
 Application Note

R11AN0117EU0110 Rev.1.10 Page 1 of 27
Apr.29.19

Renesas Synergy™ Platform

SPI Framework Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this
guide, you will be able to add this module to your own design, configure it correctly for the target application
and write code, using the included application project code as a reference and efficient starting point.
References to more detailed API descriptions and suggestions of other application projects that illustrate
more advanced uses of the module are available on the Renesas Synergy Knowledge Base (as described in
the References section at the end of this document), and should be valuable resources for creating more
complex designs.

The SPI Framework module provides a ThreadX-aware framework API and handles the integration and
synchronization of multiple SPI peripherals on an SPI bus (including chip-select handling and its level
activation). With the SPI Framework, one or more SPI buses can be created and multiple SPI peripherals
can be connected to the SPI bus. The SPI Framework module uses a single interface to access both SCI
SPI and RSPI drivers. The SPI Framework module uses the SCI and RSPI peripherals on the Synergy MCU.

Contents

1. SPI Framework Module Features .. 3

2. SPI Framework Module APIs Overview ... 3

3. SPI Framework Module Operational Overview .. 5
3.1 Multiple Slave Devices on the Same Bus ... 5
3.2 Bus Locking ... 5
3.3 SPI Framework Module Important Operational Notes and Limitations ... 5
3.3.1 SPI Framework Module Operational Notes ... 5
3.3.2 SPI Framework Module Limitations... 5

4. Including the SPI Framework Module in an Application ... 5

5. Configuring the SPI Framework Module .. 6
5.1 Configuration the SPI Framework Lower-Level Modules .. 7
5.2 SPI Framework Module Clock Configuration .. 12
5.3 SPI Framework Module Pin Configuration .. 13
5.4 SPI Framework Module Additional Settings .. 13

6. Using the SPI Framework Module in an Application... 13
6.1 Implementation Steps for Two Slave Devices on Two Shared Busses .. 17
6.2 Adding Another Shared Bus .. 18

7. SPI Framework Module Application Project ... 20

8. Customizing the SPI Framework Module for a Target Application .. 23

9. Running the SPI Framework Module Application Project ... 24

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 2 of 27
Apr.29.19

10. SPI Framework Module Conclusion ... 25

11. SPI Framework Module Next Steps ... 25

12. SPI Framework Module Reference Information ... 25

Revision History .. 27

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 3 of 27
Apr.29.19

1. SPI Framework Module Features
The SPI Framework module uses either the SCI in SPI mode (together with the SCI common lower-level
modules) or the RSPI lower-level driver module to communicate with the SPI peripherals on the Synergy
microcontroller.

• Supports multiple devices on a bus
• Provides high-level APIs for initialization, transfers, and closing the module
• Supports synchronized transfers
• Supports chip-select operations
• Supports bus-locking

Figure 1. SPI Framework Module Block Diagram

2. SPI Framework Module APIs Overview
The SPI Framework module defines APIs for opening, closing, reading, writing and other useful functions. A
complete list of the available APIs, an example API call and a short description of each can be found in the
following table. A table of status return values follows the API summary table.

Table 1. SPI Framework Module API Summary

Function Name Example API Call and Description
.open g_sf_spi_device0.p_api->open(g_sf_spi_device0.p_cntl,

g_sf_spi_device0.p_cfg);
Open a designated SPI device on a bus.

.read g_sf_spi_device0.p_api->read(g_sf_spi_device0.p_cntl, dst8,
length, SPI_BIT_WIDTH_8_BITS, TX_WAIT_FOREVER);
Receive data from SPI device.

.write g_sf_spi_device0.p_api->write(g_sf_spi_device0.p_cntl, src8,
length, SPI_BIT_WIDTH_8_BITS, TX_WAIT_FOREVER);
Transmit data to SPI device.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 4 of 27
Apr.29.19

Function Name Example API Call and Description
.writeRead g_sf_spi_device0.p_api->writeRead (g_sf_spi_device0.p_cntl,

&source, &destination, length, SPI_BIT_WIDTH_8_BITS,
TX_WAIT_FOREVER);
Simultaneously transmits data to an SPI device while receiving data from an SPI
device (full duplex). The writeread API gets a mutex object, handles the SPI data
transmission at SPI HAL layer, and receives data from the SPI HAL layer. The API
uses the event flag wait to synchronize to completion of data transfer.

.close g_sf_spi_device0.p_api->close(g_sf_spi_device0.p_cntl);
Disable the SPI device designated by the control handle and close the RTOS
services used by the bus, if no devices are connected to the bus. This function
removes power to the SPI channel designated by the handle and disables the
associated interrupts.

.lock g_sf_spi_device0.p_api->lock(g_sf_spi_device0.p_cntl);
Lock the bus for a device. The locking allows devices to reserve a bus to
themselves for a given period of time (such as between lock and unlock). This
allows devices to complete several reads and writes on the bus without an interrupt.

.unlock g_sf_spi_device0.p_api->unlock(g_sf_spi_device0.p_cntl);
Unlock the bus for a particular device and make the bus usable for other devices.

.versionGet g_sf_spi_device0.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note: Details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures and function variables, review the SSP User’s Manual API References for the associated
module.

