

The Core Difference in Your Design

Performance without Sacrifice

The RX architecture is future oriented and feature rich. It's driven by a Renesas technology roadmap that focuses on the global environment and anticipates the enormous gains in sophistication that microcontroller-based products are expected to achieve in the next 10 to 20 years. Thus, the RX family of microcontrollers (MCUs) delivers superior performance in terms of core processing performance, code efficiency, and power consumption. An extensive portfolio of on-chip mixed-signal peripherals is available, and fast 90nm Flash memory is embedded. That Flash unleashes full CPU performance, feeding instructions to the 32-bit RX CPU with no delays - no waits, no stalls - maintaining the MCU's peak performance of 165 DMIPS. Memory acceleration isn't required, and the result is just pure, predictable performance.

Today designers are confronted with many critical design and implementation issues. RX MCUs are designed to solve these issues and help them create new innovative end-products faster and more easily than in the past.

Memory

Zero-wait Flash up to 2MB SRAM

up to 128KB

Data Flash up to 32KB

System

DMA & Event System

Fast Interrupt Handler

Clock Generation POR/LVD

Analog

12-bit ADC Prog Op Amps Multi-sample/Hold

10-bit ADC

Timers

Motor Control 3-phase PWM Dead-time Insertior Shunt Control PFC, QEI

Timer Pulse Unit Compare/Match

Timer General Purpose Timer

Multi-function Timer

Prog Pulse Generator

PWM Watchdog

Communication Ethernet

USB Host/Device/OTG

MAC with DMA

CAN

LIN

I₂C

SCI/UART

SPI

External Bus

> More than six internal busses

100MHz, 2.25 CoreMark™/MHz²

> Multiple Direct Memory Access control

> Rapid interrupt response

Fast Flash

> Industry's only 90nm 100 MHz embedded Flash

> RX MCUs leverage Renesas' mature 90nm embedded Flash

consumption all the way up to full 100MHz operation.

packages with 48 to 177 pins.

> The companion low-voltage RX200 series

more economical MCUs operate down to

lower voltages (as low as 1.62V), consume

less power, and come in smaller packages

and memory sizes. The RX200 and RX600

> RX MCUs come with comprehensive system development

support, including a vast range of easy-to-use boards, tools,

ing progress in design cycles and shrinking time to market.

> RX CPU Core with FPU and DSP: 165 DMIPS at

> Enhanced Harvard architecture and 5-stage pipeline

Superior Architecture

software, middleware, and RTOSs from Renesas and third-party

suppliers, comprising a rich ecosystem of products for accelerat-

share the same CPU core and integrate

many of the same peripherals for easy

migration between the two series.

will be available in Spring, 2011. These

process, which is currently the fastest in the industry with a 10ns

maximum read access time and is designed for optimized power

> Design solutions in the RX600 series are scalable. Over 75 prod-

ucts are available now and about 300 products are expected by

the end of 2011, offering Flash memory from 32KB to 2MB and

number one MCU

wide! with a 30%

sunnlier world-

- > CPU receives instructions with no delays
- > Mature and reliable silicon process

Power Efficiency

- > 500µA/MHz, with all peripherals active
- > 1.4µA RTC Deep Standby (RX631/63N)
- > 1mW per DMIPS
- > Extends battery life in portable applications

Code Efficiency

- > Up to 28% code size savings³ compared to popular 32-bit RISC MCUs on the market
- > Variable-length CISC instructions
- > FPU, DSP and bit manipulation instructions

1: Source: Gartner 2009 Worldwide Semiconductor Market Share Database, March 2010 results

3: Source: Renesas internal testing

2: Source: www.coremark.org as of Jan. 2011

Advanced Design and Integration

RX600 Key Benefits

The RX Core marries the speed of a RISC architecture with the flexibility and code efficiency of a CISC architecture. The CPU interacts with the Flash and SRAM through an enhanced Harvard design. The RX Core

leverages the industry's fastest Flash memory, delivering 1.65 DMIPS/MHz and 2.25 CoreMark/MHz without wait states.

Tightly coupled to the RX Core are the FPU, MAC, and RMPA (Repeat Multiply Accumulate), which are efficiently driven by DSP and floating point instructions to meet the growing demand of DSC (Digital Signal Controller) type applications.

