& ECHELON

|zoT™
NOdeBuiIder The NodeBuilder Developer’s Guide instructions,

updated with [zoT terms.

User’s Guide

078-0516-01B

Echelon, LON, LonWorks, Neuron, 3120, 3150, Digital
Home, i.LON, IzoT, FTXL, LonScanner, LonSupport, LNS,
LonMaker, LONMARK, LonPoint, LonTalk, NodeBuilder,
ShortStack, and the Echelon logo are trademarks of
Echelon Corporation that may be registered in the
United States and other countries.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not
designed for use in equipment or systems which involve
danger to human health or safety or a risk of property
damage and Echelon assumes no responsibility or
liability for use of the Neuron Chips or LonPoint Modules
in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR ANY PARTICULAR PURPOSE,
NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©1997-2014 by Echelon
Corporation.

Echelon Corporation
www.echelon.com

CONTENTS

PO ACE e e iX
PUIPOSE . X
T 1= o = N X
Hardware ReqUIFEMENTS...........uuiiiiiiiii ittt X
(0] 01 1] 0| SR RSP X
Related ManUaIS..........oooooiieii i Xi
For More Information and Technical SUPPOrt.........ccccvveveee e Xii

1 INtrOAUCTION ... 1
Introduction to the 1zoT NodeBuilder TOOI.........cccoooiiiiiiiiiiiiic s 2
New Features in the 1zoT NodeBuilder Toolccoooeiiiiiiiiiiiieecccccccccc, 2

LONTAIK/IP SUPPOIT ..ttt 2
(2 Y AN @1 g1 7 | S o] oo o S 3
Series 6000 Chip SUPPOIT......uuuiiiieeiiiiiiiiieee e e e e e e e s 3
Transient Functions and Automatic Memory Mapscccocccvvevveeeeeiinnnns 3
FT 6000 EVB Evaluation Boardcccoveiiiiiiiiiieiniiie e 4
Extended Address Table..........coovviiiiiiiiiii e 4
Network Variables Up TO 228 BYLESccuecevviicviriieieeeiiiiiiieeeee e s 4
Neuron C Version 2.3 ENhaNCEMENLScvvvviviviiiieiiiiieiereeeeeveveeeeereeeeenns 5
What's Included with the 1zoT FT 6000 EVK.......ccoooiiiiiiiiiiieiiiecceccccccens 6
IzoT NodeBuilder Development TOOI.........c.uueeiiiiiiiiiiiiiiee e 6
FT 6000 EVB Evaluation BOArdsceeeeiveeieieiieeeeieieeereeeeeeeeeeeeeeeseeeens 7
[ZOT COMMISSIONING TOOI ..ccciiiiiiiiiie e 8
[ZOT NEtWOrk SEIrVICES SEIVEToeiiiiiiieiiiiie ittt 8
[ZOT ROULET ...ttt e e e e e e e e e e e e e 8
1ZOT Plug-in for WireSharkc.uevevieeiiiiieeee s 8
Introduction to NodeBuilder Device Development and Network Integration...9
CRANNEIS ..ot 9
ROULEIS ..ot e e e e e e s e es 9
P Y o] o] o= 1410] o 1< ST PURT PRI 10
Program IDS ...ttt 10
NEtWOrk VariableScooviiiiiiiiiiiiieeeeeeeeeeeeeeeeeee et 11
Configuration Propertiescouuo it 12
[T g Tox o] 0= L = [T 2 13
Functional ProfileS.........eeeeiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 13
Hardware TEMPIAtES........uvuviiiieiiiiiee e 14
NEUION €ttt e e e e e e e e e e s e e eeeas 14
DY oI =T g1 o] o (TS 14
Device Interface FileS. ... 14
RESOUICE FilES ...t 14
L= 10 (=] PP PP PPPT PR 15

2 Installing the 1zoT NodeBuilder Development Tool 17

Installing the 1Z0T FT 6000 EVK.......cocuviiiiiie e e 18
Installing the 1zoT NodeBuilder Software........ccccccoeevvvveeeeeee i 18

3 1zoT NodeBuilder Quick-Start EXErciSe.....ccccooeevvvieeeiiviieieeiniinnennnns 25

1zoT NodeBuilder QUICK-Start EXEICISE.........uuuuuurururuuiririrniiinrirernrinnnarannnnnnan. 26
Step 1: Creating an 1zoT NodeBuilder Project........ccccccevvvvivvieeeeeeeiiinns 26
Step 2: Creating a NodeBuilder Device Template...........cocccvvvvveeeeeiienns 29
Step 3: Defining the Device Interface and Creating its Neuron C
ApPlICation FramMEWOTKcceeiiiiiiiiiiiiee e e it ee e e e seeer e e e e e snraneeee s 33
Step 4: Developing the Device Application.........cccccccveeiiiiciiieeeee e, 38

IzoT NodeBuilder User's Guide

FT 6000 Evaluation BOArds............ceveeeieieeiieeiiiiiieeeeeeeeeeviinseeeeeseeennns 39

LTM-10A Platform and Gizmo 4 1/O Boardccccevcveiinrerneennne 41
Step 5: Compiling, Building, and Downloading the Application............... 42
Step 6: Testing the Device Interface.........cccccoviiiiiiiiiiiiiiieeeee 46
Step 7: Debugging the Device Applicationccccceeiiiiiiiiiiiine e 48
Step 8: Connecting and Testing the Device in a Network 54
Additional Device Development StEPS.......c..uvviiieeiiiiiiiiiieee e 60
Creating an 1zoT CT StENCIluviiiiiiiiiiieeee e 60
Creating an 1zoT Device PIUg-iN......ooiiiiiiiiiiieeee e 64
[TV o] o1 T =T o T o 11 S 65
Creating a Device Installation Application............ccccveveeeniiicinnnnn. 65
Applying for LONMARK Certificationcccevvvecvvieereeeisiiiiiiiieeeeeen 67
Creating and Opening 1zoT NodeBuilder Projectscccccce...... 69
Introduction to the NodeBuilder Project Managercooocvveeeeeeeeeniiiiineenn. 70
Using the ProjeCt Panecooeii i 71
Creating a NodeBuUIlder Projectcuecviiiciiiiieiee i 72
Creating a NodeBuilder Project from 10T CTccccvvvveeeiiiiiiieeeee e 73
Creating a NodeBuilder Project from the NodeBuilder Project Manager 73
Creating a NodeBuilder Project from the New Device Wizard................ 76
Opening a NodeBuUilder Projectuuecuiiiciiiiieiee e 78
Opening a NodeBuilder Project from the 1zoT Commissioning Tool 78
Opening a NodeBuilder Project from the NodeBuilder Project Manager 80
Copying NodeBUIlder Projects.ccuii it 81
Using the IzoT Commissioning Tool to Backup and Restore a
NOAEBUIIAEr PrOJECL ...t 81
Manually Copying NodeBuilder Project Files...........ccoooiiiiiiiiiiiiiiiinen. 84
Copying NodeBuilder Device TEMPIALES........ccevveeeiiiiiiiiiiee e ecieee e e 85
Copying User-Defined Resource Files........ccccccveeiiiiiciiieeie e 86
Viewing and Printing NodeBuilder XML FileS........ccccccceeviiiiiiieeee e 86
Creating and Using Device Templatesccccccceeiiieeiiiiiiiiiceineenen, 88
Introduction to Device TemPlates.........c..uveiiiiiiiiiiiiii e 89
Creating Device TeMPIALESc..vviiiiee e e s 89
Starting the New Device Template Wizardccccccceveeiiiiiciiiineeee i, 89
Specifying the Device Template Name.........ccoocvvveeeeeeeiiiiiiiieinee e 90
Specifying the Program IDccoeeoiiociiieieiee e 91
Specifying Target Platforms..........cooooiiiiiiie e 96
Managing and Editing Device TEMPIAtES........ccoovvvvirireeeeiiiiiieee e 98
Managing Device TEeMPIAteScccuuiiiiiieaiiie e 98
Viewing and Editing Device Templates.........ccccccviiiiiieiieeininiiiiieeeeeeene 99
Viewing Device Template COMPONENTSccevieiiiiiiiiiiiiaeeeiiiiiieeeeaeenn 100
Managing Development and Release Targetsoccuvveeeeeeiniiiinnenn. 102
Setting Device Template Target Properties: Compiler................... 103
Setting Device Template Target Properties: Linker 106
Setting Device Template Target Properties: EXporter.................... 107
Setting Device Template Target Properties: Configuration............ 109
Inserting a Library into a NodeBuilder Device Template 111
Using Hardware TEMPIAESuuviiieeeiiiiiieiree e 114
Creating Hardware Templatesccovviereeeiiiiiiiieeee e scieeee e e 115
Editing Hardware Templates..........ccuuviiiiieiiniiieeee e 117
Setting Hardware Properties ... 117
Setting Memory PropertieS........c.uueeieiieiiiiiiiieeee e 120
5000 SEriES ChiPS..cciieiiiiiiiieieeee et 121
6000 SErES ChIPS..ciiieiiiiiiiiiiee et 122
3150 NEUION COME ...oeeiiiiieiiiiiiieeas 122

Preface

3120 and 3170 NEeUron COreccoevvveeeeeeeeieeeiiiee e eeeeevns 122

Setting the Hardware Template Description..........c.ccccvvvvveeeeriiinns 122
6 Defining Device Interfaces and Creating their Neuron C Application
FrAMEWOTK ... 124
Introduction to Device INtErfaceScovuiiiiiiiiie e 125
Starting the Code Wizard............ccovviciiiiieiee e e 125
Using the Resource Pane...........cccccoiiiiiiiiiiieiiniiieeec e 126
Introduction to Resource File SetS.........ooccviieiiiiiiiiiiiieeeeeenn 127
INtroduction t0 RESOUICESccuuviiiiieeieiiiiieee e 128
Using the NodeBuilder Resource Editorcccccovviiiieeeenenn. 130
Using the Program Interface Paneccccccciiiiiinniiieen. 130
Defining the Device INterface..........ccuveieieaiiniiiiee e 132
Adding Functional BIOCKScccoiviiiiiiieiee s 135
Using Large Functional Block Arrays.........cccccccveeeiiiinvieeneeennn, 138
Editing Mandatory Network Variablesccccccovvciiiieereecniiciinnen, 138
Editing Mandatory Configuration Properties..........ccccccevveevivicivnnnnnn. 145
Implementing Optional Network Variablesccccccovvviiiiieneeenn. 151
Implementing Optional Configuration Propertiesccccccvvveeennn. 153
Adding Implementation-specific Network Variables........................ 155
Adding Implementation-specific Configuration Properties 158
Setting Initial Values for Network Variables and
Configuration Properties...........ccuueieiieeaiiiiiiieeee e 161
Setting Initial Values for Structured Data TypesS..........occvveeeen. 162
Setting Initial Values for Enumerations...........ccccccceeeevvieivnnnnnn. 164
Setting Initial Values for Floating Point and s32 Data Types... 165
Using Changeable-Type Network Variablesccccccceeevviinvnnnen. 166
Generating Code with the Code Wizardcccccevveeeviiiiiiienee e 167
Files Created by the Code Wizardcccccceeeeeiiiciiinec e, 167
Using Code Wizard Templates..........ccovveeiieeiiiiiiiiieeieee e 170
Version 3 TEMPIALESeevveeeiiiiee e 170
Version 2 TEMPIALESeevveeiiiiiiiieee e 170
Version 1 TemMPIatesScoooov i 171
Creating the Device APPlICAtioNcooiiiiiiiiiiiieiiiiieieeee s 171
7 Developing Device ApplicationS.........ooouuiiiii i 173
INtroduction t0 NEUION €ouvviiiiiiiiie et 174
Unique Aspects 0f NEUron Coocviiiieieeeeecciieeeee e 174
Neuron C Variables. ... 176
Neuron C Variable TYPeScccuviiiiiiii e 176
Neuron C Storage ClaSSeS.......uuiiiiia it 176
Variable Initialization.............ccoiiiii e 177
Neuron C DecClarationscc.uuueeiiieiiiiiiiieee e 177
Introduction to Neuron C Code Editing..........coouuiiiiiiiiiiiiiiiieecee e 178
Modifying Neuron C Code Generated by the Code Wizard.................. 179
Code COMMEANAS......uviiieiiiiiie e 179
Code GUIEIINES ... 180
Add I/O and Timer Declarations..........cccocuvveeiiiiieeiniieee i 180
Add when-tasks Responding to I/0O and Timer Events............ 181
Add interrupt-tasks Responding to Interrupt Requests............ 181
Add Code to when(nv_update_occurs(<nv>)) when-task
of Functional Blocks with Input NVS............oooiiiieinniiiie. 181
Share Code with filexfer.nc when Handling Explicit
Messages on a Device Implementing FTPcccoooiiieeeeenn. 181
Ignore NCC#310 and NC#463 Compiler Warnings.................. 181
Implementing Changeable-Type Network Variables...................... 181

IzoT NodeBuilder User's Guide

Neuron C Version 2 Features Not Supported by the Code Wizard 183

Y o ET ST Vo [T = Vo [183
/O MOAEIS ..o e 183
Network Variablesc.uueiiiiiiie e 183
Configuration Propertiesccccooeiieieieeieiiiiieeeee e 183
WHEN() ClAUSES ...t 184
LONMARK SEYIE ...eiiiiieiiiiiieeie ettt 184
Director FUNCHIONS ... 184
INtErrUPt TASKS .o 184
Using the NodeBUIlder EItOrcueeeviiiiiiiieee e 184
Using Syntax Highlightingcoocciiiiiie e 185
Searching SoUrce FIlES........uuuiiiiiiiiiieec e 185
Searching a Single File for a String..........ccccvvvevee e 185
[RY=T 0] = Vo o R I = SRR 186
Searching Multiple Files for a String..........ccccvcveeeeeviicciieieee e 186
USING BOOKMAIKScoiiiiiiiiiiii e 189
Setting EdItor OPLiONS ...t 189
8 Building and Downloading Device Applications 191
Introduction to Building and Downloading Applicationscccccccoevuvvneee.. 192
Building an Application IMagecceeeviiieiiiieee e 192
Excluding Targets from a Build ..., 197
Cleaning Build OUIPUL FIlEScooiiiiiiiiiiiiiee et 197
Viewing Build Statusooooiiiiiiiiii e 198
Setting BUild OPtiONS.......oueiiiiiiiee et 200
Downloading an Application IMageueeiiiariiiiiiiee e 201
Programming 5000 and 6000 Off-chip Memory...........ccccccieeniiiiiineen. 203
Programming 5000 and 6000 Series Chips In-Circuit.................... 203
Programming 3150 Off-chip Me@MOry.........ccccvvviveeeee i 208
Programming 3150 ON-Chip MEMOIY.......cccovcuvieireeeeeiiiiieee e e 209
Programming 3120 and 3170 On-chip MEMOIY.........ccccvveeveeeeiiivienenn. 210
Programming PL 3120 and PL 3170 Smart Transceiver

ParametersSoooi i 210
Upgrading Device AppliCatioNScooiiiiiiiiiiiieiiee e 211
Adding and Managing Target DEVICESccouiiuiiiiiieaiiiiiiieeee e 211
Adding a Target Device with the IzoT Commissioning Tool................. 211
Adding a Target Device with the NodeBuilder Project Manager 215
Managing Target DEVICESccouiiuuiiiiiiee et 217
Editing Target Device SettingS.......cc.uuvvieeeiiiiiiieieee e e e e seeeees 218

9 Testing a NodeBuilder Device Using the 1zoT Commissioning Tool 221
Introduction to Testing NodeBuilder DeViCesccceeriiiiiieeieeeinniiiiieeen. 222
Monitoring and Controlling NodeBuilder Devicescccccceeeviiiiinneen. 222
Using the Data Point SNAPEccoviiiiiiiiiiiee e 222
Using the LONMaKEr BIOWSETc.ccoiiiiiiiiiiiiaeeeiiiiieee e 224
Connecting NodeBUIlder DEVICESucuvveeiiiiiiiiiieie e seciiieeee e e e e 227
10 Debugging a Neuron C Application.........ccccccveeeiiieeeivciiicicieeeee, 233
Introduction t0 DEDUGQINGvveeiiiiaiiiiiieeee e 234
Starting the NodeBuilder Debugger ... 234
Using the Debugger TooIbar...........c..uviiiiiiiini e 236
Stopping an APPlICALIONuvivieeii e 237
Halting an ApPliCAtioNccvviiieeee e 238
RUNNING t0 the CUISOKcoo i 238
Setting and Using Breakpointsccceevviieiieeeeeeesiisiiiieeeeeeeesseenns 238
Stepping Through AppliCatioNScc.vvvviieee e 239

Vi Preface

Debugging Interrupts for 5000 or 6000 Series chipScccccveevvvvcevvennen. 239

Using Statement EXPanSION..........occviriirieeeisiiiiiereee e e s e sssieeeeeee e e s e snnens 239

Using the Watch LiSt Pan@...........coocvviiiiieeiii e 239

Using the Call Stack Paneoooiiiiiiiiiiii e 243

Using the Debug Device Manager Pane...........cccccevviiiiiieneee e, 243
Peeking and Poking MemOrycuuiiiiiiiiiiiiieeeee e 244
Executing Code in Development Targets Only............cccoceeeeniiiiinnnen. 245

Using the Debug Error Log Tab ..o 245

Setting Debugger OPLIONS.......ccoii i 245
Appendix A Using the Command Line Project Make Facility 249
Using the NodeBuilder Command Line Project Make Facility..................... 250
Appendix B Using Source Control With a NodeBuilder Project.....253
Using Source Control with a NodeBuilder Project........ccccccevvvvvvveeeieeeeiiinns 254
ApPPENdiX C GIOSSAIY ..ccoiiieeiiieie e e 257
Appendix D NodeBuilder Software License Agreement................. 271

IzoT NodeBuilder User's Guide Vi

Viii Preface

Preface

The 1zoT™ NodeBuilder® Development Tool is a complete hardware and software
platform that is used to develop applications for Neuron® Chips and Echelon® Smart
Transceivers. The 1zoT NodeBuilder tool lets you create, debug, test, and maintain
IzoT and LONWORKs® devices. It includes a suite of device development software
that you can use to develop device applications, and hardware platforms that you can
use to build and test prototype and production devices.

IzoT NodeBuilder User's Guide iX

Purpose

This document describes how to use the 1zoT NodeBuilder tool to develop 1zoT and LONWORKS
device applications and build and test prototype and production 1zoT and LONWORKS devices.

Audience

This guide is intended for device and system designers with an understanding of control networks.

Hardware Requirements

Requirements for computers running the 1zoT NodeBuilder tool are listed below:

e Microsoft® Windows. Windows 8 64-bit and 32-bit, or Windows 7 64-bit and 32-bit, or Windows
XP 32-bit. Echelon recommends that you install the latest service pack available from Microsoft
for your version of Windows.

e AnIntel® Pentium® or compatible processor meeting the minimum Windows requirements for the
selected version of Windows.

e 300 to 550 megabytes (MB) free hard-disk space, plus the minimum Windows requirements for
the selected version of Windows.

0 The 1zoT NodeBuilder tool requires 100 MB of free space.

0 The IzoT Commissioning Tool, which is required to install the 1zoT NodeBuilder tool,
requires 172 MB of free space.

0 Microsoft .NET Framework 3.5 SP1, which is required to run the 1zoT NodeBuilder tool,
requires 30 MB of free space. This is not included and must be downloaded separately.

e 512 MB RAM minimum.
e DVD-ROM drive.
e 1024x768 or higher-resolution display with at least 256 colors.

e Mouse or compatible pointing device.

Content

This guide includes the following content:

e Introduction. Lists the new features in the 1zoT NodeBuilder tool, summarizes the components
included with the 1zoT NodeBuilder tool, and provides an overview of 1zoT NodeBuilder device
development and network integration.

o Installing the 1zoT NodeBuilder Development Tool. Describes how to get started with your 1zoT
NodeBuilder tool, including how to install the 1zoT NodeBuilder software and connect the 1zoT
FT 6000 EVK hardware.

e 1zoT NodeBuilder Quick-Start Exercise. Demonstrates how to create an 1zoT or LONWORKS
device using the 1zoT NodeBuilder tool.

e Creating and Opening NodeBuilder Projects. Describes how to create, open, and copy
NodeBuilder projects, and explains how to copy NodeBuilder projects and NodeBuilder device
templates to another computer.

e Creating and Using Device Templates. Describes how to use the New Device Template wizard in
the NodeBuilder Project Manager to create, manage, and edit NodeBuilder device templates.

X Preface

Explains how to manage development and release targets and insert libraries into a device
template. Describes how to use the Hardware Template Editor to create and edit hardware
templates.

e Defining Device Interfaces and Creating their Neuron C Application Framework. Describes how
to use the NodeBuilder Code Wizard to define your device interface and generate Neuron C code
that implements it. Explains how to start the NodeBuilder Code Wizard, how to add functional
blocks, network variables, and configuration properties to your device template, and how to create
the Neuron C framework for your device interface.

o Developing Device Applications. Provides an overview of the Neuron C Version 2.3
programming language. Describes how to edit the Neuron C source code generated by the
NodeBuilder Code Wizard to implement your device functionality. Explains how to use the
NodeBuilder Editor to edit, search, and bookmark Neuron C code.

e Building and Downloading Device Applications. Describes how to compile Neuron C source
code, build an application image, and download the application image to a device. Explains how
to add target devices to a NodeBuilder project and how to manage them.

e Testing a NodeBuilder Device Using the I1zoT Commissioning Tool. Describes how to use the
Data Point shape and 1zoT Browser in the 1IzoT Commissioning Tool to monitor and control your
device. It explains how to use the 1zoT Commissioning Tool to connect your 1zoT NodeBuilder
device to other 1zoT or LONWORKS devices in a network.

e Debugging a Neuron C Application. Describes how the use the NodeBuilder debugger to
troubleshoot your Neuron C application.

e Appendices. Provides information for using the command line project make facility and managing
an IzoTNodeBuilder project using a source control application. Also includes a glossary with
definitions for many terms commonly used with an 1zoT NodeBuilder device development.

Note: Screenshots in this document were taken during the development of the 1zoT NodeBuilder tool;
therefore, some images may vary slightly from the release version of the user interface.

Related Manuals

The documentation related to the 1zoT NodeBuilder tool is provided as Adobe® PDF files and online
help files. The PDF files are installed in the Echelon NodeBuilder program folder when you install
the 1zoT NodeBuilder tool. You can download the latest NodeBuilder documentation, including the
latest version of this guide, from Echelon’s Web site at www.echelon.com/docs.

The following manuals provide supplemental information to the material in this guide. You can
download these documents from Echelon’s Web site at www.echelon.com.

FT 6000 EVB Examples Guide Describes how to run the Neuron C example applications
(078-0505-01) included with the FT 6000 EVK on an FT 6000 EVB.

FT 6000 EVB Hardware Guide Describes how to connect the FT 6000 EVBSs, and describes the
(078-0504-01) Neuron core, 1/0 devices, service pin and reset buttons and

LEDs, and jumper settings on the FT 6000 EVVB hardware.
One or two FT 6000 EVBs are included with the 1zoT FT 6000

EVK.
Introduction to the LONWORKS Provides a high-level introduction to LONWORKS networks and
Platform the tools and components that are used for developing, installing,
(078-0183-01B) operating, and maintaining them.
OpenLNS Plug-in Programmer’s Describes how to write plug-ins using .NET programming
Guide (078-0393-01A) languages such as C# and Visual Basic .NET

IzoT NodeBuilder User's Guide Xi

http://www.echelon.com/docs
http://www.echelon.com/
http://www.echelon.com/support/documentation/manuals/devtools/078-0393-01A_LNS_Plug_In_Programmer_Guide.pdf

IzoT Commissioning ToolUser’s
Guide (078-0514-01)

LoNMARK SNVT and SCPT Guide

1zOT Plug-in for WireShark Guide
(078-9511-01A)

Neuron C Programmer’s Guide
(078-0002-021)

Neuron C Reference Guide
(078-0140-02G)

Neuron Tools Error Guide
(078-0402-01D)

NodeBuilder Resource Editor User’s

Guide (078-0194-01C)

Describes how to use the 1zoT Commissioing Tool to design,
commission, modify, and maintain LONWORKS networks.

Documents the standard network variable types (SNVTSs),
standard configuration property types (SCPTs), and standard
enumeration types that you can declare in your applications.

Describes how to use the 1zoT Plug-in for WireShark. This is
the packet analyzer to monitor, analyze, and troubleshoot
network protocol problems

Describes how to write programs using the Neuron® C Version
2.3 language.

Provides reference information for writing programs using the
Neuron C language.

Provides reference information for Neuron tool errors.

Describes how to use the NodeBuilder Resource Editor to create
and edit resource file sets and resources such as functional
profile templates, network variable types, and configuration

property types.

For More Information and Technical Support

The NodeBuilder ReadMe document provides descriptions of known problems, if any, and their
workarounds. To view the NodeBuilder ReadMe, click Start, point to Programs, point to

Xii

NodeBuilder, and then select NodeBuilder ReadMe First. You can also find additional information
about the 1zoT NodeBuilder tool at the NodeBuilder Web page at www.echelon.com/nodebuilder.

If you have technical questions that are not answered by this document, the NodeBuilder online help,
or the NodeBuilder ReadMe file, you can contact technical support. You can get free e-mail support
by sending your support questions to lonsupport@echelon.com To receive priority technical support
from Echelon, you can purchase support services from Echelon or an Echelon support partner. See
www.echelon.com/support for more information on Echelon support and training services.

You can also enroll in training classes at Echelon or an Echelon training center to learn more about
developing devices. You can find additional information about device development training at
www.echelon.com/training.

You can obtain technical support via phone, fax, or e-mail from your closest Echelon support center.
The contact information is as follows:

Region Languages Supported Contact Information
The Americas English Echelon Corporation
Japanese Attn. Customer Support

550 Meridian Avenue

San Jose, CA 95126

Phone (toll-free):
1-800-258-4LON (258-4566)
Phone: +1-408-938-5200
Fax: +1-408-790-3801
lonsupport@echelon.com

Preface

http://www.echelon.com/support/documentation/manuals/devtools/078-0194-01C_Resource_Editor_User_Guide.pdf
http://www.echelon.com/nodebuilder
mailto:lonsupport@echelon.com
http://www.echelon.com/support
http://www.echelon.com/training/
mailto:lonsupport@echelon.com

Region

Languages Supported

Contact Information

Europe

English
German
French
Italian

Echelon Europe Ltd.

Suite 12

Building 6

Croxley Green Business Park
Hatters Lane

Watford

Hertfordshire WD18 8YH
United Kingdom

Phone: +44 (0)1923 430200
Fax: +44 (0)1923 430300
lonsupport@echelon.co.uk

Japan

Japanese

Echelon Japan

Holland Hills Mori Tower, 18F
5-11-2 Toranomon, Minato-ku
Tokyo 105-0001

Japan

Phone: +81-3-5733-3320

Fax: +81-3-5733-3321
lonsupport@echelon.co.jp

China

Chinese
English

Echelon Greater China

Rm. 1007-1008, IBM Tower
Pacific Century Place

2A Gong Ti Bei Lu
Chaoyang District

Beijing 100027, China
Phone: +86-10-6539-3750
Fax: +86-10-6539-3754
lonsupport@echelon.com.cn

Other Regions

English
Japanese

Phone: +1-408-938-5200
Fax: +1-408-328-3801
lonsupport@echelon.com

IzoT NodeBuilder User's Guide

Xiii

mailto:sales@echelon.co.uk
mailto:lonsupport@echelon.co.jp
mailto:lonsupport@echelon.com.cn
mailto:lonsupport@echelon.com

1

Introduction

This chapter introduces the 1zoT NodeBuilder Development Tool. It lists the new
features in the 1zoT NodeBuilder tool, summarizes the components included with
thelzoTNodeBuilder tool, and provides an overview of NodeBuilder device
development and network integration.

IzoT NodeBuilder User's Guide 1

Introduction to the 1zoT NodeBuilder Tool

The 1zoT NodeBuilder Development Tool is a complete hardware and software platform for
developing, debugging, testing, and maintaining 1zoT and LONWORKS devices based on the Neuron
6000 Processor and FT 6000 Smart Transceiver and all previous-generation Series 5000 and Series
3100 chips. You can use the 1zoT NodeBuilder tool to create many types of devices, including VAV
controllers, thermostats, washing machines, card-access readers, refrigerators, lighting ballasts, blinds,
and pumps. You can use these devices in a variety of systems including building and lighting controls,
factory automation, energy management, and transportation.

You can use the 1zoT NodeBuilder tool to do the following:

o View standard resource file definitions for standard network variable types (SNVTSs), standard
configuration property (SCPTSs), and standard functional profile templates (SFPTS).

e Create your own resource files with user-defined network variable types (UNVTSs), user-defined
configuration property (UCPTSs), and user-defined functional profile templates (UFPTS).

e Automatically generate Neuron C code that implements your device’s interface and provides the
framework for your device application.

e Edit your Neuron C code to implement your device’s functionality.
e Compile, build, and download your application to a development platform or to your own devices.

e Test with prototype I/O hardware on either the FT 6000 EVB Evaluation Boards included with the
FT 6000 EVK and available separately, or LTM-10A Platform and Gizmo 4 1/0 Board included
with the NodeBuilder FX/PL tool and available separately, or use your own custom device to
build and test your own 1/O hardware.

o Install your device into an 1zoT or LONWORKS network and test how your device interoperates
with other 1zoT and LONWORKS devices.

New Features in the 1zoT NodeBuilder Tool

The 1zoT NodeBuilder tool includes support for Echelon’s new Series 6000 chips (the term used to
collectively refer to the FT 6050 and FT 6010 Smart Transceivers and the Neuron 6050 Processor),
support for Echelon’s new FT 6000 EVB, support for the previous generation Series 5000 and Series
3100 chips, and the following key features:

Support for the 1zoT LonTalk/IP and BACnet/IP protocols

Support for transient functions and automatically tuned memory maps

Extended address table support with support for up to 254 address table entries

Support for network variables up to 228 bytes (exceeding the previous limit of 31 bytes)
Neuron C Version 2.3 Enhancements

The following sections describe these new features.

LonTalk/IP Support

The Series 6000 chips and firmware add support for the LonTalk/IP protocol. The LonTalk/IP
protocol is the control network protocol that implements 1zoT Control Services. 1zoT Control Services
are based on the LONMARK Layer 7 protocol, the ISO/IEC 14908-1 Layers 3 to 6 protocols, with
native IP addressing at Layer 3, and link-specific protocols for Layers 1 and 2. The link-specific
protocols may implement compression of the Layer 3 packets depending on the requirements of the
underlying links. There are two modes for LonTalk/IP called Compatibility Mode and Enhanced
Mode. In Compatibility Mode LonTalk/IP devices can communicate with LonTalk devices directly
without the need for a router as long as they are on the same LonTalk-compatible channel. LonTalk/IP

2 Introduction

devices in Compatibility Mode can also communicate with LonTalk devices on different channels as
long as there is a route created between the channels with one or more 1zoT routers. In Enhanced
Mode, LonTalk/IP devices cannot communicate with LonTalk devices, even with the use of 1zoT
routers.

You can configure the 1zoT Router included with the FT 6000 EVK to operate in either Enhanced
Mode or Compatibility Mode. If you are developing devices that will potentially be used with devices
based on the Series 5000 or Series 3100 processors, select Compatibility Mode. If you are developing
devices that will exclusively be used with devices based on Series 6000 processors or other 1zoT-
compatible devices such as devices based on the 1zoT Device Stack EX, select Enhanced Mode.

BACnet/IP Support

The Series 6000 chips and firmware add support for the BACnet/IP protocol. The BACnet/IP protocol
is the protocol that implements the BACnet services defined by ASHRAE and specified in ISO 16484-
5, with native IP addressing at Layer 3, and link-specific protocols for Layers 1 and 2. The link-
specific protocols may implement compression of the Layer 3 packets depending on the requirements
of the underlying links.

Series 6000 Chip Support

The 1zoT NodeBuilder software adds development support for the Series 6000 chips. Development for
Series 5000 and Series 3100 chips is also supported. An FT 6000 Evaluation Board hardware template
file ((NbHwt extension) is included, matching the FT 6000 EVB hardware.

See the FT 6000 EVK Hardware Guide for instructions to emulate the FT 6010 hardware with the FT
6050 Evaluation board. The FT 6010 Evaluation Board hardware template required for this emulation
is included.

An FT 6050 hardware template is included as an example of a typical hardware template for a generic
FT 6050 device.

The Neuron C compiler and its companion tools automatically take advantage of the Series 6000
chips’ features. For example, the Neuron C compiler automatically takes advantage of the extended
address table where available, and the dynamic host configuration protocol (DHCP) is automatically
enabled where supported.

Transient Functions and Automatic Memory Maps

The 1zoT NodeBuilder software adds support for transient functions for applications targeting a Series
6000 chip. A transient function is loaded from serial flash memory on demand and automatically
managed by the Neuron firmware, allowing the application’s total code size to exceed the available
physical memory. Functions declared in Neuron C 2.3 compile to transient functions by default, while
when-tasks and interrupt-tasks always compile into resident code.

Individual functions can be made resident with the new Neuron C __resident keyword (note the
leading double underscore characters:

unsigned __resident add(unsigned a, unsigned b) {
return atb;
}

See the Neuron C Programmer’s Guide for more details about resident and transient functions.

To ease device development and ensure suitable space for transient functions, the Neuron C 2.3 tools
automatically size the memory map to suit the requirements of the Neuron firmware, the Series 6000
chips and your application combined. For these chips, it is no longer necessary to estimate the amount
of volatile memory (“RAM?”), persistent data storage (“EEPROM?”) or space needed for constant data
and code.

I1zoT NodeBuilder User's Guide 3

FT 6000 EVB Evaluation Board

The FT 6000 EVB is a complete 6000 Series 1zoT and LONWORKS device that you can use to create
IzoT and LONWORKS devices. The FT 6000 EVB includes a FT 6050 Smart Transceiver with an
external 10 MHz crystal (you can adjust the system’s internal clock speed from 5SMHz to 80MHz), an
FT-X3 communication transformer, 64KB external serial EEPROM and flash memory devices, and a
3.3V power source. The FT 6000 EVB features a compact design that includes the following 1/0
devices that you can use to develop prototype and production devices and test the FT 6000 EVB
example applications:

4 x 20 character LCD

4-way joystick with center push button
2 push-button inputs

2 LED outputs

Light-level sensor

Temperature sensor

The FT 6000 EVB Evaluation Board also includes EIA-232/TI1A-232 (formerly RS-232) and USB
interfaces that you can use to connect the board to your development computer and perform
application-level debugging.

Each FT 6000 EVB also features a flash in-circuit programmer header that supports the SPI interface
for fast downloads when programming the external non-volatile memory of the FT 6050 Smart
Transceiver on the board.

For more information on the FT 6000 EVB hardware, including detailed descriptions of its Neuron
core, 1/0 devices, service pin and reset buttons and LEDs, and jumper settings, see the FT 6000 EVB
Hardware Guide.

Extended Address Table

Series 6000 chips can support up to 254 address table records, subject to available system resources
(for example, RAM and EEPROM) and application requirements. The Series 5000 and Series 3100
chips are limited to a maximum of 15 address table entries.

Network Variables Up To 228 Bytes

Series 6000 chip support network variables up to 228 bytes in size. The Series 5000 and Series 3100
chips are limited to a maximum network variable size of 31 bytes.

Creating new applications or adding larger than 31 bytes network variables to existing applications is
completely transparent except when larger than 31 bytes network variables are added to existing
applications which also implement changeable-type applications.

Applications implementing changeable-type network variables and larger than 31-bytes network
variables must return the current size of changeable-type network variables from the application-
specific implementation of the get_nv_length_override() callback. In previous releases, the
get_nv_length_override() callback would return a constant OxXFF by default. Applications which
support larger than 31 bytes network variables must default the callback result to the value obtained
from the get_declared_nv_length() API:

unsigned _RESIDENT get_nv_length_override(unsigned nvindex)

{
#i1T defined(_SUPPORT_LARGE_NV)
unsigned uResult = get_declared_nv_length(nvindex);
#else
unsigned uResult = OxFF;
#endif

4 Introduction

// TO DO: add code to return the current length of the network variable
// with index "nvindex."

// Example code follows:

//

// switch (nvindex) {

// case nviChangeableNv::global_index:

// ifT (nviChangeableNv: :cpNvType.type_category != NVT_CAT_INITIAL
// && nviChangeableNv: :cpNvType.type category != NVT_CAT_NUL) {
// uResult = nviChangeableNv: :cpNvType.type_length;

// }

// break;

// } // switch

return uResult;

}
See Implementing Changeable-Type Network Variables in chapter 4 of this guide and Changeable-
Type Network Variables in the Neuron C Programmer’s Guide for more detail.

Neuron C Version 2.3 Enhancements

The new features in the Neuron C Version 2.3 programming language include support for transient and
resident functions, automatic memory maps, a new preprocessor, support for initialization of automatic
variables implementing scalar types, and new or enhanced compiler directives and other language
enhancements. These new features are detailed in the Neuron C Programmer’s Guide and Neuron C
Reference Guide.

Support for transient functions and automatic memory maps is detailed earlier in this section.

The new preprocessor, based on the open source MCPP implementation by Kioshi Matsui, provides
previously unsupported directives such as #if and #elif.

Automatic variables implementing scalar types can now be initialized. For example:

unsigned long add(unsigned num, unsigned *values) {
unsigned long result = 0;
while (num--) {
result += *values++;
}

return result;

}

Automatic variables which implement aggregate types such as structures, unions and arrays cannot be
initialized in this manner. To initialize such a variable, declare the variable and provide its initial data
in two distinct expressions.

Enhanced compiler directives include the pragma addresses and pragma aliases directives (also
known as pragma num_addr_table_entries and pragma num_alias_table_entries, respectively).
These directives are enhanced with a more user-friendly new name, and automatic allocation of the
corresponding resource based on the compiler’s inspection of your application. The directives can be
used to override this allocation.

The pragma num_domains directive is also supported with a user-friendly alias, pragma domains.

New directives are supplied to control new features (pragma dhcp, pragma enhanced_mode,
pragma resident) and to control placement of certain portions of your application within the available
space (pragma locate).

In addition, the new __type_index and __type_scope built-in properties are supported for network
variables, and yield a numeric constant for the type index and type scope number, respectively. These
properties begin with a double underscore character to avoid conflicts with existing application code.
For example, a SNVT_switch typed network variable reports 95 for the type index, and a scope of
zero.

1zoT NodeBuilder User's Guide 5

What's Included with the 1zoT FT 6000 EVK

The FT 6000 EVK includes the following components:

1zoT NodeBuilder Development Tool. The 1zoT NodeBuilder Development Tool is an
integrated development environment (IDE) for developing applications for Series 6000, 5000,
and 3100 chips. It is available as a free download that requires a serial number to be installed.
A serial number for the 1zoT NodeBuilder software is included on the back of the 1zoT
Commissioning Tool EVK Edition DVD case that is included with the FT 6000 EVK.

Two FT 6000 EVB Evaluation Boards. The FT 6000 EVBs are evaluation boards that you
can use to run example applications and to prototype and debug your own applications. Each
includes an FT 6050 Smart Transceiver and can be attached to an 1zoT or LONWORKS free
topology (FT) twisted pair channel.

IzoT Commissioning Tool EVK Edition DVD. Contains the software tool for designing,
installing, and maintaining 1zoT and LONWORKS control networks. The EVK Edition
includes the Microsoft Visio 2010 diagramming and vector graphics edition application.

I1zoT Network Services Server CD. Contains the network operating system that is the
standard network management software platform for commercial and industrial 1zoT and
LONWORKS networks.

IzoT Router. A ready-to-run application for connecting 1zoT devices on an Ethernet channel
with 1zoT and LonWorks devices on an FT channel. The router automatically forwards
packets between the Ethernet and FT channels.

IzoT Plug-in for Wireshark. Wireshark is a free and open-source packet analyzer for IP
networks. It is used for network troubleshooting and analysis. A plug-in for Wireshark is
included with the 1zoT NodeBuilder software that enabled Wireshark to decode LonTalk/IP
packets.

Quick Start Guide. This document describes how to install the software included with your
FT 6000 EVK; connect the FT 6000 EVBs and your development computer to an FT-10
channel; and create a simple network using the example application pre loaded on the FT
6000 EVB.

FT 6050 Smart Transceiver sample chips.

Accessories including power supplies and cables.

The following sections describe each of the components.

IzoT NodeBuilder Development Tool

The 1zoT NodeBuilder Development Tool is an integrated development environment (IDE) for
developing and debugging applications for Series 6000, 5000, and 3100 chips. It is available as a free
download that requires a serial number to be installed. A serial number for the 1zoT NodeBuilder
software is included on the back of the 1zoT Commissioning Tool EVK Edition DVD case that is
included with the FT 6000 EVK.I It includes Neuron C example applications that you can run on your
FT 6000 EVBs and use to further learn how to develop your own device applications.

The 1zoT NodeBuilder software includes the following components:

o NodeBuilder Resource Editor. View standard types and functional profiles, and create
user-defined types and profiles if the standard resource files do not include the resources you need.

o NodeBuilder Code Wizard. Use a drag-and-drop interface to create your device’s interface and
then automatically generate Neuron C source code that implements the device interface and
creates the framework for your device application.

Introduction

e NodeBuilder Editor. Edit the Neuron C source code generated by the Code Wizard to create your
device’s application, or create and edit your own Neuron C code.

e NodeBuilder Debugger. Debug your application with a source-level view of your application code
as it executes.

e NodeBuilder Project Manager. Build and download your application image to your development
platform or to your own device hardware.

The 1zoT NodeBuilder software include three Neuron C example applications that you can run on your
FT 6000 EVBs. You can use these examples to test the 1/O devices on the FT 6000 EVB, and create
simple 1zoT and LONWORKS networks. You can view the Neuron C code used in the example
applications, and then create a new device application by modifying the existing example applications
or by developing the device application from scratch.

For more information on using the FT 6000 EVB example applications, see the FT 6000 EVB
Examples Guide.

FT 6000 EVB Evaluation Boards

The 1zoT FT 6000 EVK includes two FT 6000 EVBs. Each EVB is a complete Series 6000 1zoT and
LONWORKS device that you can use to evaluate the 1zoT and LONWORKs platforms and create 1zoT
and LONWORKS devices. The FT 6000 EVB includes an FT 6050 Smart Transceiver with an external
10 MHz crystal (you can adjust the system’s internal clock speed from 5MHz to 80MHz), an FT-X3
communication transformer, 512KB external serial flash memory devices, and a 3.3V power source.
The FT 6000 EVB features a compact design that includes the following 1/0 devices that you can use
to develop prototype and production devices and test the FT 6000 EVB example applications:

4 x 20 character LCD

4-way joystick with center push button
2 push-button inputs

2 LED outputs

Light-level sensor

Temperature sensor

The FT 6000 EVB Evaluation Board also includes an EIA-232/T1A-232 (formerly RS-232) and USB
interfaces that you can use to connect the board to your development computer and perform
application-level debugging.

Each FT 6000 EVB also features a flash ICE header that supports the SP1 and 1°C interfaces for fast
downloads when programming the external non-volatile memory of the FT 6000 Smart Transceiver on
the board.

IzoT NodeBuilder User's Guide 7

For more information on the FT 6000 EVB hardware, including detailed descriptions of its Neuron
core, 1/0 devices, service pin and reset buttons and LEDs, and jumper settings, see the FT 6000 EVB
Hardware Guide.

IzoT Commissioning Tool

The 1zoT Commissioning Tool is a software tool that you can use to install, connect, configure, test,
and update devices that you develop with the 1zoT NodeBuilder software. It is a software package for
designing, installing, and maintaining 1zoT and LONWORKS control networks. Based on Echelon’s
1zoT Network Services Server, the 1zot Commissioning Tool combines a powerful network services
platform with an easy-to-use Visio user interface. The 1zoT Commissioning tool is compatible with a
number of OpenLNS and LNS plug-ins, simplifying network installation and integration for devices
with plug-in support.

The 1zoT Commissioning Tool can be used to manage all phases of a network’s life cycle, from the
initial design and commissioning to the ongoing operation, because it provides the functionality of
several network tools in one single solution:

e Network Design Tool. You can design a network onsite or offsite (either connected to the network
over the Internet or not connected to it all), and then modify it anytime. The 1zoT Commissioning
Tool can also learn an existing network’s design through a process called network recovery.

o Network Installation Tool. You can rapidly install a network designed offsite once it is brought
onsite. The device definitions can be quickly and easily associated with their corresponding
physical devices to reduce on-site commissioning time. The 1zoT Browser provides complete
access to all network variables and configuration properties.

e Network Documentation Tool. You can create an 1zoT CT drawing during the network design and
installation process. This drawing is an accurate, logical representation of the installed physical
network. The drawing is therefore an essential component of as-built reports.

¢ Network Operation Tool. You can operate the network using the operator interface pages
contained within the 1zoT CT drawing.

e Network Maintenance Tool. You can easily add, test, remove, modify, or replace devices, routers,
channels, subsystems, and connections to maintain the network.

This guide describes many of the 1zoT Commissioning Tool functions that you will use with the 1zoT
NodeBuilder tool. See the 1zoT Commissioning Tool User’s Guide for more information on the 1zoT
Comnmissioning Tool and to learn how it can be used to install, operate, and maintain your operational
networks in addition to your development networks.

IzoT Network Services Server

The 1zoT Network Service Server is a network operating system that is the standard network
management software platform for commercial and industrial 1zoT and LONWORKS networks.

IzoT Router

The 1zoT Router is a ready-to-run application for connecting 1zoT devices on an Ethernet channel with
IzoT and LonWorks devices on an FT channel. The router automatically forwards packets between the
Ethernet and FT channels.

IzoT Plug-in for Wireshark

Wireshark is a free and open-source packet analyzer for IP networks. It is used for network
troubleshooting and analysis. A plug-in for Wireshark is included with the 1zoT NodeBuilder software
that enabled Wireshark to decode LonTalk/IP packets. See the 1zoT Plug-in for Wireshark Guide for
details on how to download Wireshark, install the 1zoT plug-in for Wireshark, and use Wireshark with
LonTalk/IP networks.

8 Introduction

Introduction to NodeBuilder Device Development and
Network Integration

An 1zoT or LONWORKS network consists of intelligent devices (such as sensors, actuators, and
controllers) that communicate with each other using a common protocol over one or more
communications channels. Network devices are sometimes called nodes.

Devices may be Neuron hosted or host-based. Neuron hosted devices run a compiled Neuron C
application on a Neuron Chip or Smart Transceiver. You can use the 1zoT NodeBuilder tool to
develop, test, and debug Neuron C applications for Neuron hosted devices.

Host-based devices run applications on a processor other than a Neuron Chip or Smart Transceiver.
Host-based devices may run applications written in any language available to the processor. A
host-based device may use a Neuron Chip or Smart Transceiver as a communications processor, or it
may handle both application processing and communications processing on the host processor. The
I1zoT NodeBuilder tool supports some of the common tasks occurring in the creation of host-based
devices; however, an additional host-based device development tool is required.

Each device includes one or more processors that implement the LonTalk/IP or the ISO/IEC 14908-1
Control Network Protocol (CNP). Each device also includes a component called a transceiver to
provide its interface to the communications channel.

A device publishes and consumes information as instructed by the application that it is running. The
applications on different devices are not synchronized, and it is possible that multiple devices may all
try to talk at the same time. Meaningful transfer of information between devices on a network,
therefore, requires organization in the form of a set of rules and procedures. These rules and
procedures are the communication protocol, which may be referred to simply as the protocol. The
protocol defines the format of the messages being transmitted between devices and defines the actions
expected when one device sends a message to another. The protocol normally takes the form of
embedded software or firmware code in each device on the network. The CNP is an open protocol
defined by the ISO/IEC 14908-1 standard (defined nationally in the United States, Europe, and China
by the ANSI/EIA 709.1, EN 14908, and GB/Z 20177 standards, respectively). LonTalk/IP is based on
the ISO/IEC 14908-1 standard, with extensions to use IP as the transport protocol.

Channels

A channel is the physical media between devices upon which the devices communicate. The
LonTalk/IP and CNP protocols are media independent; therefore, numerous types of media can be
used for channels: twisted pair, power line, fiber optics, IP, and radio frequency (RF) to name a few.
Channels are categorized into channel types, and the channel types are characterized by the device
transceiver. Common channel types include TP/FT-10 (ISO/IEC 14908-2 twisted pair free topology
channel) which is also called FT, TP/XF-1250 (high-speed twisted pair channel), PL-20 (ISO/IEC
14908-3 power line channel), FO-20 (ANSI/CEA-709.4 fiber optics channel), and IP-852 (ISO/IEC
14908-4 IP-communication).

Different transceivers may be able to interoperate on the same channel; therefore, each transceiver type
specifies the channel type or types that it supports. The choice of channel type affects transmission
speed and distance as well as the network topology.

The 1zoT NodeBuilder tool, 1zoT Commissioning Tool, and Neuron Chips support all standard channel
types, but not all Neuron Chips support all transceiver and channel types. Smart Transceivers
combine the transceiver and Neuron core in the same chip, and therefore support the channel types
supported by the integrated transceiver.

Routers

Multiple channels can be connected using routers. Routers are used to manage network message
traffic, extend the physical size of a channel (both length and number of devices attached), and connect

IzoT NodeBuilder User's Guide 9

channels that use different media (channel types) together. Unlike other devices, routers are always
attached to at least two channels.

The 1zoT Router can be configured to act as a DHCP relay for address allocation on the LonTalk/IP
network. DHCP relay can be used to have a single server perform all of the allocation of addresses in
a network, and then have the server’s allocations forwarded onto another subnet.

To enable the DHCP relay functionality, go to the DHCP page on configuration Web page of the 1zoT
Router. Once there, select the Relay option and a box to enter the address of the DHCP server
appears. Enter the IP address of your server and click the Save Configuration button. DHCP requests
are now forwarded from the LonTalk/IP network to the DHCP server, and responses from the server
will be forwarded to devices on the LonTalk/IP network.

The DHCP server must have a separate subnet set up to allocate addresses from the LonTalk/IP subnet.
This is because the 1zoT Router treats the IP and LonTalk/IP subnets as separate subnets, and uses the
subnets to determine which subnet to send messages on. The subnet on the FT side needs to be
different than the subnet on the Ethernet side. If both the LonTalk/IP and IP subnets share the same
address range, the router cannot determine where to send the messages.

Applications

Every 1zoT and LONWORKS device contains an application that defines the device’s behavior. The
application defines the inputs and outputs of the device. The inputs to a device can include
information sent on LonTalk/IP and LONWORKS channels from other devices, as well as information
from the device hardware (for example, the temperature from a temperature sensing device). The
outputs from a device can include information sent on LonTalk/IP and LONWORKS channels to other
devices, as well as commands sent to the device hardware (for example, a fan, light, heater, or
actuator). You can use the 1zoT NodeBuilder tool to write a device’s Neuron C application.

Program IDs

10

Every LONWORKS application has a unique, 16 digit, hexadecimal standard program ID with the
following format: FM:MM:MM:CC:CC:UU:TT:NN. This program ID is broken down into the
following fields:

Field Description

Format (F) A 1 hex-digit value defining the structure of the program ID. The upper
bit of the format defines the program ID as a standard program ID (SPID)
or a text program ID. The upper bit is set for standard program IDs, so
formats 8-15 (0x8—0xF) are reserved for standard program IDs.

e Program ID format 8 is reserved for LONMARK certified devices.

e Program ID format 9 is used for devices that will not be LONMARK
certified, or for devices that will be certified but are still in
development or have not yet completed the certification process.

e Program ID formats 10-15 (OxA-OxF) are reserved for future use.

e Text program ID formats are used by network interfaces and legacy
devices and, with the exception of network interfaces, cannot be used
for new devices.

The 1zoT NodeBuilder tool can be used to create applications with
program ID format 8 or 9.

Manufacturer ID (M) A 5 hex-digit ID that is unique to each LONWORKS device manufacturer.

The upper bit identifies the manufacturer 1D as a standard manufacturer
ID (upper bit clear) or a temporary manufacturer 1D (upper bit set).

Introduction

Field Description

e Standard manufacturer IDs are assigned to manufacturers when they
join LONMARK International, and are also published by LONMARK
International so that the device manufacturer of a LONMARK certified
device is easily identified. Standard manufacturer IDs are never
reused or reassigned. If your company is a LONMARK member, but
you do not know your manufacturer 1D, you can find your ID in the
list of manufacturer IDs at www.lonmark.org/spid. The most current
list at the time of release of the NodeBuilder tool is also included with
the 1zoT NodeBuilder software.

e Temporary manufacturer IDs are available at no charge to anyone on
request by filling out a simple form at www.lonmark.org/mid.

Device Class (C) A 4 hex-digit value identifying the primary function of the device. This
value is drawn from a registry of pre-defined device class definitions. If
an appropriate device class designation is not available, the LONMARK
International Secretary will assign one, upon request.

Usage (U) A 2 hex-digit value identifying the intended usage of the device. The
upper bit specifies whether the device has a changeable interface. The
next bit specifies whether the remainder of the usage field specifies a
standard usage or a functional-profile specific usage. The standard usage
values are drawn from a registry of pre-defined usage definitions. If an
appropriate usage designation is not available one will be assigned upon
request. If the second bit is set, a custom set of usage values is specified
by the primary functional profile for the device.

Channel Type (T) A 2 hex-digit value identifying the channel type supported by the device’s
transceiver. The standard channel-type values are drawn from a registry
of pre-defined channel-type definitions. A custom channel-type is
available for channel types not listed in the standard registry.

Model Number (N) A 2 hex-digit va_lue identifying the specific product model. Model_
numbers are assigned by the product manufacturer and must be unique
within the device class, usage, and channel type for the manufacturer. The
same hardware may be used for multiple model numbers depending on the
program that is loaded into the hardware. The model number within the
program ID does not have to conform to your published model number.

See the LonMark Application Layer Interoperability Guidelines for more
information about program IDs.

Network Variables

Applications exchange information with other LONWORKS devices using network variables. Every
network variable has a direction, type, and length. The network variable direction can be either input
or output, depending on whether the network variable is used to receive or send data. The network
variable type determines the format of the data.

Network variables of identical type and length but opposite directions can be connected to allow the
devices to share information. For example, an application on a lighting device could have an input
network variable that was of the switch type, while an application on a dimmer-switch device could
have an output network variable of the same type. A network management tool such as the 1zoT
Commissioning Tool could be used to connect these two devices, allowing the switch to control the
lighting device, as shown in the following figure:

IzoT NodeBuilder User's Guide 11

http://www.lonmark.org/spid
http://www.lonmark.org/mid
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

Switch

A single network variable may be connected to multiple network variables of the same type but
opposite direction. The following example shows the same switch being used to control three lights:

Switch

Light 3

The application program in a device does not need to know where input network variable values come
from or where output network variable values go. When the application program has a changed value
for an output network variable, it simply assigns the new value to the output network variable.

Through a process called binding that takes place during network design and installation, the device is
configured to know the logical address of the other device or group of devices in the network
expecting that network variable’s values. The device’s embedded firmware assembles and sends the
appropriate message(s) to these destinations. Similarly, when the device receives an updated value for
an input network variable required by its application program, its firmware passes the data to the
application program. The binding process thus creates logical connections between an output network
variable in one device and an input network variable in another device or group of devices.

Connections may be thought of as virtual wires. For example, the dimmer-switch device in the
dimmer-switch-light example could be replaced with an occupancy sensor, without making any
changes to the lighting device.

The NodeBuilder Code Wizard automatically generates the required network variable declarations for
your device’s interface in your device’s Neuron C application. Typically, you don’t need implement
any code in the device application to handle the binding process, or the source or destination devices
for network variable values. Neuron C provides an easy-to-use programming model familiar to any C
language programmer that encapsulates the complexity of distributed applications.

Configuration Properties

12

I1zoT AND LONWORKS applications may also contain configuration properties. Configuration
properties allow the device’s behavior to be customized using a network management tool such as the

Introduction

IzoT Commissioning Tool or a customized plug-in created for the device (see the OpenLNS Plug-in
Programmer’s Guide for more information on creating OpenLNS device plug-ins).

For example, an application may allow an arithmetic function (add, subtract, multiply, or divide) to be
performed on two values received from two network variables. The function to be performed could be
determined by a configuration property. Another example of a configuration property is a heartbeat
that determines how often a device transmits network variable updates over the network.

Like network variables, configuration properties have types that determine the type and format of the
data they contain.

The NodeBuilder Code Wizard automatically generates the required configuration property
declarations for your device’s interface and most of the required infrastructure code in your device’s
Neuron C application. The 1zoT NodeBuilder tool supports configuration properties with an
easy-to-use programming model in Neuron C.

Functional Blocks

Applications in devices are divided into one or more functional blocks. A functional block is a
collection of network variables and configuration properties, which are used together to perform one
task. These network variables and configuration properties are called the functional block members.
For example, a digital input device could have four digital input functional blocks that contain the
configuration properties and output network variable members for each of the four hardware digital
inputs on the device.

The NodeBuilder Code Wizard automatically generates the required functional block declarations for
your device’s interface in your device’s Neuron C application.

A functional block is an implementation of a functional profile.

Functional Profiles

A functional profile defines mandatory and optional network variable and configuration property
members for a type of functional block. For example, the standard functional profile for a light
actuator has mandatory SNV T _switch input and output network variables, optional

SNVT _elapsed_tm and SNVT _elec_kwh output network variables, and a number of optional
configuration properties. The following diagram illustrates the components of the standard light
actuator functional profile:

Lamp Actuator
SFPTLampActuator

Mandatory network variables
D | ntemveis S | nolmpverd
Optional network variables
P o g D>
P | pegemci >

Configuration properties

Mandatory Optional
SCPT_location SCPTrunHrlnit
SCPTinFbDly SCPTrunHrAlarm
SCPT_def_output SCPTenrgyCntlnit

N\ E 4

IzoT NodeBuilder User's Guide 13

When a functional block is created from a functional profile, the application designer can determine
which of the optional configuration properties and network variables to implement.

Hardware Templates

A hardware template is a file with a .NbHwt extension that defines the hardware configuration for a
device. It specifies hardware attributes that include the transceiver type, Neuron Chip or Smart
Transceiver model, clock speed, system image, and memory configuration. Several hardware
templates are included with the 1zoT NodeBuilder tool. You can use these or create your own.
Third-party development platform suppliers may also include hardware templates for their platforms.

Neuron C

Neuron C is a programming language, based on ANSI C, used to develop applications for devices that
use a Neuron Chip or Smart Transceiver as the application processor. Neuron C includes extensions
for network communication, device configuration, hardware 1/0, and event-driven scheduling.

Device Templates

A device template defines a device type. The 1zoT NodeBuilder tool uses two types of device
templates. The first is a NodeBuilder device template. The NodeBuilder device template is a file with
a .NbDt extension that specifies the information required for the 1zoT NodeBuilder tool to build the
application for a device. It contains a list of the application Neuron C source files, device-related
preferences, and the hardware template name. When the application is built, the 1zoT NodeBuilder
tool automatically produces an 1zoT device template and passes it to the 1zoT Commissioning Tool and
other network tools. The I1zoT device template defines the device interface, and it is used by the 1zoT
Commissioning Tool and other network tools to configure and bind the device.

Device Interface Files

A device interface file (also known as an XIF file or an external interface file) is a file that specifies the
interface of a device. It includes a list of all the functional blocks, network variables, configuration
properties, and configuration property default values defined by the device’s application. 1zoT tools
such as the 1zoT Commissioning Tool use device interface files to create an 1zoT device template.

This enables the network tool to be used to create network designs without being connected to the
physical devices, and it speeds up some configuration steps when the network tool is connected to the
physical device. A text device interface file with a .XIF extension is required by the LonMark
Application Layer Interoperability Guidelines. A text device interface file is automatically produced
by the 1zoT NodeBuilder tool when you build an application. The 1zoT NodeBuilder tool also
automatically creates binary (.XFB extension) and optimized-binary (.XFO extension) versions of the
device interface file that speed the import process for 1zoT tools such as the 1zoT Commissioning Tool.

Resource Files

14

Resource files define network variable types, configuration property types, and functional profiles.
Resource files for standard types and profiles are distributed by LONMARK International. The standard
resource files define standard network variable types (SNVTSs), standard configuration property types
(SCPTs), and standard functional profiles. For example, SCPT_location is a standard configuration
property type for configuration properties containing the device location as a text string, and

SNVT _temp_f is a network variable type for network variables containing temperature as a
floating-point number. The standard network variable and configuration property types are defined at
types.lonmark.org.

As new SNVTs and SCPTs are defined, updated resource files and documentation are posted to the
LONMARK Web site. Standard functional profiles are included with the 1zoT NodeBuilder tool, and
their documentation is also available on the LONMARK Web site. To view and download the latest

resource files and documentation, go to the LONMARK Web site at www.lonmark.org.

Introduction

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/

Device manufacturers may also create user resource files that contain manufacturer-defined types and
profiles called user network variable types (UNVTS), user configuration property types (UCPTSs), and
user functional profiles (UFPTS).

You can create applications that only use the standard types and profiles. In this case, you do not need
to create user-defined resource files. If you need to define any new user types or profiles, you will use
the NodeBuilder Resource Editor to create them.

Targets

A target is a LONWORKS device whose application is built by the 1zoT NodeBuilder tool. There are
two types of targets, development targets and release targets. Development targets are used during
development; release targets are used when development is complete and the device will be released to
production. Each NodeBuilder device template specifies the definition for a development target and a
release target. Both target definitions use the same source code, program ID, interface, and resource
files, but can use different hardware templates and compiler, linker, and exporter options. The source
code may include code that is conditionally compiled based on the type of target.

IzoT NodeBuilder User's Guide 15

16

Introduction

2

Installing the 1zoT NodeBuilder
Development Tool

This chapter describes how to get started with your 1zoT NodeBuilder tool, including
how to install the 1zoT NodeBuilder software and connect the FT 6000 EVK
hardware.

IzoT NodeBuilder User's Guide 17

Installing the 1zoT FT 6000 EVK

To install your 1zoT FT 6000 EVK, follow these steps:

1.

Verify that you have a manufacturer ID. A manufacturer ID is required for many 1zoT
NodeBuilder tool functions.

Standard manufacturer IDs are assigned to manufacturers when they join LONMARK International,
and are also published by LONMARK International so that the device manufacturer of a LONMARK
certified device is easily identified. If your company is a LONMARK member, but you do not
know your manufacturer 1D, you can go to www.lonmark.org/spid and find your ID in the list of
manufacturer IDs. The most current list at the time of release of the 1zoT NodeBuilder tool is also
included with the 1zoT NodeBuilder software.

If you do not have a manufacturer 1D, you can instantly get a temporary manufacturer ID by filling
out a simple form at www.lonmark.org/mid.

Register your 1zoT FT 6000 EVK. This entitles you to a free replacement software download or
serial number if you lose either one in the future. To register your 1zoT FT 6000 EVK, go to
www.echelon.com/register, select the FT 6000 EVK product, enter the serial number from the
back of your OpenLNS Commissioning Tool DVD case, enter the other information requested by
the form, and then click Register Now.

Insert the 1z0T Commissioning Tool EVK Edition DVD into your computer, install the 1zoT
Commissioning Tool software, and then activate the 1zoT Commissioning Tool as described in
Chapter 2 of the 1zoT Commissioning Tool User’s Guide. The 1zoT Commissioning Tool must be
installed on your computer in order to install the 1zoT NodeBuilder software.

Install the 1zoT NodeBuilder software as described in the next section.

Connect the FT 6000 EVK hardware as described in Connecting the FT 6000 EVB Hardware
chapter of the FT 6000 EVB Hardware Guide.

Complete the quick-start exercise in Chapter 3, 1z0T NodeBuilder Quick-Start Exercise. In the
quick-start exercise, you will develop a device with one sensor and one actuator. The sensor is a
simple sensor that monitors a push button on the FT 6000 EVB and toggles a network variable
output each time the button is pressed. The actuator drives the state of an LED on the FT 6000
EVB based on the state of a network variable input.

This quick-start guides you through all the steps of creating a device with the 1zoT NodeBuilder
tool, including creating the NodeBuilder project, the device template, the device interface, and the
Neuron C code that implements your device interface; implementing device functionality in the
Neuron C code; building and downloading the device application; testing the device in an 1zoT or
LONWORKS network; and debugging the device application.

Run the Neuron C example applications included with the 1zoT NodeBuilder tool on your FT 6000
EVBs. The 1zoT NodeBuilder tool includes three Neuron C example applications
(NcSimpleExample, NcSimplelsiExample, and NcMultiSensorExample) that you can use to test the
1/0 devices on the FT 6000 EVBSs, and create simple managed and self-installed 1zoT or
LONWORKS networks.

The NcMultiSensorExample application is pre-loaded on the FT 6000 EVBs and runs in
Interoperable Self-installation (1SI) mode by default. You install and connect this example
application and the other examples using the 1zoT Commissioning Tool, or using the ISI protocol.
See the FT 6000 EVB Examples Guide for more information on using these example applications.

Installing the 1zoT NodeBuilder Software

To install the 1zoT NodeBuilder software, follow these steps:

1.

18

Download the 1zoT NodeBuilder software from www.echelon.com/downloads.

Installing the 1zoT NodeBuilder Development Kit

http://www.lonmark.org/spid
http://www.lonmark.org/mid
http://www.echelon.com/register

2. Runthe 1zoT NodeBuilder installer.

3. Run the NodeBuilder430.exe self-extracting installation program. The Welcome window of the
NodeBuilder software installer opens.

i Echelon NodeBuilder FX Development Tool - InstallShield Wizard [’ZHE”‘S__Q

Welcome to the InstallShield Wizard for
Echelon NodeBuilder FX Development Tool

Echelon ModeBuilder Fr Development Tool Setup is preparing
the Installshield Wizard which will guide wou through the
progran setup process, Please wait,

Camputing space requirements

Cancel

4. Click Next. The NodeBuilder Development Tool License Agreement window opens.

i& Echelon NodeBuilder FX Development Tool - InstallShield Wizard

License Agreement

Please read the Following license agreement carefully,

NodeBuilder® Development Tool
HOTICE

This is a legal agreerment between you and Echelan Carporation (“Echelan™).
WoU MUST READ AMD AGREE T THE TERMS OF THIS SOFTWARE LICEMSE
AGREEMEMNT BEFORE AMY LICEMSED SCOFTWARE CAM BE DOWMLOADED OR
INSTALLED OR USED, BY CLICKING oM THE "I AGREEY &R “ACCEPT" BUTTON
OF THIS SOFTWARE LICEMSE AGREEMENT, OR DOWMLCADIMG LICEMSED
SOFTWARE, OR IMSTALLIMG LICEMSED SOFTWARE, OR USIMG LICEMSED
SOFTWARE, vOU ARE AGREEIMG TS BE BOUMD BY THE TERMS AMD
COMDITIONS OF THIS SOFTWARE LICEMSE AGREEMENT., IF vOU DO MOT

NEOCC W TTH TUE TCORS MM kBT TTAAS wC TUTS OO ADE | T ChCE

(%) 1 accept the berms in the license agreement

)1 do niot accept the kerms in the license agreement

W

[< Back ” Mext >] [Cancel]

5. Read the license agreement (see Appendix D, NodeBuilder Software License Agreement, for a
printed version of this license agreement). If you agree with the terms, click Accept the Terms
and then click Next. The Customer Information window appears.

IzoT NodeBuilder User's Guide 19

20

i@ Echelon NodeBuilder FX Development Tool - InstallShield Wizard

Customer Information

User Mame:

Please enter your information, ‘ .I'_G

Phone Mumber:

Organization:

Email Address:

Manufacturer ID:

Web Address:

o

Serial Mumber

[< Back ” Mext >] ’ Cancel]

Enter the NodeBuilder serial number on the back of 1zoT Commissioning Tool DVD case in the
Serial Number box. Optionally, you can enter the following registration information. The 1zoT
NodeBuilder tool automatically enters this information into your resource files. Your phone

number, e-mail address,

and distribute.

User Name

Organization

Manufacturer 1D

Phone Number
Email Address
Web Address

and Web address will be included with any resource file that you create

Your name. The name may be entered automatically based on the user
currently logged on and whether other Echelon products are installed on
your computer.

The name of your company. The name may be entered automatically
based on the user currently logged on and whether other Echelon
products are installed on your computer.

If you have a standard manufacturer ID, enter it decimal format.

