

Tutorial

External Interruption

For the DA1468x Devices

Abstract

This tutorial should be used as a reference guide to gain a deeper understanding of the ‘External
Interruption’ concept. As such, it covers a complete demonstrating example related to external
interrupts on the DA1468x family of devices.

Figures

Figure 1: Paste Project .. 4
Figure 2: Compile Project .. 4
Figure 3: K1 Button Schematic .. 5
Figure 4: Terminal Interface .. 8
Figure 5: Multiple Interrupt Sources .. 10

1 Terms and Definitions

bps Bits per Second

GPIO General Purpose Input Output

OS Operating System

RTOS Real Time Operating System

SDK Software Development Kit

UART Universal Asynchronous Receiver - Transmitter

2 References

[1] UM-B-060, DA1468x/DA1510x PRO-Development kit, User manual, Dialog Semiconductor.

For the DA1468x Devices

External Interruption

Tutorial

3 of 12 © 2018 Dialog Semiconductor

Introduction

1.1 Before You Start

Before you start you need to:

• Install the latest SmartSnippets Studio

• Download the latest SDK (currently version 1.0.12.1075)

These can be downloaded from the Dialog Semiconductor support portal.

Additionally, for this tutorial either a Pro or Basic Development kit is required.

The key goals of this tutorial are to:

• Provide a basic understanding of the external interruption mechanism

• Set up a working demonstration handling an external interruption and taking action

• Trigger an OS task execution based on the collected external interruption

1.2 External Interruption

An external interruption is where the processor activity is interrupted and the Cortex M0 handler

mode is entered (see ARM® v6-M Architecture Reference Manual, Section B1.3.1) based on the

rising and/or falling edge of a DA1468x pin. Any GPIO in the DA1468x can be used to generate an

interrupt which will trigger the Cortex M0. The process is handled by the block called Wake-Up Timer

(see DA1468x Datasheet, Section 19). On top of getting the processor to enter handler mode, the

Wake-Up Timer will wake-up the DA1468x if it is currently in Sleep mode.

1.3 Working Demonstration

As the Bluetooth low energy framework runs under the supervision of a Real Time Operating System

(RTOS), the example in this tutorial demonstrates how to trigger a task execution based on the

collected event.

Clone FreeRTOS retarget Project

The first step is to create a new project. As the goal is to collect the interruption and to trigger a task

handled by the RTOS, the base project will be freertos_retarget. This sample application starts the

RTOS scheduler, performs the system initialization, and launches a task which will send a character

(#) on the UART every second.

1. Start SmartSnippets Studio.

2. Import the freertos_retarget project. Check our getting started tutorial if you're not familiar with

the procedure.

3. Copy and paste your project and call it external_interrupt. When pasting, make sure you paste

in the same folder as the source project. In this case, SDKROOT is

"C:\dev\DA1468x_DA15xxx_SDK_1.0.10.1072" and the destination folder is set to

"C:\dev\DA1468x_DA15xxx_SDK_1.0.10.1072\projects\dk_apps\templates\external_interrupt".

https://support.dialog-semiconductor.com/connectivity
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419d/DDI0419D_armv6m_arm.pdf
https://support.dialog-semiconductor.com/system/files/resources/DA14681-01_2v3.pdf..%20include::%20common.rst
https://support.dialog-semiconductor.com/resource/getting-started-tutorial-html

For the DA1468x Devices

External Interruption

Tutorial

4 of 12 © 2018 Dialog Semiconductor

Figure 1: Paste Project

4. Compile the project for your target to check the project is set up correctly.

Figure 2: Compile Project

Implementation

Using the project created in the Clone FreeRTOS retarget Project section, this section demonstrates

how to catch the external event and use it in the RTOS.

clone_project.html

For the DA1468x Devices

External Interruption

Tutorial

5 of 12 © 2018 Dialog Semiconductor

3.1 Existing Application

The freertos_retarget project demonstrates the scheduling of a timer-based task by sending a

character on the UART every second. This behavior is implemented in main.c.

static void prvTemplateTask(void *pvParameters)
{
 OS_TICK_TIME xNextWakeTime;
 static uint32_t test_counter=0;

