¢Jdialog

Tutorial

Debugging Techniques
For the DA1468x Chips

Abstract

This tutorial should be used as a reference guide to gain a deeper understanding of the ‘Debugging Techniques’
for DA1468x family of devices. As such, it covers a broad range of topics including an introduction to debugging
tools that are available for performing a debugging session as well as detailed description of the most common

system faults. Furthermore, it covers a number of sections containing in depth analysis of real use cases of
system failures and how to deal with them.

For the DA1468x Chips d gl!(ﬁ)!gg

Debugging Techniques

Contents
Y o 1] - T AP OP PP PURPPPRRRPR 1
(70 1] 4T 1 | £ PP PP 2
Lo U1 =T PP PP PSP PPRRPRI 2
JLIE: 101 1= T PP O PRSP R PR 3
Terms and DefiNITIONSoouieiii ettt e et e e e st et e e s bn e e e sbr e e e aae 3
N1 (=] €T o =2 S TP PP PPPPPPP P 3
A [o 4 o To [¥ Yo £] o DO OO PP R PPPPP P 4
1.1 BEFOIE YOU SEANM....ciitiiieiitiie ettt ettt e ettt e e et e e e e snba e e e snbae e e e nnnns 4
2 DEDUGGING oo 4
2.1 Initiating @ DebugQing SESSIONuuuuuuuuriuiiiiiiiiiie e ———————— 4
2.2 Changing the Default BreaKpOint...............ueuuuuimiuimmeiii s 5
2.3 DeViCe-SPECIfiIC REGISIEISeiiiiiiiiei ittt et e e st e e s sbeeeeeanes 7
2.4 USEFUI DEDUG TOOIS.....ceiiiiiriieeiiriiee ittt et e e e s e e e s e e e s anne e e e annneee e e 8
3 HArdfAUILS SESSION ..eiiiiiiii ettt et e e st e e e st b e e e e s br e e e e e breeeeane 10
K A [1 (o To (U1t i o H PO PP PP PPPPTPPPPP 10
3.2 Manually Triggering a Hardfault...............uuuuim s 11
3.3 Dealing with @ Hardfault..................uuuuuimii s 12
4 ReEDOOT ANAIYSIS - BOD ..oiiiiiiiiiiiiiee ettt ettt ettt e bttt e ettt e e e e e e s 15
o N [011 7o To [F ot 1o [O PP PRPO 15
4.2 Manually Triggering @ BOD ..o s 16
4.3 Dealing With @ BOD EVENL........coiiiiiiiiiiiiie ettt 20
5 REDOOt ANAIYSIS - WDOG ...cooiiiiiiiiiiiiee ettt ettt et e st e e e st e e e e abr e e e e s bbeeeeane 22
oI A [1 (o To (Ut i o o H P PRSP TU PR 22
5.2 Manually Triggering a Watchdog EXCEPLIONuuuuuiuiiiiiii s 24
5.3 Dealing with a Watchdog EVENTcocuuiiiiiiiiiiee e 25
6 SW CUrsor Via POWET Profiler ...t 27
Figures
Figure 1: Initiating a DebugQiNg SESSION......coiii it ee e e e 4
FIQUIE 22 DEDUQG VIBW ...ttt ettt e e e e+ o bbbttt e e e e e e e e abbbe e e e e e e e e s nnbebeeeaaaeaean 5
Figure 3: Resume, Supend, and Terminate a Debug SeSSION.........coooiiiiiiiiiiiiiii e 5
Figure 4: Changing the Default BreaKpoint #1ueiiiiiiiiiii e 6
Figure 5: Changing the Default BreaKpoint #2ooiiiiiiiiii e 6
FIGUre 6: SNOW VIEW WINOOWoiiuiiiiiiiiiiie ittt ettt e et e e s e st e e e e nbae e e e eneeas 7
Figure 7: Configure the EmbSyYs ReQISters TOO!ccooiuiiiiiiiiiiiiie e 8
Figure 8: The EMDSYS REQISIEIS VIBW.......ciiiiiiiiieiiiiiie ittt st s st e e e 8
Figure 9: Selecting @ WINGOWouuuiiiiiiiiie ettt e e s e et e e e s nbae e e e nneeas 9
Figure 10: Stack Frame in the Debug WINGOW...........oioiiiiiiiiiiie e 9
Figure 11: Useful DebUG WINTUOWScoiuiiiiiiiieie ettt ettt et nnbee e e e 10
Figure 12: SW FSM of the Hardfault Exception Handler ... 11
Figure 13: Hardfault Handler FUNCHONcooi et 13
Figure 14: Probing the Stack Frame Captured Following a Hardfault Eventcccccooiienn. 13
Figure 15: Debugging Messages Following a Hardfault EVent ... 14
Figure 16: Probing the Contents of the Program COUNET...........ccuiiiiiiiiiiiiea e 14

2 of 32 © 2018 Dialog Semiconductor

For the DA1468x Chips d gl!(ﬁ)!gg

Debugging Techniques

Figure 17: Probing the Contents of the Link REQISIErcoociiiiiiiii e 15
Figure 18: Inspecting BOD Related REJISIEISc.ueiiiiiiiieeiiiiie et 19
Figure 19: DALAB8X Pro DEVKILeeiiiiiiiiiiiiii ettt e e e e e e e 19
Figure 20: Dealing With @ BOD EVENT........cccoiiiiiiiiiieee ittt 20
Figure 21: Inspecting Variables and Expressions using the Expressions Window................ccccceeeee. 20
Figure 22: Changing Number Presentation FOIMALSccccuviiieiieeiiiiiiiieie e estnreee e e 21
Figure 23: Printing Debugging Messages on the Serial Console upon a BOD Eventc.ccc......... 21
Figure 24: Inspecting Variables and Expressions using the Expressions Window...............ccccveeeee.n.. 22
Figure 25: Modifying Variable Contents while in Debugging SeSSioNn........ccccceevvivciiieiieeeeeiciciieeeeeeen 22
Figure 26: Watchdog Functionality as Configured by Default.............ccccvvveieee i 23
Figure 27: SW FSM of the Watchdog Exception Handlercccccooviiiiiiiiee e 24
Figure 28: Watchdog Handler FUNCHION.............viiiiiiieeiiee et 26
Figure 29: Probing the Stack Frame Captured upon a Watchdog Event...........cccococeeiiieiiiieiennnn, 26
Figure 30: Probing the Contents of the Program COUNEN...........coocuiiiiiiiieeiiiie et 27
Figure 31: Probing the Contents of the Link REQISIErcoociiiiiiiiii e 27
Figure 32: Opening SmartSnIpPets TOOIDOXcoiuiiiiiiiiie e 29
Figure 33: Initializing POWET ProOfiler..........cooiiiiiiiic e 29
Figure 34: SW CUrsOr INQICALION ... s 30
Tables

Table 1: Power Rails of the SoC Monitored by the BOD CirCUItIYccoovueiieiiiiiieiiiiee i 15

Terms and Definitions

API Application Programming Interface
BOD Brown-out Detection

DevKit Development Kit

HW Hardware

IDE Integrated Development Environment
JTAG Joint Test Action Group

LR Link Register

MCU Microcontroller Unit

PC Program Counter

POR Power-on Reset

SDK Software Development Kit

SW Software

SWD Serial Wire Debug

WDOG Watchdog

References

[1] UM-B-044, DA1468x Software Platform Reference, User Manual, Dialog Semiconductor.

