LENESANS

-
%
@
ﬁ\
7
<
)
>
-
o

M16C Series,R8C Family
C Compiler Package V.5.45
Assembler User’'s Manual

Renesas Electronics

WWW.renesas.co m Rev.2.00 2010.04

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Preface

® Microsoft, MS-DOS, Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States
and other countries.

® |BM and AT are registered trademarks of International Business Machines Corporation.

® Intel and Pentium are registered trademarks of Intel Corporation.

® Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.

® Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the U.S. and other countries.

All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
3

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Contents

AS30 Contents

ASB0 CONEEINTS 1eeeiieiiiiiiiieeeeeeeeiir ettt e e e e sttt e eeeesee s tattaeeeeessssssesssaaaeeessssasssssseeaeeesssesssssnaeeeessessssssssneees 4
Manual Writing CONVENTIONSuuuuuuuurrrrernreeuteneneeeneeneenenrernnenneennnen.ea......——————.—...nnnnnnnnnnnnnnnnnnnnnrerrrrrrrre 9
SPECIICALIONS OF ASB0 .uuuiniiiiiiiiiiiiee et et e e et ree e e e e e e e e et aeeeeeeeeee s reaeeeeaaesesenrraneeeens 10
(0o Fo N T =y 1] PP 10
OULIINE Of FUNCEIONooiiiiiiieeeeeeeeeeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e e aaaeaaees 11
COMEIGUTATION tviiiiieee e e e ettt e e e e e eecetit et e e e e e e e ettt b e eeaeeeeesaettaaaesaaaeesasssssassaeaeeeesassssssseesaanssssrseeeaeens 11
FUNCEIONS ... ettt e e e e e et e e e e e e e e e ettt e e e e aeeeaeesestaaaaenns 12
Outline Processing DY AS30uuuuiuuiiiiiiiiiiiiiiiiiiiiieiieeeieeeaeeareaeaeeeaeaaaaaaaeaaaeenanannnnnnnnnnnnnsnnnnnnnnnnsnssssssses 13
N1 bl A0 b g o) HE= Y151 0 NP P PPPRRPPPP 14
Outline of as30 FUNCEIONSuvuuiiiiiiiiiiiiiiiiiiiiiitt ettt tateeeaeeeeaeeaaeaaaaneaeennennnnnnnnnnsnnnnnnnnnnnnnnnnnsssssssssnes 16
OUutline Of INB0 fUNCEIONS. .. .uuvvvviriiitieiiiiieieieetteereaeeeaaeaaeaeaaeaaaaaaaaaaaeaanaaaneannannnnnnnsnnnnnnnnnnnnnnnnssssssssnnnes 17
Outline of IMC30 fUNCEIONIS ..uvvvvviiiiiiiiiiieiiieiieiietett ettt eaataeaaeaaeaeaaeennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsssssssnnes 18
Outline of 130 fUNCEIONSuuuviiiiiiiie ittt e e e e ettt e e e e e e ssesabbrbaeeeeeseesssnnssseaeeessnnnssnees 19
Outline of XI30 fUINCEIONS ...uvuvvveiiiiiiiiiiiieieiiittieeeieeeteeeeeaaeeeaeaaeaaeaaeaaeaaaannnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnssssssssnnes 20
Outline of abs30 FUNCEIONSuvvvvviiiiiiiiiiiiiiiiiiiiit ittt eetaeaeeaaeaaeaeeeeaeennnannnnnnnsnnnnnnnnnnnnnnnnnnsssssssenes 21
F N ST O T Tt o) s 1< 22
Relocatable ASSEMDIEo 22
Unit of Address Management (SECEION)ccvevvevvivveereireeieeteeeereete e ere e eteere e ee s s eeseseeseeseeseens 22
Rules on Section Management...........cccoooooiiiiiiiii 24
Label and Symbol.......cccoooiiiiieeeieeeeeeeee e, 26
Management of Label and Symbol AddreSSes.ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e nnes 27
Library File Referencing Functioncco 28
Management of INCIUAE FILecoooeeeeiiiiiiiieieeeeeeeeeeee e, 30
Code Selection DY ASBOooveiiiiieieeeeeeeeeeeeeeeeeee ettt a e ———————————————————————————aaaaaes 31
OptimIzZed Code SELECTIONuuueiiiiiiiieiicee et e e e e e e e e eeeeeeeeeer e eeens 31
Outline of Mnemonic DeSCIiPtIONuu e nnnnnnsnnnnnnnnnnsnnnnnnnnnnnnssnes 31
Optimized Selection DY ASB0 e nnnannnnnnnnnnnnnnnnnnnsssssnes 31
SB Register Offset DeSCriptioncccccuiiiiiieeei e iiciiiiie e e eeececiirreee e e e e e eeiitareeeeeeeeeeeatbraaeeeaeeesesasrresaaaens 34
Special Page BranChi..........oooviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee e ————aaaaaaaaaas 34
Special PAge SUDTOULITIEuviiiiiiiiiiiiiiiiiiiiiiiiiieeeeieeeeeeeereeeeeaaresassssssssseaesassaasaraarrsraraarrsar—ra————.eaeaeeeens 34
Special Page VECtOr TaDLEoovviviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e aaaaaaeeas 35
MaAcCro FUNCEION.coieeeeee e, 36
Conditional ASsemble COntIOloovviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e aeeens 39
Structured Description FUNCEIONiiiiiiiiiiiiiiiiieiiiiiieeeeeeeeeeeeeeeeeeee e eeeeeeeeeereeeeeeererereaaeaaeas 40
Source Line INformation OULPULuuviiiiiiiiiiiiiiiieee et eee e e e e e e e e reeeeeeeeeees e eeeens 40
)78 001 eYo) B D L3 i N e NN o) s DU PPPRRPPPP 40
Environment Variables of aS30.......ccccuuiiiiiiiiiiiiiiiiiee ettt ee e e e esiirereee e e e s e sarnreeeeeeesssnnnreeeeens 41
OULPUL IMESSAZES ..vvvrvriiiieeeeiiiiiirireeeeeeeeeiiiitreeeeeeeeeaiaetttsareeeeeeseaiasrsssssasesssiasessasssssesesseisssssssesessasssssrees 43
Input/OUtPut FIIes Of ASBO .coooieiiiiiiieeeeeeeeeeeeeeeeeee ettt ettt e e e e e e eeeee e e e eeaeeeaeaeaeaaaaeaaeeaaaaees 44
Relocatable Module File ...ttt e e e e e e e et eeeeeeaeeaaes 44
Assembler List File ..., 45
Assembler Error Tag File.........cccc e, 48
Branch Information FILEc e e sssssnnnnes 48
Absolute Module File ..., 48
MAP FILE.. ettt et e e e e et —ea e e e e e ettt ———aaaeaeeaeerrar———————aaaaraas 49
Link Exror Tag FIle oo, 51
J\Y o] oy o] F- TS TN o} a1 4 F= | APPSO UPSPRR 51
Intel HEX FOTMALoiiiiieee et e e e et e e e e e e e e ettt e e e e e e e e eaeeabaa e nns 51
1D s 1 =PRSS 52
LaDTArY FILE oottt et e e e e e et e e e e e e ettt ———aeaeeeeaterrar i aaaaaaaes 52
LAbrary LISt FIle ccooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 52
Cross Reference FIle......oouuuiiiiiiiiiiiie ettt e e e e e sttt e e e e e s s e satbeeaeeeessnnnsbraeeeeeens 53
Absolute List File ..., 54
Starting Up Programi ...ttt ettt e e e e e e e e e e ee e e ae e e e s e e e e a b aeeaaaaaaaaaaaees 55

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
4

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Contents

Precautions on Entering CommandsS........ccceiiceiieiiieiiiieiiieiieeeieeeieeieeeeeeeeee e nennennnnnnnnnnns 55
Structure of CommAaNnd LINEcoooiiiiiiiiiiii e e e e e et e e e e e e e eeaartrraeeeaeeeeeaarbaeaaaeas 55
Rules for Entering Command LINe.........cooooeieeiiiiiiiieiiieeeeeeeeeeeeeeeeee e 56
Method for Operating AS30........uuuuuuuuureiiiiiiiiiiiiiiiieiinenenennenaeenneennnennnnnnnnnnnnnnnnnnsnnnnnnnsnnnsnnnsnnssnnssssssssssssnes 57
Command Parammeterseiiiiiiiiiiiiiiiiee e cccirteee e e e e sertrr e e e e e e s e srtbaaraeeeeeeessrsetttareeeeeeeaarnrraeaeaens 57
Rules for Specifying Command Parameters ... e 58
Include File Search DIr@CLOTY uuuuuuueiiiiei s annnsssassnsnnnsssnssnnnnsnnnsssssnnes 58
AS30 COMMANA OPEIOTIS .uuuuuireiitnniiiniiiiiinennnannnnnnennnnnnnnnnnnnnnnnnnnnnannnnnnsnnnnnnnnsnnnnnnnnsesssssssses 59
T eeeeeeeeeeeeeteeeeeeeeeeesetttteeeeeeeeaaaan—_tateeeeeeaaaatttaaeeeeeeeaanheteaeeeeeeeaeantheteateeeeaeanthrraaeeeeeeentrtraaeeeeeeeenannnrnees 59
PR PRUUR 59

ettt ettt re e e e e e e et ————eeeeeeaaa b a—t—ateeeeaaaa—attaataeeeeeaaanttraeaaeeeeeaataraeeeeeeaanrrrraaaeeaens 60

DD e e e e et ————aeeee ettt aeeeteta———————————————————— 61
01 o T PSPUR 61
ettt et e e e e e bttt ae et e e e e et atbrateeeeeeaa ntbbtaaeeeeeeaantaeeeeeaantrrraaaaeeens 62

5 PSP PPRUR 63

) PP PPPUR 63

JO P T e e e e e et —— e e e e e e e e ee bt ———aaaaaaeeaarbbabaaaaaeeeebtrraaaaaaeeaaaaes 63
a7 TP SRURR 64

T e e ————eeee ettt —————aeeeee ettt ——————aeaettat—————————————aartrrt—————_ 64
I\ 10T\ ¢ 1 SR UU USSR 65
N ettt ettt ettt e e e bttt et e e e e e ettt et tteeeeeaa bttt ateeeeee e ahabaaaeeeeeeaaanthtraaaeeeeeeahrtaaaeeeeeeenannrrrees 65

L USSP UUP PR 66

P et e e e e e e et ———eeee e e e e t————aaeeeeeaaa bt traaeeeee e araaaaeeeeeeannnrrrees 66
PATCH(BN)_TA/-PATCH(BN) _TADocveioveiieeeieeee ettt ettt ettt eaeeae e eaeesteeneeeneeneaneans 67
RBC/ REBCE ...ciiiiiieeeee ettt e ettt e e e e e e st a e e e ee e e e s ssetraaaaeeeesaassssssaaaaeeseesssraeeeeeeesnnnes 68
LT 0 o PP PUPUPUR 69

N TS UUUP PR 70

il PSP PURURP 70
TV e e e et ———eeeeee ettt ———————eeeetett————————aatttttt————————aaatrttt—————_ 71

D G PSSR 71
Exror Messages Of @S30ccuviiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeereeerseeessasaeaeeeeraaereerrerrrerrrrarrer———————ertererees 72
Warning Messages 0F @S0 ... eeeieeeeeeeeeeeeeeeee e 79
Method for Operating INB0uuuuuuuiiiiiiiiiiiieeeeeataeaaeneaeennaennannnnnnnnnnnnnnsnnnnnnnsnnssnnssssssssssssnes 81
Command Parammeterseiiiiiiiiiiiiiiiiee ettt eeeeestta e e e e e e e ettt br e e e e e e e e eeeatbtaraaaaeeeeaaarraaaaaens 81
Rules for Specifying Command Parametersccooooccooiiiiiieiiieiieeeieeeceeccceccce e e 82
ComIMAN FILE ..uviiiiiiiiii et e e e e ettt e e e e e e e e ettt bbb e e aeaeeeeeatbbaaeaeaeeaaatbrraaaaaeas 83
Command Options Of INSB0..........oeeiiiiiiiiiiiiieiiieeieeeeeeee ettt eeeeeeaeeeeeeeeeeaeeeaeareraeraaaaeaaees 84
T eeeeeeeeeeeteeeeeeeeeeeeesettteeeteeeeeeaaant—tateeeeeeaaaahtttaeeeeeeaaaathttaaeeeeeeaaaaatheeeeteeeeeeaathteaaeeeeeeentrrrtaeeeeeeeenannrraees 84

B e e e e e b e e e e e e e e e bt ————aaeeeeaaa——a—a—aaeaeeeaatatbeeaeeeaarrtrraaaaaaens 84

B ettt ettt et e e ettt —e e e e e e e e e atb———eeeeeeaaa—attaateaeeeaaanatrttaaaeeeeaaanttraaaaeeeeaaantaraeaeeeeaanrrrraaaeeees 85

JO P T e e e e e e e e —— e e e e e e e e eee bbb ——aaaaeeeaarbbbaaaaaaeeeebtaraaaaaaeeaaaaes 85
7T PPRUR 86

ol 71 D PSP PRPTRP 87

al 710 1S UU P PRUSR 88

o SRR PRRTR 89
TGO/ IVIGL ...t e e e et e e e et aeeeee et et b ————eeeaeetaat—————aaaaatarterrar—————_ 89

IV T\) PR PSPURR 89
NOSTOP ..ot r ettt e e e e e sttt e et eesee s sabssaeaaeeeseassssssseaaeeeessssssssseessesnssssnnes 90

L TSP UUP PR 90
ORDER.....ete ettt e e e ettt et e e e s e ettt e e e e e e e e e bbttaaeeeeeeea bt baeeeennnttrraaaaeeens 91
RBC/RBCE ..ottt ettt e e e e e et b e e e e e e e ettt bbaaeaaeeeeeeabbbbaaaaeeeeeeaatreeaaaaeesannes 92

1 T PPPUR 92

U ettt e e e ettt ——eeeeeee ittt ———————eeeeetttt———————aaaetettat——————————————ttrn1——— 93
AU PUPURR 93

AT D PSP POPUPUPURR 94
a2 DT G N\ USRS UUUR 95
T e e e e e —t— e e e e e e e e r b r———taeeeeeaaa————ttateeeeaaa—trraateaeeeaaarraateaeeeeanrrrraees 96

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS

5

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Contents

@) ettt et e ettt e e e e e e —r———eeeeeeeaaa————ttteeeeea e —htatataeeeeeaaantartaateeeeeaaaanarraataeeeeeaatrraaaeeeeeeanarnnrrees 96
Exror Messages Of INB0oooeiiiiiiiieiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e 97
Warning Messages 0f INS0cooeeeeeeeeiiieeeeeeeeeeeeeeeeeeeee e, 99

Method for Operating IMC30uuuiiiiuiiiiiiiiiiiiiiiiiiiieeieerereaeraaaeeeaeeaaeaarraareraaeeareearannernnnnnnsnnnsnnnssssssnes 102
Command Parameterseiiiiiiiiiiciiiiieie ettt e e e e e e st e e e e e e e e seettbraaeeeseeeesnntrareaeeaeeaaanrarees 102
Rules for Specifying Command Parameterscooooooeeeeieeeieeeiieeeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 102
Imc30 Command OPLIONScocuuiiiiiiieeeeeeiiiiiiieeeeeeeeeeeiitrreeeeeeeeeesetbaareeeeeeesassssassesaeseesasssrsssssesesnieres 103

T eeeeeeeeeeeeereteeeeeeeeseessrseeeeeeeeeesestttttteeeeeeiaa.tttatateeeeaaaattrttaeeeeeeeaaantrtteeeeeeeeaaantrrraaeeeeenntrrrateeeeeeananres 103

A et e ettt e e e e e ettt eaeeee e e e e bttt ateeeeee ettt ttaeeeeeeaaantbaaaaeeeaennttraaaeeeeeans 103
B ettt et e e e e e ettt ——eeeeeeeetat—————aaeeaeattat—————aaaaaerarartrr—aaaaaaas 104
et e e e e e e et — e eeeeeeaeaatr bttt aeeeeeaaaataratateaeeeeaastaaeaeeeeannrrrraeees 105
H oo ettt e e et e e ettt ——eeeeee et et ————aeeeereaar——————————————aanna_. 106
1 PR PPSURRRN 107
| TSP PPUPPRPN 108

T e e et e et e e e e e e ieett———eeeaeaaaa—tta—eaeeeeeaa abttataeaeeeeaia ittt traaeaeeeaartararaaaeeeararrres 108

R 0Y 57 <=0 RS URUOPUPPPPPPPUPPPUPRt 109

B) (0111 7 109

B) 01 <Y o1 - PN 110

TRBC/TREBC ..ot e e e e e e e a bt e e e e e e e ea bt bbbt e aaaeeeaaatbbeaaeeeaanetes 111

TV e —eeeeeeeetett———aeeeeetettt————aaeeeeettttt————aaaaeesttttt————aaaaerrrtri—nns 111
Exror Messages Of IMC30uuiiiiiiiiiiiiiiiiiiiiiiiiieeieteeieeeareeaaeeeeaaessssaeaasaarssaaasssasaasssassaaasaarssersssrrsesreee 112
Warning Messages 0f IIMCB0o e e 113

Method for Operating ID30uuuuuiuiiiiiiiiiiiiiiiiittettrataraarreaeeeareaareeareaaeeraranrrennsrsnsnnnrnssssrrerees 114
Command Parammeterseeiiiiiiiiiiiiiieeee ettt e e e e e e ettt e e e e e e e eetbbrreeeaeeeeeaatbbareaeaaeeeeaaraeeeas 114
Rules for Specifying Command Parameterscoooooeeeeeieeiieeeieeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 114
Command (0] oY nTe) s T-o) o130 J PSR 116

¢ et eteeteseertseettseettseestseeetseeetneeetnatetnntttnntttnaatanttanttnnettettntttaetteetneetn et etneetrneerneerrearneernns 116
A ettt e e e e e ettt teeeeee e e e s —htttaeeeeeee e ahtttaaeeeeeeaaaatbtaaeeeeaannttraaaeeeeeens 116
C 117
DD et e e e e et ettt ——aeeeeeeetttt————aaeeeetettt————aaaeeetettttt——————aaarrrrrtaa, 117
| PP PPPPRRRRN 118
R ettt ettt e e e e e e e ettt ee e e e e e e e e et e aeaae e ettt aaaereatr———ns 118
L PRSP PPRPPRRN 119
Vet et ——ee e e e e et ————eeeeee et et ——————eaeaeeratt———————————attrati————— 119
D G USRS 119

(@ ettt e et eeeeteeetteeeeteeeteeeteeetaeettaeeeteeetaaettaettaetanetanettnaettaetnaeanaerrnaeernaarrnnaees 120
Exror Messages Of IDB0.........uuueiieieeeieieieieeeeeeeeeeeeeeeeeeaeeeaeeaaaaaeeaaasasaaaaaaaatasasasasssessssassasnsssssssssnenssenrene 121
Warning Messages 0f ID30......ccoeiieeieeiieeeceeeceeeeeeeeeeeeeeeee e e e e e e 122

Method for Operating XIT30.........uuuuuuurieiiiiiiiiiiiiiiriieeeieeeerereeeeeraaaea———————————————————————————nr——————————————————rrrrnn 123
Command Parameterseiiiiieiiiiiiiiiiiee e e ecescirireeeeeeeesserrreeeeeeessssnssrseaaeeeesssssssssrraeeeessessssreeees 123
Rules for Specifying Command Parametersccccovvvveeiiiiiiiiiiiiiieecec e e e e e e 123
Command (0] o1AT0) o 1ol 0) - < o 31 TR 124

e eeeeeeeeeeeeeeeetteteeeeeeeeeaaatetteeeeeeeaaathhttaeeeeeeaeaathtataeeeeeeeaaanhtaeeeeeeeeeanthraaaeeeeeeaanttreaaeeeeannttrrraaeeeeeans 124
TN e ettt —aeeeeeetettt—.——aeeeeetetttt———aaeeeetttttt————aaaaeettttta—————aaaaerrrtrraaanns 124
L PP PRPUR SR 124
Vet et e ———eee e e e et ————eeeeaee e et —————aaeaeerat————————————aatrati————— 125

@) ettt et e e e e e e e ettt ———teeee e e e —t————teeeeeaaa—attaateeeeeaaa—hrhaaeeeeeeeaaattraeaeeeeeeaanraaeeeeeeanarrrrraeaes 125

Exror Messages Of XTTB0uuiiiiiiiiiiiiiiiiiiiiiiiiiieieettresersearressreeasaaraaearee———————————————.———earraaaranaeaarrnarsssrrere 126

Method for Operating abS30.........uuuueuueieiiiiiiiiieiiirieeeeeereeere areear——rorroes 127
Precautions USING @S30uuiiiiiiiiiiiiiiiiiiiiiiiiiriieieeeeriearrearaeaaaaaaaeaa——otooos 127
Command ParammeEtersveeiiiiiiiiiiiiiieee e e ettt e e e e e e eettre e e e e e e e eeetbbraeeeeeeeeeeatbbaaeaeaaeeeeaarareens 127
Rules for Specifying Command Parameterscoooooeeeeeieeiieeiiieeeeeeceeeeceeeeeeeeeeeeeeeeeeeeeeeee e 127
Command OPtIoNS OFf ADS0 .uvuviiiiiiiiiieiiiiiiiiee e e e e e eeertr e e e e e e e e e eetbtbreeeeeeeesessarsssseeeaeeeenes 127

e tttteeeeeeeeieeetrsssteeeeeeeiesstssteteeeeeeiertttttteteeeeaaiatttattteaeeeaia et aaaaeeeeeeaaaeteraaeaeeeeeaaatetaaaeeeeaarrtrrareeeeaeas 128

ol D LSRR UPUPPRRRN 128

L USSP UUUR 128
ettt e e e e —— et et e e e e e ettt ——teeeeeaaa—trttateeeeeaaa——rttaaaeeeeaaanrarraaaeeeaanrarraaaeeaeeans 129

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
6

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Contents

Exror Messages Of @DS30ooooiiiiiiiiiiiiiiiiiiiiiiieieeeteeeeee ettt aaaaa et ——————————————————————————————————1ooos 130
Warning Messages 0f @bSB0uuiiiiiiiiiiiiiiiiiieee et eeeeeect e e e e e e e eetbtareeeeeeeeseatrbareeeeaeenaares 130
Rules for Writing PrOZramuuuuueeiiiiiiiiiiiiiiiiiiiitiieieeetittttaeaaeseasesasssssssessnssesasansssssssnssnsssnssessssnnes 131
Precautions on Writing Programi........ccccouuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeaeeesseessseeeerssrnreserseeesesean—————.. 131
Lo F= N e =) i 11 TP PRPRUPPRRRPRt 131
Reserved WOrds ..o, 131
N AIIES oottt e ettt e et eee e e e e e e et et eeeeeeee et et ———aeeeaeettat——————aaeeeetetta————aaaaeaeaarerrrr—————_ 132
i1 ettt e e e e e eeeeeettt e eaeeetettt—————aaeeeeettttr e aaaaaaaeerrrttraaaaaaaans 134
DT A TeN ooy s L= R =Y aF- U o) o KU PPPRRN 138
(0] o123z o e LTSRS PRPPRPRUPPRRPPRt 138
O PETALOTS «uvvvveuiiitieteetiitettieettetauetateeeeeeaeeeeeneaneeensenssnnssnssnnssssnssnssnnsssnnssnssssssnnssnnsnnnssssssnnnnnssssssssssssssssnns 140
AT ACET SEIIIIE . eiiiiiiiieiiiiiiiieeee e e e eccrtt e e e e e e e e sttt b e eeeeeeesettrareaeaeeeesasestbsaasaaeeeeasassssssseeseeannsssrrseens 142
Directive COmMIMATNIAS.cvviiiiiiiiiiiiiiiiiiiieiiieeeeeetteeereereeaeeaeareareerarae—————————————————————————aranrrranraanrarererrrrrrrrre 143
List of Directive COMMANASuuviiiiiiieiiiiiiiiiiiiereeseesiiiireeeeeeeesseitereeeeeeesssssnnssreeeeesssssssnssseeeeeessnnnes 144
FILE et e e et e e e e e e e ettt r e e e e e e e e et babrataeaeeeaaantataeeeeeantrrrrraes 148

Y N O =N 2 s SRR PPSPRRRN 149
WMAGCREP ...t a e e e e e et bbb aeaaaaeeeantbtteaeeeeannnes 150
7N D 1 P PP T PSPPRRN 151
ALTIGN Lottt e e e e et et bbb e e e e e e e e e eetbabraaeaaeeeeaeabtbaaaaaaeeeaaatraaaaaaeeaaaretes 152
ASSERT oot e e e e e e e e e e e e ettt — e e e e e e e e artttbataaaaeeaaanrtrteaaeeeannrnns 153

2 1 PRSP 154

2] 90 2 SO PUSUR 155

2 91 R PUSRR 156
BLKE ... e e e e e e e e — e e e e e e e e et ba——aaaaeeeeaattbtbaaaaee e tttraaraaaaeans 157

2 91 U PUSR 158
BLIW .ttt ettt e e e e e ettt e e e e e e e e st bttt eaeeeeeea bbbt aaeeeeeee e nnbrtaaaeeeeettbrnaaeeeeeans 159
BTEQU ...ttt e e ettt e e e e e e s ettt taa e e e e eeeeessssbtaaaaeaeeesssssssssaaeaeeeesssrraeaeeaeeans 160
BTGLB ...ttt et ettt e e e e e s sttt et e e e e e e e e bbbt e e e e e e e ea e nbrbaaaeeeeeetrraaaeeeeeans 161
BYTE et e e e et e e e e e e e bbb b e e e e e e e e e etttbbaaaaeeeatbaraaaaaaeans 162
07N] PSR PUSPRRN 163
DEFINE ...t e e sttt e e e s ee s bbrteeeeeeseesantssbaeaeesesssssssseeaeeennnsssneeens 164
DOUBLE ...ttt e et e e e e e e e e e tbtraeeeaeaeeessebsaaaeaaeeeesasessrasaeeannserraeees 165

| D1 BN T PSP PPURPRRN 166
EILLE <.ttt ettt e e e e e e ettt e e e e e e e e e ee bbb aaeaaeeeeaabbbbaaaaaeeeaaataaaeaaaeeeaareres 167

| 1 7 SRR PUURRRN 168
EIND ettt e e e e e et ——— e e e e e e e e e bt a—aaaaaeeeaaiatbraaaaaaeeeataaaaaaeeeeaaere 169
EINDIE ..ottt e e ettt e e e e e e sttt b e e e e e e e essssttbaaaaeaeessasssssraaaeeseeaasassaaeaeeessnseres 170
EINDDM ..ottt ittt et e e e e s e e ettt et e e e s e e e ssateraaaeeeesessassssaeeeeesssasnssssseaaesesansansseeeseeeesnnnses 171
EINDR ..ottt e e e et e e e e e e et br e e e e e e e e e b ———aaeaaeeeaaattabaraaeaeeaarabaaaaaeeeaanreres 172
8] SRS PPUUURRN 173
JEXITIM .ttt ettt e e e e e e et b b e e e e e e e e eeetbbbaaaaaeeeaaatttbaaaaaaeeeeaataaaaaeeeaanrntes 174
L PP PSUURR 175
B 4 R SUPRR 176
FLOAT ...ttt e e e e ettt e e e e e e e e ettt b reeeaeaeeessbtabaaeaeaeesaasststaaaaeesassstraeeeaaaenns 177
FORM ...ttt e et e e e e e e sttt e e e eeeeesessnba bt e aaeeeeea e nnbrbaaaeeeeantrraaaaeeeeans 178
G e e e e et e e e e e e e e e ————aaaeeeeeertttaaaaeaeatbraaaaaaaeans 179
1 OSSPSR 180

T ettt e e e e e e s bttt e e e e e e e e aa— et e eeeee e e e bbb ataaeeeeeaantararaeeannntrrraaeeeeeens 181
INCLUDKE ..ottt ettt e e e e e e ettt e e e e e e e e e attbbbbeaeeeaeeseasstabaaaaeaeesaasraseaaaaenns 183
IINTTISCT ...ttt ettt ettt e e e e e ettt e e e e e e e e tbtetaeeeessessssssssaaaeeeessassnsssaaaeeeessansssnnaaeesesnns 184
N S et e e e e e e e e e e e et ——— e e e e e e e ae b —b——aaaaeeeeartbbaaaaaaeeatttrraaaaaaeans 185
INSSTR. ...ttt e e e e e e sttt e e e e e e e es s ttseaaeeeeeeessssassaaaaaeeeeessnntrbaaaaeeennnrraaaeeaeeans 186
N oot e e e et e b e e e e e e e ee et b———aaaaee e e et bbb baaaaaeeeeaatttaraeeeeeaatrrraaeeas 187
1 USRS P SRS 188
10 1 07 AN P SRR 189
A0] 4 OSSO 190

L AN O 21 S 191

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
7

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Contents

MBREPEAT ...ttt e et e e e e e e e et a e e e e eatbaee e e atbaeeeaataeeeeantraaeeentaesannraeeans 193
OFSREG ...ttt et e e e e e ettt b et e e e e e e s eeatbbbaaeaaaeeeeeeattbaaaaaaeeeeeattraaeaaaaenns 194

(0 =4t K U SRPUSUR 195
(0] 21 PRSPPI 196
PAGE ... e e e e e e e e e e ———— e e e e e e e e attbaaataeeeeaattraaaaaaaeans 198

| 4 1 D1 O PR PUPR 199
RVECGTOR ...ttt e e et e e e e e e e ettt b b e e e e e e e e eeeabaraaeeesseasssaaseeas 200

N] TP UUPRRN 201
121 2 3 1 P PRRPPSRPRRN 202

B 20 4 IS SUUR USSRt 203
dSB_AUTO .ottt e ettt e e e e e e ettt s e eeeeeeeessssssseaaeeesssassssssaaaeaaeseessssnsteseesanssnnn 204
SSECTION Lttt e e e e e et et eaeeeaeeeeseetbbbsaeaeaeeseasetttsaasaaaeesesasssaeaeessassnses 205

N 13 L 1 P SURRPPSSRRRN 206

N PR PPUPPRRN 207
SUBSTR ...ttt e e e e e e ettt r b e e e e e e e e ssettebaeaaaeeeaassssraraaeeesesssssstesasasssnssses 208
SVECTOR ..ottt ettt e e e e e ettt e e e e e s essabbtaaeeeessaasanssssaaaeesssssssnsssessessnnses 209
VER et e e e e e e e e e —r e e e e e e e e eaaabtbaaaaaaeeeaaibaaaaaaeeeaaarares 210
L7) 29 5 TS 211
[P 212
@) ettt e e e e e e e teetta———eeeeeaar —tb———taaaeeaaatttbatateeeaaaaa—htaaataaeeeaaanathraaaaeeeeeaaartaeeeeeeaanrrrraeees 213
Structured Description FUNCEIONooovviiiiiiiiiiiiccec et e e e e 214
OULLITIE ..t e aeaneeansnnessnssnnssnnnsssnnnsssnsssnnnnnssssnssnnnssssssnsssnsssnnrnnes 214
Structured Description StATEIMEINTuuuiiiiiiiiiiiiiiiiiiiiiiiiiie i rereaeraeaaaareeaerararaaaaaaeaaaaeaaa———. 214
ReServed Variablesoouvuiiiiiiieeiieee ettt e et e e e e e e e e et aaaaes 216
MemOrY VATIADIES. ...cccceeieeeeeeeeee e 218
Memory Bit Variablesccooooeeeiiiie e 221
SEIUCLUTEA OPEIALOLSevvvvvveieeeieieieieieteteeeeeteretaeetaeataeeatesaareaaraa—————————————————.—a—a—anrrerrrnnnnnnnnnnnsnessrerrenes 222
Structure of Structured Description Stat@meEntovvviiiiiiiiieiiiiiiiiiieeeeeeeeeeeeeeee e 224
List of Structured Description Commands..........ccouieeuiiiieieeeiiiiiiiiieeeeeeeeeeeiiirreeeeeeeeeserrrareeeeseesennns 225
TF Statement . ..ot a e 226
FOR-STEP Statementcceieriiiiiiiiiiiieeeiiee ettt e e eitteeestreeeseeseeeesesssaeeeesssseeesesssseeessssesessnsens 228
BN O 2R D) G A T § =Y 4 o) o | 230
SWITCH StatemMeENt...cccceiiieiciiiiiiieeeeeiiciiitte e e e e e essiirteeeeeeseessbrereeeeesessssssssraeeesssssssssssseeseessssnnes 231
DO Statementcooooiiiiiii 233
BREAK StTAtEIMENT. ...t eeeeeeeeeeeeeaeeeaaeaeaeeeeenaninns 234
CONTINUE StALEIMEIIT ..vvvvvvvvvirreriiieeeeiiitiesisteerareesseessseaeeeeaarer.r.——. 235
FOREVER StaAt@IMIEINIT. .. .uuuniceeeeeeeeeee eeeeeeeeeeeeeeeeeeeenns 236
ASSIZNMENT STATEIMIEIIE ...uvuuiiiiiiiiiiiiiiiiiiiiiiiiiiiit ettt aeeeeeeeaeeaaeeaeeeeeeseeseessnnnsennssnnsnnnsnnnsnnnseses 237
Structure of Structured Description COmMMANASuvvvuvrurrirereriiiiiieriieeeeeerreeirreere——————————— 240
SYNEAX OFf STALEIMEIIES ..eeiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeesaeraaasaearaatraearaaaraaaaaaeteteraraa—.t——————.—erreee 242

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS

8

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Manual Writing Conventions

Manual Writing Conventions

The following explains the conventions used in writing AS30 User's Manuals and the
discrimination between uppercase (capital) and lowercase (small) letters used in these manuals.
Uppercase English letters (Ato Z)

Indicate the character strings such as mnemonics, directive commands, and reserved words
you may write in source programs and command lines without modifying the written character
strings.

Lowercase English letters

Indicate the character strings you can replace with your desired character string. For
example, these indicate label names you can enter as you want. However, the AS30 program
names and file extensions cannot be replaced with other character strings.

Indicates separation between directories. The AS30 manuals use the MS-DOS notation to
show command input examples unless otherwise noted.

[]
Indicates that descriptions in [] can be omitted.
[alB]

Indicates that you can select one of two items separated by | in []| as you write a program.
Terms Used in Manuals
The following explains the terms used in AS30 User's Manuals.

AS30

Collectively refers to the programs included in the AS30 system or denotes the AS30 software
package for the M16C family.

as30, mac30, pre30, asp30, In30, Imc30, 1b30, xrf30, abs30

Refer to the executable program names included with AS30. Program names are written in
lowercase letters unless otherwise noted.

AS30.EXE, MAC30.EXE, PRE30.EXE, ASP30.EXE, LN30.EXE, LMC30.EXE, LB30.EXE, XRF30.EXE,
ABS30.EXE

Refer to the execution program names on MS-DOS.
Mnemonic

Refers to assembly language instructions for the M16C family.
Instructions

Collectively refer to the mnemonics and AS30 directive commands.
Source program

Refers to program descriptions that can be processed by AS30.
Assembly source file

Refers to files that contain a source program.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
9

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Specifications of AS30

Specifications of AS30

AS30 has been designed based on the following specifications.

used within the range of this specification.

Make sure AS30 in your system is

Item

Specification

Number of files opened simultaneously

Maximum 9 files

Number of characters that can be set in environment
variables

2048 bytes (characters)

Number of characters per line of source file

512 bytes (characters)

Number of macro definitions

65535

Character Set

You can use the following characters when writing an assembly program to be assembled by AS30.

Uppercase alphabets

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Lowercase alphabets
absdefghijklmnopqrstuvwxyz
Numerals
0123456789
Special characters
"HE% &' (), -
Blank
(Space) (Tab)
New paragraph or line

i INIA_ T~

(Carriage return) (Line feed)
Precaution

Always be sure to use 'en'-size characters when writing instructions and operands.

You

cannot use multi-byte characters (e.g., kanji) unless you are writing comments.

REJ10J2006—0200 Rev.2.00 2010.04.01
10

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Outline of Function

Outline of Function

AS30 is a software system that assists you at the assembly language level in developing control
programs for the M16C family of single-chip microcomputers.

It converts source programs written in assembly language into files of source level debuggable
format. AS30 also includes a program that converts source programs into files of M16C family
ROM programmable format. Furthermore, AS30 can be used in combination with the C compiler
(NC30).

Configuration
AS30 consists of the following programs.

Assembler driver (as30)

This program starts up macro processor ,structured processor and assembler processor in
succession. The assembler driver can process multiple assembly source files.

Macro processor

This program processes macro directive commands in the assembly source and performs
preprocessing for the assembler processor to generate an assembly source file.

Precaution

The assembly source files generated by macro processor are erased after assembler
processor finishes its processing. This does not modify the assembly source files written by

the user.

Structured processor

This program processes structured directive commands in the assembly source and generates
an assembly source file.

Assembler processor

This program converts the assembly source file preprocessed by the macro processor into a
relocatable module file.

Linkage editor (In30)

This program links the relocatable module files generated by the assembler processor to
generate an absolute module file.

Librarian (Ib30)

This program reads in a relocatable module file and generates a library file and manages it.
Load module converter (Imc30)

This program converts the absolute module file generated by the linkage editor into a machine
language file that can be programmed into ROM.

Cross referencer (xrf30)

This program generates a cross reference file that contains definitions of various symbols and
labels in the assembly source files created by the user.

Absolute lister (abs30)

This program generates an absolute list file that can be output to a printer. This file is
generated based on the address information in the absolute module file.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
11

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Outline of Function

Functions

Relocatable programming function

This function allows you to write a program separately in multiple files. A separately written
program can be assembled file by file. By allocating absolute addresses to a single file, you
can debug that part of program independently of all other parts. You can also combine
multiple source program files into a single debug file.

Optimized code generation function

AS30 has a function to select the addressing mode and branch instruction that are most
efficient in generating code for the source program.

Macro function
AS30 has a macro function to improve a program's readability.
Source level debug information output in high-level language

AS30 outputs source level debuggable high-level language information for programs developed
in M16C family's high-level languages.

File generation

Each program in AS30 generates a relocatable module file, absolute module file, error tag file,
list file, and others.

IEEE-695 format file generating function

The binary files generated by AS30 are output in IEEE- 695 format. Therefore, AS30 can be
shared with other M16C family development tools using formats based on the IEEE-695
format.

IEEE (Institute of Electrical and Electronics Engineers, USA)

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
12

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Outline of Function

Outline Processing by AS30

The diagram below schematically shows assemble processing by AS30.

Assembly source file

Assembler list file

LlCross reference file |

<

Library file
N

=3
ul 3
o

Output file ~ Input file

v ¥

/ LAbsqute module file |

LIAbsqute list file LIMotoroIanormat file |Lllmel HEX format file |

<
v
A

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
13

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Outline of Function

Structure of as30

The as30 assembler consists of a program to processing macro descriptions a program to processing
structured descriptions and a program to convert an assembly source file into an relocatable
module file. The name as30 represents a program to control these two programs.

Precaution

AS30 uses the assembler driver to control the macro processor structured processor and
assembler processor. Therefore, neither macro processor structured processor nor
assembler processor can be invoked directly from your command line. Program operation is
not guaranteed if the macro processor, structured processor or assembler processor is
invoked directly.

Outline of macro processor functions

® This program processes macro directive commands written in the source file.
® The processed file is available in a file format that can be processed by structured processor
or assembler processor.

Outline of structured processor functions

® This program processes structured directive commands written in the source file.
® The processed file is available in a file format that can be processed by assembler processor.

Outline of asp30 functions

® This program converts the assembly languages written in the source file and those that derive
from processing by macro processor or structured processor into a relocatable module file.

REJ10J2006-0200 Rev.2.00 2010.0401 RENESAS
14

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Outline of Function

Outline Processing by as30

® After interpreting the input command lines, as30 activates each program of macroprocessor,
structured processor, and assembler processor.

® as30 controls the command options added when each program starts up and the file names to
be processed.

® Each program is started up sequentially in the following order:

1 Macro processor
2 Structured processor
3 Assembler processor

The chart below shows a flow of processing performed by as30.

(Multiple files can be specified simultaneously. \

Assembly souce
file A
.a30

Assembly source
file B
.a30

| as30 1

-

When -L is specified Basic function

Assembler list Relocatable
file A module file A

Ist .30

Assembler list
file B Relocatable

module file B
.r30

st

kﬂ J

When error
0CCUrS Assemblgr error In30
+ tag file 1b30
-T is specified -atg

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
15

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System
Outline of as30 functions

® Generates relocatable module files
® Generates assembler list files

Outline of Function

Assembly
source file
.a30

Internal processing

| as30 1

Assembler driver
While controlling macro processor, structured

processor and assembler processor, it generates a
machine language file.

