

Tutorial

Debugging Techniques

For the DA1468x Chips

Abstract

This tutorial should be used as a reference guide to gain a deeper understanding of the ‘Debugging Techniques’
for DA1468x family of devices. As such, it covers a broad range of topics including an introduction to debugging
tools that are available for performing a debugging session as well as detailed description of the most common
system faults. Furthermore, it covers a number of sections containing in depth analysis of real use cases of
system failures and how to deal with them.

For the DA1468x Chips

Debugging Techniques

 2 of 32 © 2018 Dialog Semiconductor

Contents

Abstract .. 1

Contents ... 2

Figures .. 2

Tables ... 3

Terms and Definitions ... 3

References ... 3

1 Introduction.. 4

1.1 Before You Start .. 4

2 Debugging .. 4

2.1 Initiating a Debugging Session ... 4

2.2 Changing the Default Breakpoint .. 5

2.3 Device-Specific Registers ... 7

2.4 Useful Debug Tools ... 8

3 Hardfaults Session .. 10

3.1 Introduction ... 10

3.2 Manually Triggering a Hardfault .. 11

3.3 Dealing with a Hardfault .. 12

4 Reboot Analysis - BOD ... 15

4.1 Introduction ... 15

4.2 Manually Triggering a BOD ... 16

4.3 Dealing with a BOD Event... 20

5 Reboot Analysis - WDOG ... 22

5.1 Introduction ... 22

5.2 Manually Triggering a Watchdog Exception ... 24

5.3 Dealing with a Watchdog Event .. 25

6 SW Cursor via Power Profiler .. 27

Figures

Figure 1: Initiating a Debugging Session ... 4
Figure 2: Debug View .. 5
Figure 3: Resume, Supend, and Terminate a Debug Session .. 5
Figure 4: Changing the Default Breakpoint #1 .. 6
Figure 5: Changing the Default Breakpoint #2 .. 6
Figure 6: Show View Window .. 7
Figure 7: Configure the EmbSys Registers Tool ... 8
Figure 8: The EmbSys Registers View .. 8
Figure 9: Selecting a Window .. 9
Figure 10: Stack Frame in the Debug Window.. 9
Figure 11: Useful Debug Windows .. 10
Figure 12: SW FSM of the Hardfault Exception Handler ... 11
Figure 13: Hardfault Handler Function .. 13
Figure 14: Probing the Stack Frame Captured Following a Hardfault Event 13
Figure 15: Debugging Messages Following a Hardfault Event ... 14
Figure 16: Probing the Contents of the Program Counter ... 14

For the DA1468x Chips

Debugging Techniques

 3 of 32 © 2018 Dialog Semiconductor

Figure 17: Probing the Contents of the Link Register ... 15
Figure 18: Inspecting BOD Related Registers .. 19
Figure 19: DA1468x Pro DevKit .. 19
Figure 20: Dealing with a BOD Event .. 20
Figure 21: Inspecting Variables and Expressions using the Expressions Window 20
Figure 22: Changing Number Presentation Formats .. 21
Figure 23: Printing Debugging Messages on the Serial Console upon a BOD Event 21
Figure 24: Inspecting Variables and Expressions using the Expressions window.............................. 22
Figure 25: Modifying Variable Contents while in Debugging Session ... 22
Figure 26: Watchdog Functionality as Configured by Default ... 23
Figure 27: SW FSM of the Watchdog Exception Handler ... 24
Figure 28: Watchdog Handler Function ... 26
Figure 29: Probing the Stack Frame Captured upon a Watchdog Event .. 26
Figure 30: Probing the Contents of the Program Counter ... 27
Figure 31: Probing the Contents of the Link Register ... 27
Figure 32: Opening SmartSnippets Toolbox ... 29
Figure 33: Initializing Power Profiler .. 29
Figure 34: SW Cursor Indication ... 30

Tables

Table 1: Power Rails of the SoC Monitored by the BOD Circuitry .. 15

Terms and Definitions

API Application Programming Interface

BOD Brown-out Detection

DevKit Development Kit

HW Hardware

IDE Integrated Development Environment

JTAG Joint Test Action Group

LR Link Register

MCU Microcontroller Unit

PC Program Counter

POR Power-on Reset

SDK Software Development Kit

SW Software

SWD Serial Wire Debug

WDOG Watchdog

References

[1] UM-B-044, DA1468x Software Platform Reference, User Manual, Dialog Semiconductor.