If your company is a LONMARK member, but you do not know your
manufacturer ID, you can find your ID in the list of manufacturer 1Ds at
www.lonmark.org/spid. The most current list at the time of release of
the 1zoT NodeBuilder tool is also included with the 1zoT NodeBuilder
software.

If you do not have a standard manufacturer 1D, you can request a
temporary manufacturer ID by filling out a simple form at
www.lonmark.org/mid.

The phone number where you can be contacted.
The e-mail address where you can be contacted.

Your company’s Web site.

Note: You can enter or modify this information after installing the 1zoT NodeBuilder software in
the NodeBuilder Project Manager. To do this, create or open a NodeBuilder project, click
Project, click Settings (or right-click the Project folder in the Project pane and click Settings on
the shortcut menu), and then click the Registration tab in the NodeBuilder Project Properties

dialog.

Installing the 1zoT NodeBuilder Development Kit

http://www.lonmark.org/spid
http://www.lonmark.org/mid

7. Click Next. If your computer does not have a LONWORKS directory, the Destination Location

window appears. Choose a LONWORKS folder in which you want the 1zoT NodeBuilder software

installed. By default, the 1zoT NodeBuilder software is installed in the C:\Program Files
(x86)\LonWorks folder if you have not previously installed any Echelon or LONMARK products

(this will not likely be the case because you should have already installed the 1zoT Commissioning

Tool, which is installed in the C:\Program Files (x86)\LonWorks folder by default on 64-bit
versions of Windows). Click Next.

8. The Setup Type window opens.

i& Echelon NodeBuilder FX Development Tool - InstallShield Wizard

Setup Type 4"
Choose the setup type that best suits vour needs. 3
Please select a setup bype.
(=) Complete
Al program Features will be installed. (Reguires the most disk
space.)
O Custom
Choose which program Features wou want installed and where thesy
will be installed, Recommended for advanced users,
[< Back ” Mext =] [Cancel]

9. Select the type of installation to be performed. Select Complete to install NodeBuilder features or

select Custom to choose whether to install the FT 6000 EVB examples, NodeBuilder LTM-10A
examples, both sets of examples, or neither on your computer. Click Next. The Ready to Install
window appears.

IzoT NodeBuilder User's Guide

21

i& Echelon NodeBuilder FX Development Tool - InstallShield Wizard

Ready to Install the Program

The wizard is ready to begin installation,

Click, Install ko begin the installation,

If wou want ko review or change any of your installation settings, click Back. Click Cancel to
exit the wizard.

[< Back ” Install] [Cancel]

10. Click Install to begin the NodeBuilder software installation. Before installing the 1zoT
NodeBuilder software, the following programs are automatically installed or upgraded on your
computer (if they are not already installed on your computer, or if they are installed, but have a
lower version): NodeBuilder Resource Editor 4.0, LONMARK Resource Files 14.00, LNS Plug-in
Framework 1.10, and ISI Developer’s Kit 3.02.

11. After the 1zoT NodeBuilder software has been installed, a window appears stating that the
installation has been completed successfully.

i& Echelon NodeBuilder FX Development Tool - InstallShield Wizard [5__(|

InstallShield Wizard Completed

The Installshield Wizard has successfully installed Echelon
ModeBuilder Fi, Development Tool, Click Finish to exit the
wizard.

Show the readme File

12. Click Finish. If a window appears prompting you to reboot your computer now or later, click Yes
to reboot your computer now.

Installing the 1zoT NodeBuilder Development Kit

13. Once the installation has completed, you will be given the option to view the ReadMe file. See
the ReadMe file for updates to the NodeBuilder documentation.

14. If you do not have a PDF document viewer, install Adobe Reader from get.adobe.com/reader/.

IzoT NodeBuilder User's Guide

23

http://get.adobe.com/reader/

3

|IzoT NodeBuilder Quick-Start Exercise

This chapter demonstrates how to create an 1zoT or LONWORKS device using the 1zoT
NodeBuilder Development tool.

IzoT NodeBuilder User's Guide 25

IzoT NodeBuilder Quick-Start Exercise

The following quick-start exercise demonstrates how to create an 1zoT or LONWORKS device with the
1zoT NodeBuilder tool. It introduces NodeBuilder features and provides some familiarity with the
NodeBuilder interface.

The first step required to develop a device is to define the requirements for the device. For this
quick-start exercise, you will develop a device with one sensor and one actuator. The sensor is a
simple sensor that monitors a push button and toggles a network variable output each time the button is
pressed. The actuator drives the state of an LED based on the state of a network variable input.

To develop an 1zoT or LONWORKS device with the 1zoT NodeBuilder tool, perform the following
steps:

Create a NodeBuilder project.

Create a NodeBuilder device template.

Define the device interface and generate Neuron C source code that implements it.
Develop the device application by editing your Neuron C source code.

Compile, build, and download your application.

Test your device interface.

Debug your device’s application.

Connect and test your device in a network.

NN

Additional steps in the device development process include creating an 1zoT CT stencil, an 1zoT device
plug-in, a human-machine interface (HMI), and an installation application for your device; and
applying for LONMARK certification for your device. These steps are summarized in the Additional
Device Development Steps section that follows this quick-start exercise.

After you complete this exercise, you can load and run the Neuron C example applications that are
included with the 1zoT NodeBuilder tool. The 1zoT NodeBuilder software includes three Neuron C
example applications that you can load into your FT 6000 EVBs, and one Neuron C example
application that you can load into an LTM-10A platform with Gizmo 4 1/O Board (included with the
NodeBuilder FX/PL Tool, and available separately). You can use these examples to test the 1/0
devices on the FT 6000 EVB or Gizmo 4 1/O board, and create simple LONWORKS networks. You can
browse the Neuron C code used by these examples to further learn how to develop your own device
applications.

For more information on using the FT example applications, see the FT 6000 EVB Examples Guide.
For more information on using the PL example application, see the NodeBuilder FX/PL Examples
Guide.

Step 1: Creating an 1zoT NodeBuilder Project

26

A NodeBuilder project collects all the information about a set of devices that you are developing. You
will create, manage, and use NodeBuilder projects from the NodeBuilder Project Manager. The
project manager provides an integrated view of your entire project and provides the tools you will use
to define and build your project.

To create an 1zoT NodeBuilder project, start the NodeBuilder Project Manager from the 1zoT
Commissioning Tool (CT) or directly from the NodeBuilder program folder. You will typically start
the project manager from the 1zoT CT because it simplifies the association of an 1zoTNodeBuilder
project with an 1zoT CT network.

You can use the same NodeBuilder project with multiple 1zoT CT networks, and you can use a 1zoT
CT network with multiple NodeBuilder projects. However, an 1zoT CT network can only be used with
one NodeBuilder project at a time.

To create a NodeBuilder project by starting the NodeBuilder Project Manager from the 1zoT CT,
follow these steps:

1zoT NodeBuilder Quick-Start Exercise

1. Create a new IzoT CT network. To do this, follow these steps:
a. Click Start on the taskbar, point to Programs, point to Echelon OpenLLNS CT, and then
select OpenLLNS Commissioning Tool. The LonMaker Design Manager opens.
b. Inthe Network Name property under New Network, enter 1zoT NB Exercise.
| General | Options | MNew Metwork Options | OpenLNS CT Slenc\lsl OpenLNS CT Default Options |
| - New Netwaork
MNetwork name:
I'ZOT NB Exercwse\ Create Network |7 05&?31:”
 Existing Network = -
Drawing directory- M r oplti)::ma
|<nona> LI Open Copy
Drawing name:
|<nona> LI Delete
Database name: Defragment Database
|<ﬂ0ﬂe> LI
Start OpenlNS Server
Backup
Copyright (¢) 19362013 Echelon Corp. Drawing base path
Bl e ved ’7| C:\Users\Public\DocumentsiLonWorks\OpenLnsCt\Drawings LI Add... ‘
Exit | Help |
c. Clear the Show All Options check box under New Network if it is selected.
d. Click Create Network to create the new network.
e A message may appear informing you that Visio must be launched and initialized so that
it can work with 1zoT CT. Click OK.
e A warning may appear asking you if you want to enable macros. You must enable
macros for the 1zoT CT to function.
e. Visio 2010 starts and the Naming page in the Network Wizard appears. Click Next. The

Network Interface page appears.

Netwaork Interface
[¥ Network attached

Network interface name
LonTalk IP|

[~ Skip network interface prompt when re-opening this drawing

< Back

I Mext > I

Finish Cancel

Help

IzoT NodeBuilder User's Guide

27

28

f. Select the Network Attached check box and then select the LonTalk/IP network interface
you created when you installed your FT 6000 EVK.

g. Click Next. The Management Mode page appears.

Management Mode

(@ OnNet (propagate device changes to the network)
(" Offtlet (save device changes for later processing)

[~ Skip this prompt when re-opening this drawing

< Back I Next = I Finish | Cancel | Help |

h. Select OnNet. This means that changes to the 1zoT CT drawing are sent immediately to your
NodeBuilder devices on the network. Click Finish.

i. 1zoT CT creates and opens a new network drawing.

For more information on creating and opening 1zoT CT networks, see Chapter 3 of the IzoT
Commissioning Tool User’s Guide.

2. Click Add-Ins, click OpenLNS CT, and then click NodeBuilder.

3. The New Project wizard opens.

Network 'lzoT NB Exercise' does not have a NodeBuilder project
& associated with it. You may either create a new project, or choose an
existing project for this network.

(@ Create a new NodeBuilder project

(' Open an existing NodeBuilder project

= Back | Next = | Cancel |

4. Accept the default Create a New NodeBuilder Project option, and then click Next.

1zoT NodeBuilder Quick-Start Exercise

5. Accept the default NodeBuilder Project Name, which is the same name as the 1zoT CT network,
and then click Next.

6. Accept the defaults in the Specify Default Project Settings dialog, and then click Finish.

7. The NodeBuilder New Device Template wizard starts. Proceed to the next section to create a
NodeBuilder device template.

For more information on creating NodeBuilder projects, see Chapter 4, Creating and Opening
NodeBuilder Projects.

Step 2: Creating a NodeBuilder Device Template

Each type of device that you develop with the 1zoT NodeBuilder tool is defined by a pair of device
templates: a NodeBuilder device template and an 1zoT device template. The NodeBuilder device
template specifies the information required for the NodeBuilder tool to build the application for a
device such as a list of the source code files and up to two hardware platforms for the device. The
1zoT device template defines the network interface to the device, and is used by 1zoT tools such as the
1zoT Commissioning Tool to configure and bind the device.

Each pair of device templates is identified by a unique program ID. Every device on a network with
the same program ID must have the same device interface.

This section demonstrates how to create a NodeBuilder device template. The 1zoT device template
will be created automatically when you build the application. To create the NodeBuilder device
template, follow these steps:

1. Inthe NodeBuilder Device Template Name property in the New Device Template wizard, enter
1zoT NB Example Device.

NodeBuilder New Device Template Wizard it &

ModeBuilder device template name:

| IzoT NB Example Device]

Source file name:

| |zoT NB Example Device.nc Browse.

Folders
MNodeBuilder device template:

‘ C\Users\Public\DocumentsiLonWorks\OpenLnsCt\SourcellzoT P Browse._.

Output:

‘ A Browse.

‘ Next = Cancel

2. Click Next. The Program ID window appears.

IzoT NodeBuilder User's Guide 29

30

Program 1D Gl x|

NodeBuilder device template name: | IzoT NB Example Device

Automatic program ID management

[¥ Enable Min model #: 0x00 Max model #: 0x07

[+ Re-register plug-ins

Program ID type
(T
& Standard development/prototype (format 9)
(" Standard LonMark certified (format 8)

Program ID:

| 90:00:01:00:00:00:00:00 Calculator...

LNS device template name:

| IzoT NB Example Device

< Back | Next > | Cancel ‘

3. Click Calculator. The Standard Program ID Calculator dialog opens.
E LonMark Standard Program ID Calculator ® Y
Manufacturer (M:bAM:MM) :
|<EnterNumber[DecimaI]> ﬂ | Ok
Categony:
| ﬂ Cancel
‘ Device class (CC:CC) :
| ~| |nn on
Usage (UU):
|Netw0rl< IManagement j |El
Channel type (TT):
|<EnterNumber[DecimaI]) ﬂ |

Model number (NM) :
N il

[v Standard development program 1D
[~ Has changeahle inteace
[~ Usage field values defined by functional profile

Frogram ID
FH:MMzMM:CCzCC:UU:TT NN

|90:BB:BB:GB:BB:BB:BB:BB

4. Enter the following values for the program ID fields:

In the Manufacturer ID (M:MM:MM) property, enter your standard manufacturer 1D or
temporary manufacturer ID in decimal format, or select the Examples manufacturer ID. By
default, the manufacturer ID that you entered during of the 1zoT NodeBuilder tool installation
is shown by default.

If your company is a LONMARK member, but you do not know your manufacturer ID, you can
find your ID in the list of manufacturer IDs at www.lonmark.org/spid.

If you do not have a standard manufacturer ID, you can request a temporary manufacturer 1D
by filling out a simple form at www.lonmark.org/mid.

In the Category property, select the 1/O option.

1zoT NodeBuilder Quick-Start Exercise

http://www.lonmark.org/spid
http://www.lonmark.org/mid

e Inthe Device Class (CC:CC) property, select the Multi-1/0 module (5.01) option.

e Inthe Usage (UU) property, select the General option.

e Inthe Channel Type (TT) property, select the TP/FT-10 option.

e Inthe Model Number (NN) property, enter O1.

LonMark Standard Program ID Calculator

Manufacturer (h:hhd: b -

o] x
|1D4857‘5 oK

Cancel

Model number (NN :
o« [

[+ Standard development program 1D
[Has changeable interface
[Usage field values defined by functional profile

Program 10
FH:MM:MM:CC:CC:UU:TT NN

|9F:FF:FF:35:B1:BH:BH:B1

|Examp|es ﬂ

Category:

o ~]

Device class (CC:CC):
| |Mu|t|—\,-"O module (5.01) j |5 01
l Usage (UU):

|General j |1D

Channeltypa (TT):

[TR/FT-10 ~] |4

Note: The current list of manufacturer IDs, device classes, usage values, and channel types

are defined in an XML file (spidData.xml) that is available at www.lonmark.org/spid. This
file is updated as LONMARK International adds new manufacturer 1Ds, device classes, usage

values, and channel types.

5. Click OK to return to the New Device Template wizard. The Program ID property contains the
program ID you specified in the Standard Program ID Calculator dialog.

Tip: Do not clear the Enable check box under Automatic Program ID Management. This
enables the Model Number (NN) field in the program ID to be incremented automatically when

the external interface of the device is changed. This allows for the easy development of a device

with a changing network interface during development. The program ID will cycle through the

range of specified model numbers to avoid two devices having the same program ID but different

external interfaces.

6. Click Next. The Hardware Template window opens.

7. Specify the development build and release build hardware template.

e Ifyou are using the FT 6000 EVK hardware (FT 6000 EVBSs), select FT 6000 EVB in both
the Development Build Hardware Template and Release Build Hardware Template

properties.

IzoT NodeBuilder User's Guide

31

http://www.lonmark.org/spid

Hardware Templates

ModeBuilder device template name: MNB Fx Example Device

Please specify the hardware templates to be used with each device
template target. Ifyou select =Mone=, the target will not be built.

Development build hardware template:

FT 5000 Evaluation Board -

Release build hardware termplate;

v Run ModeBuilder Code 'Wizard

= Back | Finish | Cancel

e If you are using the NodeBuilder FX/PL hardware (LTM-10A Platform with Gizmo 4 1/0
Board), select LTM-10A RAM in the Development Build Hardware Template property,
and then select LTM-10A Flash in the Release Build Hardware Template property.

Hardware Templates

ModeBuilder device template name: MNB Fx Example Device

Please specify the hardware termplates to be used with each device
template target. If you select =kone=, the target will not be built.

Development build hardware template:

LTh-104 RAM -

Release build hardware termplate;

LTH-10AFI

v Run ModeBuilder Code 'Wizard

= Back | Finish | Cancel

8. Click Finish. The NodeBuilder Code Wizard starts. There will be an initial pause as it reads the
available resource files. Proceed to the next section to generate Neuron C code that defines your
device’s interface.

1zoT NodeBuilder Quick-Start Exercise

Step 3: Defining the Device Interface and Creating its Neuron C
Application Framework

You can develop device applications with the 1zoT NodeBuilder tool using the Neuron C programming
language. Neuron C is based on ANSI C, with extensions for network communication, hardware 1/0,
timing, and event handling.

The 1zoT NodeBuilder tool includes a NodeBuilder Code Wizard, which automatically generates
Neuron C source code that defines the device interface (XIF). The device interface includes all the
functional blocks, network variables, and configuration properties implemented by your device. The
NodeBuilder Code Wizard also generates much of the code for the Node Object functional block,
which is a standard functional block that is used for maintaining and managing the device and its
functional blocks.

NodeBuilder, Code Wizard RPIX
Device termplate Configuration property access method
Mame: MB F¥ Example Device - ‘ Generate and Close
Pragrarm 10 91:99:AB:05:01:0A00:01 i
Close ‘

To insert a functional block, netwaork variable, or configuration property, drag the caorresponding iterm from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program
interface pane.

Resource pane: FProgram interface pane:
|E: SLonworkshTypesiLdr.Cat Culm\Source\ME_Fi ExerciseNE Fx Example Device
g CiiLontorks' TypesiLdrf, Cat] . ME F# Example Device
- CiiLonworks| Types =1 Functional Blacks
+-fp STANDARD (Scope 0: Standard) + 0 ModeObject
=13 C:\Lonwarks| TypesiUser\Echelon (21 Mebwark Yariables
+|-f# echelon (Scope 3: Echelon Corporation) [_ CorFigur ation Properties

% MBUS_Integrator (Scope 4 Echelon Corporation, Gatewa:
% dc0519 (Scope 4 Echelon Corporation, Generic Analog O
g DCO131 (Scope < Echelon Corporation, Channel Diagnost
+-@p BAS_Controller (Scope 4: Echelon Corporation, Generic Co
- CiiLonworks\bypesiuser YourCompanty
+-fp Device Development (Scope 5t 0xFFDSE, 0:x0000, Nebwor
-3 C:\Lonwarks\NeuronC\ExamplesiModeBuider LTM-104}Types
+|-fl McExample (Scope 5t Examples, IjO, General)
-3 CiiLonworksiMeuronC\ExamplesiMini EVE\ Types
+|-fllp Minikit (Scope 4: Examples, Generic Analog Input)

F [H

The left pane of the NodeBuilder Code Wizard is the Resource pane, which is used to display the
resources that are available for your application. The right pane is the Program Interface pane, which
is used to display and modify your device’s interface. You will define your device’s interface by
dragging functional profile templates and network variable and configuration property types from the
Resource pane to the Program Interface pane.

After you run the NodeBuilder Code Wizard, you work with the generated code to implement your
device’s functionality. You can rerun the NodeBuilder Code Wizard at any time to modify your
device’s interface, while maintaining any changes that you have implemented in the source code.

In this step, you will automatically create Neuron C source code for a device with the following
functional blocks:

e Anopen-loop sensor functional block with a SNVT_switch output network variable.

e Anopen-loop actuator with a SNVT_switch input network variable.

IzoT NodeBuilder User's Guide 33

e Asimple Node Object with no configuration properties (the NodeBuilder Code Wizard
automatically creates this functional block).

To define your device interface and automatically create Neuron C source code for it using the Code
Wizard, follow these steps:

1. Create an open-loop sensor functional block with a SNVT_switch network variable. To do this,
follow these steps:

a. Expand the STANDARD (Scope 0: Standard) resource file under the LonWorks/Types
folder, and then expand the Functional Profile Templates folder to display the standard
functional profile templates (SFPTS).

NodeBuilder Code Wizard X
Device template Configuration property access method
MName: MNB Fx Example Device & Generate and Close
Program ID: 91:99:AB8:05:01:0A:00:01 r
Close

To insert a functional hlock, network variahle, ar configuration property, drag the corresponding itern from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program
interface pane.

Resource pane: Frogram interface pane:
|E:\LDnWorks\Types\STANDAHD.fpt C:AlmhSource’\MB_Fx Exercize’MB Fx Example Device
g CiiLonworks! TypesiLdrf, Cat =l-x$# ME FX Example Device
=13 Crilonwarks\Types =1-{_1 Functional Blocks
=@ STANDARD (Scope 0: Standard) + 0 ModeObject
+-{_7] Metwork Yariable Types {Z Metwork Yariables
+ D Configuration Property Types D Configuration Properties

e | Functional Profile Templates
+ D Enurmetations
+-(_7] Language Files
+-{_]] Formats
-1 CiiLoniorks! TypesiUser\Echelon
+-@ echelon (Scope 3: Echelon Corporation)
+-E MBUS_Integrator (Scope 4: Echelon Corporation, Gateway
+-fp dcos19 (Scope 4 Echelon Corporation, Generic Analog QL
+-f DCO131 (Scope 4 Echelon Corporation, Channel Diagniost
+-@# BAS_Controller (Scope 4: Echelon Corporation, Generic Co
- CiiLontorksibypesiuseriYourCompany
+-f Device Development {Scope 5: 0xFFD3E, 00000, Metwor
-2 CiiLontorksiNeuronc\ExamplesiNodeBuildsr LTM-104} Types
+-@g McExample (Scope S: Examples, If0, General)
- CiiLontorksiNeuroncExamplesiMini EVE\ Types
+-Ep Minikit (Scope 4: Examples, Generic Analog Input)

b. Drag the SFPTopenLoopSensor (1) functional profile template from the Resource Pane on
the left side to the Functional Blocks folder in the Program Interface pane on the right side.
An openLoopSensor functional block appears under the Functional Blocks folder.

34 1zoT NodeBuilder Quick-Start Exercise

NodeBuilder Code Wizard

Device template Configuration property access method
MName: MNB Fx Example Device & Generate and Close
Program ID: 91:99:AB:05:01:0A:00:01 '

To insert a functional hlock, network variahle, ar configuration property, drag the corresponding itern from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program
interface pane.

Resource pane: Frogram interface pane:
C:ALomwarksh Tepes\STANDARD. fpt C:AlmhSource’\MB_Fx Exercize’MB Fx Example Device
+- &% SFPThvacTempSensor (1040} | |=- @ NE Fx Example Device
+-&% SFPThvacYalvePositioner (51313 =[] Functional Blacks
SFPTidentifierSensor (S035) + 0 ModeObject
& SFPTiskeypad (3253) + o2 [
SFPTisiLamphctuator (3041) [Z] Network Variables
SFPTisiMonitorPoint (5) {_] Corfiguration Properties

SFPTisiSunblindActuator (61123

% SFPTlampéctuator (30400

% SFPTlightingPanelController (3401)
% SFPTlightSensor (10107

% SFPTmodemController (5091)

% SFPTRodeCbject (0)

% SFPToccupancyController (30713

% SFPToccupancySensor (1060)

% SFPTopenLoopActuator (3)

% SFPTopenloopSensor (13

% SFPTpartitionwallController (3252)
% SFPTpressureSensor (1030)

% SFPTpullStationFireInitiatar (11005)
% SFPTpumpController (31200

% SFPTrailcarsudinController (91113

% CCMTw mile e A sim Cmmm e S 470

e e e S e e e

c. Rename the openLoopSensor functional block to “Switch”. To do this, right-click the
openLoopSensor functional block in the Program Interface pane, click Rename on the
shortcut menu, enter Switch, and then press ENTER or TAB. A warning message appears
warning that new source files will be generated as a result of the name change. Click OK.

d. Expand the Switch functional block, and then expand the Mandatory NVs folder to display
the nvoSwitch network variable.

IzoT NodeBuilder User's Guide 35

NodeBuilder Code Wizard

Device template

interface pane.

Resource pane:

MName: MNB Fx Example Device

Program ID: 91:99:AB8:05:01:0A:00:01

To insert a functional hlock, network variahle, ar configuration property, drag the corresponding itern from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program

Configuration property access method
Generate and Close
P
-~
Close

Frogram interface pane:

C:ALomwarksh Tepes\STANDARD. fpt

C:AlmhSource’\MB_Fx Exercize’MB Fx Example Device

+-§ SFPThvacTempSensor {1040}

% SFPThvarvalvePositioner (B131)
SFPTidentifierSensor (S035)
SFPTiskeypad {3253)
SFPTisiLamphctuator (3041)
SFPTisiMonitorPoint (5)
SFPTisiOccupancySensor (10617
SFPTisiSunblindActuator (61123
SFPTlampactuator (30400
SFPTlightingPanelController {3401)
SFPTlightSensor {1010}
SFPTmademCaontraller (5091)
SFPTnodeObject {0}
SFPToccupancyController {30713
SFPToccupancySensor (1060)
SFPTopenLoopactuator (3)
SFPTopenLoopSensar (1)
SFPTpartitionwallController {3252)
SFPTpressureSensor (1030)
SFPTpullStationFireInitiator {11005)
SFPTpumpController {81200
SFPTrailcaraudioController {91113

SEMTw mile e A sim Cmmm e 1470

)

= . MEB F¥ Example Device
=17 Functional Blocks
+ . ModeObject

\
—1-_1 Mandatary Mvs
&s nvovalue

[optional Mys

1 optional CPs

(1 tmplementation-specific Mys

1 Implementation-specific CPs
[Metwork Variables
D Canfiguration Properties

e. Double-click the nvoValue network variable, or right-click it and then select Properties on
the shortcut menu. The NV Properties dialog opens.

f. In the Name property, change the network variable name to nvoSwitch.
g. Inthe NV Type property, select SNVT _switch, and then click OK.

NV Properties ['_l &l

Marne: |anSWilch

-

[” Changeable type

Cancel

— @ =
e |

Advanced..

T type: SHYT_gwitch

SMNYT_sound_db

FFT member name: SNYT_sound_db_f

23 KN

X SHVT_speed
FPT mermber nurnber S
SHVT_speed_mil
SHVT_state
. . SMYT_state_G4
Direction
C
& SMVT_swilch_2
SHYT_telcom
SHYT_temp
SHYT_temp_diff_p
Modifiers SNVT_temp_f
SellSHYT_temp_p
' None SMYT_ternp_ror
" Synchronized ’7
" Polled
Initializer

Edit

36

1zoT NodeBuilder Quick-Start Exercise

2. Create an open-loop actuator with a SNVT_switch network variable.

a.

e.
f.

Drag a SFPTopenLoopActuator functional profile template from the Resource Pane on the
left side to the Functional Blocks folder in the Program Interface pane on the right side.

Rename the openLoopActuator functional block to “LED”. A warning message appears
warning that new source files will be generated as a result of the name change. Click OK.

Expand the LED functional block, and then expand the Mandatory NVs folder to display the

nviValue network variable.

Double-click the nviValue network variable, or right-click it and then select Properties on

the shortcut menu. The NV Properties dialog opens.

In the Name property, change the network variable name to nviLamp.

In the NV type property, select SNVT_switch, and then click OK.

You have completed designing the external interface of the device. You will now use the
NodeBuilder Code Wizard to generate the source files for you.

3. Click the Generate and Close button in the top-right corner of the NodeBuilder Code Wizard to
generate the Neuron C source files that implement your specified external interface.

Device template

Marne: MB Fi Example Device

Frogram I0: 91:99:A8:05:01:0A:00:01

Toinsert a functional block, network variable, or configuration property, drag the corresponding itern frorm the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program

interface pane.

Resource pane:

Configuration property access method

o

~

FProgram interface pane:

Generate and Close

Close

|C: SLonworkshTypeshiLdrf.Cat

ClmbSource\ME_F Exercise’NE Fx Example Device

&l C\Lonwarks\TypesiLdrf.Cat
-1 Ci\Lonwarks| Types
+|-fillp STAMDARD (Scope O Standard)
—-[C3 Ci\Lonwaorks| TypestUseriEchelon
+-@ echelon (Scope 3: Echelon Corporation)
+|-fl MBUS_Integrator {Scope ¢ Echelon Corporation, Gatewa:
+|-lp dc0519 (Scope 4: Echelon Corporation, Generic Analog Ou
+|-filp DCO131 (Scope 4 Echelon Corporation, Channel Diagnosk
+| -l BA5_Controller {Scope < Echelon Corporation, Generic Co
-1 CiiLonworksitypesiuserYourCompany
+|-filp Device Development (Scope S: 0xFFD3E, 0x0000, Metwor
-0 CiiLonorksiMeuronCiExamplesiModeBuilder LTM-104Types
+-@p NcExample (Scope 5: Examples, I/O, General)
—1-23 C:\LonwarksiNeuronC\ExamplesiMini EVE\ Types
+|- Minikit (Scope 4: Examples, Generic Analog Input)

= . ME Fx Example Device
=] Functional Blacks
= &y LED
—-[_ Mandatory Mys
5ot
[_1 Optional Mys
[_1 Optional CPs
[Z7 Implementation-specific Mvs
[Z7 Implementation-specific CPs

+] ModeObject
= Switch

—-[_ Mandatory Mys
@ nvoSwitch
[Z1 optional Mys
[_1 Optional CPs
[Z7 Imiplementation-specific Mys
[Z7 Implementation-specific CPs
[Z Metwaork Yariables
D Configur ation Properties

4. The NodeBuilder Code Wizard closes and you are returned to the Project Manager window. The
Project pane within the project manager displays the files and templates defined for your project.

IzoT NodeBuilder User's Guide

37

5.

S| Project 'ME_F¥ Exercise';
='=4 Device Templates
— @ NE FY Example Device
[E1ME F Example Device.nc
+ m] Development
+ [H| Releass
-'=3 Source Files
[E1Filesys.h
ElLenh
[ELeDne
EineFz Example Device.h
[Enodeobject.h
= MNodeObijeck.nc
[Z1 5witch.h
[Z1 5witch.ne
[E] common.h
[E) comman.ne
[(MLibraries
[:I'Devices

+{_IHardware Templates

"2 Project

Double-click the 1zoT NB Example Device.nc file in the Project pane to open the main Neuron C
file for this new device template.

Open the Switch.h and LED.h header files and view the functional block and configuration
property declarations.

Open the Switch.nc and LED.nc Neuron C files and view the default implementation of the
director function (named SwitchDirector or equivalent).

The director function is a mechanism that allows the developer to easily dispatch events to all the
functional blocks in a device with a single function call. For instance, during reset, the when

(reset) clause can dispatch the reset event for each functional block in the device when it is done
initializing the “global” components in the device. This is done using the following line of code:

executeOnEachFblock (FBC_WHEN_RESET);

Proceed to the next section to implement your device’s functionality by editing your Neuron C
code.

For more information on defining device interfaces and generating Neuron C code for them, see
Chapter 6, Defining Device Interfaces and Creating their Neuron C Application Framework.

Step 4: Developing the Device Application

38

The Neuron C source code generated by the NodeBuilder Code Wizard implements your device’s

interface. The Code Wizard also generates a skeleton application framework, including the most
common tasks performed by the Node Object. When developing the device application, you will

typically concentrate on writing the algorithms that implement your device’s functionality. To do this,
you will edit the code generated by the Code Wizard and program any required interaction between the

device application and the 1/O devices on your device hardware.

In this step, you will add Neuron C 1/O declarations to the Switch.h, and LED.h header files, and then
implement your desired 1/O functionality in the Switch.nc and LED.nc Neuron C files.

Note: The I/O object declarations used for the FT 6000 EVK hardware (FT 6000 EVBSs) and the
NodeBuilder FX/PL hardware (LTM-10A Platform with Gizmo 4 1/0 Board) are different. Therefore,

1zoT NodeBuilder Quick-Start Exercise

follow the section corresponding with the development platform or platforms you are using for the
appropriate code to use.

FT 6000 Evaluation Boards
1. Declare the I/O hardware for the Switch following these steps:
a. Double-click the Switch.h file in the Project pane to edit the source file.
b. Find the following line of code near the end of the Editor window:
//}}NodeBuilder Code Wizard End
¢. Add the following line of code after the line referenced in step b.
10_9 input bit ioSwitchl;
2. Add functionality to the Switch 1/0 following these steps:
a. Double-click the Switch.nc file in the Project pane.
b. Find the following line of code at the end of the Editor window:
#endif // _Switch_NC_
¢. Add the following when-clause before the line referenced in step b:

when (io_changes (ioSwitchl))
{
nvoSwitch.state
nvoSwitch.value

Vinput_value;
input_value ? 200u : O;

¥
3. Declare the 1/0 hardware for the LED. To do this follow these steps:

a. Double-click the LED.h file in the Project pane.

b. Find the following line of code near the end of the Editor window:
//}}NodeBuilder Code Wizard End

c. Add the following line of code after the line referenced in step b.
10_2 output bit ioLamp = 1;

4. Add functionality to the LED 1/O following these steps:
a. Double-click the LED.nc file in the Project pane.
b. Find the following lines of code near the beginning of the Editor window:

when(nv_update_occurs(nviLamp))

//}}NodeBuilder Code Wizard End
{

c. Add the following line of code after the lines referenced in step b:
io_out(ioLamp, !'(nviLamp.value && nvilLamp.state));
5. Click File and then click Save All to save all your changes to the source files.

6. Proceed to the next section to compile your Neuron C application, and then build an application
image and download it to your device.

For more information on editing Neuron C code to implement your device’s functionality, see Chapter
7, Developing Device Applications.

1zoT NodeBuilder User's Guide 39

LTM-10A Platform and Gizmo 4 I/0 Board
1. Declare the I/O hardware for the Switch following these steps:
a. Double-click the Switch.h file in the Project pane to edit the source file.
b. Find the following line of code near the end of the Editor window:
//}}NodeBuilder Code Wizard End
c. Add the following line of code after the line referenced in step b.
10_6 input bit 1oSwitchl;
2. Add functionality to the Switch 1/0 following these steps:
a. Double-click the Switch.nc file in the Project pane.
b. Find the following line of code at the end of the Editor window:
#endif // _Switch_NC_
¢. Add the following when clause before the line referenced in step b:

when(io_changes(ioSwitchl))
{
nvoSwitch.state
nvoSwitch.value

Tinput_value;
input_value ? 200u : O;

}
3. Declare the 1/0 hardware for the LED. To do this follow these steps:

a. Double-click the LED.h file in the Project pane.

b. Find the following line of code near the end of the Editor window:
//}}NodeBuilder Code Wizard End

c. Add the following line of code after the line referenced in step b.
10_0 output bit ioLamp = 1;

4. Add functionality to the LED 1/O following these steps:
a. Double-click the LED.nc file in the Project pane.
b. Find the following lines of code near the beginning of the Editor window:

when(nv_update_occurs(nviValue))

//
//}}NodeBuilder Code Wizard End
{

c. Add the following line of code after the lines referenced in step b:
io_out(ioLamp, !(nviLamp.value && nviLamp.state));
5. Click File and then click Save All to save all your changes to the source files.

6. Proceed to the next section to compile your Neuron C application, and then build an application
image and download it to your device.

For more information on editing Neuron C code to implement your device’s functionality, see Chapter
7, Developing Device Applications.

IzoT NodeBuilder User's Guide 41

Step 5: Compiling, Building, and Downloading the Application

42

The 1zoT NodeBuilder tool includes a complete set of tools for compiling your Neuron C application,
building an application image that can be loaded into your device, and downloading your application
image to your device.

When you build your application, the 1zoT NodeBuilder tool will create downloadable application
image files and device interface files. The downloadable application image file is used by the 1zoT
Commissioning Tool and other network tools to download the compiled application image to a device.
The device interface file describes the external interface for your device. It is used by network tools
such as the 1zoT Commissioning Tool to determine how to bind and configure your device. The
device interface file is also used by the 1zoT NodeBuilder tool to automatically create the LNS device
template.

The 1zoT NodeBuilder tool can create two device sets for each device that you build, one for a
development version of your device and one for a release, or production, version of your device. The
default project directory for your 1zoT NB Exercise project is
C:\Users\Public\Documents\LonWorks\OpenLnsCt\Source\lzoT NB Exercise. The two device
file sets are written to different directories—the 1z0T NB Example Device\Development directory
and the 1zoT NB Example Device\Release directory. The development and release file set are both
stored within your project directory.

To compile, build, and download your application, follow these steps:

1. Right-click the 1IzoT NB Example Device device template icon in the Project pane, then click
Build on the shortcut menu.

@ Echelon NodeBuilder, FX - [C:Mm\Source\NB_FX ExerciseNB FX Example DevicelNB FX Example Device.nc]

@ File Edit Wiew Project Tools indow Help -8 x
Lexda & 7%
L
B ® |l Targets -~ &
BED ¥
]] g crimisour
=3 Praject 'NE_FX Exercise’ A4 {{NodeBuilder Code Wizard Start <CodsWizard Timestamps ~
=53 bevice Templates // Run on Fri Mar 13 14:42:07 2009, version 4.00.20
5 I
[ENE F Example | DetHngS. .- bdgBuilder Code Wizard End
%) [H] Development SetSawceFile... haePuilder Code Wizard Start <CodeWizard Tewplater
w | Release Code Wizard... {Template Rewision=r3n/:
5153 Source Files Remove pdeBuilder Code Wizard End
[ElFilesys.h '/'/'/.f././///'/'/'/'//.////'/'/'/'/N////'/'/'/'//././//f‘f‘/‘/‘//.////f‘/‘/‘//////f‘f‘/‘/‘//////f‘f‘/‘/‘//
. il
[ElLen.h Clean (i NE FX Exsmple Device.nco
[ElLeDunc Build Exclude
EEBJXO?ET Status. perated by NodeBuilder Code Wizard Version 4.00.20
lodeObject.
pyright (o) 2001-200% Echelon Corporation. All rights reserved.
[ElNodeobject, Properties...
[Er5witch.h /¢ ECHELON MAKES NO REPRESENTATICN, WARRANTY, OR CONDITICON oOF
[S1swiccine // BNY KIND, EXPRESS, INFLIED, STATUTORY, OR OTHERWISE OR IN
Eramman b 44 BNY COMMUMICATION WITH YOU, INCLUDING, EBUT NOT LIMITED To,
[Elcommon.ne 44 BNY IMPLIED WARRANTIEZS OF MERCHANTABILITY, SATISFACTORY
[Libraries // QUALITY, FITHESS FOR ANY PARTICULAR PURPOSE,
#{_IHardware Templates /4 NCHNINFRINGEMENT, AND THEIR EQUIVALENTS.
A
< > i
i 44 Trirren Rue A
11 Project < et >
x
= El
u
c
5
[
&
7
2 H4» H\Messages Search Results Evel
Far Help, press F1 NUM M5

2. If you receive any build errors, double-check that the code you entered matches that listed in Step
4: Developing Device Applications (you may receive some warnings, which can be ignored in the
context of this quick-start exercise).

3. Click the Echelon 1zoT CT/Visio button in the Taskbar to switch to the 1zoT Commissioning Tool
(CT). You will use 1zoT CT to install, bind, configure, and test the devices in your project. 1zoT

Creating and Opening 1zoT NodeBuilder Projects

CT displays a network drawing that shows the devices, functional blocks, and connections in your
network.

1zoT CTl also displays stencils that contain shapes that you can drag to your 1zoT CT drawing.
1zoT CT includes a NodeBuilder Basic Shapes 4.00 stencil with shapes that you will use to add
new devices, functional blocks, and connections to your network drawing. The NodeBuilder
Basic Shapes 4.00 stencil contains shapes that can be used with any device. You can also create
custom stencils with shapes customized for your devices and networks.

The NodeBuilder Basic Shapes 4.00 stencil contains two shapes that you will use to define your
devices during development. They are the Development Target Device shape and the Release
Target Device shape. These special device types help distinguish between other devices on the
network and the target devices used by the 1zoT NodeBuilder tool. The 1zoT NodeBuilder tool
allows you to create a mixed network of development hardware (FT 6000 EVB or LTM-10A
Platforms), release hardware (your own hardware), and other devices.

4. Drag a Development Target Device shape from the NodeBuilder Basic Shapes 4.00 stencil to
your network drawing. You can drop the shape anywhere, but a good location is just below the
Channel 1 shape on your drawing.

B NB_FX Exercise.vsd

Shapes %

Search For Shapes:
Type your search here

[i.LON SmartServer Static Shapes
[Loniaker WY Shapes

[LorPoint Shapes 3.0

] NodeBuider Basic Shapes 4.00

~[/I4 4 » M} Subsystem 1 4 Title Blocks

5. The New Device Wizard opens. In the Device Name property, enter NB Device, and then select
the Commission Device check box. Verify that 1zoT NB Example Device is selected in the
NodeBuilder Device Template box.

IzoT NodeBuilder User's Guide 43

44

Mew Device Wizard

Device name: MB Device

' Mutnker of devices ta creste: 3

[v Commizzion device

ModeBuilder Device Template

[Creste new device templste

Matme: MB F¥ Example Device ﬂ

Channel
[Auto-detect channel

Type: |TPFT-10

Lef Lo

Mame: | Channel 1

| Mext = | Firizh Cancel Help

Click Next three times. The window in the New Device Wizard lets you select the application
image to be downloaded to your device.

Select the Load Application Image check box and then click Next. This specifies that you will
download to the device the binary application image file ((APB extension) that was automatically
created when you built the device with the 1zoT NodeBuilder tool. The application image files for
your NodeBuilder development devices are stored in the
C:\Users\Public\Documents\LonWorks\OpenLnsCt\Source\<NodeBuilder
Project>\<NodeBuilder Device Template>\Development folder.

Creating and Opening 1zoT NodeBuilder Projects

Mew Device Wizard

Specify device application imade name

Device template: MB F¥ Ezample Device [02]

Device namels): ME Device

[v Load application image

[Update firmware in device to match application image

*IF name:

ImiEage naEme: | CAm\SourceNB_FX ExerciseNB FX Example Device'De

= Back | Mext = |

| Chm\SourcehB_FX ExercizeiNB Fr Example Device'De

Finizh Cancel

il

Help

8. The next window lets you set the initial device state and the source of configuration property values

when your device is commissioned.

9. Select the Online option under State. This means that your device will run its application after it

has been commissioned.

Commission Device Wizard

Specify the initial state of the device and the source of CP values

Device namels): M Device

State Source of CP Values

" Default * LNS dotabaze

" Offline " Defautts

+ Online r

£ Disable 7 Application image file

= Back | Mext = |

Device Specific CPs
* Do not update
7 Update with other CPs

7 Upload from new app image

™ Preserve device values

Finizh Cancel

Help

10. Click Finish. The Press Service Pin window appears.

IzoT NodeBuilder User's Guide

45

Echelon LonMaker

E B Please press the service pin on device 'Example 1°...

Options Total Received
[Display data from service pin

[Fitter on program ID 0

[Fiter on channel

Coritinue Helgp

11. Press the service pin on the development platform to be loaded and commissioned. 1zoT CT loads
the application image for your 1zoT NB Example Device application to the development platform
and makes it operational. When 1zoT CT is done commissioning, it will return to the 1zoT CT
drawing. The device shape will be will be solid green indicating that the device has been
commissioned and is online. The device application will not do anything until you test the device
or connect it to other devices.

L1} NB_FX Exercise.vsd El@l&‘

Shapes % A

N ——
Type your search here

[i.LON SmartServer Static Shapes
[Loniaker WY Shapes

[LorPoint Shapes 3.0

] NodeBuider Basic Shapes 4.00

w O 2
m 0| o)

L

Metw.., Metw..

Daata Paint #
u @

Channel 1

22

Develop,..
Target ..,

~ |4 4 » #* Subsystem 1 4 Title Blocks J< >

12. Proceed to the next section to test your device’s interface using the 1zoT Browser.

For more information on building and downloading device applications, see Chapter 8, Building and
Downloading Device Applications.

Step 6: Testing the Device Interface

46

The 1zoT NodeBuilder tool makes it easy to test your device by itself, as well as to integrate your
device into a network and test its interaction with other devices.

The first tool that you will typically use for testing is the 1zoT Browser. The browser displays all the
input and output network variables and configuration properties for your device. You will typically
exercise the hardware or network variable inputs to your device and observe the hardware and network
outputs from your device.

Creating and Opening 1zoT NodeBuilder Projects

To test your device’s interface with the 1zoT Browser, follow these steps:

1. Right-click the 1zoT NB Example Device device in your 1zoT CT drawing, then click Browse on
the shortcut menu.

Bl NB_FX Exercise.vsd — E
Shapes <A

Search for Shapes:
Type your search here

[i LON SmartServer Static Shapes
[LorMaker WY Shapes

[LonPaint Shapes 3.0

] NodeBuider Basic Shapes 4.00

Commissioning
Configure. ..
Delete

=
Manage...
Diata Point & Move Device ¥
u 9
NodeBuilder »

Properties. ..
arg

’?rele“e Channel 1
Copy
Duplicate

4 4 » M Subsystem 1 4 Title Blocks J(_ | >

v

9

2. The 1zoT Browser opens. It displays the three functional blocks in your device interface (LED,
NodeObject, and Switch) and the network variables and configuration properties within each
functional block. You can only write values to the input network variables (blue) and writable
configuration properties (green).

BEX

“ [NB_FX Exercise] LonMaker Browser - Untitled :
File Edit Browse Help

= HS| &\ o=@ o $d] o -

Subsystem | Device

Subsystem 1 ||NB Device

Subsystem 1 |HB Device |HodeObject nviRequest 0,RO_EHABLE
Subsystem 1 |HB Device |HodeObject nvostatus H 0 0,0
Subsystem 1 |HB Device |Switch nvoSwitch H [X X1]

[

3. Click the Monitor All button ([on the toolbar to start polling all values.

IzoT NodeBuilder User's Guide 47

Press and hold the left button at the bottom of your development board (SW1 on the FT 6000
EVB; 10_6 on the Gizmo 4 1/0 Board). The value of the nvoSwitch network variable in the
Switch functional block changes to 100.0 1, which means that the switch is at its maximum level
(100%) and on.

Release the left button at the bottom of your development board. The value of the nvoSwitch
network variable in the Switch functional block changes back to 0.0 0, which means that the
switch is at its lowest level (0%) and off.

Note: The nvoSwitch network variable does not toggle each time you press the button. Instead, it
depicts the current state of the button. You will modify the behavior of the Switch functional
block in Step 7: Debugging Your Device’s Application so that it acts as a toggle-switch.

Click anywhere in the row for the nviLamp network variable in the LED functional block. In the
Value box in the browser toolbar, enter 100.0 1 and then press ENTER or click the Set Value
button (L]) in the browser toolbar. This sets the LED on the left side of your development board
(LED1 on the FT 5000 EVB; 10_0 on the Gizmo 4 1/0 Board) to its maximum level (100%) and
turns it on.

In the Value box in the browser toolbar, enter 0.0 0, and then press ENTER or click the Set VValue
button (ﬂ) in the browser toolbar. This returns the LED to its lowest level (0%) and turns it off.
The LED functional block appears to be functioning correctly.

Proceed to the next section to debug your device’s application. You will modify your device
application so that the value of the nvoSwitch network variable in the Switch functional block
toggles each time the button is pressed instead of when the button is pressed and released.

For more information on testing your device, see Chapter 9, Testing a NodeBuilder Device Using the
IzoT Commissioning Tool.

Step 7: Debugging the Device Application

48

If your device does not function as expected, you can use the NodeBuilder Debugger to control and
observe the behavior of the device application. The debugger allows you to set breakpoints, monitor
variables, halt the application, step through the application, view the call stack, and peek and poke
memory. You can make changes to the code as you debug your device.

To debug your device’s application with the NodeBuilder Debugger, follow these steps:

Click the Echelon IzoT/Visio button in the Taskbar to switch to the 1zoT Commissioning Tool.

Right-click the NB Device device shape in your 1zoT CT drawing, point to NodeBuilder, and then
click Debug on the shortcut menu.

Creating and Opening 1zoT NodeBuilder Projects

Bl NB_FX Exercise.vsd

Shapes %

N —
Type your search here + -

[i.LON SmartServer Static Shapes
[Loniaker WY Shapes

[LorPoint Shapes 3.0

#3 NodeBuilder Basic Shapes 4.00

Davi
Block

Browse,.,
Comrmissioning ¥
Configure. ..
Delete

Manage. .

(oouou |
Mave Device ¥
Data Point #
u o H .

Properties... Fut Source
ModeBuilder Properties. ..

IIIII
elease

—_— Copy
Duplicate

E 14 4 » »[\ Subsystem 1 4 Title Blocks / [¢ | >

3. The NodeBuilder Project Manager appears, and a debug session for the device starts. There is a
short pause as the debug session is started while the 1zoT NodeBuilder tool establishes
communication with the device’s debug kernel.

@ Echelon NodeBuilder, FX Im\Source\NB_FX ExerciselNB FX Example DevicelNB FX Example Device.

Flle Edit Wew Project Debug Tools Window Help
hed & T

L
B

B © |All Targets -
BED®
ILKE &

F¥ Example Device\NB FX Example Device.nc |

=3 Project 'NB_FX Exercise’: - [C:\im\Source\NB_FX Exercise\NB FX Example DevicelNB FX Example Devic

<3 Device Templates //{{ModeBuilder Code Wizard Start <CodeWizard Timestamps
= @ NB FX Example Devic /¢ Run on Wed Mar 11 13:36:37 2008, version 4.00.20 0
[Z1048 Fi: Example Dn it

= (H] Development /£ HodeBuilder Code Wizard End

= [H release /f{{HModeBuilder Code Wizard Start <CodeWizard Templates

=H 2 source Files A4/ <Template Revision="3r/>
@Fi\esy’s.h / /¥ HodeBuilder Code Wizard End
[ELenh FEREPETTE R dd 3 ddddd i iidddddddddiddiddddddiddidd dddidiraiddddiiiiaradidiiiidy
ELepanc n /¢ File: NE FX Example Device.nco
[E11B F Example ;;

[Einodecbiect.h

@Nodeob]ectn /¢ Generated by MNodeBuilder Code Wizard Version 4.00.20

/¢ Copyright (o) 2001-2009 Echelon Corporation. All rights reserved.

[Z15wiech.h
R switch.ne ¥ o
< | . 3 - /¢ ECHELON MAKES MO REPREZENTATION, WARRANTY, OR CONDITICH OF
— — /¢ AMY EIND, EXPRE33, INPLIED, STATUTORY, OR OTHERWISE OR IN o
Spojet [< >
X Device Name | Debug Status | NB dev template ‘ Subsystem |
E NE Device |Running |NB FX le Device ‘Suhsysteml |
H
8
)
o
X 555> Build device 'Suboy «| X (Call stack not available - deviec X E...|source ... |L...| X Type Variable | Value
% Computing status for 'NB o E o
E Resolving CodelWizard-3. 11 = ‘é’ =
w [Resolving GEM.LIE as C:iL 1 = i
& =
E Resolving EXTARITH.LIE as -] i =
Z |1/ 4 »| M) Messages {| « s ¥ & £
Far Help, press F1 Debug Status: Running Subsystem 1.MB Device NUM R

4. Double-click the Switch.nc file in the Project pane. A Debug window appears for the Switch.nc
file.

5. Find the when(io_changes(ioSwitch)) clause near the end of the file. This is the code
you added in Step 4: Developing the Device Application.

IzoT NodeBuilder User's Guide 49

50

8.

Right-click the nvoSwitch.state = !input_value line, and then click Toggle
Breakpoint on the shortcut menu, or click anywhere in the line and press F9.

@ Echelon NodeBuilder FX - C:Aim\Source\NB_FX Exercise\NB FX Example DevicelSwitch.nc

Fle Edit Wiew Project Debug Tools Window Help

e & 7w

EmE OZ 2 o @ oh 0 b, w LN]
B © ANl Targets v '
B2ED %

NKE = ®]

o F% Example DevicelSwitch.nc |

=1 ¥source Files -~ [C:\Mm\SourceMNB_FX Exercise\NB FX Example Device\Switch.nc

Filesys.h 1, /{ report_mask
LEDh o, // programming_mode
ELeD.ne /¢ programming_tailed

0,
[E1MB Fx Example o, /4 alarm notify disabled
@Nodeoblect.h [u] // reset_complete

= MNodeObiject.n i

[5witch.h

[E1switch.nc when({io_changes{ioSwicchl))
S common.h ¢
=] common.nc = “h.state = linput value;
51 b aries nvoSwitch.value = input_value # G
Cay
+Ipevices ' PasDtYe
Ll Hard Te lat —
Cttardwsrs Templatss 2 #endif // _Switch HC -~ -
% = - = Insert File inta Project 3
< I > Properties

[Project Find

Watch Wariable

| Subsystem |

Device Name: | Debug status
Taogle Breakpoint 3 [subsystem 1 |

NB Device |Running

x
(=]
o
=
3
8
)
a

{Call stack not availsble - ¢ RunToCursor e Type Variable | Value |

ax

X o> Build device 'Subsy -
2 [Computing status for 'NB

% [Resolving CodeWizard-3. 14
" Resolving GEM.LIE as C:\L

E Resolving EXTARITH.LIB as -
2 M/ 4| | M} Messages || « »

Call Stack
Breakpoint
WatchList O x

< X
Debug Status: Running Subsystem 1.ME Device Ln 502, Cal 36 UM R,

For Help, press F1

A breakpoint marker (i) appears next to the line, and the line is added to the Breakpoint List
pane at the bottom of the NodeBuilder Project Manager.

[C:\Im\Source\NB_FX Exercise\NB FX Example Device\Switch.nc ['-_I['Elfgl
o, /¢ programming mode
o, /¢ programming failed
o, /¢ alarm_notify dissbled
[u] // reset_complete

when{io_changes{iodwitchl}))

oSl ate
nvoldwitch.value

linput wvalue;
input_wvalue ? 0 : 200u;

#endif // _Switch NC_

Press and then release the left button at the bottom of your development board (SW1 on the FT
6000 EVB; 10_6 on the Gizmo 4 1/O Board). Observe that program execution stops at your

breakpoint as denoted by the arrow symbol on top the breakpoint symbol (|:}).

Creating and Opening 1zoT NodeBuilder Projects

9.

10.

| C:\m\SourcelNB_FX ExerciselNB FX Example DevicelSwitch. nc

Y

1, // report_mask

o, /¢ programming mode

o, /¢ programming failed
o, /¢ alarm_notify dissbled
[u] // reset_complete

when{io_changes{iodwitchl}))

Z00u;

{
=] nvodwitch.state = linput_wvalue;
nvodwitch.value = input_wvalue ? 0
i
#endif // _Switch NC_

||

Right-click the input_value variable in the line of code in which you set the breakpoint, and
then click Watch Variable on the shortcut menu.

@ Echelon NodeBuilder, FX

= Jsource Files A&

Exercise\NB FX Example Device\Switch.nc

Fil= Edit Wiew Project Debug Tools ‘window Help
DEH & T
ERR N [b BB
8o [l Targets <|[F3])
BEDF

b HE @ @M+

Fit Example Device|Switch.ne |

[T C:\mSource\NB_FX Exercise\NB FX Example DevicelSwitch. nc

For Help, press Fi

@Fi\esy’s.h 1, /{ report_mask
B o, /¢ programeing mode
Eepane o, /f programoing failed
[E1nE Fx Exampl: o, /7 alarm notify_disebled
[ElNodeChiect.h o // reset_complete
= MNodeObject.n T:
[E5witch.h
@Swit(h.nt when{io_changes{ioSwvitchl))
[commen.h {
[commen.nc (-] nvoSritch.state = cut
#{ D Libraries nvodwitch.,value = input_wvalus Copy
+ (¥Devices ' Paste
[MHardware Tempiates v dendif // Switch NC Insert Flle into Project
< F Properties
"7 Project Find
X Device Name | Debug Status Togal
o i nggle Breakpoint F9
[NE Device |Break @ 502
El Go s
8
o Step Qwer F10
a Step Inkto F11
x - x Run To Cursar
F¥3>> Build dewvice 'Subsy - wheni...]
E Computing status for 'NE j o Show Curr_entAStatemest. .
E Resolving CodelWizard-3. 11 = ‘é’
w [Resolving GEM.LIB as C:iL H S
‘_é Resolving EXTARITH.LIE as - z i
I W 4| M} Messages /]« » = =

Debug Status: Break @ 502

‘ Subsystem |
‘Suhsystem 1 |
; Type Variable | Value
]
b=
=
3
]
=
Subsystem 1.MB Device Ln 502, Col 36 MUM OWR.

The Watch Variable dialog opens.

IzoT NodeBuilder User's Guide

51

52

11.

12.

13.

14,

15.

Watch Variable El g|

Wiiatch type
+ \Watch variable

" Configuration table symbaol

" Built-in syrmbol

j Recalculate

Type Variable | Value

Missing... Add Wwatch Cancel

Click Add Watch. The variable is added to the Watch List pane at the bottom of the NodeBuilder
Project Manager. This pane displays each of the variables added to the watch list and their current
values.

Click the Step Into button (k2 in the debug toolbar to step through the code in the function until
you reach the end of the when clause. The input_value variable is 0.

Click the Step Into button to observe that the function executes a second time. The
input_value variable is now 1.

Click the Resume button (|P]) in the debug toolbar. Your device application resumes normal
execution.

Click Debug, point to Stop Debugging, and then select All Devices.

Creating and Opening 1zoT NodeBuilder Projects

@ Echelon NodeBuilder, FX - C:\Im\Source\NB_FX Exercise\NB FX Example DevicelSwitch.nc

Fil= Edit Wiew Project Debug = Tools ‘window Help
[N =] & % Reset 4
Halt L
B W Stop Debugging B Current Device
sE50% re n

» "R Tl step over F10
= B step 1ot FLof
M Run To Cursor) i i
=¥ saurce Files xercise xample Device\Switch. nc
] i X E \NB FX Example D \Switch
[Elfilesys.h Rl oy // report_mask
ElLenh Breakpoints 3 /¢ programeing mode
Eepane T g /f programoing failed
[E1nE Fx Exampl: o, /7 alarm notify_disebled
[ElNodeChiect.h o // reset_complete
= MNodeObject.n T:
[Z15witch.h
[Z1 Switch.nc when(io_changes(ioSvitchl))
[commen.h {
[commen.nc (-] nvoSyitch.state = linpur_walue:
#{ D Libraries mvodwitch.value = input_wvalue ? 0 & 200u;
+ (¥Devices '
+ Hard Templat
(ardware Templates $endif // Switeh NO
< >
"7 Project &
Device Name: | Debug Status | NB dev template ‘ Subsystem |
NE Device |Break @ 502 |ne Fx le Device |subsystem 1 |

x
[m]
[z}
El
2
g1
1]
a

X [>33> Build device 'Subsy < ; wheni...] ; E... | Source ... | L... ‘ ; Type ‘ Variable |Va|ue

g [computing status Zor 'NB o Tes CiVLMVEC... 502 long ... |input_va...[1 |
5 Resolving CodelWizard-3. 11 = ‘é’ =

% [Resolving GEN.LIE as C:iL 2 g o

& 2

E Resolving EXTARITH.LIE as -] i =

I W 4| M} Messages /]« » = = E

Stop debugging all devices Debug Status; Break @ 502 Subsystem 1.WB Device UM VR

16. The NodeBuilder debugger has demonstrated that events occur when the button is both pressed
and released. To implement the desired behavior in which an event occurs only when the button is
pressed, change the following lines of code in the Switch.nc file:

nvoSwitch.state = !input value;
nvoSwitch.value = input_value ? 200u : O;

to the following:
if (Yinput_value) {

nvoSwitch.state "= 1;
nvoSwitch.value = nvoSwitch.state ? 200u : O;

}
17. Verify that the Load after Build option (E) is set.

18. Right-click the 1zoT NB Example Device device template in the Project pane, then click Build on
the shortcut menu. The 1zoT NodeBuilder tool rebuilds the 1zoT NB Example Device application
and downloads it to all devices using the 1zoT NB Example Device device template.

19. Right-click the 1zoT NB Example Device device in your 1zoT CT drawing, then click Browse on
the shortcut menu to open the 1zoT Browser. Verify that the Monitor All button (@l) on the
toolbar is enabled.

20. Press the left button at the bottom of your development board (SW1 on the FT 6000 EVB; 10_6
on the Gizmo 4 1/0 Board) repeatedly. Observe that the button now acts as a toggle-switch—the
value of the nvoSwitch network variable in the Switch functional block changes when you press
the button, but it no longer changes when you release the button.

21. Proceed to the next section to install and test your device in an 1zoT or LONWORKS network.

For more information on debugging Neuron C applications, see Chapter 10, Debugging a Neuron C
Application.

IzoT NodeBuilder User's Guide 53

Step 8: Connecting and Testing the Device in a Network

Once you determine that your device is functioning as desired, you can test it as part of a network.
You can use the 1zoT Commissioning Tool to connect your development devices to other devices and
verify their operation within a network. This entails creating functional blocks, connecting the
network variables within the functional blocks, and verifying that the network variable values are
updated appropriately when you use the 1/0 devices on your device.

An output network variable of a device may be connected to compatible input network variables of the
same device. These are called turnaround connections. For this exercise, you will create a turnaround
connection so that a switch on your development board controls an LED. The procedure is the same
for creating connections between different devices.

To create Functional Block shapes with Network Variable shapes for each of your functional blocks,
and then connect the network variables, follow these steps:

1. Click the Echelon 1zoT CT/Visio button in the Taskbar to switch to the 1zoT Commissioning Tool.

2. Drag a Functional Block shape from the NodeBuilder Basic Shapes 4.00 stencil on the left of
the 1zoT CT window to the drawing.

<1] NB_FX Exercise.vsd

Shapes X

search for Shapes:
Type your search here w

[i LON SmartServer Static Shapes
[LorMaker k¥ Shapes

[LonPaint: Shapes 3.0

#3 nodeBuilder Basic Shapes 4.00

=1
mo
2)

Metw.., Metw..

=i S

Metwork Mel Data Point

,,,,,,,,,,,,

sl ety Func Block

>l b

gt g Tan Chgnnel 1

] —t

] &
[}
o - B e _

v
~ |4 4 » M Subsystem 1 4 Title Blocks J(>

3. The Functional Block wizard opens. You will use this wizard to associate the new functional
block shape with the NB Device device and the Switch functional block.

4. Inthe Functional Block wizard, do the following:

In the Name property under Device, select NB Device if it is not already selected.
In the Name property under Functional Block, select Switch.

In the New FB Name: property, enter Left Switch.

Select the Create All Network Variable Shapes check box.

o0 o

54 Creating and Opening 1zoT NodeBuilder Projects

Functional Block Wizard

Select Device and Functional Block Instance
Source Functional Block

X

Functional Block

Type: |Open-Lcn:np Senzor (OLS]

= 1
Mame: |SWﬂCh J

Mesy FB name: Mutnker of FBs to create:

Left pwitch
F Iv Creste all network variakles shapes

[ynamic FBs
I
I

Cancel

| Finizh |

Mame: | Type: |

Subsystem

Mame: | Subsystem 1 Browse...
Device

Mame: |NEI Dievice j Type: | MB F¥ Example Device [03]

S
=

Help

5. Click Finish. The New Functional Block wizard closes and the 1zoT CT drawing appears. A new

Left Switch functional block shape appears on the drawing.

Bl NB_FX Exercise.vsd

Shapes X

N —
Type your search here

[i LON SmartServer Static Shapes
[LorMaker WY Shapes
[LorPoint Shapes 3.0
ﬂ hodeBuilder Basic Shapes 4.00

8 =l
mlml =
e

Metw..,

SENK

Metw...

b ="

Diata Point
Merge

3 3G

NB Dewioe L Switch

Channel 1

EE B

Device

~[/14 4 » M} Subsystem 1 4 Title Blocks J<_ | >

6. Repeat steps 2—4 to create a new functional block shape named “Left LED”. In the Name
property under Functional Block in the Functional Block Wizard, select LED. In the New FB
Name: property, enter Left LED.

IzoT NodeBuilder User's Guide 55

56

8.

X]

Functional Block Wizard

Select Device and Functional Block Instance
Source Functional Block

Iaime: | Type: |

Subsystem

Maitme: | Subsystem 1 Browse...
Drevice

Mame: |NEI Drevice ﬂ Type: | MB F¥ Example Device [03]

Functional Black

Type: |Open-Lnnp Actuator (OLA) j 3
Mame; |LED j
Mewy FB name: Mumbker of FBs to create: 3
Left LED
i [v Creste all network variakles shapes
Dynamic FBs
r
r

| Finizh | Cancel Help

Click Finish. The New Functional Block wizard closes and the 1zoT CT drawing appears. A new
Left LED functional block shape appears on the drawing.

DE NB_FX Exercise.vsd E
~

Shapes %

N ——
Type your search here

[i.LON SmartServer Static Shapes
[Loniaker WY Shapes

[LorPoint Shapes 3.0
ﬂ NodeBuider Basic Shapes

v Funcuar\al

Diata Point E: B Devios LaTt Bwiteh
SENI(u 9 N8 Dévica Left LED -
l | IIIII
Channel 1

NGB Device

~[/I4 4 » M} Subsystem 1 4 Title Blocks J(_ | >

Connect the nvoSwitch output network variable of the Left Switch functional block to the
nviLamp input network variable of the Left LED functional block. To do this follow these steps:

Creating and Opening 1zoT NodeBuilder Projects

a. Drag the Connector shape from the NodeBuilder Basic Shapes 4.00 stencil to the drawing.
Position the left end of the shape over the tip of the nvoSwitch output network variable on the
Left Switch functional block before releasing the mouse button. A red box appears around

the end of the Connector shape when you have positioned it correctly over the Network

Variable shape.

i NB_FX Exercise.vsd

shapes X

Search for Shapes:
Type your search here |+

[E] 1.LON SmartGarver Static Shapes
[E LontMaker My Shapes

[E LonPoint shapes 3.0
ﬁ ModeBuilder Basic Shapes ..

Fm!ml
mlm!m!

et et

I Dats Faint &

Semc Me e u ¢
l l HHHHH

Glue to Connection Point

&

B Device Lafl Swheh

Channel 1

A Device Left LED

1B Davice

~ |4 4 » M\ Subsystem 1 4 Title Blocks J(_

I3

b. Drag the other end of the Connector shape to the nviLamp input network variable of the

Left LED functional block until it snaps into place and a square box appears around the end
of the Connector shape. There is a brief pause as the 1zoT Commissioning Tool updates the
NB Device device over the network.

i NB_FX Exercise.vsd

Shapes X

Search for Shapes:
Type your search here |+

[Ei.LON SmartServer Static Shapes
[Lonitaker My Shapes
[LonPoint Shapss 3.0
ﬂ NodeBuilder Basic Shapes ...

=la -

Davice

CQJ@!E'J

¥ ¥ |

Connectar
Hetw. Metw..,

7| G
M Data Point >
. Marge u .

*
NB Dévice Lefl Switch @

Channel 1

||

M 4 » M[\ Subsystem 1 /_Title Blocks / | <

Glue ko Connection Peint

A Dévice Left LED

v

>

9. Monitor the values of the nvoSwitch output network variable of the Left Switch functional block

and the nviLamp input network variable of the Left LED functional block. To do this, follow

these steps:

a. Right-click an empty space in the 1zoT CT drawing and then select Enable Monitoring on

the shortcut menu.

IzoT NodeBuilder User's Guide

57

B NB_FX Exercise.vsd

Shapes X N

Search for Shapes:
Type your search here |+

B i.LON SmartServer Static Shapes
[Lonitaker My Shapes
[LorPoint Shapes 3.0
ﬂ NodeBuilder Basic Shapes

Metw,, NE[W
— : N Dévice Left Switch N Dévice Let LED
ey LS Network Interfafs
s Dats Point
SWC Commissioning » N

Connact...
““‘ Channel 1 Delete
Display Optmns »

Go To Subsystem

Maniage..

MUVEOh]E(tS r

Plug-ins 3

Subsystem Properties...
- ™
~ |W 4 v W'\ Subsystem 1 {_Tite Blocks /| < Paste >

b. Right-click the new Connector shape and select Monitor Input Value to display the current
value of the nvoSwitch network variable on the Left Switch functional block.

i NB_FX Exercise.vsd

Shapes x

Search For Shapes!
Type your search here s

[Ei.LON SmartServer Static Shapes
[El LonMaker MY shapes
[E LonPaint Shapes 3.0
ﬁ NodeBuilder Basic Shapes ..

- g

Block

=g
- o= (o

Nelw Netw

2
NB Device Left Switch Get Input Valug
, - LMS Network Interfape Get Output Value
Data Point Monikar Input Yalue L_

SENI(
Manitor Output Yalue

' l Properties. ..
BEaaE
Channel 1 Set Cannectian Description »

Use Reference

Copy
=
Duplicate
NB Devics

E 14 4 » M| Subsystem 1 4 Title Blocks J(_ >

153

¢. Right-click the new Connector shape and select Monitor Output Value to display the
current value of the nviLamp network variable on the Left LED functional block.