/ Macro processor \

Macro directive command prossesing.
File include.

Condition assemble.

\ 4

Structured processor
Processing structured directive

command.
Relocatabl Assembler processor
rr?o%i?eiilee Processing for conversion into
machine language code.
.r30 K guag j

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
16

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Outline of Function

Outline of In30 functions

Generates an absolute module file
Generates an map file

Assigns sections

Utilizes relocatable modules in library file

4)

Relocatable module

file A / ™

.r30
ﬂ; Library file
dib
Relocatable module
file B.r30
Relocatable modules
L QUOted in gIObaI symbols
Address can be specified are searched.

\ for each section. j K /

4 4

| In30 ||

(Optlon -M is specified /Basic function

Map file
.map

When error L’ Link error tag file *

Absolute module file
.x30

occurs ltg | Imc30 ||

-Tis specmed

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
17

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Outline of Function

Outline of Imc30 functions

® Generates Motorola S format file
® Generates Intel HEX format file

Absolute module
file
.Xx30

|]
Basic function -H is specified \
Motorola S format file Intel HEX format file
.mot .hex
REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

18

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Outline of Function

Outline of Ib30 functions

® Generates a new library file
® Renewal a library file
® Generates a library list file

Relocatable
module fileA
.r30 a N\
Library file
Relocatable module lib
fileB
.r30
q Manages existing library files.
(Ib30)
/Extracts modules to be entereD (Creates new library file. \

Updates existing library files.

Relocatable module

file C : -
130 Library file

E lib

Relocatable module

file D \

.r30

kﬂ*_/

| In30 ||

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
19

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Outline of Function

Outline of xrf30 functions

® Generates a cross reference file
® Controls output information of symbol

Cross reference
file
Xrf

Assemply source Assembler list
file file
.a30 st
K Specifiy either of two. j
| xrf30]
(Basicfunction

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
20

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Outline of Function

Outline of abs30 functions

® Generates absolute list files

-

Absolute list file Assembler list file
x30 st

| abs30

-

Basic function

Absolute list file
.als

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

21

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

AS30 Functions

The as30 assembler converts an assembly source file into a relocatable module file that can be read
in by the linkage editor. It therefore allows you to process assembly source files that include
macro directive commands.

Relocatable Assemble

® The as30 assembler is capable of relocatable assembling necessary to develop a program in
separated multiple files. It generates a relocatable module file from assembly source files
that contains the relocatable information necessary to link multiple files.

® The In30 editor references section information and global symbol information in the relocatable
module file generated by as30 while it determines the addresses for the absolute module file
section by section.

Precautions

Regarding hardware conditions, consider the actually used system as you write source

statements and perform link processing. Hardware conditions refer to (1) RAM size and its

address range and (2) ROM size and its address range.

Programs as30 and In30 have no concern for the physical address locations in the actual

ROM and RAM of each microcomputer in the M16C family. Therefore, sections of the DATA

type may happen to be allocated in the chip's ROM area depending of how files are linked.

When linking files, be sure to check the addresses in the actual chip to ensure that sections

are allocated correctly.

Unit of Address Management (Section)
AS30 manages addresses in units of sections.

Separation of sections are defined as follows:

® Aninterval from the line in which directive command ".SECTION" is written to a line preceding
the line where the next ".SECTION" is written.

® An interval from the line in which directive command ".SECTION" is written to the line where
directive command ".END" is written.

Precautions

Sections cannot be nested by definition.

PSECTION ram, DATA Range of ram section
work: .BLKB 10

.SECTION program)

JSR subl Range ofo program section

.SECTION subl

NOP .

MOV . W #0, work Range of sub1 section

RTS

.END

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
22

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Type of Section

You can set a type for a section in which units addresses are controlled by AS30. The instructions
that can be written in a section vary with its type.

CODE (program area)

® This area is where a program is written.
® All commands except directive commands to allocate a memory area can be written here.
® Specify that CODE-type sections be located in a ROM area in the absolute module.
Example:

.SECTION program,CODE

DATA (variable data area)

® This area is where memory where contents can be modified is located.
® Directive commands to allocate a memory area can be written here.
® Specify that DATA-type sections be located in a RAM area in the absolute module.
Example:
.SECTION mem,DATA

ROMDATA (fixed data area)

This area is where fixed data other than programs is written.

Directive commands to set data can be written here.

All commands except directive commands to allocate a memory area can be written here.
Specify that ROMDATA-type sections be located in a ROM area in the absolute module.
Example:

.SECTION const,ROMDATA

Section Attributes

Attribute is assigned to a section in which units addresses are controlled by AS30 when assembling
the source program.

Relative

® Addresses in the section become relocatable values when assembled.
® The values of labels defined in a relative-attribute section are relocatable.

Absolute

® Addresses in the section become absolute values when assembled.

® The values of labels defined in an absolute-attribute section are absolute.

® |f you want to assign a section an absolute attribute, specify its address with directive
command ".ORG" in a line following the line where directive command ".SECTION" is written.

Example:

.SECTION program,CODE
.ORG 1000H

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
23

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Rules on Section Management

This section describes how AS30 converts the source program written in multiple files into a single
executable file.

Section Management by as30

® Absolute-attribute section have their absolute addresses determined sequentially beginning
with the specified address.

® Relative-attribute section have their (relocatable) addresses determined sequentially beginning
with 0, section by section. All start addresses (relocatable) of relative-attribute sections are 0.

Address value determined by as30

filel
< 00000
SECTION A '
|—— Operand value of .ORG
.SECTION B :
- 0000
.SECTION C ! 0
:] : Absolute-attribute section
file2
0000
.SECTION A 0
- 0000
.SECTION B 0

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
24

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

AS30 Functions

Section Management by In30

Sections of the same names in all files are arranged in order of files specified.

Absolute addresses are determined sequentially beginning with the first section thus sorted.
Start addresses of sections are determined sequentially beginning with 0 unless otherwise
specified.
Sections that differ each other are located at contiguous addresses unless otherwise specified.

filel

.SECTION A
.SECTION B
.SECTION Cc

[] = Absolute-attribute section

file2

.SECTION A

.SECTION B

%

Absolute module file

Addresses determined by
In30 (if addresses are not
specified as In30 starts up)

-4
.SECTION A
.SECTION A

A -
.SECTION B
/ .SECTION B
/ .SECTION C

00000

— Operand value of .ORG

Rules for section allocation by In30

Sections of the same name are allocated in order of files specified.
Sections are allocated in the order they are entered in the file that is specified first.

If an attempt is made to allocate an absolute attribute after another absolute attribute, In30

outputs a warning.

For section type "DATA", if addresses overlap in two or more sections, In30 outputs a warning.

Sections will be allocated overlapping each other.

For section type "CODE" or "ROMDATA", if addresses overlap in two or more sections, In30

outputs an error.

If an attempt is made to allocate an absolute attribute after a relative attribute in sections of the

same name, In30 outputs an error.

If section names are the same and information on section attribute or type is inconsistent, In30

outputs a warning.

REJ10J2006—0200 Rev.2.00 2010.04.01

25

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Example of section allocation by In30
The following shows an example of how sections are actually allocated.

Example: Three relocatable module files are linked by entering the command below. In this case,
the generated absolute module file is named "sample.x30".

>|n30 samplel sample2 sample3

Result of section allocation

Sequence of section description in samplel
program

subroutine samplel
vector program in< sample2
Sequence of section description in sample2 sample3
program
subroutine samplel
interrupt subroutine in < sample2
Sequence of section description in sample3 sample3
subroutine tor | lel
interrupt vector in sample
program sample2

interrupt in {
sample3

Alignment of sections

Relative-attribute sections can be adjusted for alignment so that their start addresses always fall
on even addresses as addresses are determined when linked. If you want sections to be aligned
this way, specify "ALIGN" in the operand of directive command ".SECTION".

Example:

.SECTION program,CODE,ALIGN

Label and symbol

The as30 assembler determines the values of labels and symbols defined in the absolute attribute
section. These values are not modified even when linking. Furthermore, the label and symbol
information of the following conditions are output as relocatable information:

Global label and global symbol
Information on global labels and global symbols are output to relocatable information.

Local label and local symbol

Information on local labels and local symbols are output to relocatable information providing
that they are defined in the relative attribute section. However, if command options (-S and
-SM) are specified when assembling, information on all local labels and local symbols are
output to a relocatable file.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
26

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Management of Label and Symbol Addresses

This section describes how the label, symbol, and bit symbol values are managed by AS30.

AS30 divides the label, symbol, and bit symbol values into global, local, relocatable, and absolute
as it handles them.

The following explains the definition of each type.

Global

® The labels and symbols specified with directive command ".GLB" are made the global labels
and global symbols, respectively.

® The bit symbols specified with directive command ".BTGLB" are made the global bit symbols.

® The names defined in a file, if specified to be global, are made referencible from an external
file.

® The names not defined in a file, if specified to be global, are made the external reference
labels, symbols, or bit symbols that reference the names defined in an external file.

® All names specified with neither directive command ".GLB" nor ".BTGLB" are made the local
names.

® |Local names can be referenced within the file in which they are defined.

® Local names can have the same label name used in other files.

Relocatable

® The values of local labels, symbols, and bit symbols in a relative-attribute section are made
the relocatable values.

® The values of the externally referencible global labels, symbols, and bit symbols become
relocatable values.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
27

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Absolute

® The values of the local labels, symbols, and bit symbols defined in an absolute-attribute
section become absolute values.

The diagram below shows the relationship of labels explained above.

filel.a30
-.GLB ver, subl, port Global declaration of label (essential)
.SECTION device
-ORG 40H Absolute label in filel
port: .BLKW 1 port
.SECTION program main
.ORG 8000H
main: Relocatable label in file2
JSR subl ver
.SECTION str, ROMDATA sub1
ver: .BYTE '"program version 1"
.END
file2.a30
_GLB ver, subl,port Global declaration of label (essential)
.SECTION program o
_ORG 0CO00H Absolute label in file2
subl: subl
LDM.B #0,A0 loop_s1
loop sl: o
IDM.B ver[AOQ], port Relocatable label in file2
INC.W A0 ver
CMP ver [A0], 0 port
JNZ loop sl
.END

Converting Relocatable Values
The In30 editor converts the relocatable values in the relocatable module file into absolute values
in the following manner.

® Addresses determined after relocating sections are made the absolute address.
® |n the following cases, In30 outputs a warning.

If the determined actual address lies outside the range of branch instructions and addressing
modes determined by as30.

Library File Referencing Function
If all of the following conditions are met, In30 links relocatable modules entered in a library file.

Condition 1
Library file reference was specified on the command line.
Condition 2

After all specified relocatable module files have been allocated, some global labels remain
whose values are depending determination.

Precaution

The In30 editor links the entire relocatable module where necessary global labels are defined.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

28

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Rules for referencing library modules

The In30 editor determines the relocatable modules to be linked in the order described below. A
relocatable module that has been determined to be linked is relocated section by section. Sections
are relocated in the same way as sections are relocated in a relocatable module file.

1 The In30 first searches the global label information of relocatable modules entered in a library
file. Relocatable modules are referenced in the order they are entered in the library file.

2 The labels searched from the library file are compared with the labels whose values are
pending. If any labels match, In30 links this relocatable module in the library file to the
absolute module file.

3 After going over the relocatable modules in the library file, if there remains any global label
whose value is pending (i.e., a relocatable module in the library file contains an external
reference label), In30 again searches modules in the library file in the order they are entered.

Example of referencing library modules

The following shows an example of how modules in a library file are referenced.
Example: Two relocatable files are linked by entering the command below. In this case,
library file "lib1.1ib" is referenced as necessary.

>In30 samplel sample2 -L libl.lib

samplel.r30

syml External reference

sym2 Extemnal reference Specified relocatable module files are linked in
sample2.r30 the order they are specified.

sym3 External reference

Undefined symbols are searched from
the library file in the following order.

Procedure for determining library module
linking sequence
1.Global symbol 1 is searched.
2.Global symbol 2 is searched.
3.Global symbol 3 is searched.
4.Global symbol 4 is searched.

libl.lib

moduleA
sym4 definition

moduleE *
sym1 definition

sym4 External reference

Determined linking sequence
moduleC samplel.r30

sym2 definition sample2.r30
moduleB
moduleD modulec

sym3 definition moduleD

moduleA

Caution: In30 allocates sections according to the linking sequence thus determined.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
29

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Management of Include File

The as30 assembler can read an include file into any desired line of the source program. This
facility can be used to improve the legibility of your program.

Rules for Writing Include File

To write an include file, follow the same rules that you follow for writing a source program.
Precautions
Directive command ".END" cannot be written in an include file.

Reading Include File into Source Program

Write the file name you want to be read in the operand of directive command ".INCLUDE".
All contents of the include file are read into the position of this line.
Example:

.INCLUDE initial.inc

Example of source file (sample.a30) Example of include file (initial.inc)
.SECTION memory, DATA loop:
work: .BLKB 10 MOV.B #10,A0
flags: .BLKW 1 MOV.B #0,work[AQ]
.SECTION init INC.B A0
. INCLUDE initiall JNZ loop
.SECTION program, CODE MOV.W #0,flags

main:

.END

After source file is assembled

.SECTION memory, DATA
00000 work: .BLKB 10
0000A flags: .BLKW 1

.SECTION init

00000 . INCLUDE initial

loop:

00000 MOV .B #10,A0

00002 MOV.B #0, work [AO]

00006 INC.B A0

00007 JINZ loop

00009 MOV .W #0,flags
.SECTION program, CODE

00000 main:

? .END

Address output by as30

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
30

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Code Selection by AS30

The as30 assembler is designed to choose the shortest code possible from the M16C family's
addressing modes. This section outlines the M16C family's addressing modes and explains how to
write mnemonics in the source program.

Optimized Code Selection

The as30 assembler optimizes code selection when one of the following conditions applies:

® Operands that have a valid value when assembling in which however, no addressing mode is
specified
® Operands in which symbols declared in ".SBSYM" or ".FBSYM" are used.

Outline of Mnemonic Description

The M16C family allows you to write the specifiers listed below and an addressing mode in its
mnemonics and operands. The specifiers and addressing modes you can specify differ with each
mnemonic. Refer to the "M16C Family Software Manual" for details on how to write mnemonics.

Size specifier

Specify the size of the data to be operated on by the mnemonic. You cannot omit this
specifier; it must always be entered.

Jump distance specifier

Specify the distance to the jump address of a branch instruction or subroutine call instruction.
(You normally do not need to specify this.)

Instruction format specifier

Specify the format of op-code. The code lengths of op-code and operand differ with each
op-code format. (You normally do not need to specify this.)

Addressing mode

Specify the addressing mode of operand data. You can omit this specification. The section to
specify the address range of relative addressing in AS30 is referred to as an addressing mode
specifier.

Here, 16" and ":8' are the addressing mode specifiers.
MOV.W work1:16[SB],work2:8[SB]

Optimized Selection by AS30

The as30 assembler generates optimum-selected or most suitable code for the source statements
shown below.

® \When jump distance specifier is omitted
Precautions
The jump distance specifier cannot be omitted if the operand is indirect addressing. An
error is generated if this specifier is omitted.
® When instruction format specifier is omitted
® \When addressing mode specifier is omitted
Precautions
For an addressing mode with displacement, be sure to specify the displacement.
® Combination of the above
The following explains optimum selection by as30 for each case listed above.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
31

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

When jump distance specifier is omitted (normally omitted)

The as30 assembler performs optimum selection when all of the following conditions are met:

® \When the operand is written with one label.

® \When the operand is written with an expression that contains one label.
Label + value determined when assembled
Label - value determined when assembled
Value determined when assembled + label

® When operand labels are defined in the same section.

® The section where the instruction is written and the section where the operand label is defined
both are absolute-attribute sections and are written in the same file.

Precautions

® If conditions to perform optimum selection are not met, as30 generates code as directed
by directive command ".OPTJ".

® \When the branch instruction that is making reference to the global label is optimized,

specify “-OGJ(-Oglb_jmp)” of nc30, “-JOPT” of as30 and “-JOPT” options of In30.
However, the directive command “.OPTJ” is ignored where these options were
designated.

The following shows instructions selected by as30.

® Unconditional branch instruction
The shortest instruction possible to branch is selected from jump distances "A', W', ".B', and
'S

Precautions

Size .S' is selected only when the branch instruction and the jump address label are present in

the same section.

Subroutine call instruction

The shortest instruction possible to branch is selected from jump distances A" and "W'.
Conditional branch instruction

Jump distance '.B' or alternative instruction is generated.

Precautions

The source line information in a list file is output directly as written in the source lines. Code
of alternative instruction is output to the code information section.

The 'ADJNZ' and 'SBJNZ' instruction are equally to the conditional branch instruction
optimized.

When instruction format specifier is omitted (normally omitted)

The instruction format specifier normally is omitted.

The as30 assembler performs optimum selection for mnemonics where instruction format specifiers
are omitted.

If instruction format specifiers are omitted, as30 first determines the addressing mode before it
selects the instruction format.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

32

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

When addressing mode specifier is omitted

If addressing mode specifiers are omitted, as30 selects the most suitable code in the following
manner:

® |n cases of addressing with displacement, if the displacement value is determined when
assembled, the most suitable addressing mode is selected.

® |f directive command ".SB" or ".FB" is defined, an 8-bit SB relative addressing mode (hereafter
called SB relative) or 8-bit FB relative addressing mode (hereafter called FB relative) is
selected depending on condition.

The following shows the condition under which one of the two addressing modes above is selected.
Selection of SB relative

SB relative is selected when the following conditions are met.

Precautions
The SB register value must always be set using directive command ".SB" before SB relative
addressing can be used.
® When an operand value is determined when assembling the source program and the
determined value is in an addressing range in which SB relative can be selected.
The SB relative selectable address range is a range in the 64-Kbyte address space and range
in the result added -0 to +255 to value of the 16-bit register (SB).
Precautions
Optimization is not performed unless the SB register value is defined by an expression in
which it will be determined when assembling the source program.
® \When the symbol declared by directive command ".SBSYM" is written in the op-code.
® \When the following expression that includes a symbol defined by directive command
".SBSYM" is written in the op- code.
(symbol) - value determined when assembled
(symbol) + value determined when assembled
Value determined when assembled + (symbol)

For 1-bit operation instructions, the addressing mode is selected in the following manner:

® \When the mnemonic has a short format in its instruction format...
Short format SB relative is selected.

® \When the mnemonic does not have a short format in its instruction format...
A 16-bit SB relative addressing mode is selected.

Selection of FB relative

FB relative is selected when the following conditions are met.

Precautions
The FB register value must always be set using directive command ".FB" before FB relative
addressing can be used.
® \When an operand value is determined when assembling the source program and the
determined value is in an addressing range in which FB relative can be selected.
This address range is a range in the 64-Kbyte address space and range in the result added
-128 to +127 to value of the 16-bit register (FB).
® \When the symbol declared by directive command ".FBSYM" is written in the op-code.
® \When the following expression that includes a symbol defined by directive command
".FBSYM" is written in the op- code.
(symbol) - value determined when assembled
(symbol) + value determined when assembled
Value determined when assembled + (symbol)

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
33

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Example of Optimization Selection by as30

The examples below show the addressing modes optimum selected by as30 and how they are
written in the source file.

Address register relative with 8-bit displacement

Example:
sym1 .EQU 11H
ABS.B syml1+1[AQ]
SB relative
Example 1:
sym2 .EQU 2
sym3 .EQU 3
.SB 0
.SBSYM sym3
ABS.B sym3-sym2
Example 2:
.SB 100H
sym4 .EQU 108H

ABS.B sym4
SB Register Offset Description

Programming with AS30 allows you to enter a description to specify an offset address from the SB
register value.

Function

® Operation is performed on the address value specified by the directive command ".SB" plus a
specified offset value.
® Code is generated in SB relative addressing mode.

Rules for writing command

® This description can be entered for an operand where the SB relative addressing mode can be
written.
® Alabel, symbol, or numeric value can be used to write the offset.

Description example

syml .EQU 1200H
.SECTION P
.SB 1000H

MOV.B #0,sym1[SB]
MOV.B #0,sym1[-SB]
.END

Special Page Branch

The M16C family assembly language allows you to branch at a special page using a special page
vector table by writing a "JMPS" mnemonic.

Special Page Subroutine

The M16C family assembly language allows you to call a special page subroutine using a special
page vector table by writing a "JSRS" mnemonic.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
34

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Special Page Vector Table

The following outlines the special page vector table:

The special page vector table is allocated in addresses OFFEOOH to OFFFDBH.

One vector table consists of two bytes.

Each vector table is assigned a special page number.

The special page number decreases from 255 to 254, and so on every 2 bytes beginning with
address OFFEOOH.

Precaution

For details about the special page vector table, refer to the "M16C Family Software Manual.”

This manual only shows how to set and reference the special page vector table.

Setting Special Page Vector Table

The special page vector table is used to store the 16 low-order bits of an address in the special
page.

Rules for writing command

® Always be sure to define a section.

® Use the directive command ".ORG" to define the absolute address.

Precautions

The address you set here must be an even-numbered address.

® Use the directive command "WORD" to store the 16 low-order bits of an address in the
special page in ROM.

Description example

.SECTION sp_vect,ROMDATA
.ORG OFFEOOH

sub1l: .WORD label_0 & OFFFFH ; Special page number 255
sub2: .WORD label_1 & OFFFFH ; Special page number 254
sub3: .WORD label_2 & OFFFFH ; Special page number 253

.ORG OFFFDAH
sub238: .WORD label_237 & OFFFFH

Referencing Special Page Vector Table

There are two methods to reference the special page vector table as described below.

® Specify your desired special page number.
® Specify the address of your desired special page vector table.

Rules for writing command

® When specifying a special page number, always be sure to write "#" at the beginning of the
number.

® \When specifying the address of a special page vector table, always be sure to write "\" at the
beginning of the address.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
35

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Description example

.SECTION p
main:

JSRS \subl

JSRS \sub2

JSRS \sub3

.SECTION special
.ORG O0FO0000H
label_0:

MOV.B #0,ROH
RTS

label_1:

MOV.B #0,ROL
RTS

label_2:

JMP main

.END

The content of ".SECTION p" in the above example can be written differently, like the one shown
below.

.SECTION p
main:

JSRS #255

JSRS #254

JMPS #253

Macro Function

This section describes the macro functions that can be used with AS30. The following lists the
macro functions available for AS30:
Macro function

To use a macro function, define it with directive commands ".MACRO" and ".ENDM" and call
up the defined macro.

Repeat macro function

To use a repeat macro function, use directive commands "MREPEAT" and ".ENDR" to define
it.

Each macro function is described below.

Macro Function

® A macro function can be used by defining a macro name (macro definition) and calling up the
macro (macro call).

® A macro function cannot be made available for use by macro definition alone.

® Macro definition and macro call have the following relationship.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
36

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Macro Definition

Macro definition means defining a collection of more than one line of instructions to a single
macro name by using directive command ".MACRQO".

Macro names and macro arguments are case-sensitive, so that lowercase and uppercase
letters are handled differently.

End of macro definition is indicated by directive command ".ENDM".

Lines enclosed with directive commands ".MACRO" and ".ENDM" are called the macro body.
Macro definition can have formal parameters defined.

Recursive definition is allowed for macro definition.

Macros can be nested in up to 65,535 levels including both macro definition and macro call.
Macros of the same name can be redefined.

Macro definition can be entered outside the range of a section.

Any instructions you can write in source programs can be written in the macro body.

Macro formal parameters (up to 80 arguments) can be written.

Macro local labels can be written for up to a total of 65,535 labels in one assembly source file.

mac .MACRO pl,p2,p3 i Formal parameter
Macro definition Body

. ENDM

pl and work correspond
one for one.

0 and p2 correspond one
for one.

Macro call mac work, #0 -—} Real parameter

In this example, a warning message is output because there is no real argument
corresponding to p3.

Macro Local Labels

The labels defined with directive command ".LOCAL" are made macro local labels.

Macro local labels can be used in only macro definition.

The label names declared to be macro local labels are allowed to be written in places outside
the macro with the same name.

The labels you want to be used as macro local labels must first be declared to be a macro
local label before you define the label.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS

37

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Macro Call

® Macro call can be accomplished by writing a macro name that has been defined with directive
command ".MACRO".

® Code for the macro body is generated by macro call.

® Macro names cannot be forward referenced (i.e., you cannot call a macro name that is defined
somewhere after the line where macro call is written). Always make sure that macro
definition is written in places before the macro call line.

® Macro names cannot be externally referenced (i.e., you cannot call a macro name that is
defined in some other file). If you want to call the same macro from multiple files, define the
macro in an include file and include it in your source file.

® The content of the macro-defined macro body is expanded into the line from which the macro
is called.

® Actual parameters corresponding to macro-defined formal parameters can be written.

Example of source program After expansion

mac .MACRO Macro definition
Body
. ENDM

.SECTION program * _SECTION program

| Expanded macro
position

Repeat Macro Function

The macro body enclosed between directive commands ".MREPEAT" and ".ENDR" is
expanded repeatedly into places after the specified line a specified number of times.

Repeat macros are expanded into the defined line.

Labels can be written in repeat macro definition lines.

Precautions
This label is not a macro name. There is no macro call available for repeat macros.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

38

M16C Series, R8C Family C Compiler

Conditional Assemble Control

Package V.5.45 Assembler System

AS30 Functions

assembled by using conditional assemble directive commands.

The as30 assembler allows you to specify whether or not you want a specified range of lines to be

Configuration of Conditional Assemble Block

The diagram below shows the configuration of a conditional assemble block.
JIF CE o
Conditional assemble | Nest IF CE
Body -
block can be written.
Body
; ELIF CE
ELIF CE - 5 Body
Conditional assemble | +
Conditional Body block can be written. P .ELSE
Can be omitted. \
assemble Can b itten 1 \
block an be written for ' Body
multiple instances. .
| .ENDIF
.ELSE \
Conditional assemble !
Body block can be written.
Can be omitted.
.ENDIF

Executing Conditional Assemble

CE=Conditional expression

three messages.

The following shows examples of how conditional assemble is executed after selecting from
Here, the assembly source file name is "sample.a30".

Conditional assemble execution examples are shown below.
Assebly Source File)

.SECTION outdata,ROMDATA,ALIGN
AF

TYPE==0

.BYTE "PROTO TYPE"

.ELIF TYPE>0

.BYTE "MASS PRODUCTION TYPE"
.ELSE

.BYTE "DEBUG MODE"
.ENDIF
.END

Command Input 1)

>as30 sample -Dtype=0
Assembled Result 1)

.SECTION outdata, ROMDATA,ALIGN
.BYTE "PROTO TYPE"
.END

Command Input 2)

>as30 sample -Dtype=1

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
39

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Assembled Result 2)

.SECTION outdata, ROMDATA,ALIGN
.BYTE "MASS PRODUCTION TYPE"
.END

Command Input 3)
>as30 sample -Dtype=-1
Assembled Result 3)

.SECTION outdata, ROMDATA,ALIGN
.BYTE "DEBUG MODE"

.END
Next, the following shows an example of how to set a value to "TYPE" in the assembly source file.
TYPE EQU 0
.SECTION outdata, ROMDATA,ALIGN
IF TYPE==0

.BYTE "PROTO TYPE"

.ELIF TYPE>0

.BYTE "MASS PRODUCTION TYPE"
.ELSE

.BYTE "DEBUG MODE"

.ENDIF

.END

Structured Description Function

Programming with AS30 allows you to enter structured descriptions using structured description
commands.

The following lists the functions of AS30's structured description:

® The assembler generates assembly language branch instructions corresponding to the
structured description commands.

® The assembler generates labels indicating the jump address for the generated branch
instruction.

® The assembler outputs the assembly languages generated from the structure description
commands to an assembiler list file. (When a command option is specified)

® A structured description command allows you to select a control block that is made to branch
by a structured description statement and its conditional expression. A control block refers to
a program section from some structured description statement to the next structured
description statement except for assignment statements.

Source Line Information Output

The as30 assembler outputs to a relocatable module file the information that is necessary to
implement source debugging of "NC30" and "Macro description of AS30."

Symbol Definition

The as30 assembler allows you to define symbols by entering command option (-D) when starting
up the program. This function can be used in combination with a condition assemble function,
etc.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
40

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Environment Variables of as30

The as30 assembler references the environment variables listed below.

Environment Variables Program
AS30COM as30

BIN30 as30

INC30 as30

LIB30 In30

TMP30 as30,In30,Ib30
AS30COM

The as30 assembler adds the command options set in the environment variables as it processes a
file.

The command options set in this environment variable can be nullified by using two consecutive
hyphens (--).

The command options listed below can be set to this environment variable.

How to set up AS30COM
SET AS30COM=-L -N -S -T

How to clear the settings on AS30COM
SET AS30COM=

Example for using AS30COM

When environment variable AS30COM is set, as30 sets the command options in the following
order.
1 as30 first sets the command options set in AS30COM.
2 as30 sets the command options entered from a command line.
The following shows an example for setting an option to AS30COM, an example for entering a
command option from a command line, and an example of a valid command option.
Example for setting up AS30COM
SET OPT30=-L -N -S -L
Command input example -1
as30 -Dsym=0 --N
Option that becomes valid when executing as30 -1
as30 -Dsym=0 -L -S -T
Command input example -2
as30 -O\tmp --T -SM -LM
Option that becomes valid when executing as30 -2
as30 -O\tmp -N -SM -LM

BIN30

The assembler driver (as30) invokes the macro processor ,the structured processor and assembler
processor residing in the directory you have set.

If this variable is set, always make sure that macroprocessor, structured processor and assembler
processor are placed in the directory you have set. Multiple directories can be specified. If
multiple directories are specified, as30 searches the directories sequentially from left to right in
the order they are written.

REJ10J2006-0200 Rev.2.00 2010.0401 RENESAS
41

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

INC30

The assembler as30 retrieves include files written in the assembly source file from the directory set
in INC30. Multiple directories can be specified. If multiple directories are specified, as30
searches the directories sequentially from left to right in the order they are written.

LIB30

The In30 retrieves library file to link from directory that is set in thes environment variable.
Multiple directories can be specified. If multiple directories are specified, as30 searches the
directories sequentially from left to right in the order they are written.

TMP30

Programs generate a work file necessary to process files in the directory that is set in this
environment variable.

The work file normally is erased after as30 finishes its processing.

Example of setting environment variable.

Separate the directory names with a semicolon as you write them.
SET INC30=C:\COMMON;C:\PROJECT

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
42

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System AS30 Functions

Output messages

The programs are included this products output information of process to screen.
Error Messages

This chapter describes the error messages output by each AS30 program.

Types of Errors

There are following two types of error messages.

Error message

This refers to an error encountered during program execution that renders the program
unable to perform its basic function.

Warning message

This refers to an error encountered during program execution that presents some problem
even though it is possible to perform the basic function of the program.

Precaution

Please try to solve all problems that have caused generation of a warning message. Some
warnings may result in a fault when operating your system on the actual chip although no
problem might have been encountered during debugging.

Return Values for Errors

When terminating execution, each AS30 program returns a numeric value to the OS indicating its
status at termination.

The table below lists the values that are returned when an error is encountered.

Return value Content

0 Program terminated normaly.

1 Program was forcibly terminated by input of control C.

2 Error relating to the OS's file system or memory system occured.
3 Error attributable to the file being processed occured.

4 Error in input form the command line occured.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
43

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

Input/Output Files of AS30

The table below lists the types of files input for AS30 and those output by AS30. Any desired file
names can be assigned. However, if the extension of a file name is omitted, AS30 adds the

extension shown in () in the table below by default.

as30

Input Files

Output Files

Source file (.a30)

Include file (.inc)

Relocatable module file (.r30)
Assembler list file (.Ist)
Assembler error tag file (.atg)

Branch Information file (.jin)

In30

Input Files

Output Files

Relocatable module file (.r30)
Library file (.lib)

Branch Information file (.jin)

Absolute module file (.x30)
Map file (.map)
Linkage error tag file (.Itg)

Imc30

Input Files

Output Files

Absolute module file (.x30)

Motorola S format file (.mot)
Intel HEX format file (.hex)
ID file (.id)

Ib30

Input Files

Output Files

Relocatable module file (.r30)

Library file (.lib)
Relocatable module file (.r30)

Library list file (.ls)

xrf30

Input Files

Output Files

Source file (.a30)

Assembler list file (.Ist)

Cross reference file (.xrf)

abs30

Input Files

Output Files

Absolute module file (.x30)

Assembler list file (.Ist)

Absolute list file (.als)

Relocatable Module File

A relocatable module file is one of the files generated by as30. This file is linked by 1n30 to
generate an absolute module file.

REJ10J2006-0200 Rev.2.00 2010.0401 RENESAS
44

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

Format of relocatable module file

The relocatable module file generated by as30 is based on the IEEE-695 format.

Precaution

Since this file comes in a binary format, it cannot be output to a display screen or printer; nor
can it be edited. Note that if you open or edit this file with an editor, file processing in the
subsequent stages will not be performed normally.

File name of relocatable module file

The file name of the relocatable module file is created by changing the extension of the
assembly source file (.a30 by default) to "r30." (sample.a30 --> sample.r30)

Directory for relocatable module file generated

If you specified the directory with command option (-O), the relocatable module file is
generated in that directory. If no directory is specified, the relocatable module file is
generated in the directory where the assembly source file resides.

Assembler List File

Only when you specified command option (-L or -LM), as30 generates source line information and
relocatable information as a file in text format that can be output to a display screen or printer .

Format of assembler list file

The information listed below is output to an assembler list file. The output format of this
assembler list file is shown in Example of Assembler List File -1.
(1) List line information : SEQ.
Outputs the line numbers of the assembler list.
(2) Location information : LOC.
Outputs the location addresses of a range of object code that can be determined when
assembling.
(3) Object code information : OBJ.
Outputs the object code corresponding to mnemonics.
(4) Line information : OXMSDA
Outputs information on the results of source line processing performed by as30.
Specifically, this information contains the following:

0 X| M| S| D/| A |Contents

0-9 Indicates the include file's nest rebel.

X Indicates that this line was not assembled in condition assemble.

Indicates that this is a macro and structured statement expansion line.

D Indicates that this is a macro definition line.

S Indicates that this is a macro expansion line when pre30 does not execute.

Indicates that jump distance specifier S was selected.

Indicates that jump distance specifier B was selected.

Indicates that jump distance specifier W was selected.

Indicates that jump distance specifier A was selected.

Indicates that zero form (:Z) was selected for the instruction format.

Indicates that short form (:S) was selected for the instruction format.

Ol |N|>|S|m|W

Indicates that quick form (:Q) was selected for the instruction format.

* | Indicates that 8-bit displacement SB relative addressing mode was selected.

(5) Source line information :*....SOURCE STATEMENT....
Outputs the assembly source line.

REJ10J2006-0200 Rev.2.00 2010.0401 RENESAS
45

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

Information in assembler list file

The following information is output to an assembler list file.
® Header information
The information listed below is output at the beginning of each page of the assembler list file.

* R8C/Tiny,M16C FAMILY ASSEMBLER * SOURCE LIST Tue Nov 18 12:02:53 1997 PAGE
002
SEQ. LOC. OBJ. OXMSDA*....SOURCE STATEMENT....7....*....8

® Address definition line
Indicates the line in which location addresses are defined using the directive command

".ORG".
11 .SECTION RAM,DATA
12 00400 .ORG 000400h

® Area definition line
Indicates the line in which areas are defined using the directive commands ".BLKB", ".BLKW",
".BLKA", ".BLKL", ".BLKF", and ".BLKD".

55 .SECTION raml,data
56 00000(000001H) workl: .BLKB 1

57 00001(000001H) work2: .BLKB 1

58 00002(000002H) work3: .BLKW 1

59 00004(000002H) work4: .BLKW 1

® Comment line
This line is where only comment are described.
12 ;
13 ; Macro define
® Symbol definition line
Indicates the line in which symbols are defined using the directive command ".EQU".

65 00000001h syml .EQU 1
66 00000002h sym2 .EQU 2
67 00000003h sym3 .EQU syml + sym2

® Bit symbol definition line
Indicates the line in which bit symbols are defined using the directive command ".BTEQU".
62 1,00000000h flagl .BTEQU 1,0
63 2,00000000h flag2 .BTEQU 2,0
® Constant data definition line
Indicates the line in which data are set in the ROM area using the directive commands
"BYTE", ".WORD", ".ADDR", ".DWORD", ".FLOAT", and ".DOUBLE".

175 O0003E 41 M .BYTE "A"
176 0003F 42 M .BYTE "B"
177 00040 43 M .BYTE "C"
178 00041 44 M .BYTE "D"

® Macro definition line
This line is where macros are defined.
46 mac5 .MACRO p1

47 D MREPEAT .LEN{p1?}

48 D BYTE .SUBSTR{pl, ..MACREP,1}
49 D .ENDR

50 D .ENDM

® |abel definition line
This line is where only label name are described.
70 00000 samp_start:
® Mnemonic statement line
This line is where mnemonics of the M16C Family are described.

71 00000 4100 S* BCLR flagl
72 00002 4200 S* BCLR flag2

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
46

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

® Condition assemble information line
Indicates the line that was condition assembled. This information is output only when you
specified command option (-LI , -LMI or -LMSI).

74 AF MODE ==1
75 X MOV.B #syml,ROL
76 .ELIF MODE ==

77 X MOV.B #sym2,ROL
78 .ELSE

79 00004 B4 z MOV.B #0,ROL
80 .ENDIF

® Macro call line
This line is where a macro is called. If you specified command option (-LM), this line outputs
assembly source lines derived as a result of macro expansion.
173 mac5 ABCD
® Structured description line
This line is where program are described in structured directive command.

42 for AO < Al

43 F800A S ..fr0000:

44 F800A Ci154 S CMPW A1A0

45 F800C 680B S JC ..fr0002

46 [WORK_W]=[A0]

47 F800E 736F0104 S MOV.W [AO0],WORK_W
48 [AO]=[A1]

49 F8012 7376 S MOV.W [A1],[AQ]
50 A0 = ++A0

51 F8014 B2 S INC.W A0

52 Al =--Al

53 F8015 FA S DEC.W Al

54 next

55 F8016 FEF3 SB JMP ..fr0000
56 F8018 S ..fr0002:

® Include file indication line
This line is where the read-in include file is indicated.

65 .INCLUDE sample.inc
66 1 .SECTION ram,DATA
67 00000(000008H) 1 work8: .BLKD 1
68 00008(000004H) 1 work_4: .BLKF 1
69 1 .SECTION constdata, ROMDATA
70 00000 3031323334353637 1 num_val:.BYTE "0123456789"
3839 1

® Assemble result information
Outputs a total number of errors, total number of warnings, and a total number of list lines
derived as a result of assemble processing.
Information List

TOTAL ERROR(S) 00000
TOTAL WARNING(S) 00000
TOTAL LINE(S) 00181 LINES

® Section information
Lists the section types, section sizes, and section names.

Section List
Attr Size Name
DATA 0000006(00006H) ramil

CODE 0000066(00042H) progl

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
47

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

File name of assembler list file

The file name of the assembler list file is created by changing the extension of the assembly
source file (.a30 by default) to ".1st" (sample.a30 --> sample.lst)

Directory for assembler list file generated

If you specified the directory with command option (- O), the assembler list file is generated in
that directory. If no directory is specified, the assembler list file is generated in the directory
where the assembly source file resides.

Assembler Error Tag File

Only when you specified command options (-T and -X), as30 outputs to a file the errors that were
encountered when assembling the assembly source file.

Format of assembler error tag file

The assembler error tag file is output in a format that allows you to use an editor's tag jump
function.

This file is output in order of the assembly source file name, error line number, and error
message as shown below.

sample.err 21 Error (asp30): Operand value is not defined
sample.err 72 Error (asp30): Undefined symbol exist "work2"

File name of assembler error tag file

The file name of the assembler error tag file is created by changing the extension of the
assembly source file (.a30 by default) to ".atg" (sample.a30 --> sample.atg)

Directory for assembler error tag file generated

If you specified the directory with command option (- O), the assembler error tag file is
generated in that directory. If no directory is specified, the assembler error tag file is
generated in the directory where the assembly source file resides.

Branch Information File

The as30 generates a branch information file required to optimize the external branch for the a30
file in which the branch instruction referencing the global label exists when “-JOPT” option was
specified.

Format of branch information file

The branch information file is only for internal processing of as30 and In30.

Precaution

Do not edit this file. It should be noted that if it is edited, no subsequent processing is carried
out normally.