For the DA1468x Chips

Debugging Techniques

 4 of 32 © 2018 Dialog Semiconductor

1 Introduction

1.1 Before You Start

Before you start you need to:

• Install the latest SmartSnippets Studio

• Download the latest SDK (currently version 1.0.12.1078)

These can be downloaded from the Dialog Semiconductor support portal.

Additionally, for this tutorial either a Pro or Basic Development kit is required.

The key goals of this tutorial are to:

• Provide a basic understanding of debugging and debuggers

• Explain reasons that may cause the device to fail and the steps that need to be followed

depending on the root cause of the failure

• Give tips and insights for dealing with failures of the system

2 Debugging

A debugging session lets you control the execution of a program by setting breakpoints, suspending

executed programs, stepping through the code, and examining the contents of variables and

structures. This section demonstrates the most useful tools and features of the Eclipse IDE that can

be used during debugging.

2.1 Initiating a Debugging Session

To initiate a debugging session, a debugger must be attached to the SWD or JTAG port of the

application MCU. The DA1468x Pro DevKit has a debugger mounted on it, thus eliminating the need

for an external one which can be quite an expensive tool.

There are two ways to start a debugging session, the selected method depends on the issue being

examined. One option is for the developer to start inspecting program execution from the beginning

by triggering a hardware reset while attaching the debugger to the MCU. This means that the

program is executed from its very first step and by default the first breakpoint is set to the main

function of the application. The second option is for the debugger to be attached without triggering

any reset to the system.

1. Click on the Debug button (1) and select either ATTACH or QSPI (2). Selecting QSPI triggers a

hardware reset to the system while the debugger is being attached.

Figure 1: Initiating a Debugging Session

https://support.dialog-semiconductor.com/connectivity

For the DA1468x Chips

Debugging Techniques

 5 of 32 © 2018 Dialog Semiconductor

2. Depending on the configuration, a pop-up window might be displayed asking for permission to

switch to the Debug view.

Figure 2: Debug View

3. When switching to the Debug view, either the code execution is automatically halted on a

breakpoint, or the developer should pause the execution of the application by clicking on the

Suspend button.

Figure 3: Resume, Suspend, and Terminate a Debug Session

2.2 Changing the Default Breakpoint

By default, a breakpoint is set on the main function of the application. However, things may go wrong

before the code even gets to the main function. In this case, operation should be halted earlier, for

instance in the reset handler. To do so, the following steps should be executed:

1. Click on the Debug button and select Debug Configurations....

For the DA1468x Chips

Debugging Techniques

 6 of 32 © 2018 Dialog Semiconductor

Figure 4: Changing the Default Breakpoint #1

The Debug Configurations window is displayed.

2. In the Debug Configurations window, select SmartBond SmartSnippets DA1468x via J-

Link GDB Server > QSPI.

3. In the Startup tab, change the default breakpoint in the Set breakpoint at field and click on

Apply. In this example, Reset_Handler is selected.

Figure 5: Changing the Default Breakpoint #2

For the DA1468x Chips

Debugging Techniques

 7 of 32 © 2018 Dialog Semiconductor

Note: The Cortex-M0 Breakpoint Unit (BPU) implementation provides between zero and four

hardware breakpoint registers. A processor configured with zero breakpoints implements no

breakpoint functionality. Typical hardware breakpoints watch an internal bus or the program

counter and if it matches a certain condition it will either stop the processor or do whatever

the hardware implements for that condition.

2.3 Device-Specific Registers

During a debugging session, the developer can read, as well as set, systems registers including

GPIOs and other peripheral registers. This is done in the Eclipse tool named EmbSys Registers. To

enable this tool, follow the steps below:

1. From the Window menu, select Show View > Other.... The Show View window is displayed.

2. In the Show View window, select Debug > EmbSys Registers (1) and then click OK (2).

Figure 6: Show View Window

The EmbSys Registers window is displayed.

3. To configure the tool, from the Window menu, select Preferences. The Preferences window is

displayed.

4. In the Preferences window, select C/C++ > Debug > EmbSys Register View (1) and then

configure the tool as required (2).

 In the Chip field, select the correct family of devices (in our case DA14681-01). Finally click OK

(3).

For the DA1468x Chips

Debugging Techniques

 8 of 32 © 2018 Dialog Semiconductor

Figure 7: Configure the EmbSys Registers Tool

5. To read or modify register values, make sure the debugger is attached and suspended.

Figure 8: The EmbSys Registers View

2.4 Useful Debug Tools

The Eclipse IDE offers a variety of debugging tools which can be used during a debugging session.

The tools are available through various windows which can be enabled/disabled by selecting them

from the Window > Show View menu.