Single

5-stage

Pipeline

Simultaneous Data Transfers

The RX Core uses a large number of parallel busses to handle simultaneous movement of data between the CPU core, Flash, SRAM, and peripherals. Six different peripheral busses enable a flexible distribution of slow and fast peripherals for optimized throughput. An external bus with an independent DMA can move data directly from one external device to another external device, such as a graphic frame buffer to a TFT-LCD panel.

Performance

The RX Core delivers 1.65 DMIPS per MHz, achieving 165 DMIPS when running at 100MHz.

Superior FPU Implementation

The RX FPU implementation allows direct access to general registers, resulting in faster execution and smaller code size.

- > RX eliminates the overhead of load/store operations
- > Results in higher performance and smaller code size

Efficient Interrupt Handling

There are flexible options to achieve minimum latency for various scenarios:

- > Normal interrupt responds in as few as seven CPU clock cycles from the event until the firmware serves the interrupt.
- > Fast interrupt mode can be assigned dynamically to any interrupt source, responding in just five CPU clocks, using dedicated registers to save and restore the CPU state.
- > All interrupt service routines can be shortened by dedicating up to four RX CPU general registers for use only by interrupts, eliminating the need to push and pop the registers to and from the stack.

Substantial Code Size Reduction

The RX CISC CPU architecture has inherent advantages over RISC CPUs in terms of code size, with RX's variable length instructions ranging from 8 bits to 64 bits, allowing the compiler to select just the right instruction to do the job.

- > Many RISC MCUs have only two instruction lengths, 16 bits and 32 bits, so the compiler must make compromises.
- > RX CPU supports 10 addressing modes, which optimize manipulation and movement of data.
- > Compiled RX code has been measured as much as 28% smaller than the same code compiled on a popular RISC MCU.

RX600 Microcontrollers RX600 Microcontrollers

Highly Effective Power Management

Strike an optimized balance of performance and power consumption with many low-power modes of operation enabled by these design techniques:

- > Flexible system clocking and gating for each peripheral
- Selective power domain gating for unused sections of the device
- > Low-power, high-voltage threshold transistors minimize leakage

> Compared to a Cortex-M3 based MCU, an RX600 chip enables up to a 43% power reduction – consuming only 1mW per DMIPS

> The RX Series has four power modes to manage precious battery energy consumption without compromising performance

COMPETITION

150V

Immunity Level

50V

Very Low

EMC Advantages – Built-in to Eliminate Add-Ons

Outstanding EMC performance of RX600 MCUs reduces system-integration problems, lowers development costs, and shortens design cycles. BOM costs drop, too, because external components can be eliminated.

- Strong electromagnetic immunity boosts system reliability
- > Careful VCC and VSS layout
- > Noise filters on input signals
- > Advanced chip layout techniques

Langer EMV and Renesas Electronics today announced that the RX600 microcontroller (MCU) family is the most robust MCU Langer EMV has ever tested against environmental noise

Medium

300V

Renesas press release, October 21, 2010

RX62T

500V

Very High

400V

RX Family Product Portfolio

The RX family currently consists of two extensive product series. MCUs in the RX600 series are optimized for applications requiring high-performance, high-efficiency processors. Devices in the RX200 series being introduced in 2011 will expand the range of compatible system-design choices, adding smaller, lower power devices with fewer pins.

Migration from existing Renesas architectures to RX solutions is easy. And, of course, moving designs among RX family members is very easy, since RX600 and RX200 MCUs share the same CPU architecture and peripherals. This gives system engineers valuable design flexibility and provides substantial head starts on reusing software assets. New products for niche markets can be created quickly and efficiently, as can upgraded or simplified versions of existing products for addressing changes in customer preferences.

RX600 MCU Series Roadmap

RX600 MCU Series Portfolio Motor Control RX621 RX62N RX62T RX631 2.0MB 1.5 MB 1.0 MB MEMORY 768KB 512 KB 384KB 256KB 128KB Available in 9x9 onl 32KB DEVICE/PINS LQFP48 LQFP64 LQFP80 LQFP80 LGA85 LGA100 LQFP100 LQFP112 LQFP120 LQFP144 LGA145 BGA176 LQFP176 LGA177

Comprehensive On-chip Peripherals

16 programmable external sources

To save cost, simplify system designs, reduce total system power consumption, and enable the implementation of value-added features, a wide range of on-chip peripheral functions is clustered around the powerful CPU core of RX MCUs. Broadly categorized into analog, timer, communication and system functions, these numerous peripherals are proven designs delivering impressive performance. The many different types of RX MCUs offer diverse sets of functions, so chip capabilities and cost can be matched to application needs. The devices in the RX621/62N and RX62T product groups exemplify this diversity and optimization.

