mask */

[* Gateway*/

/* DHCP Server address */

/* DNS Address */

[* Lease period of the DHCP address*/
/* Renewal period of DHCP address™/
/* Rebind period of DHCP address */
/* MAC address */

[* Device address */

/* DHCP Cliente status™/

/* 1D of UDP socket*/

This structure is used as an argument of DHCP client API. Device number and ID of UDP socket have to be set by

user application. The remaining parameters are set by the response from a DHCP server.

e |D of UDP socket

In DHCP client, use UDP socket. UDP socket must be created by the following parameter. (It is created in DHCP

client applications)

Protocol

ID

Port Transmission timeout

Reception timeout

UDP

ID_SOC_DHCP

68 3 seconds

3 seconds

e Device number

In device number, specify network device used by DHCP client. If specify '0 ', default network device is used

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

Page 133 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.1.1 DHCP client API
dhcp_client Starting DHCP Client

[Format]
ER ercd = dhcp_client(T_HOST_ADDR *addr);

[Parameter]
T_HOST_ADDR *addr host address information

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]

E_PAR *addr is NULL or socid is specified

E_NOMEM Insufficient memory (exhausted network buffer)

E_OBJ Socket status is wrong (socket has not been created yet)

E_TMOUT Response from DHCP server delays. Or DHCP server does not exist
[Explanation]

This API acquires an IP address, a subnet mask, a gateway address from a DHCP server and assigns them to host.
Maybe E_ TMOUT error occurs due to the construction of using network. At that time, we recommend that you try to
retry until it succeeds.

This API will also initiate a new DHCP session. When you call the API, you will start to send operation DISCOVER
always expect receive OFFER, send REQUEST, the reception of the ACK that is.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 134 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

The expiration of an IP address which is acquired from a DHCP server is specified 'lease (lease period).

As follows: DHCP client to do lease before the lease period expires.

DHCP client example (Exclusive task)

void dhcp_tsk(VP_INT exinf)
{
ER ercd;
T_HOST_ADDR dhcp_addr = {0};
UB status = DHCP_STS_INIT;

dhcp_addr.socid = ID_SOC_DHCP;
dhcp_addr.dev_num = ID_DEVNUM_ETHER,;

for (;;) {

ercd = dhcp_client(&dhcp_addr);

if (ercd == E_OK) {
/* BOUND period */
dly_tsk(dhcp_addr.t1*1000);
/* RENEWING period */
status = DHCP_STS_RENEWING;
continue;

}

if (status == DHCP_STS_RENEWING) {
/* REBINDING period */
dly_tsk((dhcp_addr.t2-dhcp_addr.t1)*1000);
status = DHCP_STS_INIT;
continue;

}

[* INIT period */

dly_tsk(1000);

If it is need to update the lease on the DHCPREQUEST message, please use the extended version of DHCP CLient.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 135 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.2 FTP Server

FTP server enables to download and upload files to the remote host.

(1) FTP Server Control Information
typedef struct t_ftp_server {

UW sec; [* Security policy */

UH dev_num; /* Device Number*/

SID ctl_sid;

SID dat_sid,; /* 1D Socket used for data*/

ER (*fauth_cbk)(UH, const char*, const char*); /* Authentication callback */
VB* syst _name; [* SYST command response string*/
}T_FTP_SERVER;;

Set necessary information in this structure and then transfer as argument of FTP Server API.

e Security policy

Set security settings in the security policy. If "0" is set, the security function will not be used.

If"ENA DENY PORTCOMMAND" is set, the PORT command rejection function is applied.

If"ENA NOTCON_ WELL KNOWNPORT" is set, connection refusal from the Well-known port will be applied.

If apply the PORT command deny function, you will not necessarily be able to connect on the Well-known port.
Therefore, when "ENA DENY PORT COMMAND" is set, the function of "ENA NOTCON WELL KNOWNPORT"
is automatically enabled. If you want to respond to the SYST command, set "ENA_ ALLOW_SYSTCOMMAND".

ENA_DENY_PORTCOMMAND
Deny PORT command function

ENA_NOTCON_WELL KNOWNPORT

Deny Well-known port connection

ENA_ALLOW_SYSTCOMMAND
Enable SYST command. Returns the value of T FTP_SERVER :: syst name to the query source. If the value is not
set, "UNIX Type: L8" is returned to the inquiry source.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 136 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

e Device Number

In device number, specify network device used in FTP server. In case of specifying “0”, default network device will be

used (Please set 0 normally)

e TCP socket

FTP server requires two TCP sockets for commands and data. TCP socket should be created in the following

parameters. (It will be created in the FTP server application)

Socket used for command:

ID Protocol | Port Timeout Buffer size
send receive connect interrupt send receive
ID_SOC_FTP_CTL | TCP 21 5s 15s -1s 5s 1024 1024

Socket used for data:

ID Protocol | Port Timeout Buffer size
send receive connect interrupt send receive
ID_SOC_FTP_DATA | TCP 20 5s 15s 5s 5s 1024 1024

¢ Authentication callback

When performing arbitrary user authentication processing, specify the callback function in this variable. Called when

authenticating after entering the user name and password. Normally, 0 is fine.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 137 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

o Configuration definition (ftp_server_cfg.h)

Example setting

#include "ffsys.h" /* File system */

/* Configuration */

#define CFG_FTPS_DRV_NAME 'C' /* Drive name */

#define CFG_FTPS_PATH_MAX PATH_MAX /* Maximum length of file path */
#define CFG_FTPS_CMD_TMO 5000 /*5sec*/

#define CFG_FTPS_DAT_TMO 5000 /* 5 sec */

#define CFG_FTPS_IDLE_TMO (5 *60 * 1000) /* 5 minute */

#define CFG_FTPS_SES_NUM 1 /* Number of sessionss */

CFG _FTPS DRV _NAME
Specify the drive name (such as 'A’' or 'C') used by the file system. The FTP server uses the drive name of this macro to

open the file.

CFG _FTPS PATH MAX
Specifies the maximum file path length for the file system. The path length here represents the length of the root

directory name + file name character string.

CFG_FTPS_CMD_TMO

Specifies the send and disconnect timeout (msec) value for the control socket.

CFG_FTPS_DAT TMO
Specifies the data socket connection, send, receive, and disconnect timeout (msec) values.

CFG_FTPS_IDLE_TMO

Specify the value of the receive timeout (msec) of the control socket.

CFG_FTPS SES NUM
Specify the number of tasks (sessions) on the FTP server.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 138 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

e Account settings (ftp_server_cfg.c)

Example setting

#include "kernel.h"
#include "net_hdr.h"
#include "ftp_server.h"

/* Login user table (Max. 256 users) (DEV_ANY: All device is allowed) */

const T_FTP_USR_TBL ftp_usr_tbI[] = {
{DEV_ANY, ", "}, /* Anyone can login (No user name,password) */

{DEV_ANY, "User", "Password"},

{0x00, 0x00, 0x00} /* Terminate mark (Do not change) */

Declare the array variables of the structure that sets the account in the file ftp_server cfg.c. The structure for setting up

an account is as follows.

typedef struct t_ftp_usr_tbl {

UH dev_num; Device number
VB* usr; User name
VB* pwd; Password

}T_FTP_USR_TBL ;

The dev_num of the structure specifies the number of the network device to use when authenticating the account.

If 0 (DEV_ANY) is specified, all network devices will be authenticated. Generally, substitute 0 for dev_num. usr
specifies the user name as a character string. pwd specifies the password as a string.

Declare the array variable of this structure with the variable name of ftp_usr tbl. The last element of the array is the
data for termination. For the data for termination, assign 0 to all variables. Up to 256 user names and passwords can be
registered. In the above setting example, "{DEV_ANY," "," "}" is a setting that allows you to log in to the FTP server

without entering the user name and password. Therefore, please do not register for any purpose other than testing.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 139 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.2.1 FTP Server API

ftp_server Start up FTP Server

[Format]
ER ercd = ftp_server(T_FTP_SERVER *ftp);
[Parameter]
T_FTP_SERVER *ftp FTP server control information

[Return value]

ER ercd Successful completion (E_OK) or error code

[Error code]
E_PAR Wrong parameter is specified (*fpt is NULL.
ctl_sid or dat_sid is not specified)
E_RLWAI Request to stop the FTP server has been executed.

[Explanation]
This API initializes FTP server, accepts and processes requests from FTP clients. Because this API becomes blocking

calling, please use specific task to call it.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 140 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

ftp_server_stop Stop FTP server
[Format]
ER ercd = ftp_server_stop(UW retry);
[Parameter]
uw retry Number of retries for server task stop processing

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]
E_TMOUT Retry over for server task stop processing has occurred.

[Explanation]
This API will stop the FTP server that is running. When this API is executed, it will stop all tasks on the FTP server.
The task information of the FTP server is automatically stored in the internal memory when the FTP server startup API
(ftp_server) is executed.
In addition, this API returns E TMOUT as a return value when a retry over of the specified number of retries (retry)

occurs at the time of execution.

[Recommendation]
It is recommended that the value of the number of retries (retry) specified by this API is "5" or more. For example, if

you specify "0" for the number of retries and execute it, the probability that this API will fail is higher.

6.2.2 Restriction terms

@ Operation on IPv6 and SSL is not supported. (IPv4 only)
@ File system is required to handle files.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 141 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.3 HTTP server

HTTP server transmits content to HTTP client (internet browser) statically and dynamically.

(1) HTTP content information

typedef struct t_http_file {

const char *path; /* URL */
const char *ctype; /* Content type */
const char *file; /* Content */
Int len; /* Content size*/
/* HTTP callback function
void(*cbk)(T_HTTP_SERVER *http); or
CGl handler */
UB ext; / * Extended operation flag * /
}T_HTTP_FILE ;

Register content to be used in HTTP server in this structure.

e URL

Show URL of content. For example, if there is request from client to that URL, corresponding content will be sent to
client.
Impossible to specify NULL in URL. Besides, URL starts by '/ as usual.

e Content type

Specify Content-Type of text/html etc. In case of dynamic content, specify NULL.

e Content

Specify actual content. In case of dynamic content, specify NULL.

e Content size

Specify size of content. In case of dynamic content, specify 0.

e Callback function or CGI handler

When it’s dynamic content, specify pointer of the function called from HTTP server. In case of static content, specify
NULL.

o Extended operation flag

Specifies extended behavior for the content. Specify 0 if you do not want to use extended behavior (use HTTP

authentication, add arbitrary HTTP headers, etc.).

#define HTTPD_EXT_AUTH 0x01 / * Use HTTP authentication * /
#define HTTPD_EXT_UHDR 0x02 / * Custom Header-Use * /
Defined value in T HTTP_FILE :: ext

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 142 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

6. Network application

(2) HTTP server control information

typedef struct t_http_server {

uw sbufsz; /* transmission buffer size */

uw rbufsz; /* reception buffer size*/

uw txlen; [*internal data */

uw rxlen; /* internal data*/

uw rdlen; /* internal data*/

uw len; /* internal data*/

UB *rbuf; /* transmission buffer*/

UB *sbuf; /* reception buffer*/

UB *req; /* internal data*/

UH Port; /* Listening port number*/

SID SocketID; /* Socket ID */

T_HTTP_HEADER hdr; /* HTTP client request */

UB NetChannel; /* Device number*/

UB ver; / * IP version */

UB server_tsk_stat [* HTTP server task startup status */
ID server_tsk_id /*HTTP server task ID */

struct t_http_server *next / * HTTP server object * /

UH kpa_max [* HTTP KeepAlive max value (for control) * /

}T_HTTP_SERVER;

This structure is used as argument of HTTP server API. ID socket needs to be set by user application.

e Device number

For device number, specify network device to use in HTTP server. In case of specifying “0”, default network device is
used. (Please set “0” normally).

e Socket ID

In HTTP server, use TCP socket. TCP socket needs to be created by the following parameter. (It will be created in
HTTP server application).

ID protocol port timeout Buffer size
send receive connect interrupt send receive
ID_SOC_HTTP TCP 80 25s 25s 25s 25s 1024 1024

e Transmit buffer Receive buffer

In the HTTP server uses the network protocol stack buffers for each send and receive packets.

And receive buffers (transmit), if you (for example, you want to send content to a larger network buffers, for example)
for reasons such as content size, you want to use your own buffer application in which the value of the buffer own buffer
size (send) and receive set. You will not get the network buffer on the HTTP server in that case.