File name of branch information file

The file name of the branch information file is created by changing the extension of the
assembly source file (.a30 by default) to ".jin" (sample.a30 --> sample.jin)

Directory for branch information file generated

The branch information file is generated in the same directory as the relocatable module file.

Absolute Module File

The In30 editor generates one absolute module file from multiple relocatable module files.

Format of absolute module file
This file is output in the format based on IEEE-695.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
48

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

Precaution

Since this file comes in a binary format, it cannot be output to a screen or printer; nor can it be
edited. Note that if you open or edit this file with an editor, file processing in the subsequent
stages will not be performed normally.

File name of absolute module file

The file name of the absolute module file normally is created by changing the extension ".r30"
of the relocatable module file that is entered first from the command line into ".x30".
(sample.r30 --> sample.x30)

If you specify a file name using command option (-O), the file is generated in specified name.

Directory for absolute module file generated

The absolute module file normally is generated in the current directory.
If you specify a path in the file name of command option (-O), the absolute module file is
generated in the directory of that path.

Map File

Only when you specify command option (-M, -MS or -MSL), In30 outputs link information on last
allocated section address, and symbol information to a map file. Symbol information is output only
when you specify command option (-MS or -MSL).

Format of map file

The information below is output to a map file sequentially in a list form. The output format

of a typical map file is shown in Example of Map File.

(1) Link information
This information includes command lines, relocatable module file names, and the dates when
the relocatable module files, directive command “.ID”, ".OFSREG”, “PROTECT"” and “.VER”"
were created.

(2) Section information
This information includes the relocated section names, attributes, types, store addresses,
section sizes, whether or not sections are aligned, and module names (relocatable module file
names).

VARIABLE VECTOR TABLE INFORMATION
This information includes variable vector table.

SPECIAL VECTOR TABLE INFORMATION
This information includes special page vector table.

(3) Global label information
This information includes global label names and addresses. This information is output only
when you specify command option "-MS/-MSL".

(4) Global symbol information
This information includes global symbol names and numeric values. This information is
output only when you specify command option "-MS/-MSL".

(5) Global bit symbol information
This information includes global bit symbol names, bit positions, and memory addresses.
This information is output only when you specify command option "-MS/-MSL".

(6) Local label information
This information includes module names (relocatable module file names), local label names,
and addresses. This information is output only when you specify command option
"-MS/-MSL".

(7) Local symbol information
This information includes module names (relocatable module file names), local symbol names,
and numeric values. This information is output only when you specify command option
"-MS/-MSL".

(8) Local bit symbol information
This information includes module names (relocatable module file names), local bit symbol
names, bit positions, and memory addresses. This information is output only when you
specify command option "-MS/-MSL".

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
49

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Input/Output Files of AS30

Example of Map file

HHHHHHHHH AR
(1) LINK INFORMATION
HHHEHH P P
In30 -ms smp

|D CODE DATA
ID “Code”

ROM CODE PROTECT DATA
PROTECT 12H

LINK FILE INFORMATION
smp (smp.r30)
Jun 27 14:58:58 1995

HHHH T R
(2) SECTION INFORMATION
HHHHHHHHHH

SECTION ATR TYPE START LENGTH ALIGN MODULENAME

ram REL DATA 000000 000014 smp

program REL CODE 000014 000003 smp

Total
DATA 000014(0000020) Byte(s)
ROMDATA 000000(0000000) Byte(s)
CODE 000003(0000003) Byte(s)

HH B

(3) GLOBAL LABEL INFORMATION

HH B A

work 000000

HH B R A

(4) GLOBAL EQU SYMBOL INFORMATION

HH B R R

sym2 00000000

HH T
(5) GLOBAL EQU BIT-SYMBOL INFORMATION
HHH R R R R R R
syml 1 000001

HHHEHHHH P P

(6) LOCAL LABEL INFORMATION

HEHEHH R T R

@ smp (smp.r30)

main 000014 tmp 00000a

HHHHHHHHH R H AR
(7) LOCAL EQU SYMBOL INFORMATION
HHHEHH P P
@ smp (smp.r30)

sym3 00000003

HHAHHHHTR TR A
(8) LOCAL EQU BIT-SYMBOL INFORMATION
HHH R R R R R R
@ smp (smp.r30)

sym4 1 000000

File name of map file

Directory for map file generated

The file name of the map file is created by changing the extension ".x30" of the absolute
module file into ".map". (sample.x30 --> sample.map)

The map file is generated in the directory where the absolute module file resides.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS

50

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

Link Error Tag File

Only when you specify command option (-T), In30 outputs link error information to a file. In this
case, locations in error are output with the assembly source lines.
Format of link error tag file

This file is output in the same format as an assembler error tag file. An editor's tag jump
function can be used.

The link error tag file is output in order of the assembly source file name, error line number,
and error message as shown below.

smp.inc 2 Warning (In30): smp2.r30 : Absolute-section is written after the absolute-section 'ppp’
smp.inc 2 Error (In30): smp2.r30 : Address is overlapped in ‘CODE' section ‘ppp’

File name of link error tag file

The file name of the link error tag file is created by changing the extension ".x30" of the
absolute module file into ".Itg". (sample.x30 --> sample.ltg)

Directory for link error tag file generated

The link error tag file is generated in the directory where the absolute module file resides.

Motorola S Format
The Imc30 generates a Motorola S format file that can be programmed into EPROM.

Format of Motorola S file

The following can be specified when generating a Motorola S format file.
® Set the length of one data record to 16 bytes or 32 bytes.
® Set the start address of a program.

File name of Motorola S file

The file name of the Motorola S file is created by changing the extension ".x30" of the absolute
module file into ".mot". (sample.x30 --> sample.mot)

Directory for Motorola S file generated

The files are generated in the current directory.

Intel HEX Format

Only when you specify command option (-H), Imc30 generates an Intel HEX format file that can be
programmed into EPROM.
Format of Intel HEX file

The following can be specified when generating an Intel HEX format file.

® Set the length of one data record to 16 bytes or 32 bytes.

Precaution

IF the address value exceeds 1Mbytes of machine language file, the file of Original HEX
format for microcomputers is generated. This file can not be program into EPROM.

File name of Intel HEX file

The file name of the Intel HEX file is created by changing the extension ".x30" of the absolute
module file into "hex". (sample.x30 --> sample.hex)

Directory for Motorola S file generated

The files are generated in the current directory.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
51

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

ID File

When you specify command option (-ID) or the assembler directive command (.ID),
Imc30 outputs ID code to a file.

Format of ID file

This file is output in a text format that can be output to a screen and printer. By referencing
thisfile, confirm ID code of ID code function.

The ID file is output in order command option information, ID code store address.

-IDCodeNo1

FFFFDF :43
FFFFE3 :6F
FFFFEB :64
FFFFEF :65
FFFFF3 :4E
FFFFF7 :6F
FFFFFB :31

File name of ID file

The file name of the ID file is created by changing the extension ".x30" of the absolute module
fileinto ".id". (sample.x30 --> sample.id)

Directory for ID file generated

The files are generated in the current directory.

Library File

The 1b30 librarian generates one library file from the relocatable module files generated by as30 by
integrating them as modules into a single file.

Format of library file

The library file is based on the IEEE-695 format.
Precaution
Since this file comes in a binary format, it cannot be output to a screen or printer; nor can it be
edited. If you open or edit this file with an editor, file processing in the subsequent stages will
not be performed normally.
File name of library file
The lLibrary file is generated using the file name specified on the command line. The
extension is ".1ib". A library file name cannot be omitted on the command line.
Directory for library file generated

If a path is specified on the command line, the library file is generated in that directory. If no
path is specified, the library file is generated in the current directory.

Library List File

The 1b30 librarian generates a list file indicating library files and the relocatable modules entered
in each library file.

Format of library list file

This file is output in a text format that can be output to a screen and printer. By referencing
this file, it 1s possible to get approximate information about the relocatable modules entered in
the library file. The format of a typical library list file is shown in Example of Library List

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
52

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

File.
The following shows the information output to a library list file.

(1) Library file information
This information is output one for each library file. The library file information contains the
following:
® Library file name (Library file name:)
Indicates the library file name.
® File update date and time (Last update time:)
Indicates the date and time the library file was updated last.
® Number of modules (Number of module(s):)
Indicates the total number of modules entered in the library file.
® Number of global symbols (Number of global symboil(s):)
Indicates the total number of global labels and global symbols entered in the library file.
(2) Module information
This information is output one for each module entered in the library file. The module
information contains the following:
® Module name (Module name:)
Indicates the module names entered in the library file.
® \ersion information (.Ver:)
Indicates a character string that is specified by the directive command ".VER".
® Entered date and time (Date:)
Indicates the date and time when each module is entered in the library file.
® Module size (Size:)
Indicates the code and data sizes of the modules entered in the library file.
Precaution
These sizes differ from the file sizes of the relocatable module files.
® Global symbol name (Global symboil(s):)
Indicates the global symbol and global label names defined in the modules.
® External reference symbol name
Indicates the global symbol and global label names externally referenced by the module.

Example of Library List file
Librarian (Ib30) for M16C Family Version 1.00.00

Library file name: libsmp.lib
Last update time: 1995-Jul-7 15:44
Number of module(s): 1

Number of global symbol(s): 12

Module name: sample

.Ver: .VER "sample program file"
Date: 1995-Jul-7 15:43

Size: 00894H

Global symbol(s): btsym5 btsym6 btsym7

btsym8 btsym9 subl
sub2 sym5 sym6
sym7 sym8 sym9

Cross Reference File

The xrf30 generates from the assembly source file a file that contains summary information on
lines where symbols and labels are defined and referenced.

Format of cross reference file

This file is output in a text format that can be output to a screen and printer. Therefore, you
can print this file to a printer during debugging and check positions in the assembly source file
where symbols are defined. The format of a typical cross reference file is shown in Example
of Cross Reference File.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
53

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Input/Output Files of AS30

Information in cross reference file

The following explains the information that is output to a cross reference file.
(1) Label name
This indicates a label name.
(2) File name
This indicates a file name in which the above label is written.
(3) Reference line number and classification symbol
This indicates a line number in which the label is defined and declared and a symbol denoting
its classification as follows:

d Definition line
] Reference line for branch instruction
'S Reference line for subroutine call instruction

Example of Cross Reference File

btsymO
sample.a30
00023:d
btsym1
sample.a30
00024:d
btsym2
sample.a30
00025:d
btsym20
sample.a30
00033:d

File name of cross reference file

The file name of the cross reference file is created by changing the extension of the assembler
list file (Ist) or assembly source file (.a30) to ".xrf". (sample.lst --> sample.xrf; sample.a30 -->
sample.xrf)

However, if multiple file names are specified, the cross reference file name is derived from the
first specified file name by changing its extension to ".xrf."

Directory for cross reference file generated

If a path is specified on the command line, the cross reference file is generated in that
directory.

If a directory is specified with command option (-O), the cross reference file is generated in
that directory.

If a directory is not specified in neither way, the file is generated in the current directory.

Absolute List File

The absolute list files generated by abs30 are output in a format that can be output to a screen or
printer.

Format of absolute list file

The absolute list file is the same format as that of the assembler list file except that location
information is converted into absolute address information.

File name of absolute list file

The file name of the absolute list file is derived by changing the extension of the assembler list
file (1st) to ".als". (sample.lst --> sample.als)

Directory for absolute list file generated

If command option (-O) is specified, the absolute list file is generated in that directory.
Otherwise, the file is generated in the current directory.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

54

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Starting Up Program

Starting Up Program

This section explains the basic method for operating each program included with AS30.

Precautions on Entering Commands

® Use the MS-DOS prompt to input a command.
® AS30 allows use of the period in only one place of a file name.

Structure of Command Line

Input the following information on a command line.

Program Name

This is the name of a program you want to use.

Command Parameter

All information necessary to execute a program correctly is called "command parameters.”
For example, command parameters include the file names to be processed by the program you
are going to start up and the command options that indicate program functions using symbols.
Command parameters include the following information:
® File name

This means the name of a file to be processed by the program started up.
® Command option

Specify command options on the command line to use the functions of AS30 programs.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
55

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Starting Up Program

Rules for Entering Command Line

When starting up each AS30 program, observe the rules for entering a command line described
below.

Number of Characters on Command Line

® The number of characters that can be entered on a command line is 2048 characters (bytes).
Precaution

The number of characters may be limited below the above specification depending on the
operating environment (type of OS) of AS30.

Method for Entering Command Line

® Always be sure to enter space between the startup program name and the file name.
® Always be sure to enter space between the file name and each command option.

File Name

® The maximum length of a file name is 512 characters (bytes) including directory specification.
However, the number of characters on a command line must not exceed the above mentioned
size including the startup program name and all command options.

® Descriptions of file names are subject to the naming conventions of OS in addition to the
above rules. Refer to the user's manual of your OS for details.

Precaution

AS30 allows use of the period in only one place of a file name. Furthermore, some AS30

programs restrict file name extensions (characters following the period) also. Refer to the

method for starting up each AS30 program for details.

Command Options
® Always be sure to add a hyphen (-) when entering a command option.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
56

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Method for Operating as30

This section explains the method for operating as30 to utilize its functions. The basic function of
as30 is to generate a relocatable module file from the assembly source file.

Command Parameters

The table below lists the command parameters of as30.

Parameter name Function

Source file name Source file name to be processed by as30.

- Disables message output to a display screen.

-A Evaluates mnemonic operand.

-C Indicates contents of command lines when as30 has invoked mac30, pre30 and
asp30.

-D Sets constants to symbols.

-finfo Generates inspector information.

-F Fixes the file name of ..FILE expansion to the source file name.

-H Header information is not output to an assembler list file.

-l Specify an include file search directory.

-JOPT Optimizes the branch instruction referencing the global label.

-L Generates an assembler list file.

-M Generates structured description command variables in byte type.

-M60 Generates code that conforms to the M16C/60 group.

-M61 Generates code that conforms to the M16C/61 group.

-N Disables output of macro command line information.

-0 Specifies a directory to which the generated file is output.

-P Processes structured description command.

-PATCH(6N)_TA Generates code to escape precautions on the timer functions for three-phase motor

_PATCH(6N)_TAn | control

-R8C Generates code that conforms to the R8C Family. (Address area is OH to OFFFFH.)

-R8CE Generates code that conforms to the R8C Family. (Address area is OH to OFFFFFH.)

-R8Cxx Generates a code that avoids notes of Clock Synchronous Serial I/O with Chip Select
(SSU) or I°C bus Interface (IIC).

-S Specifies that local symbol information be output.

-T Generates an assembler error tag file.

-V Indicates the version of the assembler system program.

-X Invokes an external program as a tag file argument.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
57

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Rules for Specifying Command Parameters

Follow the rules described below to specify the command parameters of as30.

Order in which to specify command parameter

® Command parameters can be specified in any desired order.
as30 (assembly source file) (command option)

Assembly source file name (essential)

® Always be sure to specify one or more assembly source file names.

® A path can be specified for the assembly source file name.

® Up to 80 assembly source file names can be specified.

Precaution

If any of the multiple assembly source files thus specified contains an error, that file is not

processed in the subsequent processing stages.

® Assembly source files with extension ".a30" can have their extensions omitted when you
specify them.

Command options

® Command options can be omitted.
® Multiple command options can be specified.
® Some command options allow you to specify a character string or a numeric value.
Precaution
Do not enter a space or tab between the command option and the character string or numeric
value.
® |f you want a subsequent command option to be nullified, add two consecutive hyphens (--)
when entering that command option.
Precaution
Command options can only be nullified in as30. Therefore, this function cannot be used
when starting up any other program.
Example:
® Option L only is valid.
>as30 sample -L
® Option S only is valid.
>as30 sample -S
® Option S only are valid.
>as30 sample -L -S --L
® Options L only are valid.
>as30 sample -S -L --S

Method for specifying numeric value

® Always be sure to use hexadecimal notation when entering a numeric value.

® |f a numeric value begins with an alphabet, always be sure to add 0 to the numeric value when
you enter it.

Example:

55
5A
0A5

Include File Search Directory

Include files do not need to be specified from the command line. If a path is described in the
operand of the directive command ".INCLUDE", the software searches that directory to find the
include file.

If the directive command operand does not have a path specification, the software searches the
current directory. In this case, if the specified file cannot be found in the current directory and
environment variable "INC30" is set, the software also searches the directory that is set in INC30.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
58

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

as30 Command Options

The following pages describe rules you need to follow when specifying command options.

Disables Message Output to Screen

Function

® The software does not output messages when as30 is processing.

® This command option disables unnecessary messages such as copyright notes from being
output to the screen when executing as30 in batch processing.

® Error messages, warning messages, and messages deriving from the directive command
".ASSERT" are output, however.

Description rule
® This command option can be specified at any position on the command line.
Description example

>as30 -. sample

If processing of sample resulted in generating an error, the following output will be obtained.
>as30 -. sample

sample.a30 2 Error (as30) : Section type is not appropriate

-A

Evaluate Mnemonic Operand

Function

® The software outputs a warning if for a mnemonic where both immediate and address values
can be written, the symbol '# to indicate that the operand is an immediate is not written in it.

Precautions

The warning is output if the operand is a numeric value except labels or a symbol whose value

is fixed when assembled.

Description rule
® This option can be specified at any position of the command line.
Description example

>as30 -A sample

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
59

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

-C

Indicates Command Invocation Line

Function

® In cases when a command option is specified in environment variable (AS30COM), if this
option is specified you can confirm the command options set when invoking macroprocessor,
structured processor and assembler processor from as30 as the software indicates them on
the screen.

Description rule
® This option can be specified at any position on the command line.
Description example

® |[f'-L-T'is setin AS30COM, the following output will be obtained.
>as30 -C -N sample
® This information is displayed beginning with the next line following "All Rights Reserved." that
is output when AS30 starts up normally.
>as30 -C -N sample

('sample.a30)
mac30 -L -T sample.a30
macro processing now

asp30 -L -T sample.a30
assembler processing now
TOTAL ERROR(S) 00000

>as30 -. -C -N sample
® |f this command option is combined with an option to disable message output to a screen, the
following output will be obtained.

>as30 -. -C sample
mac30 -L -T sample.a30

asp30 -L -T sample.m30

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
60

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

=D

Sets Symbol Constant

Function

® The software sets values to symbols.

® The value is handled as an absolute value.

Precaution

The symbols defined by this option are processed in the same way as those symbols that are

defined in the start positions of the source program. However, these symbols are not output

to an assembiler list file.

® The symbols defined by this option are handled in the same way as the symbol definitions
described in the assembly source file. Namely, if a symbol definition of the same name is
described in the assembly source file, it means that the symbol is redefined at that description
position.

® |f multiple files are specified on the command line, the symbols defined by this option are
handled as being defined in all of these files.

Description rule

Specify this option in the form of -D (symbol name) = (numeric value).

This option can be specified at any position on the command line.

Do not enter a space or tab between the command option and the symbol name.

Values can be defined to multiple symbols. When defining values to multiple symbols,
separate each symbol with the colon while you enter them in a form like -D (symbol name) =
(value): (symbol name) = (value): and so on.

® No space or tab can be entered in front or after the colon.

Description example

® This example sets 1 to symbol name.
>as30 -Dname=1 sample

® This example sets 1 to symbols name and symbol.
>as30 -Dname=1:symbol=1 sample

® This example defines a symbol named name for files samplel and sample2.
>as30 -Dname=1 samplel sample2

-finfo

Generates inspector information

Function

® Outputs either each item of information generated by the '-finfo' option in NC30 or inspector
information described in assembler directives to a relocatable module file.

Note

With a TM in use, this option is chosen by default.

Description rules

® You can put this option anywhere in a command line.
® Use lowercase letters only, since uppercase letters and lowercase letters are discriminated.

Description example

> as30 -L -S -finfo sample

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
61

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

-F

Controls ..FILE Expansion

Function

® This option fixes the file name to be expanded by the directive command ..FILE to the
assembly source file name that is specified from the command line.

Description rule
® This option can be specified at any position on the command line.
Description example

>as30 -F sample
The file name to be expanded by the directive command "..FILE" described in the "include.inc"
file that is included by the sample.a30 assembly source file is fixed to "sample". If this option
1s not specified, the file name to be expanded by "..FILE" becomes "include".

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
62

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

=15l

Disable header output to an assembler list file

Function

® Header information is not output to an assembler list file.
Precautions
When generating an assembler list file to be processed by abs30, do not specify this option.

Description rule

® This option can be written at any desired position in a command line.
® Specify this option simultaneously with the command option '-L.'

Description example

® Header information is not output to the sample.Ist file.
>as30 -L -H sample

=1L

Specify an include file search directory

Function

® The include file specified by ".INCLUDE" that is written in the source file is searched from a
specified directory.

Description rules

® This option can be written at any desired position in a command line.
® Specify a directory path immediately after "-I."
® No space or tab can be inserted between this option and a directory path name.

Description example

® The include file written in the operand of a directive command ".INCLUDE" is searched from
the \workl\include directory.
>as30 -I\work\include

-JOPT

Optimizes the branch instruction referencing the global label

Function
® This option is used to optimize the branch instructions (JMP & JSR) that are making reference to the
global label.
Precautions
When this option is specified, always specify the nc30 “-OGJ(-Oglb_jmp)” and In30 “-JOPT”
options.

When this option was specified, the branch information file (extent: .jin) is generated.

Do not edit the branch information file. Also, avoid using the extent “.jin”.

When the directive command “.OPTJ” is being used simultaneously with this option, this option
becomes effective.

Description rule
® This option can be written at any desired position in a command line.
Description example
>as30 -JOPT sample

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
63

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

=1l

Generates Assembler List File
Function

® The software generates an assembler list file in addition to a relocatable module file.

® The generated list files are identified by the extension ".Ist".

® |f a directory is specified by command option -O, the assembler list file is generated in the
specified directory.

Description rule

This option can be specified at any position on the command line.

This option allows you to specify the 'I' 'M" and 'S’ file format specifiers.
No space or tab can be entered between the file format specifier and -L.
Multiple file format specifiers can be specified simultaneously.

File format specifiers can be entered in any desired order.

This option can be set in environment variable "AS30COM".

Format specifier Function

C Line concatenation is output directly as is to a list file.

D Information before .DEFINE is replaced is output to a list file.

I Even program sections in which condition assemble resulted in false conditions are
output to the assembler list file.

M Even macro description expansion sections are output to the assembiler list file.

S Even structured description expansion sections are output to the assembler list file.

Description example

>as30 -LIM sample
>as30 -CDLSMI sample

-M

Generate Structured Description Command Variables in Byte Type

Function

® The software processes variables in structured description commands whose types are
indeterminate as the byte type.

Description rule

® This option can be specified at any position of the command line.
® Make sure this option is specified along with a command option "-P."

Description example

>as30 -P -M sample
>as30 -M -P sample

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
64

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

-M60/-M61

Control code generation

Function
® The software processes the following description:

Option content
-M60 The mnemonic ‘NOP’ is added after the line witch is written mnemonics 'SHL','SHA' and 'ROT".
The mnemonic ‘JMP.B’ is added before the line witch is written the mnemonic 'JMP.A" and
‘JSR.A".
-M61 The as30 does not process. Refer to the In30's processing.
Precaution

“-R8C” option cannot be specified at the same time as this option.
Description rules
® This option can be written at any desired position in a command line.
Description example
>as30 -M61 sample

-N

Disables Line Information Output

Function

® The software does not output C language source line information to a relocatable module file.
® The size of the relocatable module file can be reduced.

Precaution

Absolute module files generated from the relocatable module file that was generated after
specifying this option cannot be debugged at the source line level.

Description rule

® This option can be specified at any position on the command line.
® This option can be set in environment variable "AS30COM". Refer to "Example for using
AS30COM" for details on how to set.

Description example

as30 -N sample

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
65

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

-0

Specifies Generated File Output Directory

Function

® This option specifies the directory to which the relocatable module file, assembiler list file, and
assembler error tag file that are generated by the assembler are output.

® The directory name can be specified including a drive name. It can also be specified by a
relative path.

Description rule

® Write this option in the form of -O (directory name).
® No space or tab can be entered between this option and the directory name.

Description example

® The relocatable module file is generated in the \work\asmout directory on drive c.
>as30 -Oc:\work\asmout sample
® The relocatable module file is generated in the tmp directory that is the parent directory of the
current directory.
>as30 sample -O..\tmp
® The relocatable module file, assembler error tag file, and assembler list file are generated in
the \work\asmout directory on drive c.
>as30 -Oc:\work\asmout sample -L -T

-P

Process Structured Description Command

Function

® The software processes the structured description commands written in the assembly source
file.

Description rule

® This option can be specified at any position of the command line.
® \When using structured description commands, be sure to specify this option.

Description example

>as30 -P -LS sample
The software processes the structured description commands written in the assembly source
file and outputs the expanded sections to an assembly list file.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
66

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

-PATCH (6N) TA/-PATCH(6N) TAn

Escaping precautions on the timer functions for three-phase motor control

Function

® Generates code to escape precautions on the timer functions for three-phase motor control.

Precaution

Refer to “TECHNICAL NEWS” for details about the precautions discussed here.

® The escape code is generated only when a value is written to the address indicated by the
Timer Al-1 Register (TA1l), Timer A2-1 Register (TA21) or Timer A4-1 Register (TA41) by
using the MOV instruction (word length). (The above address refers only to one that is fixed
when assembled.)

Option specifier Object address

-PATCH_TA, -PATCH_TAnN TA11l is 302H address
TA21 is 304H address
TA41 is 306H address
-PATCHG6N_TA, -PATCH6N_TAN TA11 is 1C2H address
TA21 is 1C4H address
TA41 is 1C6H address

Precaution
“-R8C” option cannot be specified at the same time as this option.

Description rule

® This command option can be specified at any position in the command line.
® Any decimal number from 0 to 99 can be specified for “n” in “~PATCH_TAnR".
® This option must always be specified in uppercase letters.

Description examplel

source file description example)

.section prg,code
MOV.W #7E,TA11

.end
-PATCH_TA specification, the list file output example)
1 .section prg,code
200000 75CF42037E00 MOV.W #7E,TA1l
75CF42037E00 ; This is a line which AS30 output.
3 .end

The same MOV mnemonic written here is generated as escape code.
Description example2

source file description example)

.section prg,code
MOV.W #7E,TA1l

.end
-PATCH_TAZ2 specification, the list file output example)
1 .section prg,code
200000 75CF42037E00 MOV.W #7E,TA1l
0404 ; This is a line which AS30 output.
75CF42037E00 ; This is a line which AS30 output.
3 .end

({3

Two or more of the NOP mnemonic specified by “n” and the same MOV mnemonic written
here are generated as escape code.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
67

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Method for Operating as30

-R8C/-R8CE

Control code generation

Function

® Generates a code that conforms to the R8C Family series.

Option Address area

-R8C OH to OFFFFH

-R8CE OH to OFFFFFH
Precaution

Symbol setting option “-D__R8C__ =1"is added.
“-M60”, “-M61”, "-PATCH(6N)_TA” and “-PATCH(6N)_TAn” option cannot be specified at the
same time as this option.

Description rules

® This option can be written at any desired position in a command line.

Description example
>as30 —R8C sample

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

68

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

-R8Cxx

Control code generation

Function

® Generates a code that avoids notes of Clock Synchronous Serial 1/O with Chip Select (SSU) or
I°’C bus Interface (IIC). (The above register's address refers only to one that is fixed when
assembled.)

® When this option is specified, “r8ctiny.txt” in environment variable “LIB30” directory is referred
to.

® \When the group name applicable to SSU or IIC function is specified, a message “R8C/xx
group in information file 'r8ctiny.txt' is used.” is outputted.

® When this option is specified, “-R8C” option is added.

Precaution

Refer to RENESAS TECHNICAL UPDATE about the notes.

In case of High-performance Embedded Workshop, specify this option in “Options” ->

“Renesas M16C Standard Toolchain” -> “CPU” menu.

In case of TM, specify this option in “Option Browser” -> “CFLAGS” -> “General” or “AFLAGS”

-> “Select target.” menu.

“-M60”, “-M61”, "-PATCH(6N)_TA” and “-PATCH(6N)_TAn” option cannot be specified at the

same time as this option.

Description rules

® This option can be written at any desired position in a command line.

® This option must always be specified in uppercase letters.

® Specify this option like —-R8C(group name).

Precaution

This option is not necessary in case of a group that does not have SSU or IIC function.

Description example

>as30 —R8C14 sample
Generates a code that avoids notes of SSU function of R8C/14.

Example of source file)
.section test

mov.b #10H, P1

mov.b #03H, SSCRH
.end

Example of list file)

1 .glb P1, SSCRH
2 .section test
3 00000 C710E100 S movb #10H, P1
4 00004 C703B800 S movb #03H, SSCRH
FEO1 ; Generates code to escape precautions on the SSU or IIC register
5 .end

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
69

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

-S

Specifies Local Symbol Information Output

Function

® The software outputs local symbol information to a relocatable module file.

® System label information can also be output a relocatable module file by adding 'M' to this
option.

® Absolute module files generated from the relocatable module file that was generated after
specifying this option can be symbolic debugged even for local symbols.

Precaution

The map file (.map) output by In30 provides information on symbolic debuggable symbols and

labels so you can confirm.

Description rule

® If you want system label information and local label information to be output simultaneously, be
sure to input this option as "-SM".

® This option can be specified at any position on the command line.

® This option can be set in environment variable "AS30COM". Refer to "Example for using
AS30COM" for details on how to set.

Description example

® |ocal symbol information in sample.a30 is output to sample.r30.
>as30 -S sample

® | ocal symbol information and system label information in sample.a30 is output to sample.r30.
>as30 -SM sample

-T

Generates Assembler Error Tag File

Function

® The software generates an assembler error tag file when an assembler error is found.

® The file is output in a format where you can use an editor's tag jump Function.

® Even when you have specified this option, no file will be generated if there is no error.

® The software does not generate a relocatable module file if an error is encountered. However,
it does generate a relocatable module file in cases when only a warning has occurred.

® The error tag file name is created from the assembly source file name by changing its
extension to ".atg".

Description rule

® This option can be specified at any position on the command line.
® This option can be set in environment variable "AS30COM". Refer to "Example for using
AS30COM" for details on how to set.

Description example

® The software generates a "sample.atg" file if an error occurs.
>as30 -T sample

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
70

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

-V

Indicates Version Number

Function

® When this option is specified, the software indicates the version numbers of all programs
included with AS30 and terminates processing.

Precaution

All other parameters on the command line are ignored when this option is specified.

Description rule
® Specify this option only and nothing else.
Description example
>as30 -V

-X

Invokes External Program

Function
® After generating an assembler error tag file, the software invokes an execution program
specified following the option -X'.
® |f this option is specified, the software generates an assembler error tag file when an error
occurs regardless of whether or not you specified the option '-T".
Description rule

® Input this option using a form like -X (program name).
® No space or tab can be entered between this option and the program name.
® This option can be specified at any position on the command line.

Description example

® The 'edit' is name of editor program.
>as30 -Xedit sample

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
71

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Error Messages of as30

'#' is missing

? '#' 1s not entered.

! Write an immediate value in this operand.

"' is missing

? "' is not entered.

! Write the right parenthesis ")' corresponding to the '('.

''is m1ss1ng

? ,' 1s not entered.

! Insert a comma to separate between operands.

"B'or W' is not specified

? Neither .B nor .W is specified.

! Neither .B nor .W can be omitted. Write .B or .W in mnemonic.

" EINSF' is missing for .INSF'

? .EINSF, used with .INSF in a pair, is missing.

! Check where .INSF is put.

"ID' is duplicated

? ID is specified more than once in the file.

! ID can be written only once in a file. Delete extra .ID's.

"IF' is missing for '.ELIF'

? IF for .ELIF is not found.

! Check the position where .ELIF is written.

"IF' is missing for .ELSE'

? IF for .ELSE is not found.

! Check the position where .ELSE is written.

' TF" is missing for "ENDIF'

? IF for .ENDIF is not found.

! Check the position where .ENDIF is written.

"INSF"' is missing for '.EINSF"

? INSF, used with .EINSF in a pair, is missing.

! Check where .EINSF is put.

"MACRQO' is missing for " ENDM'

? .MACRO for .ENDM is not found.

! Check the position where .ENDM is written.

'MACRO' is missing for '.LOCAL'

? .MACRO for .LOCAL is not found.

! Check the position where .LOCAL is written. .LOCAL can only be written in a macro
block.

"MACRO' or "MREPEAT" is missing for ' EXITM'

? .MACRO or MREPEAT for .EXITM is not found.

! Check the position where .EXITM is written.

'MREPEAT"' is missing for .ENDR'

? .MREPEAT for .ENDR is not found.

! Check the position where .ENDR is written.

"PROTECT or .OFSREG' is duplicated

? .PROTECT or .OFSREG is specified more than once in the file.

! .PROTECT and .OFSREG can be written only once in a file. Delete extra . PROTECT's
or .OFSREG's.

"VER' is duplicated

? .VER is specified more than once in the file.

! .VER can be written only once in a file. Delete extra .VER's.

'ALIGN' is multiple specified in .SECTION'

? Two or more ALIGN's are specified in the .SECTION definition line.

! Delete extra ALIGN specifications.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
72

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

'BREAK' is missing for 'FOR', 'DO' or 'SWITCH'

? BREAK is used in an inappropriate location.

! Make sure the BREAK command is written within the FOR, DO, or SWITCH statement.
'CASE' has already defined as same value

? The same value is written in the operands of multiple CASE statements.

! Make sure the values written in the operands of CASE are unique, and not the same.
'CONTINUE' is missing for 'FOR' or 'DO'

? CONTINUE is used in an inappropriate location.

! Make sure the CONTINUE command is written within the FOR or DO statement.
'DEFAULT" has already defined

? There are multiple instances of DEFAULT in SWITCH.

! Remove unnecessary DEFAULT statements.

'JMP.S' operand label is not in the same section

? Jump address for JMP.S is not specified in the same section.

! JMP.S can only branch to a jump address within the same section. Rewrite the
mnemonic.

" is missing

? " is not entered.

! Write the right bracket 'l' corresponding to the '['.

Addressing mode specifier is not appropriate

? The addressing mode specifier is written incorrectly.

! Make sure that the addressing mode is written correctly.

Bit-symbol is in expression

? A bit symbol is entered in an expression.

! Bit symbols cannot be written in an expression. Check the symbol name.

Can't create Temporary file

? Temporary file cannot be generated.

! Specify a directory in environment variable "TMP30' so that a temporary file will be
created in some place other than the current directory.

Can't create file 'filename'

? The 'filename' file cannot be generated.

! Check the directory capacity.

Can't open "ASSERT' message file 'xxxx'

? The .ASSERT output file cannot be opened.

! Check the file name.

Can't open file 'filename'

? The 'filename' file cannot be opened.

! Check the file name.

Can't open include file 'xxxx'

? The include file cannot be opened.

! Check the include file name. Check the directory where the include file is stored.

Can't read file 'filename'

? The 'filename' file cannot be read.

! Check the permission of the file.

Can't write 'ASSERT' message file 'xxxx'

? Data cannot be written to the . ASSERT output file.

! Check the permission of the file.

Can't write in file 'filename'

? Data cannot be written to the 'filename' file.

! Check the permission of the file.

CASE not inside SWITCH

? CASE is written outside a SWITCH statement.

! Make sure the CASE statement is written within a SWITCH statement.

Characters exist in expression

? Extra characters are written in an instruction or expression.

! Check the rules to be followed when writing an expression.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
73

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Command line is too long

? The command line has too many characters.

! Re-input the command.

DEFAULT not inside SWITCH

? DEFAULT is written outside a SWITCH statement.

! Make sure the DEFAULT statement is written within a SWITCH statement.

Directive command "RVECTOR' can't be described

? The directive command ‘ RVECTOR’ cannot be written here.

! If a variable vector table is to be automatically generated, do not write a program in the
‘vector’ section.

Directive command '.SVECTOR' can't be described

? The directive command .SVECTOR’ cannot be written here.

! If a special page vector table is to be automatically generated, do not write a program in
the ‘svector’ section.

Division by zero

? A divide by 0 operation is attempted.

! Rewrite the expression correctly.

ELSE not associates with IF

? No corresponding IF is found for ELSE.

! Check the source description.

ELIF not associates with IF

? No corresponding IF is found for ELIF.

! Check the source description.

ENDIF not associates with IF

? No corresponding IF is found for ENDIF.

! Check the source description.

ENDS not associates with SWITCH

? No corresponding SWITCH is found for ENDS.

! Check the source description.

Error occurred in executing 'xxx'

? An error occurred when executing xxx.

! Rerun xxx.

Format specifier is not appropriate

? The format specifier is written incorrectly.

! Make sure that the format specifier is written correctly.
Function information is not defined

? Function information, which is inspector information, has not been defined.
! Define the function information as required.

Illegal directive command is used

? An illegal instruction is entered.

! Rewrite the instruction correctly.

Illegal file name

? The file name is illegal.

! Specify a file name that conforms to file name description rules.
Illegal macro parameter

? The macro parameter contains some incorrect description.
! Check the written contents of the macro parameter.
Illegal operand is used

? The operand is incorrect.

! Check the syntax for this operand and rewrite it correctly.
Include nesting over

? Include is nested too many levels.

! Rewrite include so that it is nested within the valid levels.
Including the include file in itself

? An attempt is made to include the include file in itself.

! Check the include file name and rewrite correctly.

REJ10J2006-0200 Rev.2.00 2010.0401 RENESAS
74

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Initialization function definition of the section is not appropriate

? The section initialization function that involves use of C language startup is defined
incorrectly.

! Check how the section initialization function is defined.

Interrupt number was already defined

? The software interrupt number was already defined.

! Change the software interrupt number.

Invalid bit-symbol exist

? An invalid bit symbol is entered.

! Rewrite the bit symbol definition.

Invalid directive command which isn't supported in '-R8C'

? A directive command that cannot be specified simultaneously with the “R8C’ option is
written.

! Check the content of the directive command written.

Invalid label definition

? An invalid label is entered.

! Rewrite the label definition.

Invalid mnemonic which isn’t supported in “R8C’

? The mnemonic which isn't supported in R8C Family is described.

! Specify the mnemonic correctly again.

Invalid operand(s) exist in instruction

? The instruction contains an invalid operand.

! Check the syntax for this instruction and rewrite it correctly.

Invalid option 'xx' is in environment data

? The environment variable contains invalid command option xx.

! Set the environment variable correctly back again. The options that can be set in
environment variables are L, N, S, and T.

Invalid reserved word exist in operand

? The operand contains a reserved word.

! Reserved words cannot be written in an operand. Rewrite the operand correctly.

Invalid symbol definition

? An invalid symbol is entered.

! Rewrite the symbol definition.

Invalid option 'xx' is used

? An invalid command option xx is used.

! The specified option is nonexistent. Re-input the command correctly.

Location counter exceed xxx

? The location counter exceeded xxx.

! Check the operand value of .ORG. Rewrite the source correctly.

NEXT not associates with FOR

? No corresponding FOR is found for NEXT.

! Check the source description.

No 'ENDIF' statement

? No corresponding ENDIF is found for the IF statement in the source file.

! Check the source description.

No 'ENDS' statement

? No corresponding ENDS is found for the SWITCH statement in the source file.

! Check the source description.

No 'NEXT"' statement

? No corresponding NEXT is found for the FOR statement in the source file.

! Check the source description.

No 'WHILE' statement

? No corresponding WHILE is found for the DO statement in the source file.

! Check the source description.

No "END' statement

? .END is not entered.

! Be sure to enter .END in the last line of the source program.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
75

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

No "ENDIF' statement

? .ENDIF is not entered.

! Check the position where .ENDIF is written. Write .ENDIF as necessary.

No "ENDM' statement

? .ENDM is not entered.

! Check the position where .ENDM is written. Write .ENDM as necessary.

No 'ENDR' statement

? .ENDR is not entered.

! Check the position where .ENDR is written. Write .ENDR as necessary.

No "FB' statement

? .FB is not entered.

! When using the 8-bit displacement FB relative addressing mode, always enter .FB to
assume a register value.

No '.SB' statement

? .SB is not entered.

! When using the 8-bit displacement SB relative addressing mode, always enter .SB to
assume a register value.

No ."SECTION' statement

? .SECTION is not entered.

! Always make sure that the source program contains at least one .SECTION.

No ;' at the top of comment

? ';' 1s not entered at the beginning of a comment.

! Enter a semicolon at the beginning of each comment. Check whether the mnemonic or
operand is written correctly.

No input files specified

? No input file is specified.

! Specify an input file.

No macro name

? No macro name is entered.

! Write a macro name for each macro definition.

No space after mnemonic or directive

? The mnemonic or assemble directive command is not followed by a blank character.
? Enter a blank character between the instruction and operand.

Not enough memory

? Memory is insufficient.