- > RX621/62N MCUs provide extensive communication peripherals with options for Ethernet, CAN, and up to two USB-FS 2.0 channels, each operating as USB Host, USB Device, or USB OTG (On the Go). Additionally, they offer up to six SCI, two SPI, and two I2C serial channels. Among their other peripherals are analog interfaces; timers: RTC and POR/LVD functions; and more.
- > RX62T MCUs provide improved motor/inverter control timers and enhanced analog peripherals for implementing very precise motor control and positioning applications. The MTU3 and GPT timer peripherals enable one MCU to control three motors simultaneously. An FPU and improved analog functions make these MCUs ideal for use with three-shunt or single-shunt vector-type motor control methods.

Advanced Peripherals Basic Peripheral Set Analog Group **RX621** - - 512KB 96KB 32KB - 2 12 - 12 - 8 4 4 1 1 - IMB | 128KB | 32KB | 8 | 2 | 21 | 1 | 6 | 12 | 8 | 4 | 4 | 1 | 1 | 1 | 4 | 13 | 8/16/32 | 3 **RX631** Connectivity - 512KB 96KB 32KB - 2 8 - 12 - 8 4 4 1 1 1 1 2 6 8/16/32 2 -RX62N RX63N - | - | 1MB | 128KB | 32KB | 8 | 2 | 21 | 1 | 6 | 12 | 8 | 4 | 4 | 1 | 1 | 1 | 4 | 13 | 8/16/32 | 3 | -- | - | 2MB | 128KB | 32KB | 16 | 2 | - | - | - | 12 | 8 | 4 | 4 | 1 | - | - | 2 | 7 | 8/16 - | - | 2MB | 128KB | 32KB | 8 | 2 | 21 | 1 | 6 | 12 | 8 | 4 | 4 | 1 | 1 | 1 | 4 | 13 | 8/16 1 | - | 8 | 8 | 4 | 256KB | 16KB | 8KB | 12 | - | - | - | - | - | - | 4 | 1 | 1 | - | 1 | 3 |

* USB device only

10/100 MAC MII or RMII connection to PHY 2KB xmit and 2KB recv buffers

Up to 2 x FS Host, Device, or OTG 10 x endpoints, 2KB FIFO Self or bus-powered, on-chip PHY

Compliant with CAN 2.0B specification 32 x transmit/receive mailboxes 8 x individual acceptance masks

1 x master channel **Baud rate generator**

Standard, Fast, and High Speed (1MHz) Master, slave, multi-master support Digital noise filtering

Serial Communications Interface Synchronous and Asynchronous **UART** and 9-bit mode, Smart Card

Master, slave, multi-master support 3-wire or 4-wire operation Double-buffered 8-bit to 32-bit data length

Transfers data from external to external device Data movement has minimal load on CPU Drive color TFT-LCD with external frame SDRAM

8-, 16-, 32-bit CPU data width, 24-bit address 8 x programmable chip select regions SDRAM support

Programmable configuration at each pin Options for built-in pull-up and 5V tolerance Multiplexed with internal peripheral functions

RX600 Microcontrollers RX600 Microcontrollers

Built-in Power-on Reset generation

Precision Low-voltage Detect early warning Source of reset can be read by firmware

Flexible programmable system clock tree PLL generates system clock frequencies Internal high and low speed oscillators

