Renesns

瑞 萨

The Core Difference in Your Design RX600 Microcontrollers

Performance without Sacrifice

The RX architecture is future oriented and feature rich. It's driven by a Renesas technology roadmap that focuses on the global environment and anticipates the enormous gains in sophistication that microcontroller-based products are expected to achieve in the next 10 to 20 years. Thus, the RX family of microcontrollers (MCUs) delivers superior performance in terms of core processing performance, code efficiency, and power consumption. An extensive portfolio of on-chip mixed-signal peripherals is available, and fast 90 nm Flash memory is embedded. That Flash unleashes full CPU performance, feeding instructions to the 32-bit RX CPU with no delays - no waits, no stalls - maintaining the MCU's peak performance of 165 DMIPS. Memory acceleration isn't required, and the result is just pure, predictable performance.

Today designers are confronted with many critical design
and implementation issues. RX MCUs are designed to solve these issues and help them create new innovative end-products faster and more easily than in the past.

RENESAS RXEOO

Memory
Zero-wait Flash upto 2MB
SRAM upto 128 KB
Data Flash upto 32 KB
Sysem

System | DMA \& Event |
| :---: |
| System |

Fast Interrupt

 Handler Generation POR/LVD
$\underset{\text { 3-phase PWM }}{\text { Motor Control }}$

Dead-time Prenstion
Shunt Control

Timer Pulse

Timer Pulse
Unit
Compare/Match
Timer
General Purpose Timer Multi-function Timer Prog Pulse Generator PWM PWM Watchdog Timer
Real-time Clock

Communication

Ethernet

 $10 / 100$MAC with DMA USB 12Mbps
Host/Device/OTG
CAN
LIN

$$
12 \mathrm{C}
$$

SCI/UART
> RX MCUs leverage Renesas' mature 90nm embedded Flash process, which is currently the fastest in the industry with a 10 ns maximum read access time and is designed for optimized power consumption all the way up to full 100 MHz operation.
$>$ Design solutions in the RX600 series are scalable. Over 75 products are available now and about 300 products are expected by the end of 2011, offering Flash memory from 32 KB to 2 MB and packages with 48 to 177 pins.
packages with 48 to 177 pins.
> The companion low-voltage RX200 series The companion low-voltage RX200 serie
will be available in Spring, 2011. These more economical MCUs 201. These lower voltages (as low as 1.62 V) consume less power, and come in smaller packages and memory sizes. The RX200 and RX600 share the same CPU core and integrate many of the same peripherals for easy migration between the two series.
$>$ Renesas is the supplier world-
wide', with a 30% RX MCUs come with comprehensive system development software middleware, and RTOSs from Re boards, ools, suppliers, comprising a rich ecosystem of products for accelerat ing pross in tesign the the time

superior Arohteoture

> RX CPU Core with FPU and DSP: 165 DMIPS at 100MHz, 2.25 CoreMark"'/MHz ${ }^{2}$
> Enhanced Harvard architecture and 5-stage pipeline
$>$ More than six internal busses
> Multiple Direct Memory Access control
$>$ Rapid interrupt response

Fast Flash

> Industry's only 90 nm 100 MHz embedded Flash > CPU receives instructions with no delays
> Mature and reliable silicon process

Pomer Eifloiengy

$>500 \mu \mathrm{~A} / \mathrm{MHz}$, with all peripherals active $>1.4 \mu \mathrm{~A}$ RTC Deep Standby (RX631/63N)
$>1 \mathrm{~mW}$ per DMIPS
$>$ Extends battery life in portable applications

Gode Eiffelency

> Up to 28% code size savings ${ }^{3}$ compared to popular 32-bit RISC MCUs on the market
> Variable-length CISC instructions
> FPU, DSP and bit manipulation instructions

Advanced Design and Integration

RX600 Key Benefits

The RX Core marries the speed of a RISC architecture with the flexibility and code efficiency of a CISC architecture. The CPU interacts with the Flash and SRAM through an enhanced Harvard design. The RX Core leverages the industry's fastest Flash memory, delivering 1.65 DMIPS/MHz and 2.25 CoreMark/MHz without wait states.

