
 APPLICATION NOTE

R01AN1453EJ0101 Rev.1.01 Page 1 of 65
Dec 7, 2012

SH7734 Group
USB 2.0 Host Controller IP with Renesas EHCI Support
USB Basic Firmware µITRON Version

Introduction
This document is the user’s manual for “USB 2.0 Host Controller IP with Renesas EHCI Support, USB Basic Firmware
µITRON Version,” a sample program for USB interface control that uses the USB 2.0 host controller IP with Renesas
EHCI support.

Target Device
SH7734

Contents

1. Document Overview .. 2

2. Overview ... 3

3. Using USB-BASIC-F/W ... 7

4. User-Defined Macros .. 9

5. User-Defined Information .. 11

6. Sample Program ... 16

7. Host Driver (HCD) ... 23

8. HCD Transfer (HCD TRN) .. 32

9. HCD System (HCD SYS) .. 33

10. Host Control Transfer .. 34

11. Host Manager (MGR) .. 39

12. Hub Class Driver (HUBCD) ... 50

13. Data Transfer .. 56

14. Restrictions .. 64

R01AN1453EJ0101
Rev.1.01

Dec 7, 2012

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 2 of 65
Dec 7, 2012

1. Document Overview

1.1 Overview
This document is the user’s manual for “USB 2.0 Host Controller IP with Renesas EHCI Support, USB Basic Firmware
µITRON Version,” a sample program for USB interface control that uses the USB 2.0 host controller IP with Renesas
EHCI support.

The USB basic firmware for the USB 2.0 host controller IP with Renesas EHCI support is compatible with µITRON.

This document is intended to be used in conjunction with the associated data sheet.

1.2 Related Documents
1. Universal Serial Bus Revision 2.0 Specification

[http://www.usb.org/developers/docs/]

• Renesas Electronics Web site

[http://www.renesas.com/]
• USB Devices page

[http://www.renesas.com/prod/usb/]

1.3 List of Terms
The following terms and abbreviations are used in this document.

USB : Universal serial bus

EHCI : Enhanced host controller interface

OHCI : Open host controller interface

USB-BASIC-F/W : USB basic firmware for USB 2.0 host controller IP with Renesas EHCI support (µITRON)

µITRON : USB basic firmware for µITRON system

HEW : High-performance embedded workshop

HCD : Host control driver of USB-BASIC-F/W

MGR : Peripheral device state manager of HCD

HDCD : Host device class driver (device driver and USB class driver)

HUBCD : Hub class sample driver

APL : Application program

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 3 of 65
Dec 7, 2012

2. Overview

2.1 Features of USB-BASIC-F/W
USB-BASIC-F/W offers the following features.

• Support for host function operation
• Inclusion of sample program for control transfer (enumeration)
• Inclusion of sample program for device attach/detach processing
• Inclusion of sample program for suspend/resume processing
• Inclusion of HUBCD sample program
• Ability to load multiple device class drivers without having to customize USB-BASIC-F/W (Multiple device class

drivers can be registered, up to the maximum number of devices that can be connected.)

The user should prepare the following functions to match the system under development.

• Handler for overcurrent detection at USB cable connection
• Descriptor parser
• Device class drivers

2.2 Development Goal
USB-BASIC-F/W was developed to accomplish the following goal.

• To simplify the development by the user of USB communication programs employing the USB 2.0 host controller
IP with Renesas EHCI support.

2.3 Functions
USB-BASIC-F/W provides the following functions.

• Enumeration of low-speed, full-speed, and high-speed devices
• USB connector attach/detach, suspend/resume, and USB bus reset processing
• Control transfer via pipe 0
• Data transfer (bulk transfer, interrupt transfer, and isochronous transfer) via pipes 1 to 30
• Transfer error determination

2.4 Task Structure
The USB basic firmware support comprises a host driver that implements the host function, a host manager that
manages device states, an HCD transfer task that manages communication with USB devices, an HCD System task that
manages the USB ports, a hub class driver that controls a device connected to a down port of the USB hub, and an
application.

The host driver starts hardware control according to messages from the various tasks. It also notifies the various tasks of
hardware control end, the processing result, and hardware requests.

The host manager is a sample program that performs state management and enumeration for the device connected to the
root port. In addition, the host manager sends a message to the host driver or hub class driver by means of the device
address when the application updates the device state. The hub class driver is a sample program that performs
enumeration and state management for devices connected to the down ports of the USB hub.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 4 of 65
Dec 7, 2012

API between
USB basic firmware and
USB class driver

5 Manager task
(MGR)

6 HUB task
(HUBCD)

2 Host driver task
(HCD)

1 USB Interrupt handler

Hardware

7 USB class driver (HDCD)

8 Application (APL)
uI

TR
O

N

3 HCD system task
(HCD TRAN)

4 HCD transfer task
(HCD SYS)

API

Task USB host
function

USB basic
firmware

HCD
module

Figure 2.1 Task Structure of USB-BASIC-F/W

Table 2.1 Overview of Task Functions

No. Module Function
1 USB interrupt handler USB interrupt handler (USB packet transmit/receive

end and special signal detection)
2 Host control driver (HCD) Host communication control
3 HCD Transfer (HCD_TRN) • Host function hardware control

• Host transaction management
4 HCD System (HCD_SYS) • Host function hardware control

• USB port state management
• Bus reset control

5 Manager (MGR) • Device state management
• Enumeration
• HCD/HUBCD control message determination

6 Hub class driver (HUBCD) • HUB down port device state management
• HUB down port enumeration

7 Host device class driver (HDCD) Execution of processing dependent on the device class
(prepared by the user to match the system)

8 Application (APL) Execution of application (prepared by the user to match
the system)

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 5 of 65
Dec 7, 2012

2.5 Outline Flowchart
USB-BASIC-F/W consists of tasks comprising control functions for transmitting and receiving USB data.

When an interrupt occurs, a message is sent to the HCD Transfer task. When the HCD Transfer task receives a message
from the USB interrupt handler, it determines the interrupt source and executes the appropriate processing. (Outline
flowcharts of the individual tasks appear in the next and subsequent sections.)

Return

Clear interrupt source

Operation mode

usb_cstd_UsbHandler

Message to host

Start MGR task Start HCD task

MainTask

usb_init()

Application

usb_init

Initialize USB function

Return

Set USB
operation mode

Register driver

Start HCI Tran
task

Start HCI SYS
task

Return

Figure 2.2 Outline Flowchart

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 6 of 65
Dec 7, 2012

2.6 µITRON Task Association Chart
A task association chart for USB-BASIC-F/W is shown below.

CPU initialization process
Register initialization

µITRON kernel

Start task

Main task

Wait for hardware
access

Start oscillation

Start MGR
Start HCD

Host function

Register driver

Set function

MainHOST()
Application

Detach

Clear function

Initialization
function

PowerON_Reset()

Start Main task

HCD Task

rcv_msg

Processing

cre_tsk
cre_mbx
cre_mpl
sta_tsk

cre_tsk
cre_mbx
cre_mpl
sta_tsk

MGR task

rcv_msg

Enumaration
cre_tsk
cre_mbx
cre_mpl
sta_tsk

cre_tsk
cre_mbx
cre_mpl

HDCD task

Data transfer
request

Function setting function
usb_cstd_SetHwFunction()

Enable interrupt
Set hardware function

Check connection

Function clearing function
R_usb_cstd_ClearHwFunction()

Clear hardware function

Connection confirmation
function

usb_hstd_InitConnect ()

Check connection

HCD transfer task

wai sem

Transmit/receive
data

HCD system task

wai sem

Port state, error
handling

Data
transfer
request

Port state change,
error notification

Figure 2.3 Task Association Chart

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 7 of 65
Dec 7, 2012

3. Using USB-BASIC-F/W

3.1 Overview
USB-BASIC-F/W can be configured as a USB driver adapted to the user’s system by making changes to the scheduler
macros (r_usb_cItron.h, r_usb_cMacItron.h), the user information (r_usb_cDefUsrPb.h, r_usb_cDefUsr.h), and the
OS settings (r_usb_cKernelId.h, main.c, r_usb_HSMPL_apl.c), then adding HDCD to the usb_hstd_MainLoop
function.

3.2 Making Changes to USB-BASIC-F/W
Changes must be made to the program and header files listed below before USB-BASIC-F/W can be used.

1. Source code is provided for the sample functions of the USB 2.0 host controller IP with Renesas EHCI support, but
the following changes must be made to match the user’s system.
 Initialization function for the MCU used for control, interrupt handler, interrupt control functions, etc.

(See table 3.1.)
 Adjustment of the wait time specified for the designated duration wait functions (usb_cstd_DelayXms() function,

usb_cstd_Delay1us() function)
Loop processing or the like is used to wait for the specified amount of time. Adjust the wait duration to match
the system under development by, for example, changing the loop count.
USB-BASIC-F/W uses the USB interrupt disable function (usb_cstd_IntDisable() function) to disable USB
interrupts and the USB interrupt enable function (usb_cstd_IntEnable() function) to enable them. The settings of
these functions should be altered as needed to match the specifications of the MCU.

2. Some files must be customized by the user.
Refer to 5., User-Defined Information, and change the user settings as needed.

3. Debug Information Output Function
Output of debug information can be enabled or disabled by means of a setting in the r_usb_cMacPrint.h file.
(It is possible to output debug information by preparing a serial driver, etc.)

Table 3.1 List of Functions

Type Function Description
void usb_cstd_TargetInit(void) Initializes the system
void usb_cstd_UsbIntHand(void) USB interrupt handler
void usb_cstd_UsbintInit(void) Enables USB interrupts
void usb_cstd_IntEnable(void) Enables USB interrupts
void usb_cstd_IntDisable(void) Disables USB interrupts
void usb_cstd_Delay1us(uint16_t time) Waits 1 us
void usb_cstd_DelayXms(uint16_t time) Waits 1 ms
void usb_cstd_VbusControl(uint16_t port, uint16_t command) VBUS on/off control

3.3 Preparing HDCD
HDCD must be prepared to match the user’s system in order to run USB-BASIC-F/W. Perform the following steps to
prepare HDCD.

• Registration of HDCD (Use R_usb_hstd_DriverRegistration() to register HDCD in MGR.)
• Preparation of class checking routine (It is necessary to perform class checking during enumeration.)
• Pipe settings (Use R_usb_hstd_SetPipeRegistration() to specify the pipes used by HDCD.)

In addition to the above, prepare any routines required by the system under development.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 8 of 65
Dec 7, 2012

3.4 Note
The user should customize the provided source code as necessary to accommodate cases in which class stipulation or
issuing of vendor-specific requests is necessary, considerations related to communication speed or program size, or
individual user interface settings.

Note: USB-BASIC-F/W contains no functionality to verify the integrity of USB data communication. When applied
in the user’s system, it is up to the user to verify its operation and to confirm its ability to connect with a variety
of devices.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 9 of 65
Dec 7, 2012

4. User-Defined Macros

4.1 Overview
USB-BASIC-F/W includes µITRON system call and debug output macros. The user can create a customized executable
file by modifying the header files of these macros. Make changes to the macros as necessary to match the system under
development. The two macros listed below are provided. User settings for the µITRON system call macro are defined in
r_usb_cMacItron.h and for the debug output macro in r_usb_cMacPrint.h.