Table 2. Status Return Values

Name Description
SSP_SUCCESS Function completed successfully
SSP_ERR_INVALID_MODE Invalid mode
SSP_ERR_INVALID_CHANNEL Invalid channel
SSP_ERR_IN_USE In-use error
SSP_ERR_INVALID_ARGUMENT Invalid argument
SSP_ERR_QUEUE_UNAVAILABLE Queue unavailable
SSP_ERR_INVALID_POINTER Invalid pointer
SSP_ERR_INTERNAL Internal error
SSP_ERR_TRANSFER_ABORTED Transfer aborted
SSP_ERR_MODE_FAULT Mode fault
SSP_ERR_READ_OVF Read overflow
SSP_ERR_PARITY Parity error
SSP_ERR_OVERRUN Overrun error
SSP_ERR_UNDEF Unknown error
SSP_ERR_TIMEOUT Timeout error
SSP_ERR_NOT_OPEN Device not opened

Note: Lower-level drivers may return common error codes. Refer to the SSP User’s Manual API References
for the associated module for a definition of all relevant status return values.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 5 of 27
Apr.29.19

3. SPI Framework Module Operational Overview
The SPI Framework module complies with the layered-driver architecture of the SSP. It uses either the SCI
on SPI module or the RSPI module to communicate with the SPI peripherals on the Synergy microcontroller.

3.1 Multiple Slave Devices on the Same Bus
The SPI framework module uses a “bus” and “device on bus” architecture. Only one device is configured to
the lower level driver at a time, and the other devices are reconfigured upon a read or write operation as
required. The lower level driver can only be reconfigured when the bus is not locked. Every slave device is
linked to the bus to which it will be connected and shares the bus with all other slave devices.

The user must configure the SPI framework shared-bus and the lower-level SPI HAL layer for each SPI
framework module connecting to the bus. The user can add the existing framework shared-bus module when
configuring multiple devices on the same bus. Each SPI framework module must be configured with a unique
name in the ISDE configurator.

A common start and stop procedure is used for all SPI data-transfer operations (spi_api_t::read,
spi_api_t::write, and spi_api_t::writeRead). During the start process, the SPI framework module checks
whether reconfiguration is required. Chip select is asserted during the transfer-start process and de-asserted
during the transfer-end process if the bus is not locked. The user must configure the chip-select IO pin and
the chip-select active level.

3.2 Bus Locking
The SPI Framework module supports bus-locking functionality, meaning that the bus can be locked for a
given slave peripheral. The locking allows slave devices to reserve a bus to themselves for the period
between the lock and unlock commands. This allows devices to complete several reads and writes on the
bus without interruption (which can be required in some situations). The chip select becomes active during
lock and becomes inactive when unlocked. Writes and reads in between the lock and unlock do not alter the
chip-select line.

3.3 SPI Framework Module Important Operational Notes and Limitations
3.3.1 SPI Framework Module Operational Notes
• Multiple SPI devices can be configured to share a common bus. Once the SPI Framework bus module is

configured, different SPI peripherals (devices) can be connected to that bus.
• For each SPI device connected to the bus, one SPI HAL module and one SPI Framework device module

must be added.
• User-defined callback is not required as the framework takes care of internally.
• Setting the interrupts to different priority levels could result in improper operation.

3.3.2 SPI Framework Module Limitations
• Refer to the MCU specification manual for identifying SPI bus compatibility. Device compatibility with the

SPI bus is not checked in the framework hence incompatible SPI device may result in improper operation.
• Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4. Including the SPI Framework Module in an Application
This section describes how to include the SPI Framework module in an application using the SSP configurator.

Note: It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few
chapters of the SSP User’s Manual to learn how to manage each of these important steps in creating
SSP-based applications.

To add the SPI Framework module to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the SPI Framework is g_sf_spi_device0. This
name can be changed in the associated Properties window.)

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 6 of 27
Apr.29.19

Table 3. SPI Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence
g_sf_spi_device0 on sf_spi Threads New Stack> Framework> Connectivity> SPI

Framework Device on sf_spi

When the SPI Framework module on sf_spi is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower-level modules. Any drivers that need additional
configuration information will have the box text highlighted in Red. Modules with a Gray band are individual
modules that stand alone. Modules with a Blue band are shared or common and need only be added once
and can be used by multiple stacks. Modules with a Pink band can require the selection of lower level
drivers; these are either optional or recommended (this is indicated in the block with the inclusion of this
text.) If the addition of lower-level drivers is required, the module description will include Add in the text.
Clicking on any Pink banded modules brings up the New icon and displays possible choices.

Figure 2. SPI Framework Module Stack

5. Configuring the SPI Framework Module
The SPI Framework module must be configured by the user for the desired operation. The SSP configuration
window will automatically identify (by highlighting the block in red) any required configuration selections, such
as interrupts or operating modes, which must be configured for lower-level modules to ensure successful
operation. Furthermore, only those properties that can be changed without causing conflicts are available for
modification. Other properties are ‘locked’ and are not available for changes, and are identified with a lock
icon for the ‘locked’ property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous ‘manual’ approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP configurator, and are shown in the following tables for easy reference.

Note: You may want to open your ISDE, create the module and explore the property settings in parallel with
looking over the configuration table settings in the following table. This helps to orient you, and can be
a useful hands-on approach to learning the ins and outs of developing with SSP.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 7 of 27
Apr.29.19

Table 4. Configuration Settings for the SPI Framework Module on sf_spi

Parameter Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Selects if code for parameter checking is to
be included in the build.

Name g_sf_spi_device0 Module name.
Clock Phase Data sampling on odd edge,

data variation on even
edge/Data sampling on even
edge, data variation on odd
edge
Default: Data sampling on odd
edge, data variation on even
edge

Select the clock phase.

Clock Polarity Low when idle, High when idle
Default: Low when idle

Select the clock polarity.

Chip Select Pin 00 thru 15
Default: 00

Select GPIO pin used for the chip select.

Chip Select Pin 00 thru 15
(Default: 00)

Select GPIO pin used for the chip select.

Chip Select Active Level Low, High
Default: Low

Polarity of the Chip Select signal, active High
or Low

Note: The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs
may have different default values and available configuration settings.

In some cases, settings other than the defaults can be desirable. For example, it might be useful to select
different chip-select GPIOs or levels. The configurable properties for the lower-level stack modules are given
in the following sections for completeness and as a reference.