 /* Initialize xNextWakeTime - this only needs to be done once. */
 xNextWakeTime = OS_GET_TICK_COUNT();

 for(;;) {
 /* Place this task in the blocked state until it is time to run again.
 The block time is specified in ticks, the constant used converts ticks
 to ms. While in the Blocked state, this task will not consume any CPU
 time. */
 vTaskDelayUntil(&xNextWakeTime, mainCOUNTER_FREQUENCY_MS);
 test_counter++;

 if (test_counter % (1000 / OS_TICKS_2_MS(mainCOUNTER_FREQUENCY_MS))
== 0) {
 printf("#");
 fflush(stdout);
 }
 }
}

3.2 Configure the GPIO Generating Interruption

On the DA1468x development kits, the button K1 is mapped to the GPIO P1_6. In order to detect an

interrupt, it is necessary to configure the GPIO as an input. As the board schematic shows, the

button connects the pin to the ground. We will set a pull-up on the pin to be able to detect a falling

edge when the button is pressed.

Figure 3: K1 Button Schematic

For the DA1468x Devices

External Interruption

Tutorial

6 of 12 © 2018 Dialog Semiconductor

The configuration should look like:

/* Configure button interrupts */
hw_gpio_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_6,
HW_GPIO_MODE_INPUT_PULLUP, HW_GPIO_FUNC_GPIO, 1);

3.3 Set up the Wake-Up Timer

The next step is to initialize the Wake-Up Timer block and configure it to generate an interuption on

the falling edge. Then we need to register a callback to handle the interruption, the function will be

button_interrupt_cb().

#include "hw_wkup.h"

/* Initialize the Wake-up Timer */
hw_wkup_init(NULL);

/* Configure the Wake-up Timer to interrupt on the falling edge of P1_6 */
hw_wkup_configure_pin(HW_GPIO_PORT_1,HW_GPIO_PIN_6, 1,
HW_WKUP_PIN_STATE_LOW);

/* Register callback to handle the event from the GPIO */
hw_wkup_register_interrupt(button_interrupt_cb, 1);

The NULL parameter in hw_wkup_init() resets the wake-up block to its initial state.

hw_wkup_configure_pin() configures the GPIO P1_6 to generate the interruption.

3.4 Handle the Interruption

button_interrupt_cb() will be executed in handling mode. In order to defer the handling of the

interruption inside the RTOS, we will generate a task notification. The callback also needs to clear

the current interruption.

void button_interrupt_cb(void)
{
 hw_wkup_reset_interrupt();
 OS_TASK_NOTIFY_FROM_ISR(task_h, 0x1, OS_NOTIFY_SET_BITS);
}

Note: The task_h handler is declared in the system_init() function and needs to be made global to

allow button_interrupt_cb() to use it.

3.5 Using the Notification

The notification can be used by the prvTemplateTask(). We can modify the loop inside the task so

that instead of sending a character on regular basis, we wait for the button push notification.

Effectively the character will be sent everytime the button is pushed.

For the DA1468x Devices

External Interruption

Tutorial

7 of 12 © 2018 Dialog Semiconductor

for(;;) {

 /* Wait for the external interruption notification */
 OS_TASK_NOTIFY_WAIT(0x0, OS_TASK_NOTIFY_ALL_BITS, &ulNotifiedValue,
OS_TASK_NOTIFY_FOREVER);

 /* Check the notification is the expected value */
 if(ulNotifiedValue & 0x1){
 /* Send the character on the UART */
 printf("#");
 fflush(stdout);
 }
 }

Eventually the code should look like this:

#include "hw_wkup.h"

void button_interrupt_cb(void)
{
 hw_wkup_reset_interrupt();
 OS_TASK_NOTIFY(task_h, 0x1, OS_NOTIFY_SET_BITS);
}

/**
 * @brief Template task increases a counter every mainCOUNTER_FREQUENCY_MS ms
 */
static void prvTemplateTask(void *pvParameters)
{
 OS_TICK_TIME xNextWakeTime;
 static uint32_t test_counter=0;
 uint32_t ulNotifiedValue;

 /* Configure button interrupts */
 hw_gpio_configure_pin(HW_GPIO_PORT_1,HW_GPIO_PIN_6,
HW_GPIO_MODE_INPUT_PULLUP,HW_GPIO_FUNC_GPIO, 1);