Creating and Opening 1zoT NodeBuilder Projects

B NB_FX Exercise.vsd

Shapes X

Search for Shapes:
Type your search here |+

[l i.LOK SmartServer Static Shapes

[Lonitaker My Shapes
[LorPoint Shapes 3.0
ﬂ NodeBuilder Basic Shapes ..

WO B

Black

WKJMJ—l

et Na[w

Dats Faint

Semc

m:m:

Target ..

v

LNS N K Interfaj

NEB Device.Left Switch

Channel 1

0.0 LMD
Delete
Get Input Yalue
Get Cutput Yalue
w Monitar Input \u'alua -

NE

14 4 » M Subsystem

1/ Title Blocks / | <

Sef Connection Description »

Use Reference

Copy
Duplicate

v

>

10. Press the left button at the bottom of your development board (SW1 on the FT 6000 EVB; 10_6
on the Gizmo 4 1/0 Board) repeatedly to test the connection between the nvoSwitch output
network variable of the Left Switch functional block and the nviLamp input network variable of
the Left LED functional block.

Observe that the left LED at the bottom of your development board (LED1 on the FT 6000 EVB;
10_0 on the Gizmo 4 1/0 Board) turns on and off each time you press the left button on your
development board. In addition, the current values of the output and input network variable on the
Connector shape toggle between 100.0 1 and 0.0 0 each time you press the button.

Shapes

Search
Type yo

B Lonal
[E LorPoi
ﬁ NodeB

Samlt

o=

[E i.LoN SmartServer Static Shapes

m!ml

Bl NB_FX Exercise.vsd

x

for Shapes:

ur search here

ket WY Shapes
nt Shapes 3.0
uilder Basic Shapes ..

1]

Connector

) =

Data Point

2
LMNS Network Interfaj-e

ut:[mU.U 13In[100.0 11

NB Device Left Switch

Channel 1

~ |W 4 ¥ [Gubsystem 1

Title Blacks / |<

NB Device.Left LED

| e

For more information on testing NodeBuilder devices in a LONWORKS network, see Chapter 9
Testing a NodeBuilder Device Using the 1zoT Commissioning Tool.

IzoT NodeBuilder User's Guide

59

Additional Device Development Steps

After you create your device application and successfully test your device in a network, you can
perform the following additional steps in the device development process, which are summarized in
the following sections:

60

Create an 1zoT CT stencil.

Create an 1zoT device plug-in.
Create an HMI.
Create a device installation application
Apply for LONMARK certification for your device.

Creating an IzoT CT Stencill

You can create a 1zoT CT stencil for your device to make it easier for network integrators to install. A
IzoT CT stencil should contain a custom 1zoT CT shape for your device and for each functional block
in the device interface. These custom shapes can then be provided to network integrators so that they
can quickly integrate your device into their LONWORKS networks using the 1zoT Commissioning Tool.

To create a 1zoT CT stencil for your device, you do the following:

1. Create a new IzoT CT stencil. To do this follow these steps:

a.

C.

Open the 1zoT CT drawing containing the NodeBuilder device for which you want to make
custom shapes.

Click File, point to Stencils, and then click New Stencil.

B Microsoft Visio @GS
? Edt Wiew Insert Format Tools ih.ﬂ Do N Type a question for help [+
Mew 3 k= - A -G 100% - @ (33
?ﬁ Qpen... O &) wonim Pﬁ_;‘_‘]v,—_»v > : J! = Hl
H Closs B Lonsasic)
'.g Save Crhs g t::::izpes
LonMaker Documents » & orens
| cave o vieh Page. ZH| Mult-PortRodter
|2 shapes [T -
Raaslelinty [SCHEDULE
L&, Print Preyiew &g Timers
S Bnt... S | Block Diagram R
Sl * |4 Brainstorming »
1€, \NE3_2 Exercise.vsd | Buitding Plan b
2 Cil... \NB3_2 Exerci 1,vsd [0 Business Process » [QuE[100.0 1] 1n:[100.0 1]—3
3CH. MBS Quickstart vsd | Charts and Graphs » it Switch Example 1.Left LED
4 €., \Plug-In Instantiation Models.vsd £l Database R
Exit [J | Electrical Engineering 3
. I— & 4| Fowchart »
Q @ IE LNS Netwd [~y Map »
b . | — 4| Mechanical Engineering »
Servic., Merge Box Gontrol 4| Network »
‘;J ‘;J 4 Organization Chart »
msain g freae [4 Process Enginesring »
[Project Schedule »
D 1 Softwars »
Target . [visio Extras »
[4 Web Diagram »
[open Stendil... 3
> [Cr VAR fowsten) %
Shaw Document Stencl Page 1/1

A blank IzoT CT stencil named Stencil is added to the Shapes window.

2. Create a custom device shape. To do this follow these steps:

a.

Right-click the NodeBuilder device in the 1zoT CT drawing page and then select Properties
on the shortcut menu.

Creating and Opening 1zoT NodeBuilder Projects

B NB_FX Exercise.vsd

Shapes x &
Search for Shapes:
Type your search here
[i.LON SmartServer Static Shapes
[El Laniaker MY Shapes
[LonPoint Shapes 3.0
] NodeEuilder Basic Shapes 4,00
] stencilt
-~
Browse. .
Commissioning 2
Corfigure. .
Delete
o to Functional Block,, P00 1T
- NB Device Manage... M8 Device.Left LED
LNS Network Intsrfare Marve Device 3
NodeBuilder >
Plug-ins > 1
Channel 1
Copy
Duplicats
= ™
~ M v W[\ Subsystem 1 {_Title Blacks / | < >

b. The Device Properties dialog opens with the Attributes tab selected. This dialog allows you
to read and write to the properties of the 1zoT CT device.

Device Properties [5_<

Functional Blocks] Address Tahble] Metvwark Variahle Config] Extension Records]
Aftributes l ldertitiers l Basic Properties l Advanced Properties] Self-documentation]

Device name:
Template name: | IB F¥ Example Device [03]
Commizzion status: | Current
State: | Configured, Online
Firmwyare version: | 180
Channel
Mame: | Channel 1 Handle: 1
Subsystems
Subsystem 1

Ok | Cancel Help

¢. Inthe Device Name property, enter the name to be shown for the custom device shape in your
1zoT CT stencil.

d. Click the Basic Properties tab.

IzoT NodeBuilder User's Guide 61

62

e.

f.

Device Properties

]

Functional Blacks l Address Table] Metwark Wariakle Config l Extension Records]
strioutes | ldentifiers Basic Properties | advanced Properties | Self-documenttion |
Device name: | MB Device

Location Ping Interval

" ASCH

| G00:500000000 Mever j

+ Hex

Description:
Ok | Cancel Help

Set the Location and Ping Interval properties to the values to be saved with the custom
device shape in your 1zoT CT stencil. See the 1zoT CT online help file for more information
on these properties. Note that changes made to the Description are not saved in the custom

device shape.
Click the Advanced Properties tab.

Creating and Opening 1zoT NodeBuilder Projects

Device Properties E|

Functional Blacks l Address Table l Metweark Wariakle Config] Extension Records]
stirioutes | identifiers | Basic Properties Advanced Properties | Self-documentation |

Device name: | MNE Device

Mon-group Receive Timer

r m ™| milizeconds

Authentication Priarity

(¢ Dizable

(" Ensble - automstic
Existing key:

| " Enable - manual Slat:

Ok | Cancel ‘ Help

g. Setthe Non-group Receive Timer property to the value to be saved with the custom device
shape in your 1zoT CT stencil. See the 1zoT CT online help file for more information on this

property.
h. Click OK.

i. Drag your NodeBuilder device to your 1zoT CT stencil. A new custom IzoT CT master shape
with the device name specified in step ¢ appears in the stencil.

) NB_FX Exercise.vsd EH@E\
Shapes X ~
Search for Shapes:
Type your search here
[E] i.LON SmartServer Static Shapes
[E LonMaker MV Shapes
[E LonPoint shapes 3.0
#] NodeBuilder Basic Shapes 4,00
] stencilt d
l@ 1
u'.:[ﬂ)U‘U 1] Inc[100.0 U
- NB Device Left Switch NB Device.Left LED
LNS Network Interfaps
Channel 1
5
NB
—= ™
~[H 4y W[\ Subsystem 1 _Title Blacks / | < >

j- Click the disk icon (L&) on the stencil’s title bar. Specify a name and location for your 1z0T
CT stencil file (.vss extension), and then save your 1zoT CT stencil.

IzoT NodeBuilder User's Guide 63

64

3. Create custom functional block shapes. Custom functional block shapes let you provide network

integrators with functional block shapes that have built-in network variable shapes. To do this
follow these steps:

a. Verify that functional block shapes for each functional block defined by the device interface
have been added to the 1zoT CT drawing. To create a functional block shape, drag a
Functional Block shape from the NodeBuilder Basic Shapes 4.00 stencil on the left of the
IzoT CT window to the drawing, and then complete the Functional Block wizard.

b. Configure the default network variable and configuration property values for the custom
functional block using the 1zoT browser or an 1zoT device plug-in (if you have created one for
your device). You can create several versions of the same functional block for different
configurations of that functional block.

c. Drag each functional block shape to your 1zoT CT stencil. New custom 1zoT CT master
shapes with the functional block names specified in the Functional Block wizard appear in the
stencil.

o NB_FX Exercise.vsd
~

Shapes X

Search For Shapes:
Type yaur search here E’

B i.LON SmartServer Static Shapes
[Lonitaker My Shapes
[E LorPaint Shapes 3.0
NodeBuilder Basic Shapes 4,00

1 MB Example Device Stencl el

@

Bl
—OUL[100.0 1] 10:[100.0 1]—ipaviame &
- NB Device Left Switch ne BsvieB e en
LNS N k Interfal-e
Channel 1
=
NB Device
hd
~|H 4 » M} Subsystem 1 4 Title Blocks J(>

d. Click the disk icon (lg) on the stencil’s title bar to save your 1zoT CT stencil.

Note: Custom 1zoT CT shapes can contain multiple functional blocks, devices, and connections. For

example, you can create custom 1zoT CT shapes for two connected functional blocks, or for a device

and all of its configured functional blocks. To do this, select multiple shapes and drag and drop them
to a custom stencil. See the 1zoT Commissioning Tool User’s Guide for more information on creating
complex custom 1zoT CT shapes.

Creating an IzoT Device Plug-in

You can create an 1zoT device plug-in to simplify and automate the installation of your devices for
network integrators. An lzoTdevice plug-in is an application that implements the 1zoTPlug-in API.
IzoTdevice plug-ins are typically written in a .NET programming language such as C# or Visual Basic
.NET, but you can write an IzoTdevice plug-in in any development environment that allows the
creation of an (COM) automation server for Windows. For more information on writing 1zoTdevice
plug-ins and the 1zoTPlug-in API, see the OpenLNS Plug-in Programmer’s Guide.

Creating and Opening 1zoT NodeBuilder Projects

Developing an HMI

You can create a human machine interface (HMI) for your device so that end users can monitor and
control it. You will typically create an HMI if you are building a complete system that requires one;
however, if your device is installed by integrators where each installation is unique, the integrators will
typically develop the required HMIs.

You can use the 1zoT Commissioning Tool to design a simple HMI for your device. With the 1zoT
Commissioning Tool, you use the data point shape in the 1zoT CT Basic Shapes stencil and standard
Visio shapes to create the HMI. For example, you can create an HMI that displays the current state of
a lamp and provides override switches that let you manually turn the lamp on and off. For more
information on creating HMIs with data point shapes, see Chapter 6 of the 1zoT Commissioning Tool
User’s Guide.

Switch Override Lamp State
H——
}{
s
k
ON [’\\‘: OFF
| 100.0 1 | | 1 |
DE- 1.D1 DO- 2 Digital state

You can use high-end HMI tools, such as Wonderware’s InTouch or Intellution FIX, to represent more
complex types of network interactions. These tools are developed with a scripting language tuned to
specifically address HMI tasks. In addition, these tools offer components that provide reporting and
analysis, history, alarm logging, event handling, and Internet-enabling.

Creating a Device Installation Application

You can create an installation executable that automatically installs all the files required by your
device into the appropriate locations on your customers’ computers. The files that your application
should install include the device application (if your device uses downloadable application memory),
the device interface file, user-defined resource files, the 1zoT CT stencil, the 1zoT device plug-in, and
the HMI. Typically, the installation executable is created using an installation application such as the
InstallShield® product.

If your device will be installed in a managed network (as opposed to a self-installed network), your
customers must have an 1zoT, OpenLNS, or an LNS network tool such as the 1zoT Commissioning
Tool already installed on their computers. Installing an 1zoT, OpenLNS, or an LNS network tool
creates a LonWorks folder that is stored by default in the root directory or program files directory on
the user’s computer (for example, C:\Program Files (x86)\LonWorks). The user, however, can
change the location of the LonWorks folder when they are installing the 1zoT, OpenLNS, or LNS tool.
You can locate the LonWorks folder in the Windows registry at the following location:

1zoT NodeBuilder User's Guide 65

66

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonWorks Path

The following table lists and describes the files that your installation application should install:

Programmable
Application Image
Files

(.APB and .NXE)

Device Interface Files

(XIF, .XFO*, and
XFB)

* XFOfile is
optional.

The 1zoT Commissioning Tool and other 1zoT, OpenLNS, and LNS
network tools use programmable application image files to download
the compiled application image to a device. The programmable
application image files have .APB, .NDL, and .NXE extensions.

On an 1zoT NodeBuilder computer, the programmable application
image files are stored in the Development or Release target folder
within the device template folder. For example, the application image
files for the development target in the quick-start exercise in this
chapter are stored in the
C:\Users\Public\Documents\LLonWorks\OpenLnsCt\Source\lzoT
NB Exercise\lzoT NB Example Device\Development folder.

Your installation executable must install the .APB files. The .NDL
file is used to support manufacture-time loading of devices and
therefore does not need to be installed; the .NXE file is used to
support legacy network tools and is usually not required. The .APB
file should be installed in a folder where it can be found by the 1zoT
network tool on the target computer. For the 1zoT Commissioning
Tool, you can find this location in the Windows registry in the
following location (by default, this location is C:\Program Files
(x86)\L.onWorks\Import):

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonMaker for
Windows\NxeSearchPath

Your installation executable should install your .APB file in a
subdirectory labeled with your company name (C:\Program Files
(x86)\L.onWorks\Import\YourCompany, for example). Your
installation should search for your company’s folder and, if not found,
it should create a folder with your company’s name.

See Building an Application Image in Chapter 8 for more information
on these programmable application image files.

The 1zoT Commissioning Tool and other 1zoT, OpenLNS, and LNS
network tools use device interface files (also known as external
interface files) to create 1zoT device templates. Device interface files
have .XIF, .XFO, and .XFB extensions.

On an 1zoT NodeBuilder computer, the device interface files are
stored in the same Development or Release target folder that contains
the programmable application image files for the device.

Your installation executable must install the .XIF and .XFB files.
Installing the .XFO file is optional; however, it speeds up device
template importing for tools that support it such as the 1zoT
Commissioning Tool.

Your installation executable should install these device interface files
in a folder where it can be found by the 1zoT network tool on the
target computer. For the 1zoT Commissioning Tool, you can find this
location in the Windows registry in the following location (by default,
this location is C:\Program Files (x86)\LonWorks\Import):

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonMaker for
Windows\XifSearchPath

Creating and Opening 1zoT NodeBuilder Projects

Your installation executable should install your device interface files
in a subdirectory labeled with your company name (C:\Program Files
(x86)\L.onWorks\Import\YourCompany, for example). Your
installation should search for your company’s folder and, if not found,
it should create a folder with your company’s name.

See Building an Application Image in Chapter 8 for more information
on these device interface files.

Device Resource Files Resource files are the files created by the NodeBuilder Resource

Editor that contain network variable and configuration property type
(TYP, .FMT,.FPT) information and functional profile definitions. You must install all
resource files that are used by your device.

The location of the resource files on the 1zoT NodeBuilder computer
can be found by starting the resource editor and finding the folder that
contains the resource file set you want to include in the installation.

For each resource file set, you must install the type file (TYP
extension), the format file (FMT extension), the functional profile
file ((FPT extension), and any language resource file (language
resource file extensions vary by language as described in the
NodeBuilder Resource Editor User’s Guide. Uninstalling a device
should not remove manufacturer resource files because they may be
used by other devices from the manufacturer.

Resource files should be installed to the LonWorks\Types folder, in a
subdirectory labeled with your company name (C:\Program Files
(x86)\LonWorks\Types\YourCompany, for example).

OpenLNS Device If you have created an 1zoT device plug-in, it should be installed and
Plug-in registered by your installation. See the OpenLNS Plug-in
Programmer’s Guide for more information.

IzoT CT Stencil If you have created an 1zoT CT stencil containing custom shapes for
your device, it should be installed in the LonWorks\LonMaker\Visio
folder in a subdirectory labeled with your company name (C:\
Program Files (x86)\LonWorks\LonMaker\Visio\YourCompany,
for example). See Creating a LonMaker Stencil earlier in this section
for more information.

HMI Application If you have created an HMI for your device, it should be installed and
registered. See the documentation for your installation creation
software and your HMI development tool for more information on the
steps this entails.

Applying for LONMARK Certification

LONMARK International is an independent, non-profit organization that oversees LONWORKS
technology and related standards. If your device will be installed by integrators, you will want to
apply for LONMARK certification for your device since most integrators require LONMARK certified
devices for their projects. LONMARK certified devices are assured to be compliant with LONMARK

standard and can be easily integrated into LONWORKS networks with other LONWORKS devices from
multiple vendors. For information on having your device LONMARK certified, see the LONMARK Web

site at www.lonmark.org.

IzoT NodeBuilder User's Guide

67

http://www.lonmark.org/

68

Creating and Opening 1zoT NodeBuilder Projects

4

Creating and Opening lzoT
NodeBuilder Projects

This chapter describes how to create, open, and copy 1zoT NodeBuilder projects, and
how to copy NodeBuilder projects and NodeBuilder device templates to another
computer.

IzoT NodeBuilder User's Guide 69

Introduction to the NodeBuilder Project Manager

70

A NodeBuilder project collects all the information about a set of devices that you are developing. You
will create, manage, and use NodeBuilder projects from the NodeBuilder Project Manager. The
project manager provides an integrated view of your entire project and provides the tools you will use
to define and build your project.

To create a NodeBuilder project, you start the NodeBuilder Project Manager from the 1zoT
Commissioning Tool or directly from the NodeBuilder program folder. You will typically start the
project manager from the 1zoT Commissioning Tool because it simplifies the process of associating the
NodeBuilder project with the 1zoT CT network.

You can use the same NodeBuilder project with multiple 1zoT CT networks, and you can use a 1zoT
CT network with multiple NodeBuilder projects; however, you can only use a 1zoT CT network with
one NodeBuilder project at a time.

The NodeBuilder Project Manager initially contains three panes: the Project pane (left), the Edit pane
(right), and the Results pane (bottom). These panes can all be moved and resized, and the Project and
Results panes can be closed; however, the NodeBuilder Project Manager displays all the three panes by
default.

@ Echelon NodeBuilder, FX - [C:\.onWorks\NeuronC\Examples\FT5000 EVB\NcMultiSensorExamplelSource\Switch. nc]

@ Flle Edit Wiew Project Tools ‘Window Help -8 x
g & 78
o @® 0 i 5l o i)
B © |All Targets -~ B
BED®
@ C:\Lomwarks\NeuranCiExamplestFTS000 EVB\McMultiSensorExample|SaurceiSwitch.ne |
=3 Project NeMuliSensorExar A FEFETEFESEEF IS TS E IS E IS FE A E ST EF i P T Edd i i i i i iiiidiniss *~
=24 Device Templates /4 File: Switch.no
=& NeMultiSensorEsamp. s
[EMain.nc /¢ Copyright (c) 2009 Echelon Corporation. All rights reserved.
[H] Development A
w0 [H] Release // This file is Example Software as defined in the Software
—aSnurtaFiles /¢ License Agreement that governs its use.
[EIFTs000EvaEn o
[t // ECHELON MARES N REPRESENTATION, WARRANTY, OR CONDITION OF
Elriosys.h /¢ ANY KIND, EXPRESS, TMPLIED, STATUTORY, OR OTHERUISE OR M
£ 'ESVSI‘ /¢ INY COMMUMICATION WITH ¥oU, INCLUDING, EUT NoOT LINITED TO,
@Ism?eme”“ // ANY INPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORT
Joystick.nc /¢ QUALITY, FITHESS FOR ANY PARTICULAR PURPOSE,
Elicon /¢ NONINFRINGEMENT, AND THEIR EQUIVALENTS.
Eicone iy
[ElLamp.ne i
[EtightSensar.n // Description:
B /7 Switch.ne contains when-tasks, I/0 handler functions and
@Nodeobject.n /¢ any other code that iz used with the Switch componentc.
[Eswitch.nc
[E1Tempsensor.r FEFEET ISR P I T EEF i T d i i i iddif i i diddfiddidirddiifidiniss
= {ibraries
Foevices v #ifndef _Switch NC_
< S #define Switch NC_
- b d
Project £ 3
x
= El
o
I
H
-5
]
3
2 H4» N\Messagesﬁ Search Results X EVEIJ_'
For Help, press F1 LnB, Cold HUM OWR.
The following table describes the three panes in the NodeBuilder Project Manager:
Pane Description
Project Provides a hierarchical view of all the components in the NodeBuilder

project. The Project pane lets you browse the files used in the
NodeBuilder Project. See the following section for further description
of the Project pane.

Creating and Opening 1zoT NodeBuilder Projects

Edit Lets you to edit any of the Neuron C source files or header files that
are used in the project. See Chapter 7, Developing Device
Applications, for more information on using the Edit pane.

Results The Results pane contains three tabs: Messages, Search Results, and
Event Log.

The Messages tab displays compiler and other messages
generated when you build the application image for a
NodeBuilder device template. If any errors or warnings are
generated during the build, you can double-click them to open the
file containing the error or warning and go to the line of code that
generated the error or warning. See Building an Application
Image in Chapter 8 for more information on using the Messages
tab in the Results pane.

The Search Results tab displays the results of a Find in Files
search. You can double-click any of these results to open the file
containing the search text and go to the line containing the search
text. See Searching Source Files, in Chapter 7 for more
information on using the Search Results tab in the Results pane.

The Event Log contains debugger event messages. See Chapter
10, Debugging a Neuron C Application, for more information on
using the Event Log tab in the Results pane.

Using the Project Pane

The Project pane appears on the left side of the NodeBuilder Project Manager by default. The Project
pane provides a hierarchical view of all the components in the NodeBuilder project. You can use the
Project pane to browse and open the files in your NodeBuilder Project.

=3 Project "MokMulkisensorExample':
-1 Device Templates
=@ McMulkiSensorExample
@ Main, e

+ [H Development

+ lm Release

"= Source Files
[E)FT5000EwalB0ard.h
[EFTs000EvalEoard.ne
= Filesys.h
[E1 IsiImplementation. nc
= Jovystick.nc
Ecoh
BELcoane
@ Lamp.nc
= LightSensor.nc
@ L, nc
= ModeObjeck.nc
[E) 5witch.ne
@ TempSensar.nc

+{ MLibraries

DDevices

+{ IHardware Templates

| Project

The top level of the Project pane is always a project folder labeled Project ‘<Project Name>‘:. You
can right-click the Project folder to see a shortcut menu with the following options:

IzoT NodeBuilder User's Guide

71

—1'=3 Dewvice Templates Settings...
=1 NeMuliSensorExample
@ Main.nc

+ [H] evelopment

+ [H| Releass

=3 Source Files
[E1FT5000EvalEnard.h
[E FTs000EvalBoard.ne
[E1Filesys.h
= Isilmplernentation, ne
[E] Joystick.nc
Bt
ELcone
@ Larmp.mc
[E1Lightsensor.nc
@ Lux,nc
[Elnodecbiect.nc
[E1 Switch.nc
@ TempSensar, no

+{ Dibraries

[:I'Devices

+{_IHardware Templates -
[Project

Settings Opens the NodeBuilder Project Properties dialog with the Project
tab selected. The Project tab displays the project settings.

Properties...

Properties Displays file properties of the NodeBuilder project file (.NbPrj
extension). The properties include the file name, location, size, and
the dates on which the file was created, last modified, and last
accessed.

The Project folder may also contain the following three folders: Device Templates, Devices, and
Hardware Templates.

e The Device Templates folder contains all of the device templates that have been created in this
NodeBuilder project. See Creating Device Templates in Chapter 5 for more information on device
templates.

e The Devices folder contains a list all devices in 1zoT CT drawings that have been associated with
device templates in this NodeBuilder project. See Building an Application Image in Chapter 8 for
more information. Note that the Devices folder will not appear if the NodeBuilder project is not
associated with an 1zoT CT network.

e The Hardware Templates folder contains a list of the hardware templates available in this
NodeBuilder project. See Using Hardware Templates in Chapter 5 for more information on
hardware templates.

Creating a NodeBuilder Project

72

To create a NodeBuilder project, you must first start the NodeBuilder Project Manager. You can start
the NodeBuilder Project Manager from the 1zoT Commissioning Tool, or you can start it standalone
directly from the NodeBuilder program folder. You will typically start the project manager from the
I1zoT Commissioning Tool because it simplifies the process of associating the NodeBuilder project
with the 1zoT CT network.

Creating and Opening 1zoT NodeBuilder Projects

Creating a NodeBuilder Project from 1zoT CT

You can create a NodeBuilder project by starting the NodeBuilder Project Manager from the 1zoT
Commissioning Tool. To do this, follow these steps:

1.

Create or open a 1zoT CT drawing. See the 1zoT Commissioning User’s Guide for more
information on creating and opening 1zoT CT drawings. If you will want to load the application
you develop into a device, make sure the 1zoT CT computer is attached to the network.

Click Add-Ins, click OpenLNS CT, and then click NodeBuilder. The NodeBuilder Project
Manager starts. If you have not previously created a NodeBuilder project for this network, the
New Project wizard automatically starts.

Note: If you have previously created a project for this network and you want to create a new
project, click File and then click Create Project.

Enter project information into the wizard as described in steps 5-9 in the next section, Creating a
NodeBuilder Project from the NodeBuilder Project Manager.

Note: You can also start the 1zoT NodeBuilder tool from the 1zoT Commissioning tool’s New Device
Wizard. See Starting the 1zoT NodeBuilder tool from the New Device Wizard later in this chapter for
more information on how to do this.

Creating a NodeBuilder Project from the NodeBuilder Project
Manager

You can create a NodeBuilder project by starting the NodeBuilder Project Manager standalone. To do
this, follow these steps:

1.

3.

Open the NodeBuilder Project Manager. To do this, click Start on the taskbar, point to
Programs, point to Echelon NodeBuilder, and then click NodeBuilder Development Tool. The
NodeBuilder Project Manager starts.

Click File and then click Create Project. The New Project wizard starts with the Select Network
dialog.

Fleaze specify the network name and netwark interface
"'.r for use with NodeBuilder.

[v Do notopen any network

T etworh:

| E

MHetwork interface:

| E

| Mext = | Cancel

To associate an existing 1zoT CT network with your NodeBuilder project, clear the Do Not Open
Any Network check box if it is selected, select an existing 1zoT CT network in the Network

IzoT NodeBuilder User's Guide 73

74

4.
5.

property, and then select the 1zoT network interface to be used for communication between the
I1zoT CT network and your NodeBuilder device in the Network Interface property.

Alternatively, you can select the Do Not Open Any Network check box to create a new project
that is not associated with a 1zoT CT network, and disable automatic 1zoT device template creation
and automatic load after build.

Click Next.
The Specify New Project Name dialog opens.

Please specify the name and location of your new:
3) MNodeBuilder project.

Project name:

Location:

|C:1Lh.|1180urce

-

= Back | [et = | Cancel

In the Project Name property, enter the name of your new NodeBuilder project. If you specified
a lzoT CT network to be associated with the NodeBuilder project in the Select Network dialog,
the default Project Name is that of the selected 1zoT CT network. You can accept this default
name or enter a new one.

Project files with this name and .NbPrj, .NbOpt, and .NbWsp extensions will be created in the
project folder specified in the Location property. The project folder is stored in the
C:\Users\Public\Documents\LonWorks\OpenLnsCt \Source\<Project name> folder by default.
You can click the button to the right of the Location property to specify a different location.

If you specified a LonMaker network to be associated with the NodeBuilder project in the Select
Network dialog, the Set as Default Project check box is selected. This means that this
NodeBuilder project is automatically opened when the 1zoT NodeBuilder tool is started from the
selected 1zoT CT network. If you selected the Do Not Open Any Network check box in the
Select Network dialog, the Set as Default Project check box is unavailable.

Click Next. The Specify Project Default Settings dialog opens.

Creating and Opening IzoT NodeBuilder Projects

Specify Project Default Settings @E|

Location:

Cefadlt transceiver type:

| CAMmSource\tew Project

| TPIFT-10

Include search path:

[+ Run ModeBuilder device termplate wizard

= Back | Finish | Cancel

8. Specify the following properties:

Project Name

Location

Default Transceiver
Type

Include Search
Path

Run Device
Template Wizard

The name of the project as specified in the Specify New Project
Name dialog. This is a read-only field.

The location of the project folder as specified in the Specify New
Project Name dialog. This is a read-only field.

The transceiver type to be used for Hardware Templates that specify
“default” for the transceiver type. The default transceiver type is
TP/FT-10. See the Using Hardware Templates section in Chapter 5
for more information on hardware templates.

An optional semi-colon separated list of directories to be searched for
include files when a NodeBuilder project is compiled. By default,
only the device template source file and the Neuron C standard
include file directories will be searched for include files. If relative
path names are specified, they are relative to the location of the
NodeBuilder project directory (location of the .NbPrj project file).
Note that this list applies to the entire project. By default, this
property is blank.

Automatically opens the Device Template Wizard immediately after
you click Finish. The Device Template Wizard guides you through
the process of creating the first NodeBuilder device template for this
project. See Creating Device Templates in Chapter 5 for more
information. This option is selected by default.

9. Click Finish. If you selected the Run Device Template Wizard check box in the Specify
Project Default Settings dialog, the Device Template Wizard opens. Proceed to the Specifying
the Device Template Name section in Chapter 5 to create a device template.

IzoT NodeBuilder User's Guide

75

Creating a NodeBuilder Project from the New Device Wizard

You can create a NodeBuilder project from the New Device Wizard in the 1zoT Commissioning Tool.
To do this, follow these steps:

1. Create or open an 1zoT CT network. See the 1zoT Commissioning User’s Guide for more
information on creating and opening 1zoT CT networks. If you plan on downloading your device
application to a device, make sure that the 1zoT CT computer is attached to the network.

2. Drag a Development Target Device or a Release Target Device shape from the NodeBuilder
Basic Shapes 4.00 stencil to your network drawing. Use a Development Target Device if you
are building to a NodeBuilder hardware platform; use a Release Target Device if you are building
to the release hardware. You can drop the shape anywhere, but a good location is just below the
Channel 1 shape on your drawing.

Bl NB Network 1.vsd EEX

Shapes x

Search For Shapes:
Type your search here

[E i.LoN SmartServer Static Shapes
[E Lontaker Ny Shapes

[E LorPoint Shapes 3.0

[E ModeBuilder Basic Shapes 4.00

QO

A240]dHT HI0MIIN

3. The New Device Wizard opens. In the Device Name property, enter the device name, select the
Commission Device check box, and then select the Create New Device Template check box

under NodeBuilder Device Template.

76 Creating and Opening 1zoT NodeBuilder Projects

Mew Device Wizard

Device name: MyMEDevice]

Mutnker of devices ta creste:

[v Commizzion device

ModeBuilder Device Template

[

Mame:

Channel
[Auto-detect channel

Type: |TPFT-10

Mame: | Channel 1

| Mext = |

Finizh Cancel

Lef Lo

Help

4. Click Next. The next page in the New Device Wizard lets you select the NodeBuilder device

template.

Mew Device Wizard

Device natme: | hyMBDevice

ModeBuilder Device Templste:

Target Device Type: | Development

. -

LMNS device template: |

= Back | Mext = |

Start ModeBuilder

Finizh Cancel

Help

5. Click Start NodeBuilder to create a new NodeBuilder project. The 1zoT NodeBuilder tool starts

automatically.

6. The New Project wizard opens.

I1zoT NodeBuilder User's Guide

77

10.

NodeBuilder Project E]g]

project associated with it. You may either create a new

@ Metwark ™B Netwark' does not have a ModeBuilder
!
project, ar choose an existing project far this network.

&+ Create a new ModeBuilder project

" Qpen an existing NodeBuilder project

| Mext = | Cancel

Accept the default Create a New NodeBuilder Project option, and then click Next.

Accept the default NodeBuilder Project Name, which is the same name as the 1zoT CT network,
and then click Next.

Accept the defaults in the Specify Default Project Settings dialog, and then click Finish.

The NodeBuilder New Device Template wizard starts. Proceed to the Specifying the Device
Template Name section in Chapter 5 to create a device template.

Opening a NodeBuilder Project

To open an existing NodeBuilder project, you must first start the NodeBuilder Project Manager if it is
not already running. You can start the NodeBuilder Project Manager from the 1zoT Commissioning
Tool, or directly from the NodeBuilder program folder. You will typically start the project manager
from the 1zoT Commissioning Tool since that simplifies associating the NodeBuilder project with the
1zoT CT network.

Opening a NodeBuilder Project from the 1zoT Commissioning
Tool

You can open a NodeBuilder project by starting the NodeBuilder Project Manager from the 1zoT
Commissioning Tool. To do this, follow these steps:

78

1.

Create or open an 1zoT CT drawing. See the 1zoT Commissioning User’s Guide for more
information on creating and opening 1zoT CT drawings. If you plan on downloading your device
application to your device, make sure the 1zoT CT computer is attached to the network.

Click Add-Ins, click OpenLNS CT, and then click NodeBuilder. The NodeBuilder Project
Manager starts. If you have not previously created a NodeBuilder project for this network, the
New Project wizard automatically starts with the NodeBuilder Project dialog displayed.

Note: If you have previously created a NodeBuilder project for this network, the default project
for the network opens. To open a different project, click File, click Open Project, and then skip
to step 4.

Creating and Opening 1zoT NodeBuilder Projects

3.

4. The Select NodeBuilder Project File dialog opens. Click the button to the right of the Project

5.

In the NodeBuilder Project dialog, select the Open an Existing NodeBuilder Project option and

then click Next.

NodeBuilder Project

Metwark ™WB Metwork' does not have a ModeBuilder
& project associated with it. You may either create a new
project, ar choose an existing project far this network.

" Create a new ModeBuilder project

+ Qpen an existing NodeBuilder project

| Mext = | Cancel

File property, browse to and select the desired project folder

(C:\Users\Public\Documents\LonWorks\OpenLnsCt \Source\<Project Folder> by default),
and then select the project file (NbPrj extension) in the project folder.

Select NodeBuilder Project File

@ Please specify the ModeBuilder praject file to be used.

Project file:
CALmSourcelibB_Fx ExerciselMB_Fx Exercise. |

[v Setas default project for this network

= Back | Finish ‘ Cancel

Click Finish.

Notes:

e You can open a project and start the New Device Template wizard at the same time by
dragging a Development Target or Release Target device shape from the NodeBuilder

Basic Shapes 4.00 stencil to your network drawing.

IzoT NodeBuilder User's Guide

79

e You can open specific windows within the default project by right-clicking a Development
Target or Release Target device shape in the 1zoT CT drawing, pointing to Custom, and
then clicking Edit Source, NodeBuilder Properties, Build, or Debug on the shortcut menu.

Opening a NodeBuilder Project from the NodeBuilder Project
Manager

You can open a NodeBuilder project by starting the NodeBuilder Project Manager standalone. To do
this, follow these steps:

1. Open the NodeBuilder Project Manager. To do this, click Start on the taskbar, point to
Programes, point to Echelon NodeBuilder, and then click NodeBuilder Development Tool. The
NodeBuilder Project Manager starts.

2. Click File and then click Open Project. The New Project wizard starts with the Select Network
dialog.

Please specify the network name and netwoark interface
§) for use with ModeBuilder,

[¥ Do notopen any network

M etwork:

| [

Metwork interface:

| [

| Mext = | Cancel

3. Toassociate an existing 1zoT CT network with your existing NodeBuilder project, clear the Do
Not Open Any Network check box if it is selected, select an existing 1zoT CT network in the
Network property, and then select the 1zoT network interface to be used for communication
between the 1zoT CT network and your NodeBuilder device in the Network Interface property.
Click Next.

Alternatively, you can select the Do Not Open Any Network check box to open a NodeBuilder
project but not associate it with an 1zoT CT network, and disable automatic 1zoT device template
creation and automatic load after build. Click Next.

4. The Select NodeBuilder Project File opens.

80 Creating and Opening 1zoT NodeBuilder Projects

Select NodeBuilder Project File E]g]

@ Please specify the ModeBuilder praject file to be used.
!

Project file:
CALmSourcelibB_Fx ExerciselMB_Fx Exercise. |

[v Setas default project for this network

= Back | Finish ‘ Cancel

5. If you have previously associated a 1zoT CT network with this NodeBuilder project, it appears in
the Project File property.

6. To select a different NodeBuilder project, click the button to the right of the Project File property,
browse to and select your project folder (C:\Users\Public\Documents\LonWorks\OpenLnsCt
\Source\<Project Folder> by default), and then select the project file (.NbPrj extension) in the
project folder.

7. Optionally, you can select the Set as Default Project check box to specify this NodeBuilder
project as the default when the 1zoT NodeBuilder tool is started from the 1zoT Commissioning
tool.

8. Click Finish.

Copying NodeBuilder Projects

You can copy a NodeBuilder project to another computer using 1zoT CT, or by manually copying the
NodeBuilder project files. After you copy a NodeBuilder project, you must also copy any user-defined
resource files used by the device template in the project from the source computer to the target
computer, and then install and register your user-defined resource files on the target computer. See
Copying User-Defined Resource Files for more information on how to do this.

Using the I1zoT Commissioning Tool to Backup and Restore a
NodeBuilder Project

You can copy a NodeBuilder project to another computer by backing up the project files on the source
computer and restoring them on the target computer with the 1zoT Commissioning Tool. To do this,
follow these steps:

1. Ensure that the source and target computers have the same versions of the 1zoT NodeBuilder tool
and the 1zoT Commissioning Tool.

2. On the source computer, start the 1zoT Commissioning Tool. To do this, click Start on the
taskbar, point to Programs, point to Echelon OpenLNS CT, and then select OpenLLNS
Commissioning Tool. The OpenLNS CT Design Manager opens.

IzoT NodeBuilder User's Guide 81

associated with the NodeBuilder project to

*) Echelon LonMaker Design Manager,

In the Database Name property under Existing Network, select the 1zoT CT network design
be copied and then click Backup.

General l Ciptions] Mewy hetwork Options] Lonhtaker Stencilz] Lonttaker Default Options]
Mewy Metweark
® Metwark name:
|.0I‘IMEI ker |NEI Metwark Creste Network | show &l
A" reate MNetvwiorl ;
Turbo Edition options
Exizting Metwork
Shiovy all
o] Metwwork | -
Drarvving directory: Rien Metwar r options
|NEI_F}{ Exercize j Open Copy |
Drawing name:
Delet |
|NEI_F}{ Exercize vad j elete
Database name: Defragment Database |
Launch LMS Server |
Backup... |
Restore... | Impart... |
Subiject to terms of licens 3 .
Copight (< 19962006 Echalon Carp. |~ S2HINGS
#ll Rights Reserved Drawing base path: CoAlmdranaings j Add...
Lontdake Exit | Help ‘

4. The OpenLNS CT Backup dialog opens.
Echelon LonMaker Backup
“ou have asked to back up & Lonblaker draving andior
databaze. You may override the default backup file
TEime.
Backup Selection Cancel
’ MOTE: Wyhen
| e el backing up to copy Help
|v Backup databaze D@ (EITE (P
back up the
|v Backup ModeBuilder project EERITG @y
Drawving files to backup
Ot
* Backup Yizio (*.vs*) files only ptiers
(" Backup all files in drawing directory
Backup File
| CAmBackup'™NB_F¥ Exercize'NB_FX Exercize zip Browse. .
5.

Select the Backup Drawing, Backup Database, Backup NodeBuilder Project check boxes

under Backup Selection (the Backup Drawing and Backup Database check boxes are selected

by default), and then click OK.

82

Creating and Opening 1zoT NodeBuilder Projects

6. The lzoT CT drawing, 1zoT network database, and the NodeBuilder project are all stored in a
single 1zoT CT backup file (.zip extension) that is specified in the Backup File property
(C:\Users\Public\Documents\LonWorks\OpenLnsCt \Backup\<IzoT CT network>\<IzoT CT
network>_<index>.zip by default).

7. After the backup has been created, copy the 1zoT CT backup file from the source computer to a
USB drive, another removable media, or a shared network drive with read/write permissions.

8. On the target computer, start the 1zoT Commissioning Tool and then
9. Click Restore. The OpenLNS CT Restore dialog opens.

Echelon LonMaker Restore &l

You have asked to restore & LonhMaker oK
dravving andior database.
You may overtide the default file from Cancel

which to extract the backed up files.
Help

4

Q 4

]

Backup File
|v Restore from Londaker backup

| F\MB_FX Exercize.zip Browwse... |

LMS Hot Backups
r

Location Date Created

10. Click Browse to specify the location of the I1zoT CT backup file, and then click OK. The
Confirm Restore dialog opens.

IzoT NodeBuilder User's Guide 83

Confirm Restore

Lontdaker will now restore the followwing drasing oK
and databasze directaries. Enter OK to confitm.

I@

Cancel
vyhen restaring a network which already exists on
the local PC, the drawing and database must be Help
restored into the same directories.

di

‘r.;j

Drawing path; | CAmdrawingsMB_F X Exercisel® ws*
Database path: | CUMDENE_FX Exsrciss
MNadeBuilder project path; | CAmSource'MB_FX Exercisel* *

11. Click OK. The IzoT CT drawing, 1zoT network database, and the NodeBuilder project are copied

to the target computer. The NodeBuilder project is associated with the 1zoT CT network.

12. A message appears informing you that the network restore operation has been completed, and

prompting you to select whether to open the 1zoT CT network in order to recommission devices
that have changed since the network was backed up.

e Click Yes if you made any changes to the network since it was backed up. This prevents the
network from behaving unpredictably if the 1zoT CT network design is not in sync with the
physical devices. Proceed to recommission and resynchronize the network.

e Click No only if changes have not been made to the configuration of the existing physical
devices on the network since it was backed up. This happens if the 1zoT Commissioning Tool
was OffNet the entire time, or if you added new devices and functional blocks but did not
modify any existing devices or functional blocks. The 1zoT CT drawing will not be opened.

See the 1z0T Commissioning User’s Guide for more information on backing up and restoring a
LoNWORKS Network Design.

Manually Copying NodeBuilder Project Files

You can manually the entire NodeBuilder project. To do this, follow these steps:

84

1.

Ensure that the source and target computers have the same versions of the 1zoT NodeBuilder tool
and the 1zoT Commissioning Tool.

On the source computer, copy the entire NodeBuilder Project folder to a USB drive, another
removable media, or a shared network drive with read/write permissions. By default, the
NodeBuilder Project folder is stored in the C:\Users\Public\Documents\LonWorks\OpenLnsCt
\Source directory and has the same name as the NodeBuilder project. The NodeBuilder Project
folder contains subdirectories for each device template in the NodeBuilder project.

On the source computer, copy any user-defined hardware templates and custom libraries to the
USB drive, another removable media, or a shared network drive with read/write permissions. By
default, user-defined hardware templates are stored in the C:\Program Files
(x86)\LonWorks\NodeBuilder\Templates\Hardware\User directory.

Copy the NodeBuilder Project backup to the
C:\Users\Public\Documents\LonWorks\OpenLnsCt \Source directory on the target computer.

Creating and Opening IzoT NodeBuilder Projects

Copy the user-defined hardware template backup to the C:\Program Files
(x86)\LonWorks\NodeBuilder\Templates\Hardware\User directory on the target computer.
You need to create a User folder in the Hardware directory if one does not already exist.

Copy the library backup to the same folder as they were located on the source computer. If this is
not possible, you can re-add them to the project as described in Inserting a Library into a
NodeBuilder Device Template.

Start the 1zoT NodeBuilder tool as described in Opening a NodeBuilder Project earlier in this
chapter and browse to and open the NodeBuilder Project file (.NbPrj extension).

Copying NodeBuilder Device Templates

You can copy NodeBuilder device templates to another computer. To do this, follow these steps:

1.
2.

10.

Ensure that the source and target computers have the same versions of the 1zoT NodeBuilder tool.

If the NodeBuilder project that will contain the device templates has not been created on the target
computer, create it as described in Creating a NodeBuilder Project earlier in this chapter

On the source computer, copy the device template folders to a USB drive, another removable
media, or a shared network drive with read/write permissions. By default, the device templates
within a given project are stored in individual folders in the
C:\Users\Public\Documents\LonWorks\OpenLnsCt \Source\<NodeBuilder Project> directory
that have names corresponding to their respective NodeBuilder device templates.

On the source computer, copy any user-defined hardware templates and custom libraries to the
USB drive, another removable media, or a shared network drive with read/write permissions. By
default, user-defined hardware templates are stored in the C:\Program Files
(x86)\LonWorks\NodeBuilder\Templates\Hardware\User directory.

Copy the device template backups to the C:\Users\Public\Documents\LonWorks\OpenLnsCt
\Source\<NodeBuilder Project> directory of the target NodeBuilder project on the target
computer.

Copy the user-defined hardware template backup to the C:\Program Files
(x86)\LonWorks\NodeBuilder\Templates\Hardware\User directory on the target computer.
You need to create a User folder in the Hardware directory if one does not already exist.

Copy the library backup to the same folder as they were located on the source computer. If this is
not possible, you can re-add them to the project as described in Inserting a Library into a
NodeBuilder Device Template.

Copy any user-defined resource files from the source computer to the target computer, and then
install and register the resource files on the target computer. See Copying User-Defined Resource
Files for more information on how to do this.

On the target computer, open the 1zoT NodeBuilder tool.

Right-click the Device Templates folder in the Project Pane on the left side of the NodeBuilder
Project Manager, and then click Insert on the shortcut menu.

IzoT NodeBuilder User's Guide 85

- Project 'ME_Fx Exercise':

Device Templates
+- P NE F¥ Example Device

+{_IHardware Templates

Mew, ..

Insert. ..
Insert Copey...

Build
Clean

Skatus. ..

11. Browse to and open the device template folder backed up in step 3, and then select the
NodeBuilder device template file (.NbDt extension). The device template is added to the
NodeBuilder project under the Device Templates folder in the Project Pane.

- Project '™E_Fx Exercise's
=N Device Templates
+ @ 1B FX Excample HC:'I,.Lu:un'n.-'\-'u:urks'l,NeuanC'l,ExampIes'l,FTSD
B nicMUlkiSensorExample

+_YHardware Templates

Copying User-Defined Resource Files

After you copy a NodeBuilder project or a NodeBuilder device template to another computer, you
must also copy any user-defined resource files on the source computer to the target computer, and then
install and register the resource files on the target computer. User-defined resource files include the
network variable types, configuration property types, functional profiles, enumerations, languages, and
formats that you have created in your resource file set. To copy resource files to another computer,
follow these steps:

1. On the source computer, copy the resource folder containing your user-defined resource files to a
USB drive, another removable media, or a shared network drive with read/write permissions. By
default, your resource folder is in the C:\Program Files (x86)\LonWorks\types\user directory on
your computer.

2. Copy the user-defined resource file backup to the C:\ Program Files (x86)\L.onWorks\types\user
directory on the target computer.

See Using the Resource Pane in Chapter 6 for more information on resource folders, resource file sets,
and resources.

Viewing and Printing NodeBuilder XML Files

Many of the files created by the 1zoT NodeBuilder tool are XML files. These files can be viewed and
printed using a variety of tools including Internet Explorer or Microsoft Excel. This can be useful for
generating printed summaries of the options contained in these files. Do not change the contents of
these files. To open one of these files, right-click the file in Windows Explorer and then click Open

86 Creating and Opening 1zoT NodeBuilder Projects

With on the shortcut menu. Choose Microsoft Excel, Internet Explorer, or another XML browsing

tool.

The following XML files are created and maintained by the 1zoT NodeBuilder tool:

Project File
(*.NbPrj)

Options File
(*.NbOpt)

Device
Template
File
(*.NbDt)

Hardware
Template
File
(*.NbHwt)

Contains a project definition including the project version and a list of the
device templates and the hardware templates for a project. There is one
project file per project. This file is stored in the project folder
(C:\Users\Public\Documents\LonWorks\OpenLnsCt\Source\<NodeBuilder
Project>).

Contains the NodeBuilder project options for a project. There is one options
file per project. This file is stored in the project folder
C:\Users\Public\Documents\LonWorks\OpenLnsCt\Source\<NodeBuilder
Project>).

Contains a device template, including the options specified for the device
template and device template targets. There is one device template file per
device template. This file is stored in the project folder
(C:\Users\Public\Documents\LonWorks\OpenLnsCt\Source\<NodeBuilder
Project>\<NodeBuilder Device Template> folder).

Contains a hardware template, including the options specified for the
hardware template. There is one hardware template file per hardware
template.

Standard hardware template files are stored in the C:\Program Files
(x86)\LonWorks\NodeBuilder\Templates\Hardware\Standard folder.

User-defined hardware template files are stored in the C:\Program Files
(x86)\LonWorks\NodeBuilder\Templates\Hardware\User folder.

Hardware templates specific to the project can also be contained in the project
folder.

IzoT NodeBuilder User's Guide

87

S

Creating and Using Device Templates

This chapter describes how to use the New Device Template wizard in the
NodeBuilder Project Manager to create, manage, and edit NodeBuilder device
templates. It explains how to manage development and release targets and insert
libraries into a device template. It describes how to use the Hardware Template
Editor to create and edit hardware templates.

88 Creating and Opening 1zoT NodeBuilder Projects

Introduction to Device Templates

Each type of device that you develop with the 1zoT NodeBuilder tool is defined by a pair of device
templates: a NodeBuilder device template and an LNS device template.

The NodeBuilder device template is an XML file with a .NbDt extension that specifies the information
required for the 1zoT NodeBuilder tool to build the device application. The NodeBuilder device
template includes a list of Neuron C source code files and the hardware template name.

When you build the device application, the 1zoT NodeBuilder tool automatically produces an LNS
device template. The LNS device template defines the external interface to the device, and is used by
the 1zoT Commissioning tool and other LNS network tools to configure and bind the device.

Creating Device Templates

You can create device templates using the New Device Template wizard in the NodeBuilder Project
Manager. The New Device Template wizard guides you through the process of creating a new
NodeBuilder device template. In the NodeBuilder device template, you will specify a device template
name, working directories, a Program 1D, and hardware templates.

To create a device template, you do the following:

1. Start the New Device Template wizard.
2. Specify the device template name.

3. Specify the program ID.

4. Select the target hardware platform.

Starting the New Device Template Wizard
To start the new device template wizard follow these steps:

1. You can start the New Device Template wizard automatically after you finish creating a new
NodeBuilder project or manually from the Project pane.

e Toautomatically start the New Device Template wizard after you finish creating a new
NodeBuilder project, select the Run NodeBuilder Device Template Wizard check box in
the Specify Project Default Settings dialog at the end of the New Project Wizard. See
Creating a NodeBuilder Project in Chapter 4 for more information on creating a NodeBuilder
project and setting this option.

e To manually start the New Device Template wizard, right-click the Device Templates folder
in the Project pane and then select New on the shortcut menu.

S| Praject 'MewProject':
B8 D cvice Template
|:I' Devices

+{_IHardware Temply ~ [nsert...
Insert Copy...

Build
Clean

Skatus,..

2. The NodeBuilder New Device Template Wizard opens.

IzoT NodeBuilder User's Guide 89

NodeBuilder Mew Device Template Wizard

MNodeBuilder device template name:

Source file name:
| Browse. .

Folders

NodeBuilder device template:

| CALrmEourcelMB_FX Exercise Browse. .

Ciutput:

|-1 Browse...

| Iext = | Cancel

3. Proceed to the next section to specify the device template name.

Specifying the Device Template Name

To specify the device template name, follow these steps:

1. Inthe NodeBuilder Device Template Name property, enter a valid Windows file name for the
device template. A NodeBuilder device template file (.NbDt extension) with this name will be
created in the folder specified in the NodeBuilder Device Template property under Folders.

NodeBuilder New Device Template Wizard

ModeBuilder device template name:
‘ WyrlewDeviceTemplate

Source file name:
|MyNewDeviceTemplate.nc Browse...

Folders

ModeBuilder device termplata:
|C:1Lm15u:uuru:e Browse. .

Qutput:

i

|-1 Browse...

| [et = | Cancel

20 Creating and Opening 1zoT NodeBuilder Projects

2. Optionally, in the Source File Name property, you can enter the name of the Neuron C source file
for this device template. By default, this field is set to <Device Template Name>.nc, and the file
will be created in the folder specified in the NodeBuilder Device Template property under
Folders. To select an existing source file, click Browse.

3. Optionally, in the NodeBuilder Device Template property under Folders, you can enter the
device template folder where the device template file will be stored. By default, the name of the
device template folder is the same as the device template that it contains (for example, the device
template folder containing the NB FX Example Device.NbDt device template file is
C:\Lm\Source\NB_FX Exercise\NB FX Example Device). To select a different folder, click
Browse and then browse to and choose a different folder.

4. Optionally, in the Output property under Folders, you can enter the root folder for output files
generated by the build process. You can specify either an absolute or relative path name. Relative
paths are based on the device template folder. The default value is the build target folder (.\).

5. Click Next. The Program ID dialog opens.

MNodeBuilder device template name: | MyMewDeviceTemplate

Automatic program D management

¥ Enahle Minmodel# | 000 Max model # W
v Re-register plug-ins

Pragram D type

i

* Standard developmentiprototype (format 9)

" Standard LonMark cedified (format 8)

Program ID:

|9F:FD:3E:DD:DD:DD:DD:DD Calculatar...

LMS device template name:

| WyrlewDeviceTemplate

= Back | Iext = | Cancel

6. Proceed to the next section to specify the program ID.

Specifying the Program ID

The program ID is a 16-hex-digit number that uniquely identifies the device interface for a device.
The program ID may be formatted as a standard or non-standard program ID. When formatted as a
standard program ID, the 16 hex digits are organized as six fields that identify the manufacturer,
classification, usage, channel type, and model number of the device.

To specify the program ID, follow these steps:
1. Click Calculator. The Standard Program ID Calculator dialog opens.

IzoT NodeBuilder User's Guide 91

92

2.

i LonMark Standard Program ID Calculator

td anufacturer [k:Mbd k] :

<Enter Murber [Decimal]> 1047870 I:l

Categony:

| ﬂ Cahicel
Device clazs [CCCC)

| =l

|Jzage (UL

|Netwnrk b anagement ﬂ |

Channel tppe [TT]:

|<Enter Mumber [Decimal]> j |IJ

todel number [MM]
. |00

[v Standard developrment pragram (D

[Has changeable interface

[~ Usage field values defined by functional profile
Proaram 1D:
FHzMHZMH:CC:CC-UUCTT:HH
|9F:FD:3E:BB:BB:BB:BB:BB

The Standard Program ID Calculator helps you select the appropriate values for the program
ID fields. It lets you select the values from lists contained in a program 1D definition file
distributed by LONMARK International. The current file (spidData.xml) is available at
http://www.lonmark.org/spid. This file is updated as LONMARK International adds new
manufacturer IDs, device classes, usage values, and channel types.

The Program ID box at the bottom of this dialog is automatically updated as you enter the
program ID fields. You can manually enter some or all of the program ID fields directly into this
box. If you enter values directly in this box, the calculator updates the properties above in the
dialog with those values.

Enter the following values for the program ID fields:

a. Inthe Manufacturer ID (M:MM:MM) property, either select your company from the list,
enter your 5 hex-digit standard manufacturer 1D or temporary manufacturer ID in the box to
the right in decimal format (the calculator will convert it to hex format), or select the
Examples manufacturer ID. By default, the manufacturer ID that you entered during of the
1zoT NodeBuilder tool installation is shown by default.

If your company is a LONMARK member, but you do not know your manufacturer ID, you can
find your ID in the list of manufacturer IDs at www.lonmark.org/spid.

If you do not have a standard manufacturer ID, you can request a temporary manufacturer 1D
by filling out a simple form at www.lonmark.org/mid.

b. Inthe Category property, select the general purpose or industry of the device. The Category
determines the device classes that will be available in Device Class property. Alternatively,
you can select one of the following options to determine and organize the device classes
shown in the Device Class property:

e ALL. Show all the existing device classes.

o Profiles By Name. Show an alphabetical list of all device classes with a profile.

e Profiles By Number. Show a numeric list (sorted by device class number) of all device
classes with a profile.

Creating and Opening 1zoT NodeBuilder Projects

http://www.lonmark.org/spid
http://www.lonmark.org/spid
http://www.lonmark.org/technical_resources/temp_mid_request

c. Inthe Device Class (CC:CC) property, select the primary function of the device. To enter a
device class value that has not yet been added to the standard list, select <Enter
Number[Decimal]>, and then enter decimal values from 0 to 255 in the boxes to the right
(the calculator will convert the values to hex format).

d. Inthe Usage (UU) property, select the intended use of the device. The most significant two
bits are determined by the Has Changeable Interface and Use Field Valued Defined By
Functional Profile check boxes below the Usage property.

If you are using a standard usage value, select the Use Field Defined By Functional Profile
check box below the Usage property, and select a standard usage value from the list.

If the primary functional profile implemented by your device specifies custom usage values,
clear the Use Field Defined By Functional Profile check box below the Usage property,
select <Enter Number[Decimal]> from the list, and then enter a decimal value from 0-255 in
the box to the right (the calculator will convert the value to hex format).

e. Inthe Channel Type (TT) property, select the channel type supported by the device’s
transceiver.

If you are using a transceiver that is not compatible with any of channel types in the list, select
Custom.

To enter a channel type value that has not yet been added to the standard list, select <Enter
Number[Decimal]> and enter a decimal value from 0 to 255 in the box to the right (the
calculator will convert the value to hex format).

f. Inthe Model Number (NN) property, enter the specific product model within the range
specified by the Min Model # and Max Model # properties in the Program ID dialog. You
can assign a unique model number for the specified manufacturer, device class, usage, and
channel type. The same hardware may be used for multiple model numbers depending on the
program that is loaded into the hardware. The model number within the program ID does not
have to conform to your published model number. You can have this property updated
automatically by selecting the Automatic Program ID Management check box in the
Program ID dialog.

g. Inthe Standard Development Program ID property, identify your device as a standard
development/prototype device or as a LONMARK certified device. If your device is a
development or prototype device that is not yet LONMARK certified, select the Standard
Development Program ID check box (the calculator sets the F field of the program ID to 9).
Clear this checkbox if your prototype is LONMARK certified (the calculator sets the F field of
the program ID to 8). This check box is selected by default.

h. If your device has a changeable interface (it has changeable-type network variables, or the
device supports dynamic network variables), select the Has Changeable Interface check
box. This check box is cleared by default.

Integrators can use a network tool to change the types of changeable-type network variables
when installing a network. You can implement changeable-type network variables on any
type of device.

Dynamic network variables are network variables that are during installation time by a
network tool. Network variables with changeable types may be implemented by any device;
dynamic network variables may only be implemented by host-based devices. For more
information on changeable-type network variables and dynamic network variables, see the
Application Laye0072 Interoperability Guidelines.

IzoT NodeBuilder User's Guide 93

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

94

3.

i LonMark Standard Program ID Calculator

td anufacturer [k:Mbd k] :

|<Enler MHurnber [Decimal]: ﬂ |1 047870
Categony:

|HVAE ﬂ Cahicel
Device clazs [CCCC)

| Thermostat [30 6] =

|Jzage (UL

|Netwnrk t anagement ﬂ |

Channel tppe [TT]:

|TR/FT-10 =

todel number [MM]
. |00

[v Standard developrment pragram (D

[Has changeable interface

[~ Usage field values defined by functional profile
Proaram 1D:
FHzMHZMH:CC:CC-UUCTT:HH
|9F:FD:3E:SB:3B:BB:BH:BB

Click OK to return to the Program ID dialog in the New Device Template wizard. The Program
ID property contains the program ID you specified in the Standard Program ID Calculator
dialog.

Program ID E|E|

ModeBuilder device template name: | htyNewDeviceTernplate

Automatic program D management

¥ Enahle Minmodel# | 000 Max model # W
v Re-register plug-ins

Program |D type

i

&+ Standard developmentiprototype (format 9)

" Standard LonMark cerified (format 8)

Pragram [0

|9F:FD:3E:SD:SC:DD:D4:DD Calculatar... |

LME device template name:

| WyrlewDeviceTemplate

= Back ‘ [et = | Cancel

Verify that the Enable check box under Automatic Program ID Management is selected. This
enables the Model number (NN) field in the program ID to be incremented automatically when the
external interface of the device is changed. This allows for the easy development of a device with
a changing external interface during development. The program 1D will cycle through the range

Creating and Opening 1zoT NodeBuilder Projects

of model numbers specified by the Min Model # and Max Model # properties to avoid two
devices having the same program ID but different external interfaces. When the Max model #
value is reached, the model number field of the Program ID will be reset to the Min model #
value. When this check box is selected, the Min model # and Max model # properties are
enabled, and the Nonstandard (ASCII) Program ID Type is disabled.

When Automatic Program ID Management is enabled, the 1zoT NodeBuilder tool automatically
upgrades all target devices using this device template if the Load After Build option is set. To
upgrade the target devices, the 1zoT NodeBuilder tool creates a new device template with the new
name and program ID, then downloads the new application to the target devices, preserving
connections for compatible network variables.

You should clear this check box only if you are creating a resource file for the device template and
the resource file specifies a scope of 6 (model number specific). If this option is set with a scope 6
resource file, you will have to modify the program ID template in the resource file each time you
change the device interface. If you clear this check box, you must manually manage the program
ID and device template name to ensure they are unique for each unique device interface.

The 1zoT NodeBuilder tool automatically deletes old LNS device templates with the minimum
model number as long as they are not in use by any devices. If the old LNS device template is in
use, the 1zoT NodeBuilder tool reports an error.

5. Optionally, you can select the Re-register Plug-ins property so that the 1zoT NodeBuilder tool
automatically re-registers LNS device plug-ins whenever the program ID changes. This option is
only available if Automatic Program ID Management is enabled. This check box is selected by
default.

Only LNS device plug-ins that were registered for the most recent previous device template will
be registered (for example, if you turn this option off for several program ID changes, then turn it
back on, you will need to manually re-register LNS device plug-ins for the newest version of the
device template).

Note: You can access the Program ID settings after the device template has been created. To do
this, right-click the device template in the Project pane, select Settings from the shortcut menu,
and then select the Program ID tab.

6. The LNS Device Template Name property displays the name that the device template will be
referred to by LNS tools such as the 1zoT Commissioning tool. The default LNS device template
name is the same as the NodeBuilder device template name. If you change the program ID of a
NodeBuilder device template, you must change the LNS Device Template Name property. This
is because each LNS device template has a unique program ID and multiple LNS device templates
cannot have the same name.

If Automatic Program ID Management is enabled, the LNS Device Template name is
automatically updated in the following format: <Device Template Name> [version number]. To
revert to the old LNS device template name, you must remove the LNS device template with the
old name from the LNS database (for example, by using the Device Templates dialog in the 1zoT
Commissioning tool).

7. Click Next. The Target Platforms dialog opens.

IzoT NodeBuilder User's Guide 95

Hardware Templates E] g|

MNodeBuilder device template name: | rrytlewDeviceTemplate

Please specify the hardware templates to be used with each device
template target. Ifyou select =Mone=, the target will not be built.

Development build hardware template:

Release build hardware termplate;

=Mone= j

v Run ModeBuilder Code 'Wizard

= Back | Finish | Cancel

8. Proceed to the next section to specify the hardware templates used by development and release
devices.

Specifying Target Platforms

You can specify the hardware templates used for targets. A hardware template is a file that defines the
hardware configuration for a device. It specifies hardware attributes including platform, transceiver
type, Neuron Chip or Smart Transceiver model, clock speed, system image, and memory
configuration.

A target is a LONWORKS device whose application is built by the 1zoT NodeBuilder tool. There are
two types of targets, development targets and release targets. Development targets are used during
development; release targets are used when development is complete and the device will be released to
production.

Note: You can skip this step now, but you must specify the hardware templates before you can build
the device template.

To specify the target platforms, follow these steps:

1. Inthe Development Build Hardware Template property, select the hardware template to be used
for development targets. The list contains all the hardware templates in the Hardware Templates
folder in the Project pane.

96 Creating and Opening 1zoT NodeBuilder Projects

Hardware Templates El Pg|

MNodeBuilder device template name: | MyMewDeviceTemplate

Please specify the hardware templates to be used with each device
template target. Ifyou select =Mone=, the target will not be built.

Development build hardware template:

=Mane= j
=Manes= ~
FT 3120 Evaluation Board

FT 3120 Evaluation Board (801-0442-01)
FT 3120-E4 40MHz

FT 3150 64K Flash 10mMHz

FT 31350 Evaluation Board

FT 5000 Evaluation Board

LTWM-10Flash MB 1_5
LTW-10MIP NB1_5
LTh-10 RAM MNB 1_5 o

= Back | Finish | Cancel

2. Inthe Release Build Hardware Template property, select the hardware template to be used for
release targets. The list contains all the hardware templates in the Hardware Templates folder in
the Project pane.

Hardware Templates El Pg|

MNodeBuilder device template name: | MyMewDeviceTemplate

Please specify the hardware templates to be used with each device
template target. Ifyou select =Mone=, the target will not be built.

Development build hardware template:

|FT 5000 Evaluation Board -

Release build hardware termplate;

FT 5000 Evaluation Board |

v Run ModeBuilder Code 'Wizard

= Back | Finish | Cancel

3. Select the Run NodeBuilder Code Wizard check box to run the NodeBuilder Code Wizard
immediately after clicking Finish. This check box is selected by default.

Note: You can change the default setting of this option. To do this, click Project and then click
Setting, or right-click the Project folder in the Project pane and click Settings on the shortcut

IzoT NodeBuilder User's Guide 97

menu. The NodeBuilder Project Properties dialog opens. Click the Options tab, change the
setting, and then click OK.

4. Click Finish. If you selected the Run NodeBuilder Code Wizard check box, the NodeBuilder
Code Wizard starts. See Chapter 6, Defining Device Interfaces and Creating their Neuron C
Application Framework, for more information about the NodeBuilder Code Wizard.

Managing and Editing Device Templates

You can manage and edit the device templates in a NodeBuilder project from the Project pane in the
NodeBuilder Project Manager.

Managing Device Templates

The Device Templates folder in the Project pane of the project manager lists all the device templates
that are defined as part of the current NodeBuilder project. You can right-click the Device Templates
folder to open a shortcut menu with the following options:

98

S| Project 'ME_Fi Exercise’s

- a Device Templates
+ P MyMewDevice|
+- 8P ME FX Example

+_YHardware Templa

Insett,..
Insert Copy...

Build
Clean

Skatus. ..

New

Insert

Insert Copy

Build

Clean

Creates a new device template in the currently open NodeBuilder
project. This opens the New Device Template Wizard as described in
Starting the New Device Template Wizard earlier in this chapter.

Inserts an existing NodeBuilder device template into the currently open
NodeBuilder project. A dialog opens allowing you to browse to and
select a NodeBuilder device template file (NbDt extension). This
option allows device templates to be reused in multiple projects, and
allows multiple projects to share a single device template.

Creates a copy of an existing NodeBuilder device template and inserts it
into the currently open NodeBuilder project.

When you select this option, a dialog opens allowing you to browse to
and select a NodeBuilder device template file (NbDt or .dev
extension). After you select an existing device template, the New
Device Template Wizard opens. Complete the New Device Template
Wizard as described in Creating Device Templates.

All files associated with the device template (for example, all files in the
Source Files subdirectory) will be copied to the new device template.

Builds the application images for all qualifying targets. See Building an
Application Image in Chapter 8 for more information on building device
applications.

Deletes all output files created when building the currently open
NodeBuilder project for all qualifying targets. See Cleaning Build

Creating and Opening 1zoT NodeBuilder Projects

Status

Output Files in Chapter 8 for more information on removing the files
and folders produced by a build.