Note: Most of the property settings for modules are fairly intuitive and usually can be determined by
inspection of the associated Properties window from the SSP configurator.

5.1 Configuration the SPI Framework Lower-Level Modules
Typically, only a small number of settings must be modified from the default for lower-level drivers as
indicated via the red text in the thread stack block. Notice that some of the configuration properties must be
set to a certain value for proper framework operation and will be locked to prevent user modification. The
following table identifies all the settings within the properties section for the lower-level modules:

Table 5. Configuration Settings for the SPI Framework Shard Bus on sf_spi

ISDE Property Value Description
Name g_sf_spi_bus0 Module name

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

Table 6. Configuration Settings for the RSPI HAL Driver on r_rspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

If selected code for parameter
checking is included in the build.

Name g_spi0 Module name.

Channel 0 SCI or SPI Channel number to which
the device has been connected.

Operating Mode Master, Slave
Default: Master

Configure as a Master or Slave device.
Note: Current version of SSP supports
only SPI Master mode.

Clock Phase Data sampling on odd edge, data
variation on even edge

Data sampling on odd or even clock
edge.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 8 of 27
Apr.29.19

ISDE Property Value Description
Clock Polarity Low when idle Clock level when idle.
Mode Fault Error Enable, Disable

Default: Disable
Indicates Mode fault error
(master/slave conflict) flag.

Bit Order MSB First, LSB First (Default: MSB
First)

Select transmit order MSB/LSB first.

Bitrate 500000 Transmission or reception rate. Bits
per second.

Callback NULL Optional Callback function pointer.
SPI Mode SPI Operation, Clock synchronous

operation
Default: SPI Operation

Select spi or clock syn mode
operation.

Slave Select
Polarity(SSL1)

Active Low, Active High
Default: Active Low Select SSL1 signal polarity.

Slave Select
Polarity(SSL2)

Active Low, Active High
Default: Active Low Select SSL2 signal polarity.

Slave Select
Polarity(SSL3)

Active Low, Active High
Default: Active Low Select SSL3 signal polarity.

Select Loopback1 Normal, Inverted
Default: Normal Select the data mode for loopback 1.

Select Loopback2 Normal, Inverted
Default: Normal Select the data mode for loopback 2.

Enable MOSI Idle Enable, Disable
Default: Disable

Select MOSI idle fixed value and
selection

MOSI Idle State MOSI Low, MOSI High
Default: MOSI Low

Select MOSI idle fixed value and
selection

Enable Parity Enable, Disable
Default: Disable Enable/disable parity

Parity Mode Parity Odd, Parity Even
Default: Parity Odd Select parity

Select SSL(Slave Select) SSL0, SSL1, SSL2, SSL3
Default: SSL0

Select which slave to use; 0-SSL0; 1-
SSL1; 2-SSL2; 3-SSL3

Select SSL Level After
Transfer

SSL Level Keep, SSL Level Do
Not Keep
Default: SSL Level Do Not Keep

Select SSL level after transfer
completion; 0-negate; 1-keep

Clock Delay Enable Clock Delay Enable, Clock Delay
Disable
Default: Clock Delay Disable

Clock delay enable selection

Clock Delay Count Clock Delay 1 thru 8 RSPCK
Default: Clock Delay 1 RSPCK

Clock delay count selection

SSL Negation Delay
Enable

Negation Delay Enable, Negation
Delay Disable
Default: Negation Delay Disable

SSL negation delay enable selection

Negation Delay Count Negation Delay 1 thru 8 RSPCK
Default: Negation Delay 1 RSPCK Negation delay count selection

Next Access Delay Enable

Next Access Delay Enable, Next
Access Delay Disable
Default: Next Access Delay
Disable

Next access delay enable selection

Next Access Delay Count

Next Access Delay 1 thru 8
RSPCK
Default: Next Access Delay 1
RSPCK

Next access delay count selection

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 9 of 27
Apr.29.19

ISDE Property Value Description

Receive Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Receive interrupt priority selection

Transmit Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Transmit interrupt priority selection

Transmit End Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Transmit interrupt priority selection

Error Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Error interrupt priority selection

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

Table 7. Configuration Settings for the Transfer Driver on r_dtc Event SPI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter checking
is to be included in the build

Software Start Enabled, Disabled
Default: Disabled Software start selection

Linker section to keep
DTC vector table .ssp_dtc_vector_table Linker section to keep DTC vector

table selection
Name g_transfer0 Module name
Mode Normal Mode selection
Transfer Size 2 Bytes Transfer size selection
Destination Address Mode Fixed Destination address mode selection
Source Address Mode Incremented Source address mode selection
Repeat Area (Unused in
Normal Mode

Source Repeat area selection

Interrupt Frequency After all transfers have completed Interrupt frequency selection
Destination Pointer NULL Destination pointer selection
Source Pointer NULL Source pointer selection
Number of Transfers 0 Number of transfers selection
Number of Blocks (Valid
only in Block Mode)

0 Number of blocks selection

Activation Source (Must
enable IRQ) Event SPI0 TXI Activation source selection

Auto Enable False Auto enable selection
Callback (Only valid with
Software start) NULL Callback selection

ELC Software Event
Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

ELC Software Event interrupt priority
selection.