Tightly coupled to the RX Core are the FPU, MAC, and RMPA (Repeat Multiply Accumulate), which are efficiently driven by DSP and floating point instructions to meet the growing demand of DSC (Digita Signal Controller) type applications.

| Simultaneous Data Transfers

The RX Core uses a large number of parallel busses to handle simultaneous movement of data between the CPU core, Flash, SRAM, and peripherals. Six different peripheral busses enable a flexible distribution of slow and fast peripherals for optimized throughput. An external bus with an independent DMA can move data directly from one external device to another external device, such as a graphic frame buffer to a TFT-LCD panel.

Performance

The RX Core delivers 1.65 DMIPS per MHz, achieving 165 DMIPS when running at 100 MHz .
Dhrystone MIPS per MHz
with no wait-state memory access

CoreMark per MHz

| Industry's only 100MHz On-chip Flash

Superior FPU Implementation
The RX FPU implementation allows direct access to general egisters, resulting in faster execution and smaller code size. $>$ RX eliminates the overhead of load/store operations > Results in higher performance and smaller code size

| Efficient Interrupt Handling
There are flexible options to achieve minimum latency for various scenarios:
> Normal interrupt responds in as few as seven CPU clock cycles from the event until the firmware serves the interrupt.
> Fast interrupt mode can be assigned dynamically to any interrupt source, responding in just five CPU locks, using dedicated registers to save and restore the CPU state.
All interrupt service routines can be shortened by dedicating up to four RX CPU general registers for use only by interrupts, eliminating the need to push and pop the registers to and from the stack.

Substantial Code Size Reduction
The RX CISC CPU architecture has inherent advantages over RISC CPUs in terms of code size, with RX's variable length instructions ranging from 8 bits to 64 bits, allowing the compiler to select just the right instruction to do the job.
> Many RISC MCUs have only two instruction lengths, 16 bits and 32 bits, so the compiler must make compromises.
$>$ RX CPU supports 10 addressing modes, which optimize manipulation and movement of data.
> Compiled RX code has been measured as much as 28% smaller than the same code compiled on a popular RISC MCU.

Highly Effective Power Management
Strike an optimized balance of performance and power consumption with many low-power modes of operation enabled by these design techniques:
> Flexible system clocking and gating for each peripheral
> Selective power domain gating for unused sections of the device
Low-power, high-voltage threshold transistors minimize leakage
Milliwatts per DMIPS*

Company S Cortex-M3 MCU $\begin{gathered}\text { *Derived from Ios speeifications } \\ \text { in procouctatatassheeets }\end{gathered}$
$>$ Compared to a Cortex-M3 based MCU, an RX600 chip enables up
to a 43% power reduction - consuming only $1 m W$ per DMIPS

The RX Series has four power modes to manage precious battery energy consumption without compromising performance

EMC Advantages - Built-in to Eliminate Add-Ons Outstanding EMC performance of RX600 MCUs reduces system-integration problems, lowers development costs, and shortens design cycles. BOM costs drop, too, because external components can be eliminated.
Strong electromagnetic immunity
boosts system reliability
> Careful VCC and VSS layout
\rightarrow Noise filters on input signals
> Advanced chip layout techniques

LANGER
EMV-Technik

Immunity Level

			RX621	
COMPETITION				
$\begin{gathered} 50 \mathrm{~V} \\ \text { Very Low } \end{gathered}$	150 V	300 V Medium	400V	500 V Very High

¢f Langer EMV and Renesas Electronics today announced that the RX600 microcontroller (MCU) family is the most robust MCU Langer EMV has ever tested against environmental noise

RX Family Product Portfolio

The RX family currently consists of two extensive product series. MCUs in the RX600 series are optimized for applications requiring high-performance, high-efficiency processors. Devices in the RX200 series being introduced in 2011 will expand the range of compatible system-design choices, adding smaller, lower power devices with fewer pins.

Migration from existing Renesas architectures to RX solutions is easy. And, of course, moving designs among RX family members is very easy, since RX600 and RX200 MCUs share the same CPU architecture and peripherals. This gives system engineers valuable design flexibility and provides substantial head starts on reusing software assets. New products for niche markets can be created quickly and efficiently, as can upgraded or simplified versions of existing products for addressing changes in customer preferences.