Displays the build status for all device templates. See Viewing Build
Status in Chapter 8 for more information on viewing the build status of
NodeBuilder device templates and targets.

Viewing and Editing Device Templates

After you create a device template (g), you can view and edit its properties. To do this, right-click
the device template under the Device Templates folder in the Project pane to open a shortcut menu

with the following options:

-1 Project 'ME_F¥ Exercise":
- Device Templates
8 1 hewDevice Templats
+- P ME FX Example Device
+_YHardware Templates

Settings...

Set Source File. ..
Code Wizard...
Remove

Build
Clean
Build Exclude

Status...
Propetties. ..

Settings

Set Source File

Code Wizard

Remove

Build

Clean

Build Exclude

Opens the NodeBuilder Device Template Properties dialog. This
dialog allows you to change the properties you set for the selected
device template in the New Device Template Wizard.

Sets the main source file (.nc extension) for this device template. By
default the main source file is <Device Template Name>.nc.

Starts the NodeBuilder Code Wizard for this device template. See
Chapter 6, Defining Device Interfaces and Creating their Neuron C
Application Framework, for more information about using the
NodeBuilder Code Wizard.

Removes this device template from the currently open NodeBuilder
project. Note that this does not permanently delete the device template
file or source files.

Build the application image specified by this device template for all
qualifying targets. See Setting Build Options in Chapter 8 for more
information about setting build properties that control the build process.

Deletes all output files created when building this device template for
all qualifying targets. See Cleaning Build Output Files in Chapter 8 for

more information on removing the files and folders produced by a build.

Determines if this device template will be included or excluded when
you click the Build command for the Device Templates folder. When
this option is enabled, the device template will be excluded from a
device templates build, the device template name is dimmed, and a
checkmark will appear next to the Build Exclude option on the shortcut

IzoT NodeBuilder User's Guide

99

menu. When a device template is excluded, you can still explicitly
build the device template by right-clicking the device template and
selecting Build from the shortcut menu.

Status Displays the build status for this device template. See Viewing Build
Status in Chapter 8 for more information on viewing the build status of
NodeBuilder device templates and targets.

Properties Displays the name, location, size, and the dates on which the file was
created, last modified, and last accessed.

Viewing Device Template Components

After you create a device template (&#), you can view and edit its components, which include the main

source file (1), development and release targets ([H]), source files (1), and libraries (_1). To do
this, expand the device template under the Device Templates folder in the Project pane to display the
components, which are described as follows:

S| Project 'ME_F¥ Exercise’;
- Devica Templates
+ i MyNewDeviceTemplate
=1 4@ ME FX Example Device
[EInE P Example Device.nc
+ IHI Developrent
+ IHI Release
+[_¥5aurce Files
+{_Mibraries
+ [:I'Devices
+{_IHardware Templates

Main Source File The main Neuron C source file (.nc extension) for this device
template. This file may include other source files by using Neuron C
#include statements. By default, this file is named <Device
Template Name>.nc.

Editing the Main Source File

You can double-click the main source file to edit it. See Chapter 7,
Developing Device Applications, for more information on editing the
main source file.

Viewing the Main Source File Properties

To view the location, size, and date stamps of a source file, right-click
the source file and then click Properties on the shortcut menu.

Development/Release The development and release targets contain information specific to
building application images for development and release targets,
respectively. See the next section, Managing Development and
Release Targets, for more information.

100 Creating and Opening 1zoT NodeBuilder Projects

Source Files This folder contains all the source files associated with this device
template except for the main source file. When you add source files to
the NodeBuilder project directly or using the NodeBuilder Code
Wizard, they are added to this folder.

Adding Source Files

You can add other files to this folder, including Neuron C source files
(.nc extension), header files (.h extension), C files (.c extension), text
files (.txt extension), or other specification or documentation files. To
do this, right-click the Source Files folder and click Insert on the
shortcut menu.

Note: Adding files to this folder does not automatically include them
when you build the application image. You must insert #include
statements in your Neuron C code to explicitly include these files in
the build.

You can add non-source code files to this folder to allow them to be
easily accessed from the project.

Editing Source Files

You can double-click any source file to edit it. See Chapter 7,
Developing Device Applications, for more information on editing
source files.

Removing Source Files

To remove a source file from the device template, right-click the
source file and then click Remove on the shortcut menu.

Viewing Source File Properties

To view the location, size, and date stamps of a source file, right-click
the source file and then click Properties on the shortcut menu.

Libraries This folder contains all libraries explicitly used by this device
template. A library is a file containing one or more compiled ANSI C
functions. When you build the application image for a device
template, functions are included from libraries if they are referenced
by any code included in the device template. The code for any
unreferenced functions is not included in the application image.

You can add a library in the Specify Library Type dialog. To access
this dialog, right-click the Libraries folder and then click Insert on
the shortcut menu. See Inserting Libraries into a NodeBuilder Project
later in this chapter for more information on adding libraries to a
project.

IzoT NodeBuilder User's Guide 101

Managing Development and Release Targets

Each NodeBuilder device template in the Project pane contains Development and Release targets ({#:)
that can be built. These targets are defined by their hardware templates and dependencies.

hardware attributes including platform, transceiver type, Neuron Chip or Smart Transceiver model,
clock speed, system image, and memory configuration. The hardware template is listed directly under
its target in the Project pane. You can edit the properties of a hardware template in the Hardware
Template Editor dialog. To access this dialog, double-click the hardware template or right-click the
hardware template and click Settings on the shortcut menu (see Creating Hardware Templates for
more information).

Dependencies are the files required to build the application image for a target. A list of dependencies
is automatically created when you build the application image for a target. These files are listed in the
Dependencies folder (1) under the target in the Project pane. The list is empty until you
successfully build an application image for a target

S| Project 'ME_Fi Exercise’s
- A Device Templates
=1 4@ ME FX Example Device
[EInE P Example Device.nc
=| (8 Development
it FT 5000 Evaluation Board
+ DDependencies
+ IHI Release
+[_Jsource Files
+[_JLibraries
+ I:I'Devices
+_YHardware Templates

You can view and edit the properties of a target. To do this, right-click the target under its parent
device template in the Project pane to open a shortcut menu with the following options:

S| Project 'ME_Fi Exercise’;
=3 Device Templates
=1 & MB FX Example Device
EnEFy Exarnple Device.ne
= ('-'\
b B
5 FT 5000 E Settings...
: DDepender Set Hardware Template, ..

+ IHI Release Euild
#_JsSource Files Caompile
+{_Mibraries Clean

+ [IDevices Build Exclude

+_IHardware Tamplate
Status, ..

102 Creating and Opening 1zoT NodeBuilder Projects

Settings

Set Hardware
Template

Build

Compile

Clean

Build Exclude

Status

Opens the NodeBuilder Device Template Target Properties dialog,
which includes compiling, linking, exporting, and configuration options
for the target. See the following subsections for more information on
the target properties you can set in this dialog.

Opens the Set Target Device Hardware Template dialog, where you
can select the hardware template to be used for this target. You can
select from all hardware templates contained in the Hardware
Templates folder. Alternatively, you can drag a hardware template
from the Hardware Templates folder to the Development or Release
target. Note that a target cannot be built or cleaned until it has a
hardware template.

Note: If your NodeBuilder project is not associated with an 1zoT CT
network and you change the hardware template for a device template
that uses a 6000 Series chip, you must associate the NodeBuilder
project with an 1zoT CT network and then re-build the device
application to implement the clock speed associated with the selected
hardware template. If you load the device application with the 1zoT
Commissioning Tool without using the 1zoT NodeBuilder tool’s
automatic load after build feature, the device may not use the correct
clock speed.

Builds the application image for this target only. See Building an
Application Image in Chapter 8 for more information.

Compiles the application for this target only.

Note: Only the compilation step of the build process is completed when
you select this option. The application is not linked and the application
image is not created.

Deletes all output files created when building this target. See Cleaning
Build Output Files in Chapter 8 for more information on removing the
files and folders produced by a build.

Determines if this target will be included or excluded when you click
the Build command for the device template or the Device Template
folder. When this option is enabled, the target will be excluded from a
device template build, the target name is dimmed, and a checkmark will
appear next to the Build Exclude option on the target’s shortcut menu.
When a target is excluded, you can still explicitly build the target by
right-clicking the target and selecting Build from the shortcut menu.
See Excluding Targets from a Build in Chapter 8 for more information

Displays the build status for this target. See Viewing Build Status in
Chapter 8 for more information on viewing the build status of
NodeBuilder device templates and targets.

Setting Device Template Target Properties: Compiler

The Neuron C Compiler (NCC) is a Neuron C tool that is used to produce Neuron assembly source

files from Neuron C source code.

You can modify the compiler options for a target. To do this, right click the target, click Settings on
the shortcut menu, then select the Compiler tab in the NodeBuilder Device Template Target

Properties dialog.

IzoT NodeBuilder User's Guide

103

NodeBuilder Device Template Target Properties

Target device type:

Defines:

Compiler l Linker] E}{poner] Configuration]

ModeBuilder device template name: | MNB Fx Example Device

| Diewelopment

Compiler aptions

[~ Relaxed casting

[Generate assembly listing

Diebug kernel options
[v Use debug kernel
[¥ Expand staternents ¥ Enable reset event
[+ Enable event notify

¥ Disable optimizer

v Mode recovery

¥ Enahle function execute

Ok | Cancel

You can set the following properties:

Defines

Compiler Options
Relaxed Casting

Generate Assembly
Listing

104

You can define a symbol, which can then be tested from the program
using the ifdef or ifndef directive. The defaultis DEBUG for
development targets. This field is blank by default for release targets.

The 1zoT NodeBuilder tool pre-defines several preprocessor symbols,
including: _ECHELON, NEURONC, _NODEBUILDER, and
_NCCB6. See the Neuron C Reference Guide for a complete list and
more information on these symbols.

Allows the const attribute to be removed from a variable without
generating an error (a warning will still be generated by default). This
check box is cleared by default.

Generates an assembly listing when the Neuron C application is
compiled and stores it in your working directory. This listing will have
the same name as the Neuron C source file with a .NL extension. This
check box is cleared by default.

Assembly listings are generated by the Neuron C compiler and are
useful for analyzing the timing and memory efficiency of Neuron C
application code. See the Neuron Chip Data Book for the timings of the
Neuron Chip instructions. These listings are also useful in
understanding how the code generated by the Neuron C compiler is
affected by the use of various programming constructs and
optimizations in the source file.

Creating and Opening 1zoT NodeBuilder Projects

Debug Kernel
Options

Disable optimizer Disables the compiler’s code optimizer. Optimization typically
generates smaller and faster code, and is typically enabled for release
targets. However, optimization can severely change the code initially
generated by the compiler, which can make it difficult to place and use
breakpoints in an application that is being debugged. This check box is
selected by default.

Note: Debugging an optimized application is not supported.

See the Neuron C Reference Guide for information about the pragma
optimization directive, which provides detailed control over the
effective optimization level.

Use Debug Kernel Uses the debug kernel when compiling and linking the application.
This check box is selected for Development targets by default.

If this check box is cleared at compile time, you will not be able to
debug the application. Clearing this check box also disables the
Expand statements, Enable Event Notify, Enable Event Reset, and
Enable Functional Execute options.

Expand Statements Expands all Neuron C statements to at least 2 bytes of machine code. A
single Neuron C statement must correspond to machine code that is at
least 2 bytes long in order to place a breakpoint, and the optimizer can
reduce statements to less than 2 bytes. This check box is selected by
default.

If you are debugging a 3100 Series device, you must select this check
box. Compiling such a debug target with this option cleared generates a
linker error (NLD#515), which states that the Expand Statements
option should be enabled for such targets.

If you are debugging a 6000 Series device, you can clear this check box
to reduce the size of your application’s debug image so it is closer in
size to the release image (typically, the debug and release images will
still vary in size due to different optimization settings). Compiling such
a debug target with this option selected generates a linker warning
(NLD#516), which states that the Expand Statements option is not
required for such targets.

Enable Event Notify Enables the debug kernel to communicate debug events from the device
back to the 1zoT NodeBuilder tool. This check box is selected by
default. Clearing this check box also disables the Enable Event Reset
option.

Node Recovery Enables the user to make the device applicationless by pressing the
service pin for 3 seconds during a power cycle. This check box is
selected by default.

Enable Reset Event Enables the debug kernel to notify the device when a reset event occurs.
This option is useful when you are debugging, but it should be disabled
if you are using debug targets in larger networks because the reset
notifications can consume network bandwidth (for example, if an entire
site is powered at once). This check box is selected by default. Note
that the Enable Event Notify check box must be selected in order to set
this option.

IzoT NodeBuilder User's Guide 105

Enable Function Enables the debugger to get and update the values of system timers and
Execute to update the values of network variables in the watch list when
suspended at a breakpoint. This check box is selected by default.

Setting Device Template Target Properties: Linker

The Neuron Linker (NLD) is a Neuron C tool that is used to produce Neuron executable files. It links
the application image, user-libraries, system libraries, and the Neuron firmware.

You can modify the linker options for a target. To do this, right click the target, click Settings on the
shortcut menu, then select the Linker tab in the NodeBuilder Device Template Target Properties
dialog.

ModeBuilder Device Template Target Properties Eg|

Campiler Linker lExpnr‘[er] Cnnﬂguratiun]

MNodeBuilder device template name: | HELUITEENSTHEEUE

Target device type: |Deve|npment

Map file options
v Generate map file * Yerbose

" Summary

Yariahle placement
[ModeBuilder 3 compatible

[~ Generate symbol file

8154 | Cancel

You can set the following properties:

Map File Options

Generate Map File Generates a link map file in your working directory. This link map file
will have the same name as the device template, but with the .MAP
extension. This check box is selected by default.

If you select this check box, select whether to generate a Verbose or a
Summary link map.

e A Summary link map summarizes the memory usage of your
application image to determine how much margin is available in
each memory device.

e A Verbose link map contains a report showing the location of
every code and data segment; this report is useful for a detailed
understanding of the memory usage of each type of memory in
your target device. This is the default link map.

Variable
Placement

NodeBuilder 3 Allocates application EEPROM variables prior to allocating on-chip

106 Creating and Opening 1zoT NodeBuilder Projects

Compatible EEPROM to meet system requirements.

In NodeBuilder 3.0 and prior releases, the 1zoT NodeBuilder tool
allocated system on-chip EEPROM after placement of explicit and
implicit on-chip EEPROM variables. This could cause link failure in
applications that declare a large amount of implicit on-chip EEPROM
variables.

Implicit on-chip EEPROM variables are those application EEPROM
variables declared without use of the explicit onchip or offchip
keyword. These variables are placed in on-chip EEPROM when
possible, or in off-chip EEPROM when necessary.

Do not select this option unless your application code makes
assumptions about order or location of EEPROM variables, and it
requires backwards-compatible variable placement. This check box is
cleared by default.

Generate Symbol Generates a symbol file when the project is built. Symbol files are only
File required if you are creating ShortStack 2.1 MicroServer images or
custom firmware images.

Setting Device Template Target Properties: Exporter

The Neuron Exporter (NEX) is a Neuron C tool that takes input from the compiler and the linker and
produces downloadable application image files ((APB, .NDL, and .NXE extensions), programmable
application image files ((NRI, .NFI, .NEI, .NME, and .NMF, extensions), and device interface files
(.XIF and .XFB extensions).

You can modify the exporter options for a target. To do this, right click the target, click Settings on
the shortcut menu, then select the Exporter tab in the NodeBuilder Device Template Target
Properties dialog.

NodeBuilder Device Template Target Properties E]E|

Compiler] Linker Exporer IConﬂguratinn]

ModeBuilder device template name: | MNB Fx Example Device
Target device type: |Deve|0pment
Boot 1D generation Rehoot options
' automatic Category:
 Manual |Conﬂguratinn j

Value: 00634

v Checksurm all code

[Checksum error
[~ Fatal application error

[Always

Ok | Cancel

IzoT NodeBuilder User's Guide 107

108

You can set the following properties:

Boot ID
Generation

Checksum All
Code

Reboot Options

Configuration

Select whether the boot ID is generated automatically or manually.

Note: This option is intended for Neuron 3150 Chips and 3150 Smart
Transceivers.

e Automatic. Allocates a new boot ID each time the application
image is built. This causes the on-chip EEPROM to be rebooted
from the system image if the external memory device has been
updated. This is the default. You should select this option unless
you are trying to rebuild an application image from archived source
files.

e Manual Value. If you are trying to rebuild an application image
from archived source files, specify the 16-bit hexadecimal boot ID.
To archive source files that will be rebuilt later, store the device
template, Neuron C source files, and device files in the archive.
Make sure you select the Manual Value option in the archived
image prior to archiving. The NodeBuilder software will update
the Boot ID value to the last automatically assigned value.

Computes the application checksum over the part of the application
image and system image that is in ROM and in writable memory.
Selecting this check box increases the time it takes the Neuron Chip to
complete its reset processing. This check box is selected by default.

If you clear this check box, the application checksum is computed only
over the part of the application image that is in writable memory. See
Reboot Options for more information.

Specifies when the device should reboot various parts of its on-chip
EEPROM memory. The device does this by copying its initial state
from off-chip ROM or flash memory.

Some hardware designs can cause corruption of the contents of the
Neuron Chip’s on-chip EEPROM (for example, designs with inadequate
power supply noise decoupling for the Neuron Chip). The Neuron
firmware can detect this because it maintains several 8-bit checksums,
including ones for the configuration image, application image, and
system image.

Note: These options are intended for Neuron 3150 Chips and 3150
Smart Transceivers, and they are available if the target hardware uses
custom Neuron firmware that is based on version 6 standard firmware
(or later).

You can select reboot options for Configuration, Application, and
Communication Parameters categories. You can select the desired
category from the Categories list.

Specify when to copy the network image from the ROM into on-chip
EEPROM. This includes the address assignment and binding
information in the device, but it does not include the communications
parameters.

e Checksum error. Reboot whenever there is a configuration
checksum error.

e Fatal application error. Reboot whenever there is an application
checksum error, illegal device state, memory allocation failure, or

Creating and Opening 1zoT NodeBuilder Projects

application image inconsistency, or other fatal application error.

Always. Reboot every time the Neuron Chip is reset.

Application Specify when to copy the on-chip part of the application image from
ROM into the on-chip EEPROM. All applications have at least part of
their image in on-chip EEPROM in the Read-Only data structure. See
Appendix A of the Neuron Chip Data Book for a description of this
structure.

Note: You cannot use this option to recover from corruption of any part

of the application image that is in off-chip memory. If off-chip memory

gets

appl
chip

corrupted, recovery will fail and the device will be in the
icationless state. You will then need to re-program the memory
, or re-download the application over the network

Fatal Application Error. Reboot whenever there is an application
checksum error, illegal device state, memory allocation failure, or
application image inconsistency, or other fatal application error.

Always. Reboot every time the Neuron Chip is reset.

App’less is Fatal. Classifies the applicationless state as a fatal
application error. If you select this option, you should also select
the Fatal Application Error check box or else recovery will not
occur.

Note: If you are downloading the device application over the
network, do not select this check box. This is because the device
must be in the applicationless state for a download to occur.

Reboot EE Vars. Specifies that on-chip EEPROM variables,
including configuration network variables, will also be rebooted
any time the application image is rebooted. This will undo any
changes to the initial state of the EEPROM variables located in the
on-chip EEPROM by a network management tool, the application,
or another device.

Communication Specify when to re-initialize the communications parameters from the

Parameters ROM copy. Note that re-initializing the communications parameters
will cause the device to lose its priority assignment if it previously had
one.

Setting Device Temp

Checksum Error. Reboot when a checksum error is detected.

Type/rate Mismatch. Reboot if the transceiver type (differential,
single-ended or special purpose mode) or the interface bit rate of
the on-chip communications parameters do not match the values in
the ROM copy. This usually indicates corrupted communications
parameters, although this might not be the case if your transceiver
supports multiple bit rates.

Always. Reboot every time the Neuron Chip is reset.

late Target Properties: Configuration

You can modify the configuration options for a target. To do this, right click the target, click Settings
on the shortcut menu, then select the Configuration tab in the NodeBuilder Device Template Target

Properties dialog.

IzoT NodeBuilder User's Guide

109

110

NodeBuilder Device Template Target Properties

Compiler | Linker | Exporter Configuration]

PX

ModeBuilder device template name: | NB F Example De

ViLe

Target device type: | Development

[Export confioured
Domain

-

[EZ
[0 NodelD:

Location string:

Length:
10

Authentication

i+ -

key. Receive timer

Subnet [D:

-
[

—
—

=

Cance

o]

You can select the Export Configured check box to enable the 1zoT NodeBuilder tool build a

configured device application for the target. The
when the application is downloaded to the device
system domain table and other configuration data
more information). This check box is cleared by

target will have the properties set in this dialog set
. This information is used to set the fields of the
structures (see the Neuron C Reference Guide for
default.

Tip: Most device applications should be exported as unconfigured; therefore, you will typically leave
the Export Configured check box cleared. Creating a configured device application is recommended

for advanced users only.

If you select the Export Configured check box, you can set options for the following properties (see

the Neuron C Programmers Guide and Neuron C
properties):

Domain

Uses a clone domain, w
specifies that the device
the same network addre

Clone

Reference Guide for more information on these

hich is a domain address within a device that
can receive messages from other devices with
ss. If you are exporting your application image

as a configured image, you can configure the domain as a clone domain.

A clone domain is typic
multiple devices within

Limitations

ally only used in self-installed networks where
a network may have the same address.

Devices using a clone domain have the following limitations:

Devices can no longer receive messages in that domain using

subnet/node addressing. Some other addressing mode must be used

(Neuron ID, group,
addressing for self-

or broadcast). Use only group and broadcast
installed devices since the use of Neuron ID

addressing makes systems more difficult to maintain.

Devices cannot receive acknowledgements and responses. The

device will, however, continue to send acknowledgements and
responses with proper subnet/node information.

Devices cannot use

Authentication because the reply to a challenge

Creating and Opening 1zoT NodeBuilder Projects

is sent using subnet/node addressing regardless of the addressing
format of the original message.

e Devices are no longer protected against receiving their own
messages in looping topologies. This must be considered when
designing the application. For example, if a device sends out a
network variable update, and it also had an input network variable
defined with the same network variable selector, its input network
variable will get updated if the message is reflected or routed back,
which may not be the intention.

Length Specify the length of the domain that will be loaded into the device.
This can be set to one of the following values:

e <None>. The device will not include a pre-configured domain
record. If you want to use authentication, the firmware must
support open media authentication.

e 0 bytes. The device uses the 0 length domain. If you want to use
authentication, the firmware must support open media
authentication.

e 1,3, 6bytes. The domain length. This value determines the
format of the Domain ID field.

ID The domain ID that will be loaded into the device with the application,
as a hexadecimal value. You can only set this property if you set the
Domain Length property to 1 byte or greater.

Subnet ID The subnet ID that will be loaded into the device.
Node ID The node ID that will be loaded into the device.
Authentication The authentication key that will be loaded into the device.
Location String The location string that will be loaded into the device. Select whether

the location string is set in ASCII or Hex format.

Receive Timer The receive timer value that will be loaded into the device.

Inserting a Library into a NodeBuilder Device Template

You can add a library to a NodeBuilder device template, or reference a required library from your
Neuron C source code. A library is a file with a .lib extension containing one or more compiled ANSI
C functions. When you build the application image for a device template, functions are included from
libraries if they are referenced by any code included in the device template. The code for any
unreferenced functions is not included in the application image.

There are two types of libraries: standard and custom. The standard libraries are included with the
1zoT NodeBuilder tool. When you build a device template, some standard libraries are automatically
linked in your Neuron C code such as the CodeWizard-3.lib library (if you are using version 3 code
templates), and the gen.lib, psg.lib and extarith.lib libraries. You may explicitly include standard
libraries in a NodeBuilder project for documentation purposes. Note that some libraries provided by
Echelon must be explicitly included as custom libraries such as the ISI and CCL libraries.

Custom libraries are any libraries that you or a third party creates. Custom libraries must be explicitly
included in a NodeBuilder project. You can create your own custom libraries (see the Neuron C
Programmer’s Guide for more information on how to do this).You can use the pragma library
directive with your source code. This directive lets you specify a library and library location from your
Neuron C source file (see the Neuron C Reference Guide for more information). Alternatively, you can
insert a library into a NodeBuilder device template using the NodeBuilder project manager, follow the
steps outlined below.

IzoT NodeBuilder User's Guide 111

Because the pragma library directive supports location-independent references to your library, this is
the recommended method.

To insert a library into a NodeBuilder device template, follow these steps:
1. Expand the device template in the Project pane of the NodeBuilder project manager.

2. Right-click the Libraries folder and then click Insert on the shortcut menu.

Workspace O =

-1 Project 'ME_F¥ Exercise":
- Device Templates
=1 & ME FX Example Device

Bl Exarmple Device.nc

=] (8 Development

it FT 5000 Evaluation Board

+ DDependencies

+ IHI Relzase

+[_JSource Files

¥

+ I:I'Devices
+[_JIHardware Templates

Inserk, ..

3. The Specify Library Type dialog opens.

Specify Library Type

Fleaze specify whether the library to he inserted is a
standard Echelon library ifram the LanworksUmages
directary), or a custom likirary.

I Custorm library

& Standard library

| Iext = | Cancel

4. Select a Custom Library or a Standard library to add to the device template and then click
Next. Standard libraries (.lib extension) are stored in the C:\LonWorks\Images folder; custom
libraries can be stored anywhere.

5. If you selected Standard Library in step 4, the Select Standard Libraries dialog opens.

112 Creating and Opening 1zoT NodeBuilder Projects

Select Standard Libraries

Checkthe standard libraryiies) to be inzserted.

?X

[l Codewizard.lib
[]EXTARITH.lib
[GEM.LIB
RGEET
[]5LTAlb

= Back | Finish | Cancel |

Select one or more of the following standard libraries in the C:\LonWorks\Images folder to be
explicitly included in the project (for documentation purposes only) and then click Finish.

CodeWizard-3.lib

CodeWizard.lib

Extarith.lib

Psg.lib

Gen.lib

SLTALlib

The NodeBuilder Code Wizard library used by the version 3 code
template. The Code Wizard library supplies most of the utility
functions defined in the CodeWizard.h file. See Version 3
Templates in Chapter 6 for more information on the version 3 code
templates.

Note: You do not need to add a reference to the CodeWizard-3.lib
file to your NodeBuilder Device Template. Version 3 of the
CodeWizard.h file automatically links with this library through the
#pragma library directive.

The NodeBuilder Code Wizard library used by the version 2
template. Existing applications that use the version 2 code
templates already contain a reference to this library; however new
applications that use the version 2 code templates need to reference
this library. See Version 2 Templates in Chapter 6 for more
information on the version 2 code templates.

Note: You should use the version 3 code templates for all new
device development. The version 1 code templates do not use or
require a special function library.

The extended arithmetic function library. Provides floating point
and 32-bit integer math functions. For more information, see the
Neuron C Programmer’s Guide.

The programmable serial gateway library. Provides serial 1/0
functions for the PSG/3 and PSG-20 programmable serial gateways.
For more information, see the programmable serial gateway
documentation.

The standard Neuron C support library. Provides general support
functions for Neuron C.

The SLTA-10 Serial LonTalk Adapter support library.

IzoT NodeBuilder User's Guide

113

When you build the application image, the 1zoT NodeBuilder tool first searches for the selected
libraries in the folder within the Images folder that contains the system image for the target (for
example, C:\LonWorks\Images\Ver18). If the libraries are not in the version folder, the libraries
in the parent C:\LonWorks\Images folder are used.

6. If you selected Custom Library in step 4, the Specify Custom Libraries dialog opens. Enter the
full path of the library or libraries to be added to the device template. You can enter multiple
library files by separating the paths with a semi-colon. To browse to a library file, click the button
to the right of the Library Names property and then browse to any file with the .lib extension.
When you have finished specifying the custom libraries, click Finish.

Please indicate the full path name ofthe custom library
ar libraries to be insefed. Separate multiple libraries by
a semicolon.

Library name(s):

= Back | Finish | Cancel

Note: You can view a summary of the contents of any library file using the Neuron Librarian
standalone tool. To do this, open a command prompt and enter the following command:

nlib —r <library file name>
To save the summary, redirect the output to a file using the following command:
nlib —r <library file name> > <text file name>

For more information on using the Neuron Librarian tool and other standard Neuron C tools that can
be run standalone, see Appendix A of the Neuron C Programmer’s Guide.

Using Hardware Templates

You can create new hardware templates or copies of existing ones and then configure them with the
NodeBuilder Project Manager. A hardware template is a file with a .NbHwt extension that defines the
hardware configuration for a target device. It specifies hardware attributes including platform,
transceiver type, Neuron Chip or Smart Transceiver model, clock speed, system image, and memory
configuration. Several hardware templates are included with the 1zoT NodeBuilder tool. You can use
these or create your own. Third-party development platform suppliers may include NodeBuilder
hardware templates for their platforms.

To view the currently defined hardware templates, expand the Hardware Templates folder in the
Project pane of the NodeBuilder Project Manager. The Hardware Templates folder contains
Standard Templates and User Templates folders.

e The Standard Templates folder contains standard NodeBuilder hardware templates that are
included with the 1zoT NodeBuilder tool. The Standard hardware templates are read-only;

114 Creating and Opening IzoT NodeBuilder Projects

however, you can use the Insert Copy feature to create your own custom hardware template
based on a Standard template and then edit your custom template.

=3 Project 'ME_FY Exercise’: ~
+(_IDevice Templates
+ DDevices
“H-AHardware Templates
S| standard Templates
T 3120 Evaluation Eoard (801-0442-01)
T 3120 Evaluation Board
T 3120-E4 40MHz
T 3150 &4k Flash 10MHz
T 3150 Evaluation Board
T 5000 Evaluation Board
TM-10Flash NE 1_5
THM-10 MIP ME 1 _5
THM-10RAMME 1_5
TrM-104 &4k Flash with FTT-104 Transceiver
TM-104 Flash a4k
TM-104 Flash

e The User Templates folder contains your custom hardware templates that can be used by all
NodeBuilder projects on this computer. Any hardware templates unique to this project are located
in the Hardware Templates folder, and are not contained in the Standard Templates or User
Templates folders.

To create hardware templates, you do the following:

1. Create a new hardware template either using the New shortcut command on the Hardware
Templates or User Templates folder, duplicating an existing hardware template using the Insert
shortcut command on the Hardware Templates folder, or creating a copy of an existing hardware
template using the Insert Copy shortcut command on the Hardware Templates or User
Templates folder.

2. Set the hardware template properties for the new hardware template in the Hardware Template
Editor dialog. You can also use this dialog to edit existing hardware templates or edit the
hardware template being used in an existing device template.

Creating Hardware Templates

You can create new hardware template and add existing ones into your project from the Project pane.
To do this, right-click the Hardware Templates or User Templates folders to open a shortcut menu
that has the following options:

-1 Project 'ME_F¥ Exercise":
+[_JDevice Templates
+ DDevices
St |Hardviare Templates
+[_¥standard Template: Mew...

[user Templates Insert...
Insert Copy...

IzoT NodeBuilder User's Guide 115

New Creates a new hardware template to be added to the selected folder.
Selecting this option opens the Hardware Template Editor dialog
where you can create a new hardware template.

e If you are creating a hardware template in the Hardware
Templates folder, it will be placed in the NodeBuilder project
folder (for example, C:\Lm\Source\NB_FX Exercise).

e If you are creating a hardware template in the User Templates
folder, the new User hardware template will be placed in the User
hardware templates folder, which is
C:\Lm\Source\Templates\Hardware by default. If this folder does
not already exist on your computer, you will be prompted to create
it.

You can set the default User hardware templates folder in the
Options tab of the NodeBuilder Project Properties dialog. To
access this dialog, click Project and then click Settings, or
right-click the Project folder in the Project pane and click Settings
on the shortcut menu.

You can create folders in the User hardware templates folder, but
the 1zoT NodeBuilder tool will only show them if they contain at
least one hardware template.

Proceed to the next section, Editing Hardware Templates, to configure
the hardware, memory, and description of the new hardware template.

Insert References an existing hardware template and inserts it into the
currently open NodeBuilder project. After you select this option,
browse to and select an existing NodeBuilder device template file
(.NbHwt extension) to be inserted into your current NodeBuilder
project.

Note: This command is only available for the Hardware Templates
folder.

Insert Copy Creates a copy of an existing NodeBuilder hardware template, lets you
modify the hardware template properties, and inserts the modified
hardware template into the currently open NodeBuilder project.

After you select this option, browse to and select an existing
NodeBuilder device template file (.NbDt extension) to be inserted into
your current NodeBuilder project. After you select an existing
hardware template, the Hardware Template Editor dialog opens.

Proceed to the next section, Editing Hardware Templates, to configure
the hardware, memory, and description of the hardware template copy.

Note: You can also create a copy of an existing NodeBuilder hardware
template by dragging a standard or user hardware template to the
Hardware Templates folder.

Notes:

e You can add a hardware template to a device template’s development or release target by dragging
the hardware template from the Hardware Templates folder to the appropriate Release or
Development folder. Each of these folders can contain only one hardware template. When you
drag a new hardware template to one of these folders, it replaces the old one if the folder already
contained a hardware template. You can edit an existing hardware template by double-clicking it,
which opens the Hardware Template Editor dialog.

116 Creating and Opening IzoT NodeBuilder Projects

e Do not modify hardware templates in the Standard Templates folder because any changes that
you make will be overwritten by future NodeBuilder updates. To modify a standard template, first
insert a copy in the User Templates folder, and then edit the resulting custom template. Future
upgrades of the 1zoT NodeBuilder tool will not modify any user templates.

e You can remove project-specific hardware templates in the Hardware Templates folder. To do
this, right-click the template and then click Remove on the shortcut menu. Note that removing a
hardware template only removes the hardware template from the project; it does not delete the
hardware template file.

e You cannot remove hardware templates in the Standard Templates and User Templates folders
because they may be used by other NodeBuilder projects.

Editing Hardware Templates

When you create a new hardware template or create a copy of an existing one, you can configure the
hardware, memory, and description properties of the new hardware template. You can also edit these
properties for an existing hardware template or for a hardware template being used in an existing
device template. The following sections describe how to set these properties.

Note: If you are editing a hardware template that is associated with a development or release target,
the changes you make are also saved to the original hardware template in the Hardware Templates
folder.

Setting Hardware Properties

You can set hardware properties for a hardware template on the Hardware tab of the NodeBuilder
Hardware Template Properties dialog. If you open an existing template or create a new hardware
template using Insert Copy, this tab will show the properties of the selected hardware template. If you
create a new hardware template, it will contain the default values shown in the following image:

IzoT NodeBuilder User's Guide 117

118

') Hardware Template Editor,

Hardware template name; FT 5000 Evaluation Boar: |

Hardware |Men'u:|ry Description

Flatfarmm:

| Custam A |

Transceiver ype:
\TP/FT-10 v/

Meuron chip model;
FT 5000 v/

Esternal clock speed:

Clack multiplier: System clock:

E v/ 80.00 MHz

Syztem image version:

| <Drefaults w |

Image name:; Firmware wersion;
a0

I (]S H Cancel]

You can set the following properties on the Hardware tab:

Hardware Template Enter the name of the hardware template. By default, new hardware

Name templates are named Custom 1, Custom 2, and so on. The hardware
template name may be any valid Windows file name. The name can
contain up to 210 characters, including spaces. The name cannot
contain the following characters: \/: *? *“ <> |.

Platform A platform is a category of hardware implementations. Most hardware
templates, including standard and user-defined hardware templates, are
implemented using the Custom platform. The Custom platform is
suitable for all user-defined hardware.

Other platform types are used for unique hardware implementations.
For example, the LTM-10 platform does not have a fixed transceiver
type, and such flexibility may complicate the implementation.

Select one of the following hardware platforms:

e Custom. Select this if you are not using an LTM-10, LTM-10A, or
LonBuilder Emulator. This is the default.

e LTM-10.
e LTM-10A.
e LonBuilder Emulator 3150.

Creating and Opening 1zoT NodeBuilder Projects

Transceiver Type Select the transceiver type supported by the Neuron Chip or Smart
Transceiver model selected in the Neuron Chip Model property. Each
transceiver type identifies a unique set of transceiver parameters that are
included in the application image. The default transceiver type is
TP/FT-10.

Select <Default> to use the project default transceiver. You can set the
default transceiver in the Project tab of the NodeBuilder Project
Properties dialog. To access this tab, click Project, click Settings, and
then click the Project tab, or right-click the Project folder in the Project
pane, click Settings on the shortcut menu, and then click the Project
tab.

Neuron Chip Model Select the Neuron Chip or Smart Transceiver model supported by the
hardware platform selected in the Platform property. The default
Neuron Chip model is FT 6000

External Clock Displays the frequency of the external crystal used for the Neuron Chip
Speed or Smart Transceiver model selected in the Neuron Chip Model
property.

For 6000 Series chips, the external crystal has a frequency of 10MHz;
however, you can change the system’s internal clock speed from 5MHz
to 80MHz. To do this, you change the frequency at which the Neuron
Chip or Smart Transceiver runs in the Clock Multiplier property.

For 3100 Series chips, you can select a different clock speed from the
list of those available for the selected Neuron Chip and transceiver type,
or for the selected Smart Transceiver. This property is unavailable for
those Neuron Chip or Smart Transceiver models that support only one
external clock speed. See your Neuron Chip or Smart Transceiver data
book for more information.

Clock Multiplier For 6000 Series chips, you can select the frequency at which the Neuron
Chip runs to modify the system clock speed. You can select multipliers
of ¥, 1, 2, 4, and 8. The default multiplier is 8.

This property is fixed at ¥ for the 3100 chip series.

Note: If you modify this property and your NodeBuilder project is not
associated with a LonMaker network, you must associate the
NodeBuilder project with a LonMaker network and then load the device
application with the 1zoT NodeBuilder tool to implement the change. If
you load the device application with the 1zoT Commissioning tool
without using the 1zoT NodeBuilder tool’s automatic load after build
feature, the device may not use the correct clock speed.

System Clock The effective clock speed of the internal system. For 6000 Series chips,
this is the product of the External Clock Speed and the Clock
Multiplier. The default internal system clock speed is 80.00 MHz (the
crystal’s speed external clock speed of 10MHz multiplied by the default
clock multiplier of 8), and it may be as low as 5 MHz (10MHz *).

Note: The 5.00 MHz system clock setting is intended only to facilitate
backward compatibility with older designs that cannot scale to higher
clock rates. There is no power consumption advantage to using 5.00
MHz over 10.00 MHz.

For 3100 Series chips, this is the same value as the External Clock
Speed multiplied by %.

IzoT NodeBuilder User's Guide 119

120

System Image
Version

Image Name

Firmware Version

Select the system image version for the selected Neuron Chip or Smart
Transceiver model. See your Neuron Chip or Smart Transceiver data
book for more information.

Select <Default> to use the default system image for the chosen chip.
The default system image is the most current system image version
included with this version of the 1zoT NodeBuilder tool and any applied
service packs.

Select <Custom> to specify your own custom system image in the
Image Name property. See the Neuron C Programmer’s Guide for
information on creating custom system images.

Displays the file name of the system image. If <Custom> is selected in
the System Image Version property, you can enter a system image file
name or click the button to the right and browse to a system image
symbol file (.sym extension).

For 6000 Series chips, the name of the default system image is
BFT6000.

Displays the firmware version used by the selected system image if
the System Image Version property is set to <Default>; otherwise
N/A is displayed.

Setting Memory Properties

You can view and set the on-chip and off-chip memory properties for a hardware template on the
Memory tab of the NodeBuilder Hardware Template Editor dialog.

+ Hardware Template Editor

Hardware template name: FT 5000 Evaluation Board
Hardware | Memon | Description
Memary addresses Mon-volatle memary
Start End
Dff-chip ROM:
Type:
Entended non-volatie: {04000 5 OwdFFF & EEPROM “
Eutended on-chip RaM: |[EOOD S| |0sEVFF 3
Sector size:
1/0:
On-chip ROM: | 020000 (=3FFF
Wirite: time;
Orechip RAM: [0xE 800 OwEFFF me
M andatory EEFROM: | 0xFOO0 OuF7FF
Extended on-chip EEFROM: | 0x0000 (0000
(]] [Cahcel] [Apply

Creating and Opening 1zoT NodeBuilder Projects

The Memory Addresses box details how on chip and off-chip memory is organized on the selected
Neuron Chip or Smart Transceiver model. These values are dependent on the chip type and may be
modified depending on the Neuron chip model and available memory. You can modify the Start and
End locations for available memory by clicking the arrows. A value of 0x0000 is displayed for any
memory location that has not been set; N/A is displayed for any memory location that is not available.

The Non-Volatile Memory box specifies the type of external non-volatile memory (EEPROM,
FLASH, and NVRAM) used, if any. If EEPROM is selected, the Write Time field specifies the
EEPROM write time. If Flash is selected, the Sector Size field specifies the flash memory sector size.

The following sections describe the memory properties of the 5000 Series chips, 3150 Neuron core,
and 3120 and 3170 Neuron core.

5000 Series Chips

The address ranges and consumption for the on-chip and off-chip memory of the 5000 Series chips are

as follows:
Off-Chip ROM The 5000 Series chips do not support off-chip memory;
therefore, this property is set to N/A.
Extended Non-Volatile The 5000 Series chips use a serial memory interface for

external non-volatile memory devices (EEPROM or flash).
The application code and configuration data are stored in the
external non-volatile memory device and then copied into the
internal RAM when the device is reset. The device application
is then executed from the internal RAM.

The Extended Non-Volatile memory always starts at 0x4000
and can extend to a configurable address of less than OXE7FF
(a maximum of 42KB).

Echelon currently supports and provides drivers for the
following flash devices, which you can select from the Type
property in the Non-Volatile Memory box: Atmel
AT25F512AN, ST M25P05-AVMNGT, and SST25VF512A.
See the Neuron Chip or Smart Transceiver data book for more
information.

Note: The drivers for different flash devices consume varying
amounts of EEPROM code space because of the different
programming algorithms required for the different flash
devices. For example, the SST driver takes 40 bytes more of
EEPROM than the other two supported flash devices.

Extended On-chip RAM The Extended On-chip RAM can start at a configurable address
at or above 0x4000 or at the end of any extended non-volatile
memory and must end at OXE7FF.

On-chip ROM The On-chip ROM is set from 0x0000 to Ox3FFF.
On-chip RAM The On-chip RAM is set from 0XE800 to OXEFFF.
Mandatory EEPROM The On-chip EEPROM is set from 0xF000 to OxF7FF. This

reflects the fact that a minimum of 2K of external serial
EEPROM is required for the 5000 Series chips.

Extended On-chip EEPROM The 5000 Series chips do not use Extended On-chip EEPROM;
therefore, this property is set from 0x0000 to 0x0000.

IzoT NodeBuilder User's Guide 121

122

6000 Series Chips

The address ranges and consumption for the on-chip and off-chip memory of the 6000 Series chips are
as follows:

Off-Chip ROM The 6000 Series chips do not support off-chip memory;
therefore, this property is set to N/A.

Extended Non-Volatile The 6000 Series chips use a serial memory interface for
external non-volatile flash memory devices. The application
code and configuration data are stored in the external
non-volatile memory device and then copied into the internal
RAM when the device is reset. The device application is then
executed from the internal RAM.

Echelon supports a number of compatible serial flash memory
parts. You must select the part from the Type list to match your
device hardware.

You do not need to need to specify memory boundaries for a
device based on a Series 6000 chip, because the Neuron Linker
automatically configures the memory map to meet the
combined requirements of the chip, the Neuron firmware and
your application.

Extended On-chip RAM
On-chip ROM
On-chip RAM

Mandatory EEPROM You do not need to need to specify any of these memory
boundaries for a device based on a Series 6000 chip, because
the Neuron Linker automatically configures the memory map to
meet the combined requirements of the chip, the Neuron
firmware and your application.

Extended On-chip EEPROM The 6000 Series chips do not use Extended On-chip EEPROM;
therefore, this property is set from 0x0000 to 0x0000.

3150 Neuron Core

For Neuron 3150 Chips, 3150 FT Smart Transceivers, and 3150 PL Smart Transceivers, the on-chip
memory values are dependent on the chip type and may not be modified with the exception of the
Extended On-chip RAM. The Type property in the Non-Volatile Memory box specifies the type of
non-volatile memory (EEPROM, FLASH, and NVRAM) used, if any. For devices where the system
image is kept in non-volatile memory, select either flash or NVRAM. EEPROM is not supported for
this configuration.

3120 and 3170 Neuron Core

For the Neuron 3120 Chips, 3120 FT Smart Transceivers, 3120 PL Smart Transceivers, and 3170 PL
Smart Transceivers, the on-chip memory values are dependent on the chip type and may not be
modified with the exception of the Extended On-chip RAM. These chips do not support off-chip
memory, therefore, the Off-Chip ROM, Off-Chip RAM, Off-Chip Non-Volatile and 1/O properties
are set to N/A.

Setting the Hardware Template Description

You can enter an optional description for a hardware template in the Description tab of the
NodeBuilder Hardware Template Properties dialog. This description will be saved in the hardware
template file and will be available if this hardware template is used in other NodeBuilder projects.

Creating and Opening 1zoT NodeBuilder Projects

+ Hardware Template Editor

Hardware template name: |FT 5000 Evaluation Board |

Hardwars | Memory | Description |

Hardware template dezcription:

Thiz iz the standard hardware template for the FT 5000 EVE evaluation board.

The FT 5000 EVE uses Echelon's FT 5000 Smart Transceiver, which supports an internal spztem clock
speed of 5 MHz ta 80 MHz [based on an external crystal of 10 MHz).

The FT 5000 Smart Tranzsceiver includes 16KEB of on-chip ROM to stare the system firmware image and
64 KB of an-chip RAM [44 KB aof which can be used for application code and datal. The FT 5000 Smart
Tranzceiver requires at least 2KB of off-chip EEPROM to store configuration data, and you can use a
larger capacity EEPROM device or an additional flash device [up to B4KEB] to stare your application
zade, canfiguration data, and an upgradable system frrvware image. The spstem image and application
code iz shadowed into the on-chip RAM at runtime.

This FT 5000 EWE hardware terplate maps the rmemany range frorm 04000 ta OxDFFF for EEPROM
which can be uzed to store application code. The memony range OxE Q00 to OB 7FF e configured for
on-chip RAM. These memary ranges are configurable bazed on application requirenients.

ok H Cancel H Apply

IzoT NodeBuilder User's Guide

123

124

6

Defining Device Interfaces and
Creating their Neuron C Application
Framework

This chapter describes how to use the NodeBuilder Code Wizard to define your
device interface and generate Neuron C code that implements it. It explains how to
start the NodeBuilder Code Wizard, how to add functional blocks, network variables,
and configuration properties to your device template, and how to create the Neuron C
framework for your device application.

Defining Device Interfaces and Creating their Neuron C Framework

Introduction to Device Interfaces

The NodeBuilder Code Wizard generates Neuron C source code that implements your device interface
and creates the Neuron C framework for your device application. The device interface defines the
functional blocks, network variables, and configuration properties implemented by your device. The
framework created by the Code Wizard implements the most common device and functional block
management tasks that are used in interoperable networks, and are required for certification of
interoperable devices.

Functional blocks, network variables, and configuration properties are described as follows:

o Functional blocks group network variables and configuration properties into functional units that
define desired system functionalities. Functional blocks define standard formats and semantics for
how information is exchanged between devices on a network.

e Network variables allow devices to send and receive data over the network. Network variables are
data items (such as temperature, the state of a switch, or actuator position setting) that a particular
device shares with other devices on the network.

e Configuration properties define device behavior by determining how data is manipulated and
when data it is transmitted, for example. Configuration properties control the application’s
algorithms, while network variables provide input and output to the algorithms. For example, a
configuration property may specify a minimum change that must occur on a physical input to a
device before the corresponding output network variable is updated. Configuration properties can
be applied at the device, functional block, or network variable level. Configuration properties may
be set during device installation, operation, and maintenance.

To create a device interface and the Neuron C framework for the device application, you do the
following:

1. Start the NodeBuilder Code Wizard.
2. Define the device interface.
3. Generate the Neuron C code.

Starting the Code Wizard

You can start the NodeBuilder Code Wizard when you are creating a new device template in the New
Device Template wizard or any time from the NodeBuilder Project Manager.

To start the NodeBuilder Code Wizard when you are creating a new device template, select the Run
NodeBuilder Code Wizard check box in the Target Platforms dialog of the New Device Template
wizard. See Creating Device Templates in Chapter 5 for more information on setting this option in the
NodeBuilder Code Wizard.

To start the Code Wizard from the NodeBuilder Project Manager, right-click a device template in the
Project pane and click Code Wizard on the shortcut menu.

IzoT NodeBuilder User's Guide 125

Workspace O x

S| Project 'ME_F¥ Exercise’;
- Devica Templates

+ @ MB Fx settings...
+[_YDevices Set Source File, ..
= A Hardware Templates Code

+_}standard Templates Remave

[user Templates Euwild
Clean
Build Exclude
Stakus...
Properties...

The NodeBuilder Code Wizard opens.

NodeBuilder Code Wizard

Device template Caonfiguration property access method
Marme: MyMewDeviceTemplate e Generate and Clase

Frogram 0 9F:FD:3E:S0:3C:00:04:00 -
Close ‘

Toinsert a functional hlock, network variable, or configuration property, drag the corresponding item from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program
interface pane.

Resource pane; Frogram interface pane:
|E: SLonvwiorkshTypeshLdrf. Cat C:ALmySource
g CiiLonWorks\ TypesiLdrf . Cat = . IMyMNewDeviceTemplate
-1 C:\Lonwarks\Types —-[_ Functional Blacks
+|-filp STAMDARD (Scope O Standard) + . ModeObiject
-1 Ci\Lonwarks| TypesiUseriEchelon [0 metwork variables
+| @il echelon (Scope 3: Echelon Corporation) [Z Configuration Properties
+-fp MBUS_Integrator (Scope 4: Echelon Corporation, Gatewan
+-fp dc0519 (Scope 4@ Echelon Corporation, Generic Analog O
+|-fp DCO131 (Scope 4 Echelon Corporation, Channel Diagnosk

+|- BAS_Controller {Scope #: Echelon Corporation, Generic Co
=121 C:\Lonworksitypesiuser|YourCompany

+| -l Device Development (Scope S 0xFFD3E, 0x0000, Metwor
-0 CiiLonorksiMeuronCiExamplesiModeBuilder LTM-104Types

+-@p NcExample (Scope 5: Examples, I/O, General)
—1-23 C:\LonwarksiNeuronC\ExamplesiMini EVE\ Types

+|- Minikit (Scope 4: Examples, Generic Analog Input)

The NodeBuilder Code Wizard user interface is essentially divided into two panes: the Resource pane
and the Program Interface pane. The following sections describe how to use these panes.

Using the Resource Pane

The Resource pane provides the full functionality of the NodeBuilder Resource Editor. It lists
functional profiles, network variable types, and configuration property types, which are collectively
referred to as resources. To define your device interface, you drag these resources from the Resource
pane to the Program Interface pane as described in Using the Program Interface Pane later in this

126 Defining Device Interfaces and Creating their Neuron C Framework

section. For more information on creating and editing resource file sets and resources, see the
NodeBuilder Resource Editor User’s Guide.

The Resource pane displays a hierarchical view of your resource catalog. The resource catalog file
(=#) is at the top of the hierarchy. The resource catalog file is used to identify all the directories
containing resource file sets. The resource catalog file has a .Cat extension. The default resource
catalog file is Ldrf.cat, and it is stored in the C:\LonWorks\Types folder.

Below the resource catalog files are entries for each resource folder contained in the resource catalog.
A resource folder may contain one or more resource file sets. By default, there is one resource folder
(C:\LonWorks\Types) that contains the STANDARD resource file set. There may be a
C:\LonWorks\Types\User\Echelon folder if you installed the LonPoint plug-in when you installed
the 1zoT Commissioning tool, or you may have additional resource folders if you have installed any
other plug-ins, or already created your own resource files. You can add and remove resource folders in
the resource catalog file from the Resource pane.

Each resource file set (&) includes individual folders containing functional profile, network variable
type, configuration property type, format, and language file resources.

E\Laanrks'xTypes'\S TAMDARD

g CiiLontWorks) TwpesiLdrF. Cat
- ciLonworks\Types
STAMDARD (Scope 0: Standard)

+-[_] Metwork Yariable Types
+ D Zonfiguration Property Twpes
+- [Functional Profile Templates
+ |:| Enumerakions
+-[_] Language Files
+ |:| Formaks

+-[C1 C\Lonworks\ TypesiUseriEchelon

Note: The Resource pane does not include the menu and toolbar displayed at the top of the
NodeBuilder Resource Editor; however, you can access the commands provided by these components
by right-clicking the Resource Catalog in the Resource pane.

C:hLorvwfarkshTypessLdrf. Cat

CiiLonworks) TwpesiLdrf. Cat
=1 C:iLonworks\Types Add Folder. ..

+ @ STANDARD (Scope 0y Mew Resource File Set...
=L CiLonworks\ TypesiUser

+ - echelon (Scope 3: Ecl :::::: Catalog

+ - MBUS_Integrator (Sc Hay

+-fip dc0519 (Scope 4 Ecl Catalog Properties. .. |

+ - DCO131 (Scope 4 Ec ost

+-fip BAS_Contraller {Scop Search... (ol
- CiLonworks\bypesiusert Repork.,

+-fip Device Development | Oplions... por

Introduction to Resource File Sets

Resources are grouped into resource file sets, which apply to a specified range of program IDs. The
program ID range is determined by a program ID template in the file, and a scope value for the
resource file set. The scope specifies the fields of the program ID template that are used when
matching the program ID template to the program ID of a device. The program ID template has an
identical structure to the program ID of a device, except that the applicable fields may be restricted by
the scope. The scope value serves as a filter, indicating the relevant parts of the program ID.

IzoT NodeBuilder User's Guide 127

128

The scope may be one of the following values:
Scope Program ID Fields Used

Standard

Device Class

Device Class and Usage

Manufacturer

Manufacturer and Device Class

Manufacturer, Device Class, and Device Subclass

6 Manufacturer, Device Class, Device Subclass, and Device Model

g B~ W N - O

For a device to use a resource file set, the program ID of the device must match the program ID of the
resource file set to the degree specified by the scope. This allows each LONWORKS manufacturer to
create resource files that are unique to their devices.

For example, consider a resource file set with a program ID of 81:23:45:01:02:05:04:00 and
manufacturer and device class scope (scope 4). Any device with the manufacturer ID fields of the
program ID set to 1:23:45 and the device class ID fields set to 01:02 would be able to use types
defined in this resource file set, whereas devices of the same class but by a different manufacturer
could not access this resource file set.

A resource file set may also reference information in any resource file set with a numerically lower
scope provided the relevant fields of their program ID templates match. For example, a scope 4
resource file set can reference resources in a scope 3 resource file set, provided the manufacturer ID
components of the resource file sets’ program 1D templates match.

Scopes 0-2 are reserved for standard resource definitions published by Echelon and distributed by
LONMARK International. Scope 0 applies to all devices; therefore, there is a single scope 0 resource
file set called the standard resource file set. A standard resource file set is included with the 1zoT
NodeBuilder tool. You can download updated standard resource files from the LONMARK Web site at
www.lonmark.org/technical_resources/resource_files.

You can define your own functional profiles, network variable and configuration property types, and
formats in scope 3-6 resource files.

Introduction to Resources

Each resource file set may contain definitions for the following resources:

Resource Description
Network Variable Type information for network variables. This information includes the
Types size, units, scaling factors, and type category (float, integer, signed, and so

on) for each type. Network variable types can contain a single scalar
value, a structure containing multiple fields (for example, the
SNVT_switch network variable contains 2 fields for the value and state),
or enumerated values that allow the network variable to be set to one of a
discrete number of values. Network variables types are defined in a
resource file with a .typ extension.

Configuration Type information for configuration properties. This information includes

Property Types the size, units, scaling factors, and type category (float, integer, signed,
and so on) for each type. Like network variable types, configuration
property types can contain scalar, structured, or enumerated values.
Configuration property types are defined in a resource file with a .typ
extension (this is the same file used for network variable types).

Defining Device Interfaces and Creating their Neuron C Framework

http://www.lonmark.org/technical_resources/resource_files/

Resource Description

Functional Profiles Functional profiles define a template for functional blocks. A functional
block is a collection of network variables and configuration properties
designed to perform a single function on a device.

Each functional profile can define mandatory and optional network
variables and configuration properties, which are collectively known as
mandatory and optional member network variables and configuration
properties. When a functional block implements a functional profile, it
must implement all mandatory member network variables and member
configuration properties defined by the functional profile, and it may
implement some, all, or none of the optional member network variables
and member configuration properties.

Functional profiles are defined in a resource file with a .fpt extension.
Functional profiles are also called functional profile templates. Functional
blocks are implementations of functional profiles, and are formerly known
as LonMark objects.

Enumerations An enumeration type is a list of integral constants that are each associated
with a mnemonic name. If a network variable or configuration property
type contains an enumeration, the definitions of the enumerated values are
maintained separately as an enumeration type.

Enumeration types are defined in a resource file with a .typ extension
(along with network variable and configuration property types).
C-language definitions of enumerations are also automatically generated
in C-language header files (.h extension), which can be used to publish the
enumeration type to the Neuron C compiler.

Language Files Network variable types, configuration property types, functional profiles,
and enumeration types can all reference text information used to describe
their name, units, and function. This text information is contained in
separate language files. There is one language file for every language
your resource file set supports. When a language file is translated, the
references contained in the network variable types, configuration property
types, and functional profiles still point to the appropriate strings. The file
extension of each language file depends on the language, and is one of the
following values:

Language File Extension
Czech “csy”
Danish “dan”
Dutch (Belgian) “nlb”
Dutch (default) “nld”
English (UK) “eng”
English (US) “enu”
Finnish “fin”
French (Belgian) “frb”
French (Canadian) “frc”
French (default) “fra”
French (Swiss) “frs”
German (Austrian) “dea”
German (default) “deu”
German (Swiss) “des”
Greek “ell”
Hungarian “hun”
Icelandic “isl”

IzoT NodeBuilder User's Guide 129

Resource Description

Italian (default) “ita”
Italian (Swiss) “its”
Norwegian (Bokmal) “nor”
Polish “plk”
Portuguese (Brazilian) “ptb”
Portuguese (default) “ptg”
Russian “rus”
Slovak “sky”
Spanish (default) “esp”
Spanish (Mexican) “esm”
Swedish “sve”
Formats Each network variable and configuration property type must have at least

one format defined. This format describes how the value will appear when
using text-oriented visualization tools such as the LonMaker Browser. It
is possible to define multiple formats for a network variable type or
configuration property type. Different formats can provide the
information in a different order (if the value is a structure) or provide a
different scaling factor (for example, the SNVT_temp_f network variable
type has three formats, one for Fahrenheit, one for differential Fahrenheit,
and one for Celsius). Formats are defined in format files with a .fmt
extension.

Using the NodeBuilder Resource Editor

You can use the NodeBuilder Resource Editor to create, modify, and view resources. The resource
editor is a standalone application that you can start from the NodeBuilder Project Manager, or start
independently from the Echelon NodeBuilder program folder. You can start the NodeBuilder
Resource Editor by one of the following methods:

e Click Start on the taskbar, point to Programs, point to Echelon NodeBuilder, and then select
NodeBuilder Resource Editor.

e From the NodeBuilder Project Manager, click Tools and then click NodeBuilder Resource
Editor.

Note: If you are running the NodeBuilder Code Wizard, the Resource pane provides the full
functionality of the NodeBuilder Resource Editor.

For more information on using the NodeBuilder Resource Editor, see the NodeBuilder Resource Editor
User’s Guide.

Using the Program Interface Pane

The Program Interface pane lists all the functional blocks, network variables, and configuration
properties currently in the device interface. After you create a new device template, the Program
Interface pane includes a tree view that has a device template object (s&) with three folders listed
underneath it: Functional Blocks, Network Variables, and Configuration Properties.

CALmsSource
=& MyNewDeviceTemplate
=1-[_7 Functional Blocks
+ 0 MNodeOhbject
L Metwork Yariables
D Configuration Properties

130 Defining Device Interfaces and Creating their Neuron C Framework

e The Functional Blocks folder contains all the functional blocks contained in this device interface.

e The Network Variables folder contains all the device network variables for this device interface.
Device network variables belong to the device and therefore are not contained in any functional
block. You can use device network variables to create a portion of your device interface for
proprietary or legacy information.

e The Configuration Properties folder contains all device configuration properties for this device
interface. Device configuration properties belong to the device and therefore are not contained in
any functional block. You can use device configuration properties to create a portion of your
device interface for proprietary or legacy information.

If you use device network variables or device configuration properties in your
device interface, your device will not comply with interoperability guidelines version
3.4 (or better) and therefore cannot be certified by LONMARK.

A better alternative for adding members to a functional profile is to create a user-defined functional
profile template (UFPT) that inherits from an existing standard functional profile template (SFPT), and
then add new mandatory or optional member network variables to the UFPT. This method results in a
new functional profile that you can easily reuse in new devices. See the NodeBuilder Resource Editor
User’s Guide for more information on creating new functional profiles.

You can right-click the device template to open a shortcut menu that has the following commands:

—| e MyMewDevice Template
=-[_1 Functional Blocks P Access Method 3
+ 0 ModeCbject v Use External FE Mame
[Metwork Yariables
a

Generate and Close
Configurakion Prop

Refresh Catalog

Propetties

CP Access Method Configuration properties may be accessed using read and write network
management commands, or they be accessed using the LONWORKS File
Transfer Protocol (FTP). Select this option to choose the configuration
property access method: Direct Memory Read/Write (recommended)
or File Transfer Protocol.

e Direct Memory Read/Write. This method requires less space and
code on the target device. This is the recommended option and the
default. When this option is selected, the Code Wizard
automatically implements the Node Object functional block’s
optional nvoFileDirectory network variable. The optional
nviFileReq, nviFilePos, and nvoFileStat network variables may
not be in the Node Object functional block when this option is
selected.

e File Transfer Protocol. When this option is selected, the Code
Wizard automatically implements the Node Object functional
block’s optional nviFileReq, nviFilePos, and nvoFileStat network
variables. The optional nvoFileDirectory network variable may
not be in the Node Object functional block when this option is
selected.

You can also select one of these options in the Configuration Property
Access Method box at the top of the user interface.

The NodeBuilder Code Wizard requires every device interface to
contain a Node Object functional block with nviRequest and nvoStatus

IzoT NodeBuilder User's Guide 131

network variables. The Node Object functional block is a standard
functional block that is used by network management tools to test and
manage the other functional blocks on your device and is also used to
report alarms generated by your device.

If you remove the Node Object functional block, the Code Wizard
cannot generate code for your device interface. See the LonMark
Application Interoperability Guidelines for more information about the

Node Object.

Use External FB If this option is enabled, the 1zoT Commissioning tool and other

Name network management tools use the functional block name set in the
Code Wizard (for example, Switch or LED). This option is enabled by
default.

If this option is disabled, network management tools use the functional
profile name (for example, SFPTopenLoopSensor or
SFPTopenLoopActuator).

Generate and Close Creates the Neuron C code framework for your device interface and
closes the NodeBuilder Code Wizard. You can also create the Neuron
C code by clicking the Generate and Close option in the upper
right-hand corner of the user interface.

To close the NodeBuilder Code Wizard without generating any code,
click the Close option in the upper right-hand corner of the user
interface.

Refresh Catalog Updates the Program Interface pane with any changes made to the
network variable types, configuration property types, or functional
profiles used by the device template that are listed in the Resource pane.

If you change the name of a network variable type, configuration
property type, or functional profile, it will be removed from the device
interface when the NodeBuilder Code Wizard is refreshed and must be
re-added.

You can also refresh an individual functional block or the device’s
Network Variables and Configuration Properties folders by
right-clicking on them and then clicking Refresh on the shortcut menu.

Properties Select this option to open the Device Template Properties dialog. You
can use this dialog to view the name, code template, and program ID of
the device template; view the number of functional blocks, network
variables, and configuration properties (both CPNVs and file CPs) in
the device interface; and view the configuration property access
method.

For new device interfaces created with the 1zoT NodeBuilder tool, you
can change the code template used for the device application in the
Framework Version property. See Using Code Wizard Templates later
in this chapter for more information.

You can add text to be included in the device’s self-documentation
string in the Self-Documentation box in this dialog. .

Defining the Device Interface

The device interface consists of the functional blocks, network variables, and configuration properties
that let your device communicate with other LONWORKS devices and allow it to be configured by
network tools.

132 Defining Device Interfaces and Creating their Neuron C Framework

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

A network variable defines an operational input or output for the device. The structure, range, units,
and format of the network variable are defined by a network variable type.

A configuration property specifies a configuration option for a network variable, a functional block, or
the entire device. The structure, range, units, and format of a configuration property are defined by a
configuration property type.

A functional block groups network variables and configuration properties that are related to a
particular function for the device. Each functional block is defined by a functional profile that
specifies the mandatory network variables and configuration properties that the functional block must
implement, and the optional network variables and configuration properties that the functional block
may implement. The functional profile also defines the behavior that the functional block must
implement.

Functional profiles, network variable types, and configuration property types are defined in resource
files. Resource files are grouped into resource file sets, where each set defines functional profiles,
network variable types, and configuration properties for a particular scope and program ID mask. The
I1zoT NodeBuilder tool includes a Standard resource file set, which defines many standard functional
profile templates (SFPTSs), standard network variable types (SNVTSs), and standard configuration
property types (SCPTs) that you can use for your device interface.

If you need additional functional profiles or types that are not defined in the standard resource file set,
you can create your own user-defined functional profiles (UFPTSs), user-defined network variable types
(UNVTSs), and user-defined configuration property types (UCPTs). For more information on resource
files, including how to create user-defined functional profiles and types, see the NodeBuilder Resource
Editor User’s Guide.

To define your device interface, you first determine the functional profiles to be implemented by your
device. To select the functional profiles to be implemented by your device, you first browse the SFPTs
in the standard resource file set in the Resource pane. LONMARK International publishes
documentation for some standard functional profiles, which details the behavior expected from each
functional block that implements a given functional profile. You can view these functional profile
documents on the LONMARK Web site at
http://www.lonmark.org/technical_resources/guidelines/functional_profiles.

Note: The following graphic shows the functional profiles sorted by index; by default, they are sorted
by name. To change how the functional profiles are sorted, right-click the resource catalog in the
Resource Pane, click Options on the shortcut menu, select By Index in the Sort By box, and then
click OK.

IzoT NodeBuilder User's Guide 133

http://www.lonmark.org/technical_resources/guidelines/functional_profiles

Device template

interface pane.

Resource pane:

Mame: hiyM ewDevice Template

Program ID: GFFD3ES0:3C:00:04:00

Configuration property access method

=

~

To insert a functional block, network variable, or configuration property, drag the corresponding iterm from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program

FProgram interface pane:

Generate and Close

Close

CALomwforkshT ypeshLdif. Cat

C:hLmiSource

Lo siLdrf.Cak
- CriLonwoarks\Tvpes
—|-@ STANDARD (Scope O: Standard)
+1-_1 MNetwork Yariable Types
+ D Configuration Property Types

=& MyMewDeviceTemplate
=1-[_] Functional Blocks
- 0 MNodeObject
[Z7 Metwork Yariables
[:] Configuration Properties

-1-[_1 Functional Profile Templates
+-%% SFPTnodeObject (0)

% SFPTopenLoopSensor (1)

% SFPTolosedloopSensar (2)

3 SFPTopenLoopActuator (3)

% SFPTelosedloopActuatar (4)

% SFPTeontroller (S)

% SFPTcalendar ()

% SFPTscheduler (7)

% SFPTisiManitarPaint ()

3 SFPTdatalogger (9)

% SFPTchannelMonitor (132)

% SFPTdeviceMoritor (136)

% SFPTchannelZontinuityMonitar (1373

% SFPTanaloglnput (5200

% SFPTanalogOutput (521)

% SFPTlightSensar (1010)

i CENTru e e f-——— FAnan

J-E-FH-EH-E-E-E-E-E-E-E-E - E - E

Each functional profile has a name and number that is unique for the scope of the resource file set.

The number is called the functional profile key or FPT key. If your device is a simple sensor or
actuator, you can use functional profiles 1-4: SFPTopenLoopSensor (1), SFPTclosedLoopSensor
(2), SFPTopenLoopActuator (3), or SFPTclosedLoopActuator (4). If your device is more complex,
you can browse the other SFPTs in the Standard resource file set for any suitable standard profiles
have been defined.