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 10 of 27
Apr.29.19

Table 8. Configuration Settings for the Transfer Driver on r_dtc Event SPI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter checking
is to be included in the build

Software Start Enabled, Disabled
Default: Disabled Software start selection

Link section to keep DTC
vector table

.ssp_dtc_vector_table Link section to keep DTC vector table
selection

Name g_transfer1 Module name
Mode Normal Mode selection
Transfer Size 2 Bytes Transfer size selection
Destination Address Mode Incremented Destination address mode selection
Source Address Mode Fixed Source address mode selection
Repeat Area (Unused in
Normal Mode Destination Repeat area selection

Interrupt Frequency After all transfers have completed Interrupt frequency selection
Destination Pointer NULL Destination pointer selection
Source Pointer NULL Source pointer selection
Number of Transfers 0 Number of transfers selection
Number of Blocks (Valid
only in Block Mode) 0 Number of blocks selection

Activation Source (Must
enable IRQ) Event SPI0 RXI Activation source selection

Auto Enable False Auto enable selection
Callback (Only valid with
Software start) NULL Callback selection

ELC Software Event
Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

ELC Software Event interrupt priority
selection.

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

Table 9. Configuration Settings for the SPI Driver on r_sci_spi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter error
checking.

Name g_spi0 Module name

Channel 0 SCI or SPI Channel number to which
the device has been connected.

Operating Mode Master, Slave
Default: Master

Configure as a Master or Slave
device.
Note: Current version of SSP supports
only SPI Master mode.

Clock Phase Data sampling on odd edge, data
variation on even edge

Data sampling on odd or even clock
edge.

Clock Polarity Low when idle Clock level when idle.

Mode Fault Error Enable, Disable
Default: Disable

Indicates Mode fault error
(master/slave conflict) flag.

Bit Order MSB First, LSB First
Default: MSB First Select transmit order MSB/LSB first

Bitrate 100000 Transmission or reception rate. Bits
per second.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 11 of 27
Apr.29.19

ISDE Property Value Description

Bit Rate Modulation Enable Enable, Disable
Default: Enable

Bitrate Modulation Function enable or
disable

Callback NULL Optional Call back function pointer.

Receive Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Bitrate Modulation Function enable or
disable.
Note: This is applicable only for SCI
SPI.

Transmit Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Transmit interrupt priority selection.

Transmit End Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Transmit end interrupt priority selection

Error Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Error interrupt priority selection

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

Table 10. Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Selects if code for parameter
checking is to be included in the build

Software Start Enabled, Disabled
Default: Disabled

Software start selection

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC vector
table selection

Name g_transfer0 Module name
Mode Normal Mode selection
Transfer Size 1 Byte Transfer size selection
Destination Address Mode Fixed Destination address mode selection
Source Address Mode Incremented Source address mode selection
Repeat Area (Unused in
Normal Mode

Source Repeat area selection

Interrupt Frequency After all transfers have completed Interrupt frequency selection
Destination Pointer NULL Destination pointer selection
Source Pointer NULL Source pointer selection
Number of Transfers 0 Number of transfers selection
Number of Blocks (Valid only
in Block Mode)

0 Number of blocks selection

Activation Source (Must
enable IRQ)

Event SCI0 TXI Activation source selection

Auto Enable False Auto enable selection
Callback (Only valid with
Software start)

NULL Callback selection

ELC Software Event
Interrupt Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

ELC Software Event interrupt priority
selection.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 12 of 27
Apr.29.19

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

Table 11. Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Selects if code for parameter
checking is to be included in the
build

Software Start Enabled, Disabled
Default: Disabled

Software start selection

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC vector
table selection

Name g_transfer1 Module name
Mode Normal Mode selection
Transfer Size 1 Byte Transfer size selection
Destination Address Mode Incremented Destination address mode selection
Source Address Mode Fixed Source address mode selection
Repeat Area (Unused in
Normal Mode

Destination Repeat area selection

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection

Destination Pointer NULL Destination pointer selection
Source Pointer NULL Source pointer selection
Number of Transfers 0 Number of transfers selection
Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection

Activation Source (Must enable
IRQ)

Event SCI0 RXI Activation source selection

Auto Enable False Auto enable selection
Callback (Only valid with
Software start)

NULL Callback selection

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

ELC Software Event interrupt priority
selection.

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

5.2 SPI Framework Module Clock Configuration
The SPI peripheral module uses PCLKB as its clock source. The PCLKB frequency is set by using the SSP
configurator clock tab prior to a build, or by using the CGC Interface at run-time.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 13 of 27
Apr.29.19

5.3 SPI Framework Module Pin Configuration
The SPI peripheral module uses pins on the MCU to communicate to external devices. I/O pins must be
selected and configured as required by the external device. The following table illustrates the method for
selecting the pins within the SSP configuration window and the subsequent table illustrates an example
selection for the SPI pins.

Note: For some peripherals, the operation mode selection determines what peripheral signals are available
and thus what MCU pins are required.

Table 12. Pin Selection for the SPI Framework Module

Resource ISDE Tab Pin selection Sequence
SCI Pins Select Peripherals > Connectivity: SCI> SCI1
RSPI Pins Select Peripherals > Connectivity: SPI > SPI0

Note: The top selection sequence assumes SCI1 and SPI0 are the desired hardware targets for the driver
and the bottom selection sequence assumes SPI0 is the desired target.

Table 13. Pin Configuration Settings for the SPI Framework Module

Property Settings Description
Operation Mode Disabled, Asynchronous UART, Synchronous

UART, Simple I2C, Simple SPI, SmartCard
Default: Disabled

Select Simple SPI as the
Operation Mode for SPI
on SCI

CTS0_RTS0_SS0 None, P103, P413
Default: None

SS0 Pin selection

RXD0_SCL0_MISO0 None, P100, P410
Default: None

MISO0 Pin selection

SCK0 None, P102, P412
Default: None

SCK0 Pin selection

TXD1_SDA1_MOSI0 None, P100, P410
Default: None

MOSI0 Pin selection

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

5.4 SPI Framework Module Additional Settings
If external chip selects are being used, configure the chip select pins as GPIO outputs.

6. Using the SPI Framework Module in an Application
A common application for the SPI framework module requires multiple slave devices on a single bus. The
implementation for this common application is described below. A second implementation shows two busses
each with two slave devices attached.