3of 32 © 2018 Dialog Semiconductor

For the DA1468x Chips d gl!(ﬁ)!gg

Debugging Techniques

1 Introduction

1.1 Before You Start

Before you start you need to:

. Install the latest SmartSnippets Studio

. Download the latest SDK (currently version 1.0.12.1078)

These can be downloaded from the Dialog Semiconductor support portal.
Additionally, for this tutorial either a Pro or Basic Development kit is required.
The key goals of this tutorial are to:

. Provide a basic understanding of debugging and debuggers

. Explain reasons that may cause the device to fail and the steps that need to be followed
depending on the root cause of the failure

. Give tips and insights for dealing with failures of the system

2 Debugging

A debugging session lets you control the execution of a program by setting breakpoints, suspending
executed programs, stepping through the code, and examining the contents of variables and
structures. This section demonstrates the most useful tools and features of the Eclipse IDE that can
be used during debugging.

2.1 Initiating a Debugging Session

To initiate a debugging session, a debugger must be attached to the SWD or JTAG port of the
application MCU. The DA1468x Pro DevKit has a debugger mounted on it, thus eliminating the need
for an external one which can be quite an expensive tool.

There are two ways to start a debugging session, the selected method depends on the issue being
examined. One option is for the developer to start inspecting program execution from the beginning
by triggering a hardware reset while attaching the debugger to the MCU. This means that the
program is executed from its very first step and by default the first breakpoint is set to the main
function of the application. The second option is for the debugger to be attached without triggering
any reset to the system.

1. Click on the Debug button (1) and select either ATTACH or QSPI (2). Selecting QSPI triggers a
hardware reset to the system while the debugger is being attached.

ATTACH
QsPI

Debug As 4
Debug Configurations...

BE
N

Organize Favorites...

Figure 1: Initiating a Debugging Session

4 of 32 © 2018 Dialog Semiconductor

https://support.dialog-semiconductor.com/connectivity

For the DA1468x Chips d g.!cﬁ!gg

Debugging Techniques

2. Depending on the configuration, a pop-up window might be displayed asking for permission to
switch to the Debug view.

Debug view

Quick Access | B [@ Welcome C/C++

pnerails Modules ; E E r‘J ‘I—p ¥ =0
Figure 2: Debug View
3. When switching to the Debug view, either the code execution is automatically halted on a

breakpoint, or the developer should pause the execution of the application by clicking on the
Suspend button.

Resume Terminate
File Edit Source ?(é(%or Navigat‘e/Sear/ch Project Pydev Run Window Help
Mg @B wWerDneidonbbI e #8909
© 15 Debug 22

4 [Hl ATTACH [SmartBond “SmartSnippets DA1468x SDK" via J-Link GDB Server]
& Debugging_Tutorial.elf
. JLinkGDBServerCL.exe
! arm-none-eabi-gdb
s Semihosting and SWV

Figure 3: Resume, Suspend, and Terminate a Debug Session

2.2 Changing the Default Breakpoint

By default, a breakpoint is set on the main function of the application. However, things may go wrong
before the code even gets to the main function. In this case, operation should be halted earlier, for
instance in the reset handler. To do so, the following steps should be executed:

1. Click on the Debug button and select Debug Configurations....

5 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

1
HvQv®™ v 45 [N L

B 1ATTACH
B 2qspI
Debug As ’
2 Debug Configurations...

Organize Favorites...

Figure 4: Changing the Default Breakpoint #1

The Debug Configurations window is displayed.

2. In the Debug Configurations window, select SmartBond SmartSnippets DA1468x via J-
Link GDB Server > QSPI.

3. In the Startup tab, change the default breakpoint in the Set breakpoint at field and click on
Apply. In this example, Reset_Handler is selected.

CRxX B3~ Name: QSPI
| type filter text B Main ﬁ;‘» Debugger{b Startup \E'[: Source| = Common
[€]¢/C++ Application Initialization Commands u

[€] C/C++ Attach to Application

7 C/C=+ Postmortem Debugger [¥]initial Reset and Halt. Type: 0 Low speed: 30 kHz
[2] C/C++ Remate Application JTAG/SWD Speed: () Auto (0) Adaptive @ Fixed 8000 kHz
[€] GDB Hardware Debugging [] Enable flash breakpoints.
[c] GDB SEGGER J-Link Debugging [[] Enable semihosting. Console routed to: [V Telnet [] GDB client
& IronPython Run [] Enable SWO. CPU freq: | 0 Hz. SWO freq: 0 Hz. Port mask: | Ox1
& TronPython unittest
& Jython run monitor reset 0 2
& Jython unittest monitor sleep 10
monitor halt -

¥ Launch Group
B PyDev Django Load Symbols and Executable
43 PyDev Google App Run [¥] Load symbols

r =
& Python Run (@ Use project binary: Debugging_Tutorial.elf
& Python unittest e W File Syst

) Use Tile: orkspace... Flle System...
i- [l SmartBond “SmartSnippets DA1468x | - — =
ATTACH Symbols offset (hex): =
1
EJE_QS_EI__: 1 [[JLoad executable

(@) Use project binary: Debugging_Tutorial.elf
Use file: ${workspace_loc:/scripts/qspi/Bootqgspi Workspace.. File System.
Executable offset (hex
Runtime Options
["1RAM application (reload after each reset/restart)

Run/Restart Commands
[¥] Pre-run/Restart reset. Type: 0 (always executed at Restart)

monitor exec SetRTTSearchRanges 0x07fc0000 0x20000 -

[CIset program counter at (hex): | a0
Set breakpoint at: Reset_Handler | 2
Continue 3

7] M b i
S e\ ol 1
Filter matched 18 of 18 items Fevert S A_ ;Z[_Ij _____ i

Figure 5: Changing the Default Breakpoint #2

6 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x ChipS SEMICONDUCTOR

Debugging Techniques

Note: The Cortex-MO Breakpoint Unit (BPU) implementation provides between zero and four
hardware breakpoint registers. A processor configured with zero breakpoints implements no
breakpoint functionality. Typical hardware breakpoints watch an internal bus or the program
counter and if it matches a certain condition it will either stop the processor or do whatever
the hardware implements for that condition.

2.3 Device-Specific Registers

During a debugging session, the developer can read, as well as set, systems registers including
GPIOs and other peripheral registers. This is done in the Eclipse tool named EmbSys Registers. To
enable this tool, follow the steps below:

1. From the Window menu, select Show View > Other.... The Show View window is displayed.

2. Inthe Show View window, select Debug > EmbSys Registers (1) and then click OK (2).

' Show View uﬂﬂ

type filter text

>

> (= General
s L &C/CH+
> (= C/C++ Packs

m

®¢ Breakpoints
%5 Debug

{Bﬂl EmbSys Registersi 4
(0 Executables

64" Expressions

0 Memory

@ Memory Browser

=, Modules

@5 OS Resources

2. Peripherals -

E OK] [Cancel

Figure 6: Show View Window

The EmbSys Registers window is displayed.

3. To configure the tool, from the Window menu, select Preferences. The Preferences window is
displayed.

4. In the Preferences window, select C/C++ > Debug > EmbSys Register View (1) and then
configure the tool as required (2).

In the Chip field, select the correct family of devices (in our case DA14681-01). Finally click OK
3.