 /* Initialize and configure the Wake-up Timer */
 hw_wkup_init(NULL);
 hw_wkup_configure_pin(HW_GPIO_PORT_1,HW_GPIO_PIN_6, 1,
HW_WKUP_PIN_STATE_LOW);

 hw_wkup_register_interrupt(button_interrupt_cb, 1);

 for(;;) {

 /* Wait for the external interruption notification */
 OS_TASK_NOTIFY_WAIT(0x0, OS_TASK_NOTIFY_ALL_BITS,
&ulNotifiedValue,OS_TASK_NOTIFY_FOREVER);

 /* Check the notification is the expected value */

For the DA1468x Devices

External Interruption

Tutorial

8 of 12 © 2018 Dialog Semiconductor

 if(ulNotifiedValue & 0x1){
 /* Send the charaacter on the UART */
 printf("#");
 fflush(stdout);
 }
 }
}

3.6 Testing

Load the code on the the target development kit and start execution. Open a serial terminal of your

choice with the following parameters:

• 115200 bps

• 8 bits

• no flow control

• 1 stop bit

After each press you should see an additional # character appear in your serial console as shown in

Figure 4.

Figure 4: Terminal Interface

Handling Multiple Interruption Sources

4.1 Latching the Interrupt Source

If your application is required to handle multiple event sources, the handler will need to be aware of

the source of the interruption. This can be done by latching the interrupt source. To enable this

feature, it has to be defined in either custom_config_qspi.h or custom_config_ram.h.

#define dg_configLATCH_WKUP_SOURCE (1)

4.2 Configuring Additional Sources

For this example, we will configure the GPIO P1_7 as a source of event:

For the DA1468x Devices

External Interruption

Tutorial

9 of 12 © 2018 Dialog Semiconductor

/* Configure button interrupts 2 */
hw_gpio_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_7,
HW_GPIO_MODE_INPUT_PULLUP, HW_GPIO_FUNC_GPIO, 1);

Then we configure the Wake-up Timer block:

hw_wkup_configure_pin(HW_GPIO_PORT_1, HW_GPIO_PIN_7, 1,
HW_WKUP_PIN_STATE_LOW);

4.3 Handling the Interruption

When an interruption occurs, it is now necessary to check the source of the interruption. This is done

by calling hw_wkup_get_status(). It is also necessary, since the input is latched, to clear the source

pin of the interrupt. The interruption handler registered will become:

void button_interrupt_cb(void)
{
 uint8_t status;

 /* Request the status */
 status = hw_wkup_get_status(HW_GPIO_PORT_1);

 /* Check the status of the source 1 */
 if (status & (1 << HW_GPIO_PIN_6)) {
 /* Notify the main task */
 OS_TASK_NOTIFY_FROM_ISR(task_h, 0x1, OS_NOTIFY_SET_BITS);
 /* Clear the interrupt */
 hw_wkup_clear_status(HW_GPIO_PORT_1, (1 << HW_GPIO_PIN_6));
 /* Check the status of the source 2 */
 } else if (status & (1 << HW_GPIO_PIN_7)) {
 /* Notify the main task */
 OS_TASK_NOTIFY_FROM_ISR(task_h, 0x2, OS_NOTIFY_SET_BITS);
 /* Clear the interrupt */
 hw_wkup_clear_status(HW_GPIO_PORT_1, (1 << HW_GPIO_PIN_7));
 }
}

Now the application can verify the different notification and act accordingly:

/* Check the notification is button 1 */
 if(ulNotifiedValue & 0x1){
 /* Send the character on the UART */
 printf("#");
 fflush(stdout);
/* Check the notification is button 2 */
} else if(ulNotifiedValue & 0x2) {
 /* Send the character on the UART */
 printf("$");

For the DA1468x Devices

External Interruption

Tutorial

10 of 12 © 2018 Dialog Semiconductor

 fflush(stdout);

}

This example results in different characters being sent depending on the button pressed, as depicted

in multiple_interrupt

Figure 5: Multiple Interrupt Sources

For the DA1468x Devices

External Interruption

Tutorial

11 of 12 © 2018 Dialog Semiconductor

Revision History

Revision Date Description

1.0 5-January-2018 First released version

For the DA1468x Devices

External Interruption

Tutorial

12 of 12 © 2018 Dialog Semiconductor

Status Definitions

Status Definition

DRAFT
The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked
The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the
specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog
Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of
their respective owners.

© 2018 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH

Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V.

Phone: +31 73 640 8822

North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K.

Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 281 786 222

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea

Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China

Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China

Phone: +86 21 5424 9058

Email:

enquiry@diasemi.com

Web site:

www.dialog-semiconductor.com

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