If you cannot find an SFPT that fits your device, you can define a user-defined functional profile
template (UFPT). You can create a UFPT from scratch, or you can create a UFPT that inherits from a
SFPT and then add network variables and configuration properties to the UFPT. See the NodeBuilder
Resource Editor User’s Guide for more information on creating UFPTSs.

After you determine the functional profiles that your device interface needs to implement, you do the
following to finish defining your device interface:

1. Add functional blocks.

2. Edit mandatory network variables.

3. Implement desired optional network variables.

4. Implement desired optional configuration properties.

If your device needs network variables or configuration properties that are not included in any
functional profile, you can create a UFPT that inherits from a SFPT as described in the NodeBuilder
Resource Editor User’s Guide. Alternatively, you can add implementation-specific network variables
and configuration properties to the device interface; however this is not recommended because your
device will not pass LONMARK certification.

134 Defining Device Interfaces and Creating their Neuron C Framework

Adding Functional Blocks

Functional blocks represent specific device functions. For example, a device could have four hardware
digital inputs, and digital would have its own functional block. To add a functional block to a device
template, follow these steps:

1. Drag the desired functional profile from the Resource Pane to the Functional Blocks folder in the
Program Interface pane. A new functional block with the same name as the functional profile
(without the SFPT or UFPT prefix, and truncated to 16 characters or less) is added to the device
interface.

For example, dragging a SFPTsccChilledCeiling functional profile to the Program Interface pane
creates a functional block named sccChilledCeilin. If you add more functional blocks from the
same functional profile without changing the default functional block name, an index is appended
to the name in order to maintain unique functional block names. The functional blocks are sorted
by name.

2. If you added a functional profile of the same type and scope as an existing one, a dialog opens and
prompts you whether you want to create a functional block array. Click Yes to create an array of
functional blocks. Click No to create a new functional block using the same functional profile.

ModeBuilder Code Wizard

b d an instance of a functional block with FPT index "2" and scope 07is already in use.
w‘(’ Do wou wish baimplement a funckional block array?

Yes Mo Zancel

If you have added a functional profile that has the same type and scope as two or more existing
functional profiles in the device template, the Existing Functional Block List dialog opens. To
create a functional block array or add the functional block to an existing array, select an existing
functional block for which an array is to be created or select an existing functional block array and
then click Yes. To create a new functional block using the same functional profile, click No.

Existing Functional Block List [|

Aninstance of a functional block with FPT
index ' and scope '0'is already in use.
Select the functional block name fram the
list ifyou wish to add it to the existing array
ortoimplement a functional block array,
and click "ves" to continue, ar click "Ma" if Cancel
vou wish to create a new instance ofthe
functional block.

(]
&

Mo

1

Switeh
Temperature

A functional block array is useful if your device contains two or more identical switches, lights,
dials, controllers, or other 1/0 components that will each have an identical external interface. In
addition, a functional block array saves code space and reduces the number of when clauses in
your code. See Using Large Functional Block Arrays for how to manage your device
application’s memory when you are implementing large functional block arrays.

Note: You can still create a functional block array after adding the functional block to the device
interface. To do this, right-click the new functional block in the Program Interface pane, and then
click Properties on the shortcut menu. The Functional Block Properties dialog opens. Select

IzoT NodeBuilder User's Guide 135

the Use Array checkbox, enter the number of functional blocks in the array in the Size box, and
then click OK.

3. Inthe Program Interface pane, right-click the new functional block and then select Rename on the
shortcut menu to change the name of the functional block. LNS network tools use this name is
used to identify the functional block. This name is not case sensitive; however, creating a
functional block, removing it, and then creating another functional block with different
capitalization can cause compilation problems, and is therefore not recommended.

Device termplate Configuration propetty access method
MNarme: MyMewDeviceTemplate o ‘ Generate and Close

Pragrarm 10 9F FD:3E:50:3C:00:04:00 i
Close ‘

To insert a functional block, netwaork variable, or configuration property, drag the caorresponding iterm from the
resource pane and drap it into the prograrm interface pane, or right-click on the desired element in the program
interface pane.

Resource pane: FProgram interface pane:
|E:\LonWorks\Types'\STANDAHD.fpt CALmASource
g CriLontorks' TypesiLdrf, Cat | |= . MyMewDeviceTemplate
-0 Ci\Lonworks| Types =1 Functional Blacks
=@ STANDARD (Scope 0: Standard) + 0 ModeObject
+-_7] Metwark Yariable Types BRI cpenlocpSensot
+-[_1 Configuration Property Types [0 Mebwark Yarishles Delete
=11 Functional Profile Templates [Z7 Configur ation Prope| [l

+

& SFPTnodeCbject (0}

% SFPTopenLoopSensar (1)
% SFPTclosedLoopSensar (2) Properties
% SFPTopenLoopAckuator (3)

% SFPTlosedLoopactuator (4)

% SFPTralendar (6)

% SFPTscheduler (7)

% SFPTisiMonitorPoint (5)

% SFPTdatalogger (90

% SFPTchannelMonitor (132)

% SFPTdeviceMonitor (136)

% SFPTchannelContinuityManitor (137)
% SFPTanalogInput (5200

% SFPTanalogCutput (5210

% SFPTlightSensar (1010}

% SFPTpressureSensar (10300

M CEMThy e T Cnmm e £ 0A T,

Refresh Catalog

B e e e e e e R e R e e Y e e e e e R e e e

Note: You can have the 1zoT Commissioning tool and other network management tools identify
the functional block by its functional profile name instead of the user-specified name. To do this,
right-click the device template in the Program Interface pane, and disable the Use External FB
Name option.

4. All the mandatory network variables and configuration properties specified by the functional
profile are automatically added to the Mandatory NVs and Mandatory CPs folders under the
functional block. These folders only exist only if the functional profile contains mandatory
network variables or configuration properties. Mandatory items can not be deleted from the
functional block. You can expand these folders to display the mandatory members in the
functional profile.

136 Defining Device Interfaces and Creating their Neuron C Framework

C:ALmASource

- ‘ MyMewDeviceTemplate
=-{_7 Functional Blocks

+ ModeObject
- Switch

=R | [Mandatory Mys
,5'%" rreoialue
[optional Mys
[optional CPs
[Implementation-specific Mys

[Implementation-specific CPs

5. If any of the mandatory network variables do not have a default type set by the functional profile
(for example, the nvoValue network variable in the openLoopSensor profile), you need to set the
network variable type. See Editing Mandatory Network Variables for more information on how to

do this and edit other network variable properties.

Alternatively, you can add a functional block directly from the Program Interface pane following these

steps:

1. Right-click the Functional Blocks folder in the Program Interface pane and click Add Functional

Block in the shortcut menu.

C:hLmhSource

- . My MewDeyviceTemplate

Modetbiect Add Functional Black

Swikch
L Metwork Yariables
D Configuration Properties

2. The Add Functional Block dialog opens.

Add Functional Block

Marme:

[~ Use array

Select resource type
+ Standard

" Userdefined

SFFT: |SFPTairvelocitySensor

Ok

Cancel

3. Inthe Select Resource Type box, select whether the functional block you are adding is based on a
Standard or User-Defined profile. If you select a User-Defined profile, select the Scope of the

functional profile.

IzoT NodeBuilder User's Guide

137

4. Inthe SFPT or UFPT property, select the desired functional profile template.
5. Inthe Name property, enter a name for your functional block.

6. To create a functional block array, select the Use Array checkbox, and then enter the number of
functional blocks in the array in the Size box. See Using Large Functional Block Arrays for how
to manage your device application’s memory when you are implementing large functional block
arrays.

7. Click OK.

8. Inthe Program Interface pane, set the network variable type for any mandatory network variables
that do not have a default type set by the functional profile.

Using Large Functional Block Arrays

Implementing member network variables that apply to a functional block array of x elements requires
one network variable per functional block array element for each member network variable.
Implementing a single member network variable will therefore require x network variables,
implemented as an array of x network variables. Most functional profiles specify more than one
mandatory network variable (m), and will require m*x network variables.

Devices based on Neuron chips that use version 16 firmware or greater (for example, the 5000 or 6000
Series chips) support up to 254 static network variables (this limit is subject to available system
resources and application requirements). Storage for network variable values is by default allocated to
the NEAR RAM segment. The NEAR RAM segment allows accessing these variables with the most
efficient code (smaller, faster) compared to linking those network variable values into on-chip or
off-chip FAR RAM segments. However, the Neuron Chip’s hardware architecture limits the NEAR
RAM segment to 256 bytes in total, shared among global application and system variables and network
variables.

Implementing very large functional block arrays, implementing smaller functional block arrays with
large numbers of member network variables, or generally implementing large numbers of functional
blocks (or network variables or application variables in general) will eventually exhaust the NEAR
RAM segment, and it will cause compiler or linker errors.

You will need to select variables for FAR RAM segments and NEAR RAM segments, respectively.
You will typically try to allocate the most frequently accessed and most time-critical ones into NEAR
RAM, permitting inherent limitations.

To change the allocation rules, double click a member network variable, then click Advanced in its
properties dialog, and select far to force a variable out of the NEAR RAM segment. See Chapter 8 of
the Neuron C Reference Guide for more information about using RAM in your Neuron C application.

Editing Mandatory Network Variables

When you add a functional block to your device interface, all the mandatory network variables
specified by the functional profile are automatically added to the Mandatory NVs folder under the
functional block. The functional profile provides defaults for all the properties of the network
variables; however, you can edit some of the properties. For example, you can set the network variable
type if the network variable does not have one set for it by the functional profile (for example, the
nvoSwitch member network variable in the openLoopSensor profile is defined using the placeholder
type SNVT_xxx), change the modifiers and messaging service used if the network variable is an
output network variable, set the initial value for the network variable when the device is reset, and set
the storage classes used by the network variable.

To edit a mandatory network variable, as well as optional and implementation-specific network
variables, follow these steps:

1. Double-click the network variable or right-click the network variable and select Properties from
the shortcut menu.

138 Defining Device Interfaces and Creating their Neuron C Framework

3.

2.

C:hLmhSource

= . MyMewDeviceTemplate
=1-_7 Functional Blocks
+ ModeCbject
- openLoopSensar
=1-[_7] Mandatary Mys
23—
[Optional Mys
[Optional cPs
[Implementat
[Implementat
[C1 Metwork Yariables
I:l onfiguration Properties

Renarne

Properties

The NV Properties dialog opens.

NV Properties

Marme: nvovalue

[~ Changeahle type

r o=

MY type: |

FPT member name: |n\fg\."a|ue

FPT rermber number: |1

Direction

Service type

£ * Unspecified

g ™ Acknowledged
™ Unacknowledyed
" Repeated

Maodifiers

' Maone Selfdocumentation (5d_string:

™ Synchronized

™ Polled

Initializer

Edit...

Edit the following properties:

IzoT NodeBuilder User's Guide

139

Name Displays the name of the network variable that will be used in the
I1zoT Commissioning tool and other network management tools. The
default name is the functional profile name.

You can change the name of the network variable. The name must be
unigue to the device, can contain up to 16 alphanumeric characters,
and must start with a letter. The name cannot contain spaces or the
following characters: \/: *? “ < >|.

You can also rename the network variable by right-clicking it in the
Program Interface pane and then clicking Rename on the shortcut

menu.
Array Element The Use Array check box indicates whether the functional block
Count containing the network variable is an array (selected if the functional

block has been implemented as an array; cleared otherwise). If the
functional block has been implemented as an array, the Size box
displays how many functional blocks are in the array.

This network variable will be implemented in each functional block in
the array. This information can be useful when determining how
many network variables have been created on the device. This field is
read-only.

Changeable Type Enables network integrators to change the type of this network
variable. This lets you create a network variable that can send or
receive different kinds of information, depending on how the device
is used. For example, a generic PID controller device can be
implemented using SNVT_temp_f as the initial type, but selecting
this check box enables a network integrator to change this network
variable type to a range of other types to allow the PID controller to
control, light, pressure, or other types.

This option is only available if the Has Changeable Interface option
was selected in the Standard Program ID Calculator, and if the
functional profile defines no specific type for the network variable.
See Specifying the Program ID in Chapter 5 for more information on
setting this option.

For more information on implementing changeable-type network
variables in your Neuron C code, see Using Changeable-Type
Network Variables in Chapter 7 and the Neuron C Programmer’s
Guide.

NV Type Displays the standard or user-defined type of the network variable.
For implementation-specific network variables, you can change the
network variable type; otherwise, this field is read-only.

FPT Member Name Displays the name of the network variable as specified in the
functional profile. For implementation-specific network variables,
you can change the member name; otherwise, this field is read-only.

FPT Member Displays the member number of the network variable as specified in

Number the functional profile. For implementation-specific network
variables, you can change the member number; otherwise, this field is
read-only.

Direction Displays the direction of the network variable as specified in the

functional profile (Input or Output). For implementation-specific
network variables, you can change the direction; otherwise, this field
is read-only.

140 Defining Device Interfaces and Creating their Neuron C Framework

Service Type Displays the service type used by the network variable to send
updates as specified in the functional profile (Unspecified,
Acknowledged, Repeated, or Unacknowledged). This property is
only available for output network variables.

You can change the service type for mandatory and optional output
network variables if the functional profile has not specified one, and
you can change the service type for implementation-specific output
network variables. The service types vary in reliability and resources
consumed:

e Unspecified. The network management tool or integrator will
determine which service type is used.

e Acknowledged. The sending device expects to receive
confirmation from the receiving device or devices that a network
variable update was delivered. The sending application is
notified when an update fails, but it is up to the developer of the
sending device to handle the notification in the device
application. While acknowledged service is very reliable, it can
create excessive message traffic, especially for large fan-out or
polled fan-in connections. When acknowledged messaging is
used, every receiving device has to return an acknowledgment.
Acknowledged messaging can be used with up to 63 receiving
devices, but an acknowledged message to 63 devices generates at
least 63 acknowledgements—more if any retries are required due
to lost acknowledgements.

Acknowledged service is the best choice for most network
variable connections due to its superior reliability and
performance.

e Unacknowledged. The sending device sends out the network
variable update only once and does not expect any confirmation
from the receiving device. This message service type consumes
the least amount of resources, but is the least reliable.

Unacknowledged service is often used with data that is frequently
repeated as part of the application’s algorithm, where the
occasional loss of an update might not be critical.

o Repeated. The sending device sends out a series of network
variable updates, but does not expect any confirmation from the
receiving device. Repeated service with three repeats has a
99.999% success rate in delivering messages. Repeated service
provides the same probability of message delivery as
acknowledged messaging with the same number of retries, with
significantly lower network overhead for large multicast fan-out
connections. For example, a repeated message with three retries
to 64 devices generates four packets on the network, whereas an
acknowledged message requires at least 64 packets. However,
the repeated message in this case does not allow for the backlog
estimation that an acknowledged message does.

IzoT NodeBuilder User's Guide 141

Modifiers Indicates whether the network variable uses the Synchronized or
Polled modifiers. This property is only available for output network
variables.

You can change the modifiers for mandatory and optional output
network variables if the functional profile has not specified them, and
you can change the modifiers for implementation-specific output
network variables. This property may be one of the following values.

e None. The network variable is neither synchronous nor polled.

e Synchronized. The device sends all output network variable
updates, and queues and processes all input network variable
updates. The size of the input and output queues is limited to the
size of the application buffer queues on the device, so you may
need to allocate additional buffer space on the device if you
select this option.

If the network variable is not synchronized, the device sends only
the most recent output network variable update if the device
application updates the output network variable multiple times
before the application leaves the current when-task. Similarly,
the device processes only the most recent input network variable
update if the device receives multiple updates before the device
application can process them.

Note that most network variables are not synchronized.

e Polled. Output network variable updates are sent only in
response to a poll request from a device that reads this network

variable.
Self-document Optionally, you can enter comments to be appended to the
(sd_string) self-documentation string for this network variable. This text can

provide additional notes that can be accessed from a network tool.

Network variable members of functional blocks use a standard
self-documentation format that is detailed in the LonMark Application
Layer Interoperability Guidelines. The Neuron C Compiler
automatically generates all required self-documentation information.

The total length of the self-documentation string can be up to 1024
characters, including the characters automatically generated by the
Neuron C Compiler, any external functional block names, a
semicolon to separate comments (if you enter comments in this box),
your comments themselves (and possibly including formatting
characters), and a terminating zero byte.

Initializer Optionally, you can set the value for the network variable when the
device is reset. If this network variable is a structure, union, float, or
enumeration, click Edit to open the Edit Initializer dialog and enter
the value or values. See Setting Initial Values for Network Variables
and Configuration Properties later in this chapter for more
information.

Note: Network variables are automatically reset to 0 during reset
processing (except for those declared with the optional eeprom
modifier and those implementing configuration properties); therefore,
they do not need to be explicitly initialized to 0.

142 Defining Device Interfaces and Creating their Neuron C Framework

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

4. Optionally, you can click Advanced to open the Advanced NV Properties dialog and further

specify the storage class u
large network variable arr

sed by the network variable. Consider a scenario where you declare a
ay that exceeds the limits of the near RAM segment, which is 256 bytes.

In this case, you need to move the network variable array to the far RAM segment by selecting the
far check box in this dialog. For more information on managing memory resources, see Chapter 8

of the Neuron C Program

mer’s Guide.

MY class

gualify the starage class.

[const

[~ eeprom

[far

[uninit

[Specify location
-

-

Connection information

Enter any additional bind_i

Metwork variahles constitute one ofthe storage
classes in Meuron C. Use these options to further

oK

Cancel

nfo options here:

You can set the following
NV Class

const

eeprom

IzoT NodeBuilder User's Guide

properties and then click OK to return to the NV Properties dialog:

You can specify the following storage classes for the network
variable.

The network variable is of const type. The Neuron C compiler will
not allow modifications of const type variables by the device’s
program. However, a const network input variable will still be placed
in modifiable memory and the value may change as a result of a
network variable update from another device. Selecting this class
disables the uninit keyword option.

When used with the declaration of a configuration network variable
(CPNV), the const storage class prevents both the Neuron C
application and network tools from writing to the CPNV. The
application may cast away the affects of the const type property to
implement device-specific configuration properties as configuration
network variables. However, the network variable will be placed in
modifiable memory; therefore, network variable connections may still
cause changes to such a configuration network variable.

The network variable is placed in EEPROM or flash memory instead
of RAM. All variables are placed in RAM by default. EEPROM and
flash memory is only appropriate for variables which change
infrequently because of the overhead and execution delays inherent in
writing such memory, and the limited number of writes for such

143

memory devices.

far The network variable is placed in the far section of the variable space.
By default, Neuron C variables are placed in the near RAM segment;
however, the near RAM segment is limited to 256 bytes.

Accessing data in near RAM is faster and requires less code space
than accessing data in far RAM. As a result, you may need to move
some application variables or network variables into far RAM to
make enough space in the near RAM segment for those variables that
are either frequently accessed in a time-critical section of code, or
accessed from many locations in your source code

The maximum size of near memory areas is 256 bytes of RAM and
255 bytes of EEPROM, but this may be less in some scenarios.

uninit Prevents compile-time initialization of network variables. This is
useful for eeprom variables that do not or should not be written by
program load or reload. Selecting this class disables the const option.

A different mechanism, subject to your network management tool, is
used to determine whether configuration properties (including
configuration network variables), will be initialized after loading or
commissioning the device. The uninit keyword cannot be used to
prevent configuration network variables from being initialized by the
network management tool. See your network tool’s documentation
for details.

Specify Location Select this check box to place the network variable in the off-chip
portion or on-chip portion of the variable space, and then select one of
the following options:

e Offchip. This keyword places the variable in the off-chip
portion of the variable space. By default, the linker places
variables in either space as it chooses, depending on availability.
If the requested memory is not available, the link fails.

e Onchip. This keyword places the variable in the on-chip portion
of the variable space. By default, the linker places variables in
either space as it chooses, depending on availability. If the
requested memory is not available, the link fails.

Connection You can specify the Neuron C bind_info options. These options

Information allow you to specify default connection information for this network
variable (priority, authentication, service type, rate). For example,
entering authenticated(config) priority(config) in this box generates
the following line of code:

network <direction> <NV type> bind_info
(authenticated(config) priority(config))

This is only required for bind_info options that are not handled by
the NV Properties dialog. For example ackd, unackd, and
unackd_rpt options are already handled by the NV Properties
dialog.

Network management tools such as the 1zoT Commissioning tool can
override these settings. See the Neuron C Reference Guide for more
information.

If you define a network variable to use priority, the device containing

144 Defining Device Interfaces and Creating their Neuron C Framework

the network variable must have priority enabled when it is installed.
To enable priority on a device installed in a LonMaker network, right
click the device, click Properties on the shortcut menu, select the
Advanced Properties tab and then set the priority to Enable -
Automatic or Enable - Manual. If you set the priority to Enable -
Manual, you must also set the priority slot. Setting the priority to
Disable disables priority.

5. Click OK.
Editing Mandatory Configuration Properties

When you add a functional block to your device interface, all the mandatory configuration properties
specified by the functional profile are automatically added to the Mandatory CPs folder under the
functional block. The functional profile provides defaults for all the properties of the configuration
properties; however, you can edit some of the properties. For example, you can implement the
configuration property as an array (if allowed by the functional profile), set the configuration property
flags, change how the configuration property is implemented (configuration network variable [CPNV]
or configuration file [file CP]), and set the initial value for the configuration property after the device
application has been downloaded to the device and the device has been reset.

To edit a mandatory configuration property, as well as optional and implementation-specific
configuration properties, follow these steps:

1. Double-click the configuration property or right-click the configuration property and select
Properties from the shortcut menu.

C:ALmhSource
= ’ MyMewDeviceTemplate
-1-_1 Functional Blocks
- 0 heatPump
+-[_] Mandataory Mys
[Optional Mys
=1-[_] Mandatary CPs

ncisndHrkBE
ncilempaetpks

[optional CPs
[Implementation-sp
[Implementation-sp
+ ModeObject
+ openLoopSensor
[_ Metwork Yariables
D Configuration Properties

Rename

Properties

2. The CP Properties dialog opens.

IzoT NodeBuilder User's Guide 145

Add CP To Functional Block 3

Mame:

0K

Cancel
[Implement as CP array

Select regource type

il

&+ Standard
~

|]
|

SGPT: |SCPTactFuDIy |

Restriction flags
[device_specific_fla (Always read value from the device)
mfg_flg { Modify only during manufacture)
reset_flg (Reset after modifying)
offline_flg {Put offline before modifying)
const_flg {value is never changed)
[ohj_disabl_flg {Disahle functional hlock before modifying)

-
-
-
=

Implement as
[~ Configuration netwoark variable

Initializer

Edit...

Applies to

* Functional Block

" Metwork Variable

3. Edit the following properties:

Name Displays the name of the configuration property that will be used in
the 1zoT Commissioning tool and other network management tools.
The default name is the functional profile name.

You can change the name of the configuration property. The name
must be unique to the device, can contain up to 16 alphanumeric
characters, and must start with a letter. The nhame cannot contain
spaces or the following characters: \/: *? “ <> |.

You can also rename the configuration property by right-clicking it in
the Program Interface pane and then clicking Rename on the shortcut

menu.
Array Element A functional profile may require a configuration property to be
Count implemented as an array and may enforce a minimum and maximum

array size, or a functional profile may give you the option to
implement the configuration property as an array and let you set the
number of configuration properties in the array. If the functional
profile template defines whether this configuration property must be
implemented as an array or as a single configuration property, the

146 Defining Device Interfaces and Creating their Neuron C Framework

Implement as CP Array check box is set appropriately and
unavailable.

If the functional profile template does not define how this
configuration property must be implemented or if this is an
implementation-specific configuration property, you have the option
to configure the configuration property as an array or as a single
configuration property.

To implement this configuration property as an array, select the
Implement as CP Array check box (for configuration properties
implemented as configuration files) or Use Array check box (for
configuration properties implemented as configuration network
variables [CPNVs]), and then specify the number of elements in the
array in the Size box.

An array has a minimum size of 2 elements, and a maximum size of
65,500 bytes. The array size is limited by the amount of available
persistent, modifiable, memory in the device. A linker error will
occur if the specified array size exceeds the device’s resources.

Note: Configuration property arrays implemented as configuration
network variables (CPNVs) are subject to the same limitations as
network variables. Specifically, Neuron C applications are limited to
62 or 254 static network variables. In the case of a configuration
property array implemented as CPNVs, each element in the array
counts as one network variable.

See the Neuron C Programmer’s Guide and Neuron C Reference
Guide for more information about implementing configuration
property arrays.

CP Type Displays the standard or user-defined type of the configuration
property. This field is read-only.

FPT Member Name Displays the name of the configuration property as specified in the
functional profile. This field is read-only. For
implementation-specific network variables, this field is empty.

Restriction Flags You can set the one or more of the following configuration property
flags. Network tools are responsible for checking these flags and
handling configuration properties appropriately.

e device_specific_flg. Specifies that the configuration property
should always be read from the device, never from the LNS
database. An example use of this flag is for the device’s minor
version number. The minor version would be part of the
application image download so network tools could check the
version that was loaded into the device.

o mfg_flg. Specifies that the configuration property should be
modified only at manufacture time. Installation tools should not
modify this configuration property unless they are being used for
manufacturing. An example is a configuration property used to
hold calibration data.

o reset flg. Specifies that the device should be reset after the
configuration property is modified in order for the application to
work properly.

o offline_flg. Specifies that the configuration property should be

IzoT NodeBuilder User's Guide 147

modified only when the device has been set offline by a network
tool such as the 1zoT Commissioning tool. Do not set this option
if you are using FTP to transfer configuration properties because
devices must be online to run the file transfer protocol.

e const_flg. Specifies that the configuration property should be
considered read-only. It must not be written. It might be stored
in ROM. An example of this kind of property is the device major
version number.

e obj_disabl_flg. Specifies that the configuration property should
only be modified when the functional block has been disabled by
a network tool such as the 1zoT Commissioning tool. The
application will have a chance to initialize the functional block
when the network management tool enables it.

Note: The reset_flg, offline_flg, and obj_disabl_flag flags comprise
a hierarchy, where the reset_flg has the highest precedence and the
obj_disabl_flag flag has the lowest.

For example, if you specify the offline_flg flag for a configuration
property, the device will be set offline, but other steps or
configuration property updates occurring at the same time might also
require that the device be reset.

Similarly, the offline_flg flag, which applies to devices, has a higher
precedence than the obj_disabl_flag, which applies to functional
blocks. As aresult, if you specify the offline_flg flag, it is expected
that the device is offline or the functional block is disabled.

Implement As You can specify the following implementation options for the
configuration property.

Configuration Enables you to read, write, and bind the configuration property like a

Network Variable network variable. If this check box is cleared, the configuration

property is implemented as a configuration file (file CP). This check
box is cleared by default.

Note that CPNVs are have the following limitations: (1) they must be
based on network variable types and must meet the target platform’s
network variable size limit (228 bytes starting with version 21
firmware, 31 bytes with earlier versions); and (2) if the CPNV is
implemented as an array that applies to multiple functional blocks or
network variables, the CPNV array must always be shared statically
or globally. It is therefore recommended that you only use CPNVs if
your application requires configuration properties that must be bound
or if you are adding a SCPTnwrkCnfg configuration property.

Static CP Creates a single configuration property that is shared by all the
functional blocks in a functional block array. Sharing configuration
properties can simplify device configuration by reducing the number
of configuration properties that must be set by an integrator, and can
also reduce the memory required for the device application.

This property is only available if the configuration property is in a
functional block array. Modifying the value of the configuration
property on any functional block in the array modifies it for all of
them (only one variable is allocated).

If this check box is cleared, a separate configuration property is
created for each functional block in the array. This check box is

148 Defining Device Interfaces and Creating their Neuron C Framework

cleared by default.

Initializer Optionally, you can set the value for the network variable when the
device is reset. If this network variable is a structure, union, float, or
enumeration, click Edit to open the Edit Initializer dialog and enter
the value or values. See Setting Initial Values for Network Variables
and Configuration Properties later in this chapter for more
information.

Note: Configuration properties have default values that are defined in
resource files. Default values are included in the definition of the
configuration property type, in the definition of the functional
profile’s member configuration property (an optional initial value
override), and possibly in the definition of an inherited functional
profile. The Neuron C compiler will automatically initialize the
configuration property to its defined default value.

Therefore, you can explicitly set the initial value or the configuration
property; however, it is recommended that you use the default values
defined in the resource file, if possible.

Applies to Select whether the configuration property is applied to a network
variable, a functional block, or the device as a whole. This is called
global configuration property sharing.

o If this is an implementation-specific configuration property, you
can apply it to the functional block or to any of the network
variables on the functional block (any network variable in any of
the Mandatory NVs, Optional NVs, or Implementation-specific
NVs folders).

e Ifthis is a device configuration property (a configuration
property that you added to the Configuration Properties folder of
a device), the configuration property can be applied to the device
or to any of the network variables in the Network Variables
folder.

Adding a Shared Configuration Property

To apply a configuration property to a functional block or network
variable, follow these steps:

1. If another configuration property with the same type, array
size, Implement As setting, and Applies To setting exists on
the device, it will appear in Applies To property under
Network Variables or Functional Blocks.

2. Select the Functional Block or Network Variable option.

3. Select one or more of the items from the Network Variables
or Functional Blocks list and click the right arrow button to
move the selected functional block or network variable to the
Selected Network Variables or Selected Functional
Blocks list.

The network variable that the originally selected
configuration property applied to will appear in bold gray
text to indicate that it is the root configuration property and
cannot be removed from the list of shared configuration
properties. You can remove any of the other configuration
properties.

IzoT NodeBuilder User's Guide 149

4. If you have shared two mandatory or optional configuration
properties or if you have shared two implementation-specific
configuration properties from a different functional block,
they will appear in the Program Interface pane with the same
configuration property name in their respective folders.

If you share an implementation-specific configuration
property with an optional or mandatory configuration
property within the same functional block, the
implementation-specific configuration property will be
removed from the Program Interface pane.

For example, if you are creating a configuration property that
applies to both a nvoCO2ppm1 network variable on a
co2Sensorl functional block and a nvoCO2ppm2 network
variable on a co2Sensor2 functional block; the Neuron C
expression co2Sensorl: :nvoC02ppml: :cpValue
== co2Sensor2: :nvoC02ppm2: : cpValue will
always be true because these two expressions are two
different names for the same configuration property.

Note: When using the LonMaker Browser or an LNS Plug-in to
update a shared configuration property, the display may not
automatically update the other shared configuration properties. You
can force the Browser to update its display by opening the Browse
menu and selecting Refresh All. Refreshing an LNS Plug-in display
is plug-in specific.

Removing a Shared Configuration Property

To remove a shared configuration property, select the configuration
property to be removed, and then click the left arrow button. The
configuration property originally selected in the Code Wizard will be
shown in bold gray text and cannot be removed through this dialog.
To remove the configuration property that is shown in bold gray,
close the CP Properties dialog and re-open it for one of the
configuration properties that is to remain.

Each configuration property that is removed from the Selected
Network Variables or Selected Functional Blocks list will be
implemented as a separate, non-shared configuration property.

Configuration Property Sharing Rules

The following rules apply to using global configuration property
sharing:

e A configuration property can only be shared between multiple
network variables, or between multiple functional blocks, but not
between a combination of network variables and functional
blocks at the same time.

e All configuration property types can be shared.

e A configuration property that applies to the entire device cannot
be shared.

e Multiple functional blocks or network variables can share a
configuration property. A shared configuration property can
apply to multiple singular functional blocks or network variables,
a functional block or network variable array, a number of

150 Defining Device Interfaces and Creating their Neuron C Framework

functional block or network variable arrays, or any combination
thereof.

e A configuration property that is shared among the members of a
functional block or network variable array must always be shared
among all members of that array.

e A configuration property can be shared between network
variables on different functional blocks.

e A configuration property that inherits its type from a network
variable can only be shared between network variables that are
all of the same type. Therefore, all changeable type network
variables that share an inheriting configuration property must
also share an instantiation of SCPTnvType so that the set of
changeable network variables will always have the same, single
type and so that type changes occur at the same time.

e Two (or more) mandatory functional profile template
configuration properties can be implemented using a single,
shared, configuration property provided the shared configuration
property meets the requirements of all individually listed FPT
members (for example, same type, same array size, and so on).

e Asingle configuration property that inherits its type from a
network variable cannot be shared simultaneously by both
changeable and non-changeable network variables.

e Configuration property arrays that are implemented as arrays of
configuration network variables and that apply to a functional
block array or to a network variable array must be shared.

5. Click OK.

Implementing Optional Network Variables

Functional profiles specify mandatory network variables that must be implemented by any
implementation of the profile, and they also specify optional network variables that may be
implemented but are not required. When a functional profile is added to the device interface in the
NodeBuilder Code Wizard, the wizard adds all the mandatory members of the functional profile to the
device interface, but it does not add any of the optional members. To implement an optional network
variable on a functional block, follow these steps:

1. Right-click the Optional NVs folder for the functional block in the Program Interface pane and
select Implement Optional NV from the shortcut menu.

IzoT NodeBuilder User's Guide 151

152

C:hLmhSource

= ‘ My MewDeviceTemplate
=-[_7 Functional Blocks

+ ModeChject
= Swikch

=1-[_ Mandataory Mys
mwoialue
3

[optional CPs
[Implementation-specific Mys
[Implementation-specific CPs
[metwork variables
D Configuration Properties

Implement Optional My

Alternatively, you can drag a network variable from the functional profile’s Optional NVs folder
in the Resource pane to the functional block’s Optional NVs folder in the Program Interface pane.
If a functional profile does not have any optional network variables defined, it does not have an
Optional NVs folder.

The Implement Optional NV dialog opens.

Implement Optional NV

MNarme: nviPresetFb

r o=

Select optional KV to be implemented:

Cancel

Type: | SHYT_preset

FPT member name: |nviPreseth j
FPT member numhber: | 2

Direction: | Input

Service type: | Mot specified

Maodifiers: |N0ne

Selt-documentation
{sd_string):

Initializer: Edit...

In the FPT Member Name property, select the optional network variable from the list of those
that have not yet been implemented in this functional block.

In the Name property, enter the name of the optional network variable that will be displayed in the
1zoT Commissioning tool and other network management tools. The default name is the
functional profile name. This name must be unique to the device, can contain up to 16
alphanumeric characters, and must start with a letter.

Defining Device Interfaces and Creating their Neuron C Framework

The name cannot contain spaces or the following characters: \/: *? “ <> |.

5. The Use Array check box in the Array Element Count box is a read-only property that indicates
whether the optional network variable is implemented as a single network variable (the check box
is cleared), or as an array of network variables that applies to an array of functional blocks (the
check box is selected). If the optional network variable is implemented as an array of network
variables, the Size box displays the number of elements in the functional block array, which is also
the same number of elements that are in the network variable array (this enables one network
variable to be allocated to each member of the functional block array).

6. Optionally, in the Self-Documentation (sd_string) property, you can enter comments to be
appended to the self-documentation string for this network variable. This text can provide
additional notes that can be accessed from a network tool.

7. Optionally, in the Initializer property, you can set the value for the network variable when the
device is reset. If this network variable is a structure, union, float, or enumeration, click the box to
the right to open the Edit Initializer dialog and enter the value or values. See Setting Initial
Values for Network Variables and Configuration Propertieslater in this chapter for more
information.

8. Click OK. The optional network variable is added to the Optional NVs folder.

Note: After you create the optional network variable, you can edit its properties following the steps
described in Editing Mandatory Network Variables earlier in this chapter. For example, you may want
to change the modifiers and messaging service used if the network variable is an output network
variable, or you may want to set the storage classes used by the network variable.

Implementing Optional Configuration Properties

A functional profile specifies mandatory configuration properties that must be implemented by any
implementation of the profile, and they may also specify optional configuration properties that may be
implemented but are not required. When a functional profile is added to the device interface in the
NodeBuilder Code Wizard, the wizard adds all the mandatory members of the functional profile to the
device interface but does not add any of the optional members. To implement an optional
configuration property, follow these steps:

1. Right-click the Optional CPs folder for the functional block in the Program Interface pane and
select Implement Optional CP from the shortcut menu.

C:hLmhSourze

= ‘ My MewDeviceTemplate
—-[7 Functional Blocks

+ Modedbject
= Switch

=1-_7 Mandataory Mys

E’ rvoialue

—1-_7 Optional Mys
nviPresetFb
|

[Implementat .
[Implementation-specific CPs
[Metwork Yariables
D Configuration Properties

Implernent COptional CP

Alternatively, you can drag a configuration property from the functional profile’s Optional CPs
folder in the Resource pane to the functional block’s Optional CPs folder in the Program
Interface pane. If a functional profile does not have any optional configuration properties defined,
it does not have an Optional CPs folder.

2. The Implement Optional CP dialog opens.

IzoT NodeBuilder User's Guide 153

154

3.

Marne: |nciAIarmCIearT1 oK

Cancel

-
Select aptional CP to be implemented
Type: ‘ SCPTalmCIT
FPT member name: ‘nchIarmCIear‘H j

Restriction flags
[~ device_specific_flg (Always read value fram the device)
[~ mfo_fla {Madify only during manufacture)
[~ reset_flo (Reset after modifying)
[~ offine_flg (Put offline before modifying)
[™ const_fla (Yalueis never changed)
[obj_digabl_fla {Disable functional block befare modifying)

Implement as
[Configuration netwark variable

Initializer

Edit..

In the FPT Member Name property, select the optional configuration property from the list of
those that have not yet been implemented in this functional block.

In the Name property, enter the name of the optional configuration property that will be displayed
in the 1zoT Commissioning tool and other network management tools. The default name is the
functional profile name. This name must be unique to the device, can contain up to 16
alphanumeric characters, and must start with a letter. The name cannot contain spaces or the
following characters: \/: *? “ < >|.

To implement this configuration property as an array, select the Implement as CP Array check
box (for configuration properties implemented as configuration files) or Use Array check box (for
configuration properties implemented as configuration network variables [CPNVs]), and then
specify the number of elements in the array in the Size box.

A functional profile may require a configuration property to be implemented as an array and may
enforce a minimum and maximum array size, or a functional profile may give you the option to
implement the configuration property as an array and let you set the number of configuration
properties in the array. If the functional profile template defines whether this configuration
property must be implemented as an array or as a single configuration property, the Implement as
CP Array check box is set appropriately and unavailable.

If the functional profile template does not define how this configuration property must be
implemented, you have the option to configure the configuration property as an array or as a single
configuration property.

An array has a minimum size of 2 elements, and a maximum size of 65,500 bytes. The array size
is limited by the amount of available persistent, modifiable, memory in the device. A linker error
will occur if the specified array size exceeds the device’s resources.

Note: Configuration property arrays implemented as configuration network variables (CPNVs)
are subject to the same limitations as network variables. Specifically, Neuron C applications are
limited to 62 or 254 static network variables. In the case of a configuration property array
implemented as CPNVs, each element in the array counts as one network variable.

Defining Device Interfaces and Creating their Neuron C Framework

See the Neuron C Programmer’s Guide and Neuron C Reference Guide for more information
about implementing configuration property arrays.

6. Inthe Restriction Flags box, you can set configuration property flags that network tools must
check in order to handle the configuration property appropriately. See Editing Mandatory
Configuration Properties earlier in this chapter for more information on these flags.

7. Toimplement the configuration property as a configuration network variable (CPNV), select the
Configuration Network Variable check box. This enables you to read, write, and bind the
configuration property like a network variable. If this check box is cleared, the configuration
property is implemented as a configuration file. This check box is cleared by default.

Note: CPNVs are have the following limitations: (1) they must be based on network variable
types and must meet the target platform’s network variable size limit (228 bytes starting with
version 21 firmware, 31 bytes with earlier versions); and (2) if the CPNV is implemented as an
array that applies to multiple functional blocks or network variables, the CPNV array must always
be shared statically or globally. It is therefore recommended that you only use CPNVs if your
application requires configuration properties that must be bound or if you are adding a
SCPTnwrkCnfg configuration property.

8. Optionally, in the Initializer property, you can set the value for the configuration property that
will be stored in the LNS network database and set the first time the device is reset after the device
application has been downloaded to the device. If this configuration property is a structure, union,
float, or enumeration, click the box to the right to open the Edit Initializer dialog and enter the
value or values. See Setting Initial Values for Network Variables and Configuration Properties
later in this chapter for more information.

9. If the configuration property is member of a functional block array, you can select the Static CP
check box to create a single configuration property that is shared by all the functional blocks in the
array (this is called static configuration property sharing). Modifying the value of the
configuration property on any functional block in the array modifies it for all of them (only one
variable is allocated). If this check box is cleared, a separate configuration property is created for
each functional block in the array. This check box is cleared by default.

10. Click OK. The optional configuration property is added to the Optional CPs folder.

Note: After you create the optional configuration property, you can edit its properties following the
steps described in Editing Mandatory Configuration Properties earlier in this chapter. For example,
you may want to change the configuration property flags, or change how the configuration property is
implemented (configuration network variable [CPNV] or configuration file [file CP]).

Adding Implementation-specific Network Variables

You can add a network variable member to a functional block or device that is not defined by any
functional profile. This is called an implementation-specific network variable.
Implementation-specific network variables should be avoided as part of a device’s interoperable
interface because they are not documented by a functional profile.

WARNING: If you use implementation-specific network variables in your device
interface, your device will not comply with interoperability guidelines version 3.4
(or better) and therefore cannot be certified by LONMARK.

A better alternative for adding members to a functional profile is to create a user-defined functional
profile template (UFPT) that inherits from an existing standard functional profile template (SFPT), and
then add new mandatory or optional member network variables to the UFPT. This method results in a
new functional profile that you can easily reuse in new devices. See the NodeBuilder Resource Editor
User’s Guide for more information on creating new functional profiles.

In order to add an implementation-specific network variable to a functional block, the scope of the
network variable type must be less than or equal to the scope of the functional profile upon which the

IzoT NodeBuilder User's Guide 155

156

functional block is based. For example, a UNVT could not be added to a SFPT, but a SNVT may be
added to a UFPT.

To add an implementation-specific network variable to a functional block, follow these steps:

1. Right-click the Implementation-specific NVs folder for the functional block in the Program
Interface pane and then click Add NV on the shortcut menu.

C:hLmhSourze

- . My MewDevice Templake
=-_7 Functional Blocks

+ ModeChject
= Swikch

+-[_ 7] Mandataory Mys
+-[_ 7 Optional Mys
[Optional CPs
v | Implementation-specific WS = =
[Implementation-sperific CF |
[Metwork Yariables
D Configuration Properties

Alternatively, you can right-click the Network Variables folder in the Program Interface pane and
select Add NV from the shortcut menu, or you can drag a network variable from a Network
Variables folder in the Resource pane to the functional block’s Implementation-specific NVs
folder or the Network Variables folder in the Program Interface pane.

2. The Add NV to Functional Block dialog opens (or Add NV to Device dialog if you are adding

the network variable to the device folder).

Defining Device Interfaces and Creating their Neuron C Framework

Cancel
- 3

Mame:

=

Selact resource type
(+ Standard
r

| [
|

SMYT: |SMVT_abs_humid =

Direction Service type
& Input v

" Dutput o
r~
~
Modifiers
{=

~
-

Selt-documentation (sd_string):

Initializer

Edit...

3. Inthe Name property, enter a name for the network variable as it will appear in the 1zoT
Commissioning tool and other network management tools. This name must be unique to the
device, can contain up to 16 alphanumeric characters, and must start with a letter. The name
cannot contain spaces or the following characters: \/: * ? “ < >|. The default name is nvValue.

4. If your device has a changeable interface (it has network variables with changeable types, or it
supports dynamic network variables), you can select the Has Changeable Interface check box so
that network integrators can change the network variable’s type. This option is only available if
you selected the Has Changeable Interface check box when defining the device’s program ID in
the Standard Program ID Calculator (see Specifying the Program ID in Chapter 5 for more
information). This check box is cleared by default.

Selecting this option lets you create a network variable that can send or receive different kinds of
information, depending on how the device is used. For example, you can implement a generic
PID controller device using a SNVT_temp_f as the initial type, and then let a network integrator
change the SNVT_temp_f network variable to a range of other types so that the PID controller
can control light, pressure, or other types.

5. Inthe Select Resource Type box, select whether the network variable you are adding is based on
a Standard or User-Defined type. If you select a User-Defined type, select the Scope of the
functional profile containing the network variable type. To use a User-Defined type, you must
first add the resource file containing the UNVT to the resource catalog as described in the
NodeBuilder Resource Editor User’s Guide.

6. Inthe SNVT or UNVT property, select the network variable to be added to the functional block or
device from the list.

IzoT NodeBuilder User's Guide 157

If you are selecting a UNVT, the list contains all the UNVTs in resource files of the scope
specified in the Scope field that match the program ID template to the degree specified by the
scope. The network variable’s type must have a scope that is equal to or lower then the scope of
the functional profile upon which the functional block is based.

7. Inthe Direction property, select whether you are adding an Input or Output network variable.

8. If you are creating an Output network variable, select the messaging service type to be used for
transmitting updates for this output network variable in the Service Type box. You have four
choices: Unspecified, Acknowledged, Unacknowledged, or Repeated. See Editing Mandatory
Network Variables earlier in this chapter for more information about these different service types.

9. If you are creating an Output network variable, you can make the output network variable
Synchronized or Polled in the Modifiers box. See Editing Mandatory Network Variables earlier
in this chapter for more information about these modifiers.

10. Optionally, in the Self-Documentation (sd_string) property, you can enter comments to be
appended to the self-documentation string for this network variable. Network variable members
of functional blocks use a standard self-documentation format that is detailed in the LonMark
Application Layer Interoperability Guidelines. The Neuron C Compiler automatically generates
all required self-documentation information. This property can be used to provide additional notes
that can be accessed from a network tool.

11. Optionally, in the Initializer property, you can set the value for the network variable when the
device is reset. If this network variable is a structure, enumeration, or float, click the box to the
right to open the Edit Initializer dialog and enter the value or values. See Setting Initial Values
for Network Variables and Configuration Properties later in this chapter for more information.

12. Click OK. The implementation-specific network variable is added to the
Implementation-specific NVs folder.

Adding Implementation-specific Configuration Properties

You can add a configuration property to a functional block or device that is not defined by the
functional profile. This is called an implementation-specific configuration property.
Implementation-specific configuration properties should be avoided as part of a device’s interoperable
interface since they are not documented by a functional profile.

WARNING: If you use implementation-specific configuration properties in your
device interface, your device will not comply with interoperability guidelines version
3.4 (or better) and therefore cannot be certified by LONMARK.

A better alternative for adding members to a functional profile is to create a user-defined functional
profile template (UFPT) that inherits from an existing standard functional profile template (SFPT), and
then add new mandatory or optional member configuration properties to the UFPT. This method
results in a new functional profile that you can easily reuse in new devices. See the NodeBuilder
Resource Editor User’s Guide for more information on creating new functional profiles.

In order to add an implementation-specific configuration property to a functional block, the scope of
the configuration property type must be less than or equal to the scope of the functional profile upon
which the functional block is based. For example, a UCPT could not be added to a SFPT, but a SCPT
may be added to a UFPT.

To add an implementation-specific configuration property to a functional block or device, follow these
steps:

1. Right-click the Implementation-specific CPs folder for the functional block in the Program
Interface pane and then click Add CP on the shortcut menu.

158 Defining Device Interfaces and Creating their Neuron C Framework

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

C:hLmhSource

= ‘ My MewDeviceTemplate
—-[7 Functional Blocks

+ Modedbject
- Switch

+1-[_] Mandatory Mys

+1-[_] Optional Mys
[Optional CPs
[Implementation-specific Mys
a Implementation-specific CP

D Configuration Properties

[metwork variables

Alternatively, you can right-click the Configuration properties folder in the Program Interface
pane and select Add CP from the shortcut menu, or you can drag a configuration property from a

Configuration properties folder in the Resource pane to the functional block’s
Implementation-specific CPs folder or the Configuration properties folder in the Program

Interface pane.

2. The Add CP to Functional Block dialog opens (or Add CP to Device dialog if you are adding

the configuration property to the device folder).

IzoT NodeBuilder User's Guide

159

160

Add CP To Functional Block 33

Mame:

Cancel
[Implement as CP array 4

Select resource type

+ Standard
~

| E
|

SCPT. |SCPTactFLDIy ~|

Restriction flags
[~ device_specific_fly {Ahways read value from the device)
mifg_flg ¢ Modify only during manufacture)
reset_fly (Reset after modifying)
offline_flg {Put offline hefare modifying)
const_flg (Value is never changed)

171717

™ ohj_disabl_flg {Disable functional hlock before madifying)

Implement as
[~ Configuration netwark variable

Initializer

Edit...

Applies to

* Functional Block

" Metwork Variable

In the Name property, enter a name for the configuration property as it will appear in the 1zoT
Commissioning tool and other network management tools. This name must be unique to the
device, can contain up to 16 alphanumeric characters, and must start with a letter. The name
cannot contain spaces or the following characters: \/: * ? “ < >|. The default name is cpValue.

To implement this configuration property as an array, select the Implement as CP Array check
box (for configuration properties implemented as configuration files [file CPs]) or Use Array
check box (for configuration properties implemented as configuration network variables
[CPNVs]), and then specify the number of elements in the array in the Size box.

An array has a minimum size of 2 elements, and a maximum size of 65,500 bytes. The array size
is limited by the amount of available persistent, modifiable, memory in the device. A compiler or
linker error will occur if the specified array size exceeds the device’s resources.

Note: Configuration property arrays implemented as configuration network variables (CPNVs)
are subject to the same limitations as network variables. Specifically, Neuron C applications are
limited to 62 or 254 static network variables. In the case of a configuration property array
implemented as CPNVs, each element in the array counts as one network variable.

See the Neuron C Programmer’s Guide and Neuron C Reference Guide for more information
about implementing configuration property arrays.

Defining Device Interfaces and Creating their Neuron C Framework

5. Inthe Select Resource Type box, select whether the configuration property you are adding is
based on a Standard or User-Defined type. If you select a User-Defined type, select the Scope
of the functional profile containing the configuration property type. To use a User-Defined type,
you must first add the resource file containing the UCPT to the resource catalog as described in
the NodeBuilder Resource Editor User’s Guide.

6. Inthe SCPT or UCPT property, select the configuration property to be added to the functional
block or device from the list.

If you are selecting a UCPT, the list contains all the UCPTs in resource files of the scope
specified in the Scope field that match the program ID template to the degree specified by the
scope. The configuration property’s type must have a scope that is equal to or lower then the
scope of the functional profile upon which the functional block is based.

7. Toimplement the configuration property as a configuration network variable (CPNV), select the
Configuration Network Variable check box. This enables the configuration property to be read,
written, and bound just like a network variable; however, this consumes limited network variable
resources on the device. If this check box is cleared, the configuration property is implemented as
a configuration file. This check box is cleared by default.

8. If the configuration property is in a functional block array, you can select the Static CP check box
to create a single configuration property that is shared by all the functional blocks in the array.
Modifying the value of the configuration property on any functional block in the array modifies it
for all of them (only one variable is allocated). If this check box is cleared, a separate
configuration property is created for each functional block in the array. This check box is cleared
by default.

9. Inthe Restriction Flags box, you can set configuration property flags that network tools must
check in order to handle the configuration property appropriately. See Editing Mandatory
Configuration Properties earlier in this chapter for more information on these flags.

10. Optionally, in the Initializer property, you can set the value for the configuration property when
the device is reset. If this configuration property is a structure, enumeration, or float, click the box
to the right to open the Edit Initializer dialog and enter the value or values. See Setting Initial
Values for Configuration properties and Configuration Properties later in this chapter for more
information.

11. Inthe Applies To box, select whether the configuration property is applied to a network variable,
a functional block, or the device as a whole. See Editing Mandatory Configuration Properties
earlier in this chapter for more information on how to do this.

12. Click OK. The configuration property is added to the Implementation-specific CPs folder.

Note: After you create the implementation-specific configuration property, you can edit its properties
following the steps described in Editing Mandatory Configuration Properties earlier in this chapter.
For example, you may want to change the configuration property flags, or change how the
configuration property is implemented (configuration network variable [CPNV] or configuration file).

Setting Initial Values for Network Variables and Configuration Properties

You can set the initial value for any network variable or configuration property. For network
variables, this value will be set when the device is reset. For configuration properties, this value will
be stored in the LNS network database, and it will be set the first time the device is reset after the
device application has been downloaded to the device.

Each network variable and configuration property creation, implementation, and editing dialog has an
Initializer property. You can enter a valid Neuron C initializer statement in the Initializer property.
The following examples demonstrate valid Neuron C initializer statements:

Data Type Example SNVT Example Initializer
Integral SNVT_temp 0

IzoT NodeBuilder User's Guide 161

Float SNVT volt_f {0, 0x42, 1, 0x7c, 0x6666}
Structure SNVT_switch {200, 0}
Enumeration SNVT_hvac_mode HVAC_AUTO

If you need help entering a valid initializer value, you can click the button to the right of the Initializer
property to open the Edit Initializer dialog. This dialog provides information on the data type such as
scaling, and minimum and maximum values. If the network variable or configuration property is a
structure, enumeration, or float, this dialog is very useful:

e For structures, it lists the individual fields in the data type and lets you enter valid values for each
field.

e For enumerations, it lists all the available enumerations for the data type.

e For floats and s32 type values, it lets you convert them to structures.

The following subsections describe how to set values for floats, structures, and enumerations in the
Edit Initializer dialog.

Notes:

o Network variables are automatically reset to 0 during reset processing (except for those declared
with the optional eeprom modifier); therefore, they do not need to be explicitly initialized to 0.

e Configuration properties have default values that are defined in resource files. Default values are
included in the definition of the configuration property type, in the definition of the functional
profile’s member configuration property (an optional initial value override), and possibly in the
definition of an inherited functional profile. The Neuron C compiler will automatically initialize
the configuration property to its defined default value.

Therefore, you can explicitly set the initial value or the configuration property; however, it is
recommended that you use the default values defined in the resource file, if possible.

For more information on the initializer format, see Appendix A of the Neuron C Reference Guide
and any C reference manual.

Setting Initial Values for Structured Data Types

For structured network variables and configuration properties, the Edit Initializer dialog displays the
individual fields in the structure.

162 Defining Device Interfaces and Creating their Neuron C Framework

Edit Initializer,

Structure fields:

Type Variable
SNVT switch
unsigned short |value ,7
signed short state
,7

e Use Default
Initializer:

Ok | Cancel

The Structure Fields box displays all the fields in the structured network variable or configuration
property. If no initializer has previously been set, the Value boxes for each field and the Initializer
box are empty. To enter values for the fields in the structure, follow these steps:

1. Click anywhere in the field’s row. The scaling for the field is displayed in the Scalar Details box,
and its minimum, maximum, and invalid (if any) values are displayed in the Limits box.

2. Click anywhere in the field’s VValue box and enter a valid value for the field. If the field is an
enumeration, select the value from the list in the Value box. The Scaling Result box displays
how the specified value will be scaled. For example, if you enter 200 for the value field of a
SNVT _switch data point, the Scaling Result box displays 100.0.

IzoT NodeBuilder User's Guide 163

Edit Initializer,

Structure fields:
Scalar details:

Type Variable Value
Estruet | SNVT switch | | Scalea |®
unsigned short :
signed short Scale B:
Scale C: ,Ui
Scaling result:
100.0
scaled= A*10B * (raw + C)
Lirnits
o lirape Use Default Min: 1}
Initializer:
{200, 0} M 200
Irvalid: ,7

Ok | Cancel

3. All other fields in the structure are automatically set to their default values, which are defined in
resource files. If no default value is defined for the field, it is set to 0 or the minimum value
allowed if O is out of range. You can set all fields to their default values by clicking Use Default.

The current initial value for the structure is displayed in the Initializer box. The values are
enclosed in braces and are separated with commas (e.g., {SET_OFF, 0, 0} for a SNVT_setting data
type).

4. Enter values for all other fields in the structure.

You can edit the values of a field by either selecting the field and clicking Value in the Structure
Fields box or directly editing the value in the Initializer box. You can add comments or arrange
the initializer value to be displayed in a separate line by editing the Initializer box directly. If you
select a field in the Structure Fields box, the corresponding value in the Initializer box is
highlighted and vice versa. For a union, you can only set the first member; all subsequent
members are read-only.

You can use a preprocessor #define statement to define a string that can be used as a structure
initializer. For example, you can enter the following: #define mylnit {FS_XFER_OK,
1, 2 {{{3}, {0x00, 0x00, 0Ox00, 0x000}, O}}}. Ifyoudo this, you can enter
mynit directly in the Initializer box when creating the network variable or configuration
property. The Edit Initializer dialog will not be aware of the #define statement, and it will not
verify any data you enter.

5. Click OK to save the changes. The value specified in the Initializer box will be transferred to the
Initializer property of the respective network variable or configuration property dialog.

Setting Initial Values for Enumerations

For enumerated network variables and configuration properties, you can enter a value following these
steps:

1. Click anywhere in the data type’s row.

164 Defining Device Interfaces and Creating their Neuron C Framework

2. Click anywhere in the Value box, and select a value from the list of possible enumeration values.
You can set the enumeration to its default value by clicking Use Default.

Edit Initializer,

Structure fields:
Scalar details:
Type Variable Value |
hvac t SNVT hvac_mode | j Scale & 1
HV¥AC NUL ~ . i
— Scale B:
HVAC_AUTO rae
HVAC HEAT Seale C 0
HYAC_MRNG_WRMUP
HYAC _COOL v
Scaling result:
[
scaled= A*10B * (raw + C)
Limits
e Use Default Min: =
Initializer:
M 17
Invalid:
Ok Cancel

3. The current initial value for the enumeration is displayed in the Initializer box. You can edit the
value by clicking Value in the Structure Fields box or directly editing the value in the Initializer
box.

4. Click OK to save the changes. The value specified in the Initializer box will be transferred to the
Initializer property of the respective network variable or configuration property dialog.

Setting Initial Values for Floating Point and s32 Data Types

For floating point and s32 data types, the Edit Initializer dialog lets you convert their values to the
structures used by Neuron C to represent their values in memory. To do this, follow these steps:

1. Click anywhere in the data type’s row. The scaling for the data type is displayed in the Scalar
Details box, and its minimum, maximum, and invalid (if any) values are displayed in the Limits
box.

2. Click anywhere in the float or 32 data type’s Value box and enter a valid value. The value is
automatically converted to the structure used by Neuron C to represent it in memory; the values of
the fields in the structure appear below the data type. You can set the floating point or s32 data
type to its default value by clicking Use Default.

IzoT NodeBuilder User's Guide 165

Edit Initializer,

Structure fields:

... e
unsigned f1:1 0 ,7
unsigned f2:7 0x41
unsigned 13:1 1 ,7
unsigned f4:7 0xb1
unsigned long fh 0x999a

Lirnits
- Use Default hin: -2.731700e+00
Initializer:
{0, 0x41, 1, Ox51, 0xB59a) M 3.402823e+03¢
Invalid:
Ok Cancel

3. The current initial value for the float or 32 data type is displayed in the Initializer box. You can
edit the values of a field by either selecting the field and clicking Value in the Structure Fields
box or directly editing the value in the Initializer box

4. Click OK to save the changes. The value specified in the Initializer box will be transferred to the
Initializer property of the respective network variable or configuration property dialog.

Using Changeable-Type Network Variables

You can use changeable-type network variables to implement generic functional blocks that work with
different types of inputs and outputs. For example, you can create a general-purpose device that can be
used with a variety of sensors or actuators, and then create a functional block that allows the integrator
to select the network variable type depending on the physical sensor or actuator attached to the device.
Another example is a scheduler that can control a variety of device types by allowing the integrator to
change the type of the output of the scheduler. The Code Wizard generates code that contains a
framework for supporting changeable network variable types.

The method used by the Neuron firmware to change the size of a network variable uses an NV length
override system image extension that is managed by the application. Whenever the firmware needs the
length of a network variable, it calls the NV length override system image extension to get it. This
method provides reliable updates to network variable sizes.

For more information on how to implement a changeable-type network variable in your device
application, see Implementing Changeable-Type Network Variables in Chapter 7. For more
information about changeable-type network variables and the NV length override system image
extension, as well as a commented source code example that illustrates all aspects of creating an
application that uses changeable-type network variables, see the Neuron C Programmer’s Guide.

166 Defining Device Interfaces and Creating their Neuron C Framework

Generating Code with the Code Wizard

You can use the NodeBuilder Code Wizard to generate Neuron C source code that implements your
device interface and creates the framework for your device application. To do this, click the Generate
and Close option in the upper right-hand corner of the user interface. Alternatively, you can
right-click the device template folder in the Program Interface pane and click Generate and Close on
the shortcut menu.

The NodeBuilder Code Wizard checks whether the device template meets the following requirements:
e The device template has a Node Object functional block with an index of 0.

e The network variables required for the selected configuration property access method are in the
Node Object functional block.

e The Synchronized option is set for the nvoStatus network variable in the Node Object functional
block.

e The Changeable Type option is not set for any network variable if the device does not have a
changeable interface (it has network variables with changeable types, or the device supports
dynamic network variables). See Specifying the Program ID in Chapter 5 for more information on
setting the Has Changeable Interface option in the Standard Program ID Calculator for a
device template.

e A member name is defined for each implementation-specific network variable.

¢ All configuration property types, network variable types, and functional profiles have defined
resources when code is being generated.

e All network variables have a distinct type. Some functional profiles contain network variables
with no defined type (referred to as SNVT_xxx). The NodeBuilder Code Wizard forces a distinct
and valid type to be assigned to these network variables.

If your device interface includes any of these errors, a warning message appears explaining the error.
Fix the error and then re-generate the code.

The NodeBuilder Code Wizard generates the Neuron C source files for your device interface (see Files
Created by the Code Wizard for more information), the NodeBuilder Code Wizard closes, and you are
returned to the NodeBuilder Project Manager. If any read-only files will be overwritten, a
confirmation dialog opens.

See Chapter 7, Developing Device Applications, for information on using the Neuron C programming
language to write your device application and editing the Neuron C source files created by the Code
Wizard.

Files Created by the Code Wizard

When you generate Neuron C code, the NodeBuilder Code Wizard creates a series of header and
Neuron C source files, which are listed in the Project pane of the NodeBuilder Project Manager. The
main Neuron C source file, <Device Template Name>.nc, is listed underneath the device template. All
the other files are shown under the Source File tree, but all the header and source files are stored in the
same location on your computer.

IzoT NodeBuilder User's Guide 167

-1 Project 'ME_F Exercise":
-1 Device Templates

+ IHI Development

+ IHI Release

=3 Source Files
= Filesys.h
EILED.h
[ELED.nc

B Modebject b

[Z] Switch.h
[=] switch.nc
[Z) cammen.h
[Z] cammon.ne

[Mibraries

+[_YDevices
+|{_FHardware Templates

= @ MyMewDeviceTemplate
@ MyMewDeviceTemplate.nc

B My MewDeviceTemplake b

B Modebject.nc

+- i NEB Fx Example Device

The following table lists and describes the files created by the NodeBuilder Code Wizard.

Source File
<Device Template Name>.nc

<Device Template Name>.h

<Functional Block Name>.nc

<Functional Block Name>.h

common.nc

common.h

168 Defining Device Interfaces and Creating their Neuron C Framework

Description

The main Neuron C source file for the device application.
All other files generated by the Code Wizard are included
in this file using #include statements.

Contains header information and function declarations for
the main source file. Defines a number of constants that
are used in the application code.

Contains Neuron C code framework for each network
variable and configuration property defined in the
functional block. A functional block source file is
generated for every functional block defined in the device
interface.

Contains header information and function declarations for
the corresponding functional block source file.

Contains common definitions and some device
management functions. Most of the utility functions
contained in this file may remain unused because they are
provided by the CodeWizard-3.lib and CodeWizard.lib
library files. Functions and definitions this file provides
should not be modified.

Contains header information and function declarations for
common.nc.

Source File

filesys.nc

filesys.h

filexfer.nc

filexfer.h

NodeObject.h
NodeObject.nc

CodeWizard-3.lib

Description

Contains functions used to facilitate transfer of
configuration properties implemented as configuration
files.

This file is only generated if you selected the File
Transfer Protocol configuration property access mode
(for more information, see Using the Program Interface
Pane earlier in this chapter).

Contains header information and function declarations for
configuration properties implemented as configuration
files.

Contains functions used to implement FTP transfer of
configuration properties.

This file is only generated if you selected the File
Transfer Protocol configuration property access mode
(for more information, see Using the Program Interface
Pane earlier in this chapter).

Contains header information and function declarations for
filexfer.nc.

This file is only generated if you selected the File
Transfer Protocol configuration property access mode
(for more information, see Using the Program Interface
Pane earlier in this chapter).

Contains header information for node object declarations

Contains the implementation of the node object functional
block.

Library containing a number of utility functions used by
the application framework. The CodeWizard-3 library is
automatically linked with the applications based on version
3 Code Wizard Templates.

The version 3 templates include improved code size, speed,
and compliance with interoperability guidelines. The
instructional comments have been revised and improved,
and the templates have improved support for applications
with a large number of network variables and functional
blocks.

The version 3 templates are architecturally identical to
version 2 templates except that they use the
CodeWizard-3.lib library. Version 3 templates also use
the new #pragma library compiler directive to
automatically link with this library, which means that you
no longer have to specify the Code Wizard library in your
project.

Note: To share source files among multiple NodeBuilder device templates through a common folder,
you need to specify the full path of the folder in the NodeBuilder project’s Include Search Path
property. To do this, click Project and then click Setting, or right click the Project folder in the
Project pane and click Settings on the shortcut menu. The NodeBuilder Project Properties dialog

opens. Click the Project tab, specify the full path of the shared folder in the Include Search Path

property, and then click OK.

IzoT NodeBuilder User's Guide

169

Each time you generate code using the Code Wizard, it checks whether each of the common files exists
on the Include Search Path property. If a file exists, the Code Wizard uses the one in the common
folder; otherwise it creates the file in the source files folder.

Using Code Wizard Templates

When you generate the Neuron C code for a device interface, the Code Wizard creates the source code
file based on a code template. The code templates define the general infrastructure and layout of the
generated application. In addition, the code templates supply many utility functions for managing
device and functional block status, which you can use in your application, as needed. By default, the
code template used for new device interfaces created with 1zoT NodeBuilder tool is the version 3
template. Previous releases of the NodeBuilder tool used version 2 templates (NodeBuilder 3.1) and
version 1 templates (NodeBuilder 3.0). The following sections describe the version 3, version 2, and
version 1 templates and how to upgrade existing device applications to the new version 3 code
templates.

Version 3 Templates

The version 3 templates include improved code size, speed, and compliance with interoperability
guidelines. The instructional comments have been revised and improved, and the templates have
improved support for applications with a large number of network variables and functional blocks.
Version 3 templates are architecturally identical to version 2 templates except that they use the
CodeWizard-3.lib library. Version 3 templates also use the new #pragma library compiler directive
to automatically link with this library, which means that you no longer have to specify the Code
Wizard library in your project.

You can upgrade device applications written for a 3100 Series chip to the new version 3 code
templates when porting them to a 5000 or 6000 Series chip. To do this, follow these steps:

1. Create a new device template that includes a hardware template that uses the Neuron 5000
processor or FT 5000/FT 6000 Smart Transceiver. See Creating Device Templates in Chapter 5
for more information.

2. Create the device interface with the NodeBuilder Code Wizard based on the existing device. See
Defining the Device Interface earlier in this chapter for more information.

3. Generate the Neuron C code for the device interface.
4. Manually copy your Neuron C code from the old application into the new application.

Note: The Neuron C Version 2.2 language includes the following new keywords: interrupt,
__lock, stretchedtriac, _slow, __ fast,and __parity. Some of these keywords use a double
underscore prefix to avoid any naming collisions within existing device applications.

5. Remove any references to CodeWizard.lib library from your device template, as the version 3
templates automatically link with the revised CodeWizard-3.lib library.

6. Build your upgraded device application. See Chapter 8, Building and Downloading Device
Applications, for more information.

Version 2 Templates

The version 2 templates moved most utility functions from the application space into the
CodeWizard.lib library, and they included improvements to code size, speed, and compliance with
interoperability guidelines. The Code Wizard still supports applications based on version 2 templates.

You should upgrade existing NodeBuilder projects to the Version 3 template; however, you can
continue using the Code Wizard with version 2 templates. To continue using version 2 templates,
verify that your device template references the standard CodeWizard.lib library. Typically, device
templates created with earlier versions of the NodeBuilder tool already reference this library, but you
may need to add an explicit reference to it in some cases (see Inserting a Library into a NodeBuilder
Device Template in Chapter 5 for how to do this).