For the DA1468x Chips

Debugging Techniques

 9 of 32 © 2018 Dialog Semiconductor

Figure 9: Selecting a Window

• The Debug window displays the currently running task's stack through the function call tree.

Figure 10: Stack Frame in the Debug Window

• The Registers window (1) displays the MCU registers.

• The Variables window (2) displays local variables.

• The Expressions window (3) displays:

– variables residing in statically created variables

– variables residing in heap using the variable location address

– arrays of data and also complex structures of data

For the DA1468x Chips

Debugging Techniques

 10 of 32 © 2018 Dialog Semiconductor

Figure 11: Useful Debug Windows

3 Hardfaults Session

This section provides a brief description of hardfaults on Cortex-M0 processors. It also describes the

tools that can be used to deal with system faults.

It also explains how the SDK handles system faults and demonstrates a real use case of a hardfault,

including all the steps that need to be followed to handle the fault.

3.1 Introduction

In ARM processors, when a program goes wrong and the processor detects the cause that made the

device to fail, an exception is raised. On the Cortex-M0 processor integrated in the DA1468x family

of devices, there is only one exception type that handles hardfaults. This is named "the hardfault

handler". There are many reasons for a fault to occur, such as accessing invalid memory address

during bus transaction or attempting to generate an unaligned memory access.

The way the SDK handles the various system faults depends on whether the application is built in

development or production mode.

• In development mode (enabled by default), the SDK stores the system status in a predefined

retained location in memory (SySRAM) and then adds an infinite loop. This allows the

developer to attach a debugger, extract all the information stored in that memory area, and

eventually identify the reason for the fault.

• In production mode, adding an infinite loop is not practical as it would require the user to get

involved with debugging and recovery of the system. Instead, the system status is stored in a

dedicated retained area (hard_fault_info) in SySRAM memory and a system reset is triggered

so that the device starts its execution from start.

For the DA1468x Chips

Debugging Techniques

 11 of 32 © 2018 Dialog Semiconductor

Figure 12: SW FSM of the Hardfault Exception Handler

Note: When in production mode and before executing the main application tasks, it can be

determined whether or not a reset derives from a system fault by examining the information

stored during a hardfault exception. For validity purposes, the first entry in the memory area,

where the system status has been stored, should be 0xBADC0FFE. This entry can be

considered a special flag to indicate that the data that follows is valid.

3.2 Manually Triggering a Hardfault

The following real use case demonstrates triggering a hardfault. The next section demonstrates how

to identify the cause of the fault.

1. Make a copy of the freertos_retarget sample code found in the SDK of the DA1468x family of

devices. For information on how to create a new project, see Create a New Project in the

Starting a Project tutorial.

2. In the main.c source file of the newly created application, insert the following code which will

trigger a hardfault. The function tries to access an invalid memory address, which triggers an

exception to be issued when executed.

/* This is an invalid memory address - outside the recognized memory boundaries */
#define INVALID_ADDRESS 0x99999999UL;

void trigger_hardfault(void);
void trigger_hardfault(void)
{
 /* Declare a pointer that points to an invalid memory address */
 uint8_t *p = (uint8_t *) INVALID_ADDRESS;

https://support.dialog-semiconductor.com/resource/starting-project-html

For the DA1468x Chips

Debugging Techniques

 12 of 32 © 2018 Dialog Semiconductor

 /* Try to access that invalid memory address */
 *p = 0x50;
}

3. In the main task of the application, that is prvTemplateTask, call the trigger_hardfault() function

somewhere within its main loop, for example:

/* Place this task in the blocked state until it is time to run again.
 The block time is specified in ticks, the constant used converts ticks
 to ms. While in the blocked state, this task will not consume any CPU
 time. */
vTaskDelayUntil(&xNextWakeTime, mainCOUNTER_FREQUENCY_MS);

/* Trigger a hardfault deliberately! */
trigger_hardfault();

test_counter++;

4. Optionally, to enable debugging messages on the serial console, add the following macro

definition in the config/custom_config_qspi.h header file.

/* Enable hardfault debugging messages */
#define VERBOSE_HARDFAULT (1)

5. Build the project in Debug mode (for example, in the case of DA14681 SoC select the

DA14681-01-Debug-QSPI build scheme) and burn the generated image to the chip.

Note: Debug mode is preferred over production mode when a debugging session is to be

performed, as stepping the code is a more straightforward task. In production mode, the

source code is built using optimizations, thus making tracing more complex.

6. Press the K2 button on Pro DevKit. This starts the chip executing its firmware. After a while, the

hardfault will be triggered.