Own area set cannot be shared with other processes HTTP server also.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 143 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

6. Network application

(83) HTTP Header information
typedef struct t_http_header {

}T_HTTP_HEADER;

char
char
char
char
char
char
char
char
char
char
char

*method;
*url;
*url_q;
*ver;
*host;
*ctype;
*Content;
ContentLen;
kpa;

*auth;

*cookie;

/* Method */

/* URL */

/* URL query */

/* Version */

/* Host */

/* Content type */
/* Content */

/* Content length */

/* Flag for HTTP Keep Alive (for control) */

/* Authorization header */
/* Cookie header */

This structure represents the buffer of T HTTP_SERVER :: rbuf as each element of the HTTP request message. See

this structure only from HTTP callback functions.

* Method [method]
Represents a method. Enter either "GET", "HEAD", or "POST".

* Pathname [URL]
Represents the pathname of the URL.

* URL query

Represents a URL query parameter.

* Version [version]

Represents the HTTP version. Either "HTTP / 1.1" or "HTTP / 1.0" will be entered.

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

Page 144 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

6. Network application

e Configuration definition (http_server_cfg.h)

Example setting

#define ENA_KEEP_ALIVE /* Enable HTTP Keep-Alive */
#define HTTP_KPA_MAX 100 /* Keep-Alive max value */
#define ENA_USER_EXT /* Enable User Extension */

«ENA_KEEP_ALIVE

Enables the HTTP Keep-Alive feature by definition. Disable without definition.

*« HTTP_KPA MAX
Specifies the initial value of the max item in the HTTP Keep-Alive header.

« ENA_USER_EXT

Enables the user extension operation function of the HTTP server application with definition. Disable without

definition.

R18UZ0079EJ0100 Rev.1.00 RENESAS
Aug 31, 2021

Page 145 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.3.1 HTTP server API

http_server Start up HTTP server

[Format]
ER ercd = http_server(T_HTTP_SERVER *http);
[Parameter]
T_HTTP_SERVER *http HTTP server control information

[Return value]

ER ercd Error code

[Error code]

E_RLWAI http_server_stop () was called and stopped.
E_PAR Wrong parameter is specified
(*http is NULL. SocketID is not specified.)
E_NOMEM Insufficient memory (exhausted network buffer)
Others Socket con_soc error code
[Explanation]

This API initializes HTTP session, then accepts and processes request from HTTP client. In case the URL which is
requested from client exists in content table (T_HTTP_FILE), send that content to client, if not, send HTTP error
message” 404 File not found” . In case content is dynamic (cbk is not NULL), call that callback function.

Because this API becomes blocking call, please use a specific task to call it.

If NULL, the receive buffer of the control information of the argument is HTTP server uses the network buffer.

If NULL, the transmit buffer of the control information of the argument is HTTP server uses the network buffer.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 146 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

http_server_stop Stop HTTP server
[Format]
ER ercd = http_server_stop(UW retry)
[Parameter]
uw retry Number of retries for server task stop processing

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]
E_TMOUT Retry over for server task stop processing has occurred.

[Explanation]
This API stops the HTTP server that is running. When this API is executed, all tasks of the HTTP server will be

stopped.

HTTP server task information is automatically stored in internal memory when the HTTP server startup API
(http_server) is executed.

In addition, this API returns E TMOUT as a return value when a retry over of the specified number of retries (retry)

occurs at the time of execution.

[Recommendation]
It is recommended that the value of the number of retries (retry) specified by this API is "5" or more. For example, if

you specify "0" for the number of retries and execute it, the probability that this API will fail is higher.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 147 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

CgiGetParam CGI argument analysis
[Format]
void CgiGetParam(char *msg, int clen, char *cgi_var[], char *cgi_val[], int *cgi_cnt);
[Parameter]
char *msg CGI argument
int clen CGl argument size
char *cgi_var(] Analysed CGIl argument
char *cgi_vall] Value of analysed CGI argument
int *cgi_cnt Number of articles of the analysed CGI argument

[Return value]
None

[Error code]
None

[Explanation]
This API analyses query string to be constructed in ~ “field value” group. For example, analysis result in case of

query string is given as “namel=valuel &name2=value2” as below.
cgi cnt=2;

cgi_var[0] = “namel”;

cgi_var[l] = “name2”;

cgi_val[0] = “valuel”;
cgi_val[l] = “value2”;

[Supplement]
This API has been superseded by the CgiGetParamN function. This API causes a buffer overrun when the number of

elements obtained by parsing the query string of the argument msg exceeds the number of arrays of cgi_var and cgi_val,
so use the CgiGetParamN function unless there is a special reason. Please.
CgiGetParamN function will be deprecated in the future.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 148 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

CgiGetParamN CGI argument analysis

[Format]

void CgiGetParamN(char *msg, int clen, char *cgi_var([], char *cgi_val[], int *cgi_cnt);
[Parameter]

char *msg CGI argument

int clen CGl argument size

char *cgi_var(] Analysed CGIl argument

char *cgi_vall] Value of analysed CGI argument

int *cgi_cnt IN : Number of elements in the cgi_var array

OUT : Number of articles of the analysed CGIl argument

[Return value]
None

[Error code]
None

[Explanation]
This API analyses query string to be constructed in ~ “field value” group. For example, analysis result in case of

query string is given as “namel=valuel &name2=value2” as below.

char msg[] = “namel=valuel &name2=value2”;

char *cgi_var[10];

char *cgi_val[10];

int cgi_cnt;

cgi_cnt = sizeof(cgi_var) / sizeof(char *);

CgiGetParamN(msg, strlen(msg), cgi_var, cgi_val, &cgi_cnt);

cgi_cnt=2;

cgi_var[0] = “namel”;
cgi_var[l] = “name2”;
cgi_val[0] = “valuel”;

cgi val[l] = “value2”;

[Supplement]
The similar API, the CgiGetParam function, is left for compatibility. Use the CgiGetParam function can cause

problems, so use the CgiGetParamN function unless you have a specific reason to do so.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 149 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

CookieGetltem Parsing cookie headers
[Format]
UB CookieGetltem(char **cookie, char **name, char **value)
[Parameter]
char **cookie Cookie header value
char **name Acquired cookie name
char **value The value of the acquired cookie hame

[Return value]
UB 1 if cookie pair can be obtained, 0 otherwise

[Error code]
None

[Explanation]
This API gets the cookie name and value from the cookie header value ‘namel = valuel; name2 = value2; ..” format.
When the cookie pair can be obtained, the name is stored in name and the value is stored in value, and 1 is returned as the

return value. Otherwise, the return value will be 0.

When this API is called, the pointer position pointed to by ** cookie will be the position of the next cookie pair, and
the buffer contents will be changed. ** If you need the contents of the buffer pointed to by the cookie, save this API in

another buffer before calling.

Example of use

void Http_Callback(T_HTTP_SERVER *http)

{
VB *cnhame, *cval;
VB buf[128];

net_strcpy(buf, "<html><body>");

/* Output the contents of the cookie header to HTML */

net_strcat(buf, "\r\n<pre>\r\n");

while (CookieGetltem(&http->hdr.cookie, &cname, &cval)) {
net_strcat(buf, cname); /* Cookie name */
net_strcat(buf, "=");
net_strcat(buf, cval); /* Cookie name value */
net_strcat(buf, "\r\n");

}

net_strcat(buf, "\r\n</pre>\r\n");

net_strcat(buf, "</body></htmI>");

HttpSendText(http, buf, net_strlen(buf));

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 150 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

HttpSendText Transmission of text content
[Format]
ER ercd = HttpSendText(T_HTTP_SERVER *http, const char *str, UW len)
[Parameter]
T_HTTP_SERVER *http HTTP server control information
const char *str String to transmit
uw len length of string to transmit

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code)
E_PAR Wrong parameter is specified
(*http is NULL.)

[Explanation]
This API transmits dynamic content. Please call this API only from CGI callback function.

Example
char page1[] = “<html><body>Welcome to this web server </body></html>";

void Http_Callback(T_HTTP_SERVER *http)

{
HttpSendText(http, page1, sizeof(page1));

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 151 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

HttpSendFile Send Attached File

[(API]
ER ercd = HttpSendFile(T_HTTP_SERVER *http, const char *str,
UW len, const char *name, const char *type)

[Parameter]

T_HTTP_SERVER *http HTTP server information

const char *str File to be send

uw len Length to be send

const char *name Filename

const char *type Content-Type value or strings of HTTP header
[Return Value]

ER ercd Successful completion (E_OK) or error code
[Error Code]

E_PAR Wrong parameter is specified

(*http is NULL.)

[DESCRIPTION]

This API sends the dynamic content. Please only be called from this API function callback CGI.

Send file attachments in API: This is sent in (Content-Disposition attachment).

Use Case
char file[1024];

void Http_Callback(T_HTTP_SERVER *http)
{

int len;

/* Specify the “file” of contents, the size set to “len” */

HttpSendFile(http, file , len, “FILE NAME”, “text/plain’);

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 152 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

HttpSendResponse Send specified content

[(API]
ER ercd = HttpSendResponse(T_HTTP_SERVER *http, const char *str,
UW len, const char *type)

[Parameter]
T_HTTP_SERVER *http HTTP server information
const char *str Byte string of content to transmit
uw len Byte length of content to transmit
const char *type Content type name

[Return Value]
ER ercd Successful completion (E_OK) or error code

[Error Code]
E_PAR Wrong parameter is specified

(*http is NULL.)
[DESCRIPTION]

This API sends the dynamic content. Please only be called from this API function callback CGI.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 153 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

http_server_extcbk Callback function for extended operation
[(API]
ER ercd = http_server_extcbk(T_HTTP_SERVER *http, const T_HTTP_FILE *fp, UB evt)
[Parameter]
T_HTTP_SERVER *http HTTP server information
T_HTTP_FILE *fp Accessed content information
uB evt Occurrence event judgment flag
[Return Value]
ER ercd Successful completion (E_OK) or error code
[DESCRIPTION]

Callback function (callback for extended operation) is called from the HTTP server task. When you access the content
for which the extended operation flag is set from a Web browser, the callback function for extended operation is called.

The accessed content information is entered in fp. In addition, the following values are entered in the judgment flag evt.

e HTTPD_EXT_AUTH (Use HTTP authentication)

HTTP authentication is applied to the relevant content. The callback function is called when the value of the
Authorization header in the client request is in http-> hdr.auth or when http-> hdr.auth is NULL.

If http-> hdr.auth contains a value, check whether the user name / password (or digest value) of the value is correct in
the function. As a result, design it to return E_OK on success and non-E_OK on failure.

If http-> hdr. Is NULL, WWW- written in the authentication failure response in the function

Create Authenticate header information (specify realm or nonce, etc.).

e HTTPD_EXT_UHDR (Specify custom header)

Callback function is called before replying the content information to the web browser, and any HTTP header can be
added in the function. It does not apply to CGI.
(Applying this flag to CGI does not add a custom header)

Calling HTTP server APIs other than HttpSetContent () and APIs with waiting factors is prohibited in the callback
function. The callback function uses a stack of HTTP server tasks.
Increase the stack size of the HTTP server task as needed. If there are multiple server tasks, the processing in the

callback function must be reentrant.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 154 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

Usage example and explanation are described below.

Use Case

[net_cfg.c - Content registration department]
/

HTTP Content List
il
T_HTTP_FILE const content_list[] =

{

{"I", "text/html", index_html1, sizeof(index_htmI1), NULL, 0},

{"Imanage/", "text/html", manage_html2, sizeof(manage_htmI2), NULL, HTTPD_EXT_AUTH |
HTTPD_EXT_UHDR},

{"Isample.cgi", ", NULL, 0, sample_fnc, HTTPD_EXT_AUTH]},

{™ NULL, NULL, 0, NULL}
h

[Net_cfg.c — net_setup () HTTP server task starter]
{Omitted}

gHTTP_EXT_CBK = httpd_evt_callback; / * Extended operation callback registration * /
gHTTP_FILE = (T_HTTP_FILE *) content_list;

/ * Start HTTPd Task * /
sta_tsk (ID_HTTPD_TSK1, 0);

{Omitted}

[User source]
ER httpd_evt_callback (T_HTTP_SERVER * http, const T_HTTP_FILE * fp, UB evt)
{

T_HTTP_HEADER * hdr = & http-> hdr;

ER ercd;

ercd = E_OK;

switch (evt) {
case HTTPD_EXT_AUTH: / * HTTP authentication (basic) * /
if (hdr-> auth) {/ * with credentials * /
{Omitted} / * Since the value is Base64, decode processing is performed * /
{Omitted} / * Get username / password after decoding * /
ercd = (OK == validation)? E_OK: E_OBJ;
}
else {/ * Authentication failed * /
| * Create WWW-Authenticate header for response message * /
HttpSetContent (http, "WWW-Authenticate: Basic");
HttpSetContent (http, "realm =\" Secret Zone \ "\ r\ n");
}
break;
case HTTPD_EXT_UHDR: / * Custom header specification * /
HttpSetContent (http, "X-Frame-Options: DENY \ r\ n");

break;
}
return ercd;
}
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 155 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

[DESCRIPTION]
Extended operation callback function is called when the following conditions are met.
-The processing callback function is registered with http_server set extcbk ().
-A value is set in the ext member of the content list.
-Access the above content from a web browser.