! Divide the file and re-run. Or increase the memory capacity.
Operand expression is not completed

? The operand description is not complete.

! Check the syntax for this operand and rewrite it correctly.
Operand number is not enough

? The number of operands is insufficient.

! Check the syntax for these operands and rewrite them correctly.
Operand size is not appropriate

? The operand size is incorrect.

! Check the syntax for this operand and rewrite it correctly.
Operand type is not appropriate

? The operand type is incorrect.

! Check the syntax for this operand and rewrite it correctly.
Operand value is not defined

? An undefined operand value is entered.

! Write a valid value for operands.

Option 'xx' is not appropriate

? Command option xx is written incorrectly.

! Specify the command option correctly again.

Questionable syntax

? The structured description command is written incorrectly.

! Check the syntax and write the command correctly again.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
76

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Quote is missing

? Quotes for a character string are not entered.

! Enclose a character string with quotes as you write it.

Reserved word is missing

? No reserved word is entered.

! Write a reserved word [SB], [FBI, [A1], [A0], [SP], or [A1AO0].

Reserved word is used as label or symbol

? Reserved word is used as a label or symbol.

! Rewrite the label or symbol name correctly.

Right quote is missing

? A right quote is not entered.

! Enter the right quote.

Same items are multiple specified

? Multiple same items of operand are specified.

! Check the syntax for this operand and rewrite it correctly.

Same kind items are multiple specified

? Multiple operand items of the same kind are specified.

! Check the syntax for this operand and rewrite it correctly.

Section attribute is not defined

? Section attribute is not defined. Directive command ".ALIGN" cannot be written in this
section.

! Make sure that directive command ".ALIGN" is written in an absolute attribute section or
a relative attribute section where ALIGN is specified.

Section has already determined as attribute

? The attribute of this section has already been defined as relative. Directive command
".ORG" cannot be written here.

! Check the attribute of the section.

Section name is missing

? No section name is entered.

! Write a section name in the operand.

Section name is not appropriate

? Section name is not appropriate.

! Change the section name.

Section type is multiple specified

? Section type is specified two or more times in the section definition line.

! Only one section type "CODE", "DATA", or "ROMDATA" can be specified in a section
definition line.

Section type is not appropriate

? The section type is written incorrectly.

! Rewrite the section type correctly.

Size or format specifier is not appropriate

? The size specifier or format specifier is written incorrectly.

! Rewrite the size specifier or format specifier correctly.

Size specifier is missing

? No size specifier is entered.

! Write a size specifier.

Source files number exceed 80

? The number of source files exceeds 80.

! Execute assembling separately in two or more operations.

Source line is too long

? The source line is excessively long.

! Check the contents written in the source line and correct it as necessary.

Special page number was already defined

? Special page number was already defined.

! Change the special page number.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
77

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Specifies option that can’t use with ‘xx’

? The option which can not be specified simultaneously with xx’is specified.

! Specify the command option correctly again.

Statement not preceded by 'CASE' or ' DEFAULT'

? CASE or DEFAULT is preceded by a command line in the SWITCH statement.

! Always be sure to write a command line after the CASE or DEFAULT statement.
String value exist in expression

? A character string is entered in the expression.

! Rewrite the expression correctly.

Symbol defined by external reference data is defined as global symbol

? The global symbol used here is a symbol that is defined by external reference data.
! Check symbol definition and symbol name.

Symbol definition is not appropriate

? The symbol is defined incorrectly.

! Check the method for defining this symbol and rewrite it correctly.

Symbol has already defined as another type

? The symbol has already been defined in a different directive command with the same
name. You cannot define the same symbol name in directive commands ".EQU" and
"BTEQU".

! Change the symbol name.

Symbol has already defined as the same type

? The symbol has already been defined as a bit symbol. Bit symbols cannot be redefined.

! Change the symbol name.

Symbol is missing

? Symbol is not entered.

! Write a symbol name.

Symbol is multiple defined

? The symbol is defined twice or more. The macro name and some other name are
duplicates.

! Change the name.

Symbol is undefined

? The symbol is not defined yet.

! Undefined symbols cannot be used. Forward referenced symbol names cannot be entered.
Check the symbol name.

Syntax error in expression

? The expression is written incorrectly.

! Check the syntax for this expression and rewrite it correctly.

Temporary label is undefined

? The temporary label is not defined yet.

! Define the temporary label.

The value is not constant

? The value is indeterminate when assembled.

! Write an expression, symbol name, or label name that will have a determinate value when
assembled.

Too many formal parameter

? There are too many formal parameters defined for the macro.

! Make sure that the number of formal parameters defined for the macro is 80 or less.

Too many nesting level of condition assemble

? Condition assembling is nested too many levels.

! Check the syntax for this condition assemble statement and rewrite it correctly.

Too many macro local label definition

? Too many macro local labels are defined.

! Make sure that the number of macro local labels defined in one file are 65,535 or less.

Too many macro nesting

? The macro is nested too many levels.

! Make sure that the macro is nested no more than 65,535 levels . Check the syntax for
this source statement and rewrite it correctly.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
78

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Too many operand

? There are extra operands.

! Check the syntax for these operands and rewrite them correctly.

Too many operand data

? There are too many operand data.

! The data entered in the operand exceeds the size that can be written in one line. Divide
the instruction.

Too many temporary label

? There are too many temporary labels.

! Replace the temporary labels with label names.

Undefined symbol exist

? An undefined symbol is used.

! Define the symbol.

Value is out of range

? The value is out of range.

! Write a value that matches the register bit length.

WHILE not associates with DO

? No corresponding DO is found for WHILE.

! Check the source description.

Warning Messages of as30

“JOPT"' and .OPTJ' are specified

? '-JOPT' option and the directive command '"OPTJ' are specified.

! The directive command '\OPTJ' is ignored.

"ALIGN' with not 'ALIGN' specified relocatable section

? Directive command ".ALIGN" is written in a section that does not have an ALIGN
specification.

! Check the position where directive command ".ALIGN" is written. Write an ALIGN
specification in the section definition line of a section in which directive command
" ALIGN" is written.

'CASE' definition is after 'DEFAULT"

? CASE is preceded by a DEFAULT description.

! Make sure all DEFAULT commands are written after the CASE statement.

'CASE' not exist in 'SWITCH' statement

? No CASE description is found in the SWITCH statement.

! Make sure the SWITCH statement contains at least one CASE statement.

"END' statement is in include file

? The include file contains an .END statement.

! .END cannot be written in include files. Delete this statement. The software will
ignore .END as it executes.

Actual macro parameters are not enough

? The number of actual macro parameters is smaller than that of formal macro parameters.

! The formal macro parameters that do not have corresponding actual macro parameters
are ignored.

Addressing is described by the numerical value

? Addressing is specified with a numeric value.

! Be sure to write '#' in numeric values.

Destination address may be changed

? The jump address can be a position that differs from an anticipated destination.

! When writing an address in a branch instruction operand using a location symbol for
offset, be sure to write the addressing mode, jump distance, and instruction format
specifiers for all mnemonics at locations from that instruction to the jump address.

Fixed data in 'CODE' section

? Found directive command((BYTE, .WORD, .ADDR, .LWORD) in the section type is CODE.

! Specify ROMDATA type the section written any directive
command(.BYTE, WORD, .ADDR, .LWORD).

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
79

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating as30

Floating point value is out of range

? The floating-point number is out of range.

! Check whether the floating-point number is written correctly. Values out of range will be
ignored.

Invalid "FBSYM' declaration, it's declared by '.SBSYM'

? The symbol is already declared in ."SBSYM'. The '.FBSYM' declaration will be ignored.

! Rewrite the symbol declaration correctly.

Invalid "SBSYM' declaration, it's declared by '"FBSYM'

? The symbol is already declared in "FBSYM'. The "SBSYM' declaration will be ignored.
! Rewrite the symbol declaration correctly.

Location counter exceed xxx

? The location counter exceeded xxx.

! Check the operand value of . ORG. Rewrite the source correctly.
Mnemonic in ' ROMDATA' section

? Found mnemonic in the section type is ROMDATA.

! Specify CODE type to the section written mnemonic.

Moved between address registers as byte size

? Transfers between address registers are performed in bytes.
! Rewrite the mnemonic correctly.

Statement has not effect

? The statement does not have any effect as a command line.
! Check the correct method for writing the command.

Too many actual macro parameters

? There are too many actual macro parameters.

! Extra macro parameters will be ignored.

Too many structured label definition

? There are too many labels to be generated.

! Divide the file into smaller files before assembling.
Unnecessary BREAK is found

? Found two or over BREAK statement in a SWITCH block.

! Check the source program.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
80

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

Method for Operating In30

This section describes how to use the functions of In30. The basic function of In30 is to generate
one absolute module file from two or more relocatable module files.

Command Parameters

The table below lists the command parameters available for In30.

Parameter name Function

File name Relocatable module filename to be processed by In30

- Disable message output to screen.

-E Specifies start address of absolute module.

-G Outputs source debug information to absolute module file.

-JOPT Optimizes the branch instruction referencing the global label.

-L Specifies library file to be referenced.

-LOC Specifies section allocation sequence.

-LD Specifies directory of library to be referenced.

-M Generates map file.

-M60 Generates code that conforms to the M16C/60 group.

-M61 Generates code that conforms to the M16C/61 group.

-MS Generates map file that includes symbol information.

-MSL Generates map file that includes full name of symbol more than 16 characters.
-NOSTOP Outputs all encounters errors to screen.

-0 Specifies absolute module file name.

-ORDER Specifies section address and allocation sequence.

-R8C Generates code that conforms to the R8C Family (Address is OH to OFFFFH).
-R8CE Generates code that conforms to the R8C Family (Address is OH to OFFFFFH).
-T Generates link error tag file.

-U Outputs a warning for the unused function names.

-V Indicates version number of linkage editor.

-VECT Sets the value for the free area in generating the variable vector table.
-VECTN Sets the address of a software interrupt number.

-W On the occurrence of a warning, no absolute module file is generated.

@ Specifies command file.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
81

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

Rules for Specifying Command Parameters
Follow the rules described below when you specify command parameters for In30.

Order in which to specify command parameters

® Relocatable module file names and command options can be specified in any desired order.
>In30 (command options) (relocatable module file)
>In30 (relocatable module file) (command options)

Relocatable module file name (essential)

® Always be sure to specify at least one relocatable module file name.

® A path can be specified in the file name.

® When specifying multiple relocatable module files, always be sure to insert a space or tab
between each file name.

Absolute module file name

® Normally In30 creates the file name of an absolute module file from the relocatable module file
that is specified first as it generates the absolute module file.
® Use command option (-O) to specify an absolute module file name.

Library file name

® Use command option (-L) to specify the library file to be referenced. A path can be specified
in the file name.

® Library files are searched from the directory that is set in environment variable (LIB30). If the
relevant file cannot be found, In30 searches the current directory. Or if a directory is specified
by command option (-LD), In30 searches it and if no relevant file is found in this directory, In30
searches the current directory.

Command option

® \When you specify a command option, always be sure to insert a space or tab between the
command option and other specifications on the command line.

Address specification

® The In30 editor determines absolute addresses section by section as it generates an absolute
module file.

® \When invoking In30, you can specify the start address of a section from the command line.

® Use hexadecimal notation when specifying address values. If an address value begins with
an alphabet, add 0 to the value as you specify it.

Example:

71ff
64
0a57

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
82

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

Command File

The In30 editor allows you to write command parameters in a file and execute the program after
reading in this file.

Method for specifying command file name

® Add @ at the beginning of the command file name as you specify it.
Example:
In30 @cmdfile
® Adirectory path can be specified in the command file name.
® |f no file exists in the specified directory path, In30 outputs an error.

Rules for writing command file

The following explains the rules you need to follow when writing a command file to ensure
that it can be processed by 1n30.

® The name of the command file's own cannot be written in the command file.

® Multiple lines of command parameters can be written in a command file.

® The comma (,) cannot be entered at the beginning and end of lines written in a command file.

® If you want to write specification for section allocation in multiple lines, be sure to enter the
"-ORDER" option at the beginning of each new line.

® The maximum number of characters that can be written on one line in the file is 2047

characters. |If this limit is exceeded, In30 outputs an error.

® Comments can be written in a command file. When writing comments, be sure to enter the
symbol "#" at the beginning of each comment. Characters from # to Carriage Return or Line
Feed are handled as comments.

Example of command file description

samplel sample2 sample3

-ORDER ram=80

-ORDER prog, sub, datasub, and data
-M

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
83

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

Command Options of In30

This section explain how to specify command options when using 1n30.

Disables Message Output to Screen

Function

® The software does not output messages when In30 is processing.
® FError messages are output to screen.

Description rule
® This option can be specified at any position on the command line.
Description example

In30 -. samplel sample2

-E

Specifies Start Address of Program

Function

® This option sets the entry address of an absolute object module. This address is used to
indicate the start address to the debugger.

® Numeric values or label nhames can be used to specify an address value. However, local
label names cannot be specified.

Description rule

Input this option using a form like -E (numeric value or label name).

Always be sure to insert a space between this option and the numeric value or label name.
Always be sure to use hexadecimal notation when entering a numeric value.

If the numeric value begins with an alphabet (‘a’ to 'f'), always be sure to add 0 at the
beginning of the value as you enter it.

® This option can be specified at any position on the command line.

Description example

® The address value in global label "num" is specified for the entry address of "sample1.x30".
In30 samplel sample2 -E num

® 0000 is specified for the entry address of "sample1.x30".
In30 samplel sample2 -E 0f0000

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
84

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-G

Outputs Source Debug Information
Function

® The software outputs information on C language or macro description source lines to an
absolute module file.

® The absolute module files generated without specifying this option cannot be debugged at the
source line level.

Precaution

If the absolute module file is derived by linking the relocatable module files that were

generated by specifying option (-N) to disable line information output when executing as30, it

cannot be debugged at the source line level even when you have specified this option (-G)

when executing In30.

® Source debug information is output to an absolute module file.

Description rule
® This option can be specified at any position on the command line.
Description example
In30 -G samplel sample2

-JOPT

Optimizes the branch instruction referencing the global label

Function

® This option is used to optimize the branch instructions (JMP & JSR) that are making reference to the
global label.

Precautions

® \When this option is specified, always specify the nc30 “-OGJ(-Oglb_jmp)” and as30
“-JOPT"” options.

® \When this option was specified, the branch information file (extent: .jin) is generated. Do
not edit the branch information file. Also, avoid using the extent “.jin”.

® When the directive command “.OPTJ” is being used simultaneously with this option, this
option becomes effective.

® \When this option is specified, execute nc30, as30 and In30 at the same directory.

Description rule
® This option can be written at any desired position in a command line.
Description example
>In30 -JOPT sample

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
85

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

=1l

Specifies Library File Name

Function

® Specify the library file name to be referenced when linking files.
® The In30 editor reads global symbol information from the specified library file as it links the
necessary relocatable modules.

Description rule

Input this option using a form like -L (library file name).

Always be sure to insert a space between this option and the file name.

This option can be specified at any position on the command line.

A path can be specified in the file name.

Multiple library files can be specified. When specifying multiple library files, separate each file
name with the comma as you specify file names. There must be no space or tab before or
after the comma.

Description example

>|n30 samplel sample2 -L libl
The "lib1.1ib" file in the current directory or the directory specified in environment variable
(LIB30) is referenced as necessary.

>|n30 samplel sample2 -L work\lib1
The "lib1.1ib" file in the "work" directory that resides below the current directory.

>|n30 samplel sample2 -L lib1,lib2
The "libl.lib" and "lib2.lib" files in the current directory or the directory specified in
environment variable (LIB30) are referenced as necessary.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
86

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-LD

Specifies Library File Directory

Function

® Specify the directory name in which you want a library file to be referenced.

® Even when you specify this option, you need to specify the library file name.

® The directory name specified by this option remains valid until another directory is specified by
this option next time.

® |f you have specified a path in the library file name, the directory in which library files are
referenced by In30 is one that is located by linking the library file path to the directory specified
by this option.

Description rule

® |nput this option using a form like -LD (directory name).
® Always be sure to insert a space between this option and the directory name.
® This option can be specified at any position on the command line.

Description example

® The \work\lib\libl file is referenced.
>In30 samplel sample2 -LD \workl\lib -L lib1

® The \work\lib\libl and \work\tmp\lib2 files are referenced.
>In30 samplel sample2 -LD \work\lib -L lib1 -LD \work\tmp -L lib2

® The \work\lib\libl file is referenced.
>In30 samplel -LD \work -L lib\lib1

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
87

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-LOC

Specify the assignment of section
Function

® Specifies the address in which the specified section is written.

® Value of symbols in specified section are generated from the address specified by directive
command ".ORG" or specified by command option "-ORDER".

® This option is for applications that run a program on the RAM.

Precaution

1. It is possible that the program relocated by specification of ALIGN will not operate
normally. Therefor, when using the "-LOC" option, relocate a section whose beginning
address is even to an even address, and one whose beginning address is odd to an odd
address.

2. The only function of the -LOC option is to register the defined program to the specified
address. It does not send the program to the address area during execution of the
application.

Description rule

® This command option can be specified at any position in the command line.

® Aspace is required between the option name and parameter.

® No space is allowed before and after the "=".

® The address cannot be omitted.

® When writing multiple section names and location addresses, separate each entry with a
comma ().

Description example

® This example shows a case where as depicted in the diagram below, the section name
PROG1 stored in the ROM at the address FEOQOOh is transferred to the RAM at the address
00400h before being executed in the RAM (address 00400h).
In this case, specification for In30 is written as shown below.
>In30 -ORDER PROG1=00400 -LOC PROG1=0FE000

00400h

PROGL1 section is executed
after moved it address

OFEOOOh

PROG1

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
88

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-M

Generates Map File

Function

® The software generates a map file that contains address mapping information.
® The file name of the map file is created by changing the extension of the absolute module file
to ".map".

Description rule
® This option can be specified at any position on the command line.
Description example

® Files "samplel.x30" and "samplel.map" are generated.
>In30 -M samplel sample2

-M60/-M61

Control code generation

Function
® The spftware processes the following description:

Option content

-M60 If ‘TJMP.S’ instruction exist at end of bank when linking, warning message is output. In
this case, cope with the warning by directive command .SIMP’.

-M61 If ‘TJIMP.S’ instruction exist at end of bank when linking, warning message is output. In
this case, cope with the warning by directive command .SIMP’.

Precaution
“-R8C” option cannot be specified at the same time as this option.

Description rules
® This option can be written at any desired position in a command line.
Description example
>In30 -M60 sample

-MS/-MSL

Outputs Symbol Information to Map File

Function

® The fullname of symbolmore than 16 characters are output to mapfile when -MSL is specified.

® The software generates a map file that contains address mapping information and symbol
information.

® The file name of the map file is created by changing the extension of the absolute module file
to ".map".

Description rule
® This option can be specified at any position on the command line.
Description example

>In30 samplel sample2 -MS
A "samplel.x30" and "samplel.map" files are generated.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
89

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-NOSTOP

Outputs All Errors

Function

® The software outputs all encountered link errors to the screen.
® |f this operation is not specified, the software outputs up to 20 errors to the screen.

Description rule
® This option can be specified at any position on the command line.
Description example
>|n30 samplel sample2 -NOSTOP

-0

Specifies Absolute Module File Name

Function

® This option allows you to specify any desired name for the absolute module file generated by
In30.

® |f you do not specify an absolute module file name using this option, the file name of absolute
module file is created by changing to ".x30" the extension of the relocatable module file name
that is specified first on the command line.

Description rule

® |nput this option using a form like -O (file name).

® Always be sure to insert a space between this option and the file name.

® The extension of a file name can be omitted. If omitted, the extension is ".x30".
® A path can be specified in the file name.

Description example

® A"abssmp.x30" file is generated.
>In30 samplel sample2 -O abssmp

® A"abssmp.x30" file is generated in the "\work\absfile" directory.
>In30 -O \work\absfile\abssmp samplel sample2

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
90

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-ORDER

Specifies Section Address and Relocation Order

Function

® Specify the order in which you want sections to be allocated and the start address of sections.

Precaution

If the start address is specified for an absolute section, In30 outputs an error.

® |f you do not specify the start address, In30 allocates addresses beginning from O.

® |f sections of the same name exist in the specified relocatable files, sections are allocated in
the order the files are specified. In this case, if a section with absolute attribute is arranged
after a section with relative attribute, an error results.

® \When the name of the section not existing is specified, the section name is disregarded.

Description rule

® Input this option using a form like -ORDER (section name), (section name) or -ORDER
(section name) = (start address).

® Always be sure to insert a space between this option and the section name.

® Separate between two section names or between an address value and a section name with a
comma as you specify them. There must be no space or tab before or after the comma.

® This option can be specified at any position on the command line.

Description example

>In30 samplel sample2 -ORDER main,sub,dat (1)
>In30 samplel sample2 -ORDER main=0f0000,sub,dat 2)
(1) Sections are allocated in order of main, sub, and dat beginning from address OH.
(2) Sections are allocated in order of main, sub, and dat beginning from address 0fO00H.

If the name of the section not existing “noprog” is specified:

>In30 samplel sample2 -ORDER main=0f000,noprog,dat)
>In30 samplel sample2 -ORDER main=0f000,noprog=0f2000,dat 4)
>In30 samplel sample2 -ORDER main=0f000,noprog=0f2000,dat=0f3000 5)

(3) Sections are allocated in order of main, dat beginning from address 0fOO0H.

(4) “main” section is allocated from address OfOO0H. “dat” section is allocated from address
0f2000H.

(5) “main” section is allocated from address OfOOOH. “dat” section is allocated from address
0f3000H.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
91

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-R8C/-R8CE

Control code generation

Function
® Generates a code that conforms to the R8C Family.

Option Address area

-R8C OH to OFFFFH

-R8CE OH to OFFFFFH
Precaution

“-M60” and “-M61” option cannot be specified at the same time as this option.
The value set to the option function select register is outputted by message
"The Value of option function select register is xxH".

Description rules
® This option can be written at any desired position in a command line.
Description example

>In30 —R8C sample

-T

Generates Link Error Tag File

Function

® The software generates a link error tag file when a link error occurs.

® This file is output in a format that allows you to use an editor's tag jump Function.

® FEven when you specify this option, this error file will not be generated if no error is
encountered.

® The error tag file name is created from the relocatable module file that is specified at the
beginning of the command line by changing its extension to ".Itg". If an absolute module file
name is specified with command option "-O," the tag file name is derived from the specified file
name by changing its extension to ".Itg."

® Error information in the link error tag file is output with the number of assembly source lines.

Description rule
® This option can be specified at any position on the command line.
Description example

® A"samplel.ltg" file is generated if an error occurs.
>In30 samplel sample2 -T

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
92

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-U

Outputs a warning for the unused function names.

Function

® Outputs a warning for the unused function names that are written in the C language source
file.
Precaution

1. Before deleting the unused functions, check to see that they really are unnecessary
functions.

2. This option is effective when the “~finfo” option of NC30 and AS30 is specified.

3. When calling any assembler function from a C language program, always be sure to write
the assembler directive “.INSF” and “EINSF” for the assembler function.

4. If any interrupt function is written with an assembler function, it will be alerted as an unused
function by outputting a warning. (This applies when the assembler directive “.INSF"and
“.EINSF” is written.)

5. The names listed below are outside the scope of search for unused functions.

Assembler function name : start
C language function name : main, Run-time and standard library functions

Description rule
® This command option can be specified at any position in the command line.
Description example

>In30 —U sample

-V

Indicates Version Number

Function

® The software indicates the version number of In30.
Precaution
All other parameters on the command line are ignored when this option is specified.

Description rule
® Specify this option only and nothing else.
Description example
>In30 -V

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
93

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-VECT

Sets a value for the free area in generating the variable vector table

Function

® Set a value for the free area left after a variable vector table was automatically generated
(software interrupts not set by the assembler directive “.RVECTOR”"). A value or a global label
name can be specified for the value to be set for the free area. Note that the set value is
handled as 4-byte data.

Precautions

1. When this option is specified, a variable vector table is automatically generated.
For details about automatic setting of a variable vector table, refer to the assembler
directive “.RVECTOR.”

2. Ifthe “VECTN” option is specified, the ““VECTN” option has priority.

Description rule

Input this option using a form like -VECT (numeric value or label name).

Always be sure to insert a space between this option and the numeric value or label name.
Always be sure to use hexadecimal notation when entering a numeric value.

If the numeric value begins with an alphabet (‘a' to 'f'), always be sure to add 0 at the
beginning of the value as you enter it.

® Specify this option only and nothing else.

Description example
>|n30 -VECT stop samplel sample2 ...(1)
>In30 samplel sample2 .-(2)

(1) Sets the address of “stop” for the free area in generating the variable vector table.
(2) Sets the address of “__dummy_int” for the free area in generating the variable vector table.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
94

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-VECTN

Set the address value of a specified software interrupt number.

Function

® Set the address value of a specified software interrupt number.

Precautions

® \When this option is specified, a variable vector table is automatically generated.
For details about automatic setting of a variable vector table, refer to the assembler
directive “.RVECTOR.”

® If the software interrupt number specified in the assembler directive “RVECTOR” is
specified in this option, an error is assumed.

® This option has priority over the “-VECT” option.

Description rule

® Make sure this option is entered in the form like —VECTN (value or symbol name),
software interrupt number.

® To specify multiple software interrupt numbers, specify them in the form like (value or
symbol name), software interrupt number, (value or symbol name), software interrupt
number.

® Always be sure to enter a space between this option and the value or label name.

® Always be to specify values in hexadecimal.

® If the value begins with an English alphabet (a, b, ¢, d, e, f), be sure to write 0 at the
beginning.

® Be sure to separate a value and a software interrupt number with a comma.

® No spaces or tabs can be entered before and after a comma.

® Always make sure software interrupt numbers are entered in decimal.

® This option can be written at any position in the command line.
Description example
>In30 -VECTN stop,20 samplel sample2 ...(1)
>In30 -VECTN stop0,20,stop1,21 samplel sample2 ...(2)
(1) The address value of “stop” is set for software interrupt number = 20.

(2) The address values of “stop0” and “stopl” are set for software interrupt numbers = 20 and 21,
respectively.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
95

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

-W

On the occurrence of a warning, no absolute module file is generated.

Function

® On the occurrence of a warning, no absolute module file is generated.

® On the occurrence of a warning, “10” is returned to the return value of OS.
Precaution

When this option is not specified, “0” is returned to the OS return value.

Description rule
® This command option can be specified at any position in the command line.
Description example

>In30 -W samplel sample2

@

Specifies Command File

Function

® The software starts up In30 by using the contents of the specified file as the command
parameters.

Description rule

® Input this option using a form like @ (file name).
® No space or tab can be entered between this option and the file name.
® No other parameters can be written on the command line.

Description example
>In30 @cmdfile

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
96

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

Error Messages of In30

"-loc' section 'section' is multiple defined

? The section name specified by the -loc option here has already been defined before .

! Check the section name.

"-loc’ section 'section' is not found

? The section specified by the -loc option cannot be found.

! Check the section name.

"-order' section 'section' is multiple defined

? The section name specified with -order is defined twice or more.

! Make sure that sections are defined only once.

"-order' section 'section' is not found

? The section specified with -order cannot be found.

! Check the section name and re-run.

'“VECT' option parameter 'symbol' is undefined

? The symbol 'symbol' specified with -VECT is not defined yet.

! Check the symbol name.

'“VECTN' option parameter 'symbol' is undefined

? The symbol ‘symbol’ specified in -VECTN is undefined.

! Check the symbol name.

'CODE' section 'section-1' is overlapped on the 'section-2'

? The CODE sections 'section-1' and 'section-2' are overlapping.

! Relocate the sections so that they will not overlap.

'ROMDATA' section 'section-1'is overlapped on the 'section-2'

? The ROMDATA sections 'section-1' and 'section-2' are overlapping.

! Relocate the sections so that they will not overlap.

'section’ is written after the same name of relocatable section

? A relative attribute section is followed by an absolute attribute section of the same name
'section'.

! Make sure that relative attribute is located after absolute attribute.

'symbol' is multiple defined

? The symbol 'symbol' is defined twice or more.

! Check external symbol names.

'symbol' value is undefined

? The value of the symbol 'symbol' is not defined yet.

! The program will be processed assuming values = 0. Check the symbol values.

Absolute section 'section' is relocated

? Absolute section 'section' is going to be relocated.

! Correct the section locating specification.

Address is overlapped in 'CODE!' section 'section’

? Addresses are overlapping in a CODE section named 'section'.

! Relocate the section so that its addresses will not overlap.

Address is overlapped in 'ROMDATA' section 'section'

? Addresses are overlapping in a ROMDATA section named 'section'.

! Relocate the section so that its addresses will not overlap.

Can't close file 'file'

? The file 'file' cannot be closed.

! Check the directory information.

Can't close temporary file

? The temporary file cannot be closed.

! Check the remaining storage capacity of the disk.

Can't create file 'file'

? The file 'file' cannot be created.

! Check the directory information.

Can't create temporary file

? A temporary file cannot be created.

! Check to see if the directory is write protected.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
97

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

Can't generate automatically the variable interrupt vector table

? The linker cannot automatically generate a variable vector table.

! If a variable vector table is to be automatically generated, do not write a program in the
“vector” section.

Can't generate automatically the special page vector table

? The linker cannot automatically generate the special page vector table.

! If the special page vector table is to be automatically generated, do not write a program in
the “svector” section.

Can't open file 'file'

? The file 'file' cannot be opened.

! Check the file name.

Can't open temporary file

? The temporary file cannot be opened.

! Check the directory information.

Can't remove file 'file'

? The file 'file' cannot be deleted.

! Check the permission of the file.

Can't remove temporary file

? The temporary file cannot be deleted.

! Check the permission of the file.

Can't registered symbol in the list

? Symbols cannot be registered in a list.

! If this error occurs, please contact tool support personnel.

Command-file line characters exceed

? The number of characters per line in the command file exceeds the limit.

! Check the contents of the command file.

Command line is too long

? The command line contains too many characters.

! Create a command file.

DEBUG information mismatch in file

? Some file whose format version of relocatable module file does not match that of other file
is included.

! Redo assembling using the latest assembler.

Error occurred in executing 'xxx'

? Error occurred in executing 'xxx'.

! Check the error message of 'xxx'.

Illegal file extension '.xxx'is used

? The file extension '.xxx' is illegal.

! Specify a correct file extension.

Illegal format 'file'

? The format of the file 'file' is illegal.

! Check to see that the relocatable file is one that was created by as30.

Illegal format 'file' :expression error occurred

? The format of the file 'file' is illegal.

! Check to see that the relocatable file is one that was created by as30.

Illegal format 'file' :it's not jin file

? The format of the file 'file' is illegal. That is not a branch information file (jin).

! Check to see that the branch information file is one that was created by as30.

Illegal format 'file' :it's not library file

? The format of the file 'file' is illegal. That is not a library file.

! Check to see that the library file is one that was created by 1b30.

Illegal format 'file' :it's not relocatable file

? The format of the file 'file' is illegal. That is not a relocatable file.

! Check to see that the relocatable file is one that was created by as30.

Interrupt number X' is multiple defined

? The software interrupt number 'X' is multiple defined.

! Check the software interrupt number.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
98

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

Interrupt number X' is multiple defined by “VECTN’ and ‘.rvector’

? The software interrupt number 'X' is multiple defined by “VECTN’ and ‘.rvector’.
! Check the software interrupt number.

Invalid option 'option' is used

? An invalid option 'option' is used.

! Specify a correct option.

MCU information mismatch in file 'file'

? The MCU information in the file 'file' does not match the actual chip ??.
! Check to see that the relocatable file is one that was created by as30.
No input files specified

? No input file is specified.

! Specify a file name.

Not enough memory

? Memory capacity is insufficient.

! Increase the memory capacity.

Option 'option' is not appropriate

? The option 'option' is used incorrectly.

! Check the syntax for this option and rewrite it correctly.

Option parameter address exceed xxx

? The address specified with an option exceeds xxx.

! Re-input the command correctly.

Special page number 'X' is multiple defined

? Special page number 'X' is multiple defined.

! Check the special page number.

Special page number 'X' is multiple defined

? Special page number 'X' is multiple defined.

! Check the special page number.

Specified an option that can't be used with 'option'

? The option that cannot be used with ‘option’ at the same time is specified.
! Check the option.

symbol type of floating point is not supported

? Floating-point representation of the symbol type is not supported.

! If this error occurs, please contact tool support personnel.

Wrong value is specified by option "-loc".

? There is a wrong in the address, which was specified by "-loc"

! Confirm the precaution of "-loc".

Zero division exists in the expression

? Expression for relocation data calculations contain a divide by 0 operation.
! Rewrite the expression correctly.

Warning Messages of In30

'-e' option parameter 'symbol' is undefined

? The symbol 'symbol' specified with -e is not defined yet.

! Define 'symbol' in the source program. The program will be processed assuming values =
0.

'CODE' section 'section-1'is overlapped on the 'section-2'

? The CODE section 'section-1' overlaps 'section-2.' The sections have been allocated

overlapping each other.

! Check to see if these sections are allowed to overlap.

'DATA' section 'section-1' is overlapped on the 'section-2'

? The DATA sections 'section-1' and 'section-2' are overlapping. Sections are located
overlapping each other.

! Check to see if the sections can be located at overlapping addresses.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
99

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

'ROMDATA' section 'section-1'is overlapped on the 'section-2'

? The ROMDATA section 'section-1' overlaps 'section-2." The sections have been allocated
overlapping each other.

! Check to see if these sections are allowed to overlap.

'label' value exceed xxx

? The value of the label 'label' exceeds xxx.

! Check the allocated addresses of sections.

'section' data exceed xxx

? The section data exceeds address xxx.

! Check the allocated addresses of sections.

16-bits signed value is out of range -32768 -- 32767 address ='address'

? Relocation data calculation resulted in the address exceeding the range of -32,768 to
+32,767.

! Overflow is discarded. Check whether the value is all right.

16-bits unsigned value is out of range 0 -- 65535 address='address'

? Relocation data calculation resulted in the address exceeding the range of 0 to 65,535.

! Overflow is discarded. Check whether the value is all right.

16-bits value is out of range -32768 -- 65535 address='address'

? Relocation data calculation resulted in the address exceeding the range of -32,768 to
+65,535.

! Overflow is discarded. Check whether the value is all right.

24-bits signed value is out of range -8388608 --8388607 address='address'

? Relocation data calculation resulted in the address exceeding the range of -8,388,608 to
+8,388,607.

! Overflow is discarded. Check whether the value is all right.

24-bits unsigned value is out of range 0 -- 16777215 address='address'

? Relocation data calculation resulted in the address exceeding the range of 0 to 16,777,215.

! Overflow is discarded. Check whether the value is all right.

24-bits value is out of range -8388608 -- 16777215 address='address'

? Relocation data calculation resulted in the address exceeding the range of -8,388,608 to
16,777,215.

! Overflow is discarded. Check whether the value is all right.

4-bits signed value is out of range -8 -- 7 address='address'

? Relocation data calculation resulted in the address exceeding the range of -8 to 7.

! Overflow is discarded. Check whether the value is all right.

8-bits signed value is out of range -128 -- 127 address='address'

? Relocation data calculation resulted in the address exceeding the range of -128 to 127.

! Overflow is discarded. Check whether the value is all right.

8-bits unsigned value is out of range 0 -- 255 address='address'

? Relocation data calculation resulted in the address exceeding the range of 0 to 255.

! Overflow is discarded. Check whether the value is all right.

8-bits value is out of range -128 -- 255 address='address'

? Relocation data calculation resulted in the address exceeding the range of -128 to 255.

! Overflow is discarded. Check whether the value is all right.

Absolute-section is written after the absolute-section 'section'

? The absolute attribute section 'section' is followed by an absolute attribute of the same
name. The source program may be allocated at noncontinued addresses.

! Linkage will be executed. Check the address specification of the source program.

Absolute-section is written before the absolute-section 'section'

? The absolute attribute is concatenated before the absolute attribute section 'section'.

! Concatenation will be executed. Check address specification in the source program.

Address information mismatch in file 'file'

? The address information in the relocatable file 'file' does not match the addresses
information.

! Check to see that the relocatable file is one that was generated by as30.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
100

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating In30

Address is overlapped in the same 'DATA' section 'section'

? Addresses are overlapping in the DATA sections of the same name 'section'. The sections
are located overlapping one another.

! Check to see if the sections can be located at overlapping addresses.

Directive command '.ID' is duplicated

? ID is specified more than once in the file.

! ID can be written only once in a file. Delete extra .ID's.

Directive command '.PROTECT" or '.OFSREG' is duplicated

? .PROTECT or .OFSREG is specified more than once in the file.

! PROTECT and .OFSREG can be written only once in a file. Delete extra .PROTECT's
or .OFSREG’s.

Global function ‘xxx’ is never used

? The global function ‘xxx’ is not used once.

! Check to see if it is a necessary function.

JMP.S instruction exist at end of bank(address xxxxx)

? The jump address of a short-jump instruction overlaps a bank boundary.

! Use the directive command '.SJMP' to control code generation so that short-jump
instructions will not be generated at such a position.

Local function ‘xxx’is never used

? The local function ‘xxx’ is not used once.

! Check to see if it is a necessary function.

Object format version mismatch in file 'file'

? The version information in the relocatable file or library file 'file' does not match the
version information.

! Check to see that the relocatable file or library file is one that was generated by the AS30
program. Regenerate the file as necessary. If this error occurs, please contact tool
support personnel.

Section type mismatch 'section'

? Sections of the same name 'section' have different section types.

! Check the section types in the source file

The free area’s address in vector table isn’t specified.

? The free area’s address in vector table isn’t specified.

! Check the free area in vector table.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
101

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

Method for Operating Imc30

This section explains how to operate lme30. The primary function of Imec30 is to generate a
machine language file in the Motorola S format from the absolute module files generated by 1n30.

Command Parameters

The table below lists the command parameters available for Ime30.

Parameter name Function

File name Absolute mdoule file name to be processed by Imc30.

- Disables message output to screen.

-A Specifies an address range of output data.

-E Sets the starting address.

-F Sets data in a space area.

-H Converts file into Intel HEX format.

-ID Set ID code for ID check function

-L Selects maximum length of data record area.

-0 Specifies output file name.

-V Indicates version of load module converter.

-ofsregx Set the option function select register

-protectl Set levetl for ROM code protect function

-protectx Set the ROM code protect control address

-R8C Generates code that conforms to the R8C Family (Address is OH to OFFFFH).
-R8CE Generates code that conforms to the R8C Family (Address is OH to OFFFFFH).

Rules for Specifying Command Parameters

Follow the rules described below when you specify the command parameters for
Imc30.

Order in which to specify command parameters

Always be sure to specify command parameters in the following order:
1 Command option
2 Absolute module file name (essential)

>lmc30 (command option) (absolute module file name)

Absolute module file name (essential)

® Specify the absolute module file generated by In30.

® Specify only one absolute module file name.

® The file extension (.x30) can be omitted.

® No file names can be specified unless their extension is ".x30".

Command options

® Specify command options as necessary.

® Multiple command options can be specified.

® When specifying multiple command options, the command options can be entered in any
order.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
102

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

Imc30 Command Options

This section explains how to specify the command options of Ime30.

Disables Message Output to Screen

Function

® The software does not output messages when Imc30 is processing.
® Error messages are output to screen.

Description rule
® Always be sure to specify this option before the file name.
Description example
>lmc30 -. debug

-A

Specifies an address range of output data

Function

® Specifies an address range for machine-language data to be output to a file generated.
® You can use one of two ways given below to choose this option.

1. You specify the starting address and the ending address of the output.

2. You specify the starting address of the output only.

Description rules

® Specify this option either in the form of "-A (starting address: ending address)" or "-A (starting

address)".

Put at least one space between this option and the starting address.

Be sure to give an address in hexadecimal.

Specify this option ahead of specifying a file name.

With the starting address of the output only specified, the maximum address of the data

registered in the absolute module file becomes the ending address.

If the starting address exceeds the ending address, an error occurs.

As for a specified address range in which no data are present, the specified data will be output

if the option -F, which is an option for setting data in a space area, is chosen, or nothing will be

output if this option is not chosen.

® An error results if the start address value is greater than the maximum address for data that is
registered in the absolute module file.

® An error results if the end address value is smaller than the minimum address for data that is
registered in the absolute module file.

® An error results if the start address and the end address values are the same.

Description examples

>Imc30 -A 1000:11FF sample
The starting address of a specified address range is set to 1000H, and the ending address
to 11FFH.