7 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x ChIpS SEMICONDUCTOR
Debugging Techniques
@ preferences = % |
type filter text EmbSys Register View Croy
> G | &
.-----?-n-?r-é-. — | A Periperal Register View for embedded system
14 C/C++ |
Appearance Architecture: Chip description
> Build 7 - [SVD(CMSIS) ‘_I Applies for DA14680/1-01
Code Analysis 1
» Code Style Yender
1 4 Debug E ’Dialog_Semiconductor 'l 2
------- é?é-a-k-point Actions Chip:
. Disassembly , [DA14681-01 'l
i > EmbSys Register View |
Floating Point Memory Rend Board:
GDB =N nane === v
Source Lookup Path
Tracepoint Actions
Traditional Memory Renderir _
e 1 [* LI e
@ 3 l OK } [Cancel

Figure 7: Configure the EmbSys Registers Tool

5. To read or modify register values, make sure the debugger is attached and suspended.

0 Memory Browser . EmbSys Registers &2 = 0
@ Arch: SVD(CMSIS) Vendor: Dialog_Semiconductor Chip: DA14681-01 Board: --- none ---
Register Hex Bin Reset Acc.. Address Description -
I = SYSTICK Cortex MO SysTick register|_5 |
4 (= Peripheral_Registers AES_HASH registers
I (= AES_HASH AES_HASH registers
4 (= ANAMISC ANAMISC registers
4 [ss] ANA_TEST_REG 0x0000 0000000000000000 0x0000 RW 0x50001.. Analog test registers
(=] ACORE_TESTBUS_EN (I Ox0 0 TBD
(=] TEST_STRUCTURE (bits 0x0 0000 = 4 bits to select which te
I [#s] CHARGER_CTRL1_REG 0x0000 0000000000000000 0x2000 RW 0x50001.. Charger control register 1
» CHARGER_CTRLZ_REG 0x0F07 RW 0x50001.. Charger control register 2
» CHARGER_STATUS_REG 0x0000 RW 0x50001.. Charger status and trimmi ™

Figure 8: The EmbSys Registers View

2.4 Useful Debug Tools

The Eclipse IDE offers a variety of debugging tools which can be used during a debugging session.
The tools are available through various windows which can be enabled/disabled by selecting them
from the Window > Show View menu.

8 of 32 © 2018 Dialog Semiconductor

For the DA1468x Chips

dialo

SEMICONDUCTOR

9

Debugging Techniques

New Window
Editor
Hide Toolbar

Show View

===h

Perspective
Navigation

Preferences

-

Qv v

PooQR0HF0DL

oo
"

f" :3{? ’

&% ® ¢

*
T

”n o

Breakpoints
Console
Debug
Disassembly
Executables
Expressions
Memory
Memory Browser
Modules
Outline
Peripherals
Problems
Registers
Signals

Tasks
Terminal
Trace Control

= Variables

Other...

..o] -p

.

v vt

veo

Alt+Shift+Q, B
Alt+Shift+Q, C

Alt+Shift+Q, O

Alt+Shift+Q, X

Alt+Shift+Q, V
Alt+Shift+Q, Q

Figure 9: Selecting a Window

P w

(x)=\

The Debug window displays the currently running task's stack through the function call tree.

3 Debug =2

- QSPI [SmartBond “"SmartSnippets DA1468x SDK" via J-Link GDB Server]

4 ¥ Debugging_Tutorial.elf
4 o Thread #1 <main> (Suspended : Signal : SIGTRAP:Trace/breakpoint trap)

hw_watchdog_handle_int() at hw_watchdog.c:111 Ox7fd128e
NMI_HandlerC() at hw_watchdog.c:143 0x7fd12fe
<signal handler called>() at Oxfffffffd

0x0
0x0

»& JLinkGDBServerCL.exe
» arm-none-eabi-gdb
s Semihosting and SWV

Figure 10: Stack Frame in the Debug Window

The Registers window (1) displays the MCU registers.

The Variables window (2) displays local variables.

The Expressions window (3) displays:

variables residing in statically created variables

variables residing in heap using the variable location address

arrays of data and also complex structures of data

9 of 32

© 2018 Dialog Semiconductor

dialog

For the DA1468x ChipS SEMICONDUCTOR

Debugging Techniques

2 3 1
% Breakpointsl &7 Expressions Iéféf Registers ‘1| Peripherals = Modules % B
Name Type Value
®» exception_args unsigned long * Ox7fd2e20
)= pmu_ctrl_reg uintl6_t <optimized out>

Figure 11: Useful Debug Windows

3 Hardfaults Session

This section provides a brief description of hardfaults on Cortex-MO processors. It also describes the
tools that can be used to deal with system faults.

It also explains how the SDK handles system faults and demonstrates a real use case of a hardfault,
including all the steps that need to be followed to handle the fault.

3.1 Introduction

In ARM processors, when a program goes wrong and the processor detects the cause that made the
device to fail, an exception is raised. On the Cortex-MO processor integrated in the DA1468x family
of devices, there is only one exception type that handles hardfaults. This is nhamed "the hardfault
handler". There are many reasons for a fault to occur, such as accessing invalid memory address
during bus transaction or attempting to generate an unaligned memory access.

The way the SDK handles the various system faults depends on whether the application is built in
development or production mode.

. In development mode (enabled by default), the SDK stores the system status in a predefined
retained location in memory (SySRAM) and then adds an infinite loop. This allows the
developer to attach a debugger, extract all the information stored in that memory area, and
eventually identify the reason for the fault.

. In production mode, adding an infinite loop is not practical as it would require the user to get
involved with debugging and recovery of the system. Instead, the system status is stored in a
dedicated retained area (hard_fault_info) in SyYSRAM memory and a system reset is triggered
so that the device starts its execution from start.

10 of 32 © 2018 Dialog Semiconductor

For the DA1468x Chips

dialog

SEMICONDUCTOR

Debugging Techniques

i A system fault has occurred

dg_configIMAGE_SETUP == PRODUCTION_MODE

(1) Store system status in SySRAM in a dedicated section
named “hard_fault_info”
(2) If PRODUCTION_DEBUG_OUTPUT macro is
defined then print out the system status on a serial
console

|

Reboot the chip by triggering a forced HW
reset

dg_configMAGE_SETUP == DEVELOPMENT_MODE

(1) Store the system status in SySRAM at
base address 0x7FC5600
(2) If VERBOSE_HARDFAULT macro is defined
then print out the system status on a serial
console

Stick in an infinite loop waiting for a
debugger to be attached

Figure 12: SW FSM of the Hardfault Exception Handler

Note: When in production mode and before executing the main application tasks, it can be
determined whether or not a reset derives from a system fault by examining the information
stored during a hardfault exception. For validity purposes, the first entry in the memory area,
where the system status has been stored, should be OxBADCOFFE. This entry can be
considered a special flag to indicate that the data that follows is valid.

3.2 Manually Triggering a Hardfault

The following real use case demonstrates triggering a hardfault. The next section demonstrates how

to identify the cause of the fault.

1. Make a copy of the freertos_retarget sample code found in the SDK of the DA1468x family of
devices. For information on how to create a new project, see Create a New Project in the

Starting a Project tutorial.

2. In the main.c source file of the newly created application, insert the following code which will
trigger a hardfault. The function tries to access an invalid memory address, which triggers an

exception to be issued when executed.