In the example, the callback function is not called when accessing http://xxx.xxx.xxx.xxx/, and the callback function is
called when accessing other URLs.

Next, let's look at the processing inside the callback function. First, the callback function looks at the value of the flag

evt to determine which extended operation (authentication processing, custom header processing) it is.

When the flag evt is HTTP authentication processing (HTTPD EXT AUTH), authentication check processing is
performed when the value of hdr-> auth is other than NULL. The Authorization header value obtained from the browser
is entered in hdr-> auth. The values are decoded and analyzed to check the validity of the user name, password, and
digest value. (The user needs to handle BASE64 and MDS5 processing.) If successful, specify E_OK, otherwise specify
something other than E_OK as the return value.

If the authentication fails, the value of hdr-> auth is NULL and the callback is called. In this case, specify the WWW-
Authenticate header information. (Up to line feed code)

If the flag evt is custom header processing (HTTPD EXT UHDR), arbitrary header information can be added to the
end of the HTTP header prepared by the HTTP server task. Describe the header information that ends with a line feed

code.

If need to determine the file name or content type, refer to fp.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 156 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

HttpSetContent Addition of transmission buffer for HTTP server control information
[(API]
ER ercd = HttpSetContent(T_HTTP_SERVER *http, const char *str);
[Parameter]
T_HTTP_SERVER *http HTTP server information
const char *str Clear the buffer by specifying the character string to be added and
NULL
[Return Value]
ER ercd Number of additional bytes (= 0) or error code
[Error Code]
E_PAR Wrong parameter is specified

(*http is NULL.)

[DESCRIPTION]
This API adds a character string to the send buffer of HTTP server control information. Call this API only from the

callback function for extended operation and the callback function for CGI.

When using it in the callback function for extended operation, do not specify NULL in the argument of str. The
contents of the HTTP header created by the HTTP server application on the way will be cleared, and the operation will be

undefined.
HttpSetContentKpa Add HTTP Keep-Alive header to send buffer
[API]
ER HttpSetContentKpa(T_HTTP_SERVER *http);
[Parameter]
T_HTTP_SERVER “*http HTTP server information
[Return Value]
ER ercd Number of additional bytes (= 0) or error code
[Error Code]
E_PAR Wrong parameter is specified
(*http is NULL.)
[DESCRIPTION]

This API adds HTTP Keep-Alive header information to the send buffer of HTTP server control information. Call this
API only from the CGI callback function.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 157 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

HttpSetContentCookie Add Set-Cookie header to send buffer

[API]
ER HitpSetContentCookie(T_HTTP_SERVER *http,
const char *name, const char *val, const char *opt)

[Parameter]

T_HTTP_SERVER *http HTTP server information

const char *name Cookie name

const char *val Cookie name value

const char *opt Attribute specification buffer (optional)
[Return Value]

ER ercd Number of additional bytes (= 0) or error code
[Error Code]

E_PAR Wrong parameter is specified

(*http, *name, *val is NULL.)

[DESCRIPTION]

This API adds Set-Cookie header information to the send buffer of HTTP server control information. Call this API
only from the callback function for extended operation and the callback function for CGI.

If need to specify the cookie attribute, specify the attribute in the string format in the argument opt. Specify the
character string specified in opt in the format of {attribute name 1} = {value 1}. When specifying multiple attributes, use

a semicolon (;) to combine the attribute pairs into a character string.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 158 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

HttpSendBuffer Send specified buffer contents
[(API]
ER ercd = HttpSendBuffer(T_HTTP_SERVER *http, const char *str, UW len);
[Parameter]
T_HTTP_SERVER *http HTTP server information
const char *str Buffer to send
uw len Buffer length to send
[Return Value]
ER ercd Successful completion (E_OK) or error code
[Error Code]
E_PAR Wrong parameter is specified

(*http is NULL.)

[DESCRIPTION]
This API sends the send buffer of the HTTP server control information created by HttpSetContent () and the specified
buffer. If NULL is specified for the argument str, only the data remaining in the send buffer of the HTTP server will be
sent. Call this API only from the CGI callback function. The usage example is described below.

Use Case

ER HttpSendResponse (T_HTTP_SERVER * http, char * str, int len, char * type)
{
/ * Creating message header part * /
HttpSetContent (http, 0);
HttpSetContent (http, "HTTP / 1.1 200 OK \ r\ n");
HttpSetContent (http, "Content-Type:");
HttpSetContent (http, type);
HttpSetContent (http, "\ r\ n");
HttpSetContentLen (http, "Content-Length:", len);
HttpSetContentKpa (http);
HttpSetContent (http, "\ r\ n");

/ * Send message header and specified buffer (body) * /
HttpSendBuffer (http, str, len);

return E_OK;

/ * Callback function for HTTP server CGI (sample) * /
void user_cgi_callback (T_HTTP_SERVER * http)

{
VB contents [128];
net_strcpy (contents, "<html> <body>\r\ n");
net_strcat (contents, "<center> uNet CGl demo </ center>\r\n");
net_strcat (contents, "</ body> </ html>");
HttpSendResponse (http, contents, net_strlen (contents), "text / html");

}

R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 159 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.3.2 HTTP server sample

/* Definition of content */

const char index_html[] =

"<htmI>\

<title> uNet3 HTTP Server </title>\
<body>\

<h1>Hello World!</h1>\

</body>\

</htmI>",

/* Initialization of content list */

T HTTP_FILE const content list[] =

{
{"/", "text/html", index html, sizeof(index html), NULL},
{"", NULL, NULL, 0, NULL} /* terminal */

¥

/* Starting HTTP session */

static T HTTP_SERVER http serverl;

void httpd tsk1(VP_INT exinf)

{

/* Initialize the content list global pointer */
gHTTP _FILE =(T_HTTP_FILE*)content _list;

memset((char*)&http_serverl, 0, sizeof(http_serverl));
http _serverl.SocketID =ID_SOC HTTPI;

http server(&http _serverl);

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 160 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.4 DNS client

In DNS client, use UDP socket. UDP socket will be created by the below parameter.

ID protocol port timeout

send receive
ID_SOC_DNS UDP 0 5s 5s

(1) DNS Client Information
typedef struct t_dns_client {

uw ipa; / * DNS server IP address * /

char *name; / * Host name (for setting / reference) * /
uw *ipaddr; / * IP address (for setting / reference) * /
SID sid; / * DNS Socket ID (UDP) */

UH code: / * Request RR type * /

UB dev_num; / * Device number * /

uUB retry_cnt; /* number of retries */

} T_DNS_CLIENT;

Use this structure as an argument to the dns_query ext () API. Be sure to specify ipa, name, ipaddr, and sid. If not
specified, E_ PAR will be returned. You can specify the request type with code. At the moment, only the following
definition values can be specified. Otherwise, E NOSPT will be returned.

The device number (dev_num) and the number of retries (retry cnt) can be specified as required. If the number of
retries is not specified (0), it will not be retried. Retrying will perform retransmission processing when a reception

timeout occurs.

e DNS client RR definition value

#define RR_TYPE_A 1U Get an IP address

#define RR_TYPE_PTR 12U Get the host name

#define RR_TYPE_AAAA 28U Get an IPv6 address
(Separately, eForce TCP / IP stack uNet3 / IPv6 is
required)

Defined value in T DNS CLIENT :: code

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 161 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.4.1 DNS client API
dns_get_ipaddr Acquire IP address from host name

[Format]
ER ercd = dns_get_ipaddr(SID socid, UW dns_server, char *name, UW *ipaddr);

[Parameter]
SID socid UDP socket ID
uw dns_server IP address of DNS server
char *name Host name
uw *ipaddr IP address to acquire

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]

E_PAR Wrong parameter is specified

E_TMOUT No response from DNS server

E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ Unable to resolve IP address from host name

Example of use

UW ip;
ER ercd;
UW dns_server = ip_aton(“192.168.11.1");

dns_get_ipaddr(ID_SOC_DNS, dns_server, “TEST Server URL”, &ip);

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 162 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

dns_get_name Acquire host name from IP address
[Format]
ER ercd = dns_get_name(SID socid, UW dns_server, char *name, UW *ipaddr);
[Parameter]
SID socid UDP socket ID
uw dns_server IP address of DNS
char *name host name to acquire
uw *ipaddr IP address

[Return value]
ER ercd Successful completion (E_OK) or error code

[Error code]

E_PAR Wrong parameter is specified

E_TMOUT No response from DNS server

E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ Unable to acquire host name from IP address

Example of use

UW ip = ip_aton(“192.168.11.30");

ER ercd;

char host_name[256];

UW dns_server = ip_aton(“192.168.11.1”);

dns_get_name(ID_SOC_DNS, dns_server, host_name, &ip);

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 163 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

6. Network application

dns_query_ext Issuing DNS queries

[Format]

ER ercd = dns_query_ext(T_DNS_CLIENT *dc);

[Parameter]
T _DNS_CLIENT *dc

DNS client information

[Return value]
ER ercd

Successful completion (E_OK) or error code

[Error code]

E_PAR Wrong parameter is specified

E_TMOUT No response from DNS server

E_NOMEM Insufficient memory (exhausted network buffer)

E_OBJ Unable to acquire host name from IP address

E_NOSPT An unsupported RR was specified.
[DESCRIPTION]

An extended version API of dns get ipaddr () and dns_get name (). Compared to the API on the left, it is now

possible to specify a new device number (dc-> dev_num) to be sent and retry (dc-> retry_cnt) when a failure occurs.

Example of use

ER ercd;
T_DNS_CLIENT dc = {0};
char host_name[256];

dc.code = RR_TYPE_PTR;
dc.name = name;

dc.ipa = dns_server;
dc.sid =|D_SOC_DNS;
/ldc.dev_num =0;
/ldc.retry_cnt = 1;

ercd = dns_query_ext(&dc);

UW dns_server = ip_aton("192.168.11.1");

dc.ipaddr =ip_aton("192.168.11.30");

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 164 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.5 DHCP client extended

For the existing DHCP client, holds the lease on the resources of the state, such as IP, DHCP client extended version
information (RENEW), release (RELEASE), denial (DECLINE), a restart (REBOOT), an extension of these has been
enhanced to provide the function get INFORM).

(1) DHCP Client Information
typedef struct t_dhcp_client {

T_DHCP_CTL ctl /* Control Informatio */

uw ipaddr; /* IPaddress*/

uw subnet; /* Subnet Mask */

uw gateway; /* Gateway Address */

uw dhcp; /* DHCPserver address */

uw dns[2]; /* DNSAddress */

uw lease; /* Release time for DHCP Addless */

uw t1; /* Renewal DHCP address */

uw t2; /* Rebind time of DHCP address.*/

uUB macl6]; /* MAC addresss */

UH dev_num; /* Device number */

uB state /* Status of DHCP Clients */

SID socid; /* UDP with socket ID */

uB arpchk; /* Duplicate IP check */

T_DHCP_UOPT *uopt; / * DHCP option acquisition parameters * /
UB uopt_len; / * Number of DHCP option acquisition parameters * /
uB retry_cnt; /* number of retries */

} T_DHCP_CLIENT ;

This structure is intended to be used as an argument to the DHCP client API, is an extension of the host address
information structure. The same manner as described above, UDP socket ID number and device must be set by the user
application. Please refer to the DHCP client is the value to be set.

If you set the "ARP_CHECK ON" to check whether or not duplicate IP, you do the duplicate check using the ACD
feature for the IP, which is leased from the DHCP server.

If want to acquire arbitrary option information (*) from the DHCP server, specify the DHCP option acquisition
parameter. If you specify a value, the specified option code is added to the Parameter Request List of the DHCP
DISCOVER / REQUEST / INFORMATION message, and an attempt is made to get the option from the response
message. Specify 0 if it is not required.

* The value format that can be acquired is either binary (1,2,4 bytes), character string, or address.

It is possible to retry the request if there is no response. If the number of retries (retry_cnt) is not specified (0), retries

will be performed 3 times. Please specify if necessary.