3.3 Dealing with a Hardfault

This section provides the steps to identify the cause of a hardfault. Pointing to the exact location in

the source code where a fault occurred, can be a tough task. However, a debugging session can

reveal the point where things started to go wrong.

1. Initiate a debugging session by selecting the ATTACH mode. When switching to Debug view,

select Suspend to pause the code execution.

For the DA1468x Chips

Debugging Techniques

 13 of 32 © 2018 Dialog Semiconductor

 Program execution should be stuck in an infinite loop under the HardFault_HandlerC interrupt

handler.

Figure 13: Hardfault Handler Function

The hardfault handler function provides the whole register set values when the hardfault was

triggered. For example, the values of registers R0 to R3, R12, LR, PC, and xPSR are stored in

memory position 0x07FC5600.

2. Use the Memory Browser tool (1) to view the contents stored in memory. In this tool, enter the

base address where the stack frame is stored (2). Either enter the physical memory address value or

the name of the corresponding macro, that is, STATUS_BASE.

Figure 14: Probing the Stack Frame Captured Following a Hardfault Event

If debugging output is enabled, the following information will be displayed on the console:

For the DA1468x Chips

Debugging Techniques

 14 of 32 © 2018 Dialog Semiconductor

Figure 15: Debugging Messages Following a Hardfault Event

The most useful information is held in the Program Counter (PC) and Link Register (LR). The PC

holds the current instruction address plus four bytes (this is caused by the pipeline nature of the

Cortex-M0 processor). The LR is used for storing the return address of a subroutine or function call.

At the end of the subroutine or function, the return address stored in LR is loaded into the PC so that

the execution of the calling program is resumed.

This information, together with the Disassembly tool, can be used to identify the exact assembly

command that caused the error.

3. At this stage, we can examine the command pointed to by the PC register value. To do this,

select the Dissassembly window (1), enter the value of the PC (2), and press Enter. Next

locate the command pointed by the PC register (3) (displayed both in C and Assembly

language).

Figure 16: Probing the Contents of the Program Counter

4. Similarly, examine the instruction pointed by the Link register. Since the command that caused

the fault is part of the trigger_hardfault() function, the LR should point to the instruction that will

be executed upon the return of this function call.

For the DA1468x Chips

Debugging Techniques

 15 of 32 © 2018 Dialog Semiconductor

Figure 17: Probing the Contents of the Link Register

4 Reboot Analysis - BOD

This section provides a brief description of the Brown-out Detection (BOD) mechanism as

implemented in the DA1468x family of devices. It describes the tools that can be used to deal with

BOD events, and demonstrates a real use case of a BOD event, including all the steps that need to

be followed for coping with the issue.

4.1 Introduction

Typically, an MCU includes a built-in Brown-out Detection (BOD) circuit, which monitors supply

voltage levels during operation. Usually, BOD circuitry consists of comparators which constantly

compare voltage levels against fixed trigger levels. As soon as a voltage level drops below a pre-

defined threshold, a Power-on Reset (POR) may take place in order for the system to recover from

power failure.

The DA1468x family of devices incorporates a BOD circuit which can be used for monitoring voltage

levels derived from various power rails as illustrated in Table 1. Typically, from a software point of

view, BOD functionality involves enabling the BOD mechanism and then monitoring a dedicated BOD

status register.

Table 1: Power Rails of the SoC Monitored by the BOD Circuitry Error! Bookmark not defined.

Power Rail Description

1V8 power rail

This powers the externally connected Flash memory. The BOD mechanism for
the rail is enabled by default. As soon as the voltage level drops below the
predefined threshold, and given that BOD is enabled for the specific rail, a POR
is issued.

1V8P power rail

This is intended for powering external devices even when the system is in sleep
mode. This power rail is disabled by default. When enabled, the BOD protection
for the rail is also enabled by the SDK. As soon as the voltage level drops below
a predefined threshold, and given that BOD is enabled for the specific rail, a
POR is issued.

VDD power rail

This powers the core itself. The BOD protection for the rail is disabled by default.
The SDK does not have a macro to enable it. As soon as the voltage level drops
below a predefined threshold, and given that BOD is enabled for the specific rail,
a POR is issued.

For the DA1468x Chips

Debugging Techniques

 16 of 32 © 2018 Dialog Semiconductor

Vsys power rail

This powers almost the whole system. The BOD protection for the rail is disabled
by default. The SDK does not have a macro to enable it. As soon as the voltage
level drops below a predefined threshold, and given that BOD is enabled for the
specific rail, a POR is issued.