1. µITRON system call macro
2. Debug output macro

4.2 µITRON System Call Macro
This is the µITRON system call macro.

Customize this macro as necessary to match the version of ITRON to be used.

Note that the ITRON macro is redefined for USB-BASIC-F/W by the r_usb_cMacItron.h file, and the ITRON macro
is defined by conditional compilation even if ITRON is not used. This file should therefore also be customized to match
the version of ITRON to be used.

#define USB_CRE_TSK(ID,INFO) cre_tsk((USB_ID_t)ID, (USB_TSK_t*)INFO)

#define USB_DEL_TSK(ID) del_tsk((USB_ID_t)ID)

#define USB_STA_TSK(ID,CODE) sta_tsk((USB_ID_t)ID, (USB_VI_t)CODE)

#define USB_ACT_TSK(ID) act_tsk((USB_ID_t)ID)

#define USB_TER_TSK(ID) ter_tsk((USB_ID_t)ID)

#define USB_EXT_TSK() ext_tsk()

#define USB_REF_TST(ID, STS) ref_tst((USB_ID_t)ID, (USB_RTST_t*)STS)

#define USB_DLY_TSK(TIME) dly_tsk((USB_RT_t)TIME)

#define USB_CRE_MBX(ID, INFO) cre_mbx((USB_ID_t)ID, (USB_MBX_t*)INFO)

#define USB_DEL_MBX(ID) del_mbx((USB_ID_t)ID)

#define USB_SND_MSG(ID, MESS) snd_mbx((USB_ID_t)ID, (USB_MSG_t*)MESS)

#define USB_ISND_MSG(ID, MESS) isnd_mbx((USB_ID_t)ID, (USB_MSG_t*)MESS)

#define USB_RCV_MSG(ID, MESS) rcv_mbx((USB_ID_t)ID, (USB_MSG_t**)MESS)

#define USB_PRCV_MSG(ID, MESS) prcv_mbx((USB_ID_t)ID, (USB_MSG_t**)MESS)

#define USB_TRCV_MSG(ID, MESS, TM) trcv_mbx((USB_ID_t)ID, (USB_MSG_t**)MESS,
 (USB_TM_t)TM)

#define USB_CRE_MPL(ID, INFO) cre_mpf((USB_ID_t)ID, (USB_MPL_t*)INFO)

#define USB_DEL_MPL(ID) del_mpf((USB_ID_t)ID)

#define USB_PGET_BLK(ID, BLK) pget_mpf((USB_ID_t)ID, (USB_MH_t*)BLK)

#define USB_IPGET_BLK(ID, BLK) ipget_mpf((USB_ID_t)ID, (USB_MH_t*)BLK)

#define USB_REL_BLK(ID, BLK) rel_mpf((USB_ID_t)ID, (USB_MH_t)BLK)

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 10 of 65
Dec 7, 2012

#define USB_CRE_SEM(ID, INFO) cre_sem((USB_ID_t)ID, (USB_SEM_t*)INFO)

#define USB_WAI_SEM(ID) wai_sem((USB_ID_t)ID)

#define USB_POL_SEM(ID) pol_sem((USB_ID_t)ID)

#define USB_SIG_SEM(ID) sig_sem((USB_ID_t)ID)

#define USB_DEL_SEM(ID) del_sem((USB_ID_t)ID)

#define USB_ISIG_SEM(ID) isig_sem((USB_ID_t)ID)

#define USB_CRE_ALM(ID, INFO) cre_alm((USB_ID_t)ID, (USB_ALM_t*)INFO)

#define USB_STA_ALM(ID, TIME) sta_alm((USB_ID_t)ID, (USB_RT_t)TIME)

#define USB_STP_ALM(ID) stp_alm((USB_ID_t)ID)

#define USB_DEL_ALM(ID) del_alm((USB_ID_t)ID)

4.3 Debug Information Output Macro
This macro outputs debug information to the UART or to a display device of some sort. A serial driver or display
device driver is required in order to use it. Make changes to the following macro as necessary to match the system under
development.

#define USB_SPRINTF0(FORM) fprintf(stderr,FORM)

#define USB_SPRINTF1(FORM,x1) fprintf(stderr,FORM,x1)

#define USB_SPRINTF2(FORM,x1,x2) fprintf(stderr,FORM,x1,x2)

#define USB_SPRINTF3(FORM,x1,x2,x3) fprintf(stderr,FORM,x1,x2,x3)

#define USB_SPRINTF4(FORM,x1,x2,x3,x4) fprintf(stderr,FORM,x1,x2,x3,x4)

#define USB_SPRINTF5(FORM,x1,x2,x3,x4,x5) fprintf(stderr,FORM,x1,x2,x3,x4,x5)

#define USB_SPRINTF6(FORM,x1,x2,x3,x4,x5,x6) fprintf(stderr,FORM,x1,x2,x3,x4,x5,x6)

#define USB_SPRINTF7(FORM,x1,x2,x3,x4,x5,x6,x7) fprintf(stderr,FORM,x1,x2,x3,x4,x5,x6,x7)

#define USB_SPRINTF8(FORM,x1,x2,x3,x4,x5,x6,x7,x8) fprintf(stderr,FORM,x1,x2,x3,x4,x5,x6,x7,x8)

#define USB_PRINTF0(FORM) printf(FORM)

#define USB_PRINTF1(FORM,x1) printf(FORM,x1)

#define USB_PRINTF2(FORM,x1,x2) printf(FORM,x1,x2)

#define USB_PRINTF3(FORM,x1,x2,x3) printf(FORM,x1,x2,x3)

#define USB_PRINTF4(FORM,x1,x2,x3,x4) printf(FORM,x1,x2,x3,x4)

#define USB_PRINTF5(FORM,x1,x2,x3,x4,x5) printf(FORM,x1,x2,x3,x4,x5)

#define USB_PRINTF6(FORM,x1,x2,x3,x4,x5,x6) printf(FORM,x1,x2,x3,x4,x5,x6)

#define USB_PRINTF7(FORM,x1,x2,x3,x4,x5,x6,x7) printf(FORM,x1,x2,x3,x4,x5,x6,x7)

#define USB_PRINTF8(FORM,x1,x2,x3,x4,x5,x6,x7,x8) printf(FORM,x1,x2,x3,x4,x5,x6,x7,x8)

Comment out the following lines, as shown, to disable output of debug information.

//#define USB_DEBUGSIO_PP /* enable serial out (printf) */

//#define USB_DEBUGLCD_PP /* enable display out (fprintf) */

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 11 of 65
Dec 7, 2012

5. User-Defined Information

5.1 Overview
USB-BASIC-F/W enables the user to create a customized executable file by modifying the user-defined system
information file (r_usb_cDefUsrPb.h), the user-defined information file (r_usb_cDefUsr.h), the EHCI user-defined
information file (r_usb_hEhciDefUsr.h), and the OHCI user-defined information file (r_usb_hOhciDefUsr.h). Make
changes to the following items as necessary to match the system under development.

Note: The values of items other than those listed below are fixed and should not be changed.

5.2 User-Defined System Information File (r_usb_cDefUsrPb.h)
1. USB port specification
2. Specification of OS create system call support
3. CPU byte endian specification

5.2.1 USB Port Specification
Specify the number of USB ports as one of the following two options.

1) USB_1PORT_PP: Use one USB port.
2) USB_2PORT_PP: Use two USB ports.
Example: Using one USB port

#define USB_PORTSEL_PP USB_1PORT_PP

5.2.2 Specification of OS Create System Call Support
Specify whether or not to support the OS’s create system call.

1) USB_OS_CRE_USE_PP: Support the create system call.
2) USB_OS_CRE_NOTUSE_PP: No not support the create system call.
Example: Create system call not supported

#define USB_OS_CRE_MODE_PP USB_OS_CRE_NOTUSE_PP

5.2.3 CPU Byte Endian Specification
Specify the CPU’s endian mode as one of the following two options. This item specifies the endian order used when
transmitting and receiving data. (It is defined in r_usb_cTypedef.h.)

1) USB_BYTE_LITTLE_PP: Little endian (least significant byte first)
2) USB_BYTE_BIG_PP: Big endian (most significant byte first)
Example: Using the little endian CPU byte endian specification

#define USB_CPUBYTE_PP USB_BYTE_LITTLE_PP

5.3 User-Defined Information File (r_usb_cDefUsr.h)
1. Control read data buffer size
2. Initial value of device address
3. Number of hub down ports

5.3.1 Control Read Data Buffer Size
Specify the data buffer size used when receiving data by control read transfer.

Example: 20-byte device descriptor and 256-byte configuration descriptor
#define USB_DEVICESIZE 20u
#define USB_CONFIGSIZE 256u

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 12 of 65
Dec 7, 2012

5.3.2 Device Address
Specify the device address of the device connected to PORT0.

Example: Starting from device address 1
#define USB_DEVICEADDR 1u

5.3.3 Number of Hub Down Ports (when Host Function Selected)
Specify the number of down ports that can be connected to the hub.

Example: Allowing connection to the hub of up to four down ports
#define USB_HUBDOWNPORT 4u

5.4 EHCI User-Defined Information File (r_usb_hEhciDefUsr.h)
1. Specification of EHCI hardware address
2. Specification of EHCI periodic frame list size
3. Specification of EHCI queue head data structure maximum memory size
4. Specification of EHCI qTD data structure maximum memory size
5. Specification of EHCI iTD data structure maximum memory size
6. Specification of EHCI siTD data structure maximum memory size
7. Specification of EHCI iTD data structure maximum data transfer size
8. Specification of EHCI timeout duration

5.4.1 Specification of EHCI Hardware Address
Specify the reference address for accessing the EHCI hardware. The addresses of the various registers are specified by
offsets from the reference address.

Example: Specifying the address 0x000A0000
#define USB_EHCI_BASE 0x000A0000

5.4.2 Specification of EHCI Periodic Frame List Size
Specify a value of 256, 512, or 1024 as the EHCI periodic frame list size. The scheduling amplitude for periodic
transfers changes according to the size specified.

Example: Specifying a size of 256
#define USB_EHCI_PFL_SIZE 256

5.4.3 Specification of EHCI Queue Head Data Structure Maximum Memory Size
Specify the maximum memory size for the EHCI queue head data structure. The queue head data structure must be able
to accommodate the number of endpoint pipes used for control transfers, bulk transfers, and interrupt transfers. Set a
value that matches the characteristics of the system under development.

Example: Setting a value of 16
#define USB_EHCI_NUM_QH 16

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 13 of 65
Dec 7, 2012

5.4.4 Specification of EHCI qTD Data Structure Maximum Memory Size
Specify the maximum memory size for the EHCI qTD (device status register queue element transfer descriptor) data
structure. The qTD data structure is used as a transfer management descriptor linked to the queue head in control
transfers, bulk transfers, and interrupt transfers. The maximum data size that can be transferred with a single qTD is
20,480 bytes. In addition, control transfers require one qTD for each Setup stage, Data stage, and Status stage. Set a
value that matches the characteristics of the system under development.