This structure is used, even when I update the IP address that you set IP address at the time of acquisition. We cannot

change the DHCP client state and control information in the application for that.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 165 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

e DHCP client status definition value

#define DHCP_STS_INIT
#define DHCP_STS_INITREBOOT
#define DHCP_STS_REBOOTING
#define DHCP_STS_REQUESTING
#define DHCP_STS_BOUND
#define DHCP_STS_SELECTING
#define DHCP_STS_REBINDING
#define DHCP_STS_RENEWING

~N o g b~ WON -~ O

Defined value in T DHCP_CLIENT :: state

(2) DHCP acquisition option information
typedef struct t_dhcp_uopt {
UB code; / * DHCP option code * /
uUB len; / * Optional element size / piece * /
uB ary; / * Number of optional elements * /
UB flag; / * Element discrimination / status flag * /
VP val; / * Element storage destination pointer * /
} T_DHCP_UOPT;

This structure is used to get arbitrary optional information from the DHCP server. Code number of the option you want
to get in code, size per value of the target option in len, number of elements of the target option in ary, flag value setting
described later in flag, variable where the value is actually stored in val Specify each array. An example of setting options

is shown below.

Time Offset(2) Host Name(12) Log Server(7)
code; 2 12 7
len; 4 1 4
ary; 1 Buffer size 1... n (when multiple
acquisitions)
flag; DHCP_UOPT_BIN DHCP_UOPT_STR DHCP_UOPT_IPA
val; NT type variable point Buffer pointer UW type variable / array pointer

After specifying the value of this structure in the DHCP option acquisition parameter of the T DHCP CLIENT
structure, call either dhep bind () or dhep_inform (). If the response message contains the target option, the acquired
value is entered at the pointer of val. If the value can be obtained, the DHCP_UOPT_STS SET bit value is set in flag.

Next, the actual usage of the T DHCP_UOPT structure is described.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 166 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.5.1 DHCP client extended API
dhcp_bind Get DHCP Lease Information
[API]
ER ercd = dhcp_bind(T_DHCP_CLIENT *dhcp);
[Parameter]
T_DHCP_CLIENT *dhcp DHCP Client Information
[Return Value]
ER ercd Success (E_OK) or Error Code
[Error Code]
E_PAR *dhcp is NULL, or social is not specified
E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ Incorrect Socket status (No create the socket)
E_SYS Address conflict another host when the IP address is assigned.
E_TMOUT Response is delay from DHCP server or the DHCP server doesn't exist.
[DESCRIPTION]

This API provides the same functionality as the () API dhcp_client traditional.

To verify the IP address that you get that you do not have overlap with other hosts, we set up a check for duplicate IP
ARP_CHECK ON the presence of DHCP client information of the argument. If a duplicate IP address is detected at this
time, to send a message to the DHCP server DHCP_DECLINE, API will return the E_SYS.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 167 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

dhcp_renew Renewal DHCP Lease
[(API]
ER ercd = dhcp_renew(T_DHCP_CLIENT *dhcp);
[Parameter]
T_DHCP_CLIENT *dhcp DHCP Client Information
[Return Value]
ER ercd Success(E_OK) or Error Code
[Error Code]
E_PAR *dhcp is NULL, or social is not specified
E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ Incorrect DHCP client, or request denied by DHCP server.
E_SYS Address conflict another host when the IP address is assigned.
E_TMOUT Response is delay from DHCP server or the DHCP server doesn't exist.
[DESCRIPTION]

This API to extend the validity period of IP address obtained from the DHCP server. The argument specifies the
DHCEP client information obtained by dhcp_bind ().

This API should be called (t1) within the validity period. Lifetime is measured by the application using the timer or
control task.

This feature also includes the ability RENEW REBIND. The difference between the two is only to send broadcast
messages to send unicast REQUEST. If you cannot receive the ACK after sending a REQUEST message to the DHCP

server at the beginning, we perform a broadcast transmission immediately.

To verify the IP address that the extension does not have an overlap with other hosts, we set up a check for duplicate IP
ARP CHECK ON the presence of DHCP client information of the argument. If a duplicate IP address is detected at this
time, to send a message to the DHCP server DHCP_DECLINE, API will return the E_SYS.

Only the RENEW function is performed. If you want to make the operation the same as the R-IN32M3 TCP/IP stack,
please call dhcp_rebind () after checking the error of this APIL.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 168 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

dhcp_rebind Application for reassignment of lease information
[(API]
ER ercd = dhcp_rebind(T_DHCP_CLIENT *dhcp);
[Parameter]
T_DHCP_CLIENT *dhcp DHCP Client Information
[Return Value]
ER ercd Success(E_OK) or, Error Code
[Error Code]
E_PAR *dhcp is NULL, or social is not specified
E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ lllegal DHCP client information or DHCP server has refused the request.
E_SYS The assigned IP address conflict with another host.
E_TMOUT Delayed response from the DHCP server, or DHCP server does not exist.
[DESCRIPTION]

This API requests reassignment of the IP address obtained from the DHCP server. For the argument, specify the DHCP
client information obtained by dhcp_bind ().

Normally, call this API after T2 hours have passed. The validity period is measured by the application using a timer
and task control.

To verify that the extended IP address is not duplicated with other hosts, set ARP_CHECK ON for the presence or
absence of IP duplicate check in the DHCP client information argument. If duplicate IP addresses are detected at this
time, a DHCP_DECLINE message is sent to the DHCP server, and the API returns E_SYS.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 169 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

dhcp_reboot DHCP Client Reboot

[(API]
ER ercd = dhcp_reboot(T_DHCP_CLIENT *dhcp);
[Parameter]
T_DHCP_CLIENT *dhcp DHCP Client Information
[Return Value]
ER ercd Success(E_OK) or, Error Code
[Error Code]
E_PAR *dhcp is NULL, or social is not specified, or there is no address available.
E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ lllegal DHCP client information or DHCP server has refused the request.
E_SYS The assigned IP address conflict with another host.
E_TMOUT Delayed response from the DHCP server., or DHCP server does not exist.
[DESCRIPTION]

This API is reusing the IP resource to which the client was previously used, API is used to verify its legitimacy in
DHCEP server. If you do not, such as when you remove and insert the LAN cable or if the LAN interfaces in the pause is
activated again, and security that are part of the same network before and after, the DHCP server for the IP resource that
has been previously used, for example notice.

The argument specifies the DHCP CLIENT INFORMATION dhcp_bind acquired by ().

If an ACK is not received after sending REQUEST message, API This is an error, or if it receives a DHCPNAK.
To verify the IP address that you notice that you do not have overlap with other hosts, we set the duplicate IP

ARP CHECK ON to check whether or not the argument of the DHCP CLIENT INFORMATION. If a duplicate IP
address is detected at this time, to send a message to the DHCP server DHCP_DECLINE, API will return the E_SYS.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 170 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

dhcp_release Release DHCP Lease Information
[(API]
ER ercd = dhcp_release(T_DHCP_CLIENT *dhcp);
[Parameter]
T_DHCP_CLIENT *dhcp DHCP CLIENT INFORMATION
[Return Value]
ER ercd Success (E_OK) or Error Code
[Error Code]
E_PAR *dhcp is NULL, or social is not specified
E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ lllegal DHCP client information
E_TMOUT Timeout send DHCPRELEASE message
[DESCRIPTION]

This API will notify the DHCP server to release the resources when it no longer want to use the IP address obtained
from the DHCP server.
The argument specifies the DHCP information obtained dhcp bind().

dhcp_inform Get DHCP Options

[API]
ER ercd = dhcp_inform(T_DHCP_CLIENT *dhcp);
[Parameter]
T_DHCP_CLIENT *dhcp DHCP CLIENT INFORMATION
[Return Value]
ER ercd Success (E_OK) or Error Code
[Error Code]
E_PAR *dhcp is NULL, or social is not specified, or there isn’t available of the address.
E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ No IP address has been set for the host.
E_TMOUT Delay DHCP server response, or no existence DHCP server.
[DESCRIPTION]

This API to get the information other than the IP address from the DHCP server. Set the static IP address, for example,
the address of the DNS server is used, for example, if you want to get from the DHCP server.
To the argument set DHCP CLIENT INFORMATION (for TCP/IP stack) only socket ID and device number of the

interface.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 171 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.5.2 DHCP client extended information

DHCP Client Extended Information

ER ercd;
T_DHCP_CLIENT dhcp;
T_DHCP_UOPT dhcp_uopt [3];
INT uo_i4;
UINT uo_u4;
VB uo_buf [64];

/ * Setting the T_DHCP_UOPT structure * /
net_memset (& dhcp_uopt [0], 0, sizeof (dhcp_uopt));

/ * Time offset (2), Host Name (12), Log Server (7) * /
SET_DHCP_UOPT_BIN4 (dhcp_uopt [0], 2, & uo_i4);
SET_DHCP_UOPT_STR (dhcp_uopt [1], 12, uo_buf, sizeof (uo_buf));
SET_DHCP_UOPTS_IPA (dhcp_uopt [2], 7, uo_u4, sizeof (uo_u4));
/* {T_DHCP_CLIENT structure settings} * /

dhcp.uopt = dhcp_uopt;

dhcp.uopt_len = 3;

/*{... T_DHCP_CLIENT structure settings ...} */
ercd = dhcp_bind (& dhcp);
if (E_OK == ercd) {
for (ercd = 0; ercd <sizeof (dhcp_uopt); ++ ercd) {
if (dhcp_uopt [ercd] .flag & DHCP_UOPT_STS_SET) {
/ * Performs processing when options are acquired * /
/ * dhcp_uopt [ercd] .val pointer has a value * /

Source commentary

In the above example, it is set to get the options of TimeOffset (2), HostName (12), LogServer (7). Macros are used to
simplify the process. Note that you need a variable to store the value of the target option, separate from the variables in
the T DHCP_UOPT structure. The value of the option acquired after executing the DHCP client API for information
acquisition (here, dhep_bind ()) is stored in the above variable.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 172 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

6. Network application

e T _DHCP_UOPT element discrimination / status flag definition

/ * User set value * /

#define DHCP_UOPT_STR
#define DHCP_UOPT_IPA
#define DHCP_UOPT_BIN

/ * User reference value * /
#define DHCP_UOPT_STS_SET

Defined value in T DHCP_UOPT :: flag

e T DHCP_UOPT setting macro

0x80
0x40
0x20

0x01

Options are in string format
Options are address format
Options are in binary format

Option value set

/ * For when the acquisition value of the option is singular * /

SET_DHCP_UOPT_BIN1(_uopt_,_code_,_pval_)
SET_DHCP_UOPT_BIN2(_uopt_,_code_,_pval_)
SET_DHCP_UOPT_BIN4(_uopt_, code_, pval_)
SET_DHCP_UOPT_IPA(_uopt_,_code_,_pval_)

For 1 byte binary
For 2-byte binaries
For 4-byte binaries
For address

SET_DHCP_UOPT_STR(_uopt_,_code_,_pval_,_len_) For strings

/ * For multiple option acquisition values * /
SET_DHCP_UOPTS_BIN1(_uopt_,_code_, pval_, _len_) For 1 byte binary
SET_DHCP_UOPTS_BIN2(_uopt_,_code_, pval_,_len_) For 2-byte binaries
SET_DHCP_UOPTS_BIN4(_uopt_,_code_,_pval_,_len_) For 4-byte binaries

SET_DHCP_UOPTS_IPA(_uopt_, code_, pval_, len)

For address

Auxiliary macro for setting the value of the T DHCP_UOPT structure. Specify the following as macro arguments.
uopt: The entity of the T DHCP_UOPT structure, code_: Option code,

pval: Pointer for storing option values, len : Number of elements that can be acquired (number of elements of

_pval)

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 173 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.6 Ping Client

Ping client sends an ICMP echo request to any destination. If there is an echo response from the other party, you can

see that communication with the IP address is possible.

(1) PING client control information

typedef struct t_ping_client {

SID sid; / * ICMP socket ID */

uw ipa; / * Destination IP address * /

TMO tmo; [* Waiting for response timeout (ms) * /
UH devnum; / * Device number * /

UH len; / * Packet size (bytes) * /

} T_PING_CLIENT ;
Set the required information in this structure and pass it as an argument of the PING client API.
The Ping client uses the ICMP socket to send and receive.

Create a socket with cre_soc as follows: Set the port number to 0. Assign the ID of the created socket to the sid of
T PING_CLIENT of the structure.