/* This is an invalid memory address - outside the recognized memory boundaries */
#define INVALID_ADDRESS 0x99999999UL;

void trigger_hardfault(void);
void trigger_hardfault(void)
{

/* Declare a pointer that points to an invalid memory address */
uint8_t *p = (uint8_t *) INVALID_ADDRESS;

11 of 32

© 2018 Dialog Semiconductor

https://support.dialog-semiconductor.com/resource/starting-project-html

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

/* Try to access that invalid memory address */
*p = 0x50;

3. Inthe main task of the application, that is prvTemplateTask, call the trigger _hardfault() function
somewhere within its main loop, for example:

/* Place this task in the blocked state until it is time to run again.
The block time is specified in ticks, the constant used converts ticks
to ms. While in the blocked state, this task will not consume any CPU
time. */

vTaskDelayUntil(&xNextWakeTime, mainCOUNTER_FREQUENCY_MS);

/* Trigger a hardfault deliberately! */
trigger_hardfault();

test_counter++;

4. Optionally, to enable debugging messages on the serial console, add the following macro
definition in the config/custom_config_qgspi.h header file.

/* Enable hardfault debugging messages */
#define VERBOSE_HARDFAULT (1)

5. Build the project in Debug mode (for example, in the case of DA14681 SoC select the
DA14681-01-Debug-QSPI build scheme) and burn the generated image to the chip.

Note: Debug mode is preferred over production mode when a debugging session is to be
performed, as stepping the code is a more straightforward task. In production mode, the
source code is built using optimizations, thus making tracing more complex.

6. Press the K2 button on Pro DevKit. This starts the chip executing its firmware. After a while, the
hardfault will be triggered.

3.3 Dealing with a Hardfault

This section provides the steps to identify the cause of a hardfault. Pointing to the exact location in
the source code where a fault occurred, can be a tough task. However, a debugging session can
reveal the point where things started to go wrong.

1. Initiate a debugging session by selecting the ATTACH mode. When switching to Debug view,
select Suspend to pause the code execution.

12 of 32 © 2018 Dialog Semiconductor

For the DA1468x Chips dlalog

SEMICONDUCTOR

Debugging Techniques

Program execution should be stuck in an infinite loop under the HardFault HandlerC interrupt
handler.

hw_cpm_assert _trigger gpio();

while (1);
¥
else {

Figure 13: Hardfault Handler Function

The hardfault handler function provides the whole register set values when the hardfault was

triggered. For example, the values of registers RO to R3, R12, LR, PC, and xPSR are stored in
memory position 0x07FC5600.

2. Use the Memory Browser tool (1) to view the contents stored in memory. In this tool, enter the

base address where the stack frame is stored (2). Either enter the physical memory address value or
the name of the corresponding macro, that is, STATUS BASE.

hw_cpm_assert_trigger_gpio();

> while (1);
- }
else {
ifdef PRODUCTION_DEBUG_OUTPUT
if (USE_WDOG)

WDOG->WATCHDOG_REG = 0Ox(8; // Reset WDOG! 200 * 10.24ms active t
< m_1 | 3

oblems “vecutables | @ Memory Browser 5|

2 | STATUSBASE RO |
0x7fcS600 - STATUS_BASE <Traditional> 2
0x07FC5600
0X07FC563C
0X07FC5678
0X07FC5684
0XO7FC56FO

00000000 07FD1B48 00000050 29999999 A5A5A5A5 08004F0D|@80RAEEC 01000000 07FD2D38 000OC0O0 B0V
FOC3CA61 8348D1C7 80A58038 48DFAAF7 FFB2434D 0040DA3C AFFB6685 58182673 43444410 AD80450E DA53C963
DE83B851 B8C33642 B7084F97 F8D68971 149A5B83 16FBDA81 32047E97 0817ECB2 01B988BA FC29128B E53A4B5F
DDBDCOAC 40354CF9 86FA26A2 0198DDF5 74AB859A 11F72C7D AF7B2D80 06FAB3F4 89A5C822 50B0O3FAB 9DE84368
233BDAFA E43E0273 049BBAC4 1D980D98 4C82C19F 3EOEBI80 61199AF2 94992962 3434982F CCFAB924 26C8146F

Figure 14: Probing the Stack Frame Captured Following a Hardfault Event

If debugging output is enabled, the following information will be displayed on the console:

13 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x ChipS SEMICONDUCTOR

Debugging Techniques

- "1 - — '- T —
v COM14 - Tera Term VT == X

File Edit Setup Control Window Help

HardFault Handler:

R = 8xPAA000000
BxA7fd1h48
BxxAP0ARA5 A
Bx99999929
Bxabababab
B:x88084f Ad
BxA88Adeec
Bx01 080888

Figure 15: Debugging Messages Following a Hardfault Event

mf »

The most useful information is held in the Program Counter (PC) and Link Register (LR). The PC
holds the current instruction address plus four bytes (this is caused by the pipeline nature of the
Cortex-MO processor). The LR is used for storing the return address of a subroutine or function call.
At the end of the subroutine or function, the return address stored in LR is loaded into the PC so that

the execution of the calling program is resumed.

This information, together with the Disassembly tool, can be used to identify the exact assembly

command that caused the error.

3. At this stage, we can examine the command pointed to by the PC register value. To do this,
select the Dissassembly window (1), enter the value of the PC (2), and press Enter. Next
locate the command pointed by the PC register (3) (displayed both in C and Assembly

language).
2= Outline | = Disassembly 23 1 2 | IS i
08004¢ee0: bl @x800231c <hw_gpio_set_pin_function>
362 }
08004ee4: pop {r3, pc}
08004e66 - nop ; (mov r8, r8) Code tt.1at caused the error
62 *p = Ox50; 4 is C language
trigger_hardfault:
08004ee8: movs r2, #80 ; ©x50
08004deea: ldr r3, [pc, #4] ; (Ox8004ef@ <trigger_ hardfault+8>)
ASPPAe v
:zézm strb r2, [r3, #0] T Code that caused the erroris
08004cee - ¥ bx 1r assembly language. Note that the
0200460 - ldr r1, [sp, #612] . @x264 function name is also displayed,
08004ef2: ldr r1, [sp, #612] ; 9x264 that is [trigger_hardfault]
226 {

Figure 16: Probing the Contents of the Program Counter

4. Similarly, examine the instruction pointed by the Link register. Since the command that caused
the fault is part of the trigger hardfault() function, the LR should point to the instruction that will

be executed upon the return of this function call.

14 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x ChipS SEMICONDUCTOR

Debugging Techniques

5= Outline E.:_' isassembly & | 2 Em ~vi2 | £5

08004efc: str r@, [sp, #4]

252 vTaskDelayUntil(&xNextWakeTime, mainCOUNTER_FREQUENCY_MS);

08004efe: add ro, sp, #4

08004100 movs rl, #128 ; 0x80

0800402 Isls ol ¢l 42 Code to be executed upon the

08004104 : bl 0x800469c <vTaskDelayUntil> return of the trigger_hardfault()

256 trigger_hardfault(); function in C language

08004108 : bl 0x8004ee8 <tr‘igger‘_hardfault:/

259 test_counter++;

08004f0c: 1dr r2, [pc, #24] ; (0x8004128 <prvTemplateTask+52>)

08004f0e: 1dr r3, [r2, #0]

08004f10: adds r3, #1 **\\

08004112: str.r3, [r2; #0] s

262 printf("#"); T~

08004f14: movs r@, #35 ; Ox23 i The C code line is displayed
T~ in its assembly

implementation

Figure 17: Probing the Contents of the Link Register

4 Reboot Analysis - BOD

This section provides a brief description of the Brown-out Detection (BOD) mechanism as
implemented in the DA1468x family of devices. It describes the tools that can be used to deal with
BOD events, and demonstrates a real use case of a BOD event, including all the steps that need to
be followed for coping with the issue.