170 Defining Device Interfaces and Creating their Neuron C Framework

Version 1 Templates

The version 1 templates were the initial implementation of the Code Wizard templates, which are no
longer supported by the Code Wizard.

You should upgrade existing NodeBuilder projects to the Version 3 template because it generally
results in more compact and faster code, and better compliance with interoperability guidelines. You
can, however, continue using the Code Wizard with the version 1 templates. To continue using
version 1 templates, verify that your device template does not reference the standard CodeWizard.lib
library.

Creating the Device Application

The code produced by the Code Wizard is skeleton code. It implements the device interface that you
have defined, but it does implement any device functionality. You will use the NodeBuilder Project
Manager to edit the source files generated by the Code Wizard and implement your device’s
functionality. To create your device application, do the following:

e See the Modifying Neuron C Code Generated by the Code Wizard section in Chapter 7. This
section describes the Neuron C code generated by the NodeBuilder Code Wizard and provides
guidelines on how to modify it. In addition, it lists the Neuron C Version 2 features that are not
supported by the NodeBuilder Code Wizard.

e See the Neuron C Programmer’s Guide. This document details how to write device applications
using the Neuron C Version 2.2 language. It also describes how to design and implement a device
application.

o See the Neuron C Reference Guide. This document provides reference information for writing
device applications using the Neuron C Version 2.2 language.

IzoT NodeBuilder User's Guide 171

172 Defining Device Interfaces and Creating their Neuron C Framework

7

Developing Device Applications

This chapter provides an overview of the Neuron C Version 2.3 programming
language. It describes how to edit the Neuron C source code generated by the
NodeBuilder Code Wizard to implement your device functionality. It explains how
to use the NodeBuilder Editor to edit, search, and bookmark Neuron C code.

IzoT NodeBuilder User's Guide 173

Introduction to Neuron C

Neuron C Version 2.3 is a programming language based on ANSI C that you can use to develop
applications for Neuron Chips and Smart Transceivers. It includes network communication, 1/0O,
interrupt-handling, and event-handling extensions to ANSI C, which make it a powerful tool for the
development of LONWORKS device applications. Following are a few of the extensions to the ANSI
Standard C language:

e A network communication model based on functional blocks and network variables that simplifies
and promotes data sharing between like or disparate devices.

e A network configuration model based on functional blocks and configuration properties that
facilitates interoperable network configuration tools.

e Atype model based on standard and user resource files expands the market for interoperable
devices by simplifying integration of devices from multiple manufacturers.

e An extensive built-in set of 1/0 objects that supports the powerful 1/O capabilities of Neuron Chips
and Smart Transceivers. Powerful event-driven programming extensions based on when-tasks that
provide easy handling of network, 1/O, and timer events.

e Language extensions that define application interrupt handlers and use synchronization tools,
where available.

Neuron C provides a rich set of language extensions to ANSI C tailored to the unique requirements of
distributed control applications. Experienced C programmers will find Neuron C a natural extension to
the familiar ANSI C paradigm. Neuron C offers built-in type checking and allows the programmer to
generate highly efficient code for distributed LONWORKS applications.

Neuron C omits ANSI C features not required by the standard for free-standing implementations. For
example, certain standard C libraries are not part of Neuron C. Other differences between Neuron C
and ANSI C are detailed in the Neuron C Programmer’s Guide.

This chapter provides an introduction to Neuron C. For more details on Neuron C, see the Neuron C
Programmer’s Guide.

Unique Aspects of Neuron C

Neuron C implements all the basic ANSI C types, and type conversions as necessary. In addition to
the ANSI C data constructs, Neuron C provides some unique data elements.

Network variables are fundamental to Neuron C and LONWORKS applications. Network variables are
data constructs that have language and Neuron firmware support to provide the look and feel of a
regular global C variable, but with additional properties of communicating across a LONWORKS
network, to or from one or more other devices on that network. The network variables make up part of
the device interface for a LONWORKS device.

Configuration properties are Neuron C data constructs that are another part of the device interface.
Configuration properties allow the device’s behavior to be customized using a network tool such as the
I1zoT Commissioning tool or a customized plug-in created for the device. Configuration properties
provide the look and feel of a normal variable to the C program, with the addition of controlled access
by network configuration tools.

Neuron C also provides a way to organize the network variables and configuration properties in the
device into functional blocks. Functional blocks provide a collection of network variables and
configuration properties that are used together to perform one task. These network variables and
configuration properties are called the functional block members.

174 Developing Device Applications

Each network variable, configuration property, and functional block is defined by a type definition
contained in a resource file. Network variables and configuration properties are defined by network
variable types (NVTs) and configuration property types (CPTs). Functional blocks are defined by
functional profile templates (FPTSs).

Network variables, configuration properties, and functional blocks in Neuron C can use standardized,
interoperable types. The use of standardized data types promotes the interconnection of disparate
devices on a LONWORKS network. For network variables, the standard types are called standard
network variable types (SNVTs). For configuration properties, the standard types are called standard
configuration property types (SCPTs). For functional blocks, the standard types are called standard
functional profile templates (SFPTs). If you cannot find standard types or profiles that meet your
requirements, Neuron C also provides full support for user-defined network variable types (UNVTS),
user-defined configuration property types (UCPTSs), and user-defined functional profile templates
(UFPTS).

A Neuron C application executes in the environment provided by the Neuron firmware. This firmware
provides an event-driven scheduling system as part of the Neuron C language’s run-time environment.
Therefore, a Neuron C application does not use a single entry point, as is the case with ANSI C’s
main() function. Instead, a Neuron C application uses when-tasks and interrupt-tasks to specify
application code to be executed in response to various system events or interrupt requests, much in the
way of a .NET event handler.

The Neuron firmware contains a scheduler, which executes these when-tasks in an orderly and
deterministic fashion as and if needed. Neuron C when-tasks can be triggered by system events (such
as reset), network events (such as a network variable update or network error), 1/0 events (such as a
new reading from an 1/O input), timer events, or any arbitrary application-defined event.

Interrupt-tasks are activated as the interrupt request occurs, subject to interrupt prioritization rules.
Neuron C interrupt-tasks can be triggered by edge or level conditions on any of the dedicated /O pins,
by events occurring in the embedded timer and counter units, or by a dedicated high-resolution system
timer. Interrupt-tasks are only supported by 5000 or 6000 Series chips. Other interrupt sources, such
as those related to sending or transmitting serial data over the embedded UART, are handled
transparently by the Neuron firmware.

Neuron C also provides a lower-level application messaging service integrated into the language in
addition to the network variable model. While the network variable model has the advantage of being
a standardized method of information interchange that promotes interoperability between multiple
devices from multiple vendors, application messaging is available for proprietary and standard
special-purpose solutions. Application messages are used with the LONWORKS file transfer protocol, a
standard mechanism for transfer of large amounts of data, and the ISI protocol, a standard mechanism
to manage networks without intervention of a dedicated tool or specialist.

Another Neuron C data object is the application timer object. Timer objects can be declared and
manipulated like variables. When a timer expires, the Neuron firmware automatically manages the
timer events and notifies the program of those events. Timers may be automatically reloading
(repeating), or one-shot timers, with a resolution ranging from 0.001-65,535 seconds.

Neuron C supports programmable hardware timer units through a variety of 1/0 library functions.
These functions provide a resolution up to 1 MHz (1 ps) or better, subject to the selected 1/0 model,
Neuron Chip type, clock speed, and other factors (see the I/0 Model Reference for more information).
The 5000 and 6000 Series chips also support a configurable high-resolution system timer, which can
be used to generate periodic interrupt requests.

Neuron C supports up to 35 different 1/0 models, ranging from simple bit Direct 1/O models for typical
input or output hardware to complex Timer/Counter models for triacs. Neuron C also includes Serial
and Parallel 1/0 models for serial and parallel communication busses. These 1/O models are
standardized 1/0O “device drivers” for the Neuron Chip or Smart Transceiver 1/O hardware. Each I/O
model fits into the event-driven programming model. A function-call interface is provided to interact
with each I/O object. The function-call interfaces are optimized for their respective 1/0 models, yet
they are similar to each other so that they are easy to use.

IzoT NodeBuilder User's Guide 175

Neuron C Variables

176

The following sections briefly discuss various aspects of Neuron C-specific variable declarations.
Data types affect what sort of data a variable represents. Storage classes affect where the variable
is stored, whether it can be modified (and if so, how often), and whether there are any device
interface aspects to modifying the data.

Neuron C Variable Types

Neuron C supports the following C variable types. The keywords shown in square brackets below
are optional. If omitted, they will be assumed by the Neuron C language, per the rules of the
ANSI C standard:

[signed] long [int] 16-bit quantity
unsigned long [int] 16-bit quantity
signed char 8-bit quantity

[unsigned] char 8-bit quantity

[signed] [short][int] 8-hit quantity
unsigned [short][int] 8-hit quantity

enum 8-bit quantity (int type)

Neuron C provides some predefined enum types. One example is shown below:
typedef enum {FALSE, TRUE} boolean;

You should use the unsigned int type whenever possible because it is the type best supported by
the Neuron Chip and Smart Transceiver’s hardware architecture. The unsigned int type is
preferred over signed int type.

Neuron C also provides predefined objects that, in many ways, provide the look and feel of an
ANSI C language variable. These objects include Neuron C timer and 1/0 objects. See Chapter 2
of the Neuron C Programmer’s Guide for more details on 1/O objects, and see Chapter 4 in the
Neuron C Reference Guide for more details on timer objects.

The extended arithmetic library also defines float_type and s32_type for IEEE 754 and signed
32-bit integer data respectively. These types are detailed further in Chapter 3 of the Neuron C
Reference Guide.

Neuron C Storage Classes

If no class is specified for a declaration at file scope, the data or function is global. File scope is
that part of a Neuron C program that is not contained within a function, a when-task, or an
interrupt-task. Global data (including all data declared with the static keyword) is present
throughout the entire execution of the program, starting from the point where the symbol was
declared. Declarations using extern references can be used to provide forward references to
variables, and function prototypes must be declared to provide forward references to functions. In
addition, extern references can be used to publish a symbol and allow for linking with other object
files.

Upon power-up or reset of a Neuron Chip or Smart Transceiver, the global data in RAM is
initialized to its initial-value expression, if present; otherwise, it is set to 0.

Neuron C supports the following ANSI C storage classes and type qualifiers:

e auto declares a variable of local scope. Typically, this would be within a function body. This is
the default storage class within a local scope and the keyword is normally not specified. Variables
of auto scope that are not also static are not initialized upon entry to the local scope, unless you
provide an explicit initializer. The value of the variable is not preserved once program execution
leaves the scope.

Developing Device Applications

e const declares a value that cannot be modified by the application program. Affects
self-documentation (SD) data generated by the Neuron C compiler when used in conjunction with
the declaration of CP families or configuration network variables. extern declares a data item or
function that is defined in another module, in a library, or in the system image.

e static declares a data item or function which is not to be made available to other modules at link
time. Furthermore, if the data item is local to a function or to a when()task, the data value is to be
preserved between invocations, and is not made available to other functions at compile time.

In addition to the ANSI C storage classes, Neuron C provides the following classes and class
modifiers:

e network begins a network variable declaration. See Chapter 3, How Devices Communicate Using
Network Variables, of the Neuron C Programmer’s Guide for more details.

e uninit when combined with the eeprom keyword (see below), specifies that the EEPROM
variable is not initialized or altered on program load or reload over the network.

The following Neuron C keywords allow you to direct portions of application code and data to
specific memory sections.

eeprom

far

offchip (only on Neuron Chips and Smart Transceivers with external memory)
onchip

These keywords are particularly useful on the Neuron 3150 Chip and 3150 Smart Transceivers,
since a majority of the address space for these parts is mapped off chip. See Using Neuron Chip
Memory in Chapter 8 of the Neuron C Programmer’s Guide for a more detailed description of
memory usage and the use of these keywords.

Variable Initialization

Initialization of variables occurs at different times for different classes. The const variables,
except for network variables, must be initialized. Initialization of const variables occurs when the
application image is first loaded into the Neuron Chip or Smart Transceiver. The const ram
variables are placed in off-chip RAM that must be non-volatile. The eeprom and config variables
are also initialized at load time, except when the uninit class modifier is included in these variable
definitions.

Global RAM variables are initialized at reset (specifically when the device is reset or powered up).
By default, all global RAM variables (including static variables) are initialized to zero at this time.

Initialization of 1/0 objects, input network variables (except for eeprom, config, config_prop, or
const network variables), and timers also occurs at reset. Zero is the default initial value for
network variables and timers.

Local variables (except static ones) are not automatically initialized unless you provide explicit
initialization, nor are their values preserved when the program execution leaves the local scope.

Neuron C Declarations

The Neuron C Version 2.3 programming language and ANCI C both support the following
declarations:

Declaration Example

Simple data items int a, b, c;

Data types typedef unsigned long ULONG;
Enumerations enum hue {RED, GREEN, BLUE};

IzoT NodeBuilder User's Guide 177

Declaration Example

Pointers char *p;
Functions int f(int a, int b);
Arrays int a[4];
Structures and unions struct s {
int fieldl;
unsigned field2 : 3;
unsigned field3 : 4;
}:
The Neuron C Version 2.3 programming language also supports the following declarations:
Declaration Example
1/O objects 10_0 output oneshot relay_trigger;
Timers mtimer led_on_timer;
Network variable network input SNVT_temp nviTemperature;
Configuration Properties SCPTdefOutput cp_family cpDefaultOut;
Functional Blocks fblock SFPTnodeObject { .. } myNode;

Introduction to Neuron C Code Editing

The Neuron C source code generated by the NodeBuilder Code Wizard provides the framework for
your device application. It implements the device interface that you have defined, but it only
implements basic device functionality. The functionality supplied by Code Wizard includes the most
common tasks required for interoperable device and functional block management, but it does not
include any code implementing your application’s core algorithms. You can implement your device’s
functionality by editing your device application’s Neuron C source code in the Edit pane of the
NodeBuilder Project Manager to.

178

In addition to network variable, configuration property, and functional block declarations that comprise
the device interface, the Neuron C code generated with the NodeBuilder Code Wizard also contains the
following features:

Skeleton when() task for functional blocks or functional block arrays. The when() task
provides notification upon incoming network variable updates for the functional block or
functional block array. If the functional block has no input network variables, no when() task is
generated.

Default implementation for handling of system events. System events include when reset,
online, offline. These system events also get routed to the different director functions, allowing
each functional block director function to respond to each event in an appropriate way.

Code handling device and functional block requests on the Node Object. The Code Wizard
generates code for the nviRequest and nvoStatus network variables on the Node Object
functional block. This implementation routes requests to the functional block or blocks concerned
by calling the relevant director functions, and provides a default implementation that allows for
the following requests to be honored: RQ_REPORT_MASK, RQ_UPDATE_STATUS,
RQ_DISABLED, RQ_ENABLE. Handling for other requests is partially implemented but must
be completed by the developer. The C language comments supplied in the source files generated
by the Code Wizard describe the aspects and ramifications of various interoperability procedures.
For more information, see the LonMark Application Layer Interoperability Guidelines.

Developing Device Applications

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

e Default directors for functional blocks or functional block arrays. The source code for each
functional block or functional block array contains a default implementation of a director function

e Utility functions to manage functional block state. The Code Wizard generates common.h and
common.nc files, which contain some utility functions. Most utility functions are delivered with
the CodeWizard-3.lib library file (CodeWizard.lib for version 2 templates), and they are
declared in the CodeWizard.h header file. See these files for more information on these
functions.

o File directory structure. The Code Wizard creates code to reference the configuration property
template and value files for both direct memory read/write and FTP configuration property access.
The two access methods are mutually exclusive.

If FTP is used to access configuration property template and value files, and at least one
configuration file has been implemented, the Code Wizard code also provides an implementation
of the FTP server. The default implementation of the FTP server supports read and write access
both sequentially and random access. The FTP server supports configuration property files with
up to the amount of available space on the Neuron Chip. This space is equal to 64 KB minus any
address space used for code, data, or other features. The default implementation of the FTP server
does not support local initiation or dynamic creation of files, but partially implements the
framework for these operations. See the filexfer.h file for more details.

Modifying Neuron C Code Generated by the Code Wizard

Each file generated by the Code Wizard has sections that look like this:
/I{{NodeBuilder Code Wizard Start
/I[{{NodeBuilder Code Wizard End

Neuron C code inside these comments will be modified by the Code Wizard every time code you
generate code for the device template. You can edit the Neuron C code outside these tags, and your
changes will not be overwritten when you run the Code Wizard again.

Code Commands

Inside this Code Wizard generated code, there are commands used by the Code Wizard that look like
this:

//<Command>

These commands indicate where the NodeBuilder Code Wizard puts certain pieces of generated code.
For example, the //<Include Headers> precedes the Code Wizard generated list of include statements.
If you want to remove the Code Wizard statements from Code Wizard control, you can move them
outside the Code Wizard generated code. Once you have moved a code outside of the Code Wizard
start (//{{NodeBuilder Code Wizard Start), end (//{{NodeBuilder Code Wizard
End), you will manage the section of the code on your own.

For example, one Neuron C feature that is not supported by the NodeBuilder Code Wizard is a single
configuration property being applied to more than one network variable. The following example
demonstrates this:

//{{NodeBuilder Code Wizard Start

//<Fblock Input NV Declarations>

network input SNVT_temp_p nviTempP

nv_properties {
cpTransinMin
cpTranslnMax

O ’
3000L

IzoT NodeBuilder User's Guide 179

180

}:

//

//<Fblock Output NV Declarations>

network output SNVT_lev_percent nvoPercentage;

/7
//}}NodeBuilder Code Wizard End

You can override the code generated by the NodeBuilder Code Wizard by moving the //<Fblock
Output NV Declarations> command out of the Code Wizard section, as shown below

//{{NodeBuilder Code Wizard Start

//<Fblock Input NV Declarations>

network input SNVT_temp_p nviTempP

nv_properties {
cpTransinMin
cpTranslInMax

01
3000L

-

/7
//}}NodeBuilder Code Wizard End
//
//<Fblock Output NV Declarations>
network output SNVT_lev_percent nvoPercentage
nv_properties {
cpTransinMin = 0,

¥

Once you take the //<Fblock Input NV Declarations> command out of the Code Wizard managed
section of the code, the Code Wizard will no longer create input network variable declarations. If you
want to add additional input network variables to the functional block, they must be added manually.

Code Guidelines

The following sections provide recommendations for modifying the code generated by the
NodeBuilder Code Wizard. This is not a comprehensive list and the modifications you make will vary
depending on the purpose of your device.

Add I/0O and Timer Declarations

Initialize global 1/0, timers, variables, and the interrupt system in the when (reset) task within the
main Neuron C file (main.nc). Initialize functional block-specific 1/0O, timers, and variables in the
relevant functional block’s director function. Upon completion of the initialization for each functional
block, release the lockout bit for each functional block and thus allow it to operate. The following
example demonstrates this:

else if ((TFblock _command)iCommand == FBC_WHEN_RESET)
// raised by when (reset) task

{
// initialize output lines:
SetLed(0, DigitalOutput[O]::cpDigitalDefault.state);
SetLed(1, DigitalOutput[l]::cpDigitalDefault_state);
setLockedOutBit(uFblocklndex, FALSE);

3

Developing Device Applications

Add when-tasks Responding to I/O and Timer Events

You can add when-tasks to respond to I/O and timer-related events, as needed. Add these event
handlers to the main source file if they affect global 1/0 or timers, and add them to the individual
functional block’s source file if they affect functional block-specific items.

Add interrupt-tasks Responding to Interrupt Requests

You can add interrupt-tasks to respond to interrupt requests, as needed. Add these interrupt handlers
to the main source, and enable interrupt processing. Interrupt processing is typically enabled in the
reset task, but other tasks, such as the online and offline tasks, may also enable or disable the interrupt
system.

Add Code to when(nv_update_occurs(<nv>)) when-task of Functional Blocks
with Input NVs

For functional blocks that implement input network variables, add code to the
when(nv_update_occurs(<nv>)) when-task in the subject functional block or functional block array,
where <nv> is the related input network variable or network variables. The Neuron C scheduler will
raise this event and execute the related when-task when at least one of the associated input network
variables has been updated. You can use the built-in Neuron C variables, such as nv_in_addr,
nv_in_index, or nv_array_index, to obtain more details about the update from within the when-task.

Code Wizard implements one input network variable when-task for each functional block or functional
block array in order to achieve short scheduler-cycles and therefore a responsive device.

Share Code with filexfer.nc when Handling Explicit Messages on a Device
Implementing FTP

When adding code that handles explicit messages and contains unqualified when(msg_arrives) event
handlers on a device that implements FTP with the sender-capability enabled, the sender routine does
itself implement such an event handler. There can only be one such event handler and this handler
must be the last when-task in compilation order; therefore, you must share your code with the code
provided in the filexfer.nc file. The FTP server implementation uses the #pragma scheduler_reset
directive if the sender-capability is enabled (this is the default). See the filexfer.nc and filexfer.h files
for more details.

Ignore NCC#310 and NC#463 Compiler Warnings

You may notice a few compiler warnings that appear when compiling unedited Code Wizard code,
referring to items being declared but never used (warning NCC#310), or referring to the const attribute
being casted away (warning NCC#463). The second warning, NCC#463, should only occur if support
for the file transfer protocol has been requested. Both messages can be safely ignored in this case.

You can eliminate NCC#310 warnings during a final clear-up phase during device development. This
will reduce memory requirements and reduce the size of the application image, thus reducing

download times. The items referred to by these NCC#310 warnings are utility functions provided for
your convenience. These functions are declared in common.nc and can safely be removed if not used.

Alternatively, you can use the #pragma disable_warning directive to disable selected warnings.

Implementing Changeable-Type Network Variables

You can use changeable-type network variables to implement generic functional blocks that work with
different types of inputs and outputs. For example, you can create a general-purpose device that can be
used with a variety of sensors or actuators, and then create a functional block that allows the integrator
to select the network variable type depending on the physical sensor or actuator attached to the device.
Another example is a scheduler that can control a variety of device types by allowing the integrator to
change the type of the output of the scheduler. The Code Wizard generates code that contains a
framework for supporting changeable network variable types.

IzoT NodeBuilder User's Guide 181

182

The method used by the Neuron firmware to change the size of a network variable uses an NV length
override system image extension that is managed by the application. Whenever the firmware needs the
length of a network variable, it calls the network variable length override system image extension to
get it. This method provides reliable updates to network variable sizes.

For more information about changeable-type network variables and the NV length override system
image extension, as well as a commented source code example that illustrates all aspects of creating an
application that uses changeable-type network variables, see Chapter 3 of the Neuron C Programmer’s

Guide.

To implement a changeable-type network variable in your device application, follow these steps (see
Chapter 3 of the Neuron C Programmer’s Guide for a more detailed discussion of step 4):

1.

Create a device template that has a changeable interface. See Specifying the Program ID in
Chapter 5 for more information on how to do this.

In the Code Wizard, create a new network variable or edit an existing one and select the
Changeable Type checkbox in the dialog for creating or editing the network variable. See
Editing Mandatory Network Variables, Implementing Optional Network Variables, or Adding
Implementation-specific Network Variables in Chapter 6 for more information on how to do this.

Generate Neuron C code for your device interface. See Generating Code with the Code Wizard in
Chapter 6 for more information on how to do this

In the Neuron C code generated by the Code Wizard, do the following:

a.

Complete the implementation of the get_nv_length_override function. The Code Wizard
provides an empty implementation of this function in the device template’s main source file.
This function should return the length of any changeable-type network variable in the device.

The Code Wizard uses the #pragma unknown_system_image_extension_isa_warning
directive to generate Neuron C source code that will compile. The Code Wizard enables this
directive in the device template’s main header file. If you use a combination of Code Wizard
generated code and your own code, you can edit the relevant portion of the main header file.

You should only use the older nv_len() function to support debugging of an application
containing changeable-type network variables on platforms that do not support the system
image extension. For production release, the more robust system image extension method
should be used, and both methods should not coexist in a production device.

You can use the get_current_nv_length() function to determine the current length of a
network variable at any time (see the Neuron C Reference Guide for more information about
this method).

Define the behavior of the application when a request to change the network variable type is
received. The application must validate that the requested type change is supported. Ifitis
not, it must reject the request (either by setting invalid_request or by setting an
application-specific error and putting the device offline) and set the network variable type
back to the last valid type. If the type change is valid, it must implement the type and size
change.

The Code Wizard does not provide framework code for this task, but a commented source
code example is provided in the Neuron C Programmer’s Guide.

Define how the functional block behaves when sending or receiving values on
changeable-type network variables. For each valid type, the functional block must perform
any necessary conversion before operating on the value.

The Code Wizard does not provide framework code for this task, but a commented source
code example is provided in the Neuron C Programmer’s Guide.

Developing Device Applications

Neuron C Version 2 Features Not Supported by the Code Wizard

The following overview summarizes features of the Neuron C Version 2 language that are currently
not used or not supported by the NodeBuilder Code Wizard. See the Neuron C Programmer’s Guide
and Neuron C Reference Guide for more information about Neuron C Version 2.3.

Message Tags

The generation of declarations or the use of message tags is not supported with the exception of
automatically generated FTP server implementation that contains a message tag (fx_explicit_tag).
Also see when() clauses later in this section.

I/0 Models

The NodeBuilder Code Wizard does not generate or support the generation of declarations or use of
1/0O objects.

Network Variables

Network variable arrays. The NodeBuilder Code Wizard only generates declarations for a network
variable array if it applies to a functional block array. The sizes of the two arrays will be the same (for
example, one network variable per functional block). The NodeBuilder Code Wizard does not support
declaring a network variable array and distributing the elements of this array among multiple
functional blocks or functional block arrays.

Polled modifier for input network variables. The NodeBuilder Code Wizard supports the polled
network variable modifier for output network variables, but it does not support the polled network
variable modifier for input network variables. The polled modifier, combined with input network
variables, is only used for host-based application development with a model file. This feature is not
required or supported for development of Neuron-hosted applications because the Neuron C compiler
automatically detects the polling inputs and generates the Neuron C code accordingly.

Configuration Properties

Network variable class config. The NodeBuilder Code Wizard does not support the network variable
class config because this keyword is not recommended for use in hew development. The NodeBuilder
Code Wizard supports configuration network variables using the Neuron C network variable class cp
instead.

cp_family re-use. The NodeBuilder Code Wizard code will declare one cp_family of a given type for
each instance of a configuration property, unless the configuration property it references is a functional
block array. Specifically, if the complete device requires two (or more) configuration properties of
type T, the declaration of a single cp_family of type T is technically sufficient in many cases;
however, the NodeBuilder Code Wizard will generate two (or more) cp_families of type T.

This means that a cp_family generated by the NodeBuilder Code Wizard will always have a single
member unless the configuration properties applies to a functional block array. In this case, the size of
that array equals the size of the cp_family.

Global configuration properties. The NodeBuilder Code Wizard does not currently support the
global CP modifier, but it does support sharing a configuration property through the static CP
modifier.

The NodeBuilder Code Wizard does not support the generation of configuration properties that apply
to multiple disjointed functional block (for example, not be members of the same functional block
array).

The NodeBuilder Code Wizard does not support sharing a configuration property among the members
of a network variable array that applies to the entire device (for example, it is not part of a functional
block or functional block array). This restriction applies to both the static and global configuration
property sharing scopes.

IzoT NodeBuilder User's Guide 183

range_mode_string. The NodeBuilder Code Wizard does not support the range_mode_string
option, which supports the setting of LONMARK range modification for a configuration property.

when() clauses

Unqualified when(msg_arrives). The NodeBuilder Code Wizard code generates an unqualified
when(msg_arrives) task as part of the pre-defined FTP server implementation (see the filexfer.nc
file). This code is only generated if the you selected the FTP configuration property access method.

If your device application processes incoming messages and includes the pre-defined FTP server, you
must use the existing implementation and start your own handler code from there. For more
information about removing parts of the code generated by the NodeBuilder Code Wizard, see
Modifying Neuron C Code Generated by the Code Wizard earlier in this chapter.

when(nv_update_occurs(nvl..nvx)). For functional blocks or functional block arrays that contain
input network variables, the NodeBuilder Code Wizard always generates a single when() task to
handle incoming network variable updates, using the Neuron C construct
when(nv_update_occurs(nvl..nvX)).

Code for multiple when-tasks per functional block or functional block array (assuming each functional
block has more than one input network variable) is not generated.

This implies that all input network variables that belong to a given functional block or functional block
array are to be declared in subsequent order. See the Neuron C Programmer’s Guide for more details
about the use of NV range specifications as arguments to the nv_update_occurs function.

The NodeBuilder Code Wizard does not generate code to handle the arrival of updates to configuration
network variables.

#pragma scheduler_reset. The implementation of the FTP server requires the presence of #pragma
scheduler_reset. This is automatically inserted as needed by the NodeBuilder Code Wizard (see the
filexfer.nc file). You may not remove this pragma.

LONMARK Style

The NodeBuilder Code Wizard can only generate code for a device template that includes a valid Node
Object functional block. The Node Object functional block must be the first object in the device’s list
of objects. The functional profile key for the Node Objects functional profile is O at present scope;
therefore, you can create own Node Object functional profile with a key of 0 that inherits from the
scope 0 functional profile.

Director Functions

The NodeBuilder Code Wizard always creates one director per functional block or functional block
array. It does not currently support functional blocks without director functions, and it does not
support the sharing of one director function among multiple functional blocks (except for functional
block arrays).

Interrupt Tasks

The NodeBuilder Code Wizard does not currently generate code for application-specific
interrupt-tasks.

Using the NodeBuilder Editor

You can display and edit source and text files using the NodeBuilder Project Manager; this includes
Neuron C files (.nc extension), header files (.h extension), C files (.c extension), and text files (.txt
extension). You can open any file in a device template folder or device template Source Files folder
by double clicking it. You can open multiple files in the Edit pane of the NodeBuilder Project
Manager. You can switch between open files using the Window menu.

184 Developing Device Applications

You can cut, copy, and paste text using standard Windows commands. For example, you can cut
selected text using CTRL+X, the Cut button on the toolbar, or by clicking Cut on the Edit menu.

This section describes the following:

1. The color-coding scheme used to highlight source code based on Neuron C syntax.

2. How to search for a text string in a single source file or in all source files in the project.

3. How to use bookmarks to return to frequently used parts of your code.

4. How to set the options in the Editor tab of the NodeBuilder Project Properties dialog that
control syntax highlighting, tab settings, auto indent, font settings, and automatic loading.

Using Syntax Highlighting

If you are editing a Neuron C file (.nc extension), header file (.h extension), or C file (.c extension),
the Edit pane in the NodeBuilder Project automatically color-codes text based on Neuron C syntax.
This color-coding is designed to make your Neuron C code more easily readable. You can change
these colors using the editor options (for more information, see Setting Editor Options later in this
chapter).

The following table lists the default colors and their corresponding Neuron C syntax:

Green Neuron C comment. Commented text is not compiled
during a build.

Blue Neuron C language specific keyword or function

Pink String or number. This includes the arguments to #include
statements, and numerical values assigned to variables.

Dark Blue Constant or preprocessor directive.
Code generated and updated by the NodeBuilder Code
Wizard.

Black All other text.

Searching Source Files

You can search for a string in a single source file or multiple source files, or you can search for a string
and replace it with another.

Searching a Single File for a String
You can search a single file for a text string. To search for a text string, follow these steps:

1. Open the file that you want to search in the NodeBuilder Project Manager. Click anywhere in the
file.

2. Click Edit and then click Find (or press CTRL+F). The Find dialog opens.

2

Find what: || -l Find Mext |
[Match whale word only P ark, 2l
[Match caze

Cancel

3. Enter the text string to search for in Find what.

IzoT NodeBuilder User's Guide 185

186

Set Match Whole Word Only to find only whole words that match the string. Set Match case to
make the search case sensitive.

Click Find Next to find the next occurrence of the string, starting from the current cursor position
and moving down. Click Mark All to have every line in the file containing the string bookmarked
(for more information, see Using Bookmarks later in this chapter,).

Replacing Text

You can search for a string and automatically replace it with another string. To search and replace,
follow these steps:

1.

Open the file that you want to search in the NodeBuilder Project Manager. Click anywhere in the
file.

Click Edit and then click Replace (or press CTRL+H). The Replace dialog opens.

Replace E] E|

Find what: | | Find Mest |
Feplace with: | ﬂ T
[Match whole ward only EEDECE Ir‘l. Replace Al
| Match case + whole file

& Cancel

Enter the text string to search for in Find what.
Enter and the text string that you want to replace it with in Replace with.

Set Match Whole Word Only to find only whole words that match the string. Set Match case to
make the search case sensitive.

If you selected text prior to opening this dialog, set Selection to search only the selected text for
the string. Set Whole file to search and replace in the entire file.

Click Find Next to find the first instance of the string. It will be selected and this dialog will
remain open.

Click Replace to replace the selected string with the string in Replace with. Click Replace All to
automatically replace all the selected strings without confirmation.

Searching Multiple Files for a String

You can search for a string in multiple source files at once. You can use this capability to find all calls
of a certain function or uses of a certain variable in an entire project. To search for a string in one or
more files, follow these steps:

1.

Click Edit and then click Find in Files (or press CTRL+SHIFT+F). The Find in Files dialog
opens.

Developing Device Applications

Find In Files

[Case sensitive

[Whole words anly
[Begular expressions

YWhere to search
" Search all files in project

" Search all open files
(¢ Searchin directories

Search directory options
Directary

Text to find:

| =
File trpes:

|*.nc *t*h j
Cptions

CALMUSourcelNB3_2 Exercise

v Include subdirectaries

= -

cancel |

2. Inthe Text to Find property, enter the text string to be found.

3. Inthe File Types property, select the file types to be searched. By default, the search will look in

Neuron C files (.nc extension), header files (.h extension), and C files (.c extension). You can

remove a file type from the search by removing the corresponding *.<file type extension> entry.

You can add additional file types by adding *.<file type extension> to this field.

4. In the Options box, select one or more of following check boxes to modify the search (all of the

check boxes are cleared by default):

e Case Sensitive. Performs a case-sensitive search.

e Whole Words Only. Limits the search to whole words that match the search string.

e Regular Expressions. Enables regular expression syntax in the search string. If this option

is set, you can use the following expressions in your search string:

Expression Description

*

+ The plus sign behaves just like the asterisk, but it must replace at least

An asterisk in the search string replaces zero or more characters. An
asterisk must be accompanied by at least two other characters (for
example, you could search for zo*, which would find instances of zo,
Z00, zoom, zoot, but not z*). Use * to represent an asterisk character.

one character (for example, if you search for zoo+, it will return zoot and

zoom, but not zoo. Use \+ to represent a plus character.

IzoT NodeBuilder User's Guide

187

Expression Description

? The question mark replaces one or zero characters. The search must
contain at least two other characters. Use \? to represent a question mark
character.

The period replaces exactly one character. The search must contain at
least two other characters. Use\. to represent a period character.

(pattern) Matches the pattern and remembers the match. The matched substring
can be retrieved by using “\0’-*\9” later in the regular expression, where
‘0’-‘9’ are the number of the pattern.

Example: regular expression (re).*\Os+ion will match regular expression.
First the search matches re string and stores that pattern with index 0. .*
will match gular exp in regular expression. The \0 expression retrieves
the pattern with index O (for example, re). This re that matches the re in
expression. Finally the s+ion expression matches ssion.

x|y Matches either character x or y. You can combine more than two
characters like x|y|z.

{n} The preceding character must match exactly n times. For example
bo{2}k{2}e{2}per would match bookkeeper. n must be a positive
integer.

{n,} The preceding character must match n or more times (for example,

bo{2,}k{2,}e{2,}per would find instances of bookkeeper,
boookkeeeeper, and so on. n must be a positive integer.

{n,m} The preceding character must match between n and m times. nand m
must be positive integers, and m must be greater than n.

[xyz] Matches any of the enclosed characters. [xyz] produces identical results
to x|y|z.

["xyz] Matches any character other than the enclosed characters.

\b Matches a word boundary.

\B Matches anything other than a word boundary.

\d Matches any numerical digit (0-9).

\D Matches any non digit.

\f Matches a form feed.

\n Matches a new line character.

\s Matches any white space character.

\S Matches any non-white space character.

\t Matches any tab character.

\v Matches any vertical tab character.

\w Matches any letter, number, or underscore.

\W Matches anything other than a letter, number or underscore.

\<num> Where <num> a number from 0-9. Matches indexed pattern (see,
(pattern), above).

In/ Where n is any number from 1-255. Matches the character with the
ASCII value n.

188 Developing Device Applications

5. Inthe Where property, select which files to search. You have the following three choices:

e Search all Files in Project. Searches all files in the current NodeBuilder project. This is the
default.

e Search all Open Files. Searches all currently open files. Open the Window menu to see
which files are currently open.

e Search in Directories. Search all files in a specific directory.

6. If you selected the Search in Directories option in step 5, enter the directory to be searched in the
Directory property. The NodeBuilder project directory will be selected by default. Click the
button to the right to browse to a different directory. To search all the subfolders in the Directory
property, select the Include Subdirectories check box. This check box is cleared by default.

7. Click Find.

8. The Search Results tab of the Results pane will display the results of the search. Each instance of
the string found is displayed in a line in the Results pane. The line includes the file, line number,
and line text where the string was found. Double-click a line in the Results pane to open the
specified file and go to the specified line.

Using Bookmarks

You can flag lines of code in you source and text files using bookmarks. You can use bookmarks to
easily return to important sections of your source or text files. You can set bookmarks manually or as
a result of a search (see Searching Source Files earlier in this chapter).

To manually set or remove a bookmark, follow these steps:
1. Open the file that you want to search in the NodeBuilder Project Manager.

2. Place the cursor on the line to be bookmarked, or on the line containing the bookmark to be
removed.

3. Click Edit, point to Bookmarks, and then click Toggle Bookmark. If the line does not contain a
bookmark, a bookmark symbol (') appears to the left of the line. If the line already contains a
bookmark, it is removed.

Once you have set any bookmarks in a file, you can go to the next bookmark in the file. To go to the
next or previous bookmark, click Edit, point to Bookmarks, and then click Next Bookmark or
Previous Bookmark.

To remove all bookmarks from the current source file, click Edit, point to Bookmarks, and then click
Clear All Bookmarks.

Setting Editor Options

You can set editor options that control syntax highlighting, tab settings, auto indent, font settings, and
automatic loading for the current NodeBuilder project. To set editor options, follow these steps:

1. Click Tools and then click Options. The NodeBuilder Project Properties dialog opens with the
Editor tab selected.

IzoT NodeBuilder User's Guide 189

NodeBuilder Project Properties

Code settings

Tab width: =

v Auto indent

[¥ Syntax coloring

Font

Options Editar l Registratinn] Prnject] Build] Debugger

|CourierNew, 10 pt

Change Font...

Code colors

Keymwords

Culmments ™ Bald
Strings

Mumbers [Italic
Operators b

Reload previously open documents when
apening the project

Reset All

190

Ok | Cancel | ‘

Alternatively, you can access this tab by clicking Project, clicking Settings, and then clicking the

Editor tab, or by clicking the
the Editor tab.

2.
Code Settings
Tab Width
Auto Indent

Syntax Coloring

Font

Code Colors

Reload Previously
Open Documents

Reset All

Project Settings button (') on the Editor toolbar, and then clicking

Set the following properties:

Determines the tab size. By default, the tab size is 4.

Automatically indents code inside a function or conditional statement.
This check box is selected by default.

Enables syntax highlighting. You can specify colors in the Code
Colors property. This check box is selected by default.

Sets the font and font size used to display text in the editor. Click
Change Font to choose a new font or font size. You may choose only
from fixed width fonts.

Sets the colors used by the editor when the Syntax Coloring check box
is selected. You can choose different colors for keywords, comments,
strings, numbers, operators, code wizard maintained code, and
preprocessor statements, as well as the default color for code that
doesn’t fit into any of these categories. Select one of these categories
and then choose a color using the color picker.

You can also make the specified text bold or italic by setting the Bold
or Italic check boxes. These check boxes are cleared by default.

Opens all documents that were open the last time you closed the project
when you open a project.

Resets all options on this tab to their defaults.

Click OK to save the changes.

Developing Device Applications

38

Building and Downloading Device
Applications

This chapter describes how to compile Neuron C source code, build an application
image, and download the application image to a device. It explains how to add target
devices to a NodeBuilder project and how to manage them.

IzoT NodeBuilder User's Guide 191

Introduction to Building and Downloading Applications

You can build an application image for one or more development or release targets in a NodeBuilder
project. After you build the application image, you can download it to a development platform such as
an FT 6000 EVB or an LTM-10A Platform, a custom device that you have manufactured, or a
third-party device. You can add target devices to your NodeBuilder project using the 1zoT
Commissioning tool or the NodeBuilder Project Manager, and then manage them and edit their

settings.

The following sections describe how to do the following:

1. Build an application image with the 1zoT NodeBuilder tool.

2. Download the application image to a target with the 1zoT NodeBuilder tool.

3. Add target devices to a NodeBuilder project using the 1zoT Commissioning tool and the 1zoT
NodeBuilder tool, manage target devices, and edit target device settings.

Building an Application Image

You can build an application image for one or more development or release targets in a NodeBuilder
project. When you build an application image, the 1zoT NodeBuilder tool compiles the source code
specified by the device template, links the compiled code with the standard libraries and any
user-specified libraries in the device template, creates downloadable application image files, creates a
ROM image, and creates device interface files that are required by the 1zoT Commissioning tool and

192

other network tools.

To build an application image for one or more targets, follow these steps:

1. Close the LonMaker Browser if it is open.

2. Open the project in the NodeBuilder Project Manager. For more information on how to do this,
see Opening a NodeBuilder Project in Chapter 4.

3. Build the application image for all the targets in the project, all the targets in a device template, or
one or more targets in the project.

e To build all the targets in the current NodeBuilder project, click Project and then click Build
All, or right-click the Device Templates folder in the Project pane and click Build on the
shortcut menu. This builds all non-excluded targets in the project. For more information on
excluding targets, see Excluding Targets from a Build later in this chapter.

S| Project 'WE_F¥ Exercise’:
- a Device Termpl
+ P MyMewDeviceTemplat:
+- P ME Fi% Example Device
+ DDevices
+[_IHardware Templates

lakes

Mew...
Insert...
Insert Copy...

Clean

Skatus.,.

You can clean all targets automatically before building them. To do this, click Project and
then click Build All Unconditionally. For more information on cleaning targets, see
Cleaning Build Output Files later in this chapter.

e To build all the targets in a device template, right-click a device template in the Project pane
and click Build on the shortcut menu.

Building and Downloading Device Applications

Workspace O x

=3 Project 'ME_FY Exercise’:
-1 = Dewvice Templates
Settings...
+ P NE F Example Devicl 9=
: Set Source File, ..
+ [JDevices .
Code Wizard. ..
+1{_}Hardware Templates
Remave
Clean
Build Exclude
Skatus...
Properties. ..

e To build one or more targets in the current NodeBuilder project, click one target device
template, optionally, hold down CTRL and click the other targets or device templates
containing the targets to be built, right-click one of the selected items, and then click Build on
the shortcut menu.

Workspace O x

S| Project 'ME_F¥ Exercise’;
= =3 Device Templates
S -] MyhewDeviceTemplate
@ MyMewDeviceTemplate.nc
+ m] Development
+ [H| Releass
+[_}5ource Files
[iLibraries
=1 & MB F Example Device
Enerz Exanple Device.nc

" Settings...
T 5000 Evaluation Boarg

+{_JDependencies

+ m] Release Clezan
+ [}Source Files Build Exclude
+{ Jibraties

4. The I1zoT NodeBuilder tool automatically saves all unsaved project files when you start a build. If
there are any unsaved changes and the Prompt before Saving Files check box in the Options tab
of the NodeBuilder Project Properties dialog is selected, you will be prompted to save the
changes or cancel the build.

5. The results of the build are displayed in the Messages tab of the Results pane. This pane displays
Neuron C errors, linker errors, warnings, and the build status. You can double-click an error or
warning to go to the line of code that generated the message. The information displayed during a
build is also saved in a log file (.log extension) in the Development or Release target subfolder of
the device template’s output directory.

IzoT NodeBuilder User's Guide 193

194

8.

----- Building 'NE FX Exsmple Device': 'Development' target —-—---
Resolving CodeWizard-3.1ib as C:\LonWorks) Images' CodeWizard-3.1ib

Resolving GEM.LIE as C:%LonWorks) Images'GEN.LIE

Resolving EXTARITH.LIE as C:%LonWorks' ImagesyEXTARITH.LIE

Resolving PSG.LIB as C:)\LonWorks\ Images\PSG.LIB

Exporter driver: The boot ID has been updated to Ox0OAF4

Project Make: Updating device template file succeeded

Importing deviee template 'C:)lm\Source\NE_FX Exercise\NB FX Example Device)\DevelopmentiNE FX Example Device.xif' as 'NE F
Pegistering plugins for new LNS dewvice template...

————— Building 'NB FX Exasmple Device': 'Release’ target --—--—-—

Build due for cowmponent Neuron (R) C Compiler, reason: File C:\LH\SOURCE\NEiFX EXERCISEA\NE FX EXAMPLE DEVICE\NE FX EXAMPLE
Cleaned file C:i%lm\Source\NB_FX Exercise\NE FZ Example Device\Release\NE FX Example Device.nxe

Cleaned file C:%lm\Source\NB_FX Exercise\NB FZ Example Device\Release\NE FX Example Device.aph

Cleaned file C:%lm\Source\NB_FX Exercise\NB FX Example Device\Release\NB FX Example Device.xif

Cleaned file C:hlm\Source\NB_FX Exercise\NE FX Example Device\Release\NE FX Example Device.xfh

Cleaned file C:hlm\Source\NB_FX Exercise\NE FX Example Device\Release\NB FX Example Device.ndl

Cleaned file C:%lm\Source\NB_FX Exercise\NB FX Example Device\Release\NB FX Example Device.wap

Cleaned file C:'lm\Source'NB_FX Exercise\NE FZ Example DevicelRelease\NB FZ Example Device.nme

Requesting build from Meuron (R} C Compiler

; >»>>» Build for project 'NB_FX Exercise' <<<<< j

c
c
c
c
c
c

w
E Compiling. ..

M [Compiler driver: Attached to LonUCL3Z-3

E Set Neuron (R] C Cowpiler commwand --defloc=C:hlw) Source'NE FX Exercise\NE FX Example Device hd
M 4» N\Me::ages,ﬁ Search Results X Ev5|‘<| | L’J

Note: To stop a build in progress, open the Project menu and then select Stop Build.

If the Load After Build option (E)in the 1zoT NodeBuilder toolbar is set or if the Load after
Build check box in the Build tab of the NodeBuilder Project Properties dialog is selected, all
commissioned devices that use one of the applications produced by the build are automatically
downloaded to the devices. If there are any uncommissioned devices associated with the
NodeBuilder project, you need to replace them with the 1zoT Commissioning tool when the build
is complete (for more information, see Replacing a Device in a LonMaker Network in Chapter 7 of
the 1z0T Commissioning User’s Guide). The status of this operation will be shown in the
NodeBuilder Results pane.

Each device is assigned the LNS Device Template specified by its LNS Device Template Name
property in the Program ID tab of the NodeBuilder Device Template Properties dialog. If you
change a device’s program ID, the device template name must also be changed. This is handled
automatically if Automatic Program ID Management is enabled for the NodeBuilder device
template in the Program ID tab of the NodeBuilder Device Template Properties dialog (it is
enabled by default).

If you are unable to load a previously-built device because of a program ID conflict, you can set
the device applicationless by expanding the Devices folder in the Project pane, right-clicking the
device, and then clicking Force Applicationless on the shortcut menu.

= aProject 'ME Exercise’s
-1 Device Templates
+ P Examplel
+- i myMewDeviceTemplate
= S Devices
(ModeEuilder
+{ IHardware Templates

Settings...
Remove

Build
Dehug

Farce Application

Skatus, .,
G0 ko LonMaker

The 1zoT NodeBuilder tool generates downloadable application image files, programmable
application image files, and device interface files. The following table describes these files:

Building and Downloading Device Applications

Downloadable
Application Image
Files

(APB, .NDL., and
NXE,)

Programmable
Application Image
Files

(NRI, .NEI, .NFI,
.NME, and .NMF)

IzoT NodeBuilder User's Guide

These files contain the application image used by the 1zoT
Commissioning tool and other network tools to download the compiled
application image to a device.

There are three types of downloadable application image files: the
binary application image file ((APB extension), the .NDL file, and the
text application image file (.NXE extension). These files are described
as follows:

e The .APB file is used by the 1zoT Commissioning tool and other
LNS network tools to download an application images to a device
over the network. The .APB files can be used to upgrade the
device application for a previously installed device.

Note: The .APB files cannot be used to update a device’s
communication parameters or the clock multiplier for a 5000 or
6000 Series chip. If you change these properties, you must
associate the NodeBuilder project with a LonMaker network and
then load the device application with the 1zoT NodeBuilder tool to
implement the change.

e The .NDL file is used to support manufacture-time loading of
devices with the NodeLoad utility. For more information on the
NodeLoad utility, see the NodeLoad Utility User’s Guide.

e The .NXE file is supplied to support some legacy network tools,
but it is not normally required.

These files contain an application image that is used by a programming
tool to program an application image into a memory chip.

Programming tools include generic device programmers and specialized
Neuron 3120 programmers.

The .NMF and .NME types are used with the 5000 or 6000 Series chips
to program serial EEPROM (.NME) and flash (NMF) memory parts.
Image files intended for serial memory parts may also be programmed
in-circuit, subject to the availability of suitable hardware.

There are five types of programmable application image files: ROM
application image file ((NRI extension), the EEPROM and flash
application image file ((NEI extension), the off-chip serial EEPROM
application image file (NME extension), the Neuron flash image (.NFI
extension), and the off-chip flash application image file (NMF
extension).

e ROM. The ROM application image file (NRI extension) contains
a read-only application image that is used for programming a
PROM or flash memory for use in a device based on a Neuron
3150 Chip or FT 3150 Smart Transceiver. The first 16Kbytes of
the ROM application image file contains the Neuron firmware, and
optionally contains a copy of some or the entire on-chip EEPROM
image, as selected by the Exporter Reboot Options for the device
template target.

e EEPROM and flash memory. The EEPROM application image
file (NEI extension) contains a EEPROM application image that is
used for programming an external or on-chip EEPROM. If the
application image was built for a Neuron 3150 Chip or an FT 3150
Smart Transceiver, the EEPROM application image file contains
the application code and data that resides in off-chip EEPROM,

195

flash, or NVRAM (if any). For these devices, this file is used with
a device programmer to program the external memory chips. If the
application image was built for a Neuron 3120 Chip, this file
contains some or all of the on-chip EEPROM image in a special
format for use only with a Neuron 3120 programmer.

e Off-chip serial EEPROM. For the 5000 or 6000 Series chips, the
.NME application image file is supplied and supports programming
the serial EEPROM memory part.

e Neuron flash image. For a Neuron 3120E4 Chip or an FT 3120
Smart Transceiver, the .NFI file contains an EEPROM application
image that is used for programming the on-chip EEPROM. It
contains the same information as the EEPROM application image
file for the Neuron 3120 Chip, but uses a different format because
of the different programming requirements of the 3120E4 and FT
3120 chips.

e Off-chip serial flash. For the 5000 or 6000 Series chips, the
.NMF application image file is supplied and supports programming
the optional serial flash memory part.

Device Interface These files contain a definition of the device interface that is used by
Files the 1zoT Commissioning tool and other LNS network tools to learn the

interface to a device, without requiring the device to be physically
(:XIF, .XFB, and xfo) attached to the network.

There are three types of device interface files: the text device interface
file (.XIF extension), the binary device interface file (.XFB extension),
and the optimized device interface file (.xfo extension).

e XIF. The text device interface file is a text description of the
device interface. The format of this file is detailed in the LONMARK
External Interface File Reference Guide, which is available on
LONMARK Web site at
www.lonmark.org/technical_resources/guidelines/developer.shtml

e XFB and XFO. The binary device interface file and optimized
device interface file are used by the 1zoT Commissioning tool and
other LNS tools to create LNS device templates, which define the
device interface to LNS tools.

Device manufacturers should distribute the binary application image file ((APB) and text device
interface file (. XIF) files to customers to support their devices. The .NDL file may also be
distributed to support loading the devices in the field with the NodeLoad utility. This is useful for
systems where an LNS network tool is not available to download device applications.

Note: If you provide .NDL files for upgrading device applications, do not change the device’s
communication parameters or change the clock multiplier on a 5000 or 6000 Series chip.
Changing the communication parameters may cause communication with the device to be lost
permanently. Changing the clock multiplier on a 5000 or 6000 Series chip may affect the device’s
power consumption and EMC performance, and it may affect the peripheral circuitry attached to
the Neuron 5000 Processor or FT 5000 or FT 6000 Smart Transceiver.

196 Building and Downloading Device Applications

http://www.lonmark.org/technical_resources/guidelines/developer.shtml

Excluding Targets from a Build

You can exclude a target or a device template from project builds, and you can exclude a target from a
device template build. To exclude a target or device template from a build, right-click the device
template or the Release or Development target folder and then click Build Exclude on the shortcut
menu. The selected device template or target folder will be dimmed.

Workspace O x
S| Project 'ME_F¥ Exercise’;
= =3 Device Templates

+ i MylewDeviceTemplate
= &2 NE FY Example Device
[E1ME F% Example Device.nc
+ m] Development
+ [H]
+ [JSource Files
+{ Dibraries
+ DDevices
+{ IHardware Templates

Build Exclude

To include the device template or target in the build after you have excluded it, right-click it and select
Build Exclude again.

You can also choose to build to only development or release targets in the entire project. To do this,
select Development Targets or Release Targets in Build Type in the NodeBuilder toolbar. To build
all targets, select All Targets.

Cleaning Build Output Files

You can remove all files and folders produced by a build from the device template’s output folder. To

remove all build outputs in the project, right-click the Device Templates folder and then select Clean
from the shortcut menu.

Workspace O x
k] Project 'ME_F¥ Exercise’;
-1 = Dewvice Templates
+ P
SR -E F Example Device
[E1ME FY Example Deviceq Settings...
+ [H] evelopment Sek Source File...
+ [H] Release Code \Wizard. ..
+ [JSource Files Remove
+{ FLibraries Build
+[}Devices ——
+{_IHardware Templates
. Build Exclude
Skatus...
Properties...

To clean all build outputs from a specific device template or target, right-click the device template or
target folder and then select Clean from the shortcut menu.

IzoT NodeBuilder User's Guide 197

Workspace

=3 Project 'ME_FY Exercise’:
=3 Device Templates
+ P
=1 & MB F Example Device
Enerz Exanple Device.nc
+ [H] evelopment

+I [H]
+(_}source Files Settings...
+{ILibraries
+ DDevices Build
+{ IHardware Templates Compile
Clean
Build Exclude

Skatus...

Set Hardware Template. ..

Note: The Clean command only removes files and folders produced by the 1zoT NodeBuilder tool. It
does not remove any files that you have generated with the 1z0T NodeBuilder tool.

Viewing Build Status

You can view the build status of all NodeBuilder device templates and targets. The build status shows
whether the latest version of the source files have been compiled and built and whether all known
devices have had the latest version of the application loaded. You can view the build status for the
entire project, a specific device template, a specific device template target, or a specific target. To do

198

this, follow these steps:

Select whether to the view the build status for the entire project, a specific device template, a

To see the build status for the entire project, right-click the Device Templates folder and then

To see the build status for a specific device template, target, or device, right-click it and then click

1.
specific device template target, or a specific target.
.
click Status on the shortcut menu.
Workspace O x
S| Project 'ME_F¥ Exercise’;
= EI Device Templates
. Mew, ..
+ P MyNewDeviceTemplate Insert
=1 & MB F Example Device Insertltliln
[E1MB F2 Example Device.r R
+ [H] evelopment Build
+ m] Release Clean
+ [}Source Files
+{ILibraries
+ DDevices
+1_FHardware Templates
.
Status on the shortcut menu.

Building and Downloading Device Applications

Workspace O x

=3 Project 'ME_FY Exercise’:
~ =3 Device Templates
+ @ MyNewDeviceTemplate
=1 & MB F Example Device
Enerz Exanple Device.nc
+ [H] evelopment

+I [H]
+ [}Source Files Settings. ..
+_ILibraries Set Hardware Template. ..
+ [}Devices Build
+{_Hardware Template Compile
Clean
Build Exclude

2. The Build Status dialog opens.

Build Status

Template Target | Device Status | QK |

+ MB F¥ Exa... Release Jp-to-date
MB Fi Exa... Development Jp-to-date

3. Each row in this dialog represents a device template target or a target. Targets are listed beneath
their associated device template target. The dialog has the following columns:

Template The NodeBuilder device template.
Target The target type (Release or Development).
Device If this row contains the status for a target, this column displays the

target name. If this column contains status for a device template
target, this column is empty.

Status The target status. This may be one of the following values:

Up-to-date. For device template targets, this indicates that the
application image is consistent with the source code. For targets, this
indicates that the target has been loaded with the latest application
image.

Compile required. Applies to device template targets only. Indicates
that the source code or a property that would change the compiled
version of the application has been modified since it the application was
last compiled.

Assembly required. Applies to device template targets only. Indicates
that the assembly file has been modified since it was last assembled or a
property that would modify the assembled version of the application has

IzoT NodeBuilder User's Guide 199

changed. This status is unlikely to occur.

Link required. Applies to device template targets only. Indicates that
one of the libraries or the system image has been modified since the
application image was last built or that a property has been changed that
requires the project be re-linked.

Export required. Applies to device template targets only. Indicates
that a property has been changed that requires the device to be exported.

Load required. Applies to targets only. Indicates that the application
image has been modified since the target was last loaded. The IxoT
NodeBuilder tool will only be aware of loads performed by the 1zoT
NodeBuilder or 1zoT Commissioning tools. If you load the application
with another tool, the 1zoT NodeBuilder tool will not update the status
until the application is built and loaded using the 1zoT NodeBuilder or
I1zoT Commissioning tools. The Load required status is undetermined
when you use the 1zoT NodeBuilder tool as a standalone application.

Setting Build Options

You can set build properties that control the build process. To set build properties, follow these steps:

200

1.

Click Project and then click Settings, or click the Project Settings button (&) in the Project
toolbar. The NodeBuilder Project Properties dialog opens with the Build tab selected.

NodeBuilder Project Properties @E|

Optiuns] Editnr] Registratinn] Project Build lDebugger]

Froject name: Build type:
' |l Targets =
Stop builds on
& Errars v “erbose make messages
" Warninos v Dehug make messades

" Da not stop [Generate build scriptfiles

v Load after build

W Load ModeBuilder devices only

[0]34 | Cancel

Alternatively, you can right-click the Project folder at the top of the Project pane, click Settings
on the shortcut menu, and the click the Build tab; or click Tools, click Options, and then click the
Build tab.

Set the following options for building device applications:
Stop Builds on Determines when a build is stopped. A build may be stopped when an

error or warning is returned, or upon completion. The default is
Errors. If Do not stop is selected and an error occurs, the build

Building and Downloading Device Applications

process will move on to the next target, rather than aborting the build.

Load after Build Loads the application into a device immediately after the application
image is built. The devices must be commissioned with the 1zoT
Commissioning tool and the LonMaker drawing containing the device
must be open and attached to the network. The Load After Build
button ([g=) on the NodeBuilder toolbar reflects changes to this option
and vice versa. This check box is selected by default.

Load NodeBuilder Limits loads to the targets listed in the Devices folder in the Project
Devices only pane. This check box is selected by default.

Determines whether All Targets (the default), Development Targets,
or Release Targets will be built when you build a project or device
template. You can also view and change the build type from the
NodeBuilder toolbar.

Build Type

Verbose Make Displays more descriptive messages in the Results pane when you build
messages a device template. This check box is selected by default.

Debug make Displays debugging messages in the Results pane when you build a
Messages device template. This output may be used by Echelon Support to help

you diagnose problems. This check box is selected by default.

Generates build script files when you build a device template. This
check box is cleared by default. Build scripts are described in Appendix
A, Using the NodeBuilder Command Line Project Make Facility.

Generate Build
Script Files

3. Click OK.

Downloading an Application Image

You can download an application image that you have built with the 1zoT NodeBuilder tool to a
LONWORKS device. The device may be a development platform such as the FT 6000 EVB or an
LTM-10A Platform, a custom device that you have manufactured, or a third-party device. Typically,
you will do your initial debugging on a development platform before building a custom device, but you
can create and load a custom device at any time.

Development platforms such as the FT 6000 EVB and the LTM-10A Platform include Neuron
firmware that is preloaded into the device. The Neuron firmware allows these devices to be
downloaded over a LONWORKS network so that you do not have to use any special device
programming tools. If you are using a development platform, you will automatically load the platform
when you add a NodeBuilder target as described in Adding and Managing Target Devices later in this
chapter.

If you are using a custom device that does not have an on-chip Neuron firmware image (similar to a
3150 Neuron Chip or 3150 Smart Transceiver), you must program the Neuron firmware image into the
external memory (EEPROM, flash, PROM, ROM, and so on) before you can use the device as a target.

Once you have completed development, you will load your application image into the device as part of
your manufacturing process. The files containing the application image are described in Building an
Application Image earlier in this chapter.

The following table summarizes the processor/memory combinations that you can use, and the files
that you will use to program each.

IzoT NodeBuilder User's Guide 201

Application

Transceiver

Application Image
System Image Application Image File Programming
Processor Memory Type Memory Type Extension Tool
Neuron 5000 On-chip ROM Off-chip serial .NME Compatible
Processor EEPROM Device
FT 5000 Smart Off-chip serial | .NMF Programmer
Transceiver flash
Off-chip serial .NDL NodeLoad Utility
EEPROM or
flash
FT 6000 Smart On-chip ROM Off-chip serial .NMF Compatible
Transceiver EEPROM Device
Programmer
Off-chip serial
EEPROM or .NDL NodeLoad Utility
flash
Neuron 3150 Off-chip flash Off-chip flash .NEI Device
Chip programmer
FT 3150 Smart .NDL NodeLoad Utility
Transceiver
PL 3150 Smart
Transceiver
Neuron 3120xx On-chip On-chip .NEI Neuron 3120
Chip EEPROM EEPROM Programmer
APB and .NXE Network Tool
(TP/XF-1250
devices only)
.NDL NodeLoad Utility
Neuron 3120E4 On-chip On-chip .NFI Compatible
Chip EEPROM EEPROM Programmer
FT 3120 Smart APB and .NXE Network tool
Transceiver (for initial load,
PL 3120 Smart ¢ |>2er102;15|0)
Transceiver y
PL 3170 Smart .NDL NodeLoad Utility

The procedure that you will use to program the application image depends on whether you are
programming off-chip memory for a device based on a Neuron 5000 or 6000 core; the off-chip or
on-chip memory for a device based on a Neuron 3150 core; or the on-chip memory for a device based
on a Neuron 3120 core. These procedures are described in the following sections. See the Smart
Transceiver databook for more information.

Building and Downloading Device Applications

Programming 5000 and 6000 Off-chip Memory

A 5000 or 6000 Series device requires at least 2K of external serial EEPROM, and it can optionally
contain external serial flash memory. There is no on-chip non-volatile memory provided for the
application. Many types of EEPROM devices are supported; however, Echelon currently supports and
provides drivers for only the following three external flash devices: Atmel AT25F512AN, ST
M25P05-AVMNG6T, and SST25VF512A.

Note: The drivers for different flash devices consume varying amounts of EEPROM code space
because of the different programming algorithms required for the different flash devices. For example,
the SST driver takes 40 bytes more of EEPROM than the other two supported flash devices.

The system image resides in on-chip ROM. The application image and the system image are copied
from the external non-volatile memory into the on-chip RAM at chip startup and reset. The Neuron
firmware is responsible for copying any writes that are directed towards external non-volatile memory.
See the Neuron Chip or Smart Transceiver data book for more information.

The build process produces an .NME file for application code and data designated for external
EEPROM and an optional .NMF file for application code for external flash memory, if it is available.

You can download the device application over the network, or you can transfer the device application
over an 12C or SPI interface using the application images files generated by the build process if the
device has not been installed on the network. Using the 12C or SPI interface is ideal for the ex-circuit
programming of serial flash and EEPROM devices. In addition, you can use any compatible device
programmer with the 12C or SPI interface to program these memory devices in-circuit, which helps
with the development and mass-production of generic device hardware, and lowers production costs.
See the next section, Programming 5000 and 6000 Series Chips In-Circuit, for more information on
preparing your device hardware for in-circuit programming.

You can load an alternate system image from external EEPROM or external flash, if required. This
feature may be required if a newer firmware image becomes available at a later date. In such a case,
the system image will always start at address 0xC000 in the external part. In the case of external
EEPROM, the part has to be at least 32K in order to support alternate system images.

The 5000 and 6000 Series chips contain the version 18 Neuron firmware in their on-chip ROM;
therefore, you do not need to program the memory parts before the device is first used. When the
Neuron firmware initializes during power-up, it can detect empty memory parts, and then boot into the
applicationless state with communication parameters set for a TP/FT-10 channel at a clock multiplier
setting of 1. You can then load your application image using the 1zoT NodeBuilder tool, 1zoT
Commissioning tool, NodeLoad Utility, or other network tool.

You need to pre-program the serial memory parts if you want the device to start with a different
version of the Neuron firmware, or if you want to increase application loading speed during
production.

Programming 5000 and 6000 Series Chips In-Circuit

You can use the I°C or SPI interface on the 5000 and 6000 Series chips for the in-circuit programming
of your external non-volatile memory EEPROM and flash devices. This lets you pre-produce generic
hardware and load one of several application images into the board at production time, without the
need for costly sockets or re-soldering.

To perform in-circuit programming, you need a method to connect your external serial EEPROM or
flash memory device to a compatible device programmer, while disconnecting these signal lines from
the 5000 and 6000 Series chip. Echelon has tested the Aardvark™ 12C/SP1 USB Host Adapter from
TotalPhase™ (Part No. TP240141), with the 10-pin split cable from TotalPhase (Part No. TP240212),
as one method for creating this connection (for more information on this adapter, go to the TotalPhase
Web site at www.totalphase.com/products/aardvark_i2cspi/). The Aardvark has six signal lines: two
for the 1°C interface (SDA and SCL), and four for the SPI interface (MOSI, MISO, SCL, and SS). The
I°C/SPI interface used by the Neuron 5000 Processor or FT 5000 and 6000 Smart Transceiver has

IzoT NodeBuilder User's Guide 203

http://www.totalphase.com/products/aardvark_i2cspi/

204

some pins that are multifunctional; therefore you must program each external non-volatile memory
device individually.

After you connect the 1°C or SPI interface to the Aardvark programmer or other compatible in-circuit
device programmer, you can use a program such as the Flash Center Memory Programmer from
TotalPhase to program your external serial EEPROM or flash memory device. You can download the
Flash Center Memory Programmer for free from the TotalPhase Web site at
www.totalphase.com/products/flash_center/#downloads. If you use the Flash Center Memory
Programmer software, you also need to change the extension of the .NME and .NMF application
image files generated by the NodeBuilder tool to .HEX. This is because the Flash Center Memory
Programmer requires hex files that have .HEX extensions.

The following sections provide two sets of diagrams illustrating connection schemes that you could use
for connecting external serial memory devices to the Aardvark programmer over the 1°C and SPI
interfaces in the Neuron core of the 5000 and 6000 Series chips.

The first diagram in each section illustrates how to connect the external serial memory device to the
Aardvark programmer by connecting the TotalPhase 10-pin split cable to the Aardvark programmer
and then inserting the flying leads on the 10-pin split cable to the jumpers on your device’s board.
This is ideal for scenarios where you want to physically disconnect the external serial memory device
from the Neuron chip. Note that instead of using flying leads, you could use one or more custom
cable adapters that are individually wired or switched-in to match the configuration for each external
serial memory device to be programmed.

The second diagram in each section illustrates how to directly connect the external serial memory
device to the Aardvark programmer. This is ideal for small devices where there may be insufficient
space for jumpers on the board, or simple devices where jumpers are not desired. Note that in this
scenario, the external serial memory devices are still connected to the 5000 or 6000 Series chip. You
therefore must connect the RST~ pin on the Neuron chip to GND on the Aardvark programmer. This
holds the RST~ line low, places the 1°C and SPI interfaces in a high impedance state, and idles the
Neuron chip. This eliminates the possibility of the Aardvark programmer conflicting with the Neuron
chip when the Aardvark is accessing the I°C and SPI interfaces.