Create ICMP socket

T_NODE node;

node .num = 1; / * Network device number * /
node .ipa = INADDR_ANY;
node .port = 0; / * Port should 0 for ICMP * /
node .ver = |IP_VER4;
sid = soc_cre (IP_PROTO_ICMP, & node);
if (sid <= 0) {

return E_NOMEM,;

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 174 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.6.1 Ping Client API
ping_client ICMP Echo (Transmite Request and Receive Response)
[(API]
ER ping_client(T_PING_CLIENT *ping_client);
[Parameter]
T_PING_CLIENT *ping_client Ping transmit information
[Return Value]
ER ercd Success (E_OK) or Error Code
[Error Code]
E_PAR Specified the incorrect Parameter
E_TMOUT No response from remote or failed address resolver
E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ Other errors
[DESCRIPTION]

Ping the destination IP address. This function keeps waiting until a response is returned from the destination. If there is
no response from the destination, a timeout (E_ TMOUT) error is returned.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 175 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.7 SNTP Client

SNTP client get the (number of seconds starting from 1/1/1900) time from NTP (NTP) server time on the network
using the NTP packet.

(1) SNTP client control information

typedef struct t_sntp_client {

SID sid; /* Socket ID */

uw ipa; /* SNTP server IP address */

TMO tmo; /* Timeout setting */

UH devnum; /* Device number */

UH port; /* port number */

UB ipv; /* IP version */

UB stt; /* Received data Stratum field value */

} T_SNTP_CLIENT ;

Set the required information in this structure and pass it as an argument of the SNTP client APL.

e Device number

For the device number, specify the network device used by the SNTP client. If ‘0’ is specified, the default network device
will be used. (Normally, set 0.)

e SNTP server IP address

Specify the IP address of the connection destination SNTP server.

e Time-out setting

Specify the timeout period for receiving the response packet from the SNTP server.

e port number

Specify when changing the connection destination port number of the SNTP server. Normally, enter 0.

e |P version

Specify the IP version.

e Received data Stratum field value

If sntp_client () completes normally, the value of the Stratum field of the received data will be entered.
The Stratum field usually has a value between 0 and 15, where 0 is time asynchronous or time source unknown and 1 to
is the clock hierarchy level. (1 is the route hierarchy) If there is a server where the value of the Stratum field is 0 until the

correct time response, judge with this value.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 176 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.7.1 SNTP Client API
sntp_client Get NTP time
[(API]
ER ercd = sntp_client(T_SNTP_CLIENT *sntp_client, UW *sec, UW *fra);
[Parameter]
T_SNTP_CLIENT *sntp_client Information of SNTP client
uw *sec NTP Time (second)
uw *fra NTP time (fractional seconds)
[Return Value]
ER ercd Success (E_OK) or Error Code
[Error Code]
E_PAR Specified the illegal parameter
E_TMOUT No response from remote or failed address resplver
E_NOMEM Insufficient memory (exhausted network buffer)
E_OBJ Incorrect Information of SNTP client
[DESCRIPTION]

This API gets the NTP time from SNTP server you set up in the argument. To set the SNTP server, specify the IPv4
address and port number.
In the SNTP client uses the UDP socket. If TCP/IP stack argument should be set to the socket ID available.

This API returns the E_OK if you can successfully get the time NTP.
NTP time is shown in the sec and fra arguments at this time. Because you are starting from 1/1/1900, NTP time and the
conversion to Unix time (JST) UTC must be calculated by the caller.

Use Case

T_SNTP_CLIENT sc = {0};
UW sec, fra;
ER ercd;

sc.sid = ID_SOC_SNTPC;
ercd = sntp_client (& sc, & sec, & fra);
if (ercd == E_OK) {

/ * UnixTime conversion * /

sec-= 2208988800;

/ * Millisecond precision integer representation * /
fra = ((fra >> 16) * 1000) >> 16;

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 177 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

6.8 String Library

TCP/IP stack system provides a standard library of String so that it is not dependent on the compiler. Network

applications you can use to provide these functions.

net_atoi Numerical conversion of character string to int type
[API]
int net_atoi(const char *str);
[Parameter]
const char *str Target character string
[Return Value]
int Result
[DESCRIPTION]

Converts the first part of the string specified by str to an int type integer. Returns 0 if conversion is not possible.

net_atol Numerical conversion of character string to long type
[API]
long net_atol(const char *str);
[Parameter]
const char *str Target character string
[Return Value]
Long Result
[DESCRIPTION]

Converts the first part of the string specified by str to a long integer. Returns 0 if conversion is not possible.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 178 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

net_itoa String conversion of int type number
[(API]
char® net_itoa(int num, char *str, int base);
[Parameter]
int num Target numerical value
char *str Conversion result string
int base Conversion radix
[Return Value]
char* Conversion result string
[DESCRIPTION]

A non-standard C library. Converts the number indicated by num to a string with the radix of base and returns the

result in str and the return value.

net_strncasecmp Compare String (case-insensitive letter)
[API]
int net_strncasecmp(const char *str1, const char *str2, SIZE len);
[Parameter]
const char *str1 String to be compared
const char *str2 String to be compared
SIZE len Length of compare
[Return Value]
int Result
[DESCRIPTION]

The results were compared with the character code, it will return 0 if str1 = str2. The return value is positive if str1>
str2, and is negative if strl <str2.
I arrived at the end of either string number of characters until it reaches the comparison is to be compared. By this

function equate the case of the letters.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 179 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

net_strcmp String Compare

[(API]
int net_strcmp(const char *str1, const char *str2);
[Parameter]
const char *str1 String to be compared
const char *str2 String to be compared
[Return Value]
int Result of Compare
[DESCRIPTION]

The results were compared with the character code, it will return 0 if strl = str2. The return value is positive if str1>
str2, and is negative if strl <str2.

Reach the end of the string until one of them to be compared

net_strncmp String Compare

[(API]
int net_strncmp(const char *str1, const char *str2, SIZE len);
[Parameter]
const char *str1 String to be compared
const char *str2 String to be compared
SIZE len Length of compare
[Return Value]
int Result of Compare
[DESCRIPTION]

The results were compared with the character code, it will return 0 if strl = str2. The return value is positive if str1>
str2, and is negative if strl <str2. Comparison is made for the number of comparison characters or until the end of any
character string is reached.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 180 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

net_strcpy String Copy
[(API]
char* net_strcpy(char *str1, const char *str2);
[Parameter]
char *str1 Address of copy destination string
const char *str2 Address of copy source string
[Return Value]
char * Address of copy destination string
[DESCRIPTION]

This API is to copy of the srt2 to the end of str1 (NULL).

net_strlen Get String Length

[(API]
SIZE net_strlen(const char *str);

[Parameter]

char *str String
[Return Value]

SIZE String length

[DESCRIPTION]
Gets the number of characters up to (NULL) end of str. (NULL is not included)

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 181 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

net_strncat String concatenation

[(API]
char® net_strncat(char *str1, const char *str2, SIZE len);

[Parameter]
char *str1 Address of destination string
const char *str2 Address of source string
SIZE len Length of string

[Return Value]
char* Address of destination string

[DESCRIPTION]

Copies up to the number of concatenated characters of str2 or the end, starting from the end (NULL) of the

concatenation character string strl.

net_strcat String concatenation
[API]
char* net_strcat(char *str1, const char *str2);
[Parameter]
char *str1 Address of destination string
const char *str2 Address of source string
[Return Value]
char* Address of destination string
[DESCRIPTION]

Copy to the end of the str2 starting at (NULL) coupling the end of the destination string str1.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 182 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

net_strchr Search Character

[(API]
char* net_strchr(const char *str, int ch);

[Parameter]
const char *str Search target string
int ch Search character

[Return Value]
char * Address where the search string of the search target string appears

[DESCRIPTION]
Searches whether the search character ch exists from the beginning to the end (NULL) of the search target character

string str. If the search character exists, its start address is returned, and if it does not exist, NULL is returned as the

return value.

net_strstr Search String

[API]
char* net_strstr(const char *str1, const char *str2);
[Parameter]
const char *str1 Search target string
const char *str2 Search string
[Return Value]
char * Address where the search string of the search target string appears
[DESCRIPTION]

Searches if the search string str2 exists from the beginning to the end (NULL) of the search target string strl. If the
search string exists, its start address is returned, and if it does not exist, NULL is returned as the return value.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 183 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 6. Network application

net_strcasestr Character string search: Uppercase and lowercase letters are identified

[(API]
char* net_strcasestr(const char *str1, const char *str2);

[Parameter]
const char *str1 Search target string
const char *str2 Search string

[Return Value]
char * Address where the search string of the search target string appears

[DESCRIPTION]

Searches if the search string str2 exists from the beginning to the end (NULL) of the search target string strl. If the
search string exists, its start address is returned, and if it does not exist, NULL is returned as the return value.

This function equates uppercase and lowercase letters.

net_strncpy N-character copy of a string

[API]
char” net_strncpy(char *str1, const char *str2, SIZE len);

[Parameter]
char *str1 Address of copy destination string
const char *str2 Address of copy source string
SIZE len Number of copy characters

[Return Value]
char * Address of copy destination string

[DESCRIPTION]

Copies up to the end (NULL) or len (number of copy characters) of the copy source character string str2 to strl.

If len is less than the length of str2, only the len character is copied and no terminating character is added to the len + 1
character of strl.

If len is greater than the length of str2, the string after the end of str2 is padded with NULL up to the length of len.

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 184 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

7. Tutorial by sample application

In this chapter, the way to run the TCP/IP stack sample application is showed, and the behavior of it is confirmed.

71 Descriptions of sample software

“uNet3_sample” under the directory “Project” is used. This sample software lets us confirm HTTP server.

e Web server
LED flashing period can be changed by 100 msec unit from the Web browser.

Please refer to 2.3 Directory and file organization for a list of files included in sample software. And please note that
R-IN32 TCP/IP stack is need to merge to driver and middleware sample program.

7.2 Hardware connection

Please check file DDR_ETH_CFG.h.
If macro USE_ETHSW is set to 0, please use the R-IN32M4-CL3 board’s RJ45 PORTO. See following figure.

PC
USB
4)
AC-DC adapter 2) USB
Input : AC 100 - 240V cable
Output : DC 5V - 3A
Debugger
o (1)
p Ethernet
= cable
=
== Ethernet
port
Fig. 7.1 Physical port connection for sample application
R18UZ0079EJ0100 Rev.1.00 RENESAS Page 185 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

7.3 Board IP address setting

There are two options for setting the IP address. Either use a fixed IP address, or let the LAN network DHCP
controller set it.

7.3.1 Setting for use a fixed IP address
Please set according to following procedure.

(1) Set DHCP_ENA to 0 in net_sample.c.

(2) Set desired server network address setting in net_cfg.c. Example is shown in Fig. 7.2.

Define Local IP Address

T_NET_ADR gNET_ADR]] = {

{
0x0, /* Reserved */
0x0, /* Reserved */
0xC0A80164, /* 1P address (192.168. 1.100) */
0xCO0A80101, [* Gateway (192.168. 1. 1)*/
OxFFFFFFOO, /* Subnet mask (255.255.255. 0) */
}

L

Fig. 7.2 The example setting of IP address (in case IP address is 192.168.1.100)

(3) Your PC’s IP-address need to be in the same domain as the R-IN32 board. (Please also refer next page as detail
procedure.)
In this example we will use:
Subnet mask: 255.255.255.0.
PC IP-address: 192.168.1.101.

This is so that server and client are in the same domain.

(4) Skip next section “7.3.2 Setting for use DHCP ”.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 186 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

7. Tutorial by sample application

cf- How to set the PC IP-address (not using DHCP)
+ Open the network connections list.

In Windows7: Control panel->Network and Sharing Center->Change adapter settings.

File Edit Yiew Tools Advanced Help

L-'. Wireless Metwark Connection
S PERESASALCOM
dﬂ Intel(R) Centrino(R) Advanced-M ..,

Organize » Disable this network device = 8=
L"'. Local Area Connection l: Lacal Area Connection 2
== _ Unidentified network - Disabled
T TurinGAT-Intel PCI Ethernet Adap.., @ Cisco Systerns VPN Adapter for ..,

litem selected

+ Double-click (or right-click) on the Local Area Connection, then select "Properties".

tatus
General

Connection

1Pv4 Connectivity: Mo Internet access
1PvE Connectivity: Ho network access
Media State: Enabled
Duration: 02:21:20
Speed: 100.0 Mbps

Activity
Sent — L! —— Received
v
Biytes: 01,35 | &6, 136
[Eiproperties | [Ejosable | [Diagnose |

Close

+ Select TCP/IPv4, and push the Properties button.