>lmc30 -A 1000 sample
In the specified range of addresses, 1000H is the start address value, and the maximum
address for data that is registered in the absolute module file sample is the end address
value.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
103

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

-E

Sets the Starting Address

Function

® Set the starting address.
® Output to a Motorola S format file beginning with the address you have set.
® The Motorola S format file is output with the setting starting address.

Description rule

Input this option using a form like -E (address value).

Always be sure to insert a space between this option and the value.

Always be sure to use hexadecimal notation when specifying an address value.

If the address value begins with an alphabet (‘a’ to 'f'), always be sure to add 0 at the
beginning of the value as you enter it.

Precaution

This option cannot be specified simultaneously with "- H".

Description example

>lmc30 -E 0f0000 debug

A "debug.mot" file is generated that starting address is OfO00H.
>Imc30 -E 8000 debug

A "debug.mot" file is generated that starting address is 8O00H.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
104

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

=g

Sets data in a space area

Function

® Outputs arbitrary data to addresses holding no data within a specified absolute module file.
® Following three specifications are possible for this option:
1. Specification of only the data value that is to be set in a free area
2. Specification of the data value that is to be set in a free area and the start address
value of that area
3. Specification of the data value that is to be set in a free area and the start address
and end address values of that area

Description rules

® This option must be specified in the form like “—F (free-area set data value)”, “—F (free-area set
data value: start address value)” or “—F (free-area set data value: start address value: end
address value).”

® Put at least one space between this option and the data.

® Be sure to give an address in hexadecimal.

® Specify this option before of specifying a file name.

® An error results if the start address value is greater than the end address value.

® \When using this option in combination with the “—A” option, an error will result unless the
output range of the free-area set data is within the address range specified by the “—A” option.

® It is only when the start address value is greater than the maximum address for data that is

registered in the absolute module file and the start address and end address values both are
specified that the free-area set data is additionally output to the specified address range. An
error results if the start address value only is specified.

® If the end address value is smaller than the minimum address for data that is registered in the
absolute module file, the free-area set data is additionally output to the specified address
range.

® An error results if the start address and the end address values are the same.

Description example

>lmc30 -F FF sample
Data “O0H” is output to a free area within the specified address range starting from
1000H and ending with 11FFH.

>lmc30 —A 1000:11FF -F 00:1000:10FF sample
Data “O0H” is output to a free area from address 1000H to address 10FFH within the
specified address range starting from 1000H and ending with 11FFH.

>lmc30 -F 00:1000:11FF sample
Data “O0H” is output to a free area from address 1000H to address 11FFH. If the data
area registered in the absolute module file sample does not exist within addresses 1000H
through 11FFH, the data registered in sample and data “O0H” are output to addresses
1000H through 11FFH.

>Imc30 -F 00:1000 sample
Data “00H” is output to a free area in an address range starting from 1000H and ending
with the last data address registered in the absolute module file sample. An error results

if the last data address registered in the absolute module file sample is smaller than
1000H.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
105

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

=15l

Converts File into Intel HEX Format

Function

® The Imc30 generates an Intel HEX format file.
® The Imc30 generates an Original HEX format for microcomputers if the address value exceeds
1Mbytes.

Description rule

® Specify this option before entering a file name.
® This option cannot be specified simultaneously with option "-E".

Description example
>Imc30 -H debug

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
106

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

-1D

Set ID code for ID check Function

Function

® [or details on the ID code check, see the hardware manual of the microcomputer.
® The specified ID code is stored as 8-bit data in ID store addresses. And FF is stored in ROM
code protect control address or option function select register.

option Address for ID Code Stored
Non FFFDF,FFFE3,FFFEB,FFFEF,FFFF3,FFFF7,FFFFB
-R8C FFDF,FFE3,FFEB,FFEF,FFF3,FFF7,FFFB

® \When options (-protectl, -protectx, -ofsregx) to use ROM code protect function or option
function select register is specified, the following protect code is filled in protect code store
address or register store address.

-ID -protectl, -protectx, code
-ofsregx
Specify Specify Option setting value
Specify Non FF
Non Specify Option setting value
Non Non Value filling in source program

® |f you filled in ID store addresses with value in your source program, when this option is
specified, the data of ID store addresses are always changed. Without this option, the filling
data are output.

® When this option alone is specified, ID code is FFFFFFFFFFFFFF.

® An ID file (extension .id) is created to display ID codes set with this option.

® The specified ID code is stored as an ASCII code.

Precaution

When assembler directive command ".ID", “.OFSREG” or ".PROTECT" is described, this

option isn't processed.

Description rule

® Always specify this command option in capital letters.
® Add "-ID"to the ID code.
® To directly specify an ID code, specify "-ID#" followed by a number.
Example 1) -IDCodeNo1
ID code: 436F64654E6F31

Address FFFDF | FFFE3 FFFEB | FFFEF | FFFF3 |FFFF7 | FFFFB

data 43 6F 64 65 4E 6F 31

Example 2)-IDCode

ID code: 436F6465000000
Example 3)-1D1234567

ID code: 31323334353637
Example 4)-ID#49562137856132

ID code: 49562137856132
Example 5)-1D#1234567

ID code: 12345670000000
Example 6)-1D

ID code: FFFFFFFFFFFFFF

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
107

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

=1l

Selects Maximum Length of Data Record Area

Function

® The data record length of the Motorola S format is set to 32 bytes.
® The data record length of the Intel HEX format is set to 32 bytes.

Description rule
® Specify this option before entering a file name.
Description example
>lmc30 -L debug

-0

Specifies Output File Name
Function

® Specify the file name of the machine language file generated by Imc30.

® A path can be specified in the file name.

® The extension of the file name can be specified. A default extension is used for the
generated file: ".mot" for the Motorola S format and ".hex" for the Intel HEX format.

® An output file is output in the directory which is the same as the specified absolute module file.

Description rule

® Input this option using a form like -O (file name).
® Always be sure to insert a space between this option and the file name.
® Specify this option before entering a file name.

Description example

>Imc30 -O test debug

A "test.mot" file is generated.
>Imc30 -O tmp\test debug

A "test.mot" file is generated in the "tmp" directory.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
108

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

—ofsregx

Set the option function select register

Function

® For details on the option function select register, see the hardware manual of the
microcomputer.

® A specified value is stored in the option function select register.

® If you filled in the option function select register with value, when this option is specified,
the data is changed. When this option is not specified, filling value is output.

Precaution
When assembler directive command ".ID", “OFSREG” or ".PROTECT" is described, this

option isn't processed.
Description rule

® Always specify this command option in small letters.

Specify this option either in the form of "-ofsregx (value).

Put at least one space between this option and the data.

Be sure to give an address in hexadecimal.

The range of 0 to FFH can be written in the operand.

Always specify this option combining “-R8C” option.

® “protectl” and “-protectx” option cannot be specified at the same time as this option.

Description example
>lmc30 —ofsregx FF debug

L;Protectl

Set levet1 for ROM code protect Function

Function

® For details on the ROM code protect function, see the hardware manual of the microcomputer.

® 3F is stored in ROM code protect control address.

® If you filled in protect code store address with value, when this option is specified, the protect
code is changed. When this option is not specified, filling value is output.

Precaution
When assembler directive command ".ID", “.OFSREG” or ".PROTECT" is described, this

option isn't processed.
Description rule

® Always specify this command option in small letters.
® ‘“-protectx” option cannot be specified at the same time as this option.
® “-R8C” and “-ofsregx” option cannot be specified at the same time as this option.

Description example

>Imc30 -protectl sample

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
109

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

|;protectx

Set the ROM code protect control address

Function

® [or details on the ROM code protect function, see the hardware manual of the microcomputer.

® A specified value is stored in ROM code protect control address.

® |f you filled in protect code store address with value, when this option is specified, the protect
code is changed. When this option is not specified, filling value is output.

Precaution

When assembler directive command ".ID", “*.OFSREG” or ".PROTECT" is described, this

option isn't processed.

Description rule

Always specify this command option in small letters.

“-protectl” option cannot be specified at the same time as this option.
“-ofsregx” option cannot be specified at the same time as this option.
Specify this option either in the form of "-protectx (protect code).

Put at least one space between this option and the data.

Be sure to give an address in hexadecimal.

The range of 0 to FFH can be written in the operand.

Precaution

When “-R8C” option is specified, it is processed as "-ofsregx"”.

Description example

>lmc30 —protectx FF debug

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

110

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Method for Operating Imc30

-R8C/-R8C

Generates code that conforms to the R8C Family

Function
® Generates a code that conforms to the R8C Family.
Option Address area
-R8C OH to OFFFFH
-R8CE OH to OFFFFFH

Description rule
® Specify this option before entering a file name.
Description example
>lmc30 —R8C debug

-V

Indicates Version Number

Function

® The software indicates the version number of Imc30.
Precaution

If this option is specified, all other parameters on the command line are ignored.

Description rule
® Specify this option only and nothing else.
Description example
>Imc30 -V

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
111

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

Error Messages of Imc30

'-A' Option Illegal format '-A StartAddr:EndAddr

? The start and end addresses are not correctly set.

! Check the start and end addresses.

'-e' option is too long

? The array of -e option parameters is excessively long.

! Check the syntax for this option and rewrite it correctly.

"-F' Option Illegal format '-F Data:StartAddr:EndAddr

? The start and end addresses are not correctly set.

! Check the start and end addresses.

"-protect’ or -ofsreg' option multiple specified

? The option is specified twice or more.

! Check the syntax for this option and rewrite it correctly.

'xxx' option multiple specified

? The option 'xxx'is specified twice or more.

! Check the syntax for this option and rewrite it correctly.

Address specified by -A' option exceed output address

? The specified address is outside the range of data addresses registered in the absolute
module file.

! Make sure the address you specify is within the range of data addresses registered in the
absolute module file.

Address specified by '-e' option exceed xxx

? The address specified with -e option exceeds xxx.

! Rewrite the address value correctly.

Address specified by '-F' option exceed output address

? The specified address is outside the range of data addresses registered in the absolute
module file.

! Make sure the address you specify is within the range of data addresses registered in the
absolute module file.

Can't close file 'filename'

? The file 'filename' cannot be closed.

! Check the directory information.

Can't create file 'filename'

? The file 'filename' cannot be created.

! Check the directory information.

Can't open file 'filename'

? The file 'filename' cannot be opened.

! Check the file name.

Command line is too long

? The character string on the command line is excessively long.

! Re-input the command correctly.

Illegal file format 'filename' is used

? The file format of 'filename' is incorrect.

! Check the file name. Regenerate the file.

Invalid option 'option' is used

? An invalid option 'option' is specified.

! Specify the option correctly again.

Not enough memory

? Memory is insufficient.

! Increase the memory capacity.

Specifies option that can't use in M16C

? An invalid option 'option' is specified.

! Specify the option correctly again.

Specifies option that can't use with “R8C’

? ““R8C’ option cannot be specified at the same time as this option.

! Specify the option correctly again.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
112

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating Imc30

Option 'option' is not appropriate

? The option is used incorrectly.

! Check the syntax for this option and rewrite it correctly.
Unknown file extension '.xxx' is specified

? The specified file extension '.xxx' is incorrect.

! Check the file name.

Value is out of range

? The value is out of range.

! Write a value that matches the register bit length.

Warning Messages of Imc30

'-ID' option isn't processed.

? '-ID' option isn't processed..

! Assembler directive command ".ID" or ".PROTECT" is described.

-ofsreg’ option isn’t processed

? "-ofsreg' option isn't processed.

! Assembler directive command ".ID" or ".PROTECT" is described.

“protect’ or -ofsreg’ option isn’t processed

? "-protect' or '-ofsreg' option isn't processed.

! Assembler directive command ".ID", ".OFSREG" or ".PROTECT" is described.
'filename' does not contain object data

? The specified file does not contain object data.

! Check the file name.

Address exceed xxx

? The address exceeded xxx.

! Check the written contents of the source program. Check to see how sections are located.
Original HEX format for microcomputers is generated

? Microcomputers exclusive use file was generated.

! Confirm that microcomputers exclusive use file is not in the problem.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
113

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

Method for Operating [b30

This section explains the method for operating 1b30 to utilize its functions. The primary function
of 1b30 is to manage multiple relocatable module files as a single library file.

Command Parameters

The table below lists the command parameters available for 1b30.

Parameter name Function

File name Relocatable module file name to be processed by 1b30.
- Disable message output to screen.
-A Adds module to library file.

-C Creates new library file.

-D Deletes modules from library file.
-L Generates library list file.

-R Replaces modules.

-U Updates modules.

-V Indicates version of librarian.

-X Extracts modules.

@ Specifies command file.

Rules for Specifying Command Parameters
Follow the rules described below when you specify command parameters for 1b30.

Order in which to specify command parameters

Always specify the command parameters for 1b30 in the following order. If the command
parameters are specified in an incorrect order, 1b30 cannot process files correctly.
1 Command option
2 Library file name
3 Relocatable module (file) name
Ib30 (command option) (library file name) (relocatable module file name)

Library file name (essential)

® Always be sure to specify the library name.
® Adirectory path can be specified in the file name.
® The extension (lib) can be omitted on the command line.

Relocatable module file name (relocatable module name)

® Always be sure to specify a relocatable module file name.

® The extension of a relocatable module file name is ".r30". The extension can be omitted on
the command line.

® Multiple relocatable module files can be specified. In this case, always be sure to insert a
space between each file name.

® Adirectory path can be specified in the file name. If no directory is specified, the files residing
in the current directory are processed.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
114

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

Command options

® Command options are not case sensitive. They can be entered in uppercase or lowercase.

® At least one of the command options -A', -C', -D’, '-L', -R’, "-U', or '-X' must always be
specified when executing the librarian. If none of these options is specified on the command
line or two or more of them are specified simultaneously, 1b30 outputs an error.

Command File

® The librarian allows you to specify a command file name that contains description of input
parameters.
® Refer to the Method for Operating In30 for details on how to specify a command file.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
115

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

Command Options of Ib30

The following pages explain the rules for specifying the command options of 1b30.

Disables Message Output to Screen

Function

® The software does not output messages when Ib30 is processing.
® FError messages are output to screen.

Description rule

® This option alone can be specified in combination with some other options.
® This option and other options can be specified in any order.

Description example

>|b30 -. -A new sample2

-A

Adds Modules to Library File

Function

® The software adds a relocatable module to an existing library file.

® |f the specified library file is nonexistent, Ib30 creates a new library file.

® If a relocatable module bearing the same name as one you are going to add is already entered
in the library file, Ib30 outputs an error.

® If the relocatable module file you are going to add contains a definition of the same global
symbol name as in the module that is already entered in the library file, Ib30 outputs an error.

Description rule

® Input this option using a form like -A (library file name) (relocatable module file name).
® Always be sure to insert a space between this option and the library file name and between the
library file name and the relocatable module file name.

Description example

>|b30 -A new.lib sample3.r30
A "sample3" module is added to the "new.lib" file.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
116

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

-C

Creates New Library File

Function

® The software creates a new library file.

Precaution

If a library file of the same name as one you have specified in this command option already
exists, the contents of the old library file are replaced with those of the new library file.

Description rule

® |nput this option using a form like -C (library file name) (relocatable module file name).
® Always be sure to insert a space between this option and the library file name and between the
library file name and the relocatable module file name.

Description example

>|b30 -C new samplel sample2
A new library file named "new.lib" is created that contains samplel and sample2.

-D

Deletes Modules from Library File

Function

® The software deletes a specified relocatable module from the library file.
® Once deleted, the module is honexistent anywhere.

Description rule

® |nput this option using a form like -D (library name) (relocatable module name).

® Always be sure to insert a space between this option and the library file name and between the
library file name and the relocatable module name.

® Multiple relocatable modules you want to be deleted can be specified. In this case, always be
sure to insert a space between each module name.

Description example

>|b30 -D new sample2
A relocatable module "sample2" is deleted from the "new.lib" library file.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
117

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

=1l

Generates Library List File

Function

® The software generates a library list file that contains information on a specified library file.
The extension of generated library list file is ".lls".

® A library list file can also be generated that contains information on only the necessary
modules in the library file.

® |[f a library list file of the same name already exists, this existing file is overwritten by a new
library list file.

Description rule

® Input this option using a form like -L (library file name) [(relocatable module name]).

® Always be sure to insert a space between this option and the library file name and between the
library file name and the relocatable module file name.

® Multiple relocatable module names can be specified. In this case, always be sure to insert a
space between each module name.

Description example

>|b30 -L new
Information on all modules entered in a library file named "new.lib" are output to a library list
file named "new.lls".

>|b30 -L new samplel
Information on module samplel entered in the "new.lib" library file is output to a "new.lls" list
file.

>|b30 -L new.lib samplel sample3
Information on modules samplel and sample3 entered in the "new.lib" library file are output
to a "new.lls" list file.

=R

Replaces Modules

Function

® The software updates a relocatable module in the library file by replacing it with the content of
a specified relocatable module file. The module that is updated in this way is one that has the
same name as the specified relocatable module file name.

Description rule

® |nput this option using a form like -R (library file name) (relocatable module file name).

® Always be sure to insert a space between this option and the library file name and between the
library file name and the relocatable module file name.

® Multiple relocatable module file names can be specified. In this case, always be sure to insert
a space between each module file name.

Description example

>|b30 -R new samplel
The content of module samplel in the "new.lib" library file is replaced with the content of the
"samplel.r30" file of the same name.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
118

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

-U

Updates Modules

Function

® The software compares the created date of a relocatable module in the library file with that of a
relocatable module file with which you want to be updated. Then if the date of the relocatable
module file is newer than that of the module, the software updates it.

Description rule

® |nput this option using a form like -U (library file name) (relocatable module file name).

® Always be sure to insert a space between this option and the library file name and between the
library file name and the relocatable module file name.

® Multiple relocatable module names can be specified. In this case, always be sure to insert a
space between each module name.

Description example

>|b30 -U new samplel
Only when the created date of module samplel in the "new.lib" file is older than that of the
"samplel.r30" file of the same name, the content of samplel is updated with the content of the
"samplel.r30" file.

-V

Indicates Version Number

Function

® The software outputs the version number of 1b30 to the screen.
Precaution
If this option is specified, all other parameters on the command line are ignored.

Description rule
® Specify this option only and nothing else.
Description example
>Ib30 -V

-X

Extracts Module

Function

® The software extracts a relocatable module from the library file as a relocatable module file.

® The library file is not modified by this operation.

® The created date of the relocatable module file thus extracted is the date when it was
extracted from the library file.

® If a file of the same name as the extracted relocatable module file already exists, the existing
file is overwritten.

Description rule
® Always be sure to insert a space between this option and the library file name.
Description example

>|b30 -X new sample3
Module sample3 is extracted from the "new.lib" library file to generate a relocatable module
file named "sample3.r30".

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
119

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

@

Specifies Command File

Function
® The software uses the contents of a specified file as command parameters as it invokes Ib30.
Description rule

® Input this option using a form like @ (file name).
® No space or tab can be entered between this option and the file name.
® No other parameters can be entered on the command line.

Description example
>|b30 @cmdfile

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
120

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

Error Messages of 1b30

'filename' is not library file

? The file 'filename' is not a library file.

! Check the file name. Check to see that the file is one that was generated by 1b30.

'filename' is not relocatable file

? The file 'filename' is not a relocatable file.

! Check the file name. Check to see that the file is one that was generated by as30.

'module' already registered in 'filename'

? The module 'module' has already been registered in the library 'filename'.

! Check the library file name and the relocatable file name.

'module' does not match with 'filename'

? The module name 'module' and the relocatable file name 'filename' do not match. The
module name has been modified.

! Check the relocatable file name.

'module' is multiple specified

? Multiple modules of the same name 'module’ are specified.

! Specify the module name correctly again.

'module’ is not registered in 'filename'

? The module 'module' is not registered in the library file 'filename'. Specified processing
(to delete or update module) cannot be performed.

! Check the module name.

'symbol' is multiple defined at 'modulel' and 'module2' in 'filename'

? Externally defined symbols of the same name 'symbol' are defined in two places of the
library 'filename', one in 'modulel’ and another in 'module2'.

! Check the relocatable file name.

'symbol' is multiple defined in 'filename'

? The symbol 'symbol' is defined twice in the file 'filename'.

! If this error occurs, please contact tool support personnel.

'symbol' is multiple defined in 'modulel’ and 'module2'

? Externally defined symbol 'symbol' is defined in two places of the library 'filename', one in
'modulel' and another in 'module2'.

! Check the relocatable file name.

'xxx' and 'xxx' are used

? The option 'xxx' and the option 'xxx' are used simultaneously.

! Options cannot be specified simultaneously. Re- input the command correctly.

Can't close file 'filename'

? The file 'filename' cannot be closed.

! Check the directory information.

Can't close temporary file

? The temporary file cannot be closed.

! Check the directory information.

Can't create file 'filename'

? The file 'filename' cannot be created.

! Check the directory name.

Can't create temporary file

? The temporary file cannot be created.

! Check the directory information.

Can't open file 'filename'

? The file 'filename' cannot be opened.

! Check the file name.

Can't open temporary file

? The temporary file cannot be opened.

! Check the directory information.

Can't write in file 'filename'

? Data cannot be written to the file 'filename'. Memory is insufficient.

! Increase the memory capacity.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
121

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating 1b30

Command-file is include in itself

? An attempt is made to include the command file in itself.
! Check to see if the command file is written correctly.
Command-file line characters exceed

? The number of characters per line in the command file exceeds the limit.
! Check the contents of the command file.

Command line is too long

? The character string on the command line is excessively long.
! Create a command file.

Illegal file format 'filename'

? The file format of 'filename' is incorrect.

! Check the file name.

Invalid option 'option' is used

? An invalid option 'option' is used.

! Specify the option correctly again.

No public symbol is in 'filename'

? There is no public symbol in the file 'filename'.

! Check the contents of the relocatable file.

Not enough memory

? Memory is insufficient.

! Increase the memory capacity.

Symbol-name characters exceed 500

? The symbol name consists of more than 500 characters.

! Divide the library file.

Too many modules

? There are too many registered modules.

! Divide the library file into two or more files.

Unknown file extension '.xxx' is used

? The file extension '.xxx' is incorrect.

! Check the file name.

Warning Messages of 1b30

'module' is not registered in library

? The module 'module' is not registered in the library. Therefore, no modules of the
specified name were extracted.

! Check the module name.

'module’ is not registered in library, can't output list-file

? The module 'module' is not registered in the library. Information on this module was not
output to a list file.

! Check the module name.

'module' was created in the current directory

? The module 'module' was created in the current directory.

! Check the directory name you have specified.

Can't replace, 'module’ is older than module in library

? The module 'module’ is older than the module in the library. Therefore, the library
module was not replaced with it.

! Check the created date of the relocatable file.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
122

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method of Operating xrf30

Method for Operating xrf30

This section explains the method for operating xrf30 to utilize its functions. The basic function of
xrf30 is to generate from the assembly source file or assembler list file a cross reference file that
contains a list for referencing branch instructions and subroutine call instructions.

Command Parameters

The table below lists the command parameters available for xrf30.

Parameter name Function

File name Source or assembler list file name to be processed by xrf30.

- Disables message output to screen.

-N Specifies that system label information be output.
-0 Specifies directory in which to output a file.

-V Indicates version of cross referencer.

@ Specifies command file.

Rules for Specifying Command Parameters
Follow the rules described below when specifying the command parameters of xrf30.

Order in which to specify command parameters

The command parameters of xrf30 can be specified in any order.

>xrf30 (file name) (command option)
>xrf30 (command option) (file name)

Assembly source file name or assembler list file name

Always be sure to specify at least one file name.

A path can be specified in the file name.

Up to 600 files can be specified.

Always be sure to enter the file extension.

Always be sure to specify assembiler list file whose extension is ".Ist".

When specifying multiple files, insert a space or tab to separate between file names.

Command options
® Multiple command options can be specified.
Command File

® The xrf30 referencer allows you to specify a command file name that contains input
parameters.
® Refer to the Method for Operating In30 for details on how to specify a command file.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
123

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method of Operating xrf30

Command Options of xrf30

The following pages explain the rules for specifying the command options of xrf30.

Disables Message Output to Screen

Function

® The software does not output messages when xrf30 is processing.
® FError messages are output to screen.

Description rule
® This option can be specified at any position on the command line.
Description example

>xrf30 -. sample.a30

-N

Specifies Output of System Label Information

Function

® Information on system labels output by as30 also is output to a cross reference file.
® System labels are one that begins with two periods (..).

Description rule
® This option can be specified at any position on the command line.
Description example

>xrf30 -N sample.Ist

A "sample.xrf" file is generated from a "sample.lst" file.
>xrf30 -N sample.a30

A "sample.xrf" file is generated from a "sample.a30" file

-0

Specifies File Output Directory

Function
® Specify a directory in which you want the cross reference file to be output.
Description rule

® Input this option using a form like -O (directory name).
® No space or tab can be entered between this option and the directory name.
® This option can be specified at any position on the command line.

Description example

>xrf30 -O\work\list sample.a30

A "sample.xrf" file is generated in a \work\list directory.
>xrf30 -O\workl\list sample.Ist

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
124

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method of Operating xrf30

-V

Indicates Version Number

Function

® The software indicates the version number of the cross referencer.
Precaution
If this option is specified, all other parameters on the command line are ignored.

Description rule
® Specify this option only and nothing else.
Description example
>xrf30 -V

@

Specifies Command File

Function
® The software uses the contents of a specified file as command parameters as it invokes xrf30.
Description rule

® No space or tab can be entered between this option and the file name.
® No other parameters can be entered on the command line.

Description example
>xrf30 @cmdfile

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
125

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating xrf30

Error Messages of xrf30

Can't create temporary file

? The temporary file cannot be created.

! Check the directory information.

Can't open file 'xxxx'

? The 'xxxx' file cannot be opened.

! Check the file name.

Command-file is included in itself

? An attempt is made to include the command file in itself.

! Check the written contents of the command file.

Command-file line characters exceed

? The number of characters per line in the command file exceeds the limit.
! Check the contents of the command file.

Command line is too long

? The character string on the command line is excessively long.

! Create a command file.

Input files exceed 80

? The number of input files exceeds 80.

! Re-input the command. Divide the contents of the command file.
Invalid option 'xxx' is used

? An invalid option 'option' is specified.

! Specify the command option correctly again.

No input files specified

? No input file is specified.

! Specify a file name.

Not enough memory

? Memory is insufficient.

! Increase the memory capacity.

Option 'xxx' is not appropriate

? The command option is specified incorrectly.

! Check the syntax for this command option and specify it correctly again.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
126

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating abs30

Method for Operating abs30

This section explains the method for operating abs30 to utilize its functions. The primary
function of abs30 is to generate an absolute list file from a specified assembler list file.

Precautions using abs30

® |f two or more same section declarations exist and the section is not output to the assembler
list file by the directive command ".LSIT OFF" in one assembly sourcefile, a correct actual
address might not be generated.

® Specify command option "-LM" when the assembler as30 processed the source file that
contains macro directive com-mand.
Specify command option "-LS" when the assembler as30 processed the source file that
contains structured directive command for AS30.

® |tis needed that header lines are output to assembler list file. Operate as30 without command
option -H.

Command Parameters

The table below lists the command parameters available for abs30.

Parameter name Function

File name Assembler list or absolute modulefile name to be processed by abs30.

- Disables message output to screen.

-D Specifies directory in which to search files.
-0 Specifies directory in which to output files.
-V Indicates version of absolute lister.

Rules for Specifying Command Parameters
Follow the rules described below when specifying command parameters.

Order in which to specify command parameters

® Always be sure to specify command parameters in the order given below:
1 Command option
2 Absolute module file name
3 Assembler list file name
>abs30 (command option) (absolute module file name) (assembler list file name)

File name of absolute module file (essential)

® Always be sure to specify the absolute module file name.
® A path can be specified in the absolute module file name.
® The extension (.x30) can be omitted.

File name of assembler list file

® Multiple assembler list files can be specified by separating them with a space or tab.
® A path can be specified in the assembler list file name.

® The file attribute can be omitted.

® The assembiler list file name can be omitted.

Command options

® Command options are not case sensitive, so they can be entered in uppercase or lowercase.
® Always be sure to enter a space or tab between the command option and its argument.

Command Options of abs30

This section describe the rules for specifying the command options of abs30.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
127

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating abs30

Disables Message Output to Screen

Function

® The software does not output messages when xrf30 is processing.
® Error messages are output to screen.

Description rule
® This option can be specified at any position on the command line.
Description example

>abs30 -. sample.a30

-D

Specifies File Search Directory

Function

® Specify the directory in which you want assembiler list files to be searched.
® |[f this directory is not specified, abs30 searches assembler list files from the current directory.

Description rule

® Input this option using a form like -D (directory name).
® No space or tab can be entered between this option and the directory name.

Description example

>abs30 sample -Ddir

Assembler list files in "dir" under the current directory are searched.
>abs30 sample -Ddir list1

File "list1.1st" is searched in "dir" under the current directory is searched.

-0

Specifies File Output Directory

Function

® Specify the directory in which you want the absolute list file to be generated.
® | this directory is not specified, the absolute list file is generated in the current directory.

Description rule

® Input this option using a form like -O (directory name).
® No space or tab can be entered between this option and the directory name.

Description example

>abs30 sample -Oabslist
The absolute list file is generated in the "abslist" directory under the current directory.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
128

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating abs30

-V

Indicates Version Number

Function

® The software indicates the version number of the absolute lister.
Precaution
If this option is specified, all other parameters on the command line are ignored.

Description rule
® Specify this option only and nothing else.
Description example
>abs30 -V

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
129

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Method for Operating abs30

Error Messages of abs30

Can't create file 'filename'

? The file 'filename' cannot be created.

! Check the directory information.

Can't open file 'filename'

? The file 'filename' cannot be opened.

! Check the file name.

Can't write in file 'filename'

? Data cannot be written to the file 'filename'.

! Check the permission of the file.

Command line is too long

? The command line contain too many characters.
! Re-input the command correctly.

Error information is in 'filename'

? The file 'filename' contains error information.
! Regenerate the assembler list file.

Illegal file format 'filename'

? The file format of 'filename' is illegal.

! Check the file name.

Input files number exceed 80

? The number of input files exceeds 80.

! Re-input the command.

Not enough disk space

? Disk capacity is insufficient.

! Check the disk information.

Not enough memory

? Memory capacity is insufficient.

! Increase the memory capacity.

Section information is not appropriate in 'filename'

? The section information in 'filename' is incorrect.
! Check the file name.

Warning Messages of abs30

Address area exceed OFFFFFH

? The address range exceeds OFFFFFh.

! Check the absolute module file name.

File 'I-filename' is missing corresponding to module in 'a-filename'

? The file 'lI-filename' corresponding to the module in 'a-filename' cannot be found. The
absolute list file for this module was not created.

! Regenerate the assembler list file. Check the directory where the assembler list file

resides.
Lines 'num-num' are relocatable address in 'filename'
? The lines 'num-num' in 'filename' not converted to absolute addresses.

! Check to see if the directive command ".LIST OFF" is written in the assembly source file.
No information of 'l-filename' in 'a-filename'

? The file 'a-filename' does not contain information on 'l-filename'.

! Check the file name.

No section information of I-name in x-name

? x-name doesn't have the section information of I-name.

! Absolute-list file can't be generated from 1-name.

Overwrite in 'filename'

? The file 'filename' will be overwritten.

! The contents of the old file are not saved anywhere.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
130

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Rules for Writing Program

This section describes the basic rules you need to follow when writing a source program that can be
assembled by AS30.

Precautions on Writing Program

Pay attention to the following when writing a program to be assembled by AS30:

® Do not use the reserved words of AS30 for names in your source program.

® The character strings consisting of AS30 directive commands which have had the periods
removed can be used for names without causing an error. However, avoid using these
character strings because some of them affect processing performed by AS30.

® System labels (the character strings that begin with "..") written in your source program may
not result in generating an error. However, avoid using system labels because some of them
may be used for AS30 extension in the future.

Character Set
You can use the following characters when writing an assembly program to be assembled by AS30.

Uppercase alphabets
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Lowercase alphabets
abcdefghijklmnopqrstuvwxyz
Numerals
0123456789
Special characters
"HS% &' O+, -/ [INA_ |~
Blank
(Space) (Tab)
New parabraph or line

(Carriage retrn) (Line feed)

Precautions

Always be sure to use 'en'-size characters when writing instructions and operands. You
cannot use multi-byte characters (e.g., kanji) unless you are writing comments.

Reserved Words

AS30 handles the same character strings as directive assemble commands and mnemonics as
reserved words. These reserved words are not case-sensitive, so they are not discriminated
between uppercase and lowercase. Consequently, "ABS" and "abs" are the same reserved words.

Precautions
The reserved words cannot be used in the "names" described later.

Types of Reserved Words

Directive assemble commands

All directive assemble commands explained in this manual and all character strings that begin
with one period are the reserved words.

Mnemonic

All assembly language mnemonic of M16C Family are the reserved word.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
131

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Operators

All operators and structured operators explained in this manual are the reserved word.
Structured directive command

All structured directive commands explained in this manual are the reserved word.
System labels

The system labels are generated by assembler.
AS30 handles all character strings that begin with two period as system labels.

Names

Any desired names can be defined and used as such in your source program.

Names are classified into the following types, each with a different range of descriptions that can
be entered in the program.
Label
This name has an address as its value.
Symbol
This name has a constant as its value.
Bit symbol
This name has a constant (bit position) and address as its values.
Location symbol
This name has an address as its value. This symbols are output by as30.

Rules for Writing Names

Length of name
A character string can be entered as a name in up to 255 characters.
Determination of name

Names are case-sensitive, so they are discriminated between uppercase and lowercase.
Therefore, "LAB" and "Lab" are handled as different names.

Precautions

You cannot use any name that is identical to one of AS30's reserved words. If this rule is not
followed, program operation cannot be guaranteed.

The following describes the types of names you can define in your program.

Label

Function

® This is a name assigned to a specific address in the range of addresses that can be accessed
by the CPU.

Rules for writing

® Alphabets, numerals and the underline can be used for this name.
® Numerals cannot be used at the beginning of this name.
® \When defining a name, always be sure to add the colon (:) at the end of the name.

Defining method

® There are two methods to define a label.
1 Allocate a memory area with a directive command.

Example:
flags: .BLKB 1
work: .BLKD 1

2 Write a name at the beginning of a source line.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
132

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Example:

namel:
_name:
sym_name:

Referencing method

® Write a name in the operand of a mnemonic.
Example:
JMP sym_name

Symbol

Function
® This is a name assigned to a constant.
Rules for writing

® Numeric values must be a determined value when assembling the source program.
® Alphabets, numerals and the underline can be used for this name.

® Numerals cannot be used at the beginning of this name.

® This name can be defined outside the range of sections.

Defining method
® To define a symbol, use a directive command that is used for defining numeric values.

Example:
valuel .EQU 1
value2 .EQU 2

Referencing method
® Write a symbol in the operand of an instruction.

Example:
MOV.W RO,valuel
value3 .EQU value2+1
Bit symbol
Function

® This is a name assigned to a specific bit position in specific memory.

® [f this name is assigned to each individual bit in 8-bit long memory, one-byte memory can have
8 pieces of information.

® The bit position thus specified is offset from the least significant bit of memory specified in the
address part by a value specified in the bit number part.

Rules for writing

® Numeric values must be a determined value when assembling the source program.
® Alphabets and the underline can be used for this name.
® Numerals cannot be used at the beginning of this name.
® This name can be defined outside the range of sections.

Defining method
® To define a bit symbol, use a directive command that is used for defining bit symbols.

Example:
flagl .BTEQU 1,flags
flag2 .BTEQU 2,flags
flag3 .BTEQU 20,flags

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
133

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Referencing method
® A bit symbol can be written in the operand of a 1-bit operation instruction.

Example:
BCLR flagl
BCLR flag2
BCLR flag3

Location symbol

Function

® This symbol indicates the address of a line you wrote.
® By writing the dollar mark ($) in the operand, you can indicate the address of the first byte of
op-code in the line you wrote.

Rules for writing

® Write this symbol in the operand of a mnemonic.

® The dollar mark ($) cannot be written at the beginning of a name or reserved word.

® Alocation symbol can be written in a term of an expression.

Precautions

When writing a location symbol, make sure that the value of the expression is a valid value
when your program is assembled.

Description example

JMP.B $+5

Precautions

When writing an address in a branch instruction operand using a location symbol for offset, be
sure to write the addressing mode, jump distance, and instruction format specifiers for all
mnemonics at locations from that instruction to the jump address.

Lines

The as30 assembler processes the source program one line at a time. Lines in the source program
are classified into the following types depending on the contents in that line.
Directive command line

® This line is where as30's directive command is written.

® Only one directive command can be written in one line.

® Comments can be written in the directive command line.
Precautions

You cannot write a directive command and a mnemonic in the same line.

Assembly source line

® This line is where a mnemonic is written.

® Comments can be written in the assembly source line.

® Alabel name can be written at the beginning of the assembly source line.
Precautions

You cannot write two or more mnemonics in one line.

You cannot write a directive command and a mnemonic in the same line.

Label definition line
® This line is where only a label is written.
Comment line
® This line is where only a comment is written.
Blank line
® This line contains only space, tab, or line feed code.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
134

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Rules for Writing Lines

Separation of lines

Lines are separated by the line feed character, and an interval from a character immediately
after a line feed character to the next line feed character is assumed to be one line.

Length of line

Up to 255 characters can be written in one line. The as30 assembler does not process the
characters in any line exceeding this limit.

Precautions

When writing lines of statements, make sure that your description is entered within each line.

The following describes rules on each type of line you need to follow when writing statements.
Directive command line

Function
® Directive command of assembler can be written in this line.
Rules for writing

Always be sure to insert a space or tab between the directive command and its operand.
When writing multiple operands, always be sure to insert a comma (,) between each operand.
A space or tab can be inserted between the operand and comma.

Some directive commands are not accompanied by an operand.

Directive commands can be written starting immediately from the top of a line.

A space or tab can be inserted at the beginning of a directive command.

When writing a comment in the directive command line, insert a semicolon (;) after the
directive command and operand and write your comment in columns following the semicolon.
® Comments are output to an assembler list file.

Precautions

The as30 assembler processes anything written in columns after the semicolon (;) as a
comment. Consequently, the assembler does not generate code for the mnemonics and
directive commands written in columns after the semicolon. Therefore, be careful with the
position where you enter the semicolon. If a semicolon is enclosed with double quotations (")

or single quotation ("), AS30 does not assume it to be the first character of a comment.

® A space or tab can be inserted between a directive command's operand and a comment.

Description example
.SECTION area,DATA

.ORG OOH
sym .EQU 0
work: .BLKB 1
ALIGN
.PAGE "newpage”
ALIGN ; Comment

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
135

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Assembly source line

Refer to the "M16C Family Software Manual" for details on how to write mnemonics. Here, the
following explains rules you need to follow to write the assembly source lines that can be processed
by as30.

Function
® Mnemonics available for the M16C family can be written in this line.
Rules for writing

Always be sure to insert a space or tab between the mnemonic and its operand.

When writing multiple operands, always be sure to insert a comma (,) between each operand.
A space or tab can be inserted between the operand and comma.

Some mnemonics are not accompanied by an operand.

Mnemonics can be written starting immediately from the top of a line.

A space or tab can be inserted at the beginning of an assembly source line.

When defining a label in the assembly source line, always be sure to write the label name in
columns preceding the mnemonic.

Be sure to enter a colon before and after the label name.

A space or tab can be inserted between the label name and the mnemonic.

When writing a comment in the assembly source line, insert a semicolon (;) after the
mnemonic and operand and write your comment in columns following the semicolon.

® Comments are output to an assembler list file.

Precautions

The as30 assembler does not generate code for the mnemonics or directive commands
written in columns after the semicolon. Therefore, be careful with the position where you
enter the semicolon. If a semicolon is enclosed with double quotations (") or single quotation

(), AS30 does not assume it to be the first character of a comment.

® A space or tab can be inserted between a mnemonic's operand and a comment.

Description example
MOV.W #0,RO

RTS
main: MOV.W #0,A0
RTS : End of subroutine

Label definition line

Function
® Any desired name can be written in this line.
Rules for writing

Always be sure to enter the colon (:) immediately after a label name.

Do not write anything between the label name and the colon (3).

Label names can be written starting immediately from the top of a line.

A space or tab can be inserted at the beginning of a line.

When writing a comment in the label definition line, insert a semicolon (;) after the directive
command and operand and write your comment in columns following the semicolon.

® Comments are output to an assembler list file.

Precautions

The as30 assembler does not generate code for the mnemonics or directive commands
written in columns after the semicolon. Therefore, be careful with the position where you
enter the semicolon. If a semicolon is enclosed with double quotations (") or single quotation
('), AS30 does not assume it to be the first character of a comment.