Serial Memory Device-Aardvark Connection Scheme for I°C Interface

To connect an external serial EEPROM device to the Aardvark programmer and perform in-circuit
programming over the 1°C interface, you could use the following schemes:

Building and Downloading Device Applications

http://www.totalphase.com/products/flash_center/%23downloads

.............

FT 5000

SDA_CS1~ ¢

VCC

R1
4.99k

FT 5000/6000-Aardvark 1°C Connection

43

GND 01

45 1 2 3
sSCLO—O O O

[(via Jumpers and 10-pin split cable (Total Phase Part No. TP240212)]

Aardvark

O scL

) SDA

) GND

10

+——O GND

Jl
J2
1 2 3
—0 O O
VCC
R2
4,99k
Serial
g § EEPROM
Device

IO GND

Note: In this diagram, all jumpers are set into position 1-2 for normal operation, and they are set into
position 2-3 for in-circuit programming. You must always power off your device before changing the

jumper settings.

IzoT NodeBuilder User's Guide

205

Serial EEPROM-Aardvark 1°C Connection
(Direct Connection)

FT 5000 Aardvark
i 45 1
scL O el O scL
43 3
SDA_CS1~ ¢ ® > SDA
28 2
RST~ C 5 GND
10

GND 01 ro GND

vee vee
R1 R2
4.99k 4.99k
O O Serial
g § EEPROM
Device

F GND

Note: Pins 2 and 10 on the Aardvark are both connected to ground inside the Aardvark. As a result,
when the Aardvark is connected to the device board, it finds a reference ground at pin 10 and it takes
the RST~ line to ground on pin 2 at the same time. This means that once the Aardvark connection is
removed, the RST~ line is released and the 5000 or 6000 Series chip resumes normal operation.

206 Building and Downloading Device Applications

Serial Memory Device-Aardvark Connection Scheme for SPI Interface

To connect an external serial EEPROM or flash device to the Aardvark programmer and perform
in-circuit programming over the SPI interface, you could use the following schemes:

Serial EEPROM or Flash-Aardvark SPI Connection
[(via Jumpers and 10-pin split cable (Total Phase Part No. TP240212)]

FT 5000 Ji Aardvark
i 48 1 2 3 8 i
MOSI QO O O O QO MOSI
J2
46 1 2 3 5
MISO O O O O MISO
J3
47 1 2 3 7
SCK O O O SCLK
Ja
40 1 2 3 9
CSO~ O O O SS
2
GND 1 +—O GND
10
+——O GND
VCC
R1..3 R4
3xR49.9 100k
N Serial
< < - o EEPROM or Flash
2 2 Q <?,, Device

f GND

Notes: In this diagram, all jumpers are set into position 1-2 for normal operation, and they are set into
position 2-3 for in-circuit programming. You must always power off your device before changing the
jumper settings.

IzoT NodeBuilder User's Guide 207

Serial EEPROM or Flash-Aardvark SPI Connection
(Direct Connection)

FT 5000 Aardvark
i 48 8 i
MOSI O L 2 O MOSI
MISO O—2 ® ° 5 MISo
47 7
SCK O ® SCLK
40 9
Cso~ @ ® ss
E 28 2
RST- O——\ GND
10

GND 01 f\) GND

VCC

10| =

R1..3
3xR49.9

L T
1

o Serial
< - o o EEPROM or Flash
2 2 Q ‘{3 Device

IO GND

Note: Pins 2 and 10 on the Aardvark are both connected to ground inside the Aardvark. As a result,
when the Aardvark is connected to the device board, it finds a reference ground at pin 10 and it takes
the RST~ line to ground on pin 2 at the same time. This means that once the Aardvark connection is
removed, the RST~ line is released and the 5000 or 6000 Series chip resumes normal operation.

Programming 3150 Off-chip Memory

A device based on a Neuron 3150 Chip, FT 3150 Smart Transceiver, or PL 3150 Smart Transceiver
will always have off-chip ROM or flash memory, and may also have off-chip EEPROM or flash, and
RAM. The Neuron firmware must reside in the ROM or flash. Typical configurations use a 64KB
flash memory part, and sometimes a RAM device. The application code may reside in any
combination of the off-chip memory types, and the on-chip EEPROM. For information on the
placement of application code in the various memory types, see Using Memory in the Neuron C
Programmer’s Guide.

You can program the Neuron firmware and your application image into a PROM or flash memory
device using a compatible device programmer. You will use the ROM application image file (NRI
extension) if your device uses off-chip PROM, or the EEPROM application image file (.NEI
extension) if your devices uses off-chip flash, EEPROM, or NVRAM. You will use both types of
image files if your device uses both types of memory. These files are described in Building An
Application Image earlier in this chapter. All off-chip memory devices containing Neuron firmware or
an application image must be programmed before loading them in the device. You can load an initial
blank application if you plan on downloading a new application over the network to your device.

208 Building and Downloading Device Applications

When using flash memory, always enable the flash programmer’s software data protect, SDP, feature
if possible. You must have at least 0x5600 bytes mapped for flash or else the SDP algorithm will not
work.

You can define sections of application code that will reside in EEPROM, flash memory, or NVRAM,
coexisting with the Neuron firmware and other application code in ROM. The portion of the code that
will reside in EEPROM, flash, or NVRAM is contained in the EEPROM image file (.NEI extension).
You must program this memory before installation, just like the ROM because the application must be
completely present when the device is powered-up.

Programming 3150 On-chip Memory

The Neuron firmware automatically initializes the on-chip EEPROM for a Neuron 3150 Chip, FT 3150
Smart Transceiver, or PL 3150 Smart Transceiver by copying a block of memory from off-chip
memory called the boot image. The boot image is contained in the system area (the first 16Kbytes). It
contains a copy of some or all of the on-chip EEPROM memory. Its contents depend on which
firmware state you select when you build the application image. If you select the unconfigured state
(the default), the boot image contains application code and data and a default network image with no
network addressing information. If you select the configured state, the boot image contains a complete
copy of on-chip EEPROM, including network configuration complete with network addressing
information. When a Neuron 3150 Chip, FT 3150 Smart Transceiver, or PL 3150 Smart Transceiver is
powered up and the firmware determines that EEPROM should be initialized (see below), the data
from the boot image will be copied to on-chip EEPROM, and the appropriate firmware state will be
set. If the firmware state is unconfigured, the remaining EEPROM data must then be loaded over the
network. If the firmware state is configured, the chip will be fully programmed at this point, though no
network connections will be defined.

The boot image is used to initialize the on-chip EEPROM of a Neuron 3150 Chip or FT 3150 Smart
Transceiver when the chip is powered up and the firmware detects that EEPROM has not yet been
initialized by the current Neuron firmware or if the Neuron firmware detects an error and reboot
options are specified as described in Setting Device Template Target Properties: Configuration in
Chapter 5. To accomplish this, there is a special value, or boot ID, placed in the application image file
when it is exported. This 16-bit value normally changes each time you build the application image.

On power-up, the Neuron firmware compares the boot ID in the firmware image with the boot ID copy
in the on-chip EEPROM. If they don’t match, the Neuron firmware initializes the on-chip EEPROM
from the boot image. It also copies the boot ID to EEPROM, so the initialization will not happen again
until a new firmware image with a different boot ID is installed. Additional EEPROM boot recovery
options are available as described in Setting Device Template Target Properties: Configuration in
Chapter 5.

Because the boot ID normally changes each time an application image file is exported, exporting,
programming, and inserting a new memory chip will normally result in the EEPROM initialization
taking place, even if no changes have been made to the application or configuration. While a device
normally only does this initialization once for a given firmware image, you can force this process to
occur again with the same firmware image by resetting the Neuron 3150 Chip, FT 3150 Smart
Transceiver, or PL 3150 Smart Transceiver to the blank state (the initial state of EEPROM on a newly
manufactured Neuron Chip or Smart Transceiver) using a special application image. This image is
shipped with the NodeBuilder software in a file named EEBLANK.NRI, and is located in the
C:\LonWorks\Images folder, where x is 12 or higher. To reset a 3150 chip’s state, program this image
into a memory chip and power up the device with this memory chip in place of the normal firmware.
For a short period, the service LED will flash, then it will change to full on, indicating that the chip has
been returned to the blank state. The next time any memory created from an exported firmware file is
placed in the device, the on-chip EEPROM will again be initialized from the special data area in the
firmware.

In addition to the boot ID, external EEPROM, RAM, and flash memory areas coexisting with ROM
will each have a 16-bit signature value, or memory signature, calculated over any application code or
data (but not user variables) that resides in the area. These values are kept in the respective memory

IzoT NodeBuilder User's Guide 209

areas, as well as in on-chip EEPROM. Whenever the Neuron Chip or Smart Transceiver is reset, the
Neuron firmware compares the on-chip and off-chip signatures, and if there is a mismatch, the Neuron
firmware changes the device state to applicationless. If the device copies the boot image to on-chip
EEPROM, this check will follow that process, and will override the firmware state selection if the
signatures do not match.

Programming 3120 and 3170 On-chip Memory

A Neuron 3120xx Chip, FT 3120 Smart Transceiver, PL 3120 Smart Transceiver, or PL 3170 Smart
Transceiver does not support external memory; therefore, the only memory to program is on-chip
EEPROM, which must be programmed over the network or with a 3120 or 3170 programmer.

A blank Neuron 3120xx Chip, FT 3120 Smart Transceiver, PL 3120 Smart Transceiver, or PL 3170
Smart Transceiver comes up with its communications interface initialized to 1.25Mbps differential
mode with a 10MHz input clock (TP/XF-1250 twisted-pair compatible), and a Neuron firmware state
of applicationless. If your custom device has a compatible transceiver and clock, you can load all of
the application and network configuration over the network using the 1zoT Commissioning tool.

To pre-program a Neuron 3120xx Chip, FT 3120 Smart Transceiver, PL 3120 Smart Transceiver, or
PL 3170 Smart Transceiver with an application or network configuration other than the default, you
must program it in a Neuron 3120 Chip or Neuron 3170 Chip programmer. Refer to the
documentation supplied with the particular programmer for details.

Programming PL 3120 and PL 3170 Smart Transceiver Parameters

The PL 3120 and PL 3170 Smart Transceivers ship with an initial set of transceiver parameters
pre-loaded for programming purposes. To ensure optimal operation, you must re-program the
transceiver parameters for all PL 3120 and PL 3170 chips using the NodeLoad utility.

e For adevice based on a PL 3120 Smart Transceiver, you can use the NodeLoad utility with the —X
option to change the transceiver parameters from the factory default parameters to any of the
supported parameters.

e For adevice based on a PL 3170 Smart Transceiver , you can use the NodeLoad utility to change
the parameters to any of the various C-band types (the PL 3170 Smart Transceiver does not
support A-band operation).

To load transceiver parameters using the NodeLoad utility, you must use the .NDL or .NEI image
because the .NXE image does not contain transceiver parameter values. You can also use a universal
programmer, such as BP Microsystems' programmer or HiLo System's programmer, to change the
parameters prior to soldering the chip onto your PCB board. All valid transceiver parameters included
in the application image files generated by the 1zoT NodeBuilder tool are supported.

If you reboot a PL 3120 or PL 3170 Smart Transceiver, the smart transceiver will restore the factory
default parameters and go back to the initial state. Rebooting in this case refers to any of the following

operations:
Software Action
OpenLNS application Invoking the Reboot() method for AppDevice or
Router object.
NodeUTtil utility Sending the “Reboot” command for the device
(version older than 1.96)
Network management command with Writing a value of zero to the second byte of the
the appl_reset option transceiver parameters on the Smart Transceiver and

resetting the device with the Set Node Mode.

Note: If you simply power cycle or reset your device, it will maintain the programmed change; it will
not restore the factory default.

210 Building and Downloading Device Applications

Upgrading Device Applications

The 5000 and 6000 Series chips are compatible with device applications written for 3150 and 3120
Neuron Chips and Smart Transceivers. You can use the 1zoT NodeBuilder tool to port your old
application to a 5000 or 6000 Series chip. To do this, you open the device’s NodeBuilder project,
update the Neuron Chip model used by the hardware template to the Neuron 5000 processor or FT
5000 or FT 6000 Smart Transceiver, and then re-build the device application. See Editing Hardware
Templates in Chapter 5 for more information on using the Hardware Template Editor.

Note: The Neuron C Version 2.2 language includes the following new keywords: interrupt, _ lock,
stretchedtriac, _ slow, fast,and __ parity. Some of these keywords use a double underscore
prefix to avoid any naming collisions within existing device applications. The Neuron C Version 2.3
language adds the following new keywords: __ resident, _ type scope and __type_index.

You can also use the 1zoT NodeBuilder tool to upgrade your existing device applications to the new
Version 3 code templates when porting them to a 5000 or 6000 Series chip. The Version 3 code
templates include improved code size, speed, and compliance with interoperability guidelines. To
upgrade existing device applications to the Version 3 template, see Using Code Wizard Templates in
Chapter 6.

Adding and Managing Target Devices

A target device is a LONWORKS device application that is built by the 1zoT NodeBuilder tool. There
are two types of targets, development targets and release targets. Development targets are used during
development; release targets are used when development is complete and the device will be released to
production. Each NodeBuilder device template specifies the definition for a development target and a
release target. Both target definitions use the same source code and resource files, but they may use
different hardware templates and compiler, linker, and exporter options. The source code may include
code that is conditionally compiled based on the type of target.

Each target device is defined by a LonMaker shape and its corresponding LNS device, a NodeBuilder
device template and its corresponding LNS device template, and a NodeBuilder hardware template.

You can add a target device to a NodeBuilder project using the 1zoT Commissioning tool or the
NodeBuilder Project Manager (you should use the 1zoT Commissioning tool because it is typically
faster and easier). After you add a target device, you can use the NodeBuilder Project Manager to
re-build and debug it and to view and change its NodeBuilder device template and target type.

Adding a Target Device with the 1zoT Commissioning Tool

You can add a target device to a NodeBuilder project using the 1zoT Commissioning tool. To add a
target device with the 1zoT Commissioning tool, follow these steps:

1. Build the application image for the target as described in Building an Application Image earlier in
this chapter.

2. Correct any build errors.

3. Create a new a LonMaker network or open an existing one. See the 1z0T CommissioningTool
User’s Guide for more information on creating and opening LonMaker drawings.

You will use the 1zoT Commissioning tool to install, bind, configure, and test the targets in your
project. The 1zoT Commissioning tool displays a network drawing that shows the devices,
functional blocks, and connections in your network.

The 1zoT Commissioning tool also displays stencils that contain shapes that you can drag to your
LonMaker drawing. The IzoT Commissioning tool includes a NodeBuilder Basic Shapes 4.00
stencil with shapes that you can use to add new devices, functional blocks, and connections to
your network drawing. The NodeBuilder Basic Shapes 4.00 stencil contains shapes that can be

IzoT NodeBuilder User's Guide 211

used with any device. You can also create custom stencils with shapes customized for your
devices and networks.

The NodeBuilder Basic Shapes 4.00 stencil contains a Development Target Device shape and a
Release Target Device shape. These special device types help distinguish between other devices
on the network and the target devices used by the 1zoT NodeBuilder tool. The 1zoT NodeBuilder
tool lets you create a mixed network of development hardware (such as the FT 5000 EVB, FT
6000 EVB, or the LTM-10A Platform), release hardware (your own hardware), and other devices.

4. Drag a Development Target Device shape or Release Target Device shape from the
NodeBuilder Basic Shapes 4.00 stencil to your network drawing. You can drop the shape
anywhere, but a good location is just below the Channel 1, near the LNS network interface shape
on your drawing.

1] NB_FX Exercise.vsd] E
||| 4

Shapes x

Search For Shapes:
Type your search hers +

[i.LoN SmartServer Static Shapes
[Lontaker WY Shapes

[E LorPoint Shapes 3.0

[F ModeBuilder Basic Shapes 4.00

S
™oL

;IL?M' LJSNemxklnbarfa_e
Q m!!EJ % Channel 1

Davice 1

[E| MB Example Device Stenci || 4% ¥ Subsystem 1 £_Title Blocks I >
=

5. The New Device Wizard opens.

6. Inthe Device Name property, enter a name for the target. This name must be unique for all the
devices and targets within the current page (subsystem). The default name is the Device followed
by an integer (e.g. Device 1). The device name may be up to 85 alphanumeric characters and
include embedded spaces; the name may not include the period, backslash, colon, forward slash,
or double quote characters.

7. Select the Commission Device check box.

212 Building and Downloading Device Applications

Mew Device Wizard

Biexiie Feme: ModeBuilder Device|

' Mutnker of devices ta creste: 3

[v Commizzion device

ModeBuilder Device Template

[Creste new device templste

Matme: MB F¥ Example Device ﬂ

Channel
[Auto-detect channel

Type: |TPFT-10

Lef Lo

Mame: | Channel 1

| Mext = | Firizh Cancel Help

8. Click Next three times. The window in the New Device Wizard lets you select the application
image to be downloaded to your device.

9. Select the Load Application Image check box and then click Next. This specifies that you will
download the binary application image file ((APB extension) built for the device application to the
device. The binary application image files for your device applications are stored in the
C:\Lm\Source\<NodeBuilder Project>\<NodeBuilder Device Template>\<Release ||
Development> folder.

IzoT NodeBuilder User's Guide 213

214

10.

Mew Device Wizard

Specify device application imade name

Device template: B F¥ Example Device [5]

Device name(z): ModeBuilder Device

[v Load application image

[Update firmware in device to match application image

ImiEage naEme: | CAm\SourceNB_FX Exercise'NB FX Example Device'Re

*IF name:

| Chm\SourcehNB_FX ExercizelNB Fr Example Device'Re

= Back | Mext = | Finizh

Fer=|
L

Cancel Help

when your device is commissioned.

The next window lets you set the initial device state and the source of configuration property values

11. Select the Online option under State. This means that your device will run its application after it
has been commissioned.

Mew Device Wizard

Device name(s):

Specify the initial state of the device and the source of CP values

ModeBuilder Device

State Source of CP Values Device Specific CPs

(" Defautt f" {* Do not update

" Offline v Defauts " Update with other CPs

f+ Online v Include MY type CPs ™ Upload from new app image
(" Disahle £ Application image file " Preserve device valles

= Back ‘ Firizh | Cancel Help

12. Click Finish. The Press Service Pin window appears.

Building and Downloading Device Applications

Echelon LonMaker

E B Please press the service pin on device 'Example 1°...

Options Total Received
[Display data from service pin

[Fitter on program ID 0

[Fiter on channel

Coritinue Helgp

13. Press the service pin on the development platform you to be loaded and commissioned. The 1zoT
Commissioning tool loads the application image for your device application to the device and
makes it operational. When the 1zoT Commissioning tool is done commissioning, it will return to
the LonMaker drawing. The device shape will be will be solid green indicating that the device has
been commissioned and is online. The device application will not do anything until you test the
device or connect it to other devices.

“E NB_FX Exercise.vsd flﬁl&‘

Shapes % A

N ——
Type your search here

[i.LON SmartServer Static Shapes
[Loniaker WY Shapes

[LorPoint Shapes 3.0

] NodeBuider Basic Shapes 4.00

w O 2
m 0| o)
) ¥) —

et H ata Paint
Ser Merge
"!;J !;J LELE Channel 1
T i Relesse
Targ..,
[l

Develop...
Target ..,

w hd
] 1B Exxample Device Stenci 4 4 b ¥ Subsystem 1 J_Title Blacks / | ¢ >

14. Test your device’s interface using the 1zoT Commissioning tool. See Chapter 9, Testing a
NodeBuilder Device Using the 1z0T Commissioning Tool, for more information.

15. Debug your device application Debugging a Neuron C Application. See Chapter 10, Debugging a
Neuron C Application, for more information.

Adding a Target Device with the NodeBuilder Project Manager

You can use the NodeBuilder Project Manager to add the devices in any open LonMaker network to
your current NodeBuilder project. To do this, follow these steps:

1. Right-click the Devices folder in the Project pane and click Insert on the shortcut menu.

IzoT NodeBuilder User's Guide 215

Workspace O x

S| Project 'ME_Fi Exercise’s
- A Device Templates
+ P MyNewDevice Template
+- 8P ME FX Example Device
- a Devices
@ NodeBuilder Device
+_YHardware Templates

2. The Insert Device dialog opens.

Insert Device

Device list:

LMS devtemplate | KB devtemplate | Targettype Subsystem |
+ [ILNS Metwor... Cancel
+{_IMB FX Exam... MNB F¥ Example D...

3. This dialog organizes the devices in currently open LonMaker networks by LNS device template
name. If the LNS device template used by the device is based on a NodeBuilder device template,
the NodeBuilder device template name is displayed in the NB Dev Template column. These
devices cannot be added to your NodeBuilder project.

4. Expand the folder containing the desired device template and then select the device to be added.

5. Click anywhere under the NB Dev Template column, and then select a NodeBuilder device
template in the current project that is currently not associated with an LNS device template in the
project.

6. Click anywhere under the Target Type column, and then select either a Development or Release
target type.

216 Building and Downloading Device Applications

Insert Device

Device list:

LME devtemplate | BB devtemplate | Target type | Subsystem |
[FLNS Metwar... Cancel
= NB F¥ Exam... NB F¥ Example D...

& Device 3 B F¥ Example D ~ | Subsystern 1

=S MB F¥ Exarm... NB F¥ Example D...

@ ModeBuil.. NB FX Example D... Development Subsystern 1

ase

7. Click OK to add the target to the Devices folder in the NodeBuilder Project pane. If this device is
commissioned, the 1zoT NodeBuilder tool will download the application to the device the next

time you build it.

Managing Target Devices

You can build, debug, and edit target devices from the Project pane in the NodeBuilder Project
Manager. The Devices folder in the Project pane contains all the targets defined in the current
NodeBuilder project that you have created in a LonMaker network. You can right-click a device to
open a shortcut menu with the following options:

Workspace O x

S| Project 'WE_F¥ Exercise’:
‘A Device Templates
+ P MyMewDeviceTemplate
+- P ME Fi% Example Device

= a Devices

ModeBuilder Device
+[_IHardware Templates

Settings...
Remove

Build
Dehug

Force Applicationless. .,

Skatus, .,
G0 ko LonMaker

Settings Opens the Device Settings dialog, which lets you view and configure
device settings including the NodeBuilder device template and target

type.

IzoT NodeBuilder User's Guide 217

Remove Removes the device as a target for future builds. The device is removed
from the current NodeBuilder project, but it is not removed from the
LonMaker drawing or network, and none of the device files are deleted.

To replace the LonMaker shape in your LonMaker drawing, drag the
Device shape in the LonMaker Basic Shapes stencil over the
Development or Release Target shape, select the Replace the Existing
Device Shape with the Shaped just Dropped check box in the New
Device Wizard, and then click OK.

Build Builds the application image for the device template assigned to this
device. For more information, see Building an Application Image
earlier in this chapter.

Debug Debugs the device. For more information, see Chapter 10, Debugging a
Neuron C Application. This command is unavailable if the application
image has not been built. This command is not displayed if the device
is already being debugged.

Stop Debugging Stops debugging the device. This command is not displayed if the
device is not being debugged.

Force Forces the selected device to the applicationless state by clearing its

Applicationless program ID. To use the device, you must reload the application, or load
a new application.

Status Displays the build status for this device and its device template.

Go to LonMaker Switches focus to the LonMaker drawing with the device shape
selected. The LonMaker drawing must be open for this command to
work.

Editing Target Device Settings

You can edit the device settings for a target device. The device settings include the NodeBuilder
device template and NodeBuilder target type for the target. To edit the target device settings, follow
these steps:

1. Right-click the target in the Devices folder in the Project pane and then click Settings on the
shortcut menu.

2. The Device Settings dialog opens.

218 Building and Downloading Device Applications

Device Settings

NodeBuilder]

Device name:

|NUdeEluiIderDevice

Suhsystem:

|Suhsystem1

ModeBuilder device term

ModeBuilder device targ

plate:

ettype:

|Re|ease

Current LMS device template:

|E}{amp|e1

Ok | Cancel

3. You can view and set the

Device Name

Subsystem

NodeBuilder Device
Template

NodeBuilder Device
Target Type

IzoT NodeBuilder User's Guide

following properties:

Displays the name of the device specified in the LonMaker drawing.
This field is read-only.

Displays the subsystem (drawing page) in the LonMaker drawing where
the device is located. This field is read-only.

Displays the name of the current NodeBuilder device template used by
the target. You can change the NodeBuilder device template used by
the target by selecting a different one from the list of those in the
current NodeBuilder project. If you change the NodeBuilder device
template, the change is not implemented until t you build the device
template and load the target.

When you load the target with the new device template, the 1zoT
Commissioning tool will preserve any functional blocks and
connections that are compatible between the old device template and the
new device templates. Incompatible functional blocks and connections
will be deleted.

The device shape in the LonMaker drawing will not change when you
change the NodeBuilder device template. If there is a different device
shape associated with the new LNS device template, drag the new shape
on top of the old shape in your LonMaker drawing, select the Replace
the Existing Device Shape with the Shaped just Dropped check box
in the New Device Wizard, and then click OK.

Displays the device target type, which may be Development or
Release. You can change the target type. The device shape in the
LonMaker drawing will not change when you change the target type. If
you change the target type, you should replace the shape by dragging
the new shape on top of the old shape.

219

Current LNS Device Displays the name of the LNS device template associated with the
Template target. This field is read-only and is automatically updated if you build
the target with a new NodeBuilder device template.

4. Click OK to save the settings.

220 Building and Downloading Device Applications

9

Testing a NodeBuilder Device Using the
|IzoT Commissioning Tool

This chapter describes how to use the Data Point shape and LonMaker Browser in the
IzoT Commissioning tool to monitor and control your device. It explains how to use
the 1zoT Commissioning tool to connect your NodeBuilder device to other
LONWORKS devices in a network.

IzoT NodeBuilder User's Guide 221

Introduction to Testing NodeBuilder Devices

You can use the 1zoT Commissioning tool to test your NodeBuilder device. You can press the
hardware inputs on your device and use the 1zoT Commissioning tool to monitor changes to the values
of the network variables in the device interface. You can also use the 1zoT Commissioning tool to
control the values of the input network variables and observe whether the hardware outputs function as
designed and output network variable values change accordingly. After you determine that your
device is functioning as designed, you can use the 1zoT Commissioning tool to connect your
development devices to other devices and verify their operation within a network.

Monitoring and Controlling NodeBuilder Devices

222

You can monitor and control your device with the 1zoT Commissioning tool using the Data Point
shape in the LonMaker Basic Shapes stencil or the LonMaker Browser.

The Data Point shape lets you monitor and control a single network variable or configuration property
value from the current drawing page. It is ideal for testing smaller device interfaces with few network
variables and configuration properties. You can also use the Data Point shape to create simple HMIs
in your LonMaker drawing.

The LonMaker Browser can display the values for all the input and output network variables and
configuration properties in your device interface. It is ideal for testing devices with larger external
interfaces.

The following sections describe how to monitor and control your device using each of these methods.

Using the Data Point Shape
To test your device’s interface with the Data Point shape, follow these steps:

1. Open the LonMaker drawing containing your device. See the 1z0T Commissioning Tool User’s
Guide for more information on opening LonMaker drawings.

2. Drag a Data Point shape from the LonMaker Basic Shapes stencil on the left of the LonMaker
window to the drawing. You can place the Data Point shape anywhere, but a good place is
directly above or below the device or functional block containing the data point to be monitored
and controlled. The Data Point Shape dialog opens.

Data Point Shape

Cancel

ddi

Help

r r More ==

Testing a NodeBuilder Device Using the LonMaker Tool

3. Expand the Subsystem icon, expand your NodeBuilder device icon, expand a functional block in
the device interface corresponding to a hardware input, and then select an output network variable
in the functional block; select the Enable Monitoring check box; and then click OK.

Data Point Shape

= . Subsystem 1
+ : LMS Metwork Interface

- ModeBuilder Dervice 1

ddi

LED Cancel
¥
+ ModeOhject Help
] Swvitch
Enable
Orvverrice
o nvaSwitch

+-4 Wirtual Functional Block

|v Enahle monitaring [

[~ Use absolute subsystem path - [e ==

4. The Data Point shape is added to your LonMaker drawing.

Bl NB_FX Exercise.vsd E
A

Shapes X

N —
Type your search here

[i LON SmartServer Static Shapes
[LorMaker WY Shapes

[LonPoint Shapes 3.0

[ModeBuider Basic Shapes 4,00
] NB Example Device Stencil el
[Lontaker Basic Shapes

W Sl

Block

SR

Herge Channel 1

oy |

il Device] 1

10001

Switch.nvoSwitch

=

14 4 » M Subsystem 1 4 Title Blocks J<_ | >

5. Toggle the hardware input and observe the value of the corresponding output network variable
change in the Data Point shape.

6. Repeat steps 2—4 to add a Data Point shape that monitors and controls an input network variable in
a functional block corresponding to a hardware output. In the Data Point Shape dialog, select the
Enable VValue Updates check box.

IzoT NodeBuilder User's Guide 223

224

Data Point Shape

= 0 Subsystem 1
+ LMNS Metwork Interface
ModeBuilder Dervice 1
=& LED
Enahle
Cvverride

B nvilamp

[+ Enable monitoring
[Use abzolute subsystem path

+ ModeChject
+ Swvitch
+ “irtual Functional Black

Cancel

4

Help

[+ Enable value updates

r More ==

Double-click the Data Point shape for the input network variable, enter a different value, and then
click anywhere outside the Data Point shape. Observe the hardware output change based on the
value you entered for the input network variable.

If the data point has a structured value, you can also set the value by right-clicking the data point
shape and selecting Value Details on the shortcut menu. The Set Network Variable Value
dialog opens. You can set the values for the individual fields in the structure, and then click OK

to save the changes.

If the data point has an enumerated value, you can set the value by right-clicking the data point
shape, pointing to Set Details on the shortcut menu, and then selecting an enumeration from the

list that appears.

For more information on using the Data Point shape in the 1zoT Commissioning tool, see Chapter 6 of
the 1zoT Commissioning Tool User’s Guide.

Note: If these steps do not generate the expected result, open the 1zoT NodeBuilder tool and check
your code. You can also use the NodeBuilder Debugger to help troubleshoot problems (for more
information, see Chapter 10, Debugging a Neuron C Application).

Using the LonMaker Browser

To test your device’s interface with the LonMaker Browser, follow these steps:

Open the LonMaker drawing containing your device. See the 1z0T Commissioning Tool User’s
Guide for more information on opening LonMaker drawings.

Right-click the device in your LonMaker drawing, then click Browse on the shortcut menu.

Testing a NodeBuilder Device Using the LonMaker Tool

B NB_FX Exercise.vsd

Shapes x

Search For Shapes:
Type your search here w

[i.LoN SmartServer Static Shapes
[E Lontaker Ny Shapes

[E LorPoint Shapes 3.0

[F ModeBuilder Basic Shapes 4.00
#3 NB Example Device Stencil d
[LonMaker Basic Shapes

Comrmissioning ¥

Configure. ..
> | L I i Delete
@ LNS N k Interfaf-e Manage...

Wove Device ¥
ModeSuider ||
Diata Point Flug-ins r
Channel 1 Properties...
Copy
Duplicate
=
eBull L1
~ A
~| [4"y M7\ Subsystem 1 £_Title Blocks /| < | 8
——— =

3. The LonMaker Browser opens. It displays the functional blocks in your device interface and the
network variables and configuration properties within each functional block. You can only write
values to the input network variables (blue) and writable configuration properties (green).

[NB_FX Exercise] LonMaker Browser - Uintitled
File Edit Browse Help

SEIERE =) .|t | [ooo

Subsystem

Suhsystem 1 lIO(IeBllll(Ier Device 1 NO(IeOI)]ect anequest 0,R0_EHABLE
Subsystem 1 |HodeBuilder Device 1 |HodeObject nvoStatus H 0 0,0
Subsystem 1 |HodeBuilder Device 1 | Switch nvoSwitch H 100,01

[

4. Right click anywhere in the row for each network variable and configuration property and click
Properties on the shortcut menu.

IzoT NodeBuilder User's Guide 225

P [NB_FX Exercise] LonMaker Browser - Lintitled

File Edit Browse Help

Suhsystem 1

lIO(IeBllll(Ier Device 1

NO(IeOI)]ect

anequest

0,R0_EN

Subsystem 1

HodeBuilder Device 1

HodeObject

nvoStatus

H 0 0.0,0,0

Subsystem 1

HodeBuilder Device 1

Switch

nvoSwitch

H 100.0 1

Monitar &ll On Ctrl+B
Monitar All OFF Crrl+Shift+8 —
Refresh Al Ctrl+F —
Clear all Yalues Ctr+L 2

Monitar Ctrl+M u

Gek Yalue Chrl+3 —
Set Yalue Ctrl+0 —
Clear Yalus Alk+5hift4+C —
Detais... Ctrl+D -

Change Format... Ctrl+a

=]

5. The Network Variable Properties or Configuration Property Properties dialog opens.

X

Network Variable Properties

Mame:

Lonhkiark
Drescription

Connections]

MY Attributes

l

Monitor Options
Connection Aftributes

Type name:

Format:

| SNWT_switch

| SNWT_switch

Self-documentstion:

Description:

URL:

Subsystem 1 ModeBuilder Device 1/LED/nviLamp

|

(o]

Cancel

Help

6. Verify that the network variable or configuration property has the correct type and size.

7. Click the |1t | Monitor All button on the toolbar to start polling all network variable and
configuration property values.

226

Testing a NodeBuilder Device Using the LonMaker Tool

8. Change network variable and configuration property values and confirm that the device hardware
works as designed. For example, toggle a hardware input and observe the value of the
corresponding output network variable change. You can then change the value of an input
network variable and observe the hardware output change based on the value you entered.

For more information on using the LonMaker Browser, see Chapter 6 of the 1z0T Commissioning Tool
User’s Guide.

Note: If these steps do not generate the expected result, open the 1zoT NodeBuilder tool and check
your code. You can also use the NodeBuilder Debugger to help troubleshoot problems (for more
information, see Chapter 10, Debugging a Neuron C Application).

Connecting NodeBuilder Devices

Once you determine that your device is functioning as desired, you can test it as part of a network.
You can use the 1zoT Commissioning tool to connect your development devices to other devices and
verify their operation within a network. This entails creating functional blocks, connecting the
network variables within the functional blocks, and verifying that the network variable values are
updated appropriately when you use the 1/0 devices on your device hardware.

Note: You can connect an output network variable of a device to one or more compatible input
network variables on the same device. These connections are referred to as turnaround connections.

To connect your NodeBuilder device, follow these steps:

1. Open the LonMaker drawing that contains the NodeBuilder device. The device must be built and
it must be associated with the appropriate LNS device template.

2. Drag a Functional Block shape from the NodeBuilder Basic Shapes 4.00 stencil or the
LonMaker Basic Shapes stencil on the left of the LonMaker window to the drawing.

Bl NB_FX Exercise.vsd

Shapes x

Search For Shapes:
Type your search here ﬂ

[i.LoN SmartServer Static Shapes
[E Lontaker Ny Shapes

[E LorPoint Shapes 3.0

[F ModeBuilder Basic Shapes 4.00
#3 NB Example Device Stencil d
[LonMaker Basic Shapes

805 —
[
r!rl o‘utv' cm—!;', LNS N xklnlerfa 3 e

Hatw.., Metw...
= =
Metwor Het Drata Paint
Servic, Menge Channel 1
>l > e
msa_j msg_. | |

o - b

NadeBulldgr Devicel

v
~ | 4 » M}’ Subsystem 1 4_Title Elocks J< ¥
—

3. The Functional Block wizard opens. You will use this wizard to associate the new functional
block shape with your NodeBuilder device and the desired functional block.

4. Inthe Functional Block wizard, do the following:
a. Inthe Name property under Device, select your NodeBuilder device.

b. Inthe Name property under Functional Block, select a functional block from those defined
in the device interface.

IzoT NodeBuilder User's Guide 227

228

¢. Inthe New FB Name: property under Functional Block, enter the name for the functional

block. The functional block name may be up to 85 alphanumeric characters and include
embedded spaces; the name may not include the period, backslash, colon, forward slash, or
double quote characters.

d. Select the Create All Network Variable Shapes check box.

Functional Block Wizard

Select Device and Functional Block Instance
Source Functional Block

IMame: | Type:

Subsystem

Mame: | Subsystem 1 Brovvse. .
Device

Mame: | NodeBuilder Device 1 | Type | NBFX Exampls Device [5]

Functional Block

Type: |Open-Lnnp Senzar (OLS) J
Maitmie: |Sw'rtch J
Mewy FB name: Mutnker of FBs to creste: EI
Left Switch
STt =i [v Create all netwoark variables shapes
Dynamic FBs
B
B

| Finish | Cancel Help

Click Finish. The New Functional Block wizard closes and the LonMaker drawing appears. A
new functional block shape appears on the drawing.

Repeat steps 4-5 for each functional block in your NodeBuilder device. If the device contains any
implementation-specific or device network variables or configuration properties (network
variables and configuration properties that are not associated with a specific functional block), the
device will contain a functional block named Virtual Functional Block. Create this functional
block as well. Verify that all functional blocks defined in the NodeBuilder Code Wizard can be
created by the 1zoT Commissioning tool.

Connect the output network variable on one functional block to an input network variable on
another functional block. To do this follow these steps:

a. Drag the Connector shape from the NodeBuilder Basic Shapes 4.00 stencil or the
LonMaker Basic Shapes stencil to the drawing. Position the left end of the shape over the
tip of the output network variable on the functional block before releasing the mouse button.
A red box appears around the end of the Connector shape when you have positioned it
correctly over the Network Variable shape.

Testing a NodeBuilder Device Using the LonMaker Tool

o NB_FX Exercise.vsd =]
~

Shapes x

Search For Shapes:
Type your search here

[i.LoN SmartServer Static Shapes
[E Lontaker Ny Shapes

[E LorPoint Shapes 3.0

[F ModeBuilder Basic Shapes 4.00

B st etz |
- E]' =]
Drevie Ful

Block

|- [l

il Suf (AT
I I T,

NodeBuilder Device 1.LefSwdich NodeBuilder Device 1.LED

Matw, Metw., 7
!i:!' LNS Network Interfaye

e Crata Point

Servic,., Lt B

mij Channel 1

=
NpdeBuilder Device] 1

[LonMaker Basic Shapes 4 4 » M\ Subsystem 1 {_Title Blocks / [¢
==

=]

b. Drag the other end of the Connector shape to the input network variable of the other
functional block until it snaps into place and a square box appears around the end of the
Connector shape. There is a brief pause as the 1zoT Commissioning tool updates the device

over the network.

B NB_FX Exercise.vsd

Shapes x

Search For Shapes:
Type your search hers +

[i.LoN SmartServer Static Shapes
[E Lontaker Ny Shapes

[E LorPoint Shapes 3.0

[F ModeBuilder Basic Shapes 4.00

= e

Block
(* SM \.LA
N Y o
Commacar NodeBuilder Device 1.Left Swit NodeBuilder Device 1.LED

Matw, Metw., %
!i;!!' LNS Network Interfaye

e Crata Point

Servic,., Lt B

erge
Pl >
s LD Channel 1
- N Targ...
= oo
SEEER| 5
e ModeBullder Device| 1

[LonMaker Basic Shapes 14 4 » [\ Subsystem 1 4_Title Blocks / [¢
==

=]

Note: You can also create connections using the Connector tool (') on the Visio Standard

toolbar or the Network Variable Connection dialog box. See Chapter 4 of the IzoT
Commissioning Tool User’s Guide for more information on creating connection using these

methods.
8. Monitor the values of the connected network variables. To do this, follow these steps:
Right-click an empty space in the LonMaker drawing and then select Enable Monitoring on
the shortcut menu.

a.

IzoT NodeBuilder User's Guide 229

B NB_FX Exercise.vsd

Shapes X

Search for Shapes:
Type your search hiere

[E1.LON SmartServer Static Shapes
B LonMaker My Shapes

[LanPaint Shapes 3.0

[E ModeBuilder Basic Shapes 4,00

ojey)
L=}
b

NodeBuilder Device 1.Left Switch

NodeBuilder Device 1.LED

Metwe.. e,
& Commissioning »
. 'ﬁ:!! Fe), LNS Network Interfae Connet..
Data Foint Delete U
S Merge Display Options >
’y MM Channel 1 Go To Subsystem...
- = T Manage. ..
Move Objects »
5 Flug-ins »
o .
! s Subsystem Properties. ..
Paste
E v
I LonMaker Basic Shapes || T, Subsystem 1 {_Title Blocks 1<

b. Right-click the new Connector shape it and select Monitor Input Value to display the

current value of the input network variable in the connection.

i NB_FX Exercise.vsd

Shapes X

Search For Shapes:
Type your search here ~

B i.LON SmartServer Static Shapes
[Lonitaker My Shapes

[E LorPaint Shapes 3.0

[E] ModeBuilder Basic Shapes 4.00

Ol

C1-)
22

Metwe.
=

Data Faint

L,Jm:

Tarqat

it

=3

LNS N K Interfape

NodeBuilder Device 1.Left Switch

Channel 1

Delste

Gat Input Yalue
Get Output Yalue

Monitor Input Yalue

Monitor Cutput Yalue
Properties. ..

Set Connection Description ¥
Use Reference

5

NpdeBullder Device| 1

[E] LonMaker Basic shapes

I« 4 » M| Subsystem 1

Title Blocks 7 |<

Copy
Duplicate

|

¢. Right-click the new Connector shape it and select Monitor Output Value to display the

current value of the output network variable in the connection.

230

Testing a NodeBuilder Device Using the LonMaker Tool

NB_FX Exercise.vsd

Shapes x L]

Search for Shapes:
Type your search here

[E1.LON SmartServer Static Shapes
[E] LonMaker MV shapes
[E LonPaint Shapes 3.0

ider Basic Shapes +.00

100.0=1 L

Delste
NodeBuilder Device 1.Left Switch Get Input Valug

Get Qutput Yalue

Set Connection Description

Use Reference
Channel 1 _—
Copy
Duplicate
N 1
| ~
I LonMaker Basic Shapes || €% W[\ Subsystem 1 4 Title Blocks / || i | @ .

9. Toggle a hardware input to test the connection between the network variables change. Observe
the hardware output and the current values of the network variables on the Connector shape
change as you toggle the hardware input.

E._’-"'J NB_FX Exercise.vsd

Shapes % =]

Search For Shapes:
Type your search here

[i LON SmartServer Static Shapes
[LorMaker WY Shapes

[LorPoint Shapes 3.0

] NodeBuider Easic Shapes 4.00

>

Qut:[0.0 0] Inz[0.0 0

NodeBuilder Device 1.Left Switch NodeBuilder Device 1.LED
Channel 1
N 1
L el
[LonMaker Basic Shapes 4 4 » M Subsystem 1 J_Title Blacks / | < | i | [

IzoT NodeBuilder User's Guide 231

232 Testing a NodeBuilder Device Using the LonMaker Tool

10

Debugging a Neuron C Application

This chapter describes how the use the NodeBuilder debugger to troubleshoot your
Neuron C application.

IzoT NodeBuilder User's Guide 233

Introduction to Debugging

You can use the NodeBuilder debugger within the NodeBuilder Project Manager to control and
observe the behavior of your device application over a LONWORKS channel in order to debug it. The
debugger lets you set breakpoints, monitor network variables, halt the application, step through the
application, view the call stack, and peek and poke memory. You can make changes to the code as you
debug a single device or debug multiple devices simultaneously.

In addition to using the NodeBuilder debugger, you may also connect your device hardware to your
computer using a RS-232 or USB interface, and output debugging and tracing information from your
application. You can then use a terminal emulation program on your computer, such as Windows
HyperTerminal, to view the output and perform runtime debugging.

Many of Echelon’s evaluation boards include a RS-232 or USB interface to support application-level
debugging. These evaluation boards consist of the 6000 FT EVB, 5000 FT EVB, 3150 FT EVB, 3150
PL EVB, 3120 FT EVB, and 3120 PL EVB. For more information on connecting the FT 6000 EVB to
a computer for application-level debugging, see the FT 6000 EVB Hardware Guide. . For more
information for connecting the FT 5000 EVB, see the FT 5000 EVB Hardware Guide.

Starting the NodeBuilder Debugger

234

You can start the NodeBuilder debugger from the NodeBuilder Project Manager or from the 1zoT
Commissioning tool. To start the NodeBuilder debugger, follow these steps:

1. Start the NodeBuilder debugger from the NodeBuilder Project Manager or from the 1zoT
Commissioning tool.

e To start the NodeBuilder debugger from the NodeBuilder Project Manager, right-click the
device to be debugged under the Devices folder in the Project pane and then click Debug on
the shortcut menu.

S| Project 'ME_Fi Exercise’s
-\ Device Templates
+ @ MyNewDeviceTemplate
+- P ME FX Example Device

- a Devices
(ModeBuilder Device
+_IHardware Templates Settings...
Remove
Build

Force applicationless, .,

Skatus. ..
(a0 ko LonMaker

To debug multiple devices at the same time, click one device under the Devices folder in the
Project pane, hold down CTRL and click the other devices to be debugged, right-click one of
the selected devices, and then click Debug on the shortcut menu.

e To start the NodeBuilder debugger from the 1zoT Commissioning tool, open the LonMaker
drawing containing the device, right-click the device to be debugged, point to NodeBuilder,
and then click Debug on the shortcut menu.

Using the NodeBuilder Debugger

2.

IzoT NodeBuilder User's Guide

Shapes x
Search For Shapes:
Type your search here .
[i.LoN SmartServer Static Shapes
[E Lontaker Ny Shapes
[E LorPoint Shapes 3.0
[F ModeBuilder Basic Shapes 4.00
~
.
Device Fu
Block
cmn' s ‘.Luml Brawse. .
Commissioning 3
Configure. .. .00,
L
— NodeBuider Df Delete NodeBuilder Device 1.LED
H (it Go ko Functional Elock, ..
% Manage...
!i:!' (oma), LNS Network Interfate Wove Device v
Drata Point Build
Merge Plug-ins 4 g
} Properties... Edit Source
Channel 1 NodeBuilder Propetties...
msg_¢ s Capy
S Duplicate
3
leBuil 1
v
[LonMaker Basic Shapes 4 4 » M\ Subsystem 1 {_Title Blocks / [¢ |

The NodeBuilder debugger opens.

@ Echelon NodeBuilder, FX -

Im\Source\NB_FX ExerciselNB FX Example DevicelNB FX Example Device.

@ Flle Edit Wew Project Debug Tools Window Help -8 x
DEHo & 78
L
B ® |l Targets -~ &
BED ¥
ILHE
@ CiiimiSourcetNE_F¥ Exercise|NE FX Example Device\NE Fx Example Device.nc
=3 Prajert 'NE_FX Exercise’ A/ i{lodeBuilder Code Wizard Start <CodeWizard Timestawps ~
*aDewcaTemplates /4 Pun on Fri Mar 13 14:42:07 2009, wversion 4.00.20
+ P MyNewDeviceTemplat i
+ @ ME F¥ Example Device /74 HodeBuilder Code Wizard End
= S Devices A/ i{lodeBuilder Code Wizard Start <CodeWizard Templates
@ HodeBuilder Device 1 A4/ <Tewplate Revision="3"/:
#“Harcware Templates /4t}HodeBuilder Code Wizard End
FEELEEEI TS E ST ES SRS E RSP E RS E TSRS
/4 File: NE FX Example Device.nc
A
i
/¢ Generated by NodeBuilder Code Wizard Version 4.00.20
/4 Copyright (o) 2001-2009 Echelon Corporation. All righes reserved.
A
/4 ECHELON MAKES MO REPRESENTATICH, WARRAMTY, OR COMDITION OF
< | /4 MNY EIND, EXPREZZ, IMPLIED, STATUTORY, OR OTHERWISE OR IN
B — A4 BNY COMMUMICATION WITH YOU, INCLUDING, EUT NOT LIMITED ToO, b
Project < 5
X Device Name | Debug Status | NE dev template ‘ Subsystem |
o Device 1 Running | B FX Example Device |subsystem 1 |
a
o
3
2
)
a
X [Resolving EXTARITH.LIB as C:\Loia| X iCall stack not availshle - deviee is r X E,., | Source File|L... | X [v.. |v.. |
o Resolving PSG.LIB as C:)LonWork: o E o
% Exportcer driver: The boot ID ha: E -
t Project Make: Updating device t f‘.s s ﬂ
‘—; Starting debug session for devi - fr] % =
n = o]
2 |W 4| »| M\ Messages | Searchf 3« I > & 9
Far Help, press F1 Debug Status: Running Subsystem 1.NodeBuilde: Device 1 NUM R

The Debug menu appears on the NodeBuilder menu bar and four new panes open in the
NodeBuilder project manager: the Debug Device Manager pane, the Breakpoint List pane, the Call
Stack pane, and the Watch List pane. The following table describes each of these panes:

235

Debug Device Displays which devices are currently being debugged, and lets you

Manager pause and resume the application on each device. If at least one debug
session is in progress, the status bar will indicate the device currently
being debugged and its current state (Running, Halted, Reset, and so
on). For more information, see Using the Debug Device Manager later
in this chapter.

Breakpoint List Displays all the breakpoints that have been set. For more information,
see Setting and Using Breakpoints later in this chapter.

Call Stack Displays a list of active function calls when the debugger is halted in
application source code. You can this information to trace program
execution logic. For more information, see Using the Call Stack later in
this chapter.

Watch List Displays all monitored network variables and their values. For more
information, see Using the Watch List Pane later in this chapter.

Except for the Debug Device Manager pane, these panes are docked into the NodeBuilder Project
Manager. The Debug Device Manager pane appears as a floating window by default, but you can
dock it into the NodeBuilder Project Manager by right-clicking it and selecting the Allow
Docking option on the shortcut menu. You can enable a pane to be moved and resized by
right-clicking the pane and clearing the Allow docking option.

Notes: To stop debugging a single device, right-click the device and select Stop Debugging on the
shortcut menu. Alternatively, you can click Debug, point to Stop Debugging, and select Current
Device from the Stop Debugging menu while the appropriate device is displayed in the status bar of
the Debug Device Manager. To stop debugging all devices, click Debug, point to Stop Debugging,
and select All Devices from the Stop Debugging menu.

You can also stop debug devices from the Debug Device Manager pane. To stop debugging for one
device, right-click the device in the Debug Device Manager pane and select Stop on the shortcut menu.
To stop debugging for all devices, right-click one device and select Stop All on the shortcut menu.

If at least one debug session is in progress, the Results pane contains a Debug Log tab, which lists
device errors. You can use this tab to dump trace information while debugging.

Using the Debugger Toolbar

236

When you start the NodeBuilder debugger, the Debugger toolbar opens. By default, the NodeBuilder
debugger appears directly above the Project pane and below the Window toolbar in the NodeBuilder
Project Manager, but you can move it anywhere.

@ Echelon NodeBuilder FX - [C:Mm\SourcelNB_FX ExerciselNB FX Example DeviceMNB FX Example Device.nc]

@ File Edit ‘iew Project Debug Tools Window Help -8 X

b d & T W

L3
89 lall Targets - &
BHE M
[6fps nwm o]
@ C\Im\Source\NE_Fx ExerciselE F Example DevicelNE Fi Example Device.nc
=3 Praject 'WB_F Exercise’s /¢ {{NodeBuilder Code Wizard Start <CodeWizard Timestamp> ”~
*EﬂDeWmemphms 44 Run on Fri Mar 13 14:42:07 2009, wversion 4.00.Z20
+ P MyhewDeviceTemplat A
+- P NE FX Example Device /¢y iNodeBuilder Code Wizard End
- A Devices /¢ {{NodeBuilder Code Wizard 3tart <CodeWizard Template:>
@ NodeBuider Device 1 //// <Tewplate Revision="3"/>
+_Hardware Templates A4V iNodeBuilder Code Wizard End

AEFEEEEEFEESTI IR PP EEE T T i s ddddddiiddd i rii b ddddidi i iiddddddsiiiiiiiiss
/¢ File: NE FX Example Device.nc

/¢ Generated by NodeBuilder Code Wizard Version 4.00,20
/¢ Copyright (o) 2001-2002 Echelon Corporation. All rights reserved.

/¢ ECHELON MAEES NO REPRESENTATICN, WARRANTY, OR CONDITICHN OF

Using the NodeBuilder Debugger

The following table describes each of the buttons in the Debugger toolbar.

5

6|

@ ilzl = - |||||||

[0

ﬁ

i

View Breakpoint
List

View Watch List
View Call Stack
Resume

Halt

Reset
Stop

Watch Variable
Toggle Breakpoint

Step Over

Step Into

Run to Cursor

Current
Instruction Source
Code

Toggles the breakpoint list pane. See Setting and Using Breakpoints
later in this chapter for more information.

Toggles the watch list pane. See Using the Watch List Pane later in this
chapter for more information.

Toggles the call stack pane. See Using the Call Stack later in this
chapter for more information.

Resumes execution of a halted application. See Stopping an Application
later in this chapter for more information.

Halts the application running on the current device. See Stopping an
Application later in this chapter for more information.

Resets the current device.

Stops debugging the current device.

Opens the Add to Watch List dialog. See Using the Watch List Pane
later in this chapter for more information.

Toggles whether the current line of code has a breakpoint. See Setting
and Using Breakpoints later in this chapter for more information

Executes the current line of the application. If the current line contains a
function, the function will execute in its entirety. See Stepping Through
Applications later in this chapter for more information.

Executes the current line of the application. If the current line contains a
function, the application will halt at the first line of the function. See
Stepping Through Applications later in this chapter for more information.

Sets an implicit breakpoint at the line that the cursor is on. The
application resumes if it is currently halted and continues to execute if it
is already running. The application will halt when it reaches this implicit
breakpoint. In addition, the breakpoint will be cleared once it is
encountered.

When the application is halted, jumps to the line of code on which the
application has halted.

Stopping an Application

You can stop an application while it is running in debug mode in three ways: halting the application,
running to the cursor, and setting breakpoints.

Once you stop an application, you can step through the application one command at a time (see

Stepping Through Applications for more information), observe the values of variables in the watch list
(see Using the Watch List Pane for more information), and observe the condition of the call stack (see
Using the Call Stack for more information).

To resume execution of an application that you have halted, either click the resume button ([p]) on the
Debugger toolbar, type <F5>, or select Go from the Debug menu. The application will continue
running until it hits another breakpoint (or the same one again). You can also move your cursor and
click the run to cursor button to have the application resume execution until it gets to the line
containing the cursor.

The following sections describe the three methods for stopping a device application running in debug
mode.

IzoT NodeBuilder User's Guide 237

238

Halting an Application

You can stop an application while it is running in debug mode by clicking the halt button ([fi]) on the
Debugger toolbar. Alternatively, you can click Debug, point to Halt, and select Current Device or
All Devices. If the device halts in application code, the editing pane displays the line of code where
the application was halted using an arrow (|E:>) in the left margin. If the device halts in system code, no
arrow will appear and a “Call stack not available” message appears in the Call Stack pane.

To resume execution of an application that has halted, click the resume button ([»]) on the Debugger
toolbar, click Debug and then click Go, or press F5. The application will continue running until it hits
another breakpoint (or the same one again). You can also move your cursor and click the run to cursor
button to have the application resume execution until it gets to the line containing the cursor.

Running to the Cursor

You can make an application run to a cursor location. To do this, place the cursor in the line where the
application is to be halted, and then either click the run to cursor button (MI) on the Debugger toolbar
or click Debug and then click Run to Cursor. The application will automatically halt when it reaches
the cursor. If you move the cursor, you will need to set this option again to re-enable this behavior.
Note that Run to cursor breakpoints will be cleared after the first time that they are encountered.

Setting and Using Breakpoints

You can use breakpoints to set lines in your source code where the application will stop running so you
can check variable values, device hardware status, and so on. This lets you identify the line of code
causing an error or unexpected behavior.

To set a breakpoint, place your cursor in the line of code in which you want to set a breakpoint and
click the Toggle Breakpoint button (#) on the Debugger toolbar. Alternatively, you can either
right-click the line of code and select Toggle Breakpoint on the shortcut menu; click Debug, point to
Breakpoints, and then click Toggle Current Line; or press F9. When you set a breakpoint, the
breakpoint icon (#) appears to the left of the line of code.

You can only set breakpoints on lines that contain underlying executable code. Examples of such lines
include function calls, variable assignments, if statements, and macros. Examples of source lines that
you cannot set breakpoints on include comments, when() clauses, pre-processor directives, and
variable declarations.

When the application reaches a line with a breakpoint, the application halts and an arrow icon appears
on top of the breakpoint icon (/&) to the left of the line of code.

Notes:

e For 5000 or 6000 Series chips, you cannot set breakpoints in interrupt-tasks or set breakpoints in
functions that are called from interrupt-tasks. If you set a breakpoint in an interrupt-tasks or in a
function called from an interrupt-task and interrupts are enabled [with the interrupt_control()
function], the debug target will report a system error, reset, and then go into the soft-offline state.
If you re-enable interrupts in the reset clause before the device can go offline, the NodeBuilder
debugger might lose communication with the device and therefore need to set the device
applicationless

o Do not edit source files when running an application in debug mode because the source code will
no longer reflect the active image in the debugger, and breakpoints may lose synchronization. If
you believe breakpoints have lost synchronization, you can stop the debugging session, recompile
and load the device application, and then restart the debugging session.

e Ifyou place a breakpoint in a reset() clause and perform a software reset, you may have to force
the application to continue using the resume ([#]) button for it to reach your breakpoint.

Using the NodeBuilder Debugger

Stepping Through Applications

You can step through the code in your application one line at a time after you halt the application. You
can step into or step over a line of code. The two methods are identical for all statements except for
function calls. When you step over a function call, the function executes and you step to the line of
code after the function call. When you step into a function, you step to the first executable line of the
function. For more information on stopping a device application running in debug mode, see the
previous section, Stopping an Application.

When you halt an application, an arrow (|E:>) appears in the left margin at the line of code where the
application was stopped. When you step to the next command, the arrow moves to indicate the current
line of source code where the application has been stopped.

To step over the current line of the application, you can either click the step over button (%) on the
Debugger toolbar; click Debug and then click Step Over; or press <F10>.

To step into the current line of the application, you can either click the step into button (EE) on the
Debugger toolbar; click Debug and then click Step Into; or press <F11>.

Debugging Interrupts for 5000 or 6000 Series chips

If you are debugging a target device that uses a 5000 or 6000 Series chip, you cannot set breakpoints in
interrupt-tasks or set breakpoints in functions that are called from interrupt-tasks. If you set a
breakpoint in an interrupt-tasks or in a function called from an interrupt-task and interrupts are
enabled [with the interrupt_control() function], the debug target will report a system error, reset, and
then go into the soft-offline state. If you re-enable interrupts in the reset clause before the device can
go offline, the NodeBuilder debugger might lose communication with the device and therefore need to
set the device applicationless

Using Statement Expansion

The 3100 Series chips use a 2-byte breakpoint instruction for debugging. To support breakpoints in
all suitable locations, the compiler must expand some statements to a 2-byte machine instruction (by
inserting a benign no-operation performed [NOP] instruction).

The 5000 and 6000 Series chips support single-byte breakpoint instructions for debugging, which
enables the debug image for a 5000 or 6000 Series chip to be smaller than that of a 3100 Series chip.
To support single-byte breakpoint instructions, no padding is necessary, and the compiler does not
need not to expand statements.

By default, the statement expansion feature is enabled to support the debugging of 3100 Series devices.
If you are debugging a 5000 or 6000 Series device, you can disable the statement expansion feature to
reduce the size of the debug image. To do this, right click the target, click Settings on the shortcut
menu, then select the Compiler tab in the NodeBuilder Device Template Target Properties dialog.
In the Debug Kernel Options box, clear the Expand Statements check box, and then click OK.

Using the Watch List Pane

You can add variables, network variables, and configuration properties in your device application to
the Watch List and then monitor their current values in the Watch List pane.

You can monitor local variables when the application is halted in a context where the variables are
available. You can monitor global variables and network variables while the application is running.
You can also modify the values of global variables and input network variables while the application is
running. You can only modify output network variables when the application is halted in the
debugger. You cannot monitor the msg_in, msg_out, resp_in, and resp_out built-in variables from
the debugger.

IzoT NodeBuilder User's Guide 239

240

To add a variable, network variable, or configuration property to the watch list and monitor its value in
the Watch List pane, follow these steps:

1.

3.

Right-click a variable name or statement in the source code and then click Watch Variable on the
shortcut menu.

@ Echelon NodeBuilder, FX - [C:Mm\SourceNB_FX ExerciseNB FX Example Devicell ED. nc]

@ Elle Edit ¥ew Project Debug Tools Window Help -8 X

e e TW

EE OZ2 e e M # & Ba
B = ANl Targets = &
BED ¥
HLHE & "
d))]
=& HB F¥ Example De & I A
@NBFXExamp\E {f<Fblock MV When:
E [H]Deve\opment when (nw_update occurs (nvilawp))
- [H Release ' =
El il }HNodeBuilder Code Wizard End
Source Files i
@Fllesys‘h
[Eep.h {
ELED.ne io out{iolamp, !{nvilLsmp.valus && I
EINE F Exam if {fblockNormalNotLockedout(fhlock inder o
- Capy
@Nodeobject i
Sl Nodeobject 44 TODO:
lode0hject — |
Elswitehh ff Add code to process the input net Insert Fike into Project
hl /f T=e the nv_in index, nv_array ind| Propertiss in_index]
Bswich.nc // constructs to determine which WV 1 B
Elcommonh i Find
|, P £
< i S Watch Va
D Project Toggle Breakpaint F9 3
X Device Name | Debug Status | NE dew ke ‘ Subsystem |
E Device 1 |Running |NB FX Ex. ‘Suhsystem 1 |
]
g Run Ta Cursar
2
o
X [Resolving EXTARITH.LIE as C:\Loj«| X (Call stack not available - device isr X g, source File|L... | X T.. [v.. [v.. |
Fesolving PSG.LIE as C:\LonWork: o E o
% Exporter driver: The boot ID ha E -
& [Froject Make: Updating device te *"._u. H a2
‘_:'; Starting debug session for dewi - i % =
& = u k]
2 |1/ 4| »| M} Messages | Searchf S I 3 & S
For Help, press F1 Debug Status: Running Subsystem 1.MNodeBuilde Fefiaol 46 MNUM OWR,

The Watch Variable dialog opens.

Watch Variable

Wiiatch type
+ \Watch variable

" Configuration table symbaol

" Built-in syrmbol

j Recalculate

Type Variable Value
+-network input str... |nviLamp <{0,0}>

Missing... Add Wwatch Cancel

If you right-clicked a variable name, the selected variable appears in the Watch Type box. You
can proceed to step 5.

Using the NodeBuilder Debugger

4. If you right-clicked a statement, the drop-down list in the Watch Type box is empty and you need
to select one of the following types of variables to watch :

e Watch variable. Enter a network variable using its global network variable name or using its
functional block member name (for example, using the scope operator “::”). Similarly, you
can enter a configuration network variable using its global network variable name or using the
corresponding configuration property syntax. See the Neuron C Programmer’s Guide and
Neuron C Reference Guide for more information on referencing configuration network
variables (CPNVs). To watch a configuration property that is implemented within a
configuration file (file CP), specify the configuration property to be watched as follows:

[<FB or NV name>][[<FBNVindex>]]::<CP name>[[<CPindex>]]

If the configuration property applies to a functional block or network variable, enter <FB or
NV name>; if the property applies to the entire device start the name with the scope operator
(for example, : :cpValue). If the functional block or network variable is part of an array,
enter the <FBNVindex> value to specify the array member. <CP name> can be a
configuration property variable or array. If the configuration property is part of an array,
enter the <CP index> to specify the member of the array to watch. In addition, the following
rules apply:

= You cannot watch an entire configuration network variable array. You must specify a
single element to be watched using the <CPindex> field.

= You can only watch an entire cp_family array. In this case, do not specify a <CPindex>;
the entire array will be displayed in a tree structure in the watch list.

See the Neuron C Programmer’s Guide and the Neuron C Reference Guide for more
information on the syntax used for accessing configuration properties.

e Configuration Table Symbol. Select a configuration table value to be watched from the list
of all available configuration table symbols.

e Built-in Symbol. Select a built-in symbol value to be watched from the list of all available
system symbols. You can click Missing to list any header files not used in this application
that contain other system variables. If you want to watch one of these system symbols, you
will need to include the header file and rebuild the device application.

You can click Recalculate to search for the currently selected watch variable. If the selected
variable is a structure type, the pane at the bottom of the dialog allows you to browse the variable
structure. If the variable does not exist, a dialog pops up with the message Symbol Not Found.

5. Click Add Watch to add the selected variable to the Watch List pane. If the variable is a structure
or union, you can expand the variable and then the data type under the Type column to display all
the fields of the structure. For each variable or field in a structure, the watch list displays the type,
variable name, and value.

IzoT NodeBuilder User's Guide 241

242

Watch Variable

Wiiatch type
+ \Watch variable

" Configuration table symbaol

" Built-in syrmbol

nwiLamp j Recalculate
Type Variable
ork input sir... nvi amp({{l]l]}})
- struct <{0.0}>
unsigned sh...|value <0>
short state <0>

Missing... Add Wwatch Cancel

Scalar network variables contain a single field that contains their value. If the variable does not
exist, a Symbol Not Found dialog opens.

Optionally, you can edit the value of a variable or a field in a structure in the Watch List pane.

a. To edit the value of a scalar variable, double-click anywhere in the row containing the
variable or right-click the variable and then click Edit VValue on the shortcut menu.

To edit the value of an enumeration, expand the variable, double-click anywhere in the row
containing the field, or right-click the field and then click Edit VValue on the shortcut menu.

To edit the value of a structure, expand the variable and expand the type, double-click
anywhere in the row containing the field, or right-click the field and then click Edit Value on
the shortcut menu.

Edit Value
Refresh value
Display Format 3 =
% Type Variable Delete Al Watches
- network input struct |nviLamp v Allow dacking 1
= struct Hide 5

value

Watch List

b. The Edit Value dialog opens.

Edit Value: value

Ciata type: unsigned short oK

Dizplay format. Decimal
Cancel

Currentvalue: 0

Mew value: |E

Using the NodeBuilder Debugger

c. Enter the new value for the variable and then click OK. If you are editing the value of an
enumerated type, select an enumeration from the list or click Enter in Decimal or Enter in
Hex and then enter the desired index of the enumeration.

d. Click OK to save the value.

Notes:

e Toremove a variable from the watch list, right-click the variable in the Watch List pane and click
Delete on the shortcut menu. To remove all variables from the Watch List pane, right-click
anywhere in the Watch List pane and click Delete all Watches on the shortcut menu.

e You can display the values in the Watch List pane in either decimal or hexadecimal format. You
can set the default format by clicking Project, clicking Settings, clicking the Debugger tab in the
NodeBuilder Project Properties dialog, and then selecting the desired default format in the
Default Display Radix option. You can override the default setting for individual entries in the
Watch List pane by right-clicking in the Watch List pane, pointing to Format, and then selecting
the desired format on the shortcut menu. Individual entries within each of the variables can also
be displayed using string, signed 32-bit, and floating point format where applicable.

Using the Call Stack Pane

The Call Stack pane displays the functions that have been called when the application is halted. If
your device application is halted within a function, this lets you determine if that function was called
from within another function, and if so, which one. If the device application is within multiple
functions, the most recently called one will be on the top of the call stack list. You can double-click
any entry on the call stack list to be taken to the line of the function call.

Using the Debug Device Manager Pane

The Debug Device Manager pane displays the status (running, halted, or reset) of all devices that are
currently being debugged. The Reset status is only displayed if the device is reset while halted. You
can right-click a device in the Debug Device Manager pane and select one of the following options on
the shortcut menu:

Ox

e P R—— Examplet

Stop
Halt

Stop Al

v Allow docking
Hide:

Debug Device Manager

Make Current Makes the selected device the current device. This affects
operations that are performed on the Current Device from the
Debug menu.

Stop Stops debugging the selected device and removes the device from
the Debug Device Manager pane. To restart debugging for this
device, right-click the device under the Devices folder in the
Project pane and click Debug on the shortcut menu.

Halt Halts the application in the selected device. For more information
about stopping and starting device applications, see Stopping an
Application earlier in this chapter.

Resume Resumes running a halted application in the current device.