Networking | Sharing

Connect uging:

8F TwinCAT-Intel PCI Ethermet Adapter (Gigabit)

Thiz connection uzes the fallowing items:

9% Clignt for Microzoft Networks

gDeterministic Nebwork Enhancer

BQDS Packet Scheduler

gFile and Printer Sharing for Microsoft Metworks
W] o TwinCAT Etheret Pratocol

W - Intemet Protocol Version & [TEP;’IF’VE]

Y | 1temet Prot

< |

Install... Uninstall

D ezcription

Tranzmizzion Control Protocol/Internet Pratacol. The default
wide area network protocal that provides communication
across diverse interconnected networks,

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 187 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

7. Tutorial by sample application

Set IP-address to 192.168.1.101, and sub net mask to 255.255.255.0

General

‘You can get IP settings assigned autaratically iF wour network supports
this capability. Otherwise, wou need to ask vour network administrator

for the appropriate IP settings.

() Obtain an IP address aubomatically

(@ Use the Following 1P address:

IP address: 192 . 165 .

Subnet mask: 255 | Z55 .

Default gateway:

Obkain DNS server address automatically
(@ Use the Following DNS server addresses:

Preferred DNS server:

Alkernate DS server:

[|validate settings upon exit

Done.

7.3.2 Setting for use DHCP function

[ok

] [Cancel

|

When DHCP client is enabled, IP address is defined automatically by DHCP server. In this case, UDP socket for
DHCEP is also added automatically.

Please set according to following procedure.

(1) Set DHCP_ENA to 1 in net_sample.c.
(2) Connect the LAN cable to port 1
(3) Connect the LAN cable to the PC.

Note If user uses EWARM evaluation version which is size limited 32KB and set DHCP_ENA to 1, the

sample project might not be able to compile because of size limitation.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 188 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

7.4 Demonstration

741 Webserver

In this example we will use the IAR project “uNet3 _sample”.
Please execute the following procedure.

1. Compile, download, and run application.
2. Open a web browser in PC (client),

3. Enter into the URL field http://192.168.1.100 (or http://192.168.1.100:80 , but socket is default 80 for http).

If the board is running the project above, you should see a webpage from the R-IN32 like Fig. 7.3 .
If you have problems getting or seeing anything in the browser, you may need to restart the code in AR, and/or get rid
of breakpoints that cause timeouts.

[192.168.1.100 x =

< O @ A tF¥1UT4RELL | 192.168.1.100 A = L

R-IN32M4 Network Sample Application

LED Blink
e lin 100 msec [[10 | |ren]
Interval
Ping Remote Address
[192.16811 | |[PING|
Request (IPv4)
Network SNTP Server
. [133.243.238243| || SNTP)
Time (IPv4)
Host Name |japan.renesas.co|
Resolver DNS Server [DNs |
[8.3.4.4 |
(IPv4)
Powered by eForce Co., Ltd.
Fig. 7.3 The result of sample application (HTTP server)
R18UZ0079EJ0100 Rev.1.00 RENESAS Page 189 of 211

Aug 31, 2021

http://192.168.1.100/
http://192.168.1.100/

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

7.4.2 Control by the MAC controller

In this example, we will use the sample application “uNet3 _mac”. Follow the procedure below.

1. Compile and download the program and run the application.

2. Enter the commands to operate the MAC controller from the serial console.

The command input is connected through the USB serial port and starts the terminal software.

3. Check the operation by command execution.

By implementing the project through the above procedure, you will be able to check the host IP address, change the
mode of the PHY layer, and so on.

Setting up the terminal software
» Click the Setup tab and select Serial port

. Tera Term - [disconnected] VT EI@
File Edit Control Window Help

Terminal...

Window...

Font...

Keyboard...

Serial port... L\\)
Proxy...

S5H...

SSH Authentication...
SSH Forwarding...
S5H KeyGenerator..
TCP/IP...

General...

Additional settings...

Save setup...
Restore setup...
Setup directory...

Load key map...

Set up the serial port as shown below (the port setting depends on the PC you are using)

Tera Term: Serial port setup @

Port: [com1 - l ==

Baud rate: 115200 -

Data: |8 bit v| | Cancel ‘
Parity: |none v|

Stop: 1 bit - | Help ‘
Flow control: |n0ne -|

Transmit delay
0 msecichar 0 msecline

If the connection is successful, the following prompt will appear.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 190 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

Description of available commands
ip:Displays the IP and MAC addresses of the host.
phy:Changes the mode of the PHY layer (speed, duplex, and auto-negotiation).

view: Displays the mode of the PHY layer (speed, duplex, link state, and auto-negotiation).
mac:Dynamically sets the reception filtering of MAC addresses.

rx:Selects or deselects dump output of Ethernet frames that are received.

tx:Sends Ethernet frames as desired.

?:Displays the list of commands.

Fig. 7.4 Example Result of Execution by the Controller (ip)

Fig. 7.5 Example Result of Execution by the Controller (phy,view)

*Duplex? HALF(0)/FULL(1) — Change the type of communications.
FULL (full-duplex): The type of communications where data are transferred in both directions at the
same time.
HALF (half-duplex): The type of communications where data are only transferred in one direction at a
time so that data flow back and forth between two devices.
*Speed? — Change the speed of communications (unit: Mbps).
*Auto nego? NO(0)/YES(1) — Switch to auto-negotiation.
This function allows the automatic setting of communications to proceed
with the optimal settings at the time of connection.
*PHY channel? 1/2 — Switch the port for which the mode is to be changed.
PHY channel 1 = PHY port 0
PHY channel 2 = PHY port 1

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 191 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

R-
FF_FF FF FF FF FF

o] &l

Fig. 7.6 Example Result of Execution by the Controller (rx) * Example of ping execution from the R-IN32

Enable raw frame reception? NO(0)/YES(1) — Switch to the display of data received by the R-
IN32.

Protocaol Lerath

upp 1514

Destination

Mo Time Source

1 8. 6a8680 192.168.1.168 1.1.1.1

Frame 1: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) or
Ethernet II, Src: 12:34:56:78:%a:bc (12:34:56:78:9%a:bc), Dst: Woonsang 84:85:
Internet Protocel Version 4, Src: 192.168.1.18@, Dst: 1.1.1.1

User Datagram Protocol, Src Port: 108 (180), Dst Port: 180 (108)

Data (1464 bytes)

Fig. 7.7 Example Result of Execution by the Controller (tx)
Upper half: Controller Lower half: Packet capture

Note: For data validation, use packet capture software.

Input destination MAC address[0 to 5] in hex : — Set the destination MAC addresses.
Input destination IP address : — Set the destination IP address.
*Input UDP port(Local/Remote) : — Set the port for data transfer.

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 192 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

7. Tutorial by sample application

74.3 BSD socket

In this example, we will use the sample application “uNet3 bsd”. Follow the procedure below.

1. Compile and download the program and run the application.
2. The command input is connected through the USB serial port and starts the terminal software.
3. Check the operation by command execution.

By implementing the project through the above procedure, you will be able to run the API of the BSD socket and

check the operation through the debugging console.

Note: Checking the operation will require a separate socket on the PC (client) side to match the socket generated by the

R-IN32.

The commands to be supported are as follows.

[BSD socket commands]

socket Create a socket.

bind Name a socket.

connect Connect the socket.

listen Listen for connections on a socket.

accept Accept a connection to the socket.

send Send a message to the socket.

sendto Send a message to a socket at a specific address.
recv Receive a message from the socket.

recvirom Receive a message from the socket at a specified address.
select Monitor changes to one or more file descriptors.
shutdown Shut down part of a full-duplex connection.
close Close the socket.

getsockopt Get options for the socket.

setsockopt Set socket options.

getsockname Get the name of the socket.

getpeername Get the name of the peer connected to a socket.
ioctl Control a device.

[Other commands]
netstat Display a list of open sockets.

? Display a list of commands.

Notes:- For the overview of the BSD socket, refer to 2.1.19, Socket.

- For how to set up the terminal software, refer to 7.4.3, Control by the MAC controller.

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 193 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

7.4.3.1 Transfer of packets through the UDP socket

Ma Ti Source Destination Frotacal Length
#1 1. 192.168.1.161 192.168.1.100 uDP 46
W2 2 - 192.168.1.10@ 192.168.1.181 upp 142

Frame 1: 46 bytes on wire (368 bits), 46 bytes captured (368 bits
Ethernet II, Src: Buffalol 8d:15:91 (cc:el:d5:8d4:15:91), Dst: 12:
Internet Protocol Version 4, Srec: 192.168.1.181, Dst: 192.168.1.1
User Datagram Protocol, Src Port: 18@ (10@), Dst Port: 18@ (108)

Fig. 7.8 Example of Communications through UDP
Upper half: ControllerLower half: Packet capture

UDP reception
1. Create a socket.
“socket”: Create a socket.Note: Specify SOCK_DGRAM for the UDP socket.
type? (6:SOCK_STREAM, 17:SOCK_DGRAM, 0:SOCK RAW) — Type of communications
17:SOCK_DGRAM: Communications which use connection-less UDP

Note: The return value of “# func_success ->” is the socket number of the socket that was created.
2. Set the IP address and port to bind to.

“bind”: Name a socket.
*sockfd — Input the name of the target socket.
*local-addr.
ip — Set the IP address.
port — Set the port.

3. “recv”: Data reception*1
ssockfd — Input the name of the target socket.

sbuffer size(int, MAX=1024) — Input the size of the reception buffer.
UDP transmission

1. Specify the destination address for the data.

“sendto”: Set the destination IP address and port, and send data corresponding to the specified size of the
buffer.*2

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 194 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

7.4.3.2 Creating a TCP client through the TCP socket

Mo Tima Source Dastination Protocal Langth Inba
. 1 8. ea0an 192.168.1.181 192.168.1.16@ TCP 58 53392 + 188 [PSH, A
#1 2 B.081975 192.168.1. 188 192.168.1. 181 TCP 68 188 - 53392 [ACK] 5
o 3 9.967654 152.168.1.188 152.168.1.181 TCP 154 188 - 53392 [PSH, A
4 18.176763 192.168.1.181 192.168.1.18@ TCP 54 53392 -+ 108 [ACK] S

Fig. 7.9 Example of Communications through TCP (client side)
Upper half: ControllerLower half: Packet capture

1. Create a socket.
“socket”: Create a socket.Note: Specify SOCK STREAM for the TCP socket.
stype? (6:SOCK_STREAM, 17:SOCK_DGRAM, 0:SOCK_RAW) — Type of communications
6:SOCK_STREAM: Communications which use connection TCP

Note: The return value of “# func_success ->” is the socket number of the socket that was created.
2. Set the IP address and port to wait for connection.

“bind”: Set the name of the socket.
*sockfd — Input the name of the target socket.
*local-addr.
Ip — Set the IP address.

port — Set the port.
3. Wait for connection.

"listen": Wait for connection.
*Sockfd — Enter the socket that waits for the connection.
Receive an "accept" connection.
*Sockfd — Enter the socket that waits for the connection.
*Remote-addr.
Ip — IP address setting
port — port setting

4. Transfer data.
“recv”: Data reception*1

“send”: Data transmission*2

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 195 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

7.4.3.3 Creating a TCP client through the TCP socket

dr C listen

1.100:49154

(=1024) :

AX=1024) :

Mo Ti Source Deztination Pratocol Length

. 1. 192.168.1.198 192.168.1.181 TCP 154
#1 2. 192.168.1.191 192.168.1.1e8 TCP 54
39 3 .. 192.168.1.101 192.168.1.1e8 TCP 58
4. 192.168.1.108 192.168.1.181 TCP 68

Frame 1: 154 bytes on wire (1232 bits), 154 bytes captured (1232
Ethernet II, Src: 12:34:56:78:9a:bc (12:34:56:78:%9a:bc), Dst: Buf
Internet Protocel Version 4, Src: 192.168.1.180, Dst: 192.168.1.1
Transmission Comtrol Protocol, Src Port: 49154 (49154), Dst Port:

Fig. 7.10 Example of Communications through TCP (client side)
Upper half: ControllerLower half: Packet capture

1. Create a socket.
“socket”: Create a socket.Note: Specify SOCK _STREAM for the TCP socket.
stype? (6:SOCK_STREAM, 17:SOCK_DGRAM, 0:SOCK_RAW) — Type of communications
6:SOCK_STREAM: Communications which use connection TCP
Note: The return value of “# func_success ->” is the socket number of the socket that was created.
2. Specify the peer to which the socket is connected.
“connect”: Initiate a connection on a socket.
sremote-addr.
ip — Set the IP address.
port — Set the port.
3. Transfer data.
“recv”: Data reception*1

“send”: Data transmission*2

R18UZ0079EJ0100 Rev.1.00 ;?ENES&S Page 196 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 7. Tutorial by sample application

7.4.4 Non-Blocking Communications

In this example, we will use the sample application “uNet3 nonblock”. Follow the procedure below.