Example: Setting a value of 256
#define USB_EHCI_NUM_QTD 256

5.4.5 Specification of EHCI iTD Data Structure Maximum Memory Size
Specify the maximum memory size for the EHCI iTD (high-speed isochronous transfer descriptor) data structure. The
iTD data structure must be able to accommodate the number of endpoint pipes used for high-speed isochronous
transfers. Set a value that matches the characteristics of the system under development.

Example: Setting a value of 4
#define USB_EHCI_NUM_ITD 4

5.4.6 Specification of EHCI siTD Data Structure Maximum Memory Size
Specify the maximum memory size for the EHCI siTD (split transaction isochronous transfer descriptor) data structure.
The siTD data structure must be able to accommodate the number of endpoint pipes used for split transaction
isochronous transfers. Set a value that matches the characteristics of the system under development.

Example: Setting a value of 4
#define USB_EHCI_NUM_SITD 4

5.4.7 Specification of EHCI iTD Data Structure Maximum Data Transfer Size
Specify the maximum data transfer size for the EHCI iTD data structure. The transfer size value specifies the maximum
transfer size for a single high-speed isochronous transfer (one transaction). The largest supported maximum data size
setting is 1024. Set a value that matches the characteristics of the system under development.

Example: Setting a value of 512
#define USB_EHCI_ITD_DATA_SIZE 512

5.4.8 Specification of EHCI Timeout Duration
Specify the EHCI timeout duration in msec units.

Example: Setting a value of 3 seconds
#define USB_EHCI_TIMEOUT 3000

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 14 of 65
Dec 7, 2012

5.5 OHCI User-Defined Information File (r_usb_hOhciDefUsr.h)
1. Specification of OHCI hardware address
2. Specification of OHCI endpoint data structure maximum memory size
3. Specification of OHCI endpoint descriptor data structure maximum memory size
4. Specification of OHCI transfer descriptor data structure maximum memory size
5. Specification of OHCI maximum isochronous device count
6. Specification of OHCI maximum isochronous data transfer size
7. Specification of OHCI maximum isochronous frame count
8. Specification of OHCI timeout duration

5.5.1 Specification of OHCI Hardware Address
Specify the reference address for accessing the OHCI hardware. The addresses of the various registers are specified by
offsets from the reference address.

Example: Specifying the address 0x000A0000
#define USB_OHCI_BASE 0x000A0000

5.5.2 Specification of OHCI Endpoint Data Structure Maximum Memory Size
Specify the maximum memory size for the OHCI endpoint data structure. The OHCI endpoint data structure must be
able to accommodate the number of endpoint pipes used for control transfers, bulk transfers, interrupt transfers, and
isochronous transfers. Set a value that matches the characteristics of the system under development.

Example: Setting a value of 16
#define USB_OHCI_NUM_ENDPOINT 16

5.5.3 Specification of OHCI Endpoint Descriptor Data Structure Maximum Memory Size
Specify the maximum memory size for the OHCI endpoint descriptor data structure. The OHCI endpoint descriptor data
structure must be able to accommodate the number of endpoint pipes used for control transfers, bulk transfers, interrupt
transfers, and isochronous transfers, plus 31 more for interrupt transfer scheduling. Set a value that matches the
characteristics of the system under development.

Example: Setting a value of 64
#define USB_OHCI_NUM_ED 64

5.5.4 Specification of OHCI Transfer Descriptor Data Structure Maximum Memory Size
Specify the maximum memory size for the OHCI transfer descriptor data structure. The OHCI transfer descriptor data
structure is used as a transfer management descriptor in control transfers, bulk transfers, interrupt transfers, and
isochronous transfers. The maximum data size that can be transferred with a single transfer descriptor is 8,192 bytes. In
addition, control transfers require one qTD for each Setup stage, Data stage, and Status stage. Set a value that matches
the characteristics of the system under development.

Example: Setting a value of 256
#define USB_OHCI_NUM_TD 256

5.5.5 Specification of OHCI Maximum Isochronous Device Count
Specify the maximum number of OHCI isochronous devices. Set a value that matches the characteristics of the system
under development.

Example: Setting a value of 4
#define USB_OHCI_ISO_MAXDEVICE 4

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 15 of 65
Dec 7, 2012

5.5.6 Specification of OHCI Maximum Isochronous Data Transfer Size
Specify the maximum data transfer size for OHCI isochronous devices. The transfer size value specifies the maximum
transfer size for a single OHCI isochronous transfer (one transaction). The largest supported maximum data size setting
is 1023. Set a value that matches the characteristics of the system under development.

Example: Setting a value of 256
#define USB_OHCI_ISO_MAX_PACKET_SIZE 256

5.5.7 Specification of OHCI Maximum Isochronous Frame Count
Specify the maximum frame count for OHCI isochronous transfers. The frame count value specifies the maximum
number of frames for isochronous transfers. The setting value must be a power of 2 and the largest supported frame
count setting is 8. Set a value that matches the characteristics of the system under development.

Example: Setting a value of 8
#define USB_OHCI_ISO_MAX_FRAME 8

5.5.8 Specification of OHCI Timeout Duration
Specify the OHCI timeout duration in msec units.

Example: Setting a value of 3 seconds
#define USB_OHCI_TIMEOUT 3000

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 16 of 65
Dec 7, 2012

6. Sample Program

6.1 Overview
The method of preparing HDCD to work with USB-BASIC-F/W is described below.

The USB-BASIC-F/W sample program comprises the following files.

6.2 List of Files
6.2.1 Folder Structure
The folder structure of the files supplied with USB-BASIC-F/W is shown below.

< HEW workspace: USBSTDFW >

 + USBSTDFW
  + class
   + hubd Sample hub driver
   + SMPL USB standard request sample
  + include Common header file
  + USB20
  + HCD Host control driver
  + HCI
  + EHCI EHCI driver
  + Include HCI header file
  + OHCI OHCI driver
  + LIB Common library
 + SmplMain
 + APL Sample Application

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 17 of 65
Dec 7, 2012

6.2.2 List of Files
The files supplied with USB-BASIC-F/W are listed below.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 18 of 65
Dec 7, 2012

Table 6.1 List of Files

Folder File Name Description
HCD r_usb_hControlRW.c Control read/write process
HCD r_usb_hDriver.c HCD task
HCD r_usb_hDriverAPI.c HCD/MGR API functions
HCD r_usb_hManager.c MGR task
HCD r_usb_hSignal.c USB signal control, oscillation control process
HCD r_usb_hStdFunction.c USB functionality extended library function
HCD r_usb_hLibUSBIP.c USB library function
HCI r_usb_hHci.c EHCI/OHCI functionality provision function
HCI\EHCI r_usb_hEhciMain.c EHCI main function
HCI\EHCI r_usb_hEhciMemory.c EHCI memory resource function
HCI\EHCI r_usb_hEhciTransfer.c EHCI transfer process
HCI\include r_usb_hEhciDefUsr.h EHCI user setting definitions
HCI\include r_usb_hEhciExtern.h EHCI external reference definitions
HCI\include r_usb_hEhciTypedef.h EHCI variable definitions
HCI\include r_usb_hHciLocal.h HCI common reference header file
HCI\include r_usb_hOhciDefUsr.h OHCI user setting definitions
HCI\include r_usb_hOhciExtern.h OHCI external reference definitions
HCI\include r_usb_hOhciTypedef.h OHCI variable definitions
HCI\OHCI r_usb_hOhciMain.c OHCI main function
HCI\OHCI r_usb_hOhciMemory.c OHCI memory resource function
HCI\OHCI r_usb_hOhciTransfer.c OHCI transfer process
LIB r_usb_cDataIO.c Data read/write, FIFO access process
LIB r_usb_cIntHandler.c USB interrupt handler
LIB r_usb_cLibUSBIP.c USB library function
include r_usb_cDefUSBIP.h USB driver definitions
include r_usb_cItron.h System header file
include r_usb_cMacItron.h Macro definitions (scheduler macro)
include r_usb_cMacPrint.h Macro definitions (debug display macro)
include r_usb_cTypedef.h Variable type definitions
include r_usb_cDefHCIIP.h 59xIP compatibility definitions
include r_usb_cDefUsr.h User setting (hardware operation specification) definitions
include r_usb_cDefUsrPb.h USB driver definitions
include r_usb_cExtern.h USB-BASIC-F/W external reference definitions
include r_usb_cRevision.h Common library revision specification
Include r_usb_cKernelId.h Macro definitions(Identifiers for μitronOS)
include r_usb_hHci.h External reference definitions for provision of EHCI/OHCI

functionality
class\hubd r_usb_hHubsys.c HUBCD function
class\SMPL r_usb_smp_cSub.c Common library function
class\SMPL r_usb_smp_hSub.c Host standard request
SmplMain main.c Sample main program
SmplMain usb_sh7734_phy.c USB PHY control related code for SH7734
SmplMain usb_usr.c User-defined functions
SmplMain usb_usr.h User-defined macros for SH7734
SmplMain SH7734_Extern.h External reference definitions for SH7734
APL r_usb_HSMPL_apl.c Host port 1 sample application
APL r_usb_cdata.c Data transfer data for port 1 sample application
APL r_usb_cdata.h Data transfer settings for port 1 sample application

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 19 of 65
Dec 7, 2012

6.3 µITRON System Resources
The µITRON resources used by USB-BASIC-F/W are listed below. They are defined in the r_usb_cKernelId.h header
file.