® A space or tab can be inserted between a label and a comment.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
136

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Description example

start:

label: .BLKB 1
main: nop
loop: : Comment

Comment line

Function
® Any desired character string can be written in this line.
Rules for writing

® Always be sure to insert a semicolon (;) at the beginning of a comment.
® A space or tab can be inserted at the beginning of a comment.
® Any desired characters can be written in a comment.

Description example:

; Comment line
MOV.W #0,A0 ; Comment can be written in other lines too.

Blank line

Function
® Nothing apparently is written in this line.
Rules for writing

® Lines can be entered that do not contain any meaningful characters as may be necessary to
improve the legibility of your source program.

® No characters other than the space, tab, return, and line feed characters can be written in a
blank line.

Description example:

loop:
JMP loop
JSR subl

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
137

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Line concatenation

® [f aline is ended with "\\," the next line is concatenated to the position where the "\\" is written.

® A comment can be written in a line where "\\" is written. However, no comment is output in
the result of concatenation.

® If an error occurs in a line where "\\" is written, the error is output in the last line concatenated.

Precautions

The upper limit for the maximum number of characters in all lines that are concatenated is 512

characters. However, this limit does not include the spaces and tabs at the beginning of

concatenated lines.

If a "\" is written immediately after a 2-byte code character, it may be mistaken for "\\." So be

careful.
® Description examples for line concatenation and concatenation results are shown below.
Example 1:
BYTE 1\
2,\\
3 \\
4

Concatenation result
.BYTE 1,2,3 4

Example 2:
.BYTE 1\ ;comment
2, ;comment \\
3 :comment
Concatenation result
.BYTE 1,2, :comment
8 ;comment
Example 3:
.BYTE 1\
2\
3, \\
4

Concatenation result
.BYTE 1,2,3, 4

Operands

Operands can be written in a mnemonic or directive command to indicate the object to be operated
on by that instruction. There are following types of operands.

Precautions
Some instructions do not have an operand. If you want to know whether or not the instruction
has an operand, please refer to the rules for writing each command.

Numeric value

A numeric value includes an integral and a floating- point number.

Name

Alabel name and symbol name can be used.

Expression

An expression with its terms containing a numeric value and a name can be entered.

Character string

Characters or a character string can be handled as ASCII code.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
138

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Rules for Writing Operands

Position to write an operand

Always be sure to insert a space or tab between the operand and the instruction that has the
operand.
The following describes rules on each type of operand you need to follow when writing an
operand.

Numeric value
A numeric value includes an integral and a floating- point number.

Integer

An integer can be written in decimal, hexadecimal, binary, or octal notation. The table below
shows how to write each type of integer.
® Binary
Write a number using numerals 0 to 1 and add 'B' or 'b' at the end of the number.
Example)
10010001B
10010001b
® Octal
Write a number using numerals 0 to 7 and add 'O’ or ‘0’ at the end of the number.
Example)
607020
607020
® Decimal
Write a number using numerals 0 to 9.
Example)
9423
® Hexadecimal
Write a number using numerals 0 to 9 and alphabets Ato F and add 'H' or 'h' at the end of the
number. However, if the number begins with an alphabet, be sure to add a zero '0' at the
beginning of the number.
Example)

OA5FH
5FH
Oabfh
5fth

Floating-point number

The following range of values can be entered that are represented by a floating-point number:
FLOAT (32 bits long): 1.17549435 x 10-38 to 3.40282347 x 1038
DOUBLE (64 bits long): 2.2250738585072014 x 10-308 to 1.7976931348623157 x 10308
Precautions
Floating-point numbers can only be entered for the operands of directive commands
".DOUBLE" and ".FLOAT".
Example:

3.4E35 3.4*10%
3.4e-35 3.4*10°°
-5E20 -0.5*10%°
5e-20 5.0*10%

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
139

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Rules for Writing Program

Expression

An expression consisting of a combination of numeric value, name, and operator can be entered.

A space or tab can be inserted between the operator and numeric value.
Multiple operators can be used in combination.
When writing an expression as a symbol value, make sure that the value of the expression will

be a valid value when your program is assembled.

The range of values that derive from an expression as a result of operation is -2147483648 to

)
)
)
)
2147483648.
Precautions

Even if the operation results in exceeding the range of -2147483648 to 2147483648, the
assembler does not care whether it is an overflow or underflow.

Floating-point numbers cannot be written in an expression.

Character constants cannot be used in any terms of an expression.

Operators

The table below lists the operators that can be written in as30's source programs.

Precautions

When writing operators "SIZEOF" and "TOPOF", always be sure to insert a space or tab
between the operator and operand.
Relational operators can only be written in the operand of directive commands ".IF" and

".ELIF".)
Unary operators
Operator Function
+ Handles value that follows as a positive value.
- Handles value that follows as a negative value.
~ Logically NOT's value that follows.
SIZEOF Handles section size(bytes) specified in operand as value.
TOPOF Handles start address of section specified in operand as a value.

Binary operators

Operator Function

+ Adds values on left and right sides of operand together.

- Subtracts value on right side of operand from value on left side.

* Multiples values on left and right sides of operand together.

/ Divides value on left side of operand by value on right side.

% Handles remainder derived by dividing value on left side of operand by value on right side.
>> Bit shifts value on left side operand to right as many times as the value on right side.

<< Bit shifts value on left side operand to left as many times as the value on right side.

& Logically OR's values on left and right side of operand for each bit.

Logically AND's values on left and right sides of operand for each bit.

Exclusive OR's values on left and right sides of operand for each bit.

REJ10J2006—0200 Rev.2.00 2010.04.01

140

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Rules for Writing Program

Relational operators

Operator Function

> Evaluates that value on left side of operator is greater than value on right side. This
operator can only be written in operand of directive commands .IF and .ELIF.

< Evaluates that value on right side of operator is greater than value left side. This operator
can only be written in operand of directive commands .IF and .ELIF.

>= Evaluates that value no left side of operator is equal to or greater than value on right side.
This operator can only be written in operand of directive commands .IF and .ELIF.

<= Evaluates that value no right side of operator is equal to or greater than value on left side.
This operator can only be written in operand of directive commands .IF and .ELIF.

== Evaluates that value on left side and right side of operator are equal. This operator can
only be written in operand of directive commands .IF and .ELIF.

I= Evaluates that value on left side and right side of operator are not equal. This operator
can only be written in operand of directive commands .IF and .ELIF.

Operators to priorities operation

Operator Function

0 Operation enclosed with () is performed first befor any other operation. If oneexpression
contains multiple parentheses, leftmost pair is giben priority. Parenthesezed operations
can be nested.

Operation Priority in Expression

The as30 assembler follows the order of priority shown below as it performs arithmetic operation
on the expression written in an operand and handles the value resulting from this operation as an
operand value.

1 Operation is performed in order of operator priorities, highest priority first. Operator priorities
are listed in the table below. The smaller the value shown in this table, the greater the
priority.

2 Operators of the same priority are operated on sequentially beginning from the left side.

3 The priority of operation can be changed by enclosing a given operator with parentheses.

Priority Type Operator Operator

1 Operator to change priority (,)

2 Unary operator +,-,~,SIZEOF, TOPOF
3 Binary operator 1 *1,.%

4 Binary operator 2 +,-

5 Binary operator 3 >> <<

6 Binary operator 4 &

7 Binary operator 5 [~

8 Rlational operator > <, >=,<===|I=

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
141

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Expression and Its Value

The following shows a description example of an expression and the value that results from

operations performed by as30.

Expression Result of operation
2+6/2 5
(2+6)/2 4
1<<3+1 16
(1<<3)+1 9
3*2%4/2 1
(3*2)%(4/2) 0
8l4/2 10
(8|42 6
8&8/2 0
(8&8)/2 4
6*-3 -18
-(6*-3) 18
-6*-3 18

Character String

A character string can be entered in the operand of some directive commands.

string can be comprised of 7-bit ASCII code characters.

When writing a character string in the operand of a directive command, be sure to enclose it with

single or double quotations unless otherwise specified.

Example:
"string"
'string’

REJ10J2006—0200 Rev.2.00 2010.04.01
142

RENESAS

Rules for Writing Program

This character

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

Directive Commands

AS30 allows you to write directive commands in addition to the M16C-family mnemonics in the
source programs that can be assembled by AS30. There are following types of directive commands
available.

Address control directive commands

These commands allow you to specify address determination when assembling the source
program.

Assemble control directive commands

These commands allow you to specify how operation is executed by as30.
Link control directive commands

These commands allow you to define information necessary to control address relocation.
List control directive commands

These commands allow you to control the format of list files generated by as30.
Branch optimization control directive commands

These commands allow you to specify that as30 selects the most suitable branch instruction.
Conditional assemble control directive commands

These commands allow you to select blocks for which code is generated according to conditions
set when assembling the source program.

Extended function directive commands
These commands allow you to control the operations that are not listed above.
Directive commands output by M16C-family tool software

These directive commands and operands all are output by the M16C-family tool software.
Precautions

The directive commands output by the M16C-family tool software cannot be written in a source
program by the user.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
143

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

List of Directive Commands
The table below lists the directive commands available with AS30.

The following pages explains rules for writing directive commands for each type of directive
command.

Address control

.ORG

Declares address.
.BLKB

Allocates RAM area in units of 1 bytes.
.BLKW

Allocates RAM area in units of 2 bytes.
.BLKA

Allocates RAM area in units of 3 bytes.
.BLKL

Allocates RAM area in units of 4 bytes.
.BLKF

Allocates RAM area in units of 4 bytes.
.BLKD

Allocates RAM area in units of 8 bytes.
.BYTE

Stores data in ROM in 1-byte length.
.WORD

Stores data in ROM in 2-byte length.
.ADDR

Stores data in ROM in 3-byte length.
.LWORD

Stores data in ROM in 4-byte length.
.FLOAT

Stores data in ROM in 4-byte length.
.DOUBLE

Stores data in ROM in 8-byte length.
ALIGN

Corrects odd addresses to even addresses.

Assemble control

EQU
Defines symbol.
.BTEQU
Defines bit symbol.

REJ10J2006-0200 Rev.2.00 2010.0401 RENESAS
144

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Directive Commands

.END

Declares end of assemble source.
.SB

Assigns temporary SB register value.
.SBSYM

Selects SB relative displacement addressing mode.
.SBBIT

Selects SB relative displacement addressing mode for bit symbol.
.FB

Assigns temporary FB register value.
.FBSYM

Selects FB relative displacement addressing mode.
INCLUDE

Reads file into specified position.

Link control

.SECTION

Defines section name.
.GLB

Specifies global label.
.BTGLB

Specifies global bit symbol.
.VER

Transfers specified information to map file.

List control

.LIST

Controls outputting of line data to list file.
.PAGE

Breaks page at specified position of list file.
.FORM

Specifies number of columns and lines in 1 page of list file.

Branch instruction optimization control

.OPTJ

Controls optimization of branch instruction and subroutine call instruction.

Conditional Assemble Control

AF

Indicates the beginning of a conditional assemble block. Conditions are resolved.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
145

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.ELIF

Resolves the second and the following conditions.
.ELSE

Indicates the beginning of a block to be assembled.
.ENDIF

ndicates the end of a conditional assemble block.

Extended Function Directive Commands

ASSERT

Outputs a character string written in the operand to a standard error output device or file.

Specifies defining and referencing a temporary label.
..FILE

Indicates the assembly source file name being processed by as30.
@

Concatenates character strings entered before and after @ into a single character string.
.ID

Transfers specified information to map file and ID file.
ANITSCT

Provisionally defines a section name.
.OFSREG

Transfers specified information to map file.
.PROTECT

Transfers specified information to map file.
.RVECTOR

Sets the software interrupt number and software interrupt name.
.SB_AUTO(_xxx)

Automatic Generation of SB Relative Addressing
.SVECTOR

Sets the special page number and special page name.

Control instructions for outputting inspector information
The following are the directive instructions for controlling the output of inspector information.

INSF

Defines the start of a function (subroutine) in inspector information.
.EINSF

Defines the end of a function (subroutine) in inspector information.
.CALL

Defines where to call a function (subroutine) in inspector information.
STK

Defines a stack in inspector information.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
146

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Directive Commands

Macro directive commands

.MACRO

Defines macro name.Indicates beginning of macro body.
EXITM

Stops expansion of macro body.
.LOCAL

Declares local label in macro.
.ENDM

Indicates end of macro body.
.MREPEAT

Indicates beginning of repeat macro body.
.ENDR

Indicates end of repeat macro body.

Macro symbols

..MACPAR
Indicates number of actual parameter of macro call.
..MACREP

Indicates how many times repeat macro body is expanded.

Character string functions

.LEN
Indicates length of specified character string.
INSTR

Indicates start position of specified character string in specified character string.

.SUBSTR

Extracts specified number of characters from specified character string beginning with

specified position.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
147

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.. FILE

Indicates the assembly source file name being processed by as30.

Function

® This command expands a file name into the one that is being processed by as30 (i.e.,
assembly source file or include file).

Precautions

The file name that can be read in by this directive command is a file name with its extension

and path excluded.

If command option "-F" is specified, "..FILE" is fixed to an assembly source file name that is

specified in the command line. If this option is not specified, the command denotes the file

name where "..FILE" is written.

Description format
..FILE
Rules for writing command

® This command can be written in the operands of directive commands ".ASSERT" and
".INCLUDE".

Description example

<sample.a30>

.INCLUDE incfile.inc
INCLUDE .FILE@.nc ... (1)
ASSERT "comment" > ..FILE ... 2

<incfile.inc>

INCLUDE .FILE .. ?3)
ASSERT “"comment" > ..FILE@.mes ... 4)

In the case of above example, they are expanded as follows.
(1) .INCLUDE sample.inc
(2) .ASSERT "comment" > sample
(3) .INCLUDE incfile
(4) .ASSERT "comment" > incfile.mes

In the case of above example, if command option (-F) is specified, the character strings of
“.FILE” of (3) and (4) are changed to "sample" not "incfile".

(1) .INCLUDE sample.inc

(2) .ASSERT "comment" > sample

(3) .INCLUDE sample

(4) .ASSERT "comment" > sample.mes

commnad example)
>as30 -F sample.a30

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
148

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. .MACPARA

Indicates number of actual parameter of macro call

Function

® This command indicates the number of macro call actual parameters.

® This command can be written in the body of a macro definition defined by ".MACRO".
Precautions

If this command is written outside the macro body defined by ".MACRQ", its value is made 0.

Description format
..MACPARA
Rules for writing command
® This directive command can be written as a term of an expression.
Description example
® The assembler checks the number of macro actual parameters as it executes conditional

assemble.

.GLB mem

name .MACRO f1,f2
AF ..MACPARA ==
ADD f1,f2
.ELSE
ADD RO,f1
.ENDIF
.ENDM
name mem
.ELSE
ADD RO,mem
.ENDIF
.ENDM

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
149

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Directive Commands

. .MACREP

Indicates how many times repoeat macro body is expanded

Function

® This command indicates how many times the repeat macro is expanded.

® This command can be written in the body of a macro definition defined by ".MREPEAT".

Precautions

If this command is written outside the macro body, its value is made 0.
® This command can be written in the conditional assemble operand.

Description format

..MACREP

Rules for writing command

® This directive command can be written as a term of an expression.

Description example

mclr

.MREPEAT 3
MOV.W RO,..MACREP
.ENDR

MOV.W i:\’O,l

MOV.W RO0,2

MOV.W RO0,3

.GLB mem
.MACRO value,name
.MREPEAT value

MOV.W #0,name+..MACREP
.ENDR

.ENDM
mclr 3,mem
.MREPEAT 3

MOV.W #0,mem+1
MOV.W #0,mem+2
MOV.W #0,mem+3
.ENDR

.ENDM

REJ10J2006—0200 Rev.2.00 2010.04.01

150

RRENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.ADDR

Stores data in ROM in 3-byte length

Function

® This command stores 3-byte long fixed data in ROM.
® Label can be defined at the address where data is stored.

Description format

.ADDR (numeric value)
(name:) .ADDR (numeric value)

Rules for writing command

Write an integral value in the operand.

Always be sure to insert space or tab between the directive command and the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

When writing multiple operands, separate them with a comma (,).

A character or a string of characters can be written in the operand after enclosing it with single
quotations (') or double quotations (*). In this case, data is stored in ASCII code representing
the characters.

Precautions

The length of a character string you can write in the operand is less than three characters.

® \When defining a label, be sure to write the label name before the directive command.

® Always be sure to insert a colon (:) after the label name.

Description example

.SECTION value,ROMDATA
.ADDR 1

.ADDR "dat","a"

.ADDR symbol

.ADDR symbol+1

.ADDR 1,2,34,5

.END

.ADDR 1 01
00
00
.ADDR "dat" 74
61
64
.ADDR "a" 61
00
00

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
151

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.ALIGN

Corrects odd addresses to even addresses

Function

® This command corrects the address to an even address at which code in the line immediately
following description of the command is stored.

® If the section type is CODE or ROMDATA, the NOP code (04H) is written into an address that
has been emptied as a result of address correction.

® |[f the section type is DATA, the address value is incremented by 1.

® Address correction is not performed if the address in which this command is written is an even
address.

Description format
ALIGN
Rule for writing command

® This directive command can be written in a section that falls under the conditions below:
A relative-attribute section in which address correction is directed when defining the section
.SECTION program,CODE,ALIGN

An absolute-attribute section

.SECTION program,CODE
.ORG 0eO00H

Description example

.SECTION program,CODE,ALIGN
MOV.W #0,R0

ALIGN

.END

.SECTION program,CODE
.ORG 0fO00H

MOV.W #0,R0O

ALIGN

.END

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
152

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.ASSERT

Output a character string written in the operand

Function

This command outputs a character string written in the operand to a standard error output
device when assembling the source program.
If a file name is specified, the character string written in the operand is output to the file.
With an absolute path given to the file name, AS30 generates the file in the given directory.
With no absolute path given to the file name,
1. In an instance in which no directory is designated for the file nhame designated in the
command line at the time of starting up AS30:
AS30 generates the file specified by this command in the current directory.
2. In an instance in which a directory is designated for a file name designated in the
command line at the time of starting up AS30:
AS30 generates the file with the directory of the file designated in the command line.
If “..FILE” command is specified as a file name, AS30 generates the file in same directory as
the directory of the file designated in the command line at the time of starting up AS30.

Description format

ASSERT "(character string)"
ASSERT "(character string)" > (file name)
ASSERT "(character string)" >> (file name)

Rules for writing command

Always be sure to insert space or tab between the directive command and the operand.
Always be sure to enclose the character string in the operand with double quotations.

If you want the character string to be output to a file, specify the file name after ">" or ">>".

The symbol > directs the assembler to create a new file and output a message to that file. |If
there is an existing file of the same name, that file is overwritten.

The symbol >> directs the message is added to the contents of the specified file. If the
specified file cannot be found, the assembler creates a new file in that name.

Space or tab can be inserted before and after ">" or ">>",

Directive command "..FILE" can be written in the file name.

Description example

ASSERT "string" > sample.dat

Message is output to file sample.dat.

ASSERT "string" >> sample.dat

Message is added to file sample.dat.

ASSERT "string" > ..FILE

Message is output to a file bearing the same name as the currently processed file except the
extension.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS

153

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.BLKA

Allocates RAM area in units of 3 bytes

Function

® This command allocates a specified bytes of RAM area in units of 3 bytes.
® |abel name can be defined at the allocated RAM address.

Description format

.BLKA (numeric value)
(name:) .BLKA (numeric value)

Rules for writing command

® This directive command must always be written in a DATA-type section.

Section types can be made the DATA type simply by writing ",DATA" following the section
name when you define a section.

Always be sure to insert space or tab between the directive command and the operand.

Write an integral value in the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

The expression in the operand must have its values determined when assembling the source
program.

When defining a label name in the allocated area, be sure to write the label name before the
directive command. Always be sure to insert a colon (:) after the label name.

Description example

symbol .EQU 1
.SECTIONarea,DATA

work1: .BLKA 1

work?2: .BLKA symbol

.BLKA symbol+1

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
154

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.BLKB

Allocates RAM area in units of 1 bytes

Function

® This command allocates a specified bytes of RAM area in units of 1 byte.
® |abel name can be defined at the allocated RAM address.

Description format

.BLKB (numeric value)
(name:) .BLKB (numeric value)

Rules for writing command

® This directive command must always be written in a DATA-type section.

Section types can be made the DATA type simply by writing ",DATA" following the section
name when you define a section.

Always be sure to insert space or tab between the directive command and the operand.

Write an integral value in the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

The expression in the operand must have its values determined when assembling the source
program.

When defining a label name in the allocated area, be sure to write the label name before the
directive command. Always be sure to insert a colon (:) after the label name.

Description example

symbol .EQU 1
.SECTION area,DATA

work1: .BLKB 1

work?2: .BLKB symbol

.BLKB symbol+1

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
155

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.BLKD

Allocates RAM area in units of 8 bytes
Function

® This command allocates a specified bytes of RAM area in units of 8 bytes.
® | abel name can be defined at the allocated RAM address.

Description format

.BLKD (numeric value)
(name:) .BLKD (numeric value)

Rules for writing command

® This directive command must always be written in a DATA-type section.

Section types can be made the DATA type simply by writing ",DATA" following the section
name when you define a section.

Always be sure to insert space or tab between the directive command and the operand.

Write an integral value in the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

The expression in the operand must have its values determined when assembling the source
program.

When defining a label name in the allocated area, be sure to write the label name before the
directive command. Always be sure to insert a colon (:) after the label name.

Description example

symbol .EQU 1
.SECTION area,DATA

work1: .BLKD 1

work?2: .BLKD symbol

.BLKD symbol+1

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
156

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.BLKF

Allocates RAM area in units of 4 bytes

Function

® This command allocates a specified bytes of RAM area in units of 4 bytes.
® |abel name can be defined at the allocated RAM address.

Description format

.BLKF (numeric value)
(name:) .BLKF (numeric value)

Rules for writing command

® This directive command must always be written in a DATA-type section.

Section types can be made the DATA type simply by writing ",DATA" following the section
name when you define a section.

Always be sure to insert space or tab between the directive command and the operand.

Write an integral value in the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

The expression in the operand must have its values determined when assembling the source
program.

When defining a label name in the allocated area, be sure to write the label name before the
directive command. Always be sure to insert a colon (:) after the label name.

Description example

symbol .EQU 1
.SECTION area,DATA

work1: .BLKF 1

work?2: .BLKF symbol

.BLKF symbol+1

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
157

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. BLKL

Allocates RAM area in units of 4 bytes
Function

® This command allocates a specified bytes of RAM area in units of 4 bytes.
® | abel name can be defined at the allocated RAM address.

Description format

.BLKL (numeric value)
(name:) .BLKL (numeric value)

Rules for writing command

® This directive command must always be written in a DATA-type section.

Section types can be made the DATA type simply by writing ",DATA" following the section
name when you define a section.

Always be sure to insert space or tab between the directive command and the operand.

Write an integral value in the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

The expression in the operand must have its values determined when assembling the source
program.

When defining a label name in the allocated area, be sure to write the label name before the
directive command. Always be sure to insert a colon (:) after the label name.

Description example

symbol .EQU 1
.SECTION area,DATA

work21: .BLKL 1

work?2: .BLKL symbol

.BLKL symbol+1

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
158

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.BLKW

Allocates RAM area in units of 2 bytes

Function

® This command allocates a specified bytes of RAM area in units of 2 bytes.
® |abel name can be defined at the allocated RAM address.

Description format

.BLKW (numeric value)
(name:) .BLKW (numeric value)

Rules for writing command

® This directive command must always be written in a DATA-type section.

Section types can be made the DATA type simply by writing ",DATA" following the section
name when you define a section.

Always be sure to insert space or tab between the directive command and the operand.

Write an integral value in the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

The expression in the operand must have its values determined when assembling the source
program.

When defining a label name in the allocated area, be sure to write the label name before the
directive command. Always be sure to insert a colon (:) after the label name.

Description example

symbol .EQU 1
.SECTION area,DATA

work1: BLKW 1

work?2: .BLKW symbol

.BLKW symbol+1

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
159

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.BTEQU

Defines bit symbol

Function

This command defines a bit position and memory address. The symbol defined by this
directive command is called a bit symbol.

By defining a bit symbol with this directive command you can write a bit symbol in the operand
of a 1-bit operating instruction.

The defined bit position is a bit whose position is offset from the LSB of a specified address
value of memory by a value that indicates the bit position.

Bit symbols can be used in symbolic debug.

Bit symbols can be specified as global.

Description format
(name) .BTEQU (bit position), (address value)
Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.

® Separate between the bit position and the bit's memory address with a comma as you enter
them.

® Always be sure to write the bit position first and then the address value.

® An integer in the range of 0 to 65535 can be written to indicate the bit position.

® Always make sure that the value you specify for the bit position is determined when
assembling the source program.

® A symbol can be written to specify the address value of an operand.

® Alabel or symbol that is indeterminate when assembled can be written to specify the address
value of an operand.

Precautions

No bit symbols can be externally referenced (written in the operand of directive command
""BTGLB’) that are defined by a symbol that is indeterminate when assembled.

A bit symbol can be written in the operand.

Precautions
However, a bit symbol name in the operand cannot be forward referenced. Also, for the
operand bit symbol, be sure to write a bit symbol name whose value is fixed when assembled.

An expression can be written in the operand.

Description example

bit0 .BTEQU 0,0

bit1 .BTEQU 1,flag

bit2 .BTEQU 2,flag+1

bit3 .BTEQU one,flag

bit4 .BTEQU one+one,flag

REJ10J2006—0200 Rev.2.00 2010.04.01

160

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.BTGLB

Specifies global bit symbol

Function

® This command declares that the bit symbols specified with it are global symbols.

® |f any bit symbols specified with this directive command are not defined within the file, the
assembler processes them assuming that they are defined in an external file.

® |f the bit symbols specified with this directive command are defined in the file, the assembler
processes them to be referencible from an external file.

Description format

.BTGLB (bit symbol name)
.BTGLB (bit symbol name) [,(bit symbol name)...]

Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.

® \Write a bit symbol name in the operand that you want to be a global symbol.

Precautions

No bit symbols can be specified for external reference that are defined by a symbol that is

indeterminate when assembled.

® When specifying multiple bit symbol names in the operand, separate each symbol name with a
comma (,) as you write them.

Description example

.BTGLB flagl,flag2,flag3
.BTGLB flag4

.SECTION program

BCLR flagl

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
161

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.BYTE

Stores data in ROM in 1-byte length

Function

® This command stores 1-byte long fixed data in ROM.
® Label can be defined at the address where data is stored.

Description format

.BYTE (numeric value)
(name:) .BYTE (numeric value)

Rules for writing command

Write an integral value in the operand.

Always be sure to insert space or tab between the directive command and the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

When writing multiple operands, separate them with a comma (,).

A character or a string of characters can be written in the operand after enclosing it with single
quotations (') or double quotations (*). In this case, data is stored in ASCII code representing
the characters.

® \When defining a label, be sure to write the label name before the directive command.

® Always be sure to insert a colon (:) after the label name.

Description example

.SECTION value,ROMDATA
.BYTE 1

.BYTE "data”

.BYTE symbol

.BYTE symbol+1

.BYTE 1,2,3,4,5

.END

BYTE 1 01
.BYTE “data" 64
61
74
61

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
162

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.CALL

Defines where to call a Function in inspector information

Function

® Defines where to call a Function (subroutine) in inspector information.
Format

CALL (called Function (subroutine) name), (storage class)
Description rules

® Be sure to put a space or a tab between this directive instruction and the operand.

® Be sure to give a called Function (subroutine) name and a storage class.

® Separate a storage class by use of a comma.

® As for the storage class, give either G (global label) or S (local label).

Notes

Give this directive instruction within a range from the start of a Function in inspector

information to its end.
This directive instruction turns effective when the command option -finfo has been chosen.

Description example
.INSF glbfunc, G, 0

jsr glbsub
.CALL glbsub, G

jsr locsub
.CALL locsub, S

.EINSF

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
163

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.DEFINE

Defines string symbol

Function

® This command defines a character string to a symbol.

® Asymbol can be redefined.

Precautions

The symbols defined by this directive command cannot be specified for external reference.

Description format

(symbol name) .DEFINE (character string)
(symbol name) .DEFINE ‘(character string)'
(symbol name) .DEFINE "(character string)"

Description rules

® When defining a character string that includes a space or tab, be sure to enclose the string
with single (') or double (") quotations as you write it.

Description example
.SECTION ram,DATA

datal: .BLKB 1

flag .DEFINE "#01H, datal"
.SECTION program
CLB flag

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
164

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.DOUBLE

Stores data in ROM in 8-byte length

Function

® This command stores 8-byte long fixed data in ROM.
® Label can be defined at the address where data is stored.

Description format

.DOUBLE (numeric value)
(name:) .DOUBLE (numeric value)

Rules for writing command

® \Write a floating-point number in the operand.

® Refer to "Rules for writing operand" for details on how to write a floating-point number in the
operand.

® Always be sure to insert space or tab between the directive command and the operand.

® \When defining a label, be sure to write the label name before the directive command.

® Always be sure to insert a colon (:) after the label name.

Description example

.DOUBLE 5E2
constant: .DOUBLE 5e2

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
165

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.EINSF

Defines the end of a Function in inspector information

Function

® Defines the end of a Function (subroutine) in inspector information.
® Defines the extent from .INSF to the end of a Function (subroutine) as a single function
(subroutine).

Format
.EINSF
Description rules

® |n using this directive instruction, be sure to use the directive instruction .INSF.

® This directive instruction is for exclusive use with the assembly language. Using this directive
instruction in the asm Function in NC30 results in an error.

® This directive instruction turns effective when the command option -finfo has been chosen.

Description example
.INSF glbfunc, G, 0

.EINSF

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
166

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.ELIF

Rexolves the second and the following conditions

Function

® Use this command to write a condition in combination with ".IF" if you want to specify multiple
conditions for conditional assemble to be performed.

® The assembler resolves the condition written in the operand and, if it is true, assembles the
body that follows.

® |f condition is true, lines are assembled up to and not including the line where directive
command ".ELIF", ".ELSE" or ".ENDIF" is written.

Description format

AF {conditional expression}
body

ELIF {conditional expression}
body

.ENDIF

Rules for writing command

® Always be sure to write a conditional expression in the operand of this directive command.

® Always be sure to insert space or tab between the directive command and the operand.

® This directive command can be written for multiple instances in one conditional assemble
block.

Description example

AF TYPE==0
.byte "Proto Type Mode"
.ELIF TYPE>0

.byte "Mass Production Mode"
.ELSE

.byte "Debug Mode™"

.ENDIF

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
167

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Directive Commands

.ELSE

Indicates the biginnig of ablock to be assembled

Function

® When all conditions are false, this command indicates the beginning of the lines to be

assembled.

® In this case, lines are assembled up to and not including the line where directive command

".ENDIF" is written.
Description format

AF {conditional expression}
body

.ELSE {conditional expression}
body

.ENDIF

AF {conditional expression}
body

ELIF {conditional expression}
body

.ELSE

body

.ENDIF

Rules for writing command

® This directive command can be written less than once in a conditional assemble block.

® This directive command does not have an operand.

Description example

AF TYPE==0
.byte "Proto Type Mode"
.ELIF TYPE>0

.byte "Mass Production Mode™"
.ELSE

.byte "Debug Mode"

.ENDIF

REJ10J2006—0200 Rev.2.00 2010.04.01
168

RRENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. END

Declares end of assemble source

Function

® This command declares the end of the source program.
® The assembler only outputs the contents written in the subsequent lines after this directive
command to a list file and does not perform code generation and other processing.

Description format
.END
Rules for writing command

® There must always be at least one of this directive command in one assembly source file.
Precautions

The as30 assembler does not detect errors in the subsequent lines after this directive
command either.

Description example
.END

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
169

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.ENDIF

Indicates the end of a conditional assemble block

Function
® This command indicates the end of the conditional assemble block.
Description format

AF {conditional expression}
body
.ENDIF

Rules for writing command

® Always make sure that there is at least one instance of this directive command in a conditional
assemble block.
® This directive command does not have an operand.

Description example

AF TYPE==0
.byte "Proto Type Mode"
.ELIF TYPE>0

.byte "Mass Production Mode"
.ELSE

.byte "Debug Mode"

.ENDIF

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
170

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. ENDM

Indicates end of macro body

Function
® This command indicates that the body of one macro definition is terminated here.
Rules for writing command

® Always make sure that this command corresponds to directive command ".MACRO" as you
write it.

Description format

(macro name) .MACRO
body
.ENDM

Description example

lda .MACRO value
MOV.W #value,AO
.ENDM
ida 0

MOV.W #0,A0

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
171

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Directive Commands

. ENDR

Indicates end of repeat macro body

Function

® This command indicates the end of a repeat macro.
Description format

[(label):]
body
.ENDR

Rules for writing command

.MREPEAT

(numeric value)

® Always make sure that this command corresponds to directive command ".MREPEAT" as you

write it.
Description example

rep

AF
EXITM
.ENDIF
nop
.ENDR
.ENDM

'rep
Hop
nop
nop

.MACRO num
.MREPEAT

num
num > 49

REJ10J2006—0200 Rev.2.00 2010.04.01

172

RRENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.EQU

Defines symbol

Function

® This command defines a value in the range of signed 32-bit integers (-2147483648 to
2147483647) to a symbol.

® Symbolic debug Function is made available for use by defining symbols with this directive
command.

Description format
(name) .EQU (numeric value)
Rules for writing command

® The value that can be defined to a symbol must be determined when assembling the source
program.

® Always be sure to insert space or tab between the directive command and the operand.

® A symbol can be written in a symbol-defined operand.

Precautions

However, symbol names cannot be entered that are forward referenced.

® An expression can be written in a symbol-defined operand.

® Symbols can be specified as global.

Description example

symbol .EQU 1
symboll .EQU symbol+symbol
symbol2 .EQU 2

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
173

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.EXITM

Stop expansion of macro body
Function

® This command stops expanding the macro body and transfers control to the nearest “.ENDM".
Description format

(macro name) .MACRO
body

EXITM

body

.ENDM

Rules for writing command
® Make sure that the command is written within the body of a macro definition.
Description example

datal .MACRO value
AF value ==
EXITM
.ELSE
.BLKB value
.ENDIF
.ENDM

datal 0

AF 0==
EXITM
.ENDIF
.ENDM

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
174

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.FB

Assigns temporary FB register value

Function

® This command assigns a provisional FB register value.

® When assembling the source program, the assembler assumes that the FB register value is
one that is defined by this directive command as it generates code for the subsequent source
lines.

® FB relative addressing mode can be specified in the subsequent lines.

® The assembler generates code in FB relative addressing mode for the mnemonics that use
labels defined by directive command ".FBSYM".

Description format
.FB (numeric value)
Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.

® Always make sure that this command is written in the assembly source file.

® Always be sure to write this command before you use the FB relative addressing mode.

® Aninteger in the range of 0 to OFFFFFH can be written in the operand.

Precautions

This directive command only directs the assembler to take on a provisional FB register value
and cannot be used to set a value to the actual FB register. To set an FB register value
actually, write the following instruction immediately before or after this directive command.
Example: LDC #80H,FB

® A symbol can be written in the operand.

Description example

.FB 80H
LDC #80H,FB

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
175

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.FBSYM

Selects FB relative displacement addressing mode

Function

® The assembler selects the FB relative addressing mode for the name specified in the operand
of this directive command.

® The assembler selects the FB relative addressing mode for the operand in absolute 16-bit
addressing mode that includes the name specified in the operand of this directive command.

Description format

.FBSYM (name)
.FBSYM (name)[,(name)...]

Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.

® Always be sure to set the FB register value with directive command ".FB" before you write this
directive command.

® \When specifying multiple names, be sure to separate the names with a comma as you write
them.

® Be careful that the symbol you specify with this directive command is not a duplicate of the
symbol specified by ".SBSYM".

Description example

.FB 80H
LDC #80,FB
.FBSYM syml,sym2

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
176

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.FLOAT

Stores data in ROM in 4-byte length

Function

® This command stores 4-byte long fixed data in ROM.
® Label can be defined at the address where data is stored.

Description format

.FLOAT (numeric value)
(name:) .FLOAT (numeric value)

Rules for writing command

® \Write a floating-point number in the operand.

® Refer to "Rules for writing operand" for details on how to write a floating-point number in the
operand.

® Always be sure to insert space or tab between the directive command and the operand.

® \When defining a label, be sure to write the label name before the directive command.

® Always be sure to insert a colon (:) after the label name.

Description example

.FLOAT 5E2
constant: .FLOAT b5e2

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
177

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. FORM

Specifies number of columns and lines in 1 page of list file

Function
® This command specifies the number of lines per page of the assembiler list file in the range of
20 to 255.
® This command specifies the number of columns per page of the assembler list file in the range
of 80 to 295.

® The contents specified by this directive command become effective beginning with the page
next to one where the command is written. However, if this directive command is written in
the first line of the assembly source file, the specified contents become effective beginning
with the first page.

® If this directive command is not specified, the assembler list file is output with the number of
lines = 66 and the number of columns = 140.

Description format

.FORM (number of lines),(number of columns)
.FORM (number of lines)
.FORM ,(number of columns)

Rules for writing command

® This command can be written for multiple instances in one assembly source file.

® A symbol can be used to describe the number of lines and the number of columns.

Precautions

Symbols cannot be used that are forward referenced.

® An expression can be used to describe the number of lines and the number of columns.

® If you specify only the number of columns in the operand, be sure to enter a comma (,)
immediately before the numeric value you write for the number of columns.

Description example

.FORM 20,80
.FORM 60
.FORM ,100

.FORM line,culmn

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
178

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.GLB

Specifies global label

Function

® This command declares that the labels and symbols specified with it are global.

® |f any labels or symbols specified with this directive command are not defined within the file,
the assembler processes them assuming that they are defined in an external file.

® |f the labels or symbols specified with this directive command are defined in the file, the
assembler processes them to be referencible from an external file.

Description format

.GLB (name)
.GLB (name) [,(name)...]

Rules for writing command

Always be sure to insert space or tab between the directive command and the operand.

Write a label name in the operand that you want to be a global label.

Write a symbol name in the operand that you want to be a global symbol.

When specifying multiple symbol names in the operand, separate each symbol name with a
comma (,) as you write them.

Description example

.GLB namel,name2,name3
.GLB name4

.SECTION program

MOV.W #0,namel

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
179

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.ID

Set ID code for ID check Function

Function

® The specified ID code is stored as 8-bit data in ID store addresses. And FF is stored in ROM
code protect control address or option function select register.

® The specified value is output the map file and ID file.

® The value set to ID code is output also to the absolute module file (.x30).

Precaution

For details on the ID code check, see the hardware manual of the microcomputer.

Description format

D "(ID code character string)"
D “#(ID code numeric value)”

Rules for writing command

Always be sure to insert space or tab between the directive command and the operand.
The specified ID code is stored as an ASCII code.

Specify ID code character string within 7 letter.

Specify after the ID code value adds '# to the head.

ID code value is stored as the numerical value.

Specify ID code value by the integer value within 14 digits.

This directive command can be described in the assembly sauce file only in 1 degree.
Precautions

When this directive command is described in more than one assembly sauce file, it becomes
warning with the linkage editor.

Description example(ID code character string)

; fixed vector section

.org OFFFCh
RESET:
Iword start

.id “Code” ; Sets ID code "Code"

Description example(ID code numeric value)

. ; fixed vector section

.org OFFFCh
RESET:
Iword start
.id “#20030401” ; Sets ID code "20030401"

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
180

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.IF

Conditional assemble control

Function

® This command indicates the beginning of a conditional assemble block.

® The assembler resolves the condition written in the operand and, if it is true, assembles the
body that follows.

® |f condition is true, lines are assembled up to and not including the line where directive
command ".ELIF", ".ELSE" or ".ENDIF" is written.

® Any instructions that can be written in a as30 source program can be written in the conditional
assemble block.

Description format

AF {conditional expression}
body
.ENDIF

Rules for writing command

® Always be sure to write a conditional expression in the operand of this directive command.
® Always be sure to insert space or tab between the directive command and the operand.

Function of conditional expression
® Conditional assemble is performed based on the result of the conditional expression.
Rules for writing conditional expression

® Only one conditional expression can be written in the operand of the directive command.
® Always be sure to write a relational operator in the conditional expression.
® The operators listed below can be used.

Relational operators Contents

> True if value on left side of operator is greater than value on right side.
< True if value on right side of operator is greater than value on left side.
>= True if value on left side of operator is equal to or greater than value on right side.
<= True if value on right side of operator is equal to or greater than value on left side.

== True if values on left and right sides of operator are equal.