4.1 Introduction

Typically, an MCU includes a built-in Brown-out Detection (BOD) circuit, which monitors supply
voltage levels during operation. Usually, BOD circuitry consists of comparators which constantly
compare voltage levels against fixed trigger levels. As soon as a voltage level drops below a pre-
defined threshold, a Power-on Reset (POR) may take place in order for the system to recover from
power failure.

The DA1468x family of devices incorporates a BOD circuit which can be used for monitoring voltage
levels derived from various power rails as illustrated in Table 1. Typically, from a software point of
view, BOD functionality involves enabling the BOD mechanism and then monitoring a dedicated BOD
status register.

Table 1: Power Rails of the SoC Monitored by the BOD Circuitry Error! Bookmark not defined.

Power Rail Description

This powers the externally connected Flash memory. The BOD mechanism for
the rail is enabled by default. As soon as the voltage level drops below the
predefined threshold, and given that BOD is enabled for the specific rail, a POR
is issued.

1V8 power rail

This is intended for powering external devices even when the system is in sleep
mode. This power rail is disabled by default. When enabled, the BOD protection
1V8P power rail | for the rail is also enabled by the SDK. As soon as the voltage level drops below
a predefined threshold, and given that BOD is enabled for the specific rail, a
POR is issued.

This powers the core itself. The BOD protection for the rail is disabled by default.
The SDK does not have a macro to enable it. As soon as the voltage level drops
below a predefined threshold, and given that BOD is enabled for the specific rall,
a POR is issued.

VDD power rail

15 of 32 © 2018 Dialog Semiconductor

dialo

For the DA1468x ChipS SEMICONDUCTORg

Debugging Techniques

This powers almost the whole system. The BOD protection for the rail is disabled
by default. The SDK does not have a macro to enable it. As soon as the voltage
level drops below a predefined threshold, and given that BOD is enabled for the
specific rail, a POR is issued.

Vsys power rail

This is powered by the battery port. The BOD protection for the rail is enabled by
default. As soon as the voltage level drops below a predefined threshold, a
system interrupt is issued. This naotifies the application that from this point and
below, the DC-DC converter is not providing better efficiency than the LDOs.
The application should switch the Power Management Unit (PMU) operation to
the LDOs.

VBAT power rail

Note: The BOD status register, that is BOD_STATUS_REG, does not contain valid information
for the power rails in which BOD protection is disabled. Also, the contents stored in this
register are kept intact during a POR cycle.

4.2 Manually Triggering a BOD

The following real use case demonstrates triggering a BOD event on the 1V8P power rail and
identifying that a reset was caused by that BOD event.

1. Make a copy of the freertos_retarget sample code found in the SDK of the DA1468x family of
devices. For information on how to create a new project, see Create a New Project in the
Starting a Project tutorial.

2. Enable the BOD mechanism by setting the following macro in the config/custom_config_gspi.h
configuration file:

/* Enable WDOG */
#define dg_configUSE_WDOG (1)

3. Enable the 1V8P power rail by setting the following macro in config/custom_config_qspi.h
configuration file. After enabling it, its BOD protection is enabled by the SDK.

/* Power the 1V8P power rail */
#define dg_configPOWER_1V8P (1)

4. The key goal of this exercise is for the developer to determine whether or not a reset was
caused by a BOD event. This means that the BOD status should be monitored before the
execution of the main application tasks. To do this, follow the steps below:

a. In startup/system ARMCMO.c, declare a variable to hold the contents of the
BOD_STATUS_REG register.

__RETAINED_UNINIT uint32_t bod_status_reg_val,

16 of 32 © 2018 Dialog Semiconductor

https://support.dialog-semiconductor.com/resource/starting-project-html

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

b.

In the Systemlnit function in startup/system ARMCMO.c, get the contents of the
BOD_STATUS_REG register just before enabling the BOD protection mechanism. After
initializing the BOD mechanism, any previously stored information in the status register is
invalidated.

/*
* Initialize UNINIT variables.
*
/
sys_tcs_init();
/*
* Get the BOD status register before enabling the BOD protection
*/
bod_status_reg_val = CRG_TOP->BOD_STATUS_REG & Ox1F;
/*
* BOD protection
*/

if (dg_configUSE_BOD == 1) {
/* BOD has already been enabled at this point but it must be reconfigured */
hw_cpm_configure_bod_protection();

Jelse {
hw_cpm_deactivate_bod_protection();

}

In main.c, add the following variables:

/* This is an external variable declared in system_ARMCMO.c source file */
extern uint32_t bod_status_reg_val;

/*

* This variable should be of type [volatile] since it will be reassigned
* during the debugging session.

*/

static volatile bool bod _1v8p_flag = true;

In the system_init function in main.c, add the code that checks whether or not the system
recovers from a BOD event on the 1V8P power rail:

/* Set the desired sleep mode. */
pm_set_sleep_mode(pm_mode_extended_sleep);

/*
* Check whether or not the system recovers after a BOD event
*/
if (!(bod_status_reg_val & REG_MSK(CRG_TOP, BOD_STATUS_REG,
BOD_1V8 PA_LOW))){
/*

* If yes, print a message on the serial console and then add an infinite

17 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

* loop so that the debugger can catch it! Then manually unblock!

*/

printf("\n\n\rSystem has just recovered from a POR due to voltage drop on 1V8P
power rail\n\n\r");

while(bod_1v8p_flag) {

}

/* Start main task here (text menu available via UART1 to control application) */
OS TASK _CREATE("Template", /* The text name assigned to the task, for

5. Increase the stack size reserved for the system_init initialization function by at least 100 bytes.

/* Start the two tasks as described in the comments at the top of this file. */

status = OS_TASK_CREATE("SysInit", /* The text name assigned to the task, for
debug only; not used by the kernel. */
system_init, /* The System Initialization task. */
(void *) 0, /* The parameter passed to the task. */

(configMINIMAL_STACK_SIZE * OS_STACK_WORD_SIZE + 100),
/* The number of bytes to allocate to the
stack of the task. */
OS_TASK_PRIORITY_HIGHEST, /* The priority assigned to the task. */
xHandle); /* The task handle */
OS_ASSERT(status == OS_TASK_CREATE_SUCCESS);

6. Build the project either in Debug or Release mode and burn the generated image in the chip.
7. Press the K2 button on Pro DevKit. This step starts the chip executing its firmware.

8. Before triggering a voltage drop on 1V8P power rail, monitor the status of the BOD mechanism.
To do this:

a. Start a debugging session by selecting the ATTACH mode and then selecting
Suspend to halt MCU operation.

b. Select the EmbSys Registers window and navigate to BOD_CTRL2_REG and
BOD_STATUS_REG registers under the CRG_TOP folder. Double-click on each
register name to display the contents.