RX600 MCU Series Roadmap

Comprehensive On－chip Peripherals

To save cost，simplify system designs，reduce total system power consumption，and enable the implementation of value－added features，a wide range of on－chip peripheral functions is clustered around the powerful CPU core of RX MCUs．Broadly categorized into analog，timer， communication and system functions，these numerous peripherals are proven designs delivering impressive performance．The many different types of RX MCUs offer diverse sets of functions，so chip capabilities and cost can be matched to application needs．The devices in the RX621／62N and RX62T product groups exemplify this diversity and optimization．

			Adva	nced	Per	pher												P	Peri	her	S								
			Connect	ivity			$\begin{aligned} & \text { dvance } \\ & \text { Motor } \end{aligned}$				Memory				alog											m	munic	tion	
	Group						$\frac{0}{2}$	춘	훈				总				$\frac{3}{2}$	き		是	증	3	S	晨	®		莩	둥	z
	RX621	－	1	1	1	－	－		51	512KB	96 B	з2кв		2	12	2 －	12			4	4	1	1	1	2		8／16／32	2	
	RX631	－	2	3	1	－	－	－	－ 1	1 MB	128kB	з2кв	8	2	21	11	6	12	128	4	4	1	1	1	4		8／16／32	3	－
Connectivit	RX62N	1	2	1	1	－	－	－	－ 51	512 K	96 B	з2кв	－	2	8	－	12	－	－8	4	4	1	1	1	2		8／16／32	2	－
	RX63N	1	2	3	1	－	－	－	－ 1	1мв	128kB	з2кв	8	2	21	1	6	12	128	4	4	1	1	1	4		8／16／32	3	－
	RX610	－	－	－	－	－	－	－	－ 2	2MB	128KB	32KB	16	2	－	－	－	12	128	4	4	1	－		2		8／6	－	－
Purpose	RX630	－	1^{*}	3	－	－	－	－	－ 2	2MB	128KB	32KB	8	2	21	1	6	12	28	4	4	1	1	1	4		8／16	3	－
Motor Control	RX62T	－	－	1	－	8	8	4	42	256k	16 KB	8 KB	12	－	－	－	－	－	－	－	4	1	1	－	1		－	1	1

＞RX621／62N MCUs provid extensive communication peripherals with options for Ethernet，CAN，and up to two USB－FS 2.0 channels，each operating as USB Host，USB Device，or USB OTG（On the Go）． Additionally，they offer up to six SCl，two SPI ，and two ${ }^{12} \mathrm{C}$ serial channels．Among their other peripherals are analog interfaces； timers；RTC and POR／LVD functions；and more．

RX62T MCUs provide improved motor／inverter control timers and enhanced analog peripher－ als for implementing very precise motor control and positioning applications．The MTU3 and GPT timer peripherals enable one MCU to control three motors simultaneously．An FPU and improved analog functions make these MCUs ideal for use with three－shunt or single－shunt vector－type motor control methods．

Built－in Power－on Reset generation Precision Low－voltage Detect early warning Source of reset can be read by firmware