I= True if values on left and right sides of operator are not equal

® Arithmetic operation of a conditional expression is performed in signed 32 bits.

Precautions

The assembler does not care whether the operation has resulted in overflow or underflow.

® A symbol can be written in the left and right sides of the relational operator.

Precautions

Symbols cannot be forward referenced (only the symbols that are defined after this directive

command are referenced). Forward referenced symbols or undefined symbols written here

are assumed to be 0 in value as the assembler resolves the conditional expression.

® An expression can be written on the left and right sides of the relational operator. To write an
expression, follow the "rules for writing expression” in Section 1, "Rules for Writing Program".

® A character string can be written on the left and right sides of the relational operator. Always
be sure to enclose the character string with single quotations (') or double quotations (*) as you
write it. Which character string is larger or smaller than the other is resolved by the value of
character code.
"ABC" < "CBA" -> 414243 < 434241, therefore, condition is true.
"C" < "A" -> 43 < 41; therefore, condition is false.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
181

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Directive Commands

".ELIF".

® Space or tab can be written before or after the relational operator.
® A conditional expression can be written in the operands of directive commands ".IF" and

Description example of conditional expression

sym<1

sym <1

sym+2 < datal
sym+2 < datal+2
'smpl'==name

Description example

AF TYPE==0

.byte "Proto Type Mode"
.ELIF TYPE>0

.byte "Mass Production Mode"
.ELSE

.byte "Debug Mode™"

.ENDIF

REJ10J2006—0200 Rev.2.00 2010.04.01

182

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. INCLUDE

Reads file into specified position

Function

This command reads the content of a specified file into a line of the source program.
With either an absolute path given to the name of a file to include, AS30 searches the given
directory for the file. If the file is not found, an error occurs.
With either an absolute path or a relative path given to the name of a file to include, AS30
searches the given directory for the file. If the file is not found, an error occurs.
With no path included in the name of a file to include, AS30 searches for the file in the
sequence given below:
1 In an instance in which no directory is designated for the file name designated in the
command line at the time of starting up AS30:
AS30 searches for a file name designated by the inclusion-directing instruction.
In an instance in which a directory is designated for a file name designated in the
command line at the time of starting up AS30:
AS30 searches for a file name resulting from adding a directory name specified in the
command line to a file name specified by the inclusion-directing instruction.
2 AS30 searches the directory designated by the command option -I.
3 AS30 searches the directory set in the environment variable INC30.

Description format
INCLUDE (file name)
Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.
® Always be sure to write a file extension in the operand file name.

® A character string that includes directive command "..FILE" or "@" can be written.

® Nesting level of include files is within 9.

Precautions

Do not specify INCLUDE the file itself within the include file.
Description example

INCLUDE initial.a30
.INCLUDE. .FILE@.inc

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS

183

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.INITSCT

Provisionally defines a section name.

Function

® Provisionally defines a section name.

® This is a C language startup-only directive command.

Precautions

This directive command is generated by the C language startup (initsct.c) initialization function,
and is usable in only a compiler.

Format

INITSCT (section name), (section type), align
INITSCT (section name), (section type), noalign

Description rules

Be sure to put a space or a tab between this directive instruction and the operand.

Separate a section name and a section type by use of a comma.

Separate a section type and align or noalign by use of a comma.

For the section type, write ‘CODE,’ ‘ROMDATA,’ or ‘DATA.

If align is specified, the address in which to store the code for the line that immediately follows
this directive command is corrected to be 2, 4 or 8-byte aligned.

Description example

.initsct bss_NE, data, align ;get alignment
.nitsct bss_NO, data, noalign ;not get alignment

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
184

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. INSF

Defines the start of a Function in inspector function

Function

® Defines the start of a function (subroutine) in inspector information.
® Defines the extent from the start of a Function (subroutine) to the directive instruction .EINSF
as a single function (subroutine).

Format
INSF (Function (subroutine) start label), (storage class), (frame size)
Description rules

Be sure to put a space or a tab between this directive instruction and the operand.

Be sure to give a Function (subroutine) start label, a storage class, and a frame size.
Separate a storage class and a frame size by use of a comma.

As for the storage class, give either G (global label) or S (local label).

Use an integer to give a frame size.

Notes

In using this directive instruction, be sure to use the directive instruction .EINSF.

This directive instruction is for exclusive use with the assembler language. Using this directive
instruction in the asm Function in NC30 results in an error.

This directive instruction turns effective when the command option -finfo has been chosen.

Description example

glbfunc:
INSF glbfunc, G, 0

.EINSF

locfunc:
INSF locfunc, S, 0

.EINSF

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
185

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. INSTR

Detects specified character string

Function

® This command indicates a position in the character string specified in the operand at which a
search character string begins.

® A position can be specified at which you want the assembler to start searching a character
string.

Precautions

The value is rendered 0 if a search character string is longer than the character string itself.

The value is rendered O if a search character string is not included in the character string.

The value is rendered O if the search start position is assigned a value greater than the length

of the character string.

Description format

INSTR {"(Ccs)","(sC)",(sP)}

INSTR {(CS)",'(SC)',(SP)}
CS=character string
SC=search character string
SP=search start position

Rules for writing command

® Always be sure to enclose the operand with { }.

® Always be sure to write the character string, search character string, and search start position.
® Separate the character string, search character string, and search start position with commas
as you write them.

No space or tab can be inserted before and after the comma.

A symbol can be written in the search start position.

If you specify 1 for the search start position, it means the beginning of the character string.

The 7-bit ASCII code characters including a space and tab can be used to write a character
string.

Precautions

Kanji and other 8-bit code are not processed correctly. However, the as30 assembler does

not output errors.

® Always be sure to enclose the character string with quotations as you write it.

Precautions

If you want a macro argument to be expanded as a character string, enclose the parameter
name with single quotations as you write it. Note that if you enclose a character string with
double quotations, the character string itself is expanded.

® This directive command can be written as a term of an expression.

Description example

top .EQU 1

point_set .MACRO source,dest,top

point .EQU INSTR{'source','dest',top}
.ENDM

point_set japanese,se,1

point :EQU 7
This example extracts the position (7) of the character string "se" from the beginning (top) of
the specified character string apanese).

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
186

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.LEN

Indicates length of specified character string

Function
® This command indicates the length of the character string that is written in the operand.
Description format

.LEN {"(character string)"}
.LEN {/(character string)'}

Rules for writing command

® Always be sure to enclose the operand with { }.

® Space or tab can be written between this directive command and the operand.

® The 7-bit ASCII code characters including a space and tab can used to write a character string.
Precautions

Kanji and other 8-bit code are not processed correctly. However, the as30 assembler does
not output errors.

® Always be sure to enclose the character string with quotations as you write it.

Precautions

If you want a macro parameter to be expanded as a character string, enclose the macro name
with single quotations as you write it. If enclosed with double quotations, the character string
length of the formal parameter written in macro definition is assumed.

® This directive command can be written as a term of an expression.

Description example

bufset .MACRO f1,f2
buffer@fl: .BLKB .LEN{'f2'}
.ENDM

bufset 1,Printout_data
bufset 2,Sample

bufferl .BLKB 13
buffer2 .BLKB 6

buf .MACRO f1
buffer: .BLKB LEN{"f1"}
.ENDM
buf i,data ; data is not expanded.

buffer :BLKB 2

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
187

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.LIST

Controls outputting of line data to list file

Function

® This command allows you to stop (OFF) outputting lines to the assembler list file.

® Lines in error are output to the list file regardless of whether they are within the list output
disabled range.

® This command allows you to start (ON) outputting lines to the assembler list file.

® Alllines are output to the list file if you do not specify this directive command.

Description format
LIST [ON|OFF]
Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.
® To stop outputting lines, write 'OFF" in the operand.
® To start outputting lines, write 'ON' in the operand.

Description example

.LIST ON
.LIST OFF
Example of source file Example of assembler list file output

MOV.B #0,ROL MOV.B #0,ROL
MOV.B #0,ROL MOV.B #0,ROL
.LIST OFF .LIST OFF
MOV.B #0,ROL MOV.B #0,R0O
MOV .B #0,ROL
MOV.B #0,R0 ~®—T—Linein erro—® Error message
MOV.B #0,ROL
MOV.B #0,ROL .LIST ON
.LIST ON MOV.B #0,ROL
MOV.B #0,ROL MOV.B #0,ROL
MOV.B #0,ROL MOV.B #0,ROL
MOV.B #0,ROL

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
188

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. LOCAL

Declares local label in macro

Function

® This command declares that the label written in the operand is a macro local label.

® Macro local labels are allowed to be written for multiple instances with the same name
providing that they differently macro defined or they are written outside macro definition.

Precautions

If macro definitions are nested, macro local labels in the macro that is defined within macro

definition are not allowed to be used in the same name again.

Description format
.LOCAL (label name)[,(label name)...]
Rules for writing command

® Always make sure that this directive command is written within the macro body.

® Always be sure to insert space or tab between this directive command and the operand.

® Make sure that macro local label declaration by this directive command is entered before you
define the label name.

® To write a macro local label name, follow the rules for writing name in Section 1, "Rules for
Writing Program®.

® Multiple labels can be written in the operand of this directive command providing that they are
separated with a comma. In this case, up to 100 labels can be entered.

Precautions

The maximum number of macro local labels that can be written in one assembly source file

including the contents of include files is 65,535.

Description example

name .MACRO
.LOCAL ml1;'m1'is the macro local label.
ml:
NOP
JMP ml
.ENDM

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
189

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. LWORD

Stores data in ROM in 4-byte length

Function

® This command stores 4-byte long fixed data in ROM.
® Label can be defined at the address where data is stored.

Description format

.LWORD (numeric value)
(name:) .LWORD (numeric value)

Rules for writing command

Write an integral value in the operand.

Always be sure to insert space or tab between the directive command and the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

When writing multiple operands, separate them with a comma (,).

A character or a string of characters can be written in the operand after enclosing it with single
quotations (') or double quotations (*). In this case, data is stored in ASCII code representing
the characters.

Precautions

The length of a character string you can write in the operand is less than four characters.

® \When defining a label, be sure to write the label name before the directive command.

® Always be sure to insert a colon (:) after the label name.

Description example

.SECTION value,ROMDATA
.LWORD 1

.LWORD "data"

.LWORD symbol

.LWORD symbol+1
.LWORD 1,2,3,4,5

.END

.LWORD 1 01
00
00
00
.LWORD "data" 61
74
61
64

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
190

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.MACRO

Defines macro name and beginning of macro body

Function

This command defines a macro name.
This command indicates the beginning of macro definition.

Description format

Macro definition

(macro name) .MACRO [(formal parameter) [,(formal parameter)...]]
body

.ENDM

Macro call

(macro name) [(actual parameter)][, (actual parameter)...]]

Rules for writing command

Always be sure to write a macro name.

To write a macro name, follow the rules for writing name in Section 1, "Rules for Writing
Program".

Formal parameters can be defined in the operand.

Always be sure to insert space or tab between this directive command and the macro formal
parameter.

Space or tab can be written between this directive command and the macro name.

Rules for writing formal parameter

To write a macro formal parameter name, follow the rules for writing name in Section 1, "Rules
for Writing Program”.

When defining a macro formal parameter, use a name that is unique including nested macro
definitions.

When defining multiple formal parameters, separate the formal parameters with a comma (,)
as you write them.

Always make sure that the formal parameters written in the operand of directive command
".MACRO" are written within the macro body.

Precautions
All character strings enclosed with double quotations indicate the character strings themselves
and nothing else. Therefore, do not enclose the formal parameters with double quotations.

Up to 80 formal parameters can be entered.

Precautions
This means that you can enter up to 80 formal parameters within the range of the number of
characters that can be written in one line.

Rules for writing actual parameter

Always be sure to insert space or tab between the macro name and the actual parameter.
Make sure that the actual parameters you write are corresponded one for one to the formal
parameters when the macro is called.

When using a special character to write a actual parameter, be sure to enclose the character
with double quotations as you write it.

Labels, global labels, and symbols can be used to write actual parameters.

An expression can be entered in a actual parameter.

Expanding actual parameter

Formal parameters are replaced with actual parameters sequentially from left to right in the
order they are written.

If no actual parameter is written in macro call that corresponds to a defined formal parameter,
the assembler does not generate code for this formal parameter part.

If there are more formal arguments than the actual arguments and some formal arguments do
not have the corresponding actual arguments, the assembler does not generate code for this
formal argument part.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

191

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

® |f a formal parameter written in the body is enclosed with single quotations ('), the assembler
encloses the corresponding actual parameter with single quotations as it is output.

® |f one actual parameter contains a comma (,) while at the same time the argument is enclosed
with parentheses "()", the assembler converts the argument along with its parentheses.

® |f there are more actual parameters than the formal parameters, the assembler does not
process the actual parameters that do not have the corresponding formal parameters.

Precautions

If the number of actual parameters does not match that of formal parameters, the as30

assembler outputs a warning message.

Example of actual parameter expansion

Example of macro definition

name .MACRO string
.BYTE ‘string'
.ENDM
Example of macro call -1

name "name,address"

:BYTE 'name,address'

Example of macro call -2
name (name,address)

.BYTE '(name,address)’

Description example

mac .MACRO p1,p2,p3
AF ..MACPARA ==
AF 'pl' == 'by’[e'
MOV.B #p2,p3
.ELSE
MOV.W #p2,p3
.ENDIF
.ELIF ..MACPARA ==
AF 'pl' =='byte'
MOV.B p2,ROL
.ELSE
MOV.W p2,R0
.ENDIF
.ELSE
MOV.W RO,R1
.ENDIF
.ENDM
mac word,10,R0
AF 3=3
.ELSE
MOV.W #10,R0
.ENDIF
.ENDIF
.ENDM

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
192

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.MREPEAT

Indicates beginning of repeat macro body

Function

® This command indicates the beginning of a repeat macro.

® The macro body is expanded repeatedly a specified number of times.

® The maximum number of repetitions that can be specified is 65,535.

® Repeat macros can be nested in up to 65,535 levels.

® The macro body is expanded into the line in which this directive command is written.

Description format

[(label):] .MREPEAT (numeric value)
body
.ENDR

Rules for writing command

® Always be sure to write the operand.

® Always be sure to insert space or tab between this directive command and the operand.
® Alabel can be written at the beginning of this directive command.

® A symbol can be written in the operand.

Precautions

Forward referenced symbols cannot be used here.

® An expression can be written in the operand.

® Macro definition and macro call can be written in the body.

® Directive command ".EXITM" can be written in the body.

Description example

rep .MACRO num
.MREPEAT num
AF num > 49

EXITM

.ENDIF
NOP
.ENDR
.ENDM

rep 3
NOP

NOP
NOP

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
193

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.OFSREG

Set the option function select register

Function

® The specified value is stored in option function select register.

® The specified value is output the map file.

® The value set to the option function select register is output also to the absolute module file
(-x30).

Precaution

For details on the option function select register, see the hardware manual of the

microcomputer.

Description format
.OFSREG (numeric value)"
Rules for writing command

® Use this option in combination with “-R8C” option.

® Always be sure to insert space or tab between the directive command and the operand.

® AN integer in the range of 0 to OFFH can be written in the operand.

® A symbol can be written in the operand.

® This directive command can be described in the assembly sauce file only in 1 degree.
Precautions

When this directive command is described in more than one assembly sauce file, it becomes
warning with the linkage editor.

When “-R8C” option is not specified, it is processed as ".PROTECT".

Description example

. ; fixed vector section

.org OFFFCh
RESET:
Iword start

.ofsreg OFFH ; Sets the option function select register OFFH

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
194

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.OPTJ

Controls optimization

Function

® This command controls optimization of unconditional branch instructions.

® A jump distance can be specified for unconditional branch instructions or subroutine call
instructions where the jump distance specifier is omitted and the operand is not subject to
optimization processing.

® The specified contents become effective beginning with the line following one in which this
directive command is written.

® Optimization specification by this directive command can be entered for multiple instances in
one assembly source file.

Precaution

When the nc30 “-OGJ(-Oglb_jmp)” or as30 “-JOPT” option was specified, this directive

command is disregarded.

Description format
.OPTJ [OFF|ON], [IMPW|IMPA], [JSRW|JSRA]
Rules for writing command

® The following three parameters can be written in the operand of this directive command:
1 Optimization control of branch instruction
2 Selection of unconditional branch instruction excluded from optimization processing
3 Selection of subroutine call instruction excluded from optimization processing

® The following contents can be written in each parameter:

Kind of parameter | Parameter | Function

1 OFF Branch instructions are not optimized.
ON Branch instructions are optimized. (Default)
2 JMPW Unconditional branch instructions not subject to optimization processing

are generated with "JMP.W",

JMPA Unconditional branch instructions not subject to optimization processing
are generated with "JMP.A". (Default)

3 JSRW Subroutine call instructions not subject to optimization processing are
generated with "JSR.W".

JSRA Subroutine call instructions not subject to optimization processing are
generated with "JSR.W". (Default)

® FEach parameter can be specified in any desired order.
® FEach parameter can be omitted. If any parameter is omitted, the jump distance does not
change beginning with the default value or previously specified content.

Description example

A combination of operands shown below can be entered:

.OPTJ OFF

.OPTJ ON

.OPTJ ON,JMPW
.OPTJ ON,JMPW,JSRW
.OPTJ ON,JMPW,JSRA
.OPTJ ON,JMPA

.OPTJ ON,JMPA,JSRW
.OPTJ ON,JMPA,JSRA
.OPTJ ON,JSRW

.OPTJ ON,JSRA

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
195

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.ORG

Specifies address value

Function
°

Sections in which this directive command is written are assigned absolute attribute.

Precautions
Absolute-attribute sections cannot have their addresses relocated when linking programs.

The addresses of a section in which this directive command is written take on absolute values.
The addresses where code is stored for mnemonics that are written in the lines immediately
following this directive command are determined.

The memory addresses to be allocated by an area allocating directive command that is written
in the lines immediately following this directive command are determined.

Description format

.ORG (numeric value)

Rules for writing command

This directive command must always be written immediately after a section directive
command.

Precautions
If directive command ".ORG" is not found in the line immediately following description of
".SECTION", the section is assigned relative attribute.

This directive command cannot be written in relative-attribute sections.

Always be sure to insert space or tab between the directive command and the operand.

The values that can be written in the operand are a numeric value in the range of 0 to
OFFFFFH.

An expression can be written in the operand. However, this expression must have its values
determined when assembling the source program.

A symbol can be written in the operand. However, this symbol must have its values
determined when assembling the source program.

This directive command can not be written in sections that are specified to be relative attribute.
This directive command can be written for multiple instances within an absolute-attribute
section.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

196

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Directive Commands

Description example
.SECTION value,ROMDATA

.ORG OFFOOH

.BYTE "abcdefghijkimnopgrstuvwxyz"

.ORG OFF80H

.BYTE "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
.END

The following statement results in an error.
.SECTION value,ROMDATA

.BYTE "abcdefghijkimnopgrstuvwxyz"
.ORG OFF80H
.BYTE "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

SECTION _____ program
ORG 8000H,;
main: CTTTTTTTTTTToTTTToot
NOP

-SECTION _____ ram, DATA
: .ORG 800H |
work: .BLKB 3

3-byte area is allocated beginning with
address 800H.

RAM

work 800
801
802

REJ10J2006—0200 Rev.2.00 2010.04.01
197

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. PAGE

Breaks pages at specified position of list file

Function

® This command causes pages in the assembler list file to break.

® The character string written in the operand is output to the header section in the new page of
the assembler list file.

Precautions

The maximum number of characters that can be output to the header is value subtracted 65

from the number of columns in the list file. Use directive command ".FORM" to set the

number of columns in the list file.

Description format

.PAGE "(character string)"
.PAGE ‘(character string)'

Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.
® Enclose the operand with single quotations (') or double quotations () as you write it.
® The operand can be omitted.

Description example

.PAGE
.PAGE "strings"
.PAGE 'strings’

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
198

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.PROTECT

Set the ROM code protect control address

Function

® The specified value is stored in ROM code protect control address.

® The specified value is output the map file.

® The value set to the ROM code protection control address is output also to the absolute
module file (.x30).

Precaution

For details on the ROM code protect function, see the hardware manual of the microcomputer.

Description format
.PROTECT (numeric value)”
Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.

® AN integer in the range of 0 to OFFH can be written in the operand.

® A symbol can be written in the operand.

® This directive command can be described in the assembly sauce file only in 1 degree.
Precautions

When this directive command is described in more than one assembly sauce file, it becomes
warning with the linkage editor.

Description example

. ; fixed vector section

.org OFFFCh
RESET:
Iword start

.protect OFFH ; Sets protect code OFFH

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
199

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.RVECTOR

Set the software interrupt

Function

® The software interrupt number and software interrupt name are set.
® The contents set to this directive command are allocated to the variable vector table.
® The content set in this directive command is output to a map file generated by the linker as
variable vector table information.
Precaution
® |[f this directive command is written, a variable vector table is automatically generated
by the linker. If as a result of automatic generation, a free space is created in the
variable page vector table (any software interrupt not specified by this directive
command), a value for the free space is set in order of the priority given below.
(1) Value set by the link option “-VECT”
(2) Value of a global label “__dummy_int”
(3) Value of a global label “dummy_int”
Note that if any one of the values in (1) to (3) is not set, no values are set in the free
space.
® |f this directive command is written, 1,024 bytes of area is reserved for use as the
section name ‘vector.’
® |f a program is written in the “vector” section while this directive command is written,
this directive command results in an error. (Do not write a program in the “vector”
section.)
® The software interrupt numbers specified by this directive command cannot be
specified in the link option “-VECTN.”

Description format
.RVECTOR software interrupt No., software interrupt name
Rules for writing command

® Be sure to describe the space or tab between the directive command and operand.

® Be sure to describe the comma between the software interrupt number and software interrupt
name.

® For software interrupt No., only the value defined in assembling can be described.

® Software interrupt No. can be described in the range of “0 to 63".

® For the software interrupt name, the symbol or label can be described.

Description example

rvector 21, timerAO ;Sets timerAO to software interrupt No.21.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
200

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.SB

Assigns temporary SB register value

Function

® This command assigns a provisional SB register value.

® When assembling the source program, the assembler assumes that the SB register value is
one that is defined by this directive command as it generates code for the subsequent source
lines.

® SB relative addressing mode can be specified in the subsequent lines.

® The assembler generates code in SB relative addressing mode for the mnemonics that use
labels defined by directive command ".SBSYM".

Description format
.SB (numeric value)
Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.

® Always make sure that this command is written in the assembly source file.

® Always be sure to write this command before you use the SB relative addressing mode.

® AN integer in the range of 0 to OFFFFH can be written in the operand.

Precautions

This directive command only directs the assembler to take on a provisional SB register value
and cannot be used to set a value to the actual SB register. To set an SB register value
actually, write the following instruction immediately before or after this directive command.
Example: LDC #80H,SB

® A symbol can be written in the operand.

Description example

.SB 80H
LDC #80,SB

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
201

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.SBBIT

Selects SB relative displacement addressing mode for bit symbol

Function

® The SB relative displacement addressing mode is selected for the name that is specified in the
operand of this directive command.

® If the 1-bit manipulate command takes on a short format, a 11-bit SB relative displacement or
16-bit relative displacement addressing mode is selected.

® |f the 1-bit manipulate command does not have a short format, an 8-bit SB relative
displacement or 16-bit relative displacement addressing mode is selected.

Description format

.SBBIT (name)
.SBBIT (name) [, (name)...]

Rules for writing command

Always be sure to enter a space or tab between the directive command and operand.

A bit symbol defined by ".BTEQU' or .BTGLB' can be written in the operand.

A forward referenced bit symbol can be written in the operand.

Before writing this directive command, be sure to set the SB register value by directive
command ".SB".

® \When specifying multiple names, separate them with a comma (,).

Description example

.SB 80H

LDC #80H,SB

.SBBIT bitsym

BCLR bitsym ; Selects a 11-bit SB relative.
BAND bitsym : Selects a 16-bit SB relative.

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
202

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.SBSYM

Selects SB relative displacement addressing mode

Function

® The assembler selects the SB relative addressing mode for the name specified in the operand
of this directive command.

® The assembler selects the SB relative addressing mode for the expression in absolute 16-bit
addressing mode that includes the name specified in the operand of this directive command.

® The SB relative addressing mode can be selected for the operand that contains a relocatable
value.

Precautions

The SB relative addressing mode is not selected for the symbols that are defined by using the

label name specified by this directive command.

Description format

.SBSYM (name)
.SBSYM (name)[,(name)...]

Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.

® Alabel and symbol can be written in the operand.

® Always be sure to set the SB register value with directive command ".SB" before you write this
directive command.

® When specifying multiple names, be sure to separate the names with a comma as you write
them.

Description example

.SB 80H
LDC #80H,SB
.SBSYM sym1l,sym2

® In the following case, the SB relative addressing mode is not selected for sym2.

.SBSYM syml
sym2 .EQU symil+1

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
203

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

.SB AUTO

.SB_AUTO /.SB_AUTO_S /.SB_AUTO_SBVAL/.SB_AUTO_SBSYM /.SB_AUTO_R /.SB_AUTO_E

Automatic Generation of SB Relative Addressing

Function

® The assembler selects the SB relative addressing mode.
® Generates the instructions to save/restore SB register and to set register values.

.SB_AUTO Shows that automatic generation of SB relative
addressing will start.
.SB_AUTO S Shows the beginning of the function.

.SB_AUTO_SBVAL

Generates the instruction to save SB register (PUSHC)
and the instruction to set register values (LDC).

.SB_AUTO_SBSYM

Selects the SB relative addressing mode for the name
specified in the operand.

.SB_AUTO_R

Generates the instruction to restore SB register (POPC).

.SB_AUTO_E

Shows the end of the function.

Precautions

These directive commands are C complier-only directives, so that they cannot be written in

user programs.
Depending on condition, no
and .SB_AUTO_R.

Description format
.SB_AUTO

instructions will be generated by .SB_AUTO_SBVAL

.SB_AUTO_S C language function name, assembler function name
.SB_AUTO_SBVAL SB register set value
.SB_AUTO_SBSYM SB relative addressing target symbol

.SB_AUTO_R
SB_AUTO_E

Example of compiler output

.glb _funcl
_funci:

.sb_auto_s funcl, funcl

.Ssb_auto_sbval _il
.Ssb_auto_sbsym i1, i2, i3

.sb_auto_r
rts
.sb_auto_e

REJ10J2006—0200 Rev.2.00 2010.04.01
204

RENESAS

Directive Commands

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.SECTION

Defines section name

Function

This command defines a section name.

This command defines the beginning of a section. An interval from one section directive
command to the next section directive command or directive command ".END" is defined as
one section.

This command defines a section type.

If 'ALIGN' is specified, In30 allocates the beginning of a section to an even address.

Directive command ".ALIGN" can be written in a ALIGN-specified section or an
absolute-attribute section.

Description format

.SECTION (section name)
.SECTION (section name),(section type)
.SECTION (section name),(section type),ALIGN
.SECTION (section name),ALIGN
Rules for writing command
® Always be sure to write a section name when you define a section.
® \When you write an assembly directive command to allocate a memory area or store data in
memory or you write a mnemonic, always use this directive command to define a section.
® \Write the section type and ALIGN after the section name.
® \When specifying a section type and ALIGN, separate them with a comma as you write.
® Section type and ALIGN can be specified in any desired order.
® Section type can be selected from 'CODE', 'ROMDATA', and 'DATA'".
® The section type can be omitted. In this case, as30 assumes section type CODE as it

processes assembling.

Description example

.SECTION program,CODE

NOP

.SECTION ram,DATA

.BLKB 10
.SECTION dname,ROMDATA
.BYTE "abcd"
.END

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS

205

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.SJMP

Controls generation of a short-jump instruction

Function

® This command controls generation of a short-jump instruction.
® No short-jump instruction is generated in lines after one in which ".SIMP OFF" is written.
® Short-jump instructions are generated in lines after one in which ".SIJIMP ON" is written.

Description format

.SJMP ON
.SIMP OFF

Description rules
® Be sure to insert a space or tab between this directive command and 'ON' or 'OFF.'
Description example

.SJMP ON ; Generation of short jump is enabled.
JMP lab

NOP

.SJMP OFF

JMP lab ; Generation of short jump is disabled.
NOP

lab:

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
206

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.STK

Defines a stack in inspector information

Function

® Defines a stack in inspector information.
Format

.STK stack size
Description rules

® Be sure to put a space or a tab between this directive instruction and the operand.

® Be sure to give a stack size.

® Use an integer to give a stack size.

Notes

Use this directive instruction within a range from the start of a function in inspector information
to its end.

This directive instruction turns effective when the command option -finfo has been chosen.

Description example
.INSF glbfunc, G, 0

:STK 2 ;2-byte push
jsr glbsub

.STK -2 ;2-byte pop
:EINSF

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
207

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.SUBSTR

Extracts specified number of characters
Function

® This command extracts a specified number of characters from the specified position of a
character string.

Precautions

The value is rendered O if the extract start position is assigned a value greater than the length

of the character string itself. The value is rendered O if the number of characters to be

extracted is greater than the length of the character string itself. The value is rendered O if

you specify 0 for the number of characters to be extracted.

Description format

.SUBSTR {"(CS)",(ES),(NC)}
.SUBSTR {(CS)",(ES),(NC)}
CS=character string
ES=extract start position
NC=number of characters to be extract

Rules for writing command

® Always be sure to enclose the operand with { }.

® Always be sure to write the character string, extract start position, and the number of
characters to be extracted.

® Separate the character string, extract start position, and the number of characters to be
extracted with commas as you write them.

® A symbol can be written in the extract start position and the number of characters to be
extracted.

® |f you specify 1 for the extract start position, it means the beginning of the character string.

® The 7-bit ASCII code characters including a space and tab can be used to write a character
string.

Precautions

Kanji and other 8-bit code are not processed correctly. However, the as30 assembler does

not output errors.

® Always be sure to enclose the character string with quotations as you write it.

Precautions

If you want a macro argument to be expanded as a character string, enclose the parameter

name with single quotations as you write it. Note that if you enclose a character string with

double quotations, the character string itself is expanded.

Description example

name .MACRO data
.MREPEAT .LEN{'data’}
.BYTE .SUBSTR{'data’,..MACREP,1}
.ENDR
.ENDM

name ABCD

.BYTE "A"

.BYTE "B"
.BYTE "C"
.BYTE "D"

® The length of the character string that is given as actual parameter of the macro is given to the
operand of ".MREPEAT".

® "MACREP" is incremented 1 -> 2 -> 3 -> 4 each time the ".BYTE" line is executed.
Consequently, the character string that is given as actual parameter of the macro is given
successively to the operand of ".BYTE" one character at a time beginning with the first
character in that character string.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
208

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

. SVECTOR

Sets the special page

Function

® The special page number and special page name are set.
® The contents set to this directive command are allocated to the special page vector table.
® The content set in this directive command is output to a map file generated by the linker as
special page vector table information.
Precaution
® |f this directive command is written, a special page vector table is automatically
generated by the linker.
® |[f this directive command is written, a section name “svector” is defined.
® When linked, the section name “svector” has a memory area reserved for it from
special page number 18 up to the largest special page number that is specified.
® |f as a result of automatic generation, a free space is created in the special page
vector table (any special page number not specified by this directive command), the
free space is filled with FFH.
® |f a program is written in the “svector” section while this directive command is written,
this directive command results in an error. (Do not write a program in the “svector”
section.)

Description format
.SVECTOR special page No., special page name
Rules for writing command

® Be sure to describe the space or tab between the directive command and operand.

® Be sure to describe the comma between the special page number and special page name.
® For special page No., only the value defined in assembling can be described.

® Special page No. can be described in the range of “18 to 255”.

® For the special page name, the symbol or label can be described.

Description example
.svector 250, SPECIAL_250 ;Sets _ SPECIAL_250 to special page No.250.

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
209

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.VER

Transfers specified information to map file

Function

® This command outputs the specified character string to a relocatable module file so it will be
output to a map file when it is generated by In30.

® All of the specified character strings are output to a map file.

® The user-specified information can be output to a map file for each relocatable module file.

Description format

VER "(character string)"
VER ‘(character string)'

Rules for writing command

® Always be sure to insert space or tab between the directive command and the operand.

® \Write the character string in the operand that you want to be output to a map file after
enclosing it with single quotations (') or double quotations (").

® Make sure that the operand is written within the range of one line.

® This command can be written only once in one assembly source file.

® This command can be written in any desired line providing that it is entered before directive
command ".END".

Description example

.VER 'strings’
.VER "strings"

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
210

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

.WORD

Stores data in ROM in 2-byte length

Function

® This command stores 2-byte long fixed data in ROM.
® Label can be defined at the address where data is stored.

Description format

.WORD (numeric value)
(name:) .WORD (numeric value)

Rules for writing command

Write an integral value in the operand.

Always be sure to insert space or tab between the directive command and the operand.

A symbol can be written in the operand.

An expression can be written in the operand.

When writing multiple operands, separate them with a comma (,).

A character or a string of characters can be written in the operand after enclosing it with single
quotations (') or double quotations (*). In this case, data is stored in ASCII code representing
the characters.

Precautions

The length of a character string you can write in the operand is less than two characters.

® \When defining a label, be sure to write the label name before the directive command.

® Always be sure to insert a colon (:) after the label name.

Description example

.SECTION value,ROMDATA
WORD 1

.WORD "da","ta"

.WORD symbol

.WORD symbol+1

WORD 1,2,34,5

.END

.WORD 1 01
00
.WORD "da" 61
64

REJ10J2006-0200 Rev.2.00 2010.04.01 RENESAS
211

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

?

Temporary label

Function

® This command defines a temporary label.
® The assembler references a temporary label that is defined immediately before or after an

instruction.

Precautions
The labels that can be referenced are only the label defined before or after an instruction.

A temporary file can be defined and referenced within the same file.

Up to 65,535 temporary files can be defined in a file. In this case, if ".INCLUDE" is written in
the file, the maximum number of temporary files you can enter (= 65,535) includes those in the
include file.

The temporary labels generated by the assembler are output to a list file.

The temporary labels are changed into "tl0001","tl0002" ... and "tIFFFF".

Description format

?:

(mnemonic) ?+
(mnemonic) ?-

Rules for writing command

Write "?:" in the line where you want it to be defined as a temporary label.

If you want to reference a temporary label that is defined immediately before an instruction,
write "?-" in the instruction operand.

If you want to reference a temporary label that is defined immediately after an instruction, write
"?+" in the instruction operand.

Description example

2

?:

JMP 2+

JMP 2=
JMP ?-

Denotes a temporary label indicated by the arrow.

? . -
JMP 2+ |
/JMP ?-
?.

. ogMp 2-

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS

212

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Directive Commands

@

Concatenates character strings

Function

® This command concatenates macro arguments, macro variables, reserved symbols, expanded
file name of directive command "..FILE", and specified character strings.

Description format

(character string) @ (character string)
(character string) @ (character string) [@ (character string)...]

Rules for writing command

® Spaces and tabs entered before and after this directive command are concatenated as a
character string.

® A character string can be written before and after this directive command.

® When you use @ for character data (40H), be sure to enclose @ with double quotations (*).
When a string including @ is enclosed with single quotation, strings before and after @ are
concatenated.

® This command can be written for multiple instances in one line.

Precautions

If you want a concatenated character string to be a name, do not insert spaces and tabs

before and after this directive command.

Description example

If the currently processed file name is "samplel.a30", a message is output to the sample.dat
file.

ASSERT "sample" > ..FILE@.dat
® A macro definition like the one shown below can be entered:

mov_nibble .MACRO pl,src,p2,dest
MOV@pl@p2 src,dest
.ENDM
mov._nibble L,ROL,H,[A0]

MOVLH ROL,[A0]

REJ10J2006—0200 Rev.2.00 2010.04.01 RENESAS
213

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Structured Description Function

Outline

Programming with AS30 allows you to enter structured descriptions using structured description
commands.

The following lists the functions of AS30's structured description:

® The assembler generates assembly language branch instructions corresponding to the
structured description commands.

® The assembler generates labels indicating the jump address for the generated branch
instruction.

® The assembler outputs the assembly languages generated from the structure description
commands to an assembler list file. (When a command option is specified)

® A structured description command allows you to select a control block that is made to branch
by a structured description statement and its conditional expression. A control block refers to
a program section from some structured description statement to the next structured
description statement except for assignment statements.

Structured Description Statement

The following outlines a structured description statement.
Types of Structured Description Statements

AS30 allows you to write the following nine types of statements:

Assignment statement
The left side is substituted for by the right side.
IF ELIF ELSE ENDIF statement (hereafter called the IF statement)

The IF statement changes the flow of control to two directions. The direction in which control
branches is determined by a conditional expression.

FOR NEXT statement (hereafter called the FOR-NEXT statement)

The FOR-NEXT statement controls repetition of operation. The statement is executed
repeatedly as long as the specified conditional expression is true.

FOR TO STEP NEXT statement (hereafter called the FOR- STEP statement)

The FOR-STEP statement controls the number of repetitions by specifying the initial value, an
increment, and the final value.

DO WHILE statement (hereafter called the DO statement)

The DO statement executes the statement repeatedly as long as the conditional expression is
met (true).

SWITCH CASE DEFAULT ENDS statement (hereafter called the SWITCH statement)

The SWITCH statement causes control to branch to one of the CASE blocks depending on the
value of the conditional expression.

BREAK statement

This statement causes the relevant FOR, DO, or SWITCH statement to stop executing,
transferring control to the statement to be executed next.

CONTINUE statement

This statement transfers control to a statement in the least repeated FOR or DO statement
that determines repetition.

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
214

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

FOREVER statement

This statement executes the control block repeatedly assuming that the conditional expression
of the relevant FOR and DO statements are always true.

Types of Variables
In AS30's structured description, the microcomputer registers and memories are referred to as
variables. There are following types of variables:
Register variable
This refers to the registers in the M16C family microcomputers.
Flag variable
This refers to the function flags of the M16C family.
Register bit variable
This refers to each bit position of a register variable.
Memory variable
This refers to an arbitrary label or symbol.
Memory bit variable

This refers to an arbitrary bit symbol.
Details on how to write each variable are explained in other sections of this manual.

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
215

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Reserved Variables

In AS30's structured description, the register, flag, and register bit variables are processed as
reserved variable names. Therefore, you cannot use a memory variable name or symbol name for
the names used in these variables. For details about the register and flag functions, refer to the
"M16C Family Software Manual."

Register Variables

The table below lists the register variables available for the M16C family. The as30 assembler
does not discriminate register variable names between uppercase and lowercase letters.

Consequently, "ROL" and "r01" refer to the same register variable.

Variable Name

Register Name

Variable Type Name

ROL,ROH,R1L,R1H Data register Byte type
RO,R1,R2,R3 Data register Word type
A0.B,A1B Address register Byte type
AO0,A0.W,A1,A1.W Address register Word type
[AO.B],[A1.B] Address register indirect Byte type
[AO0],[A0.W],[AL],[A1W] Address register indirect Byte type
[AO.A],[ALl.A] Address register indirect Address type

[AO.L],[ALL]

Address register indirect

Long word type

FB Frame base register Word type
PC Program counter Address type
INTBH,INTBL Interrupt table register Word type
INTB Interrupt table register Address type
SP,ISP Stack pointer Word type
SB Static base register Word type
FLG Flag register
R2R0,R3R1 32-bit data register Long word type
A1A0 32-bit address register Long word type
[A1A0.B] 32-bit address register indirect Byte type
[A1AOQ],[A1A0.W] 32-bit address register indirect Word type
IPL Processor interrupt priority level

Precautions

SP refers to the stack pointer (user stack pointer or interrupt stack pointer) indicated by the U
flag. For details about the stack pointer and U flag functions, refer to the "M16C Family

Software Manual."

REJ10J2006—0200 Rev.2.00 2010.04.01

216

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Stack Variables

The table below lists the stack variables available for the M16C family. The as30 assembler does
not discriminate variable names between uppercase and lowercase letters. Consequently, "STK"
and "stk" refer to the same variable.

Stack Variable Name Content

[STK] Memory indicated by stack pointer.

Stack variables can be written for saving or restoring to or from the stack area.

Precautions
The stack area is indicated by the interrupt stack pointer when the U flag = 0 or the user stack
pointer when the U flag = 1.

Flag Variables

The table below lists the flag variables available for the M16C family. The as30 assembler does
not discriminate flag variable names between uppercase and lowercase letters. Consequently, "C"
and "c¢" refer to the same flag variable. For details about the functions of flag variables, refer to the
"M16C Family Software Manual."