1. Compile and download the program and run the application.

2. Send data to the socket that was created and check the operation.

This sample application is a simple program for checking the operation of the TCP/IP stack.
It runs an echo server for the TCP and UDP sockets as a single task by using a non-blocking API for the socket.
After the program starts, the TCP socket listens on the 10000th port, while the UDP socket receives through the

20000th port. If either of these sockets receives data, the received data are returned to the source of transmission.

Note: - For an overview of non-blocking communications, refer to “2.1.20 Blocking and non-blocking”.
- A separate socket on the PC (client) side will be required to match the socket generated by the R-IN32.

Mo, Ti Source De=ztination Protocol Length Info
[1.. 192.168.1.181 192.168.1.188 Upp 45 20088 - 20000
2. 192.168.1.168 192.168.1.181 uppP 66 20888 - 200808

> Frame 1: 45 bytes on wire (368 bits), 45 bytes captured (368 bits) on interface
> Ethernet II, Src: Buffalol_©d:15:91 (cc:el:d5:8d:15:91), Dst: 12:34:56:78:9a:hc
> Internet Protocol Version 4, Src: 192.168.1.181, Dst: 192.168.1.188

: User Datagram Protocol, Src Port: 200008 (20000), Dst Port: 200006 (20000)

- Data (3 bytes)

Fig. 7.11 Example of Communications through UDP

Ma. Ti Source Destination Protocal Leneth Info
1. 192.168.1.181 192.168.1.1688 TCP 57 [TCP segment of
2. 192.168.1.188 192.168.1.181 TCP 60 10008 - 58388 [Al
3 .. 192.168.1.188 192.168.1.181 TCP 60 [TCP segment of
4 .. 192.168.1.181 192.168.1.164@ TCP 54 58388 - 10060 [A

> Frame 1: 57 bytes on wire (456 bits), 57 bytes captured (456 bits) on interface 8
+ Ethernet II, Src: Buffalol 0d:15:91 (cc:el:d5:8d:15:91), Dst: 12:34:56:78:9a:bc (.
> Internet Protocol Version 4, Src: 192.168.1.181, Dst: 192.168.1.188

» Transmission Control Protocol, Src Port: 50388 (50388), Dst Port: 10008 (10008),

Fig. 7.12 Example of Communications through TCP

R18UZ0079EJ0100 Rev.1.00 RENESAS Page 197 of 211
Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 8. Appendix

8. Appendix

8.1 Packet format

(1) T_NODE

Information of communication endpoint
typedef struct t_node {

UH port;

UB ver;

UB num;

uw ipa;
} T_NODE;

(2) T_NET_ADR

Information of network address

typedef struct t_net_adr {

uB ver;
uB mode;
uw ipaddr;
uw gateway;
uw mask;

} T_NET_ADR,;

(3) T_NET_DEV

The information of the network

device

typedef structt_net_dev {

uB
UH
UH
UH
UH
FP
FP
FP
FP
FP
FP
uw
union {
struct {
uB
leth;
} cfg;
UH
UH
VP
} T_NET_DEV,;

namel8];
num;
type;
sts;
flg;
ini;
cls;
ctl;
ref;
out;
cbk;
*tag;

macl6];

hhdrsz;
hhdrofs;
opt;

/* Port number of socket */

/* IP version (Necessarily specify IP_VER4) */
/* Device number*/

/* IP address */

/* IP- Version (Necessarily specify IP_VER4) */
/* Reserve*/

/* IP Address*/

/* Gateway*/

/* Subnet mask*/

/* Device name */

/* Device number */

/* Device type */

/*Reserve */

/* Reserve */

/* Pointer to dev_ini function*/

/*Pointer to dev_cls function*/

/* Pointer to dev_ctl function*/

[*Pointer to dev_ref function*/

/*Pointer to dev_snd function*/
[*Pointer to dev_cbk function*/
/*Reserve */

/* MAC address */

/* Device header size */
/* Position of writing network buffer*/
/ * Driver extension area */

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 198 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

(4) T_NET_BUF

Information of network buffer
typedef struct t_net_buf {

uw *next;
ID mpfid;
T_NET *net;

T_NET_DEV *dev;
T_NET_SOC *s0C;

ER ercd;
UH flg;
UH seq;
UH dat_len;
UH hdr_len;
UB *dat;
UB *hdr;
uUB buf(];

} T_NET_BUF;

(5) T_HOST ADDR

Information of host address
typedef struct t_host_addr {

uw ipaddr;
uw subnet;
uw gateway;
uw dhcp;
uw dns[2];
uw lease;
uw t1;

uw t2;

uB mac[6];
UH dev_num;
UB state;
SID socid;

} T_HOST _ADDR;

/* Reserve */

/* Memory pool ID */

/* Network interface */

/* Network device */

/* Socket*/

[* Error code */

/* Protocol stack control flag*/

/* Fragment sequence */

/* Data size of packet */

/* Header size of packet®*/

/* Indicate data position of packet (buf) */
/* Indicate header position of packet (buf) */
/* Actual packet */

/* IP address*/

/* Subnet mask */

/* Gateway */

/* DHCPserver address */

/* DNS address */

/* Lease period of DHCP address */
/* Renewal period of DHCP address*/
/* Rebind period of DHCP address */
/* MAC address */

/* Device number */

/ * DHCP client status * /

/* UDP socket ID */

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 199 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack 8. Appendix

(6) T_FTP_SERVER

FTP server control information
typedef struct t_ftp_server {

uw sec; /* Security policy */

UH dev_num; /* Device number */

SID ctl_sid; /* Socket ID for control */
SID dat_sid; /* Socket ID for data */

ER (*auth_cbk)(UH, const char*, const char*);
VB* syst_name; /* SYST command response string */
} T_FTP_SERVER;

(7) T_HTTP_FILE

HTTP Content Information
typedef struct t_http_file {

const char *path; /* URL */

const char *ctype; [* Content type*/

const char *file; /* Content */

Int len; /* Content size*/
[* HTTP callback function

void(*cbk)(T_HTTP_SERVER *http); or
CGl handler */

UB ext; | * Extended operation flag */

}T_HTTP_FILE ;
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 200 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

(8) T_HTTP_SERVER

HTTP Server control information
typedef struct t_http_server {

uw sbufsz; /* Transmission buffer size */
uw rbufsz; /* Reception buffer size */
uw txlen; /* Internal data*/
uw rxlen; /* Internal data*/
uw rdlen; /* Internal data*/
uw len; /* Internal data*/
UB *rbuf; /* Transmission buffer*/
UB *sbuf; /* Reception buffer */
UB *req; /* Internal data*/
UH Port; /* Listerning port number*/
SID SocketlD; /* Socket ID */
T_HTTP_HEADER hdr; /* HTTP client request */
UB NetChannel; /* Device number */
uUB ver /* IP version */
UB server_tsk_stat /* HTTP server task startup status */
ID server_tsk_id /* HTTP server task ID */
struct t_http_server *next [* HTTP server object */
UH kpa_max /* HTTP KeepAlive max value (for control) */

} T_HTTP_SERVER,;

(9) T _HTTP_HEADER
HTTP Header information

typedef struct t_http_header {
char *method; /* Method */
char *url; /* Path name */
char *url_q; /* URL query */
char *ver, /* version */
char *host; /* hostname */
char *ctype; /* Content type */
char *Content; /* Content */
char ContentlLen; /* Content length */
char kpa; [* HTTP Keep Alive flag (for control) */
char *auth; /* Authorization header */
char *cookie; /* Cookie header */

} T_HTTP_HEADER;

R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 201 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

(10) T_RCV_PKT_INF

Reception packet information

(11) T_DNS_CLIENT

DNS Client information
typedef struct t_dns_client {

typedef struct t_rcv_pkt_inf{

Uuw
uw
UH
UH
uB
uB
uB
uB

src_ipa;
dst_ipa;
src_port;
dst_port;
ttl;

tos;

ver;
num;

} T_RCV_PKT_INF;

uw
char
uw
SID
UH
uB
uB

ipa;
*name;
*ipaddr;
sid;

code:
dev_num;
retry_cnt;

} T_DNS_CLIENT ;

/* Source IP address of packet */

/* Destination IP address of packet */

/* Source port number of packet */

/* Destination port number of packet */
/* IP header TTL of packet */

/* IP header TOS of packet */

/* IP header version of packet */

I* Reception device number of packet */

/* DNS server IP address */

/* Host name (for setting / reference) */
/* IP address (for setting / reference) */
/* DNS Socket ID (UDP) */

/* Request RR type */

/* Device number */

/* number of retries */

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

Page 202 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

(12) T_DHCP_CLIENT

DHCP Client information

typedef struct t_dhcp_client {

T_DHCP_CTL

Uuw
uw
uw
Uuw
uw
uw
Uuw
uw
uB
UH
uB
SID
uB

T_DHCP_UOPT

uB
uB

} T_DHCP_CLIENT;

(13) T_DHCP_UOPT

DHCP acquisition option information

(14) T_PING_CLIENT

typedef struct t_dhcp_uopt {
T_DHCP_CTL

uB
uB
uB
uB
VP

} T_DHCP_UOPT;

Ping Client Information

typedef struct
SID
uw
TMO
UH
UH

t_ping_client {
sid;

ipa;

tmo;

devnum;

len;

} T_PING_CLIENT;

ctl
ipaddr;
subnet;
gateway;
dhcp;
dns[2];
lease;

t1;

t2;
mac[6];
dev_num;
state;
socid;
arpchk;
*uopt;
uopt_len;
retry_cnt;

ctl
code;
len;
ary;
flag;
val;

/* Internal data */

[* IP address */

/* Subnet mask */

[* Gateway */

/* DHCPserver address */

/* DNS address */

[* Lease period of DHCP address */

/* Renewal period of DHCP address */
/* Rebind period of DHCP address */
/* MAC address */

[* Device number */

/* DHCP client status */

/* UDP socket ID */

/* APR check */

/* DHCP option acquisition parameters */

/* Number of DHCP option acquisition parameters */

/* number of retries */

[* Internal data */

/* DHCP option code */

[* Optional element size / piece */

/* Number of optional elements */

/* Element discrimination / status flag */
/* Element storage destination pointer */

[* ICMP Socket ID */
/* Destination IP Address */
/* Response Time out (ms) */

/* Device number */
[* Packet Size (byte) */

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

Page 203 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

(15) T_SNTP_CLIENT
SNTP Client Information

typedef struct t_sntp_client {
SID
uw
TMO
UH
UH
uUB
uB
} T_SNTP_CLIENT;

sid;

ipa;

tmo;
devnum;
port;

ipv;

stt;

/* Socket ID */

[* SNTP server IP address */

/* Response Time out */

[* Device numbr */

[* Port number */

* IP version */

/* Received data Stratum field value */

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

Page 204 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

8.2 Constant and Macro

(1) IP Address

ADDR_ANY
IP_VER4

(2) Port Number
PORT_ANY

(3) IP protocol

IP_PROTO_TCP
IP_PROTO_UDP
IP_PROTO_ICMP

IP address 0
IP version 4

Port number 0

TCP protocol
UDP protocol
ICMP protocol

(4) Network interface control

NET_IP4_CFG
NET_IP4_TTL
NET_BCAST_RCV
NET_MCAST_JOIN
NET_MCAST_DROP
NET_MCAST_TTL

Configure and verify IP Address, Subnet mask
Configure and vefiry TTL

Configure and verify reception of broadcast
Join in multicast group

Drop from multicast Group

Configure TTL used in multicast transmission

(5) Parameter of socket

SOC_IP_TTL
SOC_IP_TOS
SOC_TMO_SND
SOC_TMO_RCV
SOC_TMO_CON
SOC_TMO_CLS
SOC_IP_LOCAL
SOC_IP_REMOTE
SOC_CBK_HND
SOC_CBK_FLG
SOC_RCV_PKT_INF

Configure and verify TTL of Socket

Configure and verify TOS of Socket

Configure and verify blocking time-out of snd_soc
Configure and verify blocking time-out of rcv_soc
Configure and verify blocking time-out of con_soc
Configure and verify blocking time-out of cls_soc
Get port number and IP address of local host