18 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

EmbSys Registers &2
B Arch: SVD(CMSIS) Vendor: Dialog_Semiconductor Chip: DA14681-01 Board: ---
Register Hex Bin
4 &= CRG_TOP
> [=] ANA_STATUS_REG
- [Z] AON_SPARE_REG
- [Z] BANDGAP_REG
4 [&] BOD_CTRL2_REG 0x0039 0000000000111001

=] BOD_VBAT_EN (bit 5) ox1 1
(51 BOD_1V8_FLASH_EN (bit 4 Ox1 1
51 BOD_1V8_PA_EN (bit3) Ox1 1
|—ﬁ BOD_V33_EN (bit 2) 0x0 0 | pisabled by default
51 BOD_VDD_EN (bit 1) 0x0 0
(=] BOD_RESET_EN (bit 0) ox1 1
- [BOD_CTRL_REG 0x0155 0000000101010101
4 [Z] BOD_STATUS_REG 0x0017 0000000000010111
This is the BOD entry of interest. A =] BOD_VBAT_LOW (bit4) 0Ox1 1
value set to [1] indicates that the [31 BOD_V33_LOW (bit 3) 0x0 0 | This entry is invalid since BOD is disabled
voltage level on that rail is above the & BOD-IVB-FLASH-LOW (it Ox1 =
3 +——>[E1BOD_1V8_PA_LOW (bit1) Ox1 1]
predefined threshold. A value set to IE BOD_VDD_LOW (bit 0) 0x1 1 | This entry is invalid since BOD is disabled

[0] indicates that the voltage level on
that rail is below the predefined
threshold and a POR is issued if BOD
protection for that power line is
enabled.

Figure 18: Inspecting BOD Related Registers

9. Select Terminate to terminate the current debugging session.

10. Open a serial terminal. For more information on configuring a serial terminal, see Prepare the
System in the Starting a Project tutorial.

11. Shortcut the 1V8P power rail using a low value resistor (for example, 100 Ohm). The shortcut
can also be done without using a resistor but it is not recommended as this may damage the
chip.

Figure 19: DA1468x Pro DevKit

19 of 32 © 2018 Dialog Semiconductor

https://support.dialog-semiconductor.com/resource/starting-project-html

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

4.3 Dealing with a BOD Event

1. Following the shortcut on the 1V8P power rail, the code should be in an infinite loop. To verify
this, a new debugging session should be performed by selecting ATTACH mode and then
Suspend to halt the MCU operation.

[custom_confi.. [c bsp_defaults.h @ hw_hard_faultc [© hw_watchdog.c [d hw_watchdogh [d system ARMCMO.c 16 =

/i
* Check whether or not the system recovers after a BOD event
if (!(bod status reg val & REG_MSK(CRG_TOP, BOD_STATUS REG, BOD 1V8 PA LOW))) {
/x
* If yes, print a message on the serial console and then stick in an infinite loop so that
* debugger can catch it! Then manually unblock!
*/
printf("\n\n\rSystem has just recovered from a POR due to voltage drop on 1V8P power rail\n\n\r");
while(bod_1v8p_flag) {

The voltage drop on 1V8P power rail was
H identified and program execution got stuck
} i in an infinite loop.

Figure 20: Dealing with a BOD Event

2. Verify that the BOD_1V8 PA_LOW bit in the BOD_STATUS_ REG register was set to zero by
monitoring the bod status reg val variable. To do this, in the Expressions window (1), click
Add new expression (2) and write the variable name of interest (3).

()= Variables % Breakpoints! < Expressions 52 14l Registers . Peripherals =\ Modules £t B g % %

Expression Type Value

= bod_status_reg_val 3 uint32_t 10101 (Binary)

4= Add new expression | 2

_________________________ F

BOD_VBAT_LOW (bit4) — l— BOD_1V8_PA_LOW (bit 1)

v
10101 (Binary)
Figure 21: Inspecting Variables and Expressions using the Expressions Window

Note: A voltage drop on a power line may also affect other power rails of the system.

3. The default presentation format for all variables is decimal. To change it, right-click on the
variable name in the Expressions window (1), select Number Format (2), and then select the
preferred format (3).

20 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x ChipS SEMICONDUCTOR

Debugging Techniques

v w Quick Access | 5 | @ Welcome EgC/C++ [f{;»DTug
Fecssesssesas -
= Variables e Breakpoints i Expressions E'wRegisters Peripherals a\ Modules | & X gl ozl
EXpresSion s s Type Value
E = bod_status_reg_val E uint32_t 10101 (Rinanv)
5 Add new expression Select All Ctrl+A
Copy Expressions Ctrl+C
X Remove
% Remove All
Details | Numberformat | 7 »
Default """ Add Expression Group »
Decimal Find... Ctri+F
I____Hex ________ v Add Watch Expression...
3 19 Binay 1 Disable
Octal Enat
Restore To Preference Edit Watch Expression...
Name : b(_)d_status_r‘eg_val 74 Add Watchpoint (C/C++)..
Details:21 . z
Default:21 @ Build Documentation
Decimal:21 “» Cast To Type...
Hex:0x15 {1 Display As Array...
Rinarv:10101 2’ Watch

Figure 22: Changing Number Presentation Formats

4. A debugging message, indicating that BOD mechanism trigged a POR cycle, should also be
displayed on the serial console. This message could also be sent through BLE functionality
using a custom BLE Profile.

This text is displayed by the Bootloader during a

This text is displayed by the main hardware reset using a 57600 baud rate and not
application task, that is the 115200 which is the one set for the main application
prvTemplateTask task

v COM21 - Tera Term VT e 5

File Edit Setup Control Window Help
|umms B0 " xxx | Bx< L7008 “xex | Bx< L7008 x| Bx< L7008 " x| FBx L

System has just recovered from a POR due to voltage drop on 1U8P power rail

4 [m

Figure 23: Printing Debugging Messages on the Serial Console upon a BOD Event

5. Normally, code execution will not stick in infinite loops, we only do this to verify various
parameters related to a BOD event. To resume code execution the bod 1v8p flag variable
should be set to false. To do this, in the Expressions window (1), click on Add new
expression (2) and enter the variable name of interest (3).

21 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x ChipS SEMICONDUCTOR

Debugging Techniques

1
)= Variables ®e Breakpointsi ¢ Expressions &2 i} Registers % Peripherals =\ Modules 2|+ XK|CIct Y= 0O
Expression Type Value
0= bod_status_reg_val uint32_t 10101 (Binary)
- bod 1v8p flag 3 volatile _Bool true

2= Add new expression | 7

Figure 24: Inspecting Variables and Expressions using the Expressions window

6. Click on the Value cell, in our case that is true (4) and change the value to false. The variable
shoud now contain the newly declared value.

2 |18l Registers . Peripherals =\ Modules B %

Expression Type iValue i

)= bod_status_reg_val uint32_t 10101 (Binary)
o bod 1vép.flsg | volatie _Bool

o Add new expression

Figure 25: Modifying Variable Contents while in Debugging Session

Note: The volatile keyword indicates that a value may change between different accesses,
even if it does not appear to be modified. In other words, it tells the compiler that the value of
the variable may change at any time thus, not performing optimizations for that object. The
system always reads the current value of a volatile object from the memory location rather
than keeping its value in temporary core registers at the point it requested, even if a previous
instruction asked for a value from the same object.

7. Select Terminate to terminate the current debugging session. The code should resume its
execution. To verify this, monitor the serial console. The # character should be printed out every
1 second.

5 Reboot Analysis - WDOG

This section provides a brief description of the watchdog (WDOG) mechanism as implemented in the
DA1468x family of devices. It describes the tools that can be used to deal with watchdog exceptions,
explains how the SDK handles watchdog exceptions, and demonstrates a real use case of a
watchdog exception, including all the steps that need to be followed for copying with the exception.