VBAT power rail

This is powered by the battery port. The BOD protection for the rail is enabled by
default. As soon as the voltage level drops below a predefined threshold, a
system interrupt is issued. This notifies the application that from this point and
below, the DC-DC converter is not providing better efficiency than the LDOs.
The application should switch the Power Management Unit (PMU) operation to
the LDOs.

Note: The BOD status register, that is BOD_STATUS_REG, does not contain valid information

for the power rails in which BOD protection is disabled. Also, the contents stored in this

register are kept intact during a POR cycle.

4.2 Manually Triggering a BOD

The following real use case demonstrates triggering a BOD event on the 1V8P power rail and

identifying that a reset was caused by that BOD event.

1. Make a copy of the freertos_retarget sample code found in the SDK of the DA1468x family of

devices. For information on how to create a new project, see Create a New Project in the

Starting a Project tutorial.

2. Enable the BOD mechanism by setting the following macro in the config/custom_config_qspi.h

configuration file:

/* Enable WDOG */
#define dg_configUSE_WDOG (1)

3. Enable the 1V8P power rail by setting the following macro in config/custom_config_qspi.h

configuration file. After enabling it, its BOD protection is enabled by the SDK.

/* Power the 1V8P power rail */
#define dg_configPOWER_1V8P (1)

4. The key goal of this exercise is for the developer to determine whether or not a reset was

caused by a BOD event. This means that the BOD status should be monitored before the

execution of the main application tasks. To do this, follow the steps below:

a. In startup/system_ARMCM0.c, declare a variable to hold the contents of the

BOD_STATUS_REG register.

__RETAINED_UNINIT uint32_t bod_status_reg_val;

https://support.dialog-semiconductor.com/resource/starting-project-html

For the DA1468x Chips

Debugging Techniques

 17 of 32 © 2018 Dialog Semiconductor

b. In the SystemInit function in startup/system_ARMCM0.c, get the contents of the

BOD_STATUS_REG register just before enabling the BOD protection mechanism. After

initializing the BOD mechanism, any previously stored information in the status register is

invalidated.

/*
 * Initialize UNINIT variables.
 */
sys_tcs_init();

/*
 * Get the BOD status register before enabling the BOD protection
 */
bod_status_reg_val = CRG_TOP->BOD_STATUS_REG & 0x1F;

/*
 * BOD protection
 */
if (dg_configUSE_BOD == 1) {
 /* BOD has already been enabled at this point but it must be reconfigured */
 hw_cpm_configure_bod_protection();
} else {
 hw_cpm_deactivate_bod_protection();
}

c. In main.c, add the following variables:

/* This is an external variable declared in system_ARMCM0.c source file */
extern uint32_t bod_status_reg_val;

/*
 * This variable should be of type [volatile] since it will be reassigned
 * during the debugging session.
 */
static volatile bool bod_1v8p_flag = true;

d. In the system_init function in main.c, add the code that checks whether or not the system

recovers from a BOD event on the 1V8P power rail:

/* Set the desired sleep mode. */
pm_set_sleep_mode(pm_mode_extended_sleep);

/*
 * Check whether or not the system recovers after a BOD event
 */
if (!(bod_status_reg_val & REG_MSK(CRG_TOP, BOD_STATUS_REG,
BOD_1V8_PA_LOW))) {
 /*
 * If yes, print a message on the serial console and then add an infinite

For the DA1468x Chips

Debugging Techniques

 18 of 32 © 2018 Dialog Semiconductor

 * loop so that the debugger can catch it! Then manually unblock!
 */
 printf("\n\n\rSystem has just recovered from a POR due to voltage drop on 1V8P
power rail\n\n\r");
 while(bod_1v8p_flag) {

 ;
 }
}

/* Start main task here (text menu available via UART1 to control application) */
OS_TASK_CREATE("Template", /* The text name assigned to the task, for

5. Increase the stack size reserved for the system_init initialization function by at least 100 bytes.

/* Start the two tasks as described in the comments at the top of this file. */
status = OS_TASK_CREATE("SysInit", /* The text name assigned to the task, for
 debug only; not used by the kernel. */
 system_init, /* The System Initialization task. */
 (void *) 0, /* The parameter passed to the task. */
 (configMINIMAL_STACK_SIZE * OS_STACK_WORD_SIZE + 100),
 /* The number of bytes to allocate to the
 stack of the task. */
 OS_TASK_PRIORITY_HIGHEST, /* The priority assigned to the task. */
 xHandle); /* The task handle */
OS_ASSERT(status == OS_TASK_CREATE_SUCCESS);

6. Build the project either in Debug or Release mode and burn the generated image in the chip.

7. Press the K2 button on Pro DevKit. This step starts the chip executing its firmware.

8. Before triggering a voltage drop on 1V8P power rail, monitor the status of the BOD mechanism.

To do this:

a. Start a debugging session by selecting the ATTACH mode and then selecting

Suspend to halt MCU operation.

b. Select the EmbSys Registers window and navigate to BOD_CTRL2_REG and

BOD_STATUS_REG registers under the CRG_TOP folder. Double-click on each

register name to display the contents.