RX600 MCU Series Devices

Package		BGA176	LQFP144	BGA176	LGA145	LQFP144	LQFP100	LGA85	9C 17C	DE LA COLOR	LGA145		LOFP144				L0F112		LQFP100		10F80				LQFP64						
	GPIO	140	11	128	105	105	74	09	128	128	105	105	105	105	74	74	61	61	61	61	55	55	44	44	4	44	37	37	37	37	37
	POR LVD	ı	ı	>	>-	>	>-	>	>	>-	>	>	>	>	>-	>	>	>	>	>	>-	>-	>	>	>	>-	>	>	>	>-	> >
	Prog Op Amp	ı	I	I	ı	ı	I	I	ı	ı	ı	ı	ı	ı	1	ı	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9 9
Analog	10-bit DAC	2	2	2	2	2	2	2	2	2	2	2	2	2	1 2	-	ı	ı	ı	ı	I	I	ı	ı	ı	ı	ı	ı	ı	ı	1 1
	10-bit ADC	16	16	<u>«</u>	8	or 8	8	82	or 8	or 8	or 8	or 8	8	82	∞_	or 8	12	12	12	12	12	12	12	12	12	12	ı	ı	ı	ı	1 1
	12-bit ADC	I	ı	8 or	8 00	8	8 0 1	8 or	8	8	8	8	8 0 0	8 or	8 01	80	∞	00	80	00	∞	- ∞	∞	∞	∞	- ∞	∞	00	80	80	∞ ∞
	WDG	-	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2 2
Jer	RTC	I	ı	>	>	>	>-	>	>	>	>	>	>	>	>-	>	ı	ı	ı	ı	ı	ı	1	ı	1	ı	ı	ı	ı	I	1 1
	16-bit	22	22	16	16	16	16	16	16	16	16	16	16	16	16	16	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
	8-bit	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ı	ı	ı	ı	I	I	ı	ı	ı	ı	ı	ı	ı	ı	1 1
lel ace	TFT-LCD	I	I	>	>	>	I	ı	>	>	>	>	>	>	I	I	ı	1	ı	I	ı	ı	1	ı	1	ı	ı	I	ı	ı	1 1
Parallel Interface	Ext Data Bus	*	>	SDRAM	SDRAM	SDRAM	>	>	SDRAM	SDRAM	SDRAM	SDRAM	SDRAM	SDRAM	>	>	I	ı	ı	ı	I	ı	ı	ı	ı	ı	I	ı	ı	I	1 1
	LIN	ı	I	I	ı	1	I	ı	ı	I	ı	1	ı	ı	1	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	12C	2	2	2	2	2	2	2	2	2	2	2	2	2	1 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
face	SPI	7	7	2	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Serial Interfa	SCI	7	7	9	9	9	9	9	9	9	9	9	9	9	9	9	m	т	e	ю	м	ю	m	m	м	m	е е	m	60	83	ო ო
Seria	CAN	ı	I	-	-	-	-	-	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	-	- 1	-	-	- 1 - 1	- 1 - 1	-	-	-	-	- 1	- 1	- 1	- I	- 1 - 1
	USB Host Dev OTG	ı	I	2	-	-	-	-	2	2	-	-	-	-	-	-	ı	ı	ı	ı	ı	I	ı	ı	ı	ı	ı	ı	ı	ı	1 1
	Ethernet MAC	I	I	I	I	ı	I	I	>	>	>	>	>	>-	>-	>	ı	1	ı	I	I	ı	ı	ı	I	ı	ı	I	ı	I	1 1
	Data Flash (KB)	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	∞ ∞	80	∞	80	32	∞	∞	∞	∞	∞	32	32	∞	80	∞ ∞
Memory	SRAM (KB)	128	128	96 64 64	96 64 64	96 64 64	96 64 64	96 64 64	96	64	96	64	96	64	96	64	16	16	8 16	16	16	ω	8 8	16	9 8	8 8	16	16	80	80	∞ ∞
2	Flash (KB)	2048 1536 1024 768	2048 1536 1024 768	512 384 256	512 384 256	512 384 256	512 384 256	512 384 256	512	384	512	384	512	384	512	384	256	256	128	256	256	128	256 128 64	256	256	256	256	256	128	128	64
Operation	Volt Range (V)	3.0-3.6	3.0-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	2.7-3.6	4.0-5.5	2.7-5.5	4.0-5.5	2.7-5.5	2.7-5.5 4.0-5.5 2.7-5.5 4.0-5.5	2.7-5.5 4.0-5.5 2.7-5.5 4.0-5.5	4.0-5.5	2.7-5.5	4.0-5.6	2.7-5.6	2.7-5.5	2.7-5.5	2.7-5.5	2.7-5.5	2.7-5.5 4.0-5.5 2.7-5.5 4.0-5.5
Opera	Speed (MHz) Max CPU	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	001	001	100	100	100	100	100	100	100	100	001 80 100 8
Device	Part Number	R5F56108WDBG R5F56107WDBG R5F56106WDBG R5F56104WDBG	R5F56108VDFP R5F56107VDFP R5F56106VDFP R5F56104VDFP	R5F56218BDBG R5F56217BDBG R5F56216BDBG	R5F56218BDLE R5F56217BDLE R5F56216BDLE	R5F56218BDFB R5F56217BDFB R5F56216BDFB	R5F56218BDFP R5F56217BDFP R5F56216BDFP	R5F56218BDLD R5F56217BDLD R5F56216BDLD	R5F562N8BDBG R5F562N8ADBG	R5F562N7BDBG R5F562N7ADBG	R5F562N8BDLE R5F562N8ADLE	R5F562N7BDLE R5F562N7ADLE	R5F562N8BDFB R5F562N8ADFB	R5F562N7BDFB R5F562N7ADFB	R5F562N8BDFP R5F562N8ADFP	R5F562N7BDFP R5F562N7ADFP	R5F562TAADFH R5F562T7ADFH	R5F562TABDFH R5F562TADDFH	R5F562T7BDFH R5F562T7DDFH	R5F562TAEDFH R5F562T7EDFH	R5F562TABDFP R5F562TAADFP R5F562TAEDFP R5F562TADDFP	R5F562T7BDFP R5F562T7ADFP R5F562T7EDFP R5F562T7DDFP	R5F562TAADFF R5F562T7ADFF R5F562T6ADFF	R5F562TABDFF R5F562T6BDFF	R5F562TADDFF R5F562T7DDFF	RSF562TAEDFF RSF562TAEDFF	R5F562TABDFM R5F562TAADFM	R5F562TAEDFM R5F562TADDFM	R5F562T7BDFM R5F562T7ADFM	R5F562T7EDFM R5F562T7DDFM	R5F562T6BDFM R5F562T6ADFM R5F562T6EDFM R5F562T6DDFM
	Group	RX	610			RX621				RX62N							RX62T														