5.1 Introduction

Most embedded systems need to be self-reliant. It's not usually possible to wait for someone to
reboot them if the software hangs. A watchdog mechanism is a special hardware timer that can be
used to automatically detect unexpected system behaviors during software execution. The DA1468x
family of devices incorporates an 8-bit down counter drived by a 10.24 ms clock pulse, resulting in a
maximum 2.6 seconds time-out. The embedded software selects the counter's initial value, by default
this is set to 255, and periodically restarts it indicating that the application is up and running. If for any
reason the firmware execution gets stuck, the watchdog timer is not updated and therefore expires
after a time. Upon its expiration, and depending on the system configurations, either an NMI

22 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x ChipS SEMICONDUCTOR

Debugging Techniques

exception or a WDOG reset is issued to recover the system. By default, the system is configured so
that an NMI interrupt is issued when the WDOG reaches a zero value.

Note: An NMI (Non Maskable Interrupt) is similar to an IRQ interrupt but it cannot be disabled
by control registers and therefore its responsiveness is guaranteed.

Watchdog Timer

An NMI interrupt is issued

A WDOG reset is issued

Figure 26: Watchdog Functionality as Configured by Default

The way the SDK handles watchdog related events depends on whether the application is built in
development or production mode.

. In development mode (enabled by default), the SDK freezes the watchdog operation, stores the
system status in a predefined retained location in memory (SySRAM), and then halts CPU
operation. This allows the developer to attach a debugger, extract all the information stored in
that memory area, and eventually identify the reason for the fault.

. In production mode, halting system operation is not practical as it would require the user to get
involved with debugging and recovery of the system. Instead, the system status is stored in a
dedicated retained area (nmi_info) in SySRAM memory and after a while the watchdog
mechanism triggers a hardware reset, which recovers the system.

23 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

Watchdog Timer reached a

zero Yalue
dg_configIMAGE_SETUP == PRODUCTION_MODE dg_configIMAGE_SETUP == DEVELOPMENT_MODE
Store the system status in SySRAM in (1) Freeze the watchdog operation
a dedicated section named (2) Store the system status in SySRAM at
“nmi_info” base address 0x7FC5600

l

Stick in an infinite loop waiting for
the watchdog mechanism to trigger
a hardware reset

Debugger is attached Debugger is not attached

A 4 y

Halt processor operation by Stick in an infinite loop
executing an breakpoint waiting for a debugger to
assembly command be attached

Figure 27: SW FSM of the Watchdog Exception Handler

5.2 Manually Triggering a Watchdog Exception

The following real use case demonstrates expiring the watchdog timer and then identifying the cause
of the fault.

1. Make a copy of the freertos_retarget sample code found in the SDK of the DA1468x family of
devices. If this step has already been executed in previous sections do not repeat it. For
information on how to create a new project, see Create a New Project in the Starting a Project
tutorial.

2. In the main.c source file, insert the following code which triggers a watchdog expiration. This
function traps the code execution in an infinite loop without updating the watchdog counter
value. This results in the counter's expiration as soon as it reaches a value equal to zero.

void trigger_wdog(void)

{
/*
* Remain here until Watchdog Timer reaches a zero value and
*an NMl interrupt is triggered.
%
/
for (;;);
}

3. Inthe main task of the application, prvTemplateTask, call the aforementioned function within its
main loop, for instance:

24 of 32 © 2018 Dialog Semiconductor

https://support.dialog-semiconductor.com/resource/starting-project-html

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

/* Place this task in the blocked state until it is time to run again.
The block time is specified in ticks, the constant used converts ticks
to ms. While in the Blocked state this task will not consume any CPU
time. */

vTaskDelayUntil(&xNextWakeTime, mainCOUNTER_FREQUENCY_MS);

/* Trigger a watchdog exception deliberately! */
trigger_wdog();

test_counter++;

4. Enable the watchdog mechanism by declaring and setting the correct value to the
dg configUSE_ WDOG macro. To do this, add the following macro definition in the
config/custom_config_qspi.h header file.

Note: Before proceeding with this step check whether or not this macro has already been
declared, so that to avoid duplicate declarations.

/* Enable WDOG */
#define dg_configUSE_WDOG (1)

5. If required, the developer can modify the initial WDOG counter value from OxFF which is the
default and the maximum allowable value. To do this, add the following macro definition in the
config/custom_config_qspi.h configuration file.

#define dg_configWDOG_RESET_VALUE XXXX

6. Build the project in Debug mode (for the DA14681 SoC this is done by selecting the DA14681-
01-Debug-QSPI build scheme) and burn the generated image to the chip.

Note: Debug mode is preferred over Release when a debugging session is to be performed,
as stepping the code is a straightforward task. In Release mode, the source code is built
using optimizations, thus making tracing a more complex task.

7. Press the K2 button on Pro DevKit. This step starts the chip executing its firmware. After a
while, the watchdog will expire.

5.3 Dealing with a Watchdog Event

This section provides the steps required to identify the cause of the fault.

25 of 32 © 2018 Dialog Semiconductor

For the DA1468x Chips g.!ﬂ!gg

Debugging Techniques

1.

Initiate a debugging session by selecting the ATTACH mode. Upon switching to Debug view
pause the code execution by selecting Suspend.

Program execution should now be stuck in an infinite loop under the hw_watchdog handle int
NMI handler.

hw_cpm_assert_trigger_gpio();

if (REG_GETF(CRG_TOP, SYS_STAT_REG, DBG_IS_ACTIVE)) {

__BKPT(®);
b
else {

while (1);
b

Figure 28: Watchdog Handler Function

The watchdog handler function provides the whole stack frame when the watchdog timer
expired. The values of registers RO to R3, R12, LR, PC, and xPSR are stored in memory
position 0x07FC5600. To view the contents stored in memory, select the Memory Browser tool
(1) and enter the base address where the stack frame is stored (2). Enter either the physical
memory address value or the name of the corresponding macro, that is STATUS BASE.

if (REG_GETF(CRG_TOP, SYS_STAT_REG, DBG_IS_ACTIVE)) {

__BKPT(0);
}
else {
> | while (1);
¥

#else // dg_configIMAGE_SETUP == DEVELOPMENT_MODE
if (exception args != NULL) {

< | wl

r 1
i O Memory Browser 21

STATUS_BASE i

|0x7fc5600 - STATUS_BASE <Traditional > 52 .

Ox07FC5600 00000000 07FD1C30 10000000 07FD1CFA/ASASASAS 08004EFB O8004EEQ 01000000 @7FD2E20
Ox07FC5628 0000000 KVVVBNOO PRV POVVVVNO VRV AE7E7AAS 22BEFA59 DAEQC946 2EACSF85
Ox07FC5650 69EDD82F 82CEAALG E9OF68C1 87152A3B 072CBOF9 1716304 1525FDCE 1CASFA1E OCFO5D59

Figure 29: Probing the Stack Frame Captured upon a Watchdog Event

The most useful information is held in the Program Counter (PC) and Link Register (LR).
Together with the Disassembly View tool, this can be used to identify the exact assembly
command that caused the error.

To examine the command pointed to by the PC register value, select the Disassembly window
(1), enter the value of the PC (2), and press enter. Then locate the command pointed to by the
PC register (3) (displayed both in C and Assembly language).