RX600 MCU Series Devices

	Package		$\begin{aligned} & \text { Q } \\ & \substack{\mathbf{d} \\ \hline} \end{aligned}$											管			을		${ }_{9}$			\％				等		$\begin{aligned} & \text { 壵 } \\ & \text { 皆 } \end{aligned}$		은				～				은	景					으늬																				
	GPIO		오			E			®		를			吕			\pm		8			®	®		$\stackrel{\text { ® }}{ }$	를	辺	를		\pm	\pm	$\bar{\square}$	$\bar{\square}$	$\bar{\square}$	$\bar{\square}$		\＆			品		ま	ま		ま		ま			¢		幺幺	¢	幺	¢	幺								
$\begin{aligned} & \frac{80}{0} \\ & \frac{10}{4} \end{aligned}$	porlvo		，			1			＞		＞			＞			＞		＞			－	＞		＞	－	－	＞		＞	－	＞	＞	＞	＞		＞			＞		＞	＞		＞		＞			－		＞	＞	＞	＞	＞								
	Prog Op Amp		，			1			，		＇			，			，					1	，			，	，	，			1	\cdots	－	\bigcirc	－		\bigcirc			－		－	\cdots		－		－			\bigcirc		\bigcirc	－	－	－	－								
	10－bit DAC		\sim			\sim			\sim		\sim			\sim			\sim		\sim			\sim	\sim		\sim	\sim	\sim	\sim	\sim	－	－	，	，	，	1		，			，		，	1		1		，			，		1	，	，	1	，								
	10－bit ADC		\cong			\bigcirc	$\stackrel{\square}{\circ}$				$\stackrel{\infty}{\square}$			$\stackrel{\infty}{\square}$		$\stackrel{\square}{\square}$		$\stackrel{\infty}{\square}$			$\stackrel{\infty}{亠 幺}$		$\stackrel{\infty}{\vdots}$	$\stackrel{\square}{\square}$		$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\text { ¢ }}$	$\stackrel{\infty}{\square}$	¢		$\stackrel{\infty}{\bar{\circ}}$	\simeq	\simeq	\cong	\simeq		\simeq			\cong		\simeq	\cong		\simeq		\simeq			，		1	1	，	1	，								
	12－bit ADC		1			1						∞	∞			∞	${ }^{\infty}$					∞										∞		∞	∞		∞		∞			∞		∞	∞	∞	${ }^{\infty}$	∞																
㐫	wog		－			－			\sim				\sim					\sim					\sim		\sim				\sim	\sim			\sim	\sim	\sim	\sim		\sim	\sim	\sim	\sim	\sim	\sim		\sim			\sim		\sim	\sim		\sim		\sim			\sim		\sim	\sim	\sim	\sim	\sim
	RTC		1			1			＞		＞			＞			＞		＞			＞	＞		＞	＞	＞	－		＞	＞	，	，	，	1		1			，		1	1		1					1		1	1	1	1	，								
	16－bit		ส			ส			\simeq		$\stackrel{\square}{\square}$			\bigcirc			\because		\bigcirc			\simeq	\because		\simeq	\because	\because	$\underline{\square}$	\simeq	\bigcirc	\bigcirc	\pm	\pm	\pm	\pm		\pm			\pm		\pm	\pm		\pm		\pm			\pm		\pm	\pm	\pm	\pm	\pm								
	8－bit		＋			＋			＋		＊			＋			＋		＋			＋	＋		＊	＋	＋	＋		＊	＋	，	，	，	1		，			，		，	＇		＇					1		1	1	，	1	，								
	TF－LCD		1			1			＞		＞			＞			，		，			＞	－		＞	－	－	＞			，	，	，	，	，		1			，		1	＇		1		，			1		1	1	，	1	，								
	Ext Data Bus		＞			＞			$\begin{aligned} & \text { 둧 } \\ & \text { 空 } \end{aligned}$								＞		＞			$\begin{aligned} & \text { 룰 } \\ & \text { de } \end{aligned}$			$\begin{aligned} & \text { 둘 } \\ & \text { ied } \end{aligned}$	$\begin{aligned} & \text { sex } \\ & \text { sid } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { six } \\ & \text { 就 } \end{aligned}$	$\begin{aligned} & \text { sick } \\ & \text { 灾 } \end{aligned}$		＞	＞	1	1	1	1		${ }^{\prime}$			，		1	1		1					，		1	1	，	1									
	LIN		1			1			，		，			，			，					1	，			，	，	，			1	－	－	－	－		－			－		－	－		－		－			－		－	－	－	－	－								
	12 C		\sim			\sim			\sim		\sim			\sim			\sim		\sim			\sim	\sim		\sim	\sim	\sim	\sim	\sim	－	－	－	－	－	－		－			－		－	－		－		－			－		－	－	－	－	－								