Implementation Steps for Two Slave Devices on a Single Shared Bus
When using the SPI framework module to create a single bus with multiple slave devices, create two thread
stacks each with an I2C framework instance. These instances will use the same shared bus instance. Follow
the steps below to see how this is done within the SSP Configurator.

Note: The following steps assume some familiarity with the use of the SSP development environment. If any
of the following steps are confusing, read over the first few chapters of the SSP User’s Manual to
become familiar with the SSP development environment.

Step 1: Add the first SPI framework device module to a new or existing thread. This creates the SPI master
stack. A shared bus on sf_spi is added along with the I2C driver. The SPI driver can be selected for
implementation on r_rspi or r_sci_spi. The DTC transfer driver is also added by default. This can be removed
if the CPU transfer mode is needed instead.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 14 of 27
Apr.29.19

The resulting module stack is shown in the following figure. Example configuration settings are given in the
tables that follow the figure.

Figure 3. Resulting Module Stack
Example configuration settings for the key first thread stack modules for Slave Device #1 are as follows:

Table 14. Configuration Settings for the SPI Framework Module on sf_spi

Property Settings Description
Parameter Checking Disabled Enable or Disable Parameter Checking.

Name g_sf_spi_device1
Give a name to identify the SPI Framework
device. API, Config and Control instances
will be created based on this name.

Clock Phase Data sampling on odd edge Specify the clock phase for data variation
and data sampling

Clock Polarity Low when idle Select the clock polarity when clock is idle.
Clock Select Port 01 Select GPIO port used for the chip select.
Chip Select Pin 04 Select GPIO pin used for the chip select.
Chip Select Active
Level Low Select Polarity of the chip select signal.

Table 15. Configuration Settings for the SPI Framework Shared Bus on sf_spi

Property Settings Description

Name g_sf_spi_bus0
Give a name to identify the SPI Framework
shared bus. This shared bus will be shared
by multiple SPI Framework Devices

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 15 of 27
Apr.29.19

Table 16. Configuration Settings for the SPI Driver on r_rspi

Property Settings Description
Parameter Checking BSP Enable or Disable Parameter Checking.

Name g_spi0 Give a name to identify the SPI Driver device.
This will be used by Framework internally.

Channel 0 Channel number
Operating Mode Master Operating mode selection

Clock Phase
Data sampling on odd
edge/ data variation
on edge

Clock phase selection. This field will be
locked as these is already set in the SPI
Framework Device on sf_spi module.

Clock Polarity Low when idle
Clock polarity selection. This field will be
locked as these is already set in the SPI
Framework Device on sf_spi module.

Mode Fault Error Enable Mode fault error selection
Bit Order MSB First Bit order selection
Bitrate 500000 Bit rate selection
Callback NULL Callback function name
SPI Mode SPI Operation SPI mode selection
Slave Select Polarity (SSL0) Active Low Slave select polarity selection 0
Slave Select Polarity (SSL1) Active Low Slave select polarity selection 1
Slave Select Polarity (SSL2) Active Low Slave select polarity selection 2
Slave Select Polarity (SSL3) Active Low Slave select polarity selection 3
Select Loopback 1 Normal Loopback 1 selection
Select Loopback 2 Normal Loopback 2 selection
Enable MOSI Idle Disable Enable MOSI idle selection.
MOSI Idle State MOSI Low Enable MOSI idle state selection.
Enable Parity Disable Enable parity selection
Parity Mode Parity Odd Enable parity mode selection
Select SSL (Slave Select) SSL0 Select SSL selection
Select SSL Level After
Transfer SSL Level Keep Select SSL level after transfer selection

Clock Delay Enable Disable Clock delay enable selection
Clock Delay Count Clock Delay 1 RSPCK Clock delay count selection
SSL Negation Delay Enable Disable SSL Negation Delay Enable selection.
Negation Delay Count Clock Delay 1 RSPCK Negation Delay Count selection
Next Access Delay Enable Disable Next Access Delay Enable selection
Next Access Delay Count Clock Delay 1 RSPCK Next Access Delay Count selection
Receive Interrupt Priority Priority 2 Receive interrupt priority selection.
Transmit Interrupt Priority Priority 2 Transmit interrupt priority selection.
Transmit End Interrupt
Priority Priority 2 Transmit end interrupt priority selection.

Error Interrupt Priority Priority 2 Error interrupt priority selection.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 16 of 27
Apr.29.19

Table 17. Configuration Settings for the SPI Driver on r_sci_spi

Property Settings Description
Parameter Checking BSP Enable or Disable Parameter Checking.
Name g_spi0 Give a name to identify the SPI Driver device.

This will be used by Framework internally.
Channel 0 Channel number
Operating Mode Master Operating mode selection.
Clock Phase Data sampling on odd

edge/ data variation on
even edge

Clock phase selection. This field will be locked as
these is already set in the SPI Framework Device
on sf_spi module.

Clock Polarity Standard Clock polarity selection. This field will be locked
as these is already set in the SPI Framework
Device on sf_spi module.

Mode Fault Error Disable Mode fault error selection.
Bit Order MSB First Bit order selection
Bitrate 500000 Bit rate selection
Bit Rate Modulation
Enable

Enable Enables/Disable the bit rate modulation.

Callback NULL Callback function name. This field will be locked
as callback is handled internally in the framework.

Receive Interrupt
Priority

Priority 2 Receive interrupt priority selection.

Transmit Interrupt
Priority

Priority 2 Transmit interrupt priority selection.

Transmit End Interrupt
Priority

Priority 2 Transmit end interrupt priority selection.

Error Interrupt Priority Priority 2 Error interrupt priority selection.
Note: DTC configuration settings are not shown as a simplification.