26 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

0x8004EED il 2]

8= Qutline iz Disassembly 2§ 1 2

08004edc: pop {r3, pc}

88004 ede: nop ; (wov r8, r8) Code that caused the error
73 for (55) ; -

trigger wdog: -— is C language
080040 : b.n 0x8004ee@ <trigger wdog>
08004ee2: nop ; (mov r8, r8) ‘\ Code that caused the error is

235 { assembly language. Note that the
prvTemplateTask: function name is also displayed,

08004ee4 : push {1r} that is [trigger_wdog]

08004eeb: sub sp, #12

254 xNextWakeTime = 0S_GET_TICK_COUNT();

08004ee8: bl 0x8003db0 <xTaskGetTickCount>
08004eec: str r@, [sp, #4]

Figure 30: Probing the Contents of the Program Counter

4. Similarly, examine the instruction pointed by the Link Register. Since the code execution is
trapped in an infinite loop within a function, the LR should point to that function.

2 Outline [Disassembly 2| 1 2 | 0x08004EF8 il & BB £
080949?1 'g‘l’VS rl, #102 ; ixsi § Code to be executed upon the
08004ef2: 0x8004690 <vTaskDelayUntil> .

return of the trigger_wdo
0270 trigger_wdog(); «—— gger_ g()

08004ef6: bl 0x8004eed <trigger_wdog> function in C language
08004efa: nop ; (mov r8, r8)
08004efc: push {1r}

08004efe: sub sp, #20 The C function is displayed
08004f00: bl 0x8000b98 <cm_clk_init_low_level> in its assembly
08004104 : movs r3, #6 implementation
08004106 : str r3, [sp, #0]

08004108 : ldr r3, [pc, #36] ; (0x8004f30 <main+52>)

08004f0a: str r3, [sp, #4]

Figure 31: Probing the Contents of the Link Register

6 SW Cursor via Power Profiler

DA1468x SDK provides a debugging functionality which can be used to mark certain events and
capture the corresponding pin levels with a logic analyzer. This feature can also be used for
accurately measuring timing intervals. This feature can be used in combination with the Power
Profiler tool for displaying the marked points of interest and measuring timing intervals.

1. If not already done so, make a copy of the freertos_retarget sample code found in the SDK of
the DA1468x family of devices. For more information on how to create a new project, see
Create a New Project in the Starting a Project tutorial.

2. To enable the SW cursor mechanism, set the appropriate macro in
/config/custom_config_qspi.h:

#define dg_configUSE_SW_CURSOR (1)

3. This step is optional and is intended for those who are interested in using an external logic
analyzer to capture the marked events. By default, P0O.7 pin is the selected GPIO debugging

27 of 32 © 2018 Dialog Semiconductor

https://support.dialog-semiconductor.com/resource/starting-project-html

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

output. The developer can change the default pin by setting the appropriate macro definitions in
config/custom_config_gspi.h. For example, to select pin P1.5, add the following macro
definitions:

#define SW_CURSOR_PORT (1)
#define SW_CURSOR_PIN ~ (5)

4. Call the following function at the point of interest. For example, modify the main task of the
newly created project, that is prvTemplateTask, to mark an event every 200 ms.

for(;;) {
/* Place this task in the blocked state until it is time to run again.
The block time is specified in ticks, the constant used converts ticks
to ms. While in the Blocked state this task will not consume any CPU
time. */
vTaskDelayUntil(&xNextWakeTime, mainCOUNTER_FREQUENCY_MS);

test_counter++;

/* Trigger the SW cursor */
hw_cpm_trigger_sw_cursor();

if (test_counter % (1000 / OS_TICKS_2_MS(mainCOUNTER_FREQUENCY_MS))
printf("#");
fflush(stdout);

5. Build the project either in Debug or Release mode and burn the generated image to the chip.
6. Press the K2 button on Pro DevKit. This step starts the chip executing its firmware.
7. Open SmartSnippets Toolbox and execute the following steps:

a. Create a new project by selecting New (1). This step is optional if a project has already
been created.

b. Choose an available project (2).
c. Choose a communication port (3).
d. Select the family of devices that is being used (4).

e. Open the selected project (5).

28 of 32 © 2018 Dialog Semiconductor

dialog

For the DA1468x Chips SEMICONDUCTOR

Debugging Techniques

Please select a project from the list: Please select the COM Port or JTAG Serial #: Please select the chip version:
(U UART only () JTAG (U Hybrid Bold entry marks the chip lastly detected on the
selected JTAG
2 Power Profiler activated
emo (V] UART PORT: COM21 - SPI PORT: COM22] DA14581-00 S
(] DA14583-00
3 [[] DA14585-00
) pA14586-00
(] DA14680-00 4
] pA14681-00
[[] DA14880-01
[DA14681-01 v

5 Cannot see my board?

| open || | Edt | | Delete | | New || | Refesh | | Detectdevices) | | Help |

1

Figure 32: Opening SmartSnippets Toolbox

8. Start power profile monitoring:
a. Switch to the Power Profiler window (1).
b. Initialize Power Profiler (2).

c. Start Power Profiler (3).

il |
I RF Master l

,@EO) |

Layot | Tools | Power Profier

-] & ® ¢ & o
OTP QsPI QsPI

Booter | Power QSPI Partition Terminal RFMaster Log
Profiler Programmer Programmer NVPARAMS Table
1 Tools

[() iniiaize | [B @ o [£ conng

Figure 33: Initializing Power Profiler

9. Monitor the SW cursor indicated by a red line.

29 of 32 © 2018 Dialog Semiconductor

For the DA1468x Chips dlalog

SEMICONDUCTOR

Debugging Techniques

14326,3664 ms1) ! i 451524, 7020 ms | i 7 4722 5332 ms [1)

AE: 146,8223 uJ - AC: 48,9408 ucC - I,,: 0,2468 mA - Ipk: 51,0858 mA

At: 193,3356 ms [AL 02727 mA

—
<
=
—
—
c
0]
-
=
=1

_.
-

Figure 34: SW Cursor Indication

30 of 32 © 2018 Dialog Semiconductor

For the DA1468x Chips

d. I
SEMICONDUCTOR g

Debugging Techniques

Revision

Date

Description

1.0

26-June-2018

First released version

31 0f 32

© 2018 Dialog Semiconductor

For the DA1468x Chips

¢ldialo

SEMICONDUCTOR

Debugging Techniques

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or
additions.

APPROVED The content of this document has been approved for publication.

or unmarked

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the
specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog

Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of

their respective owners.

© 2018 Dialog Semiconductor. All rights reserved.

Error! Bookmark not defined.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)
Dialog Semiconductor (UK) LTD
Phone: +44 1793 757700

Germany
Dialog Semiconductor GmbH
Phone: +49 7021 805-0

The Netherlands
Dialog Semiconductor B.V.
Phone: +31 73 640 8822

Email:
enquiry@diasemi.com

North America

Dialog Semiconductor Inc.
Phone: +1 408 845 8500
Japan

Dialog Semiconductor K. K.
Phone: +81 3 5769 5100

Taiwan
Dialog Semiconductor Taiwan
Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

Hong Kong
Dialog Semiconductor Hong Kong
Phone: +852 2607 4271

Korea
Dialog Semiconductor Korea
Phone: +82 2 3469 8200

China (Shenzhen)
Dialog Semiconductor China
Phone: +86 755 2981 3669

China (Shanghai)
Dialog Semiconductor China
Phone: +86 21 5424 9058

32 of 32

© 2018 Dialog Semiconductor

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