Get port number and IP address of remote host
Register callback function

Specify callback event

Get information of reception packet

R18UZ0079EJ0100 Rev.1.00 RENESAS

Aug 31, 2021

Page 205 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

(6) Connection mode of socket

SOC_CLI Connect to remote host (active connection)
SOC_SER Wait for connection (passive connection)

(7) Termination mode of socket

SOC_TCP_CLS Disconnect socket. (Terminate connection)
SOC_TCP_SHT Disable only the transmission process. Reception is possible

(8) Interruption mode of socket

SOC_ABT_CON Abort con_soc()
SOC_ABT_CLS Abort cls_soc()

SOC_ABT_SND Abort snd_soc()
SOC_ABT_RCV Abort rcv_soc()

SOC_ABT_ALL Abort all the processes of socket

(9) Callback Event

EV_SOC_CON Enable con_soc() to be non-blocking mode
EV_SOC_CLS Enable cls_soc() to be non-blocking mode
EV_SOC_SND Enable snd_soc() to be non-blocking mode
EV_SOC_RCV Enable rcv_soc() to be non-blocking mode
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 206 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

8.3 Error Code List

E_NOSPT -9 Unsupported function

E_PAR -17 Parameter error

E_ID -18 lllegal ID number

E_NOMEM -33 Insufficient memory

E_OBJ -41 Object status error

E_NOEXS -42 Uncreated object

E_QOVR -43 Queuing overflow

E_RLWAI -49 Forced cancellation of wait state

E_TMOUT -50 Polling failure or time-out

E_CLS -52 Change status of waiting object

E_WBLK -57 Non-blocking acceptance

E_BOVR -58 Buffer overflow

EV_ADDR -98 Default G/W not set
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 207 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 8. Appendix

8.4 API List
API Name
A) Network Interface
net_ini Initialize TCP / IP protocol stack
net_cfg Configure parameters of network interface
net_ref Refer parameters of network interface
net_acd Detection IP Address Confliction
B) Network Device Control
net_dev_ini Initialize network device
net_dev_cls Release Network Device
net_dev_ctl Control network device
net_dev_sts Get status of network device
C) Socket
cre_soc Create socket (Standard version only)
del_soc Delete a socket (Standard version only)
con_soc Socket connection
cls_soc Socket interruption
snd_soc Send data
rcv_soc Receive data
cfg_soc Configure parameter of socket
ref_soc Refer parameter of socket
abt_soc Abort process of socket
soc_ext stop process of socket all at once
D) Network Application
dhcp_client Start DHCP Client
ftp_server Start FTP Server
ftp_server_stop Stop FTP server
http_server Start HTTP server
http_server_stop Stop HTTP server
CgiGetParam Analyze CGI argument
CgiGetParamN Analyze CGIl argument
CookieGetltem Parsing cookie headers
HttpSendText Send text content
HttpSendFile Send Attached File
HttpSendResponse Send Image Content
HttpSetContent Addition of transmission buffer for HTTP server control information
HttpSetContentKpa Add HTTP Keep-Alive header to send buffer
HttpSetContentCookie Add Set-Cookie header to send buffer
HttpSendBuffer Send specified buffer contents
dns_get_ipaddr Get IP address from host name
dns_get_name Get host name from IP address
dns_query_ext Issuing DNS queries
dhcp_bind Get DHCP Lease Information
dhcp_renew Renewal DHCP lease information
dhcp_rebind Application for reassignment of lease information
dhcp_reboot Reboot DHCP client
dhcp_release Release DHCP lease information
R18UZ0079EJ0100 Rev.1.00 ;?ENESQS Page 208 of 211

Aug 31, 2021

R-IN32M4-CL3 Series User's Manual TCP/IP stack 8. Appendix

dhcp_inform Get DHCP option

ping_client ICMP Echo request and response

sntp_client Get NTP time

E) Others

htons Convert 16-bit value to network byte order

ntohs Convert 16-bit value to host byte order

htonl Convert 32-bit value to network byte order

ntohl Convert 32- bit value to host byte order

ip_aton Convert IPv4 address string in dot notation to 32-bit value
ip_ntoa Convert 32-bit value IPv4 address to IPv4 address string in dot notation
ip_byte2n Convert IPv4 address array to 32 bit value

ip_n2byte Convert 32-bit value IPv4 addresse to array

arp_set Setting static ARP entries

arp_ref ARP cache reference

arp_req Send ARP request

arp_clr Clear ARP cache

arp_del Delete ARP entry

net_atoi Numerical conversion of character string to int type
net_atol Numerical conversion of character string to long type
net_itoa String conversion of int type number

net_strncasecmp

Comparison of character strings (identification of uppercase and lowercase letters)

net_strcmp

String comparison

net_strncmp

String comparison

net_strcpy

Copy of string

net_strlen

Get string length

net_strncat

String concatenation

net_strcat String concatenation
net_strchr Character search
net_strstr Search for strings

net_strcasestr

Character string search Uppercase and lowercase letters are identified

net_strncpy

N-character copy of a string

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS Page 209 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8.5 Resource list

8.5.1 Kernel objects

(1) Kernel object used by Ethernet device driver

Object Object ID Description
Task ID_TASK_ETH_SND Ether driver send task (stack size: 1024Byte)
Task ID_TASK_ETH_RCV Ether driver receive task (stack size: 1024Byte)
Task ID_TASK_PHYO_LINK PHY driver control task (stack size: 512Byte)
Task ID_TASK_PHY1_LINK PHY driver control task (stack size: 512Byte)
Event flag ID_FLG_ETH_RX_MAC Ether driver event flag
Event flag ID_FLG_ETH_TX_MAC Ether driver event flag
Event flag ID_FLG_PHY_STS Ether driver event flag
Event flag ID_FLG_SYSTEM Ether driver event flag
Mail box ID_MBX_ETH_SND Ether driver mail box
Mail box ID_MBX_ETH_MEMPOL Ether driver mail box

(2) Kernel object used by TCP/IP protocol stack (1 Net3 compatible)

Object Object ID Description
Task ID_TASK_TCP_TIM TCP/IP stack time management task for R-IN32
Semaphore ID_SEM_TCP Semaphore to control protocol stack resource.

(3) Kernel object used by TCP/IP protocol stack (BSD compatible)

Object Object ID Description
Task ID TSK_BSD_API BSD Wrapper task
Task ID_LO_IF_TSK Loop back device task
Mail box ID MBX_BSD_REQ BSD Wrapper communication between task
Mail box ID_LO_IF_MBX Communication between device task
Note Kernel objects used by TCP/IP protocol stack (uNet3 compatible) are also used added to above.

(4) Kernel object used by memory management

Object

Object ID

Description

Mail box

ID_MBX_ETH_MEMPOL

Memory management

R18UZ0079EJ0100 Rev.1.00

Aug 31, 2021

RENESAS

8. Appendix

Page 210 of 211

R-IN32M4-CL3 Series User's Manual TCP/IP stack

8. Appendix

85.2 Hardware ISR

Table.8.1 Hardware ISR used by TCP/IP stack

Hardware ISR reason Operation Description

PHYO_IRQn set_flg() PHY driver

PHY1_IRQn set_flg() PHY driver

ETHTXDMA_IRQn set_flg() Ethernet driver send operation
ETHTXDERR_IRQn set_flg() Ethernet driver send operation
ETHTX_IRQn set_flg() Ethernet driver send operation
ETHTXFIFO_IRQn set_flg() Ethernet driver send operation
ETHTXFIFOERR_IRQn set_flg() Ethernet driver send operation
ETHRXDMA_IRQn set_flg() Ethernet driver receive operation
ETHRXFIFO_IRQn, set_flg() Ethernet driver receive operation
ETHRXDERR_IRQn set_flg() Ethernet driver receive operation
ETHRXERR_IRQnN set_flg() Ethernet driver receive operation

R18UZ0079EJ0100 Rev.1.00
Aug 31, 2021

RENESAS

Page 211 of 211

REVISION HISTORY

R-IN32M4-CL3 Series User's Manual: TCP/IP stack

Rev. Date Description
Page Summary
1.00 Aug 31, 2021 First edition issued (For R-IN32M4-CL3 only)

[Memo]

R-IN32M4-CL3 Series User’'s Manual: TCP/IP stack

Publication Date: Rev.1.00 Aug. 31, 2021

Published by: Renesas Electronics Corporation

R-IN32M4-CL3 Series
User’s Manual: TCP/IP stack

LENESAS

Renesas Electronics Corporation

	Overview
	1.1 Features
	1.2 Key Functions
	1.3 Development environment
	1.3.1 Development tools
	1.3.2 Evaluation board
	1.3.3 Development procedure

	2. Basic concepts of TCP/IP stack
	2.1 Glossary
	2.1.1 Protocol
	2.1.2 Protocol stack
	2.1.3 IP address
	2.1.4 MAC (Media Access Control) address
	2.1.5 Port number
	2.1.6 Big endian and little endian
	2.1.7 Packet
	2.1.8 Host and node
	2.1.9 Address Resolution Protocol (ARP)
	2.1.10 Internet Protocol (IP)
	2.1.11 Internet Control Message Protocol (ICMP)
	2.1.12 Internet Group Management Protocol (IGMP)
	2.1.13 User Datagram Protocol (UDP)
	2.1.14 Transmission Control Protocol (TCP)
	2.1.15 Dynamic Host Configuration Protocol (DHCP)
	2.1.16 Hyper Text Transfer Protocol (HTTP)
	2.1.17 File Transfer Protocol (FTP)
	2.1.18 Domain Name System (DNS)
	2.1.19 Socket
	2.1.20 Blocking and non-blocking
	2.1.21 Callback function
	2.1.22 Task context
	2.1.23 Resource
	2.1.24 MTU
	2.1.25 MSS
	2.1.26 IP reassembly - fragment

	2.2 Architecture of Network system
	2.2.1 Block diagram of network system

	2.3 Directory and file organization

	3. Overview functions of TCP/IP stack
	3.1 Protocol stack
	3.1.1 IP module
	3.1.2 ARP module
	3.1.3 UDP module
	3.1.4 TCP module

	3.2 Network device driver
	3.2.1 Device structure
	3.2.2 Interface
	3.2.3 packet routing
	3.2.4 Loopback interface
	3.2.5 T_NET_DEV information registration example

	3.3 Memory management
	3.3.1 Network buffer
	3.3.2 API network buffer

	3.4 Memory processing I / O
	3.4.1 Memory processing I / O

	3.5 Ethernet device driver
	3.5.1 Ethernet device driver structure
	3.5.2 Ethernet device driver API
	3.5.3 Configuration
	3.5.4 Cautions regarding Ethernet device driver

	3.6 PHY driver
	3.6.1 PHY driver API
	3.6.2 Link event notification

	4. Network configuration
	4.1 Configuration of TCP/IP stack
	4.1.1 Configuration list
	4.1.2 IP address
	4.1.3 Device Driver
	4.1.4 Information table of protocol stack
	4.1.5 Network information management resources

	5. Description of application programming interface
	5.1 Initialization of protocol stack
	5.2 Network Interface API
	5.3 Network Device Control API
	5.4 Socket API (uNet3 compatible)
	5.5 Socket API (BSD compatible)
	5.5.1 Module overview
	5.5.2 Module structures
	5.5.3 API list
	5.5.4 Detail for each API
	5.5.5 Socket option
	5.5.6 Support function
	5.5.7 Implementation of BSD application

	5.6 Other API

	6. Network application
	6.1 DHCP client
	6.1.1 DHCP client API

	6.2 FTP Server
	6.2.1 FTP Server API
	6.2.2 Restriction terms

	6.3 HTTP server
	6.3.1 HTTP server API
	6.3.2 HTTP server sample

	6.4 DNS client
	6.4.1 DNS client API

	6.5 DHCP client extended
	6.5.1 DHCP client extended API
	6.5.2 DHCP client extended information

	6.6 Ping Client
	6.6.1 Ping Client API

	6.7 SNTP Client
	6.7.1 SNTP Client API

	6.8 String Library

	7. Tutorial by sample application
	7.1 Descriptions of sample software
	7.2 Hardware connection
	7.3 Board IP address setting
	7.3.1 Setting for use a fixed IP address
	7.3.2 Setting for use DHCP function

	7.4 Demonstration
	7.4.1 Webserver
	7.4.2 Control by the MAC controller
	7.4.3 BSD socket
	7.4.4 Non-Blocking Communications

	8. Appendix
	8.1 Packet format
	8.2 Constant and Macro
	8.3 Error Code List
	8.4 API List
	8.5 Resource list
	8.5.1 Kernel objects
	8.5.2 Hardware ISR