Flag Variable Name Flag Name

Carry flag

Debug flag

Zero flag

Sign flag

Register bank specifying flag

olm|w|N|O|O

Overflow flag

Interrupt enable flag

U Stack pointer specifying flag

Register Bit Variables

The table below lists the register bit variables available for the M16C family. The as30 assembler
does not discriminate register bit variable names between uppercase and lowercase letters.
Consequently, "BITRO_1" and "bitr0_1" refer to the same register bit variable.

Register Bit Variable Name Content

BITRO n Bit n of data register RO (n = 0 to 15)
BITR1 n Bit n of data register R1 (n = 0 to 15)
BITR2_n Bit n of data register R2 (n = 0 to 15)
BITR3_n Bit n of data register R3 (n = 0 to 15)
BITAO n Bit n of data register A0 (n = 0 to 15)
BITAL n Bit n of data register A1 (n = 0 to 15)

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
217

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Register bit variable description example

The following shows a description example for register bit variables:

BITRO_0=0 ; Substitutes 0 for the Oth bit of register RO.
BITR1_1=0 ; Substitutes O for the 1st bit of register R1.
BITR2_2 =0 ; Substitutes 0 for the 2nd bit of register R2.
BITR3_3 =0 ; Substitutes O for the 3rd bit of register R3.
BITAO_4 =0 ; Substitutes 0 for the 4th bit of register AO.
BITA1 5=0 ; Substitutes 0 for the 5th bit of register Al.

IF BITRO_1 ; Evaluates the 1st bit of register RO.

ELSE

ENDIF

iF BITRO_2 ; Evaluates the 2nd bit of register RO.

ELSE
ENDIF

Memory Variables

In AS30's structured description, labels and symbols are processed as memory variables.

The as30 assembler discriminates memory variable names between uppercase and lowercase

letters.

Types of Memory Variables

The label and symbol names defined by the directive commands listed in the table below can be
used in structured description statements as memory variables. The variable has its "variable
type" defined by the directive command.

Assembler Directive Command Variable Type

BTEQU, .BTGLB Bit type

.BLKB, .BYTE Byte type

.BLKW, .WORD Word type

.BLKA, .ADDR Address

.BLKL, .LWORD Long word type

.GLB For externally referenced labels and symbols, write the size every line or

use a command option to determine the size.

The assembler generates object code according to the variable type.

Function of command option -M'

® If the type of variable is not indicated when as30's command option '-M' is specified, the
assembler assumes the byte type as it generates object code.
® |f this command option is not specified, the assembler assumes the word type as it generates

object code.

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS

218

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Memory Variable Addressing Modes

The table below lists the address modes that can be specified in memory variables:

Addressing Mode Addressing Mode Description Format
Absolute [label:16]

[label:20]
Address register relative [label:8[AQ]]

[label:16[AO0]]
[label:8[A1]]

[label:16[A1]]
[label:20[A0]]

SB relative [label:8[SB]]
[label:16[SB]]
FB relative [label:8[FB]]

The addressing mode specifier (:8, :16, or :20) can be omitted.

Rules for Writing Memory Variables

® When writing a memory variable name in structured description statement, always be sure to
enclose it with brackets [] or { } as you write it

® A space or tab can be entered between the memory variable name and brackets.

® When specifying an addressing mode, always be sure to enclose it with brackets [] or { }
along with the variable name as you write it.

Description example 1:

.GLB work
.SECTION memory,DATA
mem: .BLKB 1
.SECTION program,CODE
[mem] =0
[work].B =0
.END
Description example 2:
[label] =10

Description example 3:
IF [label[SB]]

ELSE

ENDIF

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
219

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Size Specifier

The size specifier can be set for memory variables and address register indirect addressing [A0O] or
[A1]. For memory variables where a size specifier is written, the assembler temporarily generates
code in the specified size irrespective of the type of variable that is determined when defining a
memory variable.

The table below lists the size specifiers that can be written in memory variables.

Size Specifier Variable Type
.B Byte type

W Word type

A Address type
L Long word type

Precautions
The type of memory variable on a line where a size specifier is set has priority over the type
determined by a directive command.

Rules for Writing Size Specifier

® \Write a size specifier immediately after the memory variable that is enclosed with brackets.
® A space or tab can be entered between the size specifier and brackets.

Description example:

.SECTION ram,DATA
lab_b: .BLKB 1
lab_w: BLKW 1

:SECTION rom,CODE
: ;Example of Expansion
[lab_b]=ROL ;MOV.B ROL,lab_b

[lab_b]W=R0 ;MOV.W RO,lab_b
[lab_w]=RO ;MOV.W RO,lab_w
[lab_w].B = ROL ;MOV.B ROL,lab_w

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
220

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Memory Bit Variables

The bit symbol names defined by the directive commands listed below can be used in structured
description statements as a memory bit variable.

Assembler Directive Command Variable Type

.BTEQU, .BTGLB Bit type

Memory Bit Variable Addressing Modes

The table below lists the address modes that can be specified in memory bit variables:

Addressing Mode Addressing Mode Description Format
Absolute [bitsym:16],[bithum.addr:16]
SB relative [bitsym:8[SB]],[bitnum,addr:8[SB]]

[bitsym:11[SB]],[bithum,addr:11[SB]]
[bitsym:16[SB]],[bithum,addr:16[SB]]

FB relative [bitsym:8[FB]],[bithum,addr:8[FB]]

The addressing mode specifier (:8, :16, or :20) can be omitted.

In the above table, 'bitnum' denotes a bit number and 'addr' denotes a memory address.

Precautions
Address register indirect and relative addressing cannot be written.

Rules for Writing Memory Bit Variable

® When writing a memory bit variable name in structured description statement, always be sure
to enclose it with brackets [] or { } as you write it.

® A space or tab can be entered between the memory bit variable name and brackets.

® When specifying an addressing mode, always be sure to enclose it with brackets [] or {}
along with the variable name as you write it.

Description example 1: For internally defined memory bit variable

bitsym .BTEQU 1,10H ; Defines a bit symbol.
IF [bitsym]
ELSE
ENDIF

Description example 2: For externally referenced memory bit variable

.BTGLB bitsym ; References a bit symbol.
IF [bitsym]

ELSE

ENDIF

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
221

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Structured Description Function

Structured Operators

The following sections explain the operators that can be written in structured description

statements.

Unary Operators

The table below lists the unary operators that can be written in structured description statements.

Operator Content

+ Represents a positive number.
- Represents a negative number.
~ Negates every bit. (NOT)

++ Increments a single term.

Decrements a single term.

Binary Operators

The table below lists the binary operators that can be written in structured description statements.

Operator Content

+, +.C, +.D, +.CD Adds two terms.
-,-C,-D,-CD Subtracts two terms.
* *S Multiplies two terms.
/,1.S Divides two terms.

%, %.S, %.SE

Divides two terms with residue.

&

ANDs every hit. (AND)

ORs every bit. (OR)

AN

Exclusive ORs every bit. (EOR)

>>.C Bit rotates the left-side value to the right by the right-side value with a carry.

<<.C Bit rotates the left-side value to the left by the right-side value with a carry.

<>.R Bit rotates the left-side value by the right-side value without a carry. Rotated left
if the right-side value is positive; rotated right if the right-side value is negative.

<A Arithmetically shifts the left-side value for a number of bits indicated by the
right-side value. Shifted left if the right-side value is positive; shifted right if the
right-side value is negative.

<L Logically shifts the left-side value for a number of bits indicated by the right-side
value. Shifted left if the right-side value is positive; shifted right if the right-side
value is negative.

&& Logically ANDs.

Logically ORs.

REJ10J2006—0200 Rev.2.00 2010.04.01

222

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Relational Operators

The table below lists the relational operators that can be written in structured description
statements.

Operator Content
<, <.S Holds true when the left side is smaller than the right side.
> >.S Holds true when the left side is larger than the right side.

== Holds true when the left and right sides are equal.

I= Holds true when the left and right sides are not equal.

<=, <=S Holds true when the left side is smaller than or equal to the right side.
>=, >=.S Holds true when the left side is larger than or equal to the right side.
Operator Attributes

The table below lists the operator attributes specified for addition and subtraction of binary
operators and in part of relational operators.

Attribute Meaning

.C Performs calculation with a carry or borrow.

.D Performs decimal calculation.

.CD Performs decimal calculation with a carry or borrow.

.S (except residue) Performs calculation with a sign.

.S (residue) The sign of the calculation result is made the same as that of the dividend.
.SE The sign of the calculation result is made the same as that of the divisor.

Precautions
No space or tab can be entered between the operator and attribute.

Expressions
The following explains expressions that can be written using operators.

Types of expressions

There are following types of expressions:

Monomial expression
An expression consisting of a single term and an expression consisting of a combination of a
single term and unary operator.

Binomial expression
An expression consisting of two terms and an operator.

Compound expression
An expression consisting of a combination of a monomial or binomial expression and a logical
operator.

Terms in expression

The following can be written in terms of an expression:
Variable
This includes a register, flag variable, register bit variable, memory variable, and a memory bit
variable.
Constant
For multiplication and residue calculations, the constants shown below can be operated on.
Precautions
Except for binary divide and residue calculations, you cannot write an expression using
variables of different types.

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
223

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Compound expression

The following shows rules for writing a compound expression.
® Up to two logical operators can be written in one expression.
® Operation on a compound expression is performed sequentially from left to right.
® A structured description command and a compound expression must be written in one line not
exceeding 255 characters.
® No compound expression can be written in two or more lines.
Example of compound expression:
IF [workl] || [work2] && [work3]

ENDIF
Example of expression

The following shows examples for each type of expression. In these examples, "mem" and
"work" denote memory variable names.
Monomial expression
[mem]
-[mem]
++[mem]
Binomial expression
[mem] + 1
- [mem] + 1
Compound expression

[mem] || [work]
-- [mem] && [work]

Structure of Structured Description Statement

A structured description statement consists of a structured description command and a conditional
expression that is written in the operand of the command. Not all structured description
commands are accompanied by a conditional expression.

Conditional Expression

Function of conditional expression

® A conditional expression indicates a condition to be given to a structured command statement.
® Depending on whether the operation result of a conditional expression is true or false, the
assembler generates object code that causes control to branch to different control blocks.

Rules for writing conditional expression

® A conditional expression can be written in the operand of a structured description command
"IF," "ELIF," "FOR (FOR-NEXT)," or "WHILE."

® Expressions can be written in the operand of a conditional expression.

® Always be sure to enter a space or tab between a conditional expression and a structured
description command.

® \When writing a structured description command and an expression, make sure that they are
written in one line (within 255 characters).

® No conditional expression can be written in two or more lines.

Description format

Expression

Expression Relational operator Expression
Bit variable

Bit variable Relational operator 1

Bit variable Relational operator O

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
224

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Description example

The following shows a description example of a conditional expression. In this example,
"mem" and "work" denote memory variable names; "bit" denotes a memory bit variable name.
IF [mem]

END'IF

FOR --[mem]
NE).(T

IF [mem] >=0
ENbIF

FOR [work] - [mem] <=0
NE).(T

IF [bit]

ENbIF

IF [bit] ==
ENbIF

IF [bit] =0
ENbIF

Nesting of Structured Description Statements

Structured description statements can be nested in up to a total of 65,5635 levels. However, no
intertwined nesting of statements like the example shown below are accepted.

Furthermore, no intertwined nesting of statements including macro directive commands or
assembler directive commands "IF,' "ELIF, .ELSE," or ' ENDIF" are accepted.

Example of incorrect (intertwined) nesting
FORR0O=1TO 10 STEP 1
IF R1 == 3;The if statement begins in a for statement.

NEXT
ENDIF ; The if statement ends outside the for statement.

List of Structured Description Commands

The following pages show rules for writing structured description commands.

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
225

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

IF Statement

The following shows the structure of an IF statement.
IF-ENDIF

Basic structure

® The basic structure of an IF statement consists of structured description commands 'IF' and
'ENDIF' and a control block enclosed with these commands.

IF Conditional expression
Control block
ENDIF

Function

® Control branches to ENDIF if the condition of IF is false.
® A system label is generated for ENDIF.

Rules for writing command

® Always be sure to enter a space or tab between 'IF' and the conditional expression.
® Conditional Expression can be used the conditional expression.

ELSE

Function

® Structured description command 'ELSE' can be written in the IF statement.

® If the conditional expression of 'IF' is false, control branches to the control block that follows
ELSE.

® |f there are two or more control blocks, branching to ENDIF occurs at the end of each control
block.

® Asystem label is generated for ELSE.

Rules for writing command

® Only one instance of 'ELSE' can be written between 'IF* and 'ENDIF.'
IF Conditional expression
Control block
ELSE
Control block
ENDIF

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
226

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

ELIF

Function

® Structured description command 'ELIF' can be written in the IF statement.

® |f the conditional expression of IF is false, the assembler checks the conditional expression of
ELIF to see if it is true or false.

® Asystem label is generated for ELIF.

® |f the conditional expression of ELIF is true, control branches to the beginning of the
immediately following control block.

® |f the conditional expression of ELIF is false, control branches to the immediately following
structured description command (ELIF, ELSE, or ENDIF).

® |f there are two or more control blocks, branching to ENDIF occurs at the end of each control
block.

Rules for writing command

® Always be sure to enter a space or tab between ELIF and the conditional expression.
® More than one instance of 'ELIF' can be written between 'IF' and 'ELSE' or between 'IF' and
'ENDIF.

IF Conditional expression
Control block

ELIF Conditional expression
Control block

ELSE
Control block

ENDIF

Example of source description

IF[syml]==10 ; If equal, this line is processed.

ELIF [sym2]!=10 ; Is the value of byte type sym2 not equal to 10?
; If not equal, this line is processed.
ELSE
: ; If neither holds true, this line is processed.
ENDIF
Expansion example
CMP.B #10,syml

INE .IF0002
JMP .IF0003
IF0002:
CMP.B #10,sym2
JEQ .IF0004
JMP IF0003
IF0004:
IF0003:

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
227

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

FOR-STEP Statement

Basic structure

® The basic structure of a FOR statement consists of structured description commands 'FOR'
and 'NEXT' and a control block enclosed with these commands.

FOR Loop counter = Initial value TO final value [STEP increment]
Control block
NEXT

Function

® The loop counter value specified in the operand of structured description command 'FOR' is
updated for a specified amount of increment. When the value becomes equal to the final
value, the control block is executed.

® |f the loop counter value equals the final value, control branches to the line immediately
following structured description command 'NEXT.'

® |f the specified increment is a negative value, the loop counter is counted down.

Precautions

The control block is always repeated until the loop counter value becomes equal to the final

value.

® |[f the increment is omitted, the assembler assumes '+1' as it generates object code.

® System labels are generated for 'FOR' and 'NEXT' statement.

® A 'BREAK' statement can be written in the control block. This 'BREAK' statement forcibly
terminates repetition control.

® A 'CONTINUE' statement can be written in the control block. This 'CONTINUE' statement
causes control to branch to the NEXT statement.

Rules for writing command

® Aregister variable and memory variable can be written in the loop counter.

Precautions

If the register variable or memory variable used in the loop counter has its content modified in
the control block, the FOR statement will not be executed correctly.

A 'BREAK' statement can be written in any desired line in the control block.

A 'CONTINUE' statement can be written in any desired line in the control block.

Variables or constant values can be used in the initial and final values.

A constant value can be used in the increment.

A local symbol name can be written as a constant value.

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
228

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

FOREVER

The FOREVER command means that there is no condition to terminate repetition.

FOR FOREVER
Control block
NEXT

Function

® This command continues executing the control block repeatedly.

® A 'BREAK' statement can be written in the control block. This 'BREAK' statement forcibly
terminates repetition control.

® A 'CONTINUE' statement can be written in the control block. This 'CONTINUE' statement
causes control to branch to a statement that determines whether or not to repeat.

Rules for writing command

® A 'BREAK' statement can be written in any desired line in the control block.

® A'CONTINUE' statement can be written in any desired line in the control block.
@ Variables or constant values can be used in the initial and final values.

® A constant value can be used in the increment.

Example of source description
FOR [lab].W =0 TO 10 STEP 1 ;lab is initialized to 0 which is repeated up to 10.
NE'XT
Expansion example
MOV.W #0,lab

..fr0000:
CMP.W #10,lab
JEQ ..fr0002
..fr0001:
ADD.W #1,lab
JMP ..fr0000
..fr0002:

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
229

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

FOR-NEXT Statement

Basic structure

® The basic structure of a FOR statement consists of structured description commands 'FOR'
and 'NEXT' and a control block enclosed with these commands.

FOR Conditional expression
Control block
NEXT

Function

® |f the conditional expression is true, control branches to the immediately following control
block.

® |f the conditional expression is false, control branches to a line that immediately follows the
structured description command 'NEXT.'

® System labels are generated for ‘FOR’ and ‘NEXT'.

® A 'BREAK' statement can be written in the control block. This 'BREAK' statement forcibly
terminates repetition control.

® A 'CONTINUE' statement can be written in the control block. This 'CONTINUE' statement
causes control to branch to the NEXT statement.

® A 'FOREVER' statement can be written in the conditional expression. The function of and
rules for writing this statement are the same as for the FOR-STEP statement.

Rules for writing command

® Always be sure to enter a space or tab between FOR and the conditional expression.
® A'BREAK' statement can be written in any desired line in the control block.
® A'CONTINUE' statement can be written in any desired line in the control block.

Example of source description
FOR R0 <.S 10 ; Repeated as long as RO is smaller than 10

NEXT
Expansion example
..fr0000:
CMP.W #10,R0
JGE ..fr0002

IMP .fr0000
_fr0002

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
230

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

SWITCH Statement

Basic structure

® The basic structure of a SWITCH statement consists of structured description commands
'SWITCH, 'ENDS," and 'CASE' and a control block enclosed with CASE statement.
SWITCH expression
CASE Data
Control block
CASE Data
Control block
ENDS

Function

® System labels are generated for 'CASE' and 'ENDS'.

® Control branches to a control block immediately following the CASE command that holds data
that matches the content of the expression written in the operand of the SWITCH statement.

® FEvaluation is made on all CASE command data.

Rules for writing command

® Monomial and binomial expressions described in '6.4 Expressions' can be written in the
operand expression of SWITCH.

® Be sure to write more than one instance of CASE statement. If no CASE is found between
SWITCH and ENDS, the assembler outputs a warning.

® Aconstant can be written in the operand data of CASE.

® No value can be written in the operand data of CASE unless the value is fixed when

assembled.
® No values can be written in the operand data of CASEs that are the same in one SWITCH
statement.
BREAK

A'BREAK' statement can be written at the end of a control block.

SWITCH expression
CASE Data
Control block
BREAK
CASE Data
Control block
ENDS

Function
® The 'BREAK' statement causes control to branch to 'ENDS' unconditionally.
Rules for writing command

® The BREAK command must be written at the end of a control block.

® |f this command is written in the middle of a control block, the assembler outputs a warning.
In this case, although code for lines between the BREAK command and the next structured
description command is generated, no code is generated for branching to that section.

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
231

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function
DEFAULT

A structured description command 'DEFAULT' and a control block can be written at a position
immediately preceding ENDS of a SWITCH statement.

SWITCH expression
CASE Comparison data 1
Control block
BREAK
CASE Comparison data 2
Control block
DEFAULT
Control block
ENDS

Function

® |f no matching data is found in the expression, control branches to the control block that
immediately follows DEFAULT.

® A warning is output for CASE that is written between structured description command
DEFAULT and ENDS. In this case, although object code for the control block immediately
following this instance of CASE is generated, no code is generated for branching to that block.

Rules for writing command

® Only once instance of structured description command DEFAULT can be written in one
SWITCH statement.

Example of source description

SWITCH [work]
CASE 1

BREAK
CASE 2

DEFAULT
ENDS

Expansion example
CMP.B #1,work ; Generated for CASE.

INE ..sw0004 ; Generated for CASE.
JMP ..sw0000 ; Generated for BREAK.
..sw0004: : Generated for CASE.
CMP.B #2,work ; Generated for CASE.
INE ..sw0006 ; Generated for CASE.
..stbOG: ; Generated for DEFAULT.
..sdeOO: : Generated for ENDS.

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
232

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

DO Statement

Basic structure

® The basic structure of a DO statement consists of structured description commands 'DO' and
'WHILE' and a control block enclosed with these commands.

DO
Control block
WHILE Conditional expression

Function

® After executing the control block, the assembler checks the conditional expression written in
the operand of WHILE to see if it is true or false.

® |f the conditional expression is true, control branches to DO.

® |f the conditional expression is false, control branches to the next line.

® A 'BREAK' statement can be written in the control block. This 'BREAK' statement causes
control to branch to the line next to WHILE.

® A 'CONTINUE' statement can be written in the control block. This 'CONTINUE' statement
causes control to branch to the WHILE statement.

® A'FOREVER' statement can be written in the conditional expression. This statement causes
control to branch to the DO statement unconditionally.

® Labels are generated for DO and WHILE.

Rules for writing command

® Always be sure to enter a space or tab between WHILE and the conditional expression.
® Expressions described in Conditional Expressions (Structured description Function) can be
written in the conditional expression.

Example of source description
DO
WHILE [lab].b ==

Expansion example

.DO0000:
CMP.B #1,lab
JEQ ..DO0000
.DO0002:

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
233

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Structured Description Function

BREAK Statement

Function

® This statement generates an unconditional branch instruction.

Rules for writing command

® A BREAK statement can be written in the control block of FOR, DO, and SWITCH.
® A BREAK statement can be written in the control block of an IF statement providing that it

exists in the control block of FOR, DO, or SWITCH statement.

® No BREAK statement can be written in the control block of an ordinary IF statement.

Example of source description
FOR [lab]=1 TO 10 STEP 1

BREAK

NEXT

Expansion example
MOV.W #1,lab ; Generated for FOR.

..fr0000: : Generated for FOR.
CMP.W #10,lab ; Generated for FOR.

JEQ ..fr0002 : Generated for FOR.
JMP ..fr0002 ; Generated for BREAK.

..fr0001: ; Generated for STEP.
ADD.W #1,lab ; Generated for STEP.
JMP ..fr0000 ; Generated for STEP.

..fr0002: : Generated for NEXT.

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS

234

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

CONTINUE Statement

Function
® This statement generates an unconditional branch instruction.
Rules for writing command

® A CONTINUE statement can be written in the control block of FOR and DO statements.

® A CONTINUE statement can be written in the control block of an IF or SWITCH statement
providing that it exists in the control block of FOR or DO.

® No CONTINUE statement can be written in the control block of an ordinary IF or SWITCH
statement.

Example of source description
FOR [lab]=1 TO 10 STEP 1

CONTINUE
NEX'i'
Expansion example
MOV.W #1,lab : Generated for FOR.
..fr0000: : Generated for FOR.
CMP.W #10,Jab ; Generated for FOR.
JEQ ..fro002 ; Generated for FOR.
JMP ..fro001 ; Generated for CONTINUE.
..frObOl: ; Generated for STEP.
ADD.W #1,lab : Generated for STEP.
JMP ..fr0000 ; Generated for STEP.
..fr0002: ; Generated for NEXT.

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
235

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

FOREVER Statement

Function
® This statement generates an unconditional branch instruction.
Rules for writing command

® A FOREVER statement can be written in the conditional expression of FOR and DO-WHILE
statement.

® A conditional expression consisting of FOREVER is always true.
FOR FOREVER
WHILE FOREVER

Example of source description
FOR FOREVER
NEXT

Expansion example
..fr0000:

jMP ..sfr0000
..fr0002:

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
236

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Assignment Statement

Basic structure

® An assignment statement consists of a substitute command (=) and the left and right sides of
the statement.

Function

® An assignment statement substitutes the calculation result of the expression on the right side
of the statement for a variable on the left side. There are following types of assignment

statements:
Operations content
= Substitutes an unsigned value for the left side.
=S Substitutes a sign-extended value on the right side for the left side.
=Z Substitutes a zero-extended value on the right side for the left side.
=.EL Generates a LDE command.
=.ES Generates a STE command.

Rules for writing assignment statement

® No expressions that contain unary or binary operators can be written on the right side of
assignment statement '=.S,"' '=.Z," '=.EL,' or '=.ES.'

® \Variables listed below can be written on the left and right sides of assignment statements '=.S'
and '=.Z"
® Memory variables (except for [SP] relative)
® Data register and address register indirect among register variables

® The variables that can be written on the left and right sides of assignment statement '=.EL" are
those whose contents can be written in the operands 'dest' and 'src’ of mnemonic 'LDE.’

® The variables that can be written on the left and right sides of assignment statement '=.ES' are
those whose contents can be written in the operands 'dest’ and 'src' of mnemonic 'STE."

Precautions

For details about mnemonics, refer to the "M16C Family Software Manual."

® A warning is output if an entirely same variable is written on the left and right sides of an
assignment statement.

® If a different type of variable is substituted for, no expressions can be written on the right side
of the assignment statement that contains unary or binary operators.

Combination of variable types that can be written in assignment statement (=)

Left side(Type) Right side(Type)
Byte Word Address Long word
Byte Enable Disable Disable Disable
Word Disable Enable Disable Disable
Address Disable Disable Enable Disable
Long word Disable Disable Disable Enable

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
237

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Structured Description Function

Combination of variable types that can be written in sign-extended assignment statement (=.S)

Left side(Type) Right side(Type)
Byte Word Address Long word
Byte Disable Disable Disable Disable
Word Enable Disable Disable Disable
Address Disable Disable Disable Disable
Long word Disable Enable Disable Disable
Precautions

If for a 'word type =.S byte type' assignment expression, "R2" or "R3" is specified for the left
side of the expression, the assembler uses the "R0" register.
If for a 'long word type =.S word type' assignment expression, "memory variable" or "R3R1" is
specified for the left side of the expression, the assembler uses the "R2R0" register pair.

Combination of variable types that can be written in zero-extended assignment statement (=.2)

Left side(Type) Right side(Type)
Byte Word Address Long word
Byte Disable Disable Disable Disable
Word Enable Disable Disable Disable
Address Enable Enable Disable Disable
Long word Enable Enable Enable Disable

Precautions

If for a 'word type =.Z byte type' assignment expression, "R2, "R3" is specified for the right side
of the expression, the assembler uses the "R0O" register.

Combination of variable types that can be written in special assignment statements (=.EL, =.ES)

_ Right side(Type)
Left side(Type)
Byte Word Address Long word
Byte Enable Disable Disable Disable
Word Disable Enable Disable Disable
Address Disable Disable Disable Disable
Long word Disable Disable Disable Disable
REJ10J2006-0200 Rev.2.00 2010.04.01 ENESAS

238

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Description example of assignment statement and its expansion example

Example of source description Expansion example

R1=RO MOV.W RO,R1

RO=RO + 2 ADD.W #2,R0O

RO =.S ROL EXTS.B ROL

RO =.Z ROL MOV.B #0,ROH

ROL =.EL [lab].B LDE.B lab,ROL

[lab].W =.ES RO STEW RO,lab

RO =.S ROL EXTS.B ROL

RO =.S ROH MOV.B ROH,ROL
EXTS.B ROL

[lab_w].W =.S ROL MOV.B ROL,lab_w
EXTS.B lab_w

R2R0 =.S RO EXTS.W RO

R2R0 =.SR1 MOV.W R1,R0O
EXTS.W RO

[lab_I].L =.S RO EXTS.W RO
MOV.W RO,lab_|
MOV.W R2,lab_|+2

RO =.Z ROL MOV.B #0,ROH

RO =.Z ROH MOV.B ROH.ROL
MOV.B #0,ROH

[lab_w].W =.Z ROL MOV.B ROH,lab_w
MOV.B #0,lab_w+1

[lab_a].A=.Z RO MOV.W ROL,lab_a
MOV.B #0,lab_a+2

ROL =.EL [lab_b] LDE.B lab_b,ROL

[lab_w].W =.ES RO STE.W RO.lab_w

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
239

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Structure of Structured Description Commands

This section shows structured description statements that can be written in AS30 programming.

When writing structured description, please follow the syntax shown below.

Definition of Terms

The following explains the description terms used in this section.

indicated by each term can be written at the position where the term is written.

Register variable

Term Contents
regb ROL,ROH,R1L,R1H,A0.B,A1.B,[A0.B],[A1.B]
regw RO,R1,R2,R3,A0,A1,[A0],[A1]
regc FB,SB,SP,ISP,FLG,INTBH,INTBL
reglw R2R0, R3R1
regad A1A0
Precautions

SP refers to the stack pointer (user stack pointer or interrupt stack pointer) indicated by the U
flag. For details about the stack pointer and U flag functions, refer to the "M16C Family

Software Manual."
Special register variable

Term Contents
dsp:8[SP] Special Page addressing variable
INTB INTB
IPL IPL
[STK] [STK]
Precautions

Memory variable except for bit variable can be written for "dsp".

Memory variable

Term Contents

memb Byte type memory variable (except for description of "SP")
memw Word type memory variable (except for description of "SP")
mema Address type memory variable

meml Long word type memory variable

regmembit Register bit variable, memory bit variable

flgbit Flag variable

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS

240

The variable name or operator

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Operators

Term Contents

Unary operators ~, - -

Binary operators 1 +, +.C, -, -.C

Binary operators 2 +.C, +.CD, -.C, -.CD

Binary operators 3 * *S

Binary operators 4 1, 1.S, %, %.S, %.SE

Binary operators 5 & |, "7

Binary operators 6 >>.C, <<.C

Binary operators 7 <>R

Binary operators 8 <> A <>L

Relational operators == 1=,>>85,<,<8§,=>=>5,<=<=85
Coincidence comparing operators ==, I=

Logical operators &&, ||

Constants Numeric value or expression value that is fixed when assembled

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
241

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Syntax of Statements

The following shows the syntax of statements.

Uo = Unary operator

Bo = Binary Operator

Ro = Relational operator

Co = Coincidence comparing operator
Lo = Logical operator

Simple assignment statements and assignment statements containing unary operators

Left side is Memory variable

memb = <constant>
memb = <Uo> memb
memb = <Uo> regb
memb = [STK].B
memb =ES memb,regh
memw = <constant>
memw =S <Uo> memw
memw =S <Uo> regw
memw =S memb
memw =S regb
memw =Z memb
memw =Z reg

memw = [STK].W
memw =.ES memw,regw
mema = <constant>
mema = mema
mema =Z memb
mema =Z memw
mema =Z regh
mema =Z regw
memlw = <constant>
memlw = meml
memlw = R2R0
memlw = R3R1
memlw = A1A0
memlw =S memw
memlw =S regw
memlw =Z memb
memlw =Z memw
memlw =Z mema
memlw =Z regb
memlw =Z regw

Precautions
Only the data register variables can be written for "regb" and "regw" in "=.S" and "=.Z."

REJ10J2006—0200 Rev.2.00 2010.04.01 ENESAS
242

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Structured Description Function

Left side is Register

regb = <constant>
regh = <Uo> memb
regh = <Uo> regb
regb(Except for A0O.B and A1.B)= [STK].B
regw = <constant>
regw = <Uo> memw
regw = <Uo> regw
regw =S memb

regw =S regb

regw =Z memb

regw =Z regh

regw = [STK].W
regl = <constant>
regl = meml

regl = R2R0

regl = R3R1

regl = A1AO0

regl =S memw

regl =S regw

regl =Z memb

regl =Z memw

regl =Z mema

regl =Z regb

regl =Z regw

regc = <constant>
regc = memw

regc = regw

regc = [STK].W

RO,R1,R2,R3, A0,A1,SB,FB=[STK].W(Multiple register can be written in left side)

Left side is Register or Memory variable

memb, regb =.EL memb

memw, regw =.EL memw

memw, regw = regc

memb,regh = dsp:8[SP]

memw,regw = dsp:8[SP]

mema, [A0.A], [A1.A], R2R0, R3R1, A1IA0 = regpc

Left side is Special Register

INTB

IPL
dsp:8[SP]
dsp:8[SP]
[STK].B
[STK].B
[STK].B
[STK].W
[STK].W
[STK].W
[STK].W
[STK].W
[STK].A

Left side is bit variable

<constant>

= <constant>
memb,regb
memw,regw
<constant>

memb

regb (Except for AO.B and A1.B)
<constant>

memw

regw

regc

RO,R1,R2,R3,A0,A1,SB,FB (Multiple register can be written)

mema

regmembit = 1, 0, ~regmembit(Bit name is same as left side)

fighit =

1,0

REJ10J2006—0200 Rev.2.00 2010.04.01

243

RENESAS

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System

Structured Description Function

Assignment statements containing unary operators

memb/regbh = Uo memb/regb
memw/regw = Uo memw/regw

Assignment statements containing binary operators 1

memb/regb
memw/regw

[Uo] memb/regb Bo 1 constant/memb/regb
[Uo] memw/regw Bo 1 constant/memw/regw

Assignment statements containing binary operators 2

memb/regb
memw/regw

[Uo] memb/regb Bo 2 constant/memb/regb
[Uo] memw/regw Bo 2 constant/memw/regw

Assignment statements containing binary operators 3

memw/regw
meml/reg|

[Uo] memb/regb Bo 3 constant/memb/regb
[Uo] memw/regw Bo 3 constant/memw/regw

Assignment statements containing binary operators 4

memb/regb
memw/regw

[Uo] memb/regb Bo 4 constant/memb/regb
meml/reglw/regad Bo 4 constant/memw/regw

Assignment statements containing binary operators 5

memb/regh = [Uo] memb/regb Bo 5 constant/memb/regb
memw/regw = [Uo] memw/regw Bo 5 constant/memw/regw

Assignment statements containing binary operators 6

memb/regh
memw/regw

[Uo] memb/regb Bo 6 constant
[Uo] memw/regw Bo 6 constant

Assignment statements containing binary operators 7

memb/regh = [Uo] memb/regb Bo 7 constant/R1H
memw/regw = [Uo] memw/regw Bo 7 constant/R1H

Assignment statements containing binary operators 8

memb/regh = [Uo] memb/regb Bo 8 constant/R1H
memw/regw = [Uo] memw/regw Bo 8 constant/R1H
meml/reglw/regad = meml/reglw/regad Bo 8 constant/R1H

REJ10J2006-0200 Rev.2.00 2010.04.01 «RENESAS
244

M16C Series, R8C Family C Compiler Package V.5.45 Assembler System Structured Description Function

Syntax of expression 1

[Uo] memb/regb
[Uo] memw/regw
Expression 2

Expression 2 Ro Immediate/memb/regb
Expression 2 Ro Immediate/memw/regw
Expression 2 Lo Expression 2
Expression 3 Lo Expression 3
Expression 3

regmembit/flgbit

Syntax of expression 2

Among syntaxes indicated on the right side of the assignment expression, all syntaxes except for
the following contents can be written.

® Registers and stacks listed below
FB, SB, SP, ISP, FLG, INTBH, INTBL, INTB, IPL and [STK]

® Expressions where multiplication results in 32 bits
® Inverted expressions of register bit and memory bit variables

~regmembit

Syntax of expression 3

Binomial expression .b Ro Constant/memb/regb
Binomial expression .w Ro Constant/memw/regw
regmembit/flgbit = coincidence comparing operator 1/0

Syntax of Conditional Expression

IF statement
IF Expression 1
FOR-STEP statement

FOR variable= [Uo]variable/constant TO variable/constant STEP constant

FOR-NEXT statement

FOR Expression 1
WHILE statement
WHILE Expression 1

SWITCH statement
SWITCH Expression

REJ10J2006—0200 Rev.2.00 2010.04.01 1XENESAS
245

M16C,R8C Family C Compiler Package V.5.45
Assembler User’'s Manual

Publication Date: Apr. 1, 2010 Rev.2.00

Renesas Electronics Corporation
Published by: 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8668 Japan

Edited by: Renesas Solutions Corp.

© 2010 Renesas Electronics Corporation, All rights reserved. Printed in Japan.

M16C Series,R8C Family
C Compiler Package V.5.45
Assembler User’'s Manual

LENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

RE10J2006-0200

	M16C Series,R8C Family C Compiler Package V.5.45 Assembler User's Manual
	Notice
	Preface
	AS30 Contents
	Manual Writing Conventions
	Specifications of AS30
	Character Set

	Outline of Function
	Configuration
	Functions
	Outline Processing by AS30
	Structure of as30
	Outline Processing by as30

	Outline of as30 functions
	Outline of ln30 functions
	Outline of lmc30 functions
	Outline of lb30 functions
	Outline of xrf30 functions
	Outline of abs30 functions

	AS30 Functions
	Relocatable Assemble
	Unit of Address Management (Section)
	Type of Section
	Section Attributes

	Rules on Section Management
	Section Management by as30
	Section Management by ln30

	Label and symbol
	Management of Label and Symbol Addresses
	Converting Relocatable Values

	Library File Referencing Function
	Rules for referencing library modules

	Management of Include File
	Code Selection by AS30
	Optimized Code Selection
	Outline of Mnemonic Description
	Optimized Selection by AS30
	When jump distance specifier is omitted (normally omitted)
	When instruction format specifier is omitted (normally omitted)
	When addressing mode specifier is omitted
	Example of Optimization Selection by as30

	SB Register Offset Description
	Special Page Branch
	Special Page Subroutine
	Special Page Vector Table
	Setting Special Page Vector Table
	Referencing Special Page Vector Table

	Macro Function
	Macro Function
	Macro Definition
	Macro Local Labels
	Macro Call
	Repeat Macro Function

	Conditional Assemble Control
	Configuration of Conditional Assemble Block
	Executing Conditional Assemble

	Structured Description Function
	Source Line Information Output
	Symbol Definition
	Environment Variables of as30
	AS30COM
	BIN30
	INC30
	LIB30
	TMP30
	Example of setting environment variable.

	Output messages
	Types of Errors
	Return Values for Errors

	Input/Output Files of AS30
	Relocatable Module File
	Assembler List File
	Assembler Error Tag File
	Branch Information File
	Absolute Module File
	Map File
	Link Error Tag File
	Motorola S Format
	Intel HEX Format
	ID File
	Format of ID file
	File name of ID file
	Directory for ID file generated

	Library File
	Library List File
	Cross Reference File
	Absolute List File

	Starting Up Program
	Precautions on Entering Commands
	Structure of Command Line
	Rules for Entering Command Line

	Method for Operating as30
	Command Parameters
	Rules for Specifying Command Parameters
	Include File Search Directory
	as30 Command Options
	Error Messages of as30
	Warning Messages of as30

	Method for Operating ln30
	Command Parameters
	Rules for Specifying Command Parameters
	Command File
	Command Options of ln30
	Error Messages of ln30
	Warning Messages of ln30

	Method for Operating lmc30
	Command Parameters
	Rules for Specifying Command Parameters
	lmc30 Command Options
	Error Messages of lmc30
	Warning Messages of lmc30

	Method for Operating lb30
	Command Parameters
	Rules for Specifying Command Parameters
	Command Options of lb30
	Error Messages of lb30
	Warning Messages of lb30

	Method for Operating xrf30
	Command Parameters
	Rules for Specifying Command Parameters
	Command Options of xrf30
	Error Messages of xrf30

	Method for Operating abs30
	Precautions using abs30
	Command Parameters
	Rules for Specifying Command Parameters
	Command Options of abs30
	Error Messages of abs30
	Warning Messages of abs30

	Rules for Writing Program
	Precautions on Writing Program
	Character Set
	Reserved Words
	Types of Reserved Words

	Names
	Rules for Writing Names
	Label
	Symbol
	Bit symbol
	Location symbol

	Lines
	Rules for Writing Lines
	Directive command line
	Assembly source line
	Label definition line
	Comment line
	Blank line

	Line concatenation
	Operands
	Rules for Writing Operands
	Numeric value
	Expression

	Operators
	Operation Priority in Expression
	Expression and Its Value

	Character String

	Directive Commands
	List of Directive Commands
	Address control
	Assemble control
	Link control
	List control
	Branch instruction optimization control
	Conditional Assemble Control
	Extended Function Directive Commands
	Control instructions for outputting inspector information
	Macro directive commands
	Macro symbols
	Character string functions

	Structured Description Function
	Outline
	Structured Description Statement
	Types of Structured Description Statements
	Types of Variables

	Reserved Variables
	Register Variables
	Stack Variables
	Flag Variables
	Register Bit Variables

	Memory Variables
	Types of Memory Variables
	Function of command option '-M'
	Memory Variable Addressing Modes
	Size Specifier

	Memory Bit Variables
	Memory Bit Variable Addressing Modes

	Structured Operators
	Expressions

	Structure of Structured Description Statement
	Conditional Expression
	Nesting of Structured Description Statements

	List of Structured Description Commands
	IF-ENDIF
	ELSE
	ELIF
	FOREVER
	BREAK
	DEFAULT

	Structure of Structured Description Commands
	Definition of Terms

	Syntax of Statements
	Simple assignment statements and assignment statements containing unary operators
	Syntax of expression 1
	Syntax of expression 2
	Syntax of expression 3
	Syntax of Conditional Expression