For the DA1468x Chips

Debugging Techniques

 19 of 32 © 2018 Dialog Semiconductor

Figure 18: Inspecting BOD Related Registers

9. Select Terminate to terminate the current debugging session.

10. Open a serial terminal. For more information on configuring a serial terminal, see Prepare the

System in the Starting a Project tutorial.

11. Shortcut the 1V8P power rail using a low value resistor (for example, 100 Ohm). The shortcut

can also be done without using a resistor but it is not recommended as this may damage the

chip.

Figure 19: DA1468x Pro DevKit

https://support.dialog-semiconductor.com/resource/starting-project-html

For the DA1468x Chips

Debugging Techniques

 20 of 32 © 2018 Dialog Semiconductor

4.3 Dealing with a BOD Event

1. Following the shortcut on the 1V8P power rail, the code should be in an infinite loop. To verify

this, a new debugging session should be performed by selecting ATTACH mode and then

Suspend to halt the MCU operation.

Figure 20: Dealing with a BOD Event

2. Verify that the BOD_1V8_PA_LOW bit in the BOD_STATUS_REG register was set to zero by

monitoring the bod_status_reg_val variable. To do this, in the Expressions window (1), click

Add new expression (2) and write the variable name of interest (3).

Figure 21: Inspecting Variables and Expressions using the Expressions Window

Note: A voltage drop on a power line may also affect other power rails of the system.

3. The default presentation format for all variables is decimal. To change it, right-click on the

variable name in the Expressions window (1), select Number Format (2), and then select the

preferred format (3).

For the DA1468x Chips

Debugging Techniques

 21 of 32 © 2018 Dialog Semiconductor

Figure 22: Changing Number Presentation Formats

4. A debugging message, indicating that BOD mechanism trigged a POR cycle, should also be

displayed on the serial console. This message could also be sent through BLE functionality

using a custom BLE Profile.

Figure 23: Printing Debugging Messages on the Serial Console upon a BOD Event

5. Normally, code execution will not stick in infinite loops, we only do this to verify various

parameters related to a BOD event. To resume code execution the bod_1v8p_flag variable

should be set to false. To do this, in the Expressions window (1), click on Add new

expression (2) and enter the variable name of interest (3).

For the DA1468x Chips

Debugging Techniques

 22 of 32 © 2018 Dialog Semiconductor

Figure 24: Inspecting Variables and Expressions using the Expressions window

6. Click on the Value cell, in our case that is true (4) and change the value to false. The variable

shoud now contain the newly declared value.

Figure 25: Modifying Variable Contents while in Debugging Session

Note: The volatile keyword indicates that a value may change between different accesses,

even if it does not appear to be modified. In other words, it tells the compiler that the value of

the variable may change at any time thus, not performing optimizations for that object. The

system always reads the current value of a volatile object from the memory location rather

than keeping its value in temporary core registers at the point it requested, even if a previous

instruction asked for a value from the same object.

7. Select Terminate to terminate the current debugging session. The code should resume its

execution. To verify this, monitor the serial console. The # character should be printed out every

1 second.

5 Reboot Analysis - WDOG

This section provides a brief description of the watchdog (WDOG) mechanism as implemented in the

DA1468x family of devices. It describes the tools that can be used to deal with watchdog exceptions,

explains how the SDK handles watchdog exceptions, and demonstrates a real use case of a

watchdog exception, including all the steps that need to be followed for copying with the exception.

5.1 Introduction

Most embedded systems need to be self-reliant. It's not usually possible to wait for someone to

reboot them if the software hangs. A watchdog mechanism is a special hardware timer that can be

used to automatically detect unexpected system behaviors during software execution. The DA1468x

family of devices incorporates an 8-bit down counter drived by a 10.24 ms clock pulse, resulting in a

maximum 2.6 seconds time-out. The embedded software selects the counter's initial value, by default

this is set to 255, and periodically restarts it indicating that the application is up and running. If for any

reason the firmware execution gets stuck, the watchdog timer is not updated and therefore expires

after a time. Upon its expiration, and depending on the system configurations, either an NMI

For the DA1468x Chips

Debugging Techniques

 23 of 32 © 2018 Dialog Semiconductor

exception or a WDOG reset is issued to recover the system. By default, the system is configured so

that an NMI interrupt is issued when the WDOG reaches a zero value.