Design Potential and Versatility of the RX

System design versatility, application capability, and economic sensibility are built into the many microcontrollers in the RX family. Driven by a technology roadmap that anticipates more sophisticated applications in the next decade that demand cost effectiveness, RX devices offer abundant core performance and extensive peripheral functions.

RX62T for Motor Control

High-performance CPU and FPU capability, and advanced analog and timer peripherals, make the RX62T an ideal solution for inverter and motor control applications. Renesas can help you develop your motor control solution with kits and firmware that support many kinds of motor control, including ultra-quiet, energyefficient, and high-precision three-phase sensorless vector control.

In the home appliance example shown here, the RX62T is driving two three-phase motors simultaneously using its advanced PWM timers. These timers are well suited for Brushless DC three-phase motors by having complimentary PWM outputs with automatic dead-time insertion, an emergency "Shut-down" (stop) input, and quadrature encoder inputs for speed and direction feedback.

The RX62T's advanced analog subsystem with multiple sample-hold circuits enables sampling of three simultaneous current measurements. It also offers programmable operational amplifiers and integrated window comparators to eliminate external components. The 12-bit ADCs have a fast 1µsec conversion time, can be triggered by the PWM timers, and provide self-diagnostic capability.

Advanced Analog

- > Two 12-bit ADC units, each with 4 input channels, 1 usec conversion time and self-diagnostic capability
- > Each 12-bit ADC unit has
- 3 x independent sample-hold circuits
- 3 x programmable op amps
- 3 x analog window comparators
- 3 trigger sources (PWM timers, external and software)

Advanced Timers

- > 100 MHz, 16-bit Multifunction Timer unit (MTU3)
- > 100 MHz, 16-bit General Purpose Timer unit (GPT)
- > Complimentary PWM and Reset-Synchronous outputs
- > Dead-time insertion
- > Quadrature encoder inputs
- > Emergency motor "Shut-down" (stop) input

RX for Connectivity

RX MCUs provide built-in hardware for implementing efficient communications with external peripherals, systems, test equipment and networks such as the Internet. The Ethernet, USB and CAN connectivity modules are well-proven, reliable designs.

Ethernet MAC > 10/100 Mbps > 2KB TX FIF0 > 2KB RX FIFO > MII, RMII connection to PHY > Wake on LAN > Host/Device/OTG > 12 Mbps

- > Up to 2 ports
- > 10 Endpoints
- > 2KB FIFO

CAN

- > ISO11898-1
- > 1 Mbps
- > 32 Mailboxes

- > Up to 18MHz (SPI Master)
- Flexible configurations

RX for TFT-LCD Applications

The external DMA controller integrated into RX devices can drive a TFT-LCD panel directly, greatly reducing the load on the MCU's CPU; thus, maximizing the performance of application software.