Step 2: Add the second SPI Framework Device to a different thread. The SPI Framework Shared Bus on
sf_spi is not added automatically. To add it, select the option to use the existing shared bus. The configurator
will then automatically add the SPI Framework Shared Bus on sf_spi and the remaining modules. The lower
level modules will automatically be configured to be consistent with the previously defined settings from the
first SPI framework instance. This ensures that the SPI driver configurations are the same for both devices
except for the Clock Phase, Clock Polarity, Chip Select Pin and Port, and Chip Select Active Level
properties, as these are defined under the SPI Framework Device module and can be different for each
slave device.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 17 of 27
Apr.29.19

The resulting module stack is shown in the following figure:

Figure 4. Resulting Module Stack
The only differences in the configuration parameters for the second stack are the name for the second SPI
framework device module, and any differences in the non-shared slave settings (Clock Phase, Clock
Polarity, Clock Select Port, Chip Select Pin and Chip Select Active Level). Example settings are shown in the
following table:

Table 18. Configuration Settings for the SPI Framework Device on sf_spi (Slave #2)

Property Settings Description
Parameter Checking BSP Enable or Disable Parameter Checking.
Name g_sf_spi_device2 Give a name to identify the SPI Framework

device. API, Config and Control instances
will be created based on this name.

Clock Phase Data sampling on odd edge/
data variation on even edge

Specify the clock phase for data variation
and data sampling

Clock Polarity High when idle Select the clock polarity when clock is idle.
Clock Select Port 05 Select GPIO port used for the chip select.
Chip Select Pin 01 Select GPIO pin used for the chip select.
Chip Select Active Level Low Select Polarity of the chip select signal.

6.1 Implementation Steps for Two Slave Devices on Two Shared Busses
When using the SPI framework module to create a single bus with multiple slave devices create two thread
stacks each with an I2C framework instance. These instances will use the same shared bus instance. Follow
the steps below to see how this is done within the SSP Configurator.

Note: The following steps assume some familiarity with the use of the SSP development environment. If any
of the following steps are confusing, read over the first few chapters of the SSP User’s Manual to
become familiar with the SSP development environment.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 18 of 27
Apr.29.19

6.2 Adding Another Shared Bus
To add another shared bus just follow the below steps. The previous example is used as the starting point.

1. The SPI framework module which will use a second shared bus can be added to any thread. Starting with
the previous example, if it is added to the SPI_Device1 thread, then the module stack would appear as
shown below. Available options for the shared bus are New or Use.

Figure 5. Resulting Module Stack

2. Select New to add another SPI Framework Shared Bus on sf_spi module. Configure the shared bus
properties as needed for the application. Select the desired low-level SPI driver. The channel number for
the g_spi1 SPI driver module, must be different from the channel number for the g_spi0 SPI driver
module. The resulting thread stack is shown below:

Figure 6. Resulting Module Stack

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 19 of 27
Apr.29.19

3. A second device can be added in the SPI_Device2 thread using the same steps described above. The
resulting thread stack is shown below:

Figure 7. Resulting Module Stack
The typical steps in using the SPI Framework module in an application are:

1. Initialize the SPI Framework device module using the sf_spi_api_t::open API function. Each SPI
framework device module needs to call the spi_api_t::open API function at least once before
performing any operations on the bus.

2. Lock the bus for continuous transfer using the sf_spi_api_t::lock API function for a particular SPI
Framework device module. Once Bus is locked by a particular SPI Framework device module it cannot be
used by any other SPI Framework device module on the bus. This ensures that ownership of the bus
remains with the locked module until it explicitly unlocks it. Any kind of operation from other SPI
Framework device modules on the bus will return a fail status during this period. It is not mandatory to
lock the bus before any read/write operations on the bus. It is optional.

3. Read data using the sf_spi_api_t::read API function. The read operation will not be successful if the
bus is already locked by any other SPI Framework device module.

4. Write data using the sf_spi_api_t::write API function. The write operation will not be successful if
the bus is already locked by any other SPI Framework device module.

5. Write and read data simultaneously using the sf_spi_api_t::writeRead API function. The
simultaneous read and write operation will not be successful if the bus is already locked by any other SPI
Framework device module.

6. Unlock the bus from continuous transfer using the sf_spi_api_t::unlock API function if it is already
locked by the same device. Once the bus is unlocked other SPI Framework device modules can use it. It
is necessary to unlock the locked bus after the intended read/write operation is completed.

7. Close the SPI Framework device module using the sf_spi_api_t::close API function. Each SPI
Framework device module can call the sf_spi_api_t::close API function after all read/write
operations on the bus are over. These common steps are illustrated in a typical operational flow diagram
in the following figure:

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 20 of 27
Apr.29.19

Figure 8. Flow Diagram of a Typical SPI Framework Application

7. SPI Framework Module Application Project
The application project associated with this module guide demonstrates the aforementioned steps in a full
design; the project can be found using the link provided in the References section at the end of this
document. You may want to import and open the application project within the ISDE and view the
configuration settings for the SPI Framework module. You can also read over the code (in
temperature_thread_entry.c) used to illustrate the SPI Framework module APIs in a complete design.

The application project demonstrates the typical use of the SPI Framework module APIs. Temperature
sensor MAX31723 is plugged into PMODA. It works as an SPI slave device to read the current environment
temperature. The LEDs are lit basing on temperature difference; the temperature is measured periodically in
1-second intervals.

Table 19. Software and Hardware Resources Used by the Application Project

Resource Revision Description
e2 studio v7.3.0 or later Integrated Solution Development Environment

IAR EW for Synergy v8.23.3 or later IAR Embedded Workbench® for Renesas
Synergy™

SSP v1.6.0 or later Synergy Software Platform
SSC v7.3.0 or later Synergy Standalone Configurator
SK-S7G2 v3.0 to v3.3 Starter Kit

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 21 of 27
Apr.29.19

The following figure illustrates a simple flow diagram of the application project.