Note: An NMI (Non Maskable Interrupt) is similar to an IRQ interrupt but it cannot be disabled

by control registers and therefore its responsiveness is guaranteed.

Figure 26: Watchdog Functionality as Configured by Default

The way the SDK handles watchdog related events depends on whether the application is built in

development or production mode.

• In development mode (enabled by default), the SDK freezes the watchdog operation, stores the

system status in a predefined retained location in memory (SySRAM), and then halts CPU

operation. This allows the developer to attach a debugger, extract all the information stored in

that memory area, and eventually identify the reason for the fault.

• In production mode, halting system operation is not practical as it would require the user to get

involved with debugging and recovery of the system. Instead, the system status is stored in a

dedicated retained area (nmi_info) in SySRAM memory and after a while the watchdog

mechanism triggers a hardware reset, which recovers the system.

For the DA1468x Chips

Debugging Techniques

 24 of 32 © 2018 Dialog Semiconductor

Figure 27: SW FSM of the Watchdog Exception Handler

5.2 Manually Triggering a Watchdog Exception

The following real use case demonstrates expiring the watchdog timer and then identifying the cause

of the fault.

1. Make a copy of the freertos_retarget sample code found in the SDK of the DA1468x family of

devices. If this step has already been executed in previous sections do not repeat it. For

information on how to create a new project, see Create a New Project in the Starting a Project

tutorial.

2. In the main.c source file, insert the following code which triggers a watchdog expiration. This

function traps the code execution in an infinite loop without updating the watchdog counter

value. This results in the counter's expiration as soon as it reaches a value equal to zero.

void trigger_wdog(void)
{
 /*
 * Remain here until Watchdog Timer reaches a zero value and
 * an NMI interrupt is triggered.
 */
 for (;;) ;
}

3. In the main task of the application, prvTemplateTask, call the aforementioned function within its

main loop, for instance:

https://support.dialog-semiconductor.com/resource/starting-project-html

For the DA1468x Chips

Debugging Techniques

 25 of 32 © 2018 Dialog Semiconductor

/* Place this task in the blocked state until it is time to run again.
 The block time is specified in ticks, the constant used converts ticks
 to ms. While in the Blocked state this task will not consume any CPU
 time. */
vTaskDelayUntil(&xNextWakeTime, mainCOUNTER_FREQUENCY_MS);

/* Trigger a watchdog exception deliberately! */
trigger_wdog();

test_counter++;

4. Enable the watchdog mechanism by declaring and setting the correct value to the

dg_configUSE_WDOG macro. To do this, add the following macro definition in the

config/custom_config_qspi.h header file.

Note: Before proceeding with this step check whether or not this macro has already been

declared, so that to avoid duplicate declarations.

/* Enable WDOG */
#define dg_configUSE_WDOG (1)

5. If required, the developer can modify the initial WDOG counter value from 0xFF which is the

default and the maximum allowable value. To do this, add the following macro definition in the

config/custom_config_qspi.h configuration file.

#define dg_configWDOG_RESET_VALUE XXXX

6. Build the project in Debug mode (for the DA14681 SoC this is done by selecting the DA14681-

01-Debug-QSPI build scheme) and burn the generated image to the chip.

Note: Debug mode is preferred over Release when a debugging session is to be performed,

as stepping the code is a straightforward task. In Release mode, the source code is built

using optimizations, thus making tracing a more complex task.

7. Press the K2 button on Pro DevKit. This step starts the chip executing its firmware. After a

while, the watchdog will expire.

5.3 Dealing with a Watchdog Event

This section provides the steps required to identify the cause of the fault.

For the DA1468x Chips

Debugging Techniques

 26 of 32 © 2018 Dialog Semiconductor

1. Initiate a debugging session by selecting the ATTACH mode. Upon switching to Debug view

pause the code execution by selecting Suspend.

 Program execution should now be stuck in an infinite loop under the hw_watchdog_handle_int

NMI handler.

Figure 28: Watchdog Handler Function

2. The watchdog handler function provides the whole stack frame when the watchdog timer

expired. The values of registers R0 to R3, R12, LR, PC, and xPSR are stored in memory

position 0x07FC5600. To view the contents stored in memory, select the Memory Browser tool

(1) and enter the base address where the stack frame is stored (2). Enter either the physical

memory address value or the name of the corresponding macro, that is STATUS_BASE.