Table 6.2 µITRON Resources

 Name Description
Task stack size:
USB_TSK_STK(0x0800)

usb_hstd_HcdTask HCD task
Task_ID: USB_HCD_TSK
Task priority: USB_HCD_PRI

usb_hstd_MgrTask MGR task
Task_ID: USB_MGR_TSK
Task priority: USB_MGR_PRI

Main_Task Main task
Task_ID: USB_SMP_TSK
Task priority: USB_SMP_PRI

usb_hHubTask HUBCD task
Task_ID: USB_HUB_TSK
Task priority: USB_HUB_PRI

HCD System Task HCD SYS task
Task_ID: USB_HCI_SYS_TSK
Task priority: USB_HCI_SYS_PRI

HCD Transfer Task HCD TRN task
Task_ID: USB_HCI_TRN_TSK
Task priority: USB_HCI_TRN_PRI

Mailbox max. priority: 1
Waiting task queue: FIFO order
Message queue: FIFO order

USB_HCD_MBX HCD mailbox ID
USB_MGR_MBX MGR mailbox ID
USB_CLS_MBX HDCD mailbox ID
USB_HUB_MBX HUBCD mailbox ID
USB_HUBC_MBX Mailbox ID for HUBCD control

transfers
Fixed-length memory pool block
count: USB_BLK_CNT(0x20)
Block size:
USB_BLK_SIZ(0x40)
Waiting task queue: FIFO order

USB_HCD_MPL HCD memory pool ID
USB_MGR_MPL MGR memory pool ID
USB_CLS_MPL HDCD memory pool ID
USB_HUB_MPL HUBCD memory pool ID

Semaphore
Initial value: 1
Maximum number: 1
Wait task queue: FIFO order

ID: USB_TRN_SEM Semaphore for transfer
management

Semaphore
Initial value: 0
Maximum number: 32
Wait task queue: FIFO order

ID: USB_HCI_SYS_SEM Semaphore for HCD system
ID: USB_HCI_TRN_SEM Semaphore for HCD transfer

Semaphore
Initial value: 1
Maximum number: 1
Wait task queue: FIFO order

ID: USB_HCI_MEM_SEM Semaphore for HCI memory
management

Semaphore
Initial value: 0
Maximum number: 1
Wait task queue: FIFO order

ID: USB_HCI_DC_SEM Semaphore for HCI device detach
notification

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 20 of 65
Dec 7, 2012

 Name Description
Semaphore
Initial value: 0
Maximum number: 1
Wait task queue: FIFO order

ID: USB_HCI_TRCC_S_SEM Transfer cancel end notification
semaphore for HCD system task

Semaphore
Initial value: 0
Maximum number: 1
Wait task queue: FIFO order

ID: USB_HCI_TRCC_T_SEM Transfer cancel end notification
semaphore for HCD transfer task

OS base timer Hardware timer 1 ms

6.4 Sections
The sections used by the USB-BASIC-F/W are listed below.

Section Name Description
P_usblib USB firmware common processing program area
P_hcd HCD, HCI program area
P_hub HUB class program area
C_usblib USB firmware common processing fixed-value data area
C_hcd HCD, HCI fixed-value data area
C_hub HUB class fixed-value data area
D_usblib USB firmware common processing initialized memory area
D_hcd HCD, HCI initialized memory area
D_hub HUB class initialized memory area
B_usblib USB firmware common processing uninitialized memory area
B_hcd HCD, HCI uninitialized memory area
B_hub HUB class uninitialized memory area
B_ehci_non_cache EHCI transfer uninitialized memory area*1 ＊4

B_ohci_non_cache OHCI transfer uninitialized memory area*2
B_hcd_non_cache Control transfer uninitialized memory area*3

 : Program area
 : Fixed data area
 : Initialized data area
 : Uninitialized data area

Notes: 1. Assign B_ehci_non_cache to an address aligned at a 4 KB boundary in a non-cached area.
 2. Assign B_ohci_non_cache to an address aligned at a 256 bytes boundary in a non-cached area.
 3. Assign to a non-cached area.
 4. Assign isochronous transfer descriptor “ehci_Itd[USB_EHCI_NUM_ITD]” to an address aligned

at a 64byte boundary in B_ehci_non_cache section.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 21 of 65
Dec 7, 2012

6.5 µITRON configurator
USB-BASIC-F/W uses the ITRON configurator to make the following settings.

1. Kernel operating condition: Kernel interrupt mask level 14
2. Time management function: Use time management function.

Timer interrupt number 0x0400
Timer interrupt level 13
Timer event handler stack size 0x0200
Time tick cycle 1 ms

3. Service call selection: Use all service calls.
4. Interrupts, CPU exception handlers

Power On Reset
TRAPA
SYSTEM TIMER
UsbInt_Hand: C language
_kernel_tmrint: C language

5. Initialization routine PowerON_Reset_PC : stack size 0x0100 : C language

6.6 Creating and Starting µITRON Tasks
The initialization routine (PowerON_Reset() function) of USB-BASIC-F/W creates the main task, memory pools, and
mailboxes and then starts the main task. The main task creates and starts the HCD and MGR tasks. The HDCD task is
created and started according to the Set_Configuration request reply timing.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 22 of 65
Dec 7, 2012

6.7 µITRON System Calls
USB-BASIC-F/W uses the following system calls.

Table 6.3 System Calls

System Call Description
USB_CRE_TSK Creates a task.
USB_DEL_TSK Deletes a task.
USB_STA_TSK Starts a task.
USB_TER_TSK Terminates a task.
USB_DLY_TSK Waits for a specified duration.
USB_CRE_MBX Creates a mailbox.
USB_DEL_MBX Deletes a mailbox.
USB_SND_MSG Transmits a message from a task (interrupt) to a task.
USB_ISND_MSG Transmits a message from a task (interrupt) to a task.
USB_RCV_MSG Receives a message from the message buffer.
USB_PRCV_MSG Receives a message from the message buffer.
USB_TRCV_MSG Receives a message with a timeout.
USB_CRE_MPL Creates a memory pool.
USB_DEL_MPL Deletes a memory pool.
USB_PGET_BLK/
USB_IPGET_BLK

Gets a variable-length memory block when triggered by a task (interrupt).

USB_REL_BLK Releases a variable-length memory block.
USB_CRE_SEM Creates a semaphore.
USB_WAI_SEM Gets a semaphore.
USB_POL_SEM Checks a semaphore.
USB_SIG_SEM/
USB_ISIG_SEM

Releases a semaphore when triggered by a task (interrupt).

USB_DEL_SEM Deletes a semaphore.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 23 of 65
Dec 7, 2012

7. Host Driver (HCD)

7.1 Basic Functionality
HCD interprets requests to the hardware from MGR, HUBCD, and HDCD, and issues corresponding data transfer or
hardware control requests to HCD TRN and HCD SYS. HCD provides the following functionality.

(1) Handling control transfer request
(2) Handling data transfer (bulk/isochronous/interrupt) requests
(3) Handling USB bus reset requests and notification of reset handshake results
(4) Issuing of suspend and resume signals

7.2 Issuing Requests to HCD
API functions, described below, are used to issue hardware control requests to HCD. Note that bus state update requests
for connected devices can either be controlled directly by HCD or controlled via the USB hub. MGR determines the
device address and issues a control request to the HCD or HUBCD task.

7.3 Notes on Using HCD
Bear in mind the following items when performing USB communication by using HCD.

7.3.1 Bus Occupation Rate and Pipe Contention
HCD can issue communication requests to multiple devices. However, HCD does not calculate the USB bus occupation
rate or check for contention among the communication pipes used by HDCD. To prevent pipe contention when multiple
instances of HDCD are running, it is necessary to make modifications to HDCD. Note that HUBCD uses pipes 6 to 10.

7.3.2 Device Addresses
MGR enumerates connected devices using the user-specified value of USB_DEVICEADDR. HUBCD automatically
assigns device addresses to devices connected to down ports, starting with USB_DEVICEADDR + 1.

7.3.3 Running Multiple Instances of HDCD
MGR cannot perform enumeration for multiple devices simultaneously.

7.3.4 Starting HDCD
When the device and configuration are established (SET_CONFIGURATION request response), MGR (HUBCD)
notifies HDCD of the configuration by using the registered callback function. HDCD when enables data communication
for transactions starting with data reception.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 24 of 65
Dec 7, 2012

7.4 HCD Task Startup Sequence
The startup sequence for the HCD and MGR tasks is shown below.

MainInit

MGR task

USB_TRCV_MSG

Start MGR task

Register driver

Process command

R_usb_hstd_MgrOpen()

R_usb_hstd_SmplRegistration()

Hardware

Start HCD task R_usb_hstd_HcdOpen()
HCD task

Analyze command

No

No

usb_cstd_MainTask

usb_hstd_MainInit()

Start idle task

MainLoop

Initialize hardware
usb_cstd_TargetInit()

Return

HCD SYS
task

HCD TRAN
taskUSB_TRCV_MSG

Hardware
control request

USB_WAI_SEM

USB_WAI_SEM

Process command

Process command

Figure 7.1 HCD/MGR Startup Sequence

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 25 of 65
Dec 7, 2012

7.5 HCD Outline Flowchart
An outline flowchart of HCD is shown below.

HDCD task HCD task Hardware

Transfer data

Bus reset

Suspend

Resume

Transfer end

HCDAPI

No

Vbus control

Status clear

UBS interrupt
notification

USB interrupt

Interrupt

USB_TRCV_MSG?

HCD system
task

HCD transfer
task

UBS interrupt
notification

USB_WAI_SEM

Data transfer
request

USB_WAI_SEM

Hardware control

Hardware control

Analyze interrupt
details

Bus reset request

HUBCD task

Detach request

Transfer end
request

Transfer end
request

Figure 7.2 HCD Outline Flowchart

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 26 of 65
Dec 7, 2012

7.6 HCD API Functions
MGR, HUBCD, and HDCD issue hardware control requests by using API functions. The API functions are contained in
the file r_usb_hDriverAPI.c, and the API function return values are scheduler macro error codes.

Table 7.1 List of HCD API Functions

 Function Name Description
1 R_usb_hstd_HcdOpen() Start HCD task
2 R_usb_hstd_HcdClose() End HCD task
3 R_usb_hstd_TransferStart() Data transfer request
4 R_usb_hstd_SetPipeRegistration() Pipe configuration setting request
5 R_usb_hstd_TransferEnd() Data transfer forced end request
6 R_usb_hstd_ChangeDeviceState() USB device state change request

7.6.1 Details of HCD API Functions
Table 7.2 R_usb_hstd_HcdOpen()

Name Start HCD Task
Call format USB_ER_t R_usb_hstd_HcdOpen(void)
Arguments void  
Return values USB_ER_t  Error code

Description

This function starts the HCD task. It creates the HCD Transfer and HCD System tasks;
makes initial global variable settings; creates tasks, mailboxes, and memory pools; and
starts the tasks. The HCD task then waits for requests from the hardware, MGR, and
HDCD.

Notes Calling this function starts the HCD task. Do not call it again after the task has started.

Table 7.3 R_usb_hstd_HcdClose()

Name End HCD Task
Call format USB_ER_t R_usb_hstd_HcdClose(void)
Arguments void  
Return values USB_ER_t  Error code

Description This function ends the HCD task. It releases the mailboxes and memory pools, and
terminates the task.

Notes Calling this function ends the HCD task. Do not call it again after the task has closed.

Table 7.4 R_usb_hstd_TransferStart()

Name Data Transfer Request
Call format USB_ER_t R_usb_hstd_TransferStart(USB_UTR_t *utr_table)
Arguments USB_UTR_t *utr_table Transfer information. See structure definitions.
Return values USB_ER_t Error code

Description

This function performs data transfer via the pipes. When data transfer ends (specified data
size reached, short packet received, or error occurred), the callback function argument
(utr_table) is used to send notification of the remaining transmit/receive data length, status,
error count, and transfer end. The data transfer information indicated in utr_table is
transmitted to HCD as a message, and HCD performs the appropriate processing.

Notes
The members of the structure indicated in the argument include pipe number, transfer data
start address, transfer data length, setup packet address, status, callback function at end,
and error count.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 27 of 65
Dec 7, 2012

Table 7.5 R_usb_hstd_SetPipeRegistration()

Name Pipe Configuration
Call format USB_ER_t R_usb_hstd_SetPipeRegistration (uint16_t *table, uint16_t pipe)
Arguments uint16_t *table Pipe information table

uint16_t pipe Pipe number
Return values USB_ER_t Error code

Description

This function specifies the pipe configuration information. The settings for the pipes are
based on the contents of the information table (devicedriver.pipetable) registered at HDCD
registration. At processing end, notification that the settings are complete is sent by using
the usb_cstd_ClassProcessResult callback function. This information is transmitted to HCD
as a message, and HCD performs the appropriate processing.