	SP1		－			－			\sim		\sim			\sim			\sim		\sim			\sim	\sim		\sim	\sim	\sim	\sim		\sim	\sim	－	－	－	－		－			－		－	－		－		－			－		－	－	－	－	－								
	Scl		－			－			\bigcirc		－			${ }^{\circ}$			－		${ }^{\circ}$			\bigcirc	\bullet		－	\bullet	\bigcirc	\bigcirc		\bigcirc	\bigcirc	∞	∞	∞	∞		∞			∞		∞	∞		∞		∞			＂		∞	\cdots	∞	∞	\cdots								
	CAN		，			1			－		－			－			－		－				－＇	－	＇	－ 1	－	－	－	＇	－	－	－ 1	－	－	－	，－	1.		－		－	－		－		－				－	－	－ 1	－ 1	－-1	－－								
	USB Host Dev OTG		1			1			\sim		－			－			－		－			\sim	\sim		－	－	－	－		－	－	，		，	，		，			，		，	＇		1					，		，	，	，										
	EthernetMAC		1			1			，		＇			，			，		，			＞	＞		－	＞	－	＞		＞	＞	＇	，	，	1		，					，	1		＇							＇	1	1										
	Data Flash（KB）		๙			\％		๙			๙			๙		๙			๙			ल	๗		\％	๙	๗	๙		\％	¢	∞	－	∞	∞		๗			∞		∞	∞		∞		∞			\％		๙	∞	∞	∞	∞								
	SRAM（KB）		$\stackrel{\sim}{\square}$			$\stackrel{\sim}{\sim}$			\pm	¢	\％\ddagger	¢	\％	\％	¢	\％	\pm	¢ 8	¢	\％		\＆	¢		\＆	\pm	$\mathscr{\&}$	\pm		\％	¢	$\bigcirc \infty$	\simeq	－	$\bigcirc \infty$		\bigcirc			∞	\because	∞	∞ ¢	¢	∞				∞	$\underline{\square}$		\simeq	∞	∞	∞	∞								
	Flash（KB）		吕志	\％${ }_{\sim}^{\circ}$	管莒		\％	กี		\％	～	品	กี	志	$\stackrel{\circ}{8}$	กั	矿	\％	志	\％		กี	嘉		กี		กั			ก	嘉	\％${ }_{\text {¢ }}$	\％	우ํ	\％		\％			®	\％	® ${ }_{\text {\％}}$	＋${ }_{\text {\％}}$	\％	～す	\％	\％		d	\％		®	®	\approx	¢	¢								
	Votit Range（V）							$\stackrel{\circ}{\sim}$			$\stackrel{\circ}{\sim}$		$\stackrel{\circ}{\underset{\sim}{\sim}}$			$\stackrel{\circ}{\sim}$			$\stackrel{\circ}{\sim}$			$\stackrel{\stackrel{\circ}{\sim}}{\underset{\sim}{\circ}}$	$\stackrel{\circ}{\sim}$		$\stackrel{\circ}{\sim}$	$\stackrel{\stackrel{\circ}{i}}{\underset{\sim}{i}}$	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\sim}$			$\stackrel{\circ}{\sim}$	$\stackrel{\leftrightarrow}{\circ}$	$\stackrel{\text { 品 }}{\stackrel{~}{i}}$	$\stackrel{\leftrightarrow}{\circ}$	$\stackrel{\text { 鬲 }}{\stackrel{1}{i}}$	$\left\lvert\, \begin{gathered} \stackrel{\sim}{\dot{\sim}} \\ \stackrel{\sim}{i} \end{gathered}\right.$		$\begin{aligned} & \stackrel{n}{e} \\ & \stackrel{i}{\dot{c}} \end{aligned}$	$\stackrel{\sim}{\stackrel{\sim}{\sim}} \underset{\sim}{\sim}$	$\stackrel{巳}{C H}$	躴		$\stackrel{\leftrightarrow}{C}$	$\stackrel{巳}{巳} \dot{8}$		$\begin{array}{l\|l} \infty \\ \stackrel{\leftrightarrow}{4} \\ \dot{4} \\ \hline \end{array}$		$\stackrel{\substack{\infty \\ \stackrel{\omega}{\sim} \\ \hline}}{ }$	$\stackrel{\infty}{\underset{\sim}{\infty}}$	$\stackrel{\leftrightarrow}{f}$	$\begin{array}{\|c} \stackrel{u}{i} \\ \stackrel{i}{i} \end{array}$	$\begin{aligned} & \substack{\begin{subarray}{c}{\dot{d} \\ \dot{d}} }} \\ {\hline} \end{aligned}$				$\stackrel{\sim}{0}$								
	Speed（MHz） Max CPU							아응			응			－		\bigcirc			¢		®		¢		¢	¢	¢	¢		®	¢	¢	¢	¢	¢		－			－		\bigcirc	－		\bigcirc		：		－	\％$\%$	응	¢	ㅇ．\％	요	¢ ¢	¢ 으								
$\frac{8}{\square}$	Part Number												$\begin{aligned} & \text { PR } \\ & \hline 1 \end{aligned}$		嵒	遃			器	产				訔																										5 5														
	Group			R61										X6	62											RX	X62N																RX62T																					