Figure 29: Probing the Stack Frame Captured upon a Watchdog Event

3. The most useful information is held in the Program Counter (PC) and Link Register (LR).

Together with the Disassembly View tool, this can be used to identify the exact assembly

command that caused the error.

 To examine the command pointed to by the PC register value, select the Disassembly window

(1), enter the value of the PC (2), and press enter. Then locate the command pointed to by the

PC register (3) (displayed both in C and Assembly language).

For the DA1468x Chips

Debugging Techniques

 27 of 32 © 2018 Dialog Semiconductor

Figure 30: Probing the Contents of the Program Counter

4. Similarly, examine the instruction pointed by the Link Register. Since the code execution is

trapped in an infinite loop within a function, the LR should point to that function.

Figure 31: Probing the Contents of the Link Register

6 SW Cursor via Power Profiler

DA1468x SDK provides a debugging functionality which can be used to mark certain events and

capture the corresponding pin levels with a logic analyzer. This feature can also be used for

accurately measuring timing intervals. This feature can be used in combination with the Power

Profiler tool for displaying the marked points of interest and measuring timing intervals.

1. If not already done so, make a copy of the freertos_retarget sample code found in the SDK of

the DA1468x family of devices. For more information on how to create a new project, see

Create a New Project in the Starting a Project tutorial.

2. To enable the SW cursor mechanism, set the appropriate macro in

/config/custom_config_qspi.h:

#define dg_configUSE_SW_CURSOR (1)

3. This step is optional and is intended for those who are interested in using an external logic

analyzer to capture the marked events. By default, P0.7 pin is the selected GPIO debugging

https://support.dialog-semiconductor.com/resource/starting-project-html

For the DA1468x Chips

Debugging Techniques

 28 of 32 © 2018 Dialog Semiconductor

output. The developer can change the default pin by setting the appropriate macro definitions in

config/custom_config_qspi.h. For example, to select pin P1.5, add the following macro

definitions:

#define SW_CURSOR_PORT (1)
#define SW_CURSOR_PIN (5)

4. Call the following function at the point of interest. For example, modify the main task of the

newly created project, that is prvTemplateTask, to mark an event every 200 ms.

for(;;) {
 /* Place this task in the blocked state until it is time to run again.
 The block time is specified in ticks, the constant used converts ticks
 to ms. While in the Blocked state this task will not consume any CPU
 time. */
 vTaskDelayUntil(&xNextWakeTime, mainCOUNTER_FREQUENCY_MS);

 test_counter++;

 /* Trigger the SW cursor */
 hw_cpm_trigger_sw_cursor();

 if (test_counter % (1000 / OS_TICKS_2_MS(mainCOUNTER_FREQUENCY_MS))
== 0) {
 printf("#");
 fflush(stdout);
 }

5. Build the project either in Debug or Release mode and burn the generated image to the chip.

6. Press the K2 button on Pro DevKit. This step starts the chip executing its firmware.

7. Open SmartSnippets Toolbox and execute the following steps:

a. Create a new project by selecting New (1). This step is optional if a project has already

been created.

b. Choose an available project (2).

c. Choose a communication port (3).

d. Select the family of devices that is being used (4).

e. Open the selected project (5).

For the DA1468x Chips

Debugging Techniques

 29 of 32 © 2018 Dialog Semiconductor

Figure 32: Opening SmartSnippets Toolbox

8. Start power profile monitoring:

a. Switch to the Power Profiler window (1).

b. Initialize Power Profiler (2).

c. Start Power Profiler (3).

Figure 33: Initializing Power Profiler

9. Monitor the SW cursor indicated by a red line.

For the DA1468x Chips

Debugging Techniques

 30 of 32 © 2018 Dialog Semiconductor

Figure 34: SW Cursor Indication

For the DA1468x Chips

Debugging Techniques

 31 of 32 © 2018 Dialog Semiconductor

Revision Date Description

1.0 26-June-2018 First released version

For the DA1468x Chips

Debugging Techniques

 32 of 32 © 2018 Dialog Semiconductor

Status Definitions

Status Definition

DRAFT
The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked
The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no
responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the
specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes
no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further
testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog
Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software
and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard
Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of
their respective owners.

© 2018 Dialog Semiconductor. All rights reserved.

Error! Bookmark not defined.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD

Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH

Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V.

Phone: +31 73 640 8822

North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K.

Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 281 786 222

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea

Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China

Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China

Phone: +86 21 5424 9058

Email:

enquiry@diasemi.com

Web site:

www.dialog-semiconductor.com

http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/standard-terms-and-conditions
http://www.dialog-semiconductor.com/