Notes

The contents of the information table (devicedriver.pipetable) should be specified by the
user after analyzing the descriptor details, etc.
This function was originally for making hardware pipe configuration settings required by the
R8A6659x ASSP/USB IP. Since the basic firmware with EHCI support uses some pipe
configuration information items, this function is required for making settings.

Table 7.6 R_usb_hstd_TransferEnd()

Name Data Transfer Forced End Request
Call format void R_usb_hstd_TransferEnd(uint16_t pipe, uint16_t status)

Arguments
uint16_t pipe Pipe number
uint16_t status

Return values USB_ER_t Error code

Description

This function forcibly ends data transfer via the pipes. When a data transfer forced end
occurs, the R_usb_hstd_TransferStart() function’s callback function argument (utr_table) is
used to send notification of the remaining transmit/receive data length, status, error count,
and forced transfer end. This information is transmitted to HCD as a message, and HCD
performs the appropriate processing.

Notes This function executes the same callback function as when R_usb_hstd_TransferStart() is
executed.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 28 of 65
Dec 7, 2012

Table 7.7 R_usb_hstd_ChangeDeviceState()

Name Device State Change Request

Call format USB_ER_t R_usb_hstd_ChangeDeviceState(USB_CB_INFO_t complete, uint16_t
msginfo, uint16_t rootport)

Arguments

USB_CB_INFO_t complete Callback function

uint16_t
msginfo Message information
connect_inf Connection state

uint16_t rootport Port number
Return values USB_ER_t Error code

Description
This function manages the device state. At processing end, notification that the settings are
complete is sent by using a callback function. This information is transmitted to HCD as a
message, and HCD performs the appropriate processing.

Notes

The message information used for state management is as follows.
#define USB_MSG_HCD_ATTACH: Request for transition to connected state
#define USB_MSG_HCD_DETACH: Request for transition from connected to disconnected

state
#define USB_MSG_HCD_USBRESET: Request to issue USB reset
#define USB_MSG_HCD_SUSPEND: Request for transition to suspended state
#define USB_MSG_HCD_RESUME: Request to issue resume signal
#define USB_MSG_HCD_REMOTE: Request for transition to suspended with remote

wakeup state
#define USB_MSG_HCD_VBON: Vbus output start request
#define USB_MSG_HCD_VBOFF: Vbus output end request
#define USB_MSG_HCD_CLR_STALL: Stall clear request

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 29 of 65
Dec 7, 2012

7.7 HCD Callback Functions
Table 7.8 R_usb_hstd_TransferStart Callback

Name Data Transfer Request Callback Function
Call format (*USB_CB_INFO_t)(USB_UTR_t*);

Arguments USB_UTR_t* USB_UTR_t pointer argument of
R_usb_hstd_TransferStart() function

Return values   

Description
This function is executed at data transfer end (when data transfer of the size specified by
the application completes or transfer ends because a short packet is received, etc.). It
updates the remaining transmit/receive data length and the error count.

Notes

Table 7.9 R_usb_hstd_ChangeDeviceState(USB_MSG_HCD_USBRESET) Callback

Name USB Bus Reset Callback Function
Call format (*USB_CB_INFO_t)(uint16_t,uint16_t)

Arguments
uint16_t

USB_NOCONNECT: Not connected
USB_HSCONNECT: High-speed device
USB_FSCONNECT: Full-speed device
USB_LSCONNECT: Low-speed device

uint16_t NOARGUMENT: Not used
Return values   

Description

This function is executed when USB bus reset processing finishes. It returns the
communication speed of the connected device as an argument. The not connected
argument is returned when detach detection occurs while USB bus reset is in progress or
the speed is undefined.

Notes

Table 7.10 Other Callbacks

Name Other Callback Functions
Call format (*USB_CB_INFO_t)(uint16_t,uint16_t)

Arguments
uint16_t NOARGUMENT: Not used
uint16_t msginfo: Command classification

Return values   

Description

USB_MSG_HCD_ATTACH: Executed at end of attach processing.
USB_MSG_HCD_DETACH: Executed at end of detach processing.
USB_MSG_HCD_SUSPEND: Executed at end of suspend processing.
USB_MSG_HCD_RESUME: Executed at end of resume processing.
USB_MSG_HCD_REMOTE: Executed at end of remote wakeup processing.
USB_MSG_HCD_VBON: Executed at end of Vbus on processing.
USB_MSG_HCD_VBOFF: Executed at end of Vbus off processing.
USB_MSG_HCD_SETDEVICEINFO: Executed at end of pipe setting processing.
usb_hstd_ControlEnd: Executed at end of data transfer.
USB_MSG_HCD_CLRSEQBIT: Executed when sequence toggle bit is cleared to 0.
USB_MSG_HCD_SETSEQBIT: Executed when sequence toggle bit is set to 1.

Notes

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 30 of 65
Dec 7, 2012

7.8 Structure Definitions
7.8.1 USB_HCDINFO_t Structure
The message structure transmitted to HCD by the R_usb_hstd_ChangDeviceState(), R_usb_hstd_SetPipeRegistration(),
R_usb_hstd_TransferEnd(), and R_usb_hhub_ChangeState() functions is described below.

typedef struct {
 USB_MH_t msghead; // Message header used by the OS
 uint16_t msgInfo; // Message information used by USB-BASIC-F/W
 uint16_t keyword; // Sub-information (port number, pipe number, etc.)
 void *tranadr; // Specifies the pipe information table for R_usb_hstd_SetPipeRegistration() only.
 USB_CB_INFO_t complete; // Callback function at processing end
}USB_HCDINFO_t;

Table 7.11 Members of USB_HCDINFO_t Structure

Variable Description
msghead This message header is used by the OS, so the client should not make use of it.
msgInfo This message header is used by USB-BASIC-F/W, so the client should not make use of it.
keyword This differs according to the message, as follows.

Pipe number: R_usb_hstd_ChangDeviceState(), R_usb_hstd_SetPipeRegistration(),
R_usb_hstd_TransferEnd()

Device address: R_usb_hhub_ChangeState()
*tranadr R_usb_hstd_SetPipeRegistration() function: Specifies the address of the pipe setting

information table.
Other API functions: Ignored even if specified.

complete Specifies the address of the function to be executed when HCD completed its current
processing. Use the type declaration void (*USB_CB_INFO_t)(uint16_t,uint16_t) for the
callback function. For USB reset signal output control by the
R_usb_hstd_ChangeDeviceState() function, the reset handshake result is returned as the
first argument of the callback. For other functions, the callback indicates that processing
has completed.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 31 of 65
Dec 7, 2012

7.8.2 Information Registered in HCD (USB_HCDREG_t Structure)
The structure for registering HDCD is described below. See section 11 for the timing of callback function execution.

typedef struct {
 uint16_t rootport; /* root port */
 uint16_t devaddr; /* Device address */
 uint16_t devstate; /* Device state */
 uint16_t ifclass; /* Interface class */
 uint16_t *tpl; /* Target peripheral list */
 uint16_t *pipetbl ; /* Pipe define table address */
 USB_CB_INFO_t classinit; /* Driver init */
 USB_CB_CHECK_t classcheck; /* Driver check */
 USB_CB_INFO_t devconfig; /* Device configured */
 USB_CB_INFO_t devdetach; /* Device detach */
 USB_CB_INFO_t devsuspend; /* Device suspend */
 USB_CB_INFO_t devresume; /* Device resume */
 USB_CB_INFO_t overcurrent; /* Device over current */
}USB_HCDREG_t;

Table 7.12 Members of USB_HCDREG_t Structure

Variable Description
rootport Used by HCD. Registers the connected port number.
devaddr Used by HCD. Registers the device address.
devstate Used by HCD. Registers the device connection state.
ifclass Register the class code of the interface operated by HDCD.
*tpl Register a list of the target peripherals operated by HDCD.
*pipetbl Register the address of the pipe information table.
classinit Register the function to be started at driver registration.
classcheck Register the function to be started at HDCD checking. It is called when TPL matches.
devconfig Register the function to be started at transition to the configuration state. It is called

when a SET_CONFIGURATION request completes.
devdetach Register the function to be started at transition to the detached state.
devsuspend Register the function to be started at transition to the suspended state.
devresume Register the function to be started at transition to the resume state.
overcurrent Register the function to be started at overcurrent detection.

A separate TPL is created for each device class. In a TPL the vender ID and product ID are registered as a set. Register
all supported sets in the relevant device class.

To register a device class as supporting all devices, register the set USB_NOVENDOR and USB_NOPRODUCT.

const uint16_t tpl[] = {
 1, /* Number of lists */
 0, /* Reserved */
 USB_NOVENDOR, /* Vendor ID */
 USB_NOPRODUCT, /* Product ID */
};

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 32 of 65
Dec 7, 2012

8. HCD Transfer (HCD TRN)

8.1 Basic Functionality
The HCD Transfer program controls data transfers. It performs data transfers according to data transfer requests from
HCD. HDCD, etc., are notified of the control results by using callback functions. HCD Transfer provides the following
functionality.

(1) Control transfer and result notification
(2) Data transfer and result notification

8.2 Issuing Requests to HCD Transfer
Data transfer requests are issued to HCD Transfer by HCD. After HUBCD or HDCD sends a transfer request and
makes transfer information settings to HCD via the API, HCD issues a transfer request to HCD TRN.

A direct notification of the transfer result is sent to the request source by using a callback function.

8.3 HCD Transfer Task Startup Sequence
See figure 7.1, HCD/MGR Startup Sequence, for the startup sequence of the HCD Transfer task.

8.4 HCD Transfer Outline flowchart
See figure 7.2, HCD Outline Flowchart, for an outline flowchart of the HCD Transfer task.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 33 of 65
Dec 7, 2012

9. HCD System (HCD SYS)

9.1 Basic Functionality
The HCD System program performs port state management and hardware control. It performs hardware control
according to hardware control requests from HCD and HUBCD, and it sends notifications to MGR when port state
changes are detected.

HCD System provides the following functionality.

(1) Port state change (attach/detach/overcurrent) notification
(2) Bus reset hardware control
(3) Detach processing hardware control

9.2 Port State Change Notification
HCD System is notified by the USB interrupt handler when the port state changes. After receiving a port state change
notification, HCD System checks the port state and notifies MGR if it is attached, detached, or overflow by using a
callback function.

9.3 Bus Reset Hardware Control
Requests for bus reset hardware control are sent to HCD System by HCD as messages. After receiving such a request,
HCD System performs bus reset control accordingly.

9.4 Detach Processing Hardware Control
Requests for detach processing hardware control are sent to HCD System by HUBCD as messages. After receiving such
a request, HCD System performs detach processing control accordingly.