Figure 9. SPI Framework Module Application Project Flow Diagram
The temperature_thread_entry.c file is located in the project once it has been imported into the ISDE.
You can open this file within the ISDE and follow along with the description provided to help identify key uses
of APIs.

The first section of temperature_thread_entry.c has the header files which reference the SPI instance
structure and the math functions that are used to perform floating-point calculation of the temperature. If
enabled via a #define, a code section which allows semi-hosting to display results using printf() is
included. This is followed by the global-variable definitions used within the application and the function
prototypes.

The entry function for the thread is temperature_thread_entry(). Within the function, local variables
for temperature calculation are defined, as well as data arrays containing configuration data for configuring
the temperature sensor and a storage location for the received temperature data.

As the application project illuminates the LEDs according to the calculated temperature, the LEDs are set to
their starting state of all-off.

The next stage is to open the SPI Framework. If this successfully opens, the next step is to configure the
temperature sensor. The configuration data is written to the temperature sensor using the write API. The
data configures the temperature sensor for 12-bit resolution. A successful completion of the write function
returns SSP_SUCCESS.

The application now enters the thread while(1) loop. Here the temperature is read using the writeRead
API. Again, successful completion of the writeRead function returns SSP_SUCCESS. The data that is

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 22 of 27
Apr.29.19

written is the address from where the temperature data can be read from. The temperature data is 12 bits in
size, so a minimum of 2 bytes of data have to be read. The storage location for temperature data is 3 bytes
in size, as the process of writing the address will receive dummy data.

The temperature is then calculated using the valid 2 bytes received.

The first temperature that is calculated by the application is stored as the reference temperature. All
subsequent temperature calculations that occur every second are compared to this reference temperature. If
the new temperature differs from the reference temperature, then the LEDs are illuminated accordingly. 2OC
delta – Green LED, 3OC delta – Green & Orange LEDs, 4OC delta – Green & Orange & Red LEDs.

If enabled, the measured temperatures will be shown on the Debug Console.

Note: The preceding description assumes you are familiar with using printf() with the Debug Console in
the Synergy Software Package. If you are unfamiliar with this, see How do I Use Printf() with the
Debug Console in the Synergy Software Package, given in the References section at the end of this
document. Alternatively, the user can see results via the watch variables in the debug mode.

A few key properties are configured in this application project to support the required operations and the
physical properties of the target board and MCU. The properties with the values set for this specific project
are listed in the following tables; you can also open the application project and view these settings in the
Properties window as a hands-on exercise.

Table 20. SPI Framework Module Configuration Settings for the Application Project

ISDE Property Value Set
Name g_sf_spi_device0
Clock Phase Data sampling on even edge, data variation on odd edge
Clock Polarity High when idle
Chip Select Port 01
Chip Select Pin 03
Chip Select Active Level High

Note: This configuration assumes that pin 103 is configured as a GPIO pin, mode: Output mode (Initial Low)
on the Pins tab.

Table 21. SPI Framework Module Shared Bus Settings for the Application Project

ISDE Property Value Set
Name g_sf_spi_bus0

Table 22. SPI HAL Module (r_rspi) Configuration Settings for the Application Project

ISDE Property Value Set
Name g_spi
Channel 0
Operating Mode Master
Clock Phase Data sampling on odd edge, data variation on even edge
Clock Polarity Low when idle
Mode Fault Error Disable
Bit Order MSB First
Bitrate 500000
Callback NULL
SPI Mode SPI Operation
Slave Select Polarity (SSL0) Active Low
Slave Select Polarity (SSL1) Active Low
Slave Select Polarity (SSL2) Active Low
Slave Select Polarity (SSL3) Active Low
Select Loopback1 Normal
Select Loopback2 Normal
Enable MOSI Idle Disable

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 23 of 27
Apr.29.19

ISDE Property Value Set
MOSI Idle State MOS Low
Enable Parity Disable
Parity Mode Parity Odd
Select SSL (Slave Select) SSL0
Select SSL Level After Transfer SSL Level Do Not Keep
Clock Delay Enable Clock Delay Disable
Clock Delay Count Clock Delay 1 RSPCK
SSL Negation Delay Enable Negation Delay Disable
Negation Delay Count Negation Delay 1 RSPCK
Next Access Delay Enable Next Access Delay Disable
Next Access Delay Count Next Access Delay 1 RSPCK
Receive Interrupt Priority Priority 2
Transmit Interrupt Priority Priority 2
Transmit End Interrupt Priority Priority 2
Error Interrupt Priority Priority 2

Note: The SPI HAL module on r_rspi has no DTC HAL modules configured (nor for transmission, nor for
reception) due to SPI data-width (8 bits, not supported by DTC.)

8. Customizing the SPI Framework Module for a Target Application
The user can modify the channel used for SPI transmission, bitrate, and other parameters depending on the
slave device. The most significant change can be performed by using alternative SPI implementation: Simple
SPI on SCI. The SPI Framework device should be configured with an SPI HAL module on r_sci_spi.
PMODB should be used for the temperature sensor. The following tables list all the details:

Table 23. SPI Framework Module Configuration Settings for SCI SPI option

ISDE Property Value Set
Name g_sf_spi_device0
Clock Phase Data sampling on even edge, data variation on odd edge
Clock Polarity High when idle
Chip Select Port 04
Chip Select Pin 13
Chip Select Active Level High

Note: This configuration assumes that pin 413 is configured as a GPIO pin mode: Output mode (Initial Low)
on the Pins tab.