1zoT NodeBuilder User's Guide 243

Stop All Stops debugging all devices, removes all the devices from the
Debug Device Manager pane, and closes the NodeBuilder
debugger. To restart debugging for a device, right-click the device
under the Devices folder in the Project pane and click Debug on
the shortcut menu.

Allow Docking Docks the Debug Device Manager pane into the NodeBuilder
Project Manager. The Debug Device Manager pane appears as a
floating window that you can move and resize by default.

Hide Select this option to hide the debug manager window. To view the
debug manager window again, click View, select Debug
Windows, and then select Debug Device Manager.

Peeking and Poking Memory

You can use the NodeBuilder debugger to view (peek) and modify (poke) the memory contents of the
device being debugged. You must be careful when modifying memory contents because you can
render a device inoperable by writing to an inappropriate memory location. To view and modify
memory, follow these steps:

244

1.

Click Debug and then click Peek/Poke Memory. The Peek/Poke Memory dialog opens:

PeekfPoke Memory - Subsystem 1.NodeBuilder Device @El

Feek

Address [Count |128 Feek

Foke

Address Fake | Fill...

Data: |

Close

To inspect memory, enter the Address and Count properties in the Peek box at the top of the
dialog, and then click Peek. The Peek box displays the number of bytes in the Count property
starting at the address in the Address property. The data is displayed in both hexadecimal and
ASCII format. You can save the results of the peek by clicking Save to File.

To modify memory, enter the Address property and enter the Data property (in hexadecimal
format) in the Poke box at the bottom of the dialog, and then click Poke. The data in the Data
property is written to the device starting at the address in the Address property. To write multiple
bytes of data, separate each byte with spaces, commas, tabs, newlines, hyphens, or colons.

You can fill multiple bytes of memory with the same value. To do this, click Fill. The Fill
Memory Block dialog opens.

Using the NodeBuilder Debugger

Address: ||
Cancel
Count: IT

Byte (hex): li

In the Address field, enter the address to start writing in. In the Count field, enter the number of

bytes to write. In the Byte field, enter a two digit hexadecimal value. Click OK to write the value
in Byte a number of times equal to Count starting at the address in Address. You are returned to

the Peek/Poke Memory dialog.

4. Click Close to return to the NodeBuilder debugger.

Executing Code in Development Targets Only

You can designate code for execution in development targets only. This lets you build simultaneously
to development and release targets and include test code that executes on the development targets only.
To have one or more lines of code execute on development targets only, put the statement #ifdef
_DEBUG before the code, and the statement #endif after the statement. The following code sample
demonstrates how to do this:

#ifdef _DEBUG
//Test code. Executes on development targets only

<test code>
#endif

You can not define network variables or configuration properties or make any changes to the external
interface inside the #ifdef clause. This is because both release and development targets have the same
program ID.

The _DEBUG macro is predefined for development targets, but not for the release targets. To edit the
predefined macros for a development target, right-click Development folder in the Project pane, and
then click Settings on the shortcut menu. The NodeBuilder Device Template Target Properties
dialog opens with the Compiler tab selected. Enter a symbol in the Defines: property, which can be
tested using the ifdef directive.

Using the Debug Error Log Tab

When you start a debugging session, the Debug Error Log tab is added to the results pane. This tab
provides rudimentary tracing capabilities and debugging timing-related problems in the debugger when
a debug session is in progress. You can use the Neuron C error_log() function to output specific error
codes to the debug tab in response to specific events. See the Neuron C Programmer’s Guide and
Neuron C Reference Guide for more information about the error_log() function.

Setting Debugger Options
You can set options for the NodeBuilder debugger following these steps:

1. Click Project, click Settings, and then click the Debugger tab in the NodeBuilder Project
Properties dialog. Alternatively, you can right-click the Project folder at the top of the Project
pane and then click Settings on the shortcut menu.

IzoT NodeBuilder User's Guide 245

246

NodeBuilder Project Properties

Default Display Radix
* Decimal (Base 10)

Freferences

Fonts and Colors

Call Stack
Wiatch List

Options | Editor | Registration | Project| Build Debugger |

" Hexadecimal (Base 18)

[Donotdisplay device reset dialogs
[Do notdisplay lash warning dialogs
[Do not display editing while debugging warning dialogs

[~ Do notopen the device source file at session startup

Debug Session

Tick Intemval {msec):

10 pt, Courier New

Faonts and Colars.. |

Ok | Cancel | ‘

You can set the following options:

Default Display Radix

Tick Interval

Preferences

Do not Display Device
Reset Dialogs

Do not Display Flash
Warning Dialogs

Do not Display Editing
while Debugging
Warning Dialogs

Do not Open the Device
Source File at Session
Startup

Specifies the default format in which data is displayed in the
Watch List pane. You can choose to monitor data in the Watch
List pane in Decimal or Hexadecimal format.

Specifies how frequently (in milliseconds) the debugger
processes incoming debug messages from the device. The
default interval is 100 ms.

Suppresses warnings when a device in the project encounters a
hardware, software, or watchdog timer reset. A message
confirming the reset will still appear in the results pane. This
check box is cleared by default.

Suppresses warnings when you set a breakpoint in application
code that resides in flash memory. This check box is cleared by
default.

Suppresses warnings when you edit code while in a debugging
session. Editing code in a debugging session can cause
unpredictable debugger behavior and is not recommended. This
check box is cleared by default.

Prevents the source file (<template name>.nc) from automatically
opening when you start the debugger. This may prevent
unnecessary windows from being opened if you are debugging
other source files. If a breakpoint is hit in this file (or any file),
that file will be opened regardless of this option.

Using the NodeBuilder Debugger

Fonts and Colors Specifies the font, font size, and color used for text in the
Breakpoint List, Call Stack, and Watch List panes. To change
the font and color used in a pane, click the pane and then click
Fonts and Colors.

3. Click OK to save the settings.

IzoT NodeBuilder User's Guide 247

248 Using the NodeBuilder Debugger

Appendix A

Using the Command Line Project
Make Facility

This appendix describes how to use the command line project make facility with the
project make command.

IzoT NodeBuilder User's Guide 249

Using the NodeBuilder Command Line Project Make

Facility

You can invoke the NodeBuilder build tools from the Windows command line. You can use this
feature to generate automated build scripts for your devices. To invoke the NodeBuilder Command
Line Project Make Utility and build a project, open a Windows command prompt and enter the

following command:

pmk [-p=<Project> <command line switches> -t=<Target>

You must specify what kind of operation will take place: a build (see the —-b command switch), a query
(see the —.q command switch), or a clean (see the —x command switch). All other command line
switches are optional. The pmk command performs one build, query, or clean operation.

You can use the following command line switches:

-? <cmd>
(or --help <cmd>)

-@ <file>

--always (or —a)

—b <nbdt>

—C <nbdt>

250

Displays usage help for the <cmd> command. Providing no command
at all also displays the list of the available commands and a brief usage
hint.

Uses <file> as input to the project make. This file can contain
command line switches to be used by the project make facility. You can
set the Generate build script option in the Build tab of the
NodeBuilder Project Properties dialog to have the 1zoT NodeBuilder
tool automatically generate a command file ((CMD extension) that will
allow you to reproduce the current build from the command line. This
command file will be placed in the device template target folder, and
will have the name <device template name>.cmd. If multiple targets
are built, a separate command file will be generated for each.

Causes NodeBuilder to perform an unconditional build. See Building
an Application Image for more information. This causes a clean
command to be executed before the build.

Indicates that a build operation will be made on the selected
NodeBuilder device template (.NbDt extension) for the target specified
by the —t command switch. The device template will be compiled,
linked, and exported. You can only specify a single device template per
make command.

Specifies a NodeBuilder device template file ((NbDt extension) to be

compiled. You can only specify a single device template per make
command.

Appendix A: Using The Command Line Project Make Facility

--defloc <dir>

--mkscript <file>

-

--nadep <nadep>

--ncdep <ncdep>

--nldep <nldep>

--nodefaults

--nxdep <nxdep>

-p <project file>

-q <nbdt>

--silent

-t <Development ||
Release>

-V

IzoT NodeBuilder User's Guide

Specifies a directory to search for the default command file. The
default command file for the project make facility must be named
lonpmk32.def. If a default directory that does not contain this file is
specified, the command will fail silently. If no default directory is
specified, the current directory will be searched for lonpmk32.def.

The default command file can contain any number of command
switches for the pmk command. These commands will be executed in
addition to any commands that are entered on the command line, or
passed along using the --file command switch. For example, a default
command file consisting of the following line would generate a log of
the build script for every build in a file called lonpmk.32.log:

--mkscript c:\temp\lonpmk32.1og

Generates a file that contains all the command switches and arguments
that are used in this invocation of the project make command. This file
can be used (for example) as a log of the build or to recreate the build
on another computer.

Reconfirms build status after build completion.

Specifies the location of the assembler dependency file. By default, this
file is located in the IM subdirectory of the target folder (for example,
Development or Release).

Specifies the location of the compiler dependency file. By default, this
file is located in the IM subdirectory of the target folder (for example,
Development or Release).

Specifies the location of the linker dependency file. By default, this file
is located in the IM subdirectory of the target folder (for example,
Development or Release).

Disables processing of default command files (see the description of the
--defloc command switch for more information).

Specifies the location of the exporter dependency file. By default, this
file is located in the IM subdirectory of the target folder (for example,
Development or Release).

Specifies the NodeBuilder project that contains the NodeBuilder device
template to be built. NodeBuilder project files have the .NbPrj
extension.

Indicates that a query operation will be performed on the specified
NodeBuilder device template for the target specified by the .t command
switch. This command will indicate whether the target needs to be
built.

Suppresses banner message display.

Specifies on which target the build, clean, or query operation will be
invoked.

Causes the project make facility to be run in verbose mode.

251

252

-X <nbdt> Indicates that a clean operation will be performed on the specified
NodeBuilder device template for the target specified by the —t command
switch. A clean operation removes all files and folders produced by a
build.
The following example demonstrates a minimal command line invocation of the Project Make Facility:
PMK —p=Test.nbprj —b=MyDevice.nbdt —t=Development

This command performs a conditional build on the development target that is contained within the
device template MyDevice, which is part of the project Test.

For more information about the NodeBuilder and Neuron C command line tools, see Appendix A of
the Neuron C Programmer’s Guide.

Appendix A: Using The Command Line Project Make Facility

Appendix B

Using Source Control With a
NodeBuilder Project

This appendix describes how to manage a NodeBuilder project using a source control
application.

IzoT NodeBuilder User's Guide 253

Using Source Control with a NodeBuilder Project

When developing a large NodeBuilder project, you can put the project under source control to allow
multiple developers to work concurrently on different parts of the project. This appendix lists all the
files associated with a NodeBuilder project that should be kept under source control.

254

The following abbreviations for file locations are used throughout the table:

<LonWorks>

<NbDtFolder>

<mnfr>

<lang>

<project>

The LONWORKS folder, which is typically C:\LonWorks.

The folder that contains the NodeBuilder device template file.
NodeBuilder device template files use the .NbDt file extension.
By default <NbDtFolder> is a subfolder of the NodeBuilder
project folder.

Your manufacturer name (for example, ACME Corporation).

A valid device resource file language identifier such as ENU,
GER, FRA, and so on.

The name of the NodeBuilder project.

Check the following files into a source code control system to allow several developers to work on the
same code base and to enable a LONWORKS device file set to be completely recreated from source:

NodeBuilder Project Files
(.NbPrj and .NbOpt)

NodeBuilder Device
Template Files

(.NbDt)

The file <project>.NbPrj is the NodeBuilder project file. It holds
pointers to all the NodeBuilder device templates and any
user-defined hardware templates required for a build. This file
would be checked in for convenience.

The file <project>.NbOpt is a NodeBuilder options file. It holds
information about which devices have been inserted into the
project, breakpoint lists for the debugger and other user settings.
This file would not normally be checked in. The options in this
file are a matter of personal preference, and do not effect device
file set.

Although NodeBuilder project folders and all their subfolders can
be moved and re-opened from the new location with the Open
Project dialog, moving a project folder can cause compilation
errors due to absolute file references in use, or due to device
resource files being moved. Try to use relative references rather
than absolute file name paths whenever possible.

To improve project-to-project compatibility, do not use the
Include Search Path option in the Project tab of the
NodeBuilder Project Properties dialog.

The default location for project files is: C:\Im\source\<project>

These files hold most of the data required to build a device file set
and NodeBuilder device template.

The device template folder and all its contents can be moved and
re-inserted into an existing project. Moving a device template
folder can cause compilation errors due to absolute file references
in use, or due to resource files being moved. The default location
for the NodeBuilder device template files is <NbDtFolder>.

Appendix B: Using Source Control with a NodeBuilder Project

Neuron C Source Files

(.nc, .c, and .h)

Miscellaneous Files

NodeBuilder Hardware
Template Files

(NbHwt)

Resource Files

(TYP, .FMT, .FPT, and
<lang>)

The main source file, <Device Template>.nc, is stored in the
C:\Lm\Source\<Project>\<Device Template> folder. This file
and any files included with the #include directive must be
checked in.

Standard header files are stored in the
C:\LonWorks\NeuronC\Include folder. These files should never
be edited because future installs will overwrite modified files and
changes would be lost. Check these files in to ensure that you can
go back to the version used to create your device, but be cautious
when restoring them so that you do not overwrite newer versions.

You can determine the set of dependent files from the Project pane
by performing a successful unconditional build operation and
inspecting the files listed under the Dependencies folder.

Includes user-defined libraries, build script files, and other
user-defined files

Describe the hardware that will be used to host the application.
This data includes Neuron Chip model, clock rate, memory map,
and so on.

Standard hardware templates are stored in the
C:\LonWorks\NodeBuilder\Templates\Hardware\Standard
folder.

These files should never be edited because future updates to the
1zoT NodeBuilder tool will overwrite modified files and your
changes would be lost. Check these in to ensure that you can go
back to the version used to create your device, but be cautious
when restoring them so that you do not overwrite newer versions.

You can place user hardware templates in any folder. A
cross-project collection of user hardware templates may be found
in the User hardware templates folder, which by default is in the
C:\LM\Source\Templates\Hardware\User folder.

These resource files comprise resource file sets, which hold
definitions of functional profiles, network variable types, and
configuration property types. Resource file sets are generated
with the NodeBuilder Resource Editor. For more information on
creating and editing resource file sets, see the NodeBuilder
Resource Editor User’s Guide.

You can move resource files by removing the reference to the
previous resource folder from the resource file catalog using the
NodeBuilder Resource Editor, moving the resource folder and all
its content to a new location, and then adding the new resource
folder to the resource catalog using the resource editor. You must
also add all required resource folders to the resource catalog when
moving or restoring a NodeBuilder project to a new computer.

To register a resource file from a build script, change the current
directory to the C:\LonWorks\Types folder and enter the
following command:

mkcat —a<ResourceFolderPath>

Note: Do not check-in the device resource file catalog (LDRF.cat by default) because it might
contain references to device resource files that are unigue to each computer.

IzoT NodeBuilder User's Guide

255

256 Appendix B: Using Source Control with a NodeBuilder Project

Appendix C

Glossary

This appendix provides definitions for many terms commonly used with NodeBuilder
device development.

IzoT NodeBuilder User's Guide 257

3100 Series Chip

The term used to collectively refer to all previous-generation Neuron chips, including the 3150 and
3120 Neuron chips; the 3150 and 3120 FT Smart Transceivers; and the 3170, 3150, and 3120 PL
Smart Transceivers.

5000 Series Chip

The term used to collectively refer to the Neuron 5000 Processor and FT 5000 Smart Transceiver.
6000 Series Chip

The term used to collectively refer to the Neuron 6000 Processor and FT 6000 Smart Transceiver.
Application Device

A LONWORKS device that runs a LonTalk Application (OSI Layer 7). The application may run on a
Neuron Chip, in which case the device is called a “Neuron hosted” device.

Application Image

Device firmware that consists of the object code generated by the Neuron C compiler from the user’s
application program and other application-specific parameters, including the following:

Network variable fixed and self-identification data
Network variable external interface data (XIF file)
Program ID string

Optional self-identification and self-documentation data
Number of address table entries

Number of domain table entries

Number and size of network buffers

Number and size of application buffers

Number of receive transaction records

Input clock speed of target Neuron Chip
Transceiver type and bit rate

Application Program

The software code in a LONWORKS device that defines how it functions. The application program,
also referred to as the application or the application layer, may be in the device when you purchase it,
or you may load it into the device from application image files ((APB, .NDL, and .NXE extensions)
using the 1zoT Commissioning tool. The application program interfaces with the LonTalk firmware to
communicate over the network. It may reside completely in the Neuron Chip, or it may reside on an
attached host processor (in a host-based device).

Backup

A .zip file containing a saved version of one to all of the following components: a LonMaker drawing,
LNS network database, and NodeBuilder project. Backup files are used to protect against accidental
file corruption or hardware failure, or to copy a LonMaker network design or NodeBuilder project
from one computer to another.

Binding

Process of connecting network variables. Binding creates logical connections (virtual wires) between
LoNWORKS devices. Connections define the data that devices share with one another. Tables
containing binding information are stored in the Neuron Chip’s EEPROM, and may be updated by the
I1zoT Commissioning tool.

Changeable-Type Network Variable

A network variable that has a type and length that can be changed to that of another network variable
type of equal or smaller size. You can use changeable-type network variables to implement generic
functional blocks that work with different types of inputs and outputs.

258 Appendix C: Glossary

Channel

The physical media between devices upon which the devices communicate. The LonTalk protocol is
media independent; therefore, numerous types of media can be used for channels: twisted pair, power
line, fiber optics, IP, and RF, and other types.

Clock Multiplier

For 5000 and 6000 Series chips, you can select the frequency at which the Neuron Chip runs to modify
the internal system clock speed. You can select multipliers of %%, 1, 2, 4, and 8 to adjust the internal
system clock speed from 5 MHz to 80 MHz (based on a crystal running at 10 MHz).

Commissioning

The process in which the 1zoT Commissioning tool downloads network and application configuration
data into a physical device. For devices whose application programs are not contained in ROM, the
I1zoT Commissioning tool also downloads the application program into non-volatile RAM in the
device. Devices are usually either commissioned and tested one at a time, or commissioned and then
brought online and tested incrementally.

Code Wizard Template

Defines the general infrastructure and layout of a Neuron C application generated with the
NodeBuilder Code Wizard. Code templates supply many utility functions for managing device and
functional block status, which you can use in your application, as needed.

Configuration Properties (CPs)

Configuration properties define the behavior of an application device by determining the manner in
which data is manipulated and when data it is transmitted. Configuration properties can be applied at
the device, functional block, or network variable level. Configuration properties determine the
functions to be performed on the values stored in network variables. For example, a configuration
property may specify a minimum change that must occur on a physical input to a device before the
corresponding output network variable is updated.

Configured

A device state where the device has both an application image and a network image. This indicates
that the device is ready for network operation.

Connector Shape
A single connector used to connect a pair of network variables within the same subsystem.
Control Network Protocol (CNP)

Echelon’s implementation of the ISO/IEC 14908-1 standard. The CNP provides a standard method for
devices on a LonWorks network to exchange data. The CNP defines the format of the messages being
transmitted between devices, and it defines the actions expected when one device sends a message to
another. The protocol normally takes the form of embedded software or firmware code in each device
on the network.

Data Point

A network variable, configuration property, or functional block state (enabled or in override) that the
I1zoT Commissioning tool can monitor and/or control.

Data Point Shape

A shape in the LonMaker Basic Stencil of the 1zoT Commissioning tool that you can use to monitor
and control the values of network variables and configuration properties, and the states of functional
blocks (enabled or in override).

IzoT NodeBuilder User's Guide 259

260

Device

A device that communicates on a LONWORKS network. A device may be an application device,
network service device, or a router. Devices are sometimes referred to as nodes in LONWORKS
documentation.

Device Interface

The logical interface to a device. A device’s interface specifies the number and types of functional
blocks; number, types, directions, and connection attributes of network variables; and the nhumber of
message tags. The program ID field is used as the key to identify each external interface. Each
program ID uniquely defines the static portion of the interface. However, two devices with identical
static portions may differ if dynamic network variables are added or removed, or if the types of
changeable network variables are changed. Thus it is possible to have devices with the same program
ID but different external interfaces.

Device Interface File (XIF)

A file that documents a device’s interface with a network. The file can be a text file (.XIF extension),
or it can be a binary file (.XFB extension).

Device-Specific Configuration Property

A configuration property that has values that can be modified independent of the network database.
Changes made to a device-specific configuration property are not updated in the network database.

Device Template

A device template contains all the attributes of a given device type, such as its functional blocks,
network variables, and configuration properties. You can create a device template by importing a
device interface (XIF) file supplied by the device manufacturer, or by uploading the device interface
definition from the physical device. A device template is identified by its name and its program ID.
Both must be unique within a network—you cannot have two device templates with the same name or
the same program ID in a single network.

Download

An installation process in which data, such as the application program, network configuration, and/or
application configuration, is transferred over the network into a device.

Free Topology

A connection scheme for the communication bus that removes traditional transmission line restrictions
of trunks and drops of specified lengths and at specified distances, and terminations at both ends. Free
topology allows wire to be strung from any point to any other, in bus, daisy chained, star, ring, or loop
topologies, or combinations thereof. It only requires one termination anywhere in the network. This
can reduce the cost of wiring by a factor of two or more.

FT 5000 EVB

A LONWORKS evaluation board that uses Echelon’s FT 5000 Smart Transceiver. It features a compact
design that includes the following 1/0 devices that you can use to develop prototype devices and run
the FT 5000 EVB examples: 4 x 20 character LCD display, 4-way joystick with center push button, 2
push-button inputs, 2 LED outputs, digital light sensor, and digital temperature sensor.

FT 5000 Smart Transceiver

A chip that integrates a Neuron 5000 processor core and a TP/FT-10 transceiver. See Neuron 5000
Processor for more information about the key features of the Neuron 5000 processor.

Appendix C: Glossary

FT 6000 EVB

A LONWORKS evaluation board that uses Echelon’s FT 6000 Smart Transceiver. It features a compact
design that includes the following 1/0 devices that you can use to develop prototype devices and run
the FT 6000 EVB examples: 4 x 20 character LCD display, 4-way joystick with center push button, 2
push-button inputs, 2 LED outputs, digital light sensor, and digital temperature sensor.

FT 6000 Smart Transceiver

A chip that integrates a Neuron 6000 processor core and a TP/FT-10 transceiver.

FT/PL 3150 EVB

A LONWORKS evaluation board that uses Echelon’s FT or PL 3150 Smart Transceiver. It is connected
to a MiniGizmo board that includes eight push buttons, eight LEDs, a temperature sensor, and a piezo
buzzer. In a managed network, you can bind compatible network variables in applications running on
the FT 3150 EVB and FT 5000 EVBs. In a self-installed network, you can use the ISI protocol to
connect the FT 3150 EVB running the MGSwitch, MGLight, or MGDemo applications to an FT 5000
EVB running the NcSimplelsiExample or NcMultiSensorExample applications.

FT/PL 3120 EVB

A LONWORKS evaluation board that uses Echelon’s FT or PL 3120 Smart Transceiver. It is connected
to a MiniGizmo board that includes eight push buttons, eight LEDs, a temperature sensor, and a piezo
buzzer. In a managed network, you can bind compatible network variables in applications running on
the FT 3120 EVB and FT 5000 and 6000 EVBs. In a self-installed network, you can use the ISl
protocol to connect the FT 3120 EVB running the MGSwitch or MGLight applications to an FT 5000
or FT 6000 EVB running the NcSimplelsiExample or NcMultiSensorExample applications.

Functional Block (FB)

A collection of network variables, configuration properties, and associated behavior that defines a
desired system functionality. Functional blocks define standard formats and semantics for how
information is exchanged between devices on a network.

Functional Block Array

A set of identical functional blocks. A functional block array is useful if your device contains two or
more identical switches, lights, dials, controllers, or other 1/O components that will each have an
identical external interface. In addition, a functional block array saves code space and reduces the
number of when-tasks in your code.

Functional Profile

A LONMARK specification that enables equipment specifiers to select the functionality they need for a
system. A functional profile is a template for a type of functional block that defines mandatory and
optional network variable and configuration property members along with their intended usage. A
small number of functional profiles are available for generic devices such as simple sensor and
actuators. Many industry-specific functional profiles are available for industry-specific applications.
Industry-specific profiles are developed through a review and approval process, including a
cross-functional review to ensure the profile will interoperate within an individual subsystem and also
provide interoperability with other subsystems in the network.

Gizmo 4 1/O Board

A collection of 1/0 devices that you can use with the LTM-10A Platform for developing prototype
devices and 1/O circuits, developing special-purpose devices for testing, or running the NodeBuilder
examples.

IzoT NodeBuilder User's Guide 261

i.LON IP-852 Router

An i.LON IP-852 router forwards ISO/IEC 14908-2 packets enveloped in ISO/IEC 14908-4 packets
over an IP-852 channel. i.LON IP-852 routers include the i.LON SmartServer with IP-852 routing,
i.LON 100 e3 Internet Server with 1P-852 routing, and the i.LON 600 LONWORKS-IP Server.

1/0 Object

An instantiation of an 1/0 model. An 1/O objects consists of a specific 1/O model, and its pin
assignment, modifiers, and name.

1P-852 Channel

Also known as an ANSI/CEA-852 LONWORKS/IP channel, an 1P-852 channel carries ISO/IEC
14908-2 packets enveloped in ISO/IEC 14908-4 packets. An IP-852 channel is a LONWORKS channel
that uses a shared IP network to connect IP-852 devices and is defined by a group of IP addresses.
These IP addresses form virtual wires that connect IP-852 devices so they can communicate with each
other. 1P-852 devices include the LNS Server computers, LonMaker computers, and i.LON IP-852
routers. An IP-852 channel enables a remote full client to connect directly to a LONWORKS network
and perform monitoring and control tasks.

1P-852 Network Interface

Formally called VNI, an IP-852 network interface enables IP-852 devices such as LNS Server
computers, LonMaker computers, and i.LON 1P-852 routers to be attached to IP-852 channels. An
IP-852 network interface requires that the LONWORKS-IP Configuration Server be configured before
trying to communicate with remote devices or remote computers.

Implementation-specific NVs/CPs

Network variables and configuration properties that are not defined in the functional profiles used by
their parent functional blocks. Implementation-specific network variables and configuration properties
(those implemented as configuration network variables [CPNVs]) appear in Virtual functional blocks
instead of their parent functional blocks when you are using the 1zoT Commissioning tool or other
network tool.

Note: If you use implementation-specific network variables in your device interface, your device will
not comply with interoperability guidelines version 3.4 (or better) and therefore cannot be certified by
LONMARK. A better alternative for adding members to a functional profile is to create a user-defined
functional profile template (UFPT) that inherits from an existing standard functional profile template
(SFPT), and then add new mandatory or optional member network variables to the UFPT. This
method results in a new functional profile that you can easily reuse in new devices. See the
NodeBuilder Resource Editor User’s Guide for more information on creating UFPTSs.

Interoperable Self-installation (1S1) Protocol

The standard protocol for performing self-installation in LONWORKS networks. ISl is an
application-layer protocol that lets you install and connect devices without using a separate network
management tool.

ISI Mode

An installation scenario in which the ISI protocol is used (instead of the LonMaker tool or other
network tool) to install devices and create network variables connections.

1zoT Commissioning Tool

An OpenLNS network tool that uses Visio as its graphical user interface. The 1zoT Commissioning
tool is used to design, commission, maintain, and document distributed control networks comprised of
both LONMARK and other LONWORKS devices.

262 Appendix C: Glossary

1zoT NodeBuilder Tool

A hardware and software platform that is used to develop applications for Neuron Chips and Echelon
Smart Transceivers. The 1zoT NodeBuilder tool provides complete support for creating, debugging,
testing, and maintaining LONWORKS devices. You can use the 1zoT NodeBuilder tool all to create
many types of devices, including VAV controllers, thermostats, washing machines, card-access
readers, refrigerators, lighting ballasts, blinds, and pumps. You can use these devices in a variety of
systems including building controls, factory automation, and transportation.

1zoT Router

The 1zoT router is included with the FT 6000 EVK. It includes the 1zoT Server Stack and the FT
Terminators. The 1zoT router supports FT and Ethernet interfaces and can be used to connect the FT
6000 EVBs to a host that is running the 1zoT NodeBuilder software and 1zoT Commissioning Tool.

LNS Device Template

A device template automatically generated by the 1zoT NodeBuilder tool when you build a device
application. The LNS device template defines the external interface to the device, and it is used by the
I1zoT Commissioning tool and other OpenLNS network tools to configure and bind the device

LNS Network Database

Each LONWORKS network has its own LNS network database (also referred to as the network
database), which includes the network and device configuration data for that network. The network
database also contains extension records, which are user-defined records for storing application data.

LNS Server

The computer containing the LNS global database acts as the LNS Server. The LNS global database
contains the group of LONWORKS networks being managed with the LNS Server.

Local Client
A LonMaker computer that is also running the LNS Server.
Local Device

An FT 6000 EVB board running the NcMultiSensorExample application that receives SNVT _lux
and/or SNVT_temp_p output network variable updates from another device (a remote device). The
local device displays the temperature and light level values received from the remote device in the
Remote Info Mode panel on its LCD. A remote device may be another FT 6000 EVB board running
the NcMultiSensorExample application.

LonMaker Browser

Part of the 1zoT Commissioing Tool, the LonMaker Browser is an LNS plug-in that provides a table
view of the network variables and configuration properties of selected devices and/or functional
blocks. The LonMaker Brower can be used to monitor and control the network variables and
configuration properties in a network.

LonMaker Drawing

A LonMaker drawing contains the graphical representation of a LONWORKS network.
LonMaker Network Design

A LonMaker network design consists of an LNS network database and a LonMaker drawing.
LonMaker Shape

A reusable drawing object related specifically to a LONWORKS device.

LONMARK

A distinctive logo applied to LONWORKS devices that have been certified to the interoperability
standards of LONMARK International.

IzoT NodeBuilder User's Guide 263

LONWORKS 2.0 Platform

The next generation of LONWORKS products designed to both increase the power and capability of
LONWORKS devices, and to decrease the costs of device development and devices.

LoNWORKS Network

A network of intelligent devices (such as sensors, actuators, and controllers) that communicate with
each other using a common protocol over one or more communications channels.

LONWORKS Technology

The technology that allows for the creation of open, interoperable control networks that communicate
with the LonTalk protocol. LONWORKS technology consists of the tools and components required to
build intelligent device and to install them in control networks.

LTM-10A Platform

A complete LONWORKS device with downloadable flash memory and RAM that you can use for
testing your applications and 1/0 hardware prototypes. You can connect a Gizmo 4 1/0 Board to the
LTM-10A Platform.

Mandatory Network Variable/Configuration Property

A network variable/configuration property that must be implemented by the functional block, as
specified by the functional profile that the functional block is instantiating.

Monitored Connection

A connector shape or reference connection on which network variable values are displayed and
updated.

Network Interface

A LONWORKS device that provides a layer 6 LonTalk interface to an external host computer such as a
computer or a handheld maintenance tool

Network Variable (NV)

Network variables allow a device to send and receive data over the network to and from other devices.
Network variables are data items (such as temperature, the state of a switch, or actuator position
setting) that a particular device application program expects to receive from other devices on the
network (an input network variable) or expects to make available to other devices on the network (an
output network variable).

Network Variable/Configuration Property Types

A network variable or configuration property type defines the structure and contents of the object. A
network variable type can be either a standard network variable type (SNVT) or a user-defined
network variable type (UNVT). A configuration property type can be a standard configuration
property type (SCPT) or a user-defined configuration property type (UCPT)

Neuron 5000 Processor

Echelon’s next-generation Neuron chip designed for the LONWORKS 2.0 platform. The Neuron 5000
processor is faster, smaller, and cheaper that previous-generation Neuron chips. The Neuron 5000
processor includes a fourth processor for interrupt service routine (ISR) processing.

The Neuron 5000 processor supports an internal system clock speed of 5 MHz to 80 MHz (using a 10
MHz external crystal). The Neuron 5000 processor includes 16KB of on-chip ROM to store the
Neuron firmware image and 64 KB on-chip RAM (44 KB is user-accessible). The Neuron 5000
processor requires at least 2KB of off-chip EEPROM to store configuration data, and you can use a
larger capacity EEPROM device or an additional flash device (up to 64KB) to store your application
code, configuration data, and an upgradable Neuron firmware image. The Neuron 5000 processor

264 Appendix C: Glossary

supports the mapping of external non-volatile memory from 0x4000 to OXDFFF in the Neuron address
space (a maximum of 42KB).

Neuron Assembler (NAS)
A Neuron C tool that is used to produce Neuron object files.
Neuron C

A programming language based on ANSI C that you can use to develop applications for Neuron Chips
and Smart Transceivers. It includes network communication, 1/O, and event-handling extensions to
ANSI C, which make it a powerful tool for the development of LONWORKS device applications.

Neuron Chip

A semiconductor component specifically designed for providing intelligence and networking
capabilities to low-cost control devices. The Neuron core includes up to four processors that provide
both communication and application processing capabilities. Two processors execute the layer 2
through 6 implementation of the ISO/IEC 14908-1 protocol and the third executes layer 7 and the
application code. LONWORKS 2.0 Neuron cores include a fourth processor for interrupt service
routine (ISR) processing.

Neuron C Compiler (NCC)
A Neuron C tool that is used to produce Neuron assembly source files from Neuron C source code.
Neuron Exporter (NEX)

A Neuron C tool that takes input from the compiler and the linker and produces the following types of
files: downloadable application image files ((APB, .NDL, and .NXE extensions), programmable
application image files ((NRI, .NFI, .NEI, .NME, and .NMF, extensions), and device interface files
(.XIF and .XFB extensions).

Neuron Firmware

A complete operating system including an implementation of the ISO/IEC 14908-1 protocol used by a
Neuron chip. The Neuron firmware is a program that is inserted into programmable read-only memory
(programmable ROM) of a Neuron chip.

Neuron ID

A 48-bit number assigned to each Neuron Chip at manufacture time. Each Neuron Chip has a unique
Neuron 1D, making it like a serial number.

Neuron Librarian (NLIB)

A Neuron C tool that is used to create and manage libraries, or to add and remove individual object
files to and from an existing library.

Neuron Linker (NLD)

A Neuron C tool that is used to produce Neuron executable files. It links the application image,
user-libraries, system libraries, and the Neuron firmware.

Neuron Object File

A Neuron object file (NO extension) is an intermediate file that contains the data and executable code
in binary form, and contains information about exported and imported symbols. Neuron object files
are the link between the Neuron Assembler and the Neuron Linker, but other data also contributes to
the linking

Node Object

A functional block that monitors the status of all functional blocks in a device and makes the status
information available for monitoring by the 1zoT Commissioning tool. A LONMARK-compliant device
that has more than one functional block must have a node object.

IzoT NodeBuilder User's Guide 265

266

NodeBuilder Device Template

An XML file with a .NbDt extension that specifies the information required for the 1zoT NodeBuilder
tool to build the device application. The NodeBuilder device template includes a list of Neuron C
source code files and the hardware template name

NodeBuilder Hardware Template

A file with a .NbHwt extension that defines the hardware configuration for a target device. It specifies
hardware attributes including platform, transceiver type, Neuron Chip or Smart Transceiver model,
clock speed, system image, and memory configuration. Several hardware templates are included with
the 1zoT NodeBuilder tool. You can use these or create your own. Third-party development platform
suppliers may include NodeBuilder hardware templates for their platforms

NodeBuilder Project
A NodeBuilder project collects all the information about a set of devices that you are developing.
NodeBuilder Project Manager

The NodeBuilder Project Manager provides an integrated view of an entire NodeBuilder project and
provides the tools for defining and building a NodeBuilder device.

Non-const Device-specific Configuration Property

A configuration property that can be changed by the device application, an LNS network tool such as
the LonMaker tool, or another tool not based on LNS. For example, a thermostat may include a user
interface that allows the user to change the setpoint.

OffNet

A management mode in which network configuration changes are stored in the network database, but
not propagated to the devices on the network. To send the changes to the devices, you place the 1zoT
Commissioning tool OnNet. If the IzoT Commissioning tool is OffNet and attached to the network,
you can still perform read operations on the network.

OnNet

A management mode in which network configuration changes are propagated immediately to the
devices on the network.

OpenLNS

A network operating system that provides services for interoperable LONWORKS installation,
maintenance, monitoring, and control tools such as the 1zoT Commissioning tool. Using the services
provided by the OpenLNS client/server architecture, tools from multiple vendors can work together to
install, maintain, monitor, and control LONWORKS networks. The OpenLNS architecture consists of
the following elements:

1. The OpenLNS Client application program, which can be used to develop, monitor and control
LONWORKS networks.

2. The OpenLNS Object Server ActiveX Control, which is a language-independent programming
interface to access the LONWORKS network.

3. The Network Services Server (NSS), which maintains an image of the network.

4. The Data Server, which provides services for monitoring and control.

5. The Network Services Interface (NSI), which is the physical interface to the network.
Optional Network Variable/Configuration Property

A network variable/configuration property that may be implemented by the functional block, as
specified by the functional profile that the functional block is instantiating.

Appendix C: Glossary

PCC-10

A type Il PC (formerly PCMCIA) card network services interface (NSI) that includes an integral
FTT-10 transceiver. Other transceiver types can be connected to the PCC-10 via external transceiver
“pods”. The PCC-10 is the best NSI to use with laptop, notebook, or embedded PCs.

PCLTA-10/20

A Y size ISA card network services interface (NSI). Unlike the PCNSI, it includes a twisted pair
transceiver onboard, eliminating the need to attach a separate SMX transceiver assembly. The
PCLTA-10 also supports the Windows plug-and-play standard. The PCLTA-10/20 is the best NSI to
use on a host computer attached to a twisted-pair channel.

PCNSI

A half-length ISA card network services interface (NSI). Requires an SMX transceiver to interface to
any LONWORKS communications channel. The PCNSI has two modes of operation — NSI mode and
network interface mode. In NSI mode, the host treats the PCNSI card as a smart peripheral device that
provides access to an NSS either locally on the PC or remotely via the LONWORKS network. In
network interface mode, the host uses the PCNSI card as a standard LONWORKS network interface.

The PCNSI card is supported, but it is not recommended for use with the 1zoT NodeBuilder tool. For
better performance, use the USB 10/20 network interface included with the 1zoT NodeBuilder tool, or
use a PCLTA-10/20 or PCC-10 adapter.

Peer-To-Peer

A control strategy in which independent intelligent devices share information directly with each other
and make their own control decisions without the need or delay of using an intermediate, central, or
master controller. Because of the enhanced system reliability introduced by eliminating the master (a
single point of failure) and the reduced installation and configuration cost inherent in peer-to-peer
designs, LONWORKS technology is intended to implement a peer-to-peer control strategy.

PL-20

The power line LONWORKS channel type.

Program ID

A unique, 16-hex digit ID that uniquely identifies the device application.
Project Make Facility (PMK)

A Neuron C tool that manages the build process (it minimizes the number of build steps required), and
handles program 1D management tasks and automatic boot 1D processing.

Remote Client

A LonMaker computer that communicates with the LNS Server (running on a separate computer) over
a LONWORKS channel (an IP-852 or TP/XF-1250 channel) or over an LNS/IP interface. The IzoT
NodeBuilder tool cannot be run on a remote client.

Remote Network Interface (RNI)

A network interface that enables you to connect an LNS or OpenLDV-based application to a
LONWORKS network via a TCP/IP connection. RNIs include the i.LON SmartServer, i.LON 100 e3
Internet Server, i.LON 600 LONWORKs-IP Server, and i.LON 10 Ethernet Adapter.

Resource File

A file included with a LONWORKSs device that defines the components of the device interface to be
used by the 1zoT Commissioning tool or other LNS network tool. Defined components include
network variable types, configuration property types, and functional profiles implemented by the
device application. Resource files allow for the correct formatting of the data, and they are necessary
for LONMARK certification of a device.

IzoT NodeBuilder User's Guide 267

SLTA-10

A serial NSl interface with built-in twisted pair transceiver that connects to any host with an EIA-232
(formerly RS232) port. It can also connect to the host remotely using a Hayes-compatible modem.
The SLTA-10 is the best NSI to use for remote application or for portable hosts that do not contain a
type Il PC slot or a USB interface.

The SLTA-10 adapter is supported, but not recommended unless dial-up operation through a modem
and a serial connection is required. You should use a PCC-10 or U10/20 USB network interface
instead. For accessing remote networks, you can use an RNI such as the i.LON SmartServer, i.LON
100 e3 Internet Server, i.LON 600 LONWORKS-IP Server, and i.LON 10 Ethernet Adapter.

Self-Installed Network

A network that has network addresses and connections created without the use of a network
management tool. In a self-installed network, each device contains code (the Neuron C ISl library,
which implements the ISI protocol) that replaces parts of the network management server’s
functionality, resulting in a network that no longer requires a special tool or server to establish network
communication or to change the configuration of the network.

Service Pin

Each Neuron Chip has a service pin used during installation to acquire the Neuron Chip’s Neuron ID.
When this pin is grounded, the Neuron Chip sends a broadcast message containing its Neuron ID and
program 1D, which is called service pin message or packet. The method used to ground the service pin
varies from device to device. Examples of mechanical methods include grounding via a push button or
using a magnetic reed switch. By attaching one of the device’s 1/0 pins to the service pin, the service
pin can also be put under software control as long as the device is configured. For example, the device
can ground the pin when the device is moved or when a predefined series of 1/0 occurs. The service
pin can also be used to drive an LED that indicates the Neuron Chip’s state. The service LED is solid
on when the Neuron Chip is applicationless, blinks slowly when the Neuron Chip has an application
and is unconfigured, is off when the Neuron Chip has an application and is configured, and blinks once
quickly each time the Neuron Chip is reset.

Smart Transceiver
A chip that integrates a Neuron network processor core and a transceiver.
Standard Configuration Property Type (SCPT)

A standard set of configuration property types defined by LONMARK International to facilitate
interoperability. SCPTs are defined for a wide range of configuration properties used in many kinds of
functional profiles, such as hysteresis bands, default values, minimum and maximum limits, gain
settings, and delay times. SCPTs should be used in a LONWORKS network wherever applicable. In
situations where there is not an appropriate SCPT available, manufacturers may define UCPTs for
configuring their devices. See the LONMARK Web site for a current list and documentation.

Standard Functional Profile Template (SFPT)

A standard set of functional profiles defined by LONMARK International. See the LONMARK Web site
for a current list and documentation. See Functional Profile for more information about functional
profile templates.

Standard Network Variable Type (SNVT)

A standard set of network variable types defined by LONMARK International to facilitate
interoperability by providing a well-defined interface for communication between devices made by
different manufacturers. See the Echelon or LONMARK Web site for a current list and documentation.

Stencil

A collection of master shapes that can be reused in Visio.

268 Appendix C: Glossary

Target Device

A LONWORKS device application that is built by the 1zoT NodeBuilder tool. There are two types of
targets, development targets and release targets. Development targets are used during development;
release targets are used when development is complete and the device will be released to production.

TP/FT-10
The free topology twisted pair LONWORKS channel type, which has 78Kbps bit rate.
U10/20 USB Network Interface.

A low-cost, high-performance LONWORKS network interface with a built-in TP/FT-10 or PL-20
transceiver that can be used with USB-enabled computers and controllers.

User-defined Configuration Property Type (UCPT)

A non-standard data structure used for configuration of the application program in a LONMARK device.
UCPTSs should be used only when there is no appropriate standard configuration property type (SCPT)
defined. LONMARK-certified devices must have UCPTs documented in resource files according to a
standard format, in order to allow the devices to be configured without the need for proprietary
configuration tools.

User-defined Functional Profile Template (UFPT)

A non-standard functional profile template defined by a device manufacturer. UFPTSs should be used
only when there is no appropriate standard functional profile template (SFPT) defined. See Functional
Profile for more information about functional profile templates.

User-defined Network Variable Type (UNVT)

A non-standard network variable type defined by the manufacturer of a device. UNVTs should be
used only when there is no appropriate standard network variable type (SNVT) defined.
LoNMARK-certified devices must have UNVTs documented in resource files according to a standard
format, in order to allow the devices to be interoperable.

Virtual Functional Block

A static functional block that that contains the network inputs and outputs for a device that are not part
of other functional blocks on the device.

WireShark

WireShark is an open source network prototocol analyzer used to capture, analyze, characterize, and
display network packets so you can pinpoint network or device faults and identifypotential solutions.

IzoT NodeBuilder User's Guide 269

270 Appendix C: Glossary

Appendix D

NodeBuilder Software License
Agreement

When installing the NodeBuilder software, you must agree to the terms of the software
license agreement detailed in this appendix.

IzoT NodeBuilder User's Guide 271

IzoT™ NodeBuilder® Development Tool

NOTICE

This is a legal agreement between you and Echelon Corporation (“Echelon”). YOU
MUST READ AND AGREE TO THE TERMS OF THIS SOFTWARE LICENSE
AGREEMENT BEFORE ANY LICENSED SOFTWARE CAN BE
DOWNLOADED OR INSTALLED OR USED. BY CLICKING ON THE “I
AGREE” OR “ACCEPT” BUTTON OF THIS SOFTWARE LICENSE
AGREEMENT, OR DOWNLOADING LICENSED SOFTWARE, OR
INSTALLING LICENSED SOFTWARE, OR USING LICENSED SOFTWARE,
YOU ARE AGREEING TO BE BOUND BY THE TERMS AND CONDITIONS OF
THIS SOFTWARE LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH
THE TERMS AND CONDITIONS OF THIS SOFTWARE LICENSE
AGREEMENT, THEN YOU SHOULD EXIT THIS PAGE AND NOT
DOWNLOAD OR INSTALL OR USE ANY LICENSED SOFTWARE. BY DOING
SO YOU FOREGO ANY IMPLIED OR STATED RIGHTS TO DOWNLOAD OR
INSTALL OR USE LICENSED SOFTWARE.

I1zoT NodeBuilder Software License Agreement

In consideration of Your agreement to the terms of this Agreement, Echelon grants
You a limited, non-exclusive, non-transferable license to use up to two (2) copies of
the Licensed Software and Documentation and any updates or upgrades thereto
provided by Echelon according to the terms set forth below. If the Licensed Software
is being provided to You as an update or upgrade to software which You have
previously licensed, then You agree the Licensed Software may be used and
transferred only as part of a single product package and may not be separated for use
on more than two (2) computers as expressly provided below.

DEFINITIONS

272

For purposes of this Agreement, the following terms shall have the following
meanings:

“Documentation” means the documentation included with the Licensed Software.

“Licensed Software” means all computer software programs and associated media, printed materials, and
online or electronic documentation that accompany the 1zoT NodeBuilder Development Tool product;
including, without limitation, the NodeBuilder Example Applications. The Licensed Software also includes
any software updates, add-on components, stencils, templates, shapes, SmartShapes symbols, Web
services and/or supplements that Echelon may provide to You or make available to You, or that You obtain
from the use of features or functionality of the Licensed Software, after the date you obtain your initial
copy of the Licensed Software (whether by delivery of a CD, permitting downloading from the Internet or a
dedicated Web site, or otherwise) to the extent that such items are not accompanied by a separate license
agreement or terms of use. Licensed Software does not include the OpenLNS Commissioning Tool,
Microsoft Visio, or any other software product shipped with the 1zoT NodeBuilder Development Tool
product and not contained in the NodeBuilder directories as identified in the Documentation.

“NodeBuilder Example Applications” means the Neuron C source code example applications included as
part of the Licensed Software which demonstrate the use of the Licensed Software, (i) as provided in the
“Examples” directory and its subdirectories, (ii) as generated by the NodeBuilder Code Wizard, or (iii)
otherwise containing wording in the source code clearly identifying such source code as an “Example
Application”.

Appendix D: Software License Agreement

“1zoT Device” means a product designed for use in a network based upon Echelon’s 1zoT Platform.
“Your Device” means an 1zoT Device that you developed by using the Licensed Software.

“Your 1zoT Network Services Application” means Your software product that makes calls to the 1zoT
Network Services Server (as described in the Documentation) and incorporates the 1zoT Network Services
Server software.

“You(r)” means Licensee, i.e. the company, entity or individual who has rightfully acquired the 1zoT
NodeBuilder Development Tool.

LICENSE

(@

(b)

©

(d)
(®)

)
(h)
M

You may:

use the Licensed Software solely to develop Your Devices and Your 1zoT Network Services Applications and
prepare your derivative works of the NodeBuilder Example Applications to develop Your Devices and Your
1zoT Network Services Applications;

install and use the Licensed Software for such purposes on one (1) primary computer (the “Primary
Computer”);

install and use a second copy of the Licensed Software for such purposes on one (1) additional computer
(the “Additional Computer”) for the exclusive use of the individual who is the primary user of the copy of
the Licensed Software installed on the Primary Computer, provided that the Licensed Software may only

be used on one computer at a time, and provided that such installation and use otherwise comply with all
the terms and conditions of this Agreement;

copy the Documentation, provided that You reproduce, unaltered, all proprietary notices on or in the copy;

make one (1) copy of the Licensed Software in machine readable form solely for backup purposes,
provided that You reproduce, unaltered, all proprietary notices on or in the copy;

keep the original media on which the Licensed Software was provided by Echelon solely for backup or
archival purposes;

make, use, and sell Your Devices;
develop, use, sell, and distribute Your 1zoT Network Services Applications; and

physically transfer any authorized copy of the Licensed Software from one (1) computer to another,
provided that such copy is removed from the computer on which it was previously installed and the
Licensed Software is used on only one (1) computer at a time.

You may not, and shall not permit others to:

(@

(b)
(©

(d)

(®)

install the Licensed Software for development on more than one (1) Primary Computer and one (1)
Additional Computer, use the Licensed Software on more than one (1) computer at a time, or allow any
individual other than the primary user to use the Licensed Software on the Additional Computer;

copy the Licensed Software except as permitted above;

except for the limited rights granted above, modify, translate, reverse engineer, decompile, disassemble
or otherwise attempt (i) to defeat, avoid, bypass, remove, deactivate or otherwise circumvent any
software protection mechanisms in the Licensed Software, including without limitation any such
mechanism used to restrict or control the functionality of the Licensed Software, or (ii) to derive the
source code or the underlying ideas, algorithms, structure or organization from any of the Licensed
Software that has not been provided in source code form (except to the extent that such activities may
not be prohibited under applicable law);

alter, adapt, prepare derivative works of, modify or translate the Licensed Software in any way for any
purpose, including without limitation error correction, except for the limited rights expressly granted
above with respect to NodeBuilder Example Applications; or

except for the limited rights granted above, distribute, rent, loan, lease, transfer or grant any rights in the
Licensed Software or modifications thereof in any form to any person without the prior written consent of
Echelon.

This license is not a sale. Title, copyrights and all other rights to the Licensed

Software and any copy made by You remain with Echelon and its suppliers.
Unauthorized copying of the Licensed Software or the Documentation, or failure to

IzoT NodeBuilder User's Guide 273

TE

TR

comply with the above restrictions, will result in automatic termination of this license
and will make available to Echelon other legal remedies.

RMINATION

This license will continue until terminated. Unauthorized copying of the Licensed
Software or failure to comply with the above restrictions will result in automatic
termination of this Agreement and will make available to Echelon other legal
remedies. This license will also automatically terminate if you go into liquidation,
suffer or make any winding up petition, make an arrangement with Your creditors, or
suffer or file any similar action in any jurisdiction in consequence of debt. Upon
termination of this license for any reason you will destroy all copies of the Licensed
Software. Any use of the Licensed Software after termination is unlawful.

ADEMARKS

You may make appropriate and truthful reference to Echelon and Echelon products
and technology in Your company and product literature; provided that You properly
attribute Echelon’s trademarks and do not use the name of Echelon or any Echelon
trademark in Your name or product name. No license is granted, express or implied,
under any Echelon trademarks, trade names, trade dress, or service marks.

LIMITED WARRANTY AND DISCLAIMER

274

Echelon warrants to you that, for a period of ninety (90) days from the date of
delivery or transmission to You, the Licensed Software programs under normal use
will perform substantially in accordance with the Licensed Software specifications
contained in the Documentation. Echelon’s entire liability and Your exclusive
remedy under this warranty will be, at Echelon’s option and expense, to use
reasonable commercial efforts to attempt to correct or work around errors, to replace
the Licensed Software with functionally equivalent Licensed Software, or to
terminate this Agreement and accept return of the NodeBuilder Development Tool
and refund Your purchase price less a reasonable amount for use.
NOTWITHSTANDING THE FOREGOING, ECHELON MAKES NO
WARRANTIES WHATSOEVER WITH RESPECT TO THE NODEBUILDER
EXAMPLE APPLICATIONS.

EXCEPT FOR THE EXPRESS LIMITED WARRANTIES AND CONDITIONS
GIVEN BY ECHELON ABOVE, ECHELON AND ITS SUPPLIERS MAKE AND
YOU RECEIVE NO OTHER WARRANTIES OR CONDITIONS, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE OR IN ANY COMMUNICATION
WITH YOU, AND ECHELON AND ITS SUPPLIERS SPECIFICALLY DISCLAIM
ANY IMPLIED WARRANTY OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE OR
NONINFRINGEMENT AND THEIR EQUIVALENTS. Echelon does not warrant
that the operation of the Licensed Software will be uninterrupted or error free or that
the Licensed Software will meet Your specific requirements.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS

Appendix D: Software License Agreement

MAY NOT APPLY TO YOU. YOU MAY ALSO HAVE OTHER RIGHTS THAT
VARY FROM STATE TO STATE AND JURISDICTION TO JURISDICTION.

LIMITATION OF LIABILITY

IN NO EVENT WILL ECHELON OR ITS SUPPLIERS BE LIABLE FOR LOSS OF
OR CORRUPTION TO DATA, LOST PROFITS OR LOSS OF CONTRACTS,
COST OF PROCUREMENT OF SUBSTITUTE PRODUCTS OR OTHER
SPECIAL, INCIDENTAL, PUNITIVE, CONSEQUENTIAL OR INDIRECT
DAMAGES, LOSSES, COSTS OR EXPENSES OF ANY KIND ARISING FROM
THE SUPPLY OR USE OF THE LICENSED SOFTWARE, HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY (INCLUDING WITHOUT LIMITATION
NEGLIGENCE). THIS LIMITATION WILL APPLY EVEN IF ECHELON OR AN
AUTHORIZED DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES AND NOTWITHSTANDING THE FAILURE OF
ESSENTIAL PURPOSE OF ANY LIMITED REMEDY. EXCEPT TO THE
EXTENT THAT LIABILITY MAY NOT BY LAW BE LIMITED OR EXCLUDED,
IN NO EVENT SHALL ECHELON’s OR ITS SUPPLIERS’ LIABILITY EXCEED
TEN THOUSAND DOLLARS ($10,000). YOU ACKNOWLEDGE THAT THE
AMOUNTS PAID BY YOU FOR THE LICENSED SOFTWARE REFLECT THIS
ALLOCATION OF RISK.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS AND
EXCLUSIONS MAY NOT APPLY TO YOU.

SAFE OPERATION

YOU ASSUME RESPONSIBILITY FOR, AND HEREBY AGREE TO USE YOUR
BEST EFFORTS IN, DESIGNING AND MANUFACTURING PRODUCTS USING
THE LICENSED SOFTWARE TO PROVIDE FOR SAFE OPERATION
THEREOF, INCLUDING, BUT NOT LIMITED TO, COMPLIANCE OR
QUALIFICATION WITH RESPECT TO ALL SAFETY LAWS, REGULATIONS
AND AGENCY APPROVALS, AS APPLICABLE.

LANGUAGE

The parties hereto confirm that it is their wish that this Agreement, as well as other
documents relating hereto, have been and shall be written in the English language
only.

Les parties aux présentes confirment leur volonté que cette convention de méme que
tous les documents y compris tout avis qui s’y rattache, soient rédigés en langue
anglaise.

SUPPORT

You acknowledge that You shall either (i) inform the end-user that You are the
primary support contact for Your Devices and Your 1zoT Network Services
Applications, and that Echelon Corporation will not support Your Devices and Your

IzoT NodeBuilder User's Guide 275

I1zoT Network Services Applications, or (ii) inform the end-user that there will be no
support for Your Devices and Your 1zoT Network Services Applications.

GENERAL

276

This Agreement shall not be governed by the 1980 U.N. Convention on Contracts for
the International Sale of Goods; rather, this Agreement shall be governed by the laws
of the State of California, including its Uniform Commercial Code, without reference
to conflicts of laws principles. This Agreement is the entire agreement between You
and Echelon and supersedes any other communications, representations or advertising
with respect to the Licensed Software. If any provision of this Agreement is held
invalid or unenforceable, such provision shall be revised to the extent necessary to
cure the invalidity or unenforceability, and the remainder of the Agreement shall
continue in full force and effect. If You are acquiring the Licensed Software on
behalf of any part of the U.S. Government, the following provisions apply. The
Licensed Software programs and Documentation are deemed to be “commercial
computer software” and “commercial computer software documentation”,
respectively, pursuant to DFAR Section 227.7202 and FAR 12.212(b), as applicable.
Any use, modification, reproduction, release, performance, display, or disclosure of
the Licensed Software programs and/or Documentation by the U.S. Government or
any of its agencies shall be governed solely by the terms of this Agreement and shall
be prohibited except to the extent expressly permitted by the terms of this Agreement.
Any technical data provided that is not covered by the above provisions is deemed to
be “technical data-commercial items” pursuant to DFAR Section 227.7015(a). Any
use, modification, reproduction, release, performance, display, or disclosure of such
technical data shall be governed by the terms of DFAR Section 227.7015(b).

© 2014 Echelon. LON, the Echelon logo, 1zoT, and NodeBuilder are trademarks of
Echelon Corporation that may be registered in the United States and other countries.
A complete list of Echelon’s trademarks is available at www.echelon.com. All rights
reserved.

Appendix D: Software License Agreement

= ECHELON

	Preface
	Purpose
	Audience
	Hardware Requirements
	Content
	Related Manuals
	For More Information and Technical Support
	1 Introduction

	Introduction to the IzoT NodeBuilder Tool
	New Features in the IzoT NodeBuilder Tool
	LonTalk/IP Support
	BACnet/IP Support
	Series 6000 Chip Support
	Transient Functions and Automatic Memory Maps
	FT 6000 EVB Evaluation Board
	Extended Address Table
	Network Variables Up To 228 Bytes
	Neuron C Version 2.3 Enhancements

	What's Included with the IzoT FT 6000 EVK
	IzoT NodeBuilder Development Tool
	FT 6000 EVB Evaluation Boards
	IzoT Commissioning Tool
	IzoT Network Services Server
	IzoT Router
	IzoT Plug-in for Wireshark

	Introduction to NodeBuilder Device Development and Network Integration
	Channels
	Routers
	Applications
	Program IDs
	Network Variables
	Configuration Properties
	Functional Blocks
	Functional Profiles
	Hardware Templates
	Neuron C
	Device Templates
	Device Interface Files
	Resource Files
	Targets
	2 Installing the IzoT NodeBuilder Development Tool

	Installing the IzoT FT 6000 EVK
	Installing the IzoT NodeBuilder Software
	3 IzoT NodeBuilder Quick-Start Exercise

	IzoT NodeBuilder Quick-Start Exercise
	Step 1: Creating an IzoT NodeBuilder Project
	Step 2: Creating a NodeBuilder Device Template
	Step 3: Defining the Device Interface and Creating its Neuron C Application Framework
	Step 4: Developing the Device Application
	FT 6000 Evaluation Boards
	LTM-10A Platform and Gizmo 4 I/O Board

	Step 5: Compiling, Building, and Downloading the Application
	Step 6: Testing the Device Interface
	Step 7: Debugging the Device Application
	Step 8: Connecting and Testing the Device in a Network
	Additional Device Development Steps
	Creating an IzoT CT Stencil
	Creating an IzoT Device Plug-in
	Developing an HMI
	Creating a Device Installation Application
	Applying for LonMark Certification
	4 Creating and Opening IzoT NodeBuilder Projects

	Introduction to the NodeBuilder Project Manager
	Using the Project Pane

	Creating a NodeBuilder Project
	Creating a NodeBuilder Project from IzoT CT
	Creating a NodeBuilder Project from the NodeBuilder Project Manager
	Creating a NodeBuilder Project from the New Device Wizard

	Opening a NodeBuilder Project
	Opening a NodeBuilder Project from the IzoT Commissioning Tool
	Opening a NodeBuilder Project from the NodeBuilder Project Manager

	Copying NodeBuilder Projects
	Using the IzoT Commissioning Tool to Backup and Restore a NodeBuilder Project
	Manually Copying NodeBuilder Project Files

	Copying NodeBuilder Device Templates
	Copying User-Defined Resource Files
	Viewing and Printing NodeBuilder XML Files
	5 Creating and Using Device Templates

	Introduction to Device Templates
	Creating Device Templates
	Starting the New Device Template Wizard
	Specifying the Device Template Name
	Specifying the Program ID
	Specifying Target Platforms

	Managing and Editing Device Templates
	Managing Device Templates
	Viewing and Editing Device Templates
	Viewing Device Template Components
	Managing Development and Release Targets
	Setting Device Template Target Properties: Compiler
	Setting Device Template Target Properties: Linker
	Setting Device Template Target Properties: Exporter
	Setting Device Template Target Properties: Configuration

	Inserting a Library into a NodeBuilder Device Template

	Using Hardware Templates
	Creating Hardware Templates
	Editing Hardware Templates
	Setting Hardware Properties
	Setting Memory Properties
	5000 Series Chips
	6000 Series Chips
	3150 Neuron Core
	3120 and 3170 Neuron Core

	Setting the Hardware Template Description
	6 Defining Device Interfaces and Creating their Neuron C Application Framework

	Introduction to Device Interfaces
	Starting the Code Wizard
	Using the Resource Pane
	Introduction to Resource File Sets
	Introduction to Resources
	Using the NodeBuilder Resource Editor

	Using the Program Interface Pane

	Defining the Device Interface
	Adding Functional Blocks
	Using Large Functional Block Arrays

	Editing Mandatory Network Variables
	Editing Mandatory Configuration Properties
	Implementing Optional Network Variables
	Implementing Optional Configuration Properties
	Adding Implementation-specific Network Variables
	Adding Implementation-specific Configuration Properties
	Setting Initial Values for Network Variables and Configuration Properties
	Setting Initial Values for Structured Data Types
	Setting Initial Values for Enumerations
	Setting Initial Values for Floating Point and s32 Data Types

	Using Changeable-Type Network Variables

	Generating Code with the Code Wizard
	Files Created by the Code Wizard
	Using Code Wizard Templates
	Version 3 Templates
	Version 2 Templates
	Version 1 Templates

	Creating the Device Application
	7 Developing Device Applications

	Introduction to Neuron C
	Unique Aspects of Neuron C
	Neuron C Variables
	Neuron C Variable Types
	Neuron C Storage Classes
	Variable Initialization
	Neuron C Declarations

	Introduction to Neuron C Code Editing
	Modifying Neuron C Code Generated by the Code Wizard
	Code Commands
	Code Guidelines
	Add I/O and Timer Declarations
	Add when-tasks Responding to I/O and Timer Events
	Add interrupt-tasks Responding to Interrupt Requests
	Add Code to when(nv_update_occurs(<nv>)) when-task of Functional Blocks with Input NVs
	Share Code with filexfer.nc when Handling Explicit Messages on a Device Implementing FTP
	Ignore NCC#310 and NC#463 Compiler Warnings

	Implementing Changeable-Type Network Variables
	Neuron C Version 2 Features Not Supported by the Code Wizard
	Message Tags
	I/O Models
	Network Variables
	Configuration Properties
	when() clauses
	LonMark Style
	Director Functions
	Interrupt Tasks

	Using the NodeBuilder Editor
	Using Syntax Highlighting
	Searching Source Files
	Searching a Single File for a String
	Replacing Text
	Searching Multiple Files for a String

	Using Bookmarks
	Setting Editor Options
	8 Building and Downloading Device Applications

	Introduction to Building and Downloading Applications
	Building an Application Image
	Excluding Targets from a Build
	Cleaning Build Output Files
	Viewing Build Status
	Setting Build Options

	Downloading an Application Image
	Programming 5000 and 6000 Off-chip Memory
	Programming 5000 and 6000 Series Chips In-Circuit

	Programming 3150 Off-chip Memory
	Programming 3150 On-chip Memory
	Programming 3120 and 3170 On-chip Memory
	Programming PL 3120 and PL 3170 Smart Transceiver Parameters

	Upgrading Device Applications

	Adding and Managing Target Devices
	Adding a Target Device with the IzoT Commissioning Tool
	Adding a Target Device with the NodeBuilder Project Manager
	Managing Target Devices
	Editing Target Device Settings
	9 Testing a NodeBuilder Device Using the IzoT Commissioning Tool

	Introduction to Testing NodeBuilder Devices
	Monitoring and Controlling NodeBuilder Devices
	Using the Data Point Shape
	Using the LonMaker Browser

	Connecting NodeBuilder Devices
	10 Debugging a Neuron C Application

	Introduction to Debugging
	Starting the NodeBuilder Debugger
	Using the Debugger Toolbar
	Stopping an Application
	Halting an Application
	Running to the Cursor
	Setting and Using Breakpoints

	Stepping Through Applications
	Debugging Interrupts for 5000 or 6000 Series chips
	Using Statement Expansion
	Using the Watch List Pane
	Using the Call Stack Pane
	Using the Debug Device Manager Pane
	Peeking and Poking Memory
	Executing Code in Development Targets Only
	Using the Debug Error Log Tab
	Setting Debugger Options
	Appendix A Using the Command Line Project Make Facility

	Using the NodeBuilder Command Line Project Make Facility
	Appendix B Using Source Control With a NodeBuilder Project

	Using Source Control with a NodeBuilder Project
	Appendix C Glossary
	3100 Series Chip
	5000 Series Chip
	Application Device
	Application Image
	Application Program
	Backup
	Binding
	Changeable-Type Network Variable
	Channel
	Clock Multiplier
	Commissioning
	Configuration Properties (CPs)
	Configured
	Connector Shape
	Control Network Protocol (CNP)
	Data Point
	Data Point Shape
	Device
	Device Interface
	Device Interface File (XIF)
	Device-Specific Configuration Property
	Device Template
	Download
	Free Topology
	FT 5000 EVB
	FT 5000 Smart Transceiver
	FT 6000 EVB
	FT 6000 Smart Transceiver
	FT/PL 3150 EVB
	FT/PL 3120 EVB
	Functional Block (FB)
	Functional Block Array
	Functional Profile
	Gizmo 4 I/O Board
	i.LON IP-852 Router
	I/O Object
	IP-852 Channel
	IP-852 Network Interface
	Implementation-specific NVs/CPs
	Interoperable Self-installation (ISI) Protocol
	ISI Mode
	IzoT Commissioning Tool
	IzoT NodeBuilder Tool
	LNS Device Template
	LNS Network Database
	LNS Server
	Local Client
	Local Device
	LonMaker Browser
	LonMaker Drawing
	LonMaker Network Design
	LonMaker Shape
	LonMark
	LonWorks 2.0 Platform
	LonWorks Network
	LonWorks Technology
	LTM-10A Platform
	Mandatory Network Variable/Configuration Property
	Monitored Connection
	Network Interface
	Network Variable (NV)
	Network Variable/Configuration Property Types
	Neuron 5000 Processor
	Neuron Assembler (NAS)
	Neuron C
	Neuron Chip
	Neuron C Compiler (NCC)
	Neuron Exporter (NEX)
	Neuron Firmware
	Neuron ID
	Neuron Librarian (NLIB)
	Neuron Linker (NLD)
	Neuron Object File
	Node Object
	NodeBuilder Device Template
	NodeBuilder Hardware Template
	NodeBuilder Project
	NodeBuilder Project Manager
	Non-const Device-specific Configuration Property
	OffNet
	OnNet
	OpenLNS
	Optional Network Variable/Configuration Property
	PCC-10
	PCLTA-10/20
	PCNSI
	Peer-To-Peer
	PL-20
	Program ID
	Project Make Facility (PMK)
	Remote Client
	Remote Network Interface (RNI)
	Resource File
	SLTA-10
	Self-Installed Network
	Service Pin
	Smart Transceiver
	Standard Configuration Property Type (SCPT)
	Standard Functional Profile Template (SFPT)
	Standard Network Variable Type (SNVT)
	Stencil
	Target Device
	TP/FT-10
	U10/20 USB Network Interface.
	User-defined Functional Profile Template (UFPT)
	User-defined Network Variable Type (UNVT)
	Virtual Functional Block
	Appendix D NodeBuilder Software License Agreement