9.5 HCD System Task Startup Sequence
See figure 7.1, HCD/MGR Startup Sequence, for the startup sequence of the HCD Transfer task.

9.6 HCD System Outline Flowchart
See figure 7.2, HCD Outline Flowchart, for an outline flowchart of the HCD System task.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 34 of 65
Dec 7, 2012

10. Host Control Transfer

10.1 Overview
A control transfer can be performed by notifying HCD of the USB request setup packet and data transmit/receive user
buffer (see 13.2, USB Communication Structure).

10.1.1 Basic Specifications
When HCD receives a data transfer request, it checks the contents of the request and makes the settings necessary for
the transfer, after which it sends a transfer request to HCD TRN. After receiving the request, HCD TRN performs
control transfer scheduling and executes a control transfer, using the setup information and user buffer specified in the
structure as transfer memory.

Ensure that the user buffer is sufficient to accommodate the size of the data transmitted or received in the Data stage.

10.1.2 Notification of Transfer Result
When the control transfer ends, HCD TRN executes the callback function specified at submit to notify HDCD of
control transfer end.

The communication result notification sent by HCD TRN to HDCD can be any one of the following.

• USB_CTRL_END: Successful control transfer end
• USB_DATA_STALL: STALL response or MAXP error in Data stage or Status stage
• USB_DATA_OVR: Receive data size over in Data stage
• USB_DATA_ERR: No response detected
• USB_DATA_STOP: Forced end of control transfer (including end when detach detected)

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 35 of 65
Dec 7, 2012

10.2 Control Transfer Operation
10.2.1 Control Write Operation
HCD TRN uses the following procedure to perform a data control transfer.

[1] HCD TRN starts a control transfer upon receipt of a transfer request from HCD.
[2] After creating a transfer schedule based on the transfer request notification from HCD, HCD TRN performs

hardware control and starts the transfer. (Stage management is implemented by the hardware according to the
transfer schedule.)

[3] After transfer end, the interrupt handler notifies HCD Transfer that a transfer end interrupt was generated.
[4] After receiving the transfer end notification, HCD TRN sends notification of transfer end via the callback function

specified by HCD.

HDCD task HCD task Hardaware

Analyze
message

R_usb_hstd_TransferStart()

Status clear

USB interrupt

InterruptHCD Transfer
 task

[3] Transfer end interrupt notification

Control transfer
request

Start data
transfer

[4] Transfer end callback

Create transfer
request

[1] Data transfer
request

[2] Data transfer start

Figure 10.1 Control Write Outline Flowchart

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 36 of 65
Dec 7, 2012

10.2.2 Control Read Operation
HCD TRN uses the following procedure to perform a control read transfer.

[1] HCD TRN starts a control transfer upon receipt of a transfer request from HCD.
[2] After creating a transfer request based on the transfer request notification from HCD, HCD TRN makes hardware

settings and starts the transfer. (Stage management is implemented by the hardware according to the transfer
schedule.)

[3] After transfer end, the interrupt handler notifies HCD Transfer that an interrupt was generated.
[4] After receiving the transfer end notification, HCD TRN copies the receive data to the user buffer.
[5] HCD TRN sends notification of transfer end via the callback function specified by HCD.

HDCD task HCD task Hardware

Analyze
message

R_usb_hstd_TransferStart()

Status clear

USB interrupt

Interrupt
HCD transfer

 task

Control transfer
request

Start data
transfer

[5] Transfer end callback

Create transfer
request

[4] Copy
receive data

[1] Data transfer
request

[2] Data transfer start

[3] Transfer end interrupt notification

Figure 10.2 Control Read Outline Flowchart

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 37 of 65
Dec 7, 2012

10.3 Control Transfer Sequence

[Symbols used in figures]

Hardware,
etc.

Operation

Rcv_msg

File nameTask

wai_sem

10.3.1 No-Data Control Sequence

HDCD HCD UsbInt Hardware USB device

R_usb_hstd_TransferStart()
sig_sem

Transfer request

USB-interrupt

Callback()

IN-Token

Null

SACK

SETUP-Token
ACK

HCD
TRAN

Figure 10.3 No-Data Control Sequence

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 38 of 65
Dec 7, 2012

10.3.2 Control Write Sequence

HDCD HCD UsbInt Hardware USB device

R_usb_hstd_TransferStart()
sig_sem

Transfer request

USB-interrupt

Callback()

IN-Token

Null

SACK

SETUP-Token

ACK

HCD
TRAN

OUT-Token

Transfer data
length?

Yes

No

Figure 10.4 Control Write Sequence

10.3.3 Control Read Sequence

HDCD HCD UsbInt Hardware USB device

R_usb_hstd_TransferStart()
sig_sem

Transfer request

USB-interrupt

Callback()

IN-Token

Null

SACK

SETUP-Token

ACK

HCD
TRAN

OUT-Token

Transfer data
length?

Yes

No

Copy receive data

Figure 10.5 Control Read Sequence

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 39 of 65
Dec 7, 2012

11. Host Manager (MGR)

11.1 Basic Functionality
The MGR task supplements the functionality between the HCD module and HDCD. MGR provides the following
functionality.

(1) Registering HDCD
(2) State management for connected device
(3) Enumeration of connected device
(4) Searching endpoint information in descriptors
(5) Starting HDCD
(6) Detach detection

11.2 Registering HDCD
APL uses a MGR API function to register HDCD.

11.3 Device State Management
When MGR receives a device state change request, it issues a device state change request to either HCD (if the device
address in the request message is less than USB_DEVICEADDR) or to HUBCD (if the device address is equal to or
greater than USB_DEVICEADDR).

11.4 USB Standard Requests
When MGR receives a device attach notification from HCD System, it issues a USB reset and then continues by
performing enumeration. MGR saves the reset handshake result and performs a control transfer, as described below. At
this time MGR assigns USB_DEVICEADDR to the device connected to port 0.

Note that MGR temporarily stores the descriptor information obtained from the device, and this information can be
fetched by using the following MGR API functions.

(1) GET_DESCRIPTOR (DeviceDescriptor)
(2) SET_ADDRESS
(3) GET_DESCRIPTOR (ConfigurationDescriptor)
(4) SET_CONFIGURATION

11.5 Checking and Starting HDCD
MGR notifies HDCD via a callback of the information obtained during enumeration by using the GET_DESCRIPTOR
request. HDCD checks the device information within the callback function to determine if the connected device is
operable, and passes the result to MGR. If the result is that the device is operable, MGR performs enumeration (by
executing a SET_CONFIGURATION request) and then starts HDCD.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 40 of 65
Dec 7, 2012

11.6 MGR Outline Flowchart
The outline flowchart below shows MGR operation after receipt of a callback from HCD SYS.

HDCD MGR HCD

Status result

USB_DEFAULT

deviceresume

USB_CONFIGURED

devicesuspend

USB_SUSPEND

usb_hstd_EnumGetDescriptor()

Submit result

USB_MSG_MGR_
SUBMITRESULT

 usb_hstd_Enumeration()

Detach result

devdetach

Attach result

USB_DEFAULT

Callback

usb_hstd_SetDevAddr()

R_usb_hstd_TransferStart()

usb_cstd_GetDevsel()
usb_hstd_GetRootportt()

usb_hstd_SetDetachDetect()

usb_hstd_DeviceUsbReset()

USB_TRCV_MSG?
No

HCD SYS

Figure 11.1 MGR Outline Flowchart 1

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 41 of 65
Dec 7, 2012

The outline flowchart below shows MGR operation after receipt of a request from APL/HDCD.

Main MGR HCD

USB_TRCV_MSG?

USB_TRCV_MSG?

USB reset

USB_MSG_HCD_ATTACH

Attach

No

usb_hstd_DeviceStateControl()

R_usb_hstd_MgrOpen()

USB_MSG_HCD_DETACH

Detach
usb_hstd_DeviceStateControl()

USB_MSG_HCD_USBRESET

Resume

USB_MSG_HCD_RESUME

Suspend

USB_MSG_HCD_SUSPEND

usb_hstd_DeviceStateControl2()
State transition

HCD

Enumeration

HCD
usb_hstd_DeviceStateControl2()

No

usb_hstd_MgrReset()

usb_hstd_MgrResume()

usb_hstd_MgrSuspend()

HCD SYS

Bus reset request

Figure 11.2 MGR Outline Flowchart 2

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 42 of 65
Dec 7, 2012

11.7 MGR API Functions
HDCD issues device state transition requests and checks device information by means of API functions. The API
functions are contained in the file r_usb_hDriverAPI.c.

Table 11.1 List of MGR API Functions

 Function Name Description
1 R_usb_hstd_MgrOpen() Start MGR task
2 R_usb_hstd_MgrClose() End MGR task
3 R_usb_hstd_DriverRegistration() Register HDCD
4 R_usb_hstd_DriverRelease() Release HDCD
5 R_usb_hstd_MgrChangeDeviceState() Request change in state of connected device

11.7.1 Details of MGR API Functions
Table 11.2 R_usb_hstd_MgrOpen()

Name Start MGR Task
Call format USB_ER_t R_usb_hstd_MgrOpen(void)
Arguments void  
Return values USB_ER_t  Error code

Description
This function starts the MGR task. It makes initial global variable settings; creates the task,
mailboxes, and memory pools; and starts the task. The MGR task then waits for messages
from HDCD or HCD.

Notes Calling this function starts the MGR task. Do not call it again after the task has started.

Table 11.3 R_usb_hstd_MgrClose()

Name End MGR Task
Call format USB_ER_t R_usb_hstd_MgrClose(void)
Arguments void  
Return values USB_ER_t  Error code

Description This function ends the MGR task. It releases the mailboxes and memory pools, and
terminates the task.

Notes Calling this function ends the MGR task. Do not call it again after the task has closed.

Table 11.4 R_usb_hstd_DriverRegistration()

Name Register HDCD
Call format void R_usb_hstd_DriverRegistration(USB_HCDREG_t *callback)
Arguments USB_HCDREG_t *callback
Return values void  

Description This function registers HDCD. It registers the HDCD information, pipe information table,
and callback functions for device state transitions.

Notes Update the number of registered drivers and register HDCD in a new area.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 43 of 65
Dec 7, 2012

Table 11.5 R_usb_hstd_DriverRelease()

Name Release HDCD
Call format void R_usb_hstd_DriverRelease(uint8_t devclass)
Arguments uint8_t devclass Device address
Return values void  
Description This function releases HDCD. The released driver area becomes an open area.
Notes The number of registered drivers does not change.