Table 24. SPI Framework Module Shared Bus Settings for SCI SPI option

ISDE Property Value Set
Name g_sf_spi_bus0

Table 25. SPI HAL Module (r_sci_spi) Configuration Settings for SCI SPI option

ISDE Property Value Set
Name g_spi0
Channel 0
Operating Mode Master
Clock Phase Data sampling on odd edge, data variation on even edge
Clock Polarity Low when idle
Mode Fault Error Disable
Bit Order MSB First
Bitrate 100000
Bit Rate Modulation Enable Enable
Callback NULL

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 24 of 27
Apr.29.19

ISDE Property Value Set
Receive Interrupt Priority Priority 8 (CM4: valid, CM0+: invalid)
Transmit Interrupt Priority Priority 8 (CM4: valid, CM0+: invalid)
Transmit End Interrupt Priority Priority 8 (CM4: valid, CM0+: invalid)
Error Interrupt Priority Priority 8 (CM4: valid, CM0+: invalid)

The SPI HAL module on r_sci_spi should have no DTC drivers configured (not for transmission, and not
for reception) due to SPI data-width (8 bits, not supported by DTC.)

Additionally, another SPI device could be included and the user could experiment with sharing an SPI bus.

9. Running the SPI Framework Module Application Project
To run the SPI Framework application project and to see it executed on a target kit, you can simply import it
into your ISDE, compile, and run debug.

To implement the SPI Framework application in a new project, follow the steps for defining, configuring, auto-
generating files, adding code, compiling, and debugging on the target kit. Following these steps is a hands-
on approach that can help make the development process with SSP more practical, while just reading over
this guide tends to be more theoretical.

Figure 10. Temperature Sensor Connected to PMODA
Note: The following steps provide sufficient detail for someone experienced with the basic flow through the

Synergy development process. If these steps are not familiar, refer to the first few sections in the SSP
User’s Manual, available as described in the References section at the end of this document.

To create and run the SPI Framework application project, simply follow these steps:

1. Connect the temperature sensor as shown in Figure 10.
2. Create a new Renesas Synergy project for the SK-S7G2 board called SPI_Framework_MG_AP.
3. Select the Threads tab.
4. Add a new thread called

Symbol: temperature_thread
Name: Temperature Thread

5. Add to Temperature Thread the SPI Framework and configure it.
6. Click on the Generate Project Content button.

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 25 of 27
Apr.29.19

7. Add the code from the supplied project file temperature_thread_entry.c or copy over the
generated temperature_thread_entry.c file.

8. Connect to the host PC via a micro USB cable to J19 on SK-S7G2 Kit.
9. Start to debug the application.
10. Touch the temperature sensor (change the temperature) and watch the LEDs being lit.

Expected output:

Init temperature: 25.50
Current temperature: 25.06
Init temperature: 25.50
Current temperature: 25.00
Init temperature: 25.50
Current temperature: 25.00
Init temperature: 25.50
Current temperature: 25.00

If the temperature is over 100, the temperature sensor is either not connected or broken.

10. SPI Framework Module Conclusion
This module guide has provided all the background information needed to select, add, configure and use the
module in an example project. Many of these steps were time consuming and error-prone activities in
previous generations of embedded systems. The Renesas Synergy Platform makes these steps much less
time consuming and removes the common errors, like conflicting configuration settings or the incorrect
selection of lower-level drivers. The use of high-level APIs (as demonstrated in the application project)
illustrates additional development time savings by allowing work to begin at a high level and avoiding the
time required in older development environments to use or, in some cases, create, lower-level drivers.

11. SPI Framework Module Next Steps
After you have mastered a simple SPI Framework module project, you may want to review a more complex
example, probably using other SPI Slave devices. Experiment with SCI SPI implementation. Compare the
accompanying application project with SCI SPI and RSPI application projects to see the benefits of using
SSP frameworks.

12. SPI Framework Module Reference Information
SSP User Manual: Available in html format in the SSP distribution package and as a pdf from the Synergy
Gallery.

Links to all the most up-to-date sf_spi module reference materials and resources are available on the
Synergy Knowledge Base: https://en-
us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Syne
rgy_Knowledge_Base/SF_SPI_Module_Guide_References.

https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/SF_SPI_Module_Guide_References
https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/SF_SPI_Module_Guide_References
https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/SF_SPI_Module_Guide_References

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 26 of 27
Apr.29.19

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform SPI Framework Module Guide

R11AN0117EU0110 Rev.1.10 Page 27 of 27
Apr.29.19

Revision History

Rev. Date
Description
Page Summary

1.00 Jun.14.17 - Initial version
1.01 Aug.30.17 7 Update to Hardware and Software Resources Table
1.02 Feb.06.19 - Updated for SSP v1.5.0
1.10 Apr.29.19 - Updated for SSP v1.6.0

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. SPI Framework Module Features
	2. SPI Framework Module APIs Overview
	3. SPI Framework Module Operational Overview
	3.1 Multiple Slave Devices on the Same Bus
	3.2 Bus Locking
	3.3 SPI Framework Module Important Operational Notes and Limitations
	3.3.1 SPI Framework Module Operational Notes
	3.3.2 SPI Framework Module Limitations

	4. Including the SPI Framework Module in an Application
	5. Configuring the SPI Framework Module
	5.1 Configuration the SPI Framework Lower-Level Modules
	5.2 SPI Framework Module Clock Configuration
	5.3 SPI Framework Module Pin Configuration
	5.4 SPI Framework Module Additional Settings

	6. Using the SPI Framework Module in an Application
	6.1 Implementation Steps for Two Slave Devices on Two Shared Busses
	6.2 Adding Another Shared Bus

	7. SPI Framework Module Application Project
	8. Customizing the SPI Framework Module for a Target Application
	9. Running the SPI Framework Module Application Project
	10. SPI Framework Module Conclusion
	11. SPI Framework Module Next Steps
	12. SPI Framework Module Reference Information
	Revision History