Design Potential and Versatility of the RX

System design versatility, application capability, and economic sensibility are built into the many microcontrollers in the RX family. Driven by a technology roadmap that anticipates more sophisticated applications in the next decade that demand cost effectiveness, RX devices offer abundant core performance and extensive peripheral functions.

RX62T for Motor Control

High-performance CPU and FPU capability, and advanced analog and timer peripherals, make the RX62T an ideal solution for inverter and motor control applications. Renesas can help you develop your motor control solution with kits and firmware that support many kinds of motor control, including ultra-quiet, energyefficient, and high-precision three-phase sensorless vector control.
In the home appliance example shown here, the RX62T is driving two three-phase motors simultaneously using its advanced PWM timers. These timers are well suited for Brushless DC three-phase motors by having complimentary PWM outputs with automatic dead-time insertion an emergency "Shut-down" (stop) input, and quadrature encoder inputs for speed and direction feedback.

The RX62T's advanced analog subsystem with multiple sample-hold circuits enables sampling of three simultaneous current measurements. It also offers programmable operational amplifiers and integrated window comparators to eliminate external components. The 12 -bit ADCs have a fast $1 \mu \mathrm{sec}$ conversion time, can be triggered by the PWM timers, and provide self-diagnostic capability.

RX for Connectivity

RX MCUs provide built-in hardware for implementing efficient communications with external peripherals, systems, test equipment and networks such as the Internet. The Ethernet, USB and CAN connectivity modules are well-proven, reliable designs.

> Flexible configurations

RX for TFT-LCD Applications

The external DMA controller integrated into RX devices can drive a TFT-LCD panel directly, greatly reducing the load on the MCU's CPU; thus, maximizing the performance of application software.

External DMA Controller

$>$ Directy drive a TF-LCD panel
> RGB pixel data moves directly from frame buffer to the TF-LCD and never enters the RXMCU
> RXCPU is loaded only 5%, while refreshing at 6 OHz
> Plenty of CPU bandwidth remains to run the application, communication channels, and create moderate animation on the TFT-LCD

Get up and running with the RX Ecosystem

Renesas makes it easy to launch new system designs. And our comprehensive range of hardware and software tools - including very low cost and free products - helps swiftly advance the product development process from concept stage to final RX-based design.

System Development Kits

> The Renesas Starter Kit (RSK) facilitates in-depth MCU experimentation and allows system design development
> Renesas RX62N Demo Kit (RDK) aids familiarization with and evaluations of $R X$ solutions
\| Renesas RX Starter Kit (RSK)
> This complete RX600-based hardware/ software platform for in-depth application design includes the E1 Debugger, a trial version of the HEW IDE, and demonstration firmware.

Renesas Demonstration Kit (RDK)
> This board plugs into a PC's USB port to showcase the features and capabilities of RX600 MCUs 96MHz RX62N MCU board with J-Link integrated debugger and huge peripheral set includ
> Graphic display
>3-axis accelerometer
> Audio in/out
\rightarrow Installation CD containing

- High-performance Embedded Workshop (HEW)
-RX Family C/C++ toolchains

- Quick-start guide, RX62N sample projects
> Shared firmware projects at www.renesas.com/RDKRX62N

Application Development Tools

RX MCUs are supported by a comprehensive set of popular Renesas hardware and software tools that have been widely praised for their capabilities and ease of use. Additional support is provided by a dedicated community of third-party experts offering many helpful, time-saving products and
 erves, including the development environments and optimized compilers from KPIT Cummins (GNURX) and IAR.