External DMA Controller

- > Directly drive a TFT-LCD panel
- > RGB pixel data moves directly from frame buffer to the TFT-LCD and never enters the RX MCU
- > RX CPU is loaded only 5%, while refreshing at 60Hz
- > Plenty of CPU bandwidth remains to run the application, communication channels, and create moderate animation on the TFT-LCD

Internet

Updates

Expansion

Module

Field

RX600 Microcontrollers RX600 Microcontrollers

Get up and running with the RX Ecosystem

Renesas makes it easy to launch new system designs. And our comprehensive range of hardware and software tools - including very low cost and free products - helps swiftly advance the product development process from concept stage to final RX-based design.

System Development Kits

- > The Renesas Starter Kit (RSK) facilitates in-depth MCU experimentation and allows system design development
- > Renesas RX62N Demo Kit (RDK) aids familiarization with and evaluations of RX solutions

Renesas RX Starter Kit (RSK)

> This complete RX600-based hardware/ software platform for in-depth application design includes the E1 Debugger, a trial version of the HEW IDE, and demonstration firmware.

RSK Part Number Processor RX610 RX62N RX62T

R0K556100S000BE

> This board plugs into a PC's USB port to showcase the features and capabilities of RX600 MCUs

- > Graphic display
- > 3-axis accelerometer
- > Audio in/out
- > Installation CD containing:
- High-performance Embedded Workshop (HEW)
- RX Family C/C++ toolchains (Renesas 128K evaluation version, full GNU version)

> Shared firmware projects at www.renesas.com/RDKRX62N

Part number: YRDKRX62N

- Quick-start guide, RX62N sample projects

Application Development Tools

RX MCUs are supported by a comprehensive set of popular Renesas hardware and software tools that have been widely praised for their capabilities and ease of use. Additional support is provided by a dedicated community of third-party experts offering many helpful, time-saving products and

(GNURX) and IAR.

HEW: A Complete Integrated Development Environment (IDE)

HEW accelerates progress on the full range of system design tasks, from editing, to peripheral driver generation, to compilation, to debugging, and to Flash programming. HEW works with the Renesas compiler or Open Source GNURX compiler. HEW and the GNURX compiler are both free. The free Renesas C++ compiler allows unlimited binary output size for 60 days; thereafter, restricting compile size to 128 KB. HEW Part Number: YRTA-HEWRX-1U

> Virtual Desktop

> Stack Trace

> Memory Views

> Local Variable Watch

> C/C++ Variable Watch

> Debug Control (E1, E20, J-Link)

> Project Manager

> Output Window

> Built-in Editor

> Full Bus Trace

> Peripheral Driver Generator

services, including the development environments and optimized compilers from KPIT Cummins

Complete Debugging, Emulation, and Programming

On-chip debugging of an RX-based application is performed via JTAG connection to the target and USB connection to the Windows-based IDE. E1 and J-Link offer thorough CPU control and visibility. E20 adds high-speed tracing.

Renesas E1 R0F000010KCF00

J-Link

SEGGER

Support Software

Renesas Software Library

Renesas offers a wide variety of free sample code and libraries supporting applications using Ethernet, USB, CAN, DSP, Motor Control, PCM Audio and Graphics. Renesas also provides the Renesas Peripheral Driver Library (RPDL) and the Peripheral Driver Generator (PDG) free of charge.

GRAPHICS

CAN

PCM AUDIO

Third-party RTOS and Middleware

LIBRARY

USB

TCP/IP

Renesas Peripheral Driver Library (RPDL)

Low-level firmware drivers for all basic RX peripherals are free, source code included. RPDL eliminates the need for creating your drivers, saving time and reducing errors. RPDL functions are easily integrated into HEW projects, and PDG can be used to generate initialization code and calls to RDPL functions based on your own specified configuration.

Tim	ers												
TMR	MTU	RPDL Drivers											
PPG	PWM	Interru	ıpt	DMAC	ExDN	1A	LVD						
CMT	TPU	MCU RSF		I/O	SCI	CGC	DTC						
GDT	WDT	CRC	ADC	DAC	I2C	PFC	BSC						

Renesas Peripheral Driver Generator (PDG)

Driver Generator

> A Windows user interface for configuring RX peripherals and pins

> Menus to select/initialize peripherals

RPDL driver functions > Select and manage pin assignments

RX600 devices are well suited for embedded real time tasks, high computation, as well as simultaneous data transfers on many high-speed communication channels. Because of this, communication middleware and Real Time Operating Systems (RTOS) are commonly needed. Renesas has established technology partnerships with many leading independent suppliers to provide highquality, cost-effective solutions.