Table 11.6 R_usb_hstd_MgrChangeDeviceState()

Name Request Change in State of Connected Device

Call format USB_ER_t R_usb_hstd_MgrChangeDeviceState(USB_B_INFO_t complete, uint16_t
msginfo, uint16_t devaddr)

Arguments
USB_CB_INFO_t complete Callback function
uint16_t msginfo Message information
uint16_t devaddr Device address

Return values USB_ER_t Error code

Description

This function changes the state of a peripheral device connected to a USB port. It notifies
MGR of the device state change request by transmitting a message, and MGR uses HCD
or HUBCD to perform the necessary processing. When processing ends, the function
notifies the high-level layer that the setting has been completed by using a callback
function. To issue a request, specify one of the following arguments (msginfo) when calling
the function.
USB_GO_POWEREDSTATE: Request for transition from connected to disconnected state
USB_DO_RESET_AND_ENUMERATION: Request for transition from connected to

initialized for communication state (request to
issue USB reset and perform enumeration)

USB_PORT_ENABLE: Request for Vbus supply start
USB_PORT_DISABLE: Request for Vbus shutdown
USB_DO_GLOBAL_SUSPEND: Request for transition to suspended with remote wakeup

state (suspending of all connected devices from port
onward)

USB_DO_SELECTIVE_SUSPEND: Request for transition to suspended with remote
wakeup state (suspending of all connected devices
from hub onward)

USB_DO_GLOBAL_RESUME: Request for global resume (request for transition from
suspended state to state preceding suspended state)
(resume of all connected devices from hub onward)

USB_DO_SELECTIVE_RESUME: Request for selective resume (request for transition
from suspended state to state preceding suspended
state) (resume of specified connected device from hub
onward)

Notes

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 44 of 65
Dec 7, 2012

11.8 Details of Callback Functions
Table 11.7 classcheck

Name Classcheck Callback Function
Call format (*USB_CB_CHECK_t)(uint16_t **);

Arguments

uint16_t **Table Table[0] device descriptor
Table[1] configuration descriptor
Table[2] interface descriptor
Table[3] descriptor check result
Table[4] hub classification
Table[5] port number
Table[6] communication speed
Table[7] device address

Return values   

Description

Use this function to notify HDCD of the descriptor information and to send a response
indicating whether HDCD is ready or not. Insert either of the following check results in
Table[3] when sending a response.
USB_DONE: HDCD ready
USB_ERROR: HDCD not ready

Notes

Table 11.8 Other Callback Functions

Name Other Callback Functions
Call format (*USB_CB_INFO_t)(uint16_t ,uint16_t);

Arguments
uint16_t NOARGUMENT: Not used
uint16_t NOARGUMENT: Not used

Return values   

Description

classinit: Executed at MGR start.
deviceconfig: Executed when Set_Configuration request issued.
devicedetach: Executed at detach detection.
devicesuspend: Executed at transition to suspend.
deviceresume: Executed at transition to resume.

Notes

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 45 of 65
Dec 7, 2012

11.9 Structure Definitions
11.9.1 USB_MGRINFO_t Structure
The message structure transmitted to MGR by the usb_hstd_NotifAtorDetach(), usb_hstd_StatusResult(),
usb_hstd_OvcrNotifiation(), R_usb_hstd_MgrChangeDeviceState(), and usb_hstd_SubmitResult() functions is
described below.

typedef struct {
 USB_MH_t msghead; // Message header used by the OS
 uint16_t msginfo; // Message information used by USB-BASIC-F/W
 uint16_t keyword; // Sub-information (port number, pipe number, etc.)
 uint16_t result // Processing result
} USB_MGRINFO_t;

Table 11.9 Members of USB_MGRINFO_t Structure when Used by usb_hstd_NotifAtorDetatch(),
usb_hstd_StatusResult(), or usb_hstd_OverNotification()

Variable Description
msghead This message header is used by the OS, so the client should not make use of it.
msginfo USB_MSG_MGR_AORDETACH (used by usb_hstd_NotifAtorDetach() function),

USB_MSG_MGR_STATUSRESULT (used by usb_hstd_StatusResult() function),
USB_MSG_MGR_OVERCURRENT (used by usb_hstd_OvcrNotifiation() function)

keyword Port number
result Returns result of completed processing by HCD.

Table 11.10 Members of USB_MGRINFO_t Structure when Used by usb_hstd_SubmitResult()

Variable Description
msghead This message header is used by the OS, so the client should not make use of it.
msginfo USB_MSG_MGR_SUBMITRESULT(used by usb_hstd_SubmitResult() function)
keyword Pipe number
result Returns result of completed processing by HCD.

Table 11.11 Members of USB_MGRINFO_t Structure when Used by

R_usb_hstd_MgrChangeDeviceState()

Variable Description
msghead This message header is used by the OS, so the client should not make use of it.
msginfo USB_GO_POWEREDSTATE,

USB_DO_RESET_AND_ENUMERATION,
USB_PORT_ENABLE,
USB_PORT_DISABLE,
USB_DO_GLOBAL_SUSPEND,
USB_DO_SELECTIVE_SUSPEND,
USB_DO_GLOBAL_RESUME,
USB_DO_SELECTIVE_RESUME
(used by R_usb_hstd_MgrChangeDeviceState() function)

keyword Device address
result Returns result of completed processing by HCD.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 46 of 65
Dec 7, 2012

11.10 Device State Management
11.10.1 State Transition Outline Sequence
An outline sequence of device state transitions is shown below.

R_usb_hstd_MgrChangeDeviceState
(USB_DO_GLOBAL_SUSPEND)

R_usb_hstd_MgrChangeDeviceState
(USB_DO_GLOBAL_RESUME)

R_usb_hstd_MgrChangeDeviceState
(USB_GO_POWEREDSTATE)

HDCD MGR HCD

Start MGR

Start HCD

Register driver

Suspend

Resume

Force detach

Processing end

Detach detection

Attach detection

usb_hstd_DeviceUsbReset()

R_usb_hstd_TransferStart()

callback.classcheck()

callback.devconfig()

callback.devdetach()

callback

usb_hstd_NotifAtorDetach()

Call Back

usb_hstd_DeviceStateControl()

usb_hstd_DeviceStateControl()

usb_hstd_DeviceStateControl()

usb_hstd_NotifAtorDetach()

callback.classinit()

No

R_usb_hstd_DriverRegistration()

R_usb_hstd_HcdOpen()

R_usb_hstd_MgrOpen()

USB_TRCV_MSG?

HCD
SYS

Bus reset request

Figure 11.3 State Transition Sequence

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 47 of 65
Dec 7, 2012

11.10.2 Attach/Detach
The attach/detach sequence is shown below.

Data transfer end

Clear DEVADDRx

Check port state

Enumeration

Port attached?

HardwareMGRHDCD HCD
SYS

usb_hstd_Detach()

usb_hstd_NotifAtorDetach()

USB_DETACH

DTCH

USB_DETACH

callback.devdetach()

USB_CONFIGRURED

callback.devconfig()

USB_ATTACH

usb_hstd_NotifAtorDetach()

Yes

No

ATCH/BCHG

usb_hstd_NotifAtorDetach()

Figure 11.4 Attach/Detach

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 48 of 65
Dec 7, 2012

11.10.3 Suspend/Resume
The suspend/resume sequence is shown below.

callback.devsuspend

usb_hstd_ResumeProcess()

HardwareMGRHDCD HCD

USBC_MSG_HCD_RESUME

callback.devresume

R_usb_hstd_MgrChangeDeviceState
(USB_DO_GLOBAL_RESUME)

callback complete

usb_hstd_DeviceStateControl()

USB_MSG_HCD_REMOTE
Execute suspend

Transfer end

Control transferSET_FEATURE

callback complete

usb_hstd_DeviceStateControl()

callback complete

R_usb_hstd_TransferStart()

usb_hstd_SuspendProcess()

callback complete

R_usb_hstd_MgrChangeDeviceState
(USB_DO_GLOBAL_SUSPEND)

USB_DO_GLOBAL_SUSPEND

callback complete

USB_DO_GLOBAL_RESUME

HCD
TRAN

Transfer request

Execute resume

Figure 11.5 Suspend/Resume

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 49 of 65
Dec 7, 2012

11.11 Enumeration
The enumeration sequence is shown below.

HardwareMGRHDCD HCD

Attach

Set pipe

R_usb_hstd_SetPipeRegistration()

SET_CONFIGURATION

Opposite side port

Set DEVADDR0

Set DEVADDRx

Analyze descriptors
Update pipe table

Device speed check
HS/FS/LS

USB reset

Control transfer

Transfer end

GET_DESCRIPTOR

GET_DESCRIPTOR

Enumeration not in
progress

R_usb_hstd_TransferStart()

R_usb_hstd_TransferStart()

R_usb_hstd_TransferStart()

R_usb_hstd_TransferStart()

callback complete

usb_hstd_DeviceStateControl()

usb_hstd_NotifAtorDetach()

callback.classcheck

result

callback.devconfig

Speed (HS/FS/LS)
notification

callback complete

callback complete

callback complete

callback complete

callback complete

HCD
TRAN

HCD
SYS

Bus reset request

Transfer request

Transfer request

Transfer request

Transfer request

Yes

SET_ADDRESS

No
Result is OK?

Control transfer

Transfer end

Control transfer

Transfer end

Control transfer

Transfer end

Figure 11.6 Enumeration

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 50 of 65
Dec 7, 2012

12. Hub Class Driver (HUBCD)

12.1 Basic Functionality
The HUBCD task manages the states of the down ports of the connected USB hub and supplements the functionality
between HCD and HDCD. HUBCD provides the following functionality.

(1) State management of devices connected to the down ports of the USB hub
(2) Enumeration of devices connected to the down ports of the USB hub
(3) Starting HDCD

12.2 HUBCD API Functions
Table 12.1 lists the HUBCD API functions.

Table 12.1 List of HUBCD API Functions

 Function Name Description
1 R_usb_hhub_Open() Start HUBCD task
2 R_usb_hhub_Close() Release HUBCD task (No call from the high-level layer is

necessary because this task is usually executed by MGR.)
3 R_usb_hhub_Registration() Register HUBCD
4 R_usb_hhub_ChangeDeviceState() Request change in state of device connected to hub

(µITRON version only)
5 R_usb_hhub_GetHubInformation() Get hub information
6 R_usb_hhub_GetPortInformation() Get hub port information

12.2.1 Details of HUBCD API Functions
Table 12.2 R_usb_hhub_Open()

Name Start HUBCD Task
Call format USB_ER_t R_usb_hhub_Open(uint16 devaddr, uint16 data2)

Arguments
uint16_t devaddr USB hub device address
uint16_t data2 Not used

Return values USB_ER_t  Error code

Description

This function starts the HUBCD task. It makes initial global variable settings; creates the
task, mailboxes, and memory pools; and starts the task. The HUBCD task waits for a
request from MGR. No call from the high-level layer is necessary because this task is
usually executed by MGR.

Notes Do not call this function after the HUBCD task has started.

Table 12.3 R_usb_hhub_Close()

Name End HUBCD Task
Call format USB_ER_t R_usb_hhub_Close(uint16 hubaddr, uint16 data2)

Arguments
uint16_t hubaddr USB hub device address
uint16_t data2 Not used

Return values USB_ER_t  Error code

Description
This function ends the HUBCD task. It releases the mailboxes and memory pools, and
terminates the task. No call from the high-level layer is necessary because this task is
usually executed by MGR.