HEW: A Complete Integrated

Development Environment (IDE)
HEW accelerates progress on the full range of system design tasks, from editing, to peripheral driver generation, to compilation, to debugging, and to Flash programming HEW works with the Renesas compiler or Open Source GNURX compiler. HEW and the GNURX compiler are both free. The free Renesas C_{++}compiler allows unlimited binary output size for 60 days; thereafter, restricting compile size to 128 KB. HEWPart Number. YRTA-HEWRX-IU

> Project Manager	$>$ Virtual Desktop
$>$ Output Window	$>$ Local Variable Watch
$>$ Built-in Editor	$>$ C/C++ Variable Watch
$>$ Full Bus Trace	$>$ Stack Trace
$>$ Peripheral Driver	$>$ Memory Views
Generator	$>$ Debug Control (E1, E20, J-Link)

$>$ Output Window
$>$ Built-in Editor
\rightarrow Peripheral Drive
Generator
> Virtual Desktop
C/C Wriable Watch
\rightarrow Stack Trace
> Memory Views
Debug Control (E1, E20, J-Link)

Complete Debugging, Emulation, and Programming On-chip debugging of an RX-based application is performed via JTAG connection to the target and USB connection to the Windows-based IDE. E1 and J-Link offer thorough CPU control and visibility. E20 adds high-speed tracing.
 Renesas E1
ROEOOOOOKCEOO
 Renesas E2O
ROEOOO2OOKCTOO

Support Software

Renesas Software Library

Renesas offers a wide variety of free sample code and libraries supporting applications using Ethernet, USB, CAN, DSP, Motor Control, PCM Audio and Graphics. Renesas also provides the Renesas Peripheral Driver Library (RPDL) and the Peripheral Driver Generator (PDG) free of charge.

GRAPHICS GAN
\square MOTORL DEP

|Renesas Peripheral Driver Library (RPDL)
Low-level firmware drivers for all basic RX peripherals are free, source code included. RPDL eliminates the need for creating your drivers, saving time and reducing errors. RPDL functions are easily integrated into HEW projects, and PDG can be used to generate initialization code and calls to RDPL functions based on your own specified configuration.

Timers		RPDL Drivers					
TMR	MTU						
PPG	PWM	Interrupt		DMAC	ExDMA		LvD
CMT	TPU	mcu	RSPI	1/0	scI	cGC	DTC
GDT	WDT	CRC	ADC	dAC	12 C	PFC	BSC

|Renesas Peripheral Driver Generator (PDG)
> A Windows user interface for con- > Generates C code calls to figuring RX peripherals and pins RPDL driver functions Menus to selectinitialize \quad Select and man Menus to select/initialize
peripherals $\gg \begin{gathered}\text { Select and manage pin } \\ \text { assignments }\end{gathered}$ peripherals

Third-party RTOS and Middleware
RX600 devices are well suited for embedded real time tasks, high computation, as well as simultaneous data transfers on many high-speed communication channels. Because of this, communication middleware and Real Time Operating Systems (RTOS) are commonly needed. Renesas has established technology partnerships with many leading independent suppliers to provide highquality, cost-effective solutions.

The Alliance Partner Program allows you to connect instantly with hundreds of qualified design consulting and contracting professionals.

For educators and students. Teach with professional grade tools. Learn MCUs with a modern architecture. mumrenesas.com/university

Gain the technical knowledge you need. Research and learn at your own pace, where you want, when you want, for free.

RenesasRulZ.com Think it. Build it. Post it.

MyRenesas
> Gathering place for technical information on Renesas MCUs and MPUs.

Solution Kits for RX

RX Direct-drive Solutions for TFT-LCD
A quick and easy solution to add color TFT-LCD to your design
> Low-cost 32-bit MCU solution to drive color TFT-LCD panels up to WOVGA resolution
> Only 5\% loading on CPU when refreshing the TFT-LCD panel at 60 Hz , with ample bandwidth left for running the rest of the application
> Free graphics API library and examples for evaluating graphics
> Third-party support for additional graphics requirements

Part number:
YLCDRSKRX62NS

Motor Control Solutions Using the RX MCU
A solid evaluation and development platform for motor control
> Drive sensorless PMAC motors
> Field oriented control, 3-phases
> Single PCB: inverter + MCU
> High-frequency modulation $>20 \mathrm{kHz}$
> Demo code and library
> Compact and small board USB powered
> E1, HEW, Renesas compiler unlimited for 60 days, 128 KB code size limit after