	RTOS	USB Stack	TCP/IP Stack	File System	Graphic Software	W-iFi	BlueTooth
CandleDragon Inc.							√
CMX Systems	√	√	√	√			
Crank Software Inc.					√		
Micrium	√	✓	√	√	√		
Redpine Signals						✓	
RoweBots Research	√	√	√	√			
SEGGER	✓	✓	✓	✓	√		
FreeRTOS	✓		✓				
HCC-Embedded		√					
Express Logic	√	✓	√	√			

Additional Renesas MCU Support

> The Alliance Partner Program allows you to connect instantly with hundreds of qualified design consulting and contracting professionals.

www.cn.renesas.com/alliance

> Generates C code calls to

> For educators and students. Teach with professional grade tools. Learn MCUs with a modern architecture.

www.cn.renesas.com/university

> Gain the technical knowledge vou need. Research and learn at your own pace, where you want, when you want, for free.

www.renesasinteractive.com

My Renesas

> Gathering place for technical information on Renesas MCUs and MPUs.

www.cn.renesas.com/MyRenesas

RX600 Microcontrollers RX600 Microcontrollers

Solution Kits for RX

RX Direct-drive Solutions for TFT-LCD

A quick and easy solution to add color TFT-LCD to your design

bandwidth left for running the rest of the application

> Free graphics API library and examples for evaluating graphics

> Third-party support for additional graphics requirements

Part number: YLCDRSKRX62NS

WiFi Starter Kit Featuring the RX62N

For designs that require 802.11n connectivity, ultra-low power and high performance

- WiFi modules for 802.11b/g/n or 802.11a/b/g/n
- > FCC/IC/CE certified
- > Throughput of up to 8Mbps
- > Standby current as low as 0.5mA
- > Free WiFi module API library
- > Connects to MCU using SPI or UART interfaces
- > Integrated encryption support for Open, WEP, WPA/WPA2-PSK (TKIP and AES) modes of operation
- > WiFi modules with or without integrated TCP/IP stack

Kit sold thru Redpine Signals Part number: RS-RX62N-2201 www.redpinesignals.com

A solid evaluation and development platform for motor control

- > Drive sensorless PMAC motors
- > Field oriented control, 3-phases
- > Single PCB: inverter + MCU
- > High-frequency modulation >20kHz
- > Demo code and library
- > Compact and small board USB powered
- > E1, HEW, Renesas compiler unlimited for 60 days, 128KB code size limit after

Part number: YRMCKITRX62T

Connectivity Solutions Using the RX62N

Explore connectivity through many possible layouts utilizing an integrated kit with CAN, **USB** and Ethernet

- > Two RX-based boards connected to each other through different connectivity options
- > Cables, Internet hub, debuggers included
- > Free software with ready-to-run demos
- > Integrated firmware
- > RX62N, 512KB Flash, 96KB RAM

Coming Soon!

RX is Online - www.rxmcu.com

Renesas makes product data, design and application information, and much more available 24/7 in the RX area of our website. Bookmark it and visit it often to get the latest data on the newest and previously released devices, learn details about (and download free versions of) system

development tools, use time-saving MCU-selection aids, participate in discussion forums, find out about upcoming events, take advantage of special promotions, and more.

> The handy Quick Device Selector will find just the right MCU for you according to your connectivity, flash, RAM and pin requirements.

TRY / BUY The RX Design Contest Over \$110,000 in Cash and pri

Online purchase: www.cn.renesas.com/easygo

瑞萨电子中国销售·技术支持公司

瑞萨电子(中国)有限公司 北京市海淀区知春路27号量子芯座7层

瑞萨电子(上海)有限公司 上海市浦东新区陆家嘴环路1233号汇亚大厦205室

瑞萨电子香港有限公司 香港九龙旺角太子道西193号新世纪广场第2座16楼1601-1613室

邮编: 100191 电话: +86 10 8235 1155 传真: +86 10 8235 7679 邮编: 200120 电话: +86 21 5877 1818 传真: +86 21 6887 7858 电话: +852 2265 6688 传真: +852 2886 9022

瑞萨电子大中国地区(包括香港)代理及分销商的联系方式请访问: http://cn.renesas.com/buy

技术热线: +86-400-700-0606

http://www.cn.renesas.com