Notes Do not call this function after the HUBCD task has started.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 51 of 65
Dec 7, 2012

Table 12.4 R_usb_hhub_Registration()

Name Register HUBCD
Call format void R_usb_hhub_Registration(void)
Arguments void
Return values void  

Description
This function registers HUBCD information in a table managed by HCD. This function
updates the number of registered drivers managed by HCD and registers HUBCD in a new
area.

Notes

Table 12.5 R_usb_hhub_ChangeDeviceState()

Name Request Change in State of Device Connected to Hub

Call format USB_ER_t R_usb_hhub_ChangeDeviceState(USB_CB_INFO_t complete, uint16_t
msginfo, uint16_t devaddr)

Arguments
USB_CB_INFO_t complete Callback function
uint16_t msginfo Message information
uint16_t devaddr Device address

Return values USB_ER_t  Error code

Description

This function requests a change to the state of a device connected to the hub.
#define USB_MSG_HCD_ATTACH: Request for transition to connected state
#define USB_MSG_HCD_DETACH: Request for transition from connected to disconnected

state
#define USB_MSG_HCD_USBRESET: Request to issue USB reset
#define USB_MSG_HCD_SUSPEND: Request for transition to suspended state
#define USB_MSG_HCD_RESUME: Request to issue resume signal
#define USB_MSG_HCD_REMOTE: Request for transition to suspended with remote

wakeup state
#define USB_MSG_HCD_VBON: Vbus output start request
#define USB_MSG_HCD_VBOFF: Vbus output end request
#define USB_MSG_HCD_CLR_STALL: Stall clear request

Notes Used by µITRON version only.

Table 12.6 R_usb_hhub_GetHubInformation()

Name Get Hub Information
Call format uint16_t R_usb_hhub_GetHubInformation(uint16_t hubaddr, USB_CB_t complete)

Arguments
uint16_t hubaddr USB hub device address
USB_CB_t complete Callback function

Return values uint16_t  Error code
Description This function obtains the hub descriptor information.
Notes

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 52 of 65
Dec 7, 2012

Table 12.7 R_usb_hhub_GetPortInformation()

Name Get Hub Port Information

Call format uint16_t R_usb_hhub_GetPortInformation(uint16_t hubaddr, uint16_t port, USB_CB_t
complete)

Arguments
uint16_t hubaddr USB hub device address
uint16_t port Port number
USB_CB_t complete Callback function

Return values uint16_t  Error code
Description This function obtains the hub port state.
Notes

12.3 Down Port State Management
When the HUBCD task is launched, it performs the following actions on all down ports to determine the device
connection state of each down port.

1. Enable port power (HubPortSetFeature: USB_HUB_PORT_POWER)
2. Initialize port (HubPortClrFeature: USB_HUB_C_PORT_CONNECTION)
3. Get port status (HubPortStatus: USB_HUB_PORT_CONNECTION)

12.4 Connecting Devices to Down Ports
When HUBCD receives a device attach notification from the USB hub, it issues a USB reset signal to the USB hub
(HubPortSetFeature: USB_HUB_PORT_RESET). Next, it uses the resources of the MGR task to enumerate the
connected device. HUBCD stores the result of the reset handshake and assigns an address, starting with
USB_DEVICEADDR + 1 for the first device connected and becoming sequentially higher with each successive device.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 53 of 65
Dec 7, 2012

12.5 Class Requests
HUBCD supports the class requests listed below.

Table 12.8 USB Hub Class Requests

Request Implementation Function Functionality
ClearHubFeature No
ClearPortFeature Yes usb_hhub_

PortClrFeature
USB_HUB_PORT_ENABLE
USB_HUB_PORT_SUSPEND
USB_HUB_C_PORT_CONNECTION
USB_HUB_C_PORT_ENABLE
USB_HUB_C_PORT_SUSPEND
USB_HUB_C_PORT_OVER_CURRENT
USB_HUB_C_PORT_RESET

ClearTTBuffer No
GetHubDescriptor Yes R_usb_hhub_

GetHubInformation
Get descriptors

GetHubStatus No
GetPortStatus Yes R_usb_hhub_

GetPortInformation
Get port status

ResetTT No
SetHubDescriptor No
SetHubFeature No
SetPortFeature Yes usb_hhub_

PortSetFeature
USB_HUB_PORT_POWER
USB_HUB_PORT_RESET
USB_HUB_PORT_SUSPEND
USB_HUB_C_PORT_ENABLE

GetTTState No
StopTT No

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 54 of 65
Dec 7, 2012

12.6 Down Port Device State Management
12.6.1 Hub Attach/Detach
The attach/detach sequence is shown below.

USB hubMGRHDCD HUBCD

usb_hhub_PortAttach()

Connection

Detach

Configured

usb_hhub_PortDetach()

Enumeration

GET_DESCRIPTOR

callback.devdetach

R_usb_hstd_TransferStart()

Interrupt-IN

Yes

Yes

No

Yes

No

Enumeration

callback.devconfig

R_usb_hstd_TransferStart()

GetPortStatus

Port number
Port change

PORT_CONNECTION

C_PORT_CONNECTION

ClearPortFeature

Attach
processing

Detach
processing

Downport
device

Status

HCD
SYS

Detach request

Figure 12.1 Hub Attach/Detach

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 55 of 65
Dec 7, 2012

12.7 Down Port State Management and Enumeration
The enumeration sequence is shown below.

Downport
deviceHUBCD

GetDescriptor

Enumeration

USB hub

Downport

Opposite side port

SetAddress

SetConfiguration

Output USB
reset

R_usb_hstd_TransferStart()

Interrupt-IN

Enumeration end

SetPortFeature : PORT_POWER

ClearPortFeature : C_PORT_CONNECTION

GetPortStatus : PORT_CONNECTION

Enumeration in progress

Enumeration not in
progress

SetPortFeature : PORT_RESET

ClearPortFeature : C_PORT_RESET

GetPortStatus : PORT_RESET

USB reset

HS/FS/LS

MGR

Port

Figure 12.2 Down Port Device Enumeration

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 56 of 65
Dec 7, 2012

13. Data Transfer

13.1 Overview
USB-BASIC-F/W can perform data transfers by notifying HCD of the data transmit/receive user buffer. Data transfers
use the customer’s own functional specifications, and settings such as transfer method, communication start/stop timing,
and buffer configuration must be modified as necessary to match the system under development.

13.1.1 Basic Specifications
USB-BASIC-F/W performs data transfers between the user buffer specified in a structure and the hardware according to
the information specified in the pipe information table.

Note: The version of USB-BASIC-F/W with EHCI support uses a pipe information table to maintain interface
compatibility with the version of USB-BASIC-F/W for R8A6659x, but it does not make use of the settings
specific to the R8A6659x hardware that are contained in the pipe information table (for example, FIFO buffer
size).

13.1.2 Feedback of Transfer Result
When a data transfer completes, USB-BASIC-F/W notifies HDCD of data transfer end by using the registered callback
function.

The notification sent by USB-BASIC-F/W to HDCD can be any one of the following nine communication results.

• USB_CTRL_END: Successful control transfer end
• USB_DATA_NONE: Successful data transfer end
• USB_DATA_OK: Successful data receive end
• USB_DATA_SHT: Successful data receive end, but completed with less than the specified data length
• USB_DATA_OVR: Receive data size over specified length
• USB_DATA_ERR: No response or overrun/underrun error detected
• USB_DATA_STALL: STALL response or MaxPacketSize error detected
• USB_DATA_STOP: Forced end of data transfer
• USB_DATA_TMO*: No callback when forced end occurs due to timeout.

13.1.3 Note on Data Transfer
Run a submit function to ensure that the interval duration is maintained during isochronous data transfer.

13.1.4 Note on Data Reception
When a short packet is received, the data length of the remaining portion still to be received is stored in tranlen and the
transfer ends.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 57 of 65
Dec 7, 2012

13.2 USB Communication Structure (USB_UTR_t Structure)
The structure that is passed as an argument of the R_usb_hstd_TransferStart() function is described below. USB
communication with a peripheral device is enabled by notifying HCD with this structure.

struct USB_SUTR {
 USB_MH_t msghead; // Message header used by the OS
 uint16_t msginfo; // Message information used by USB-BASIC-F/W
 uint16_t keyword; // Sub-information (port number, pipe number, etc.)
 void *tranadr; // Transfer data start address
 uint32_t tranlen; // Transfer data length
 uint16_t *setup; // Setup packet (only host control transfer)
 uint16_t status; // Transfer end status
 uint16_t pipectr; // Pipe control register state
 USB_CB_t complete; // Callback function at processing end
 uint8_t errcnt; // Error count
 uint8_t segment; // Segment code
}USB_UTR_t;

Table 13.1 Members of USB_UTR_t Structure

Variable R/W Description
msghead  This message header is used by the OS. Do not make use of it.
msginfo R Message classification

Specifies the content of the request. This is set by USB-BASIC-F/W by means
of an API function. It is set to USB_MSG_HCD_SUBMITUTR when performing
USB communication.

keyword R Subcode
Specifies the pipe number when performing USB communication.

*tranadr R USB communication buffer address
Provides notification of the USB communication buffer address.

tranlen R/W USB communication data length
Provides notification of the USB communication data length. The transfer size
specified should be less than the user buffer size.

*setup R Setup packet data
Provides notification to HCD of the setup packet request and device address for
control transfer.

status W USB communication status
HCD responds with the USB communication result.

pipectr  Not used by USB-BASIC-F/W with EHCI support, so the setting value is
ignored.

complete R Callback function
Specifies the address of the function to be executed when USB communication
ends. Use the following type declaration for the callback function.
typedef void (*USB_CB_t)(USB_UTR_t*);

errcnt  Not used by USB-BASIC-F/W with EHCI support, so the setting value is
ignored.

segment  Not used by USB-BASIC-F/W with EHCI support, so the setting value is
ignored.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 58 of 65
Dec 7, 2012

(1) USB Communication Buffer Address

• Reception or ControlRead transfer: Specifies the buffer address for storing receive data.
• Transmission or ControlWrite transfer: Specifies the buffer address for storing transmit data.
• NoDataControl transfer: Ignored even of specified.

Note: The USB basic firmware uses the buffer at the specified address as direct transfer memory, so the area must be

secured and must not be read or written until the transfer completes.

(2) USB Communication Data Length

• Reception or ControlRead transfer: Stores the receive data length.
• Transmission or ControlWrite transfer: Stores the transmit data length.
• NoDataControl transfer: Set to 0.

The remaining transmit/receive data length is stored after USB communication ends. In the case of a host function
control transfer, the remaining data length for the Data stage is stored.

Note: For isochronous transfers, always set the USB communication data length to a value smaller than the maximum
packet size. Operation cannot be guaranteed if a setting value larger than the maximum packet size is used.

(3) Setup Packet Data

In a control transfer by the R_usb_hstd_TransferStart() function, the structure member (*setup) is a USB request data
table, as shown below.

Specify the uint16_t[5] array table address for *setup.

Table 13.2 setup_packet Array

Value
bRequest bmRequestType

wValue
wIndex

wLength
Device Address

(4) USB Communication Status

The following status information is returned.

• USB_CTRL_END: Successful control transfer end
• USB_DATA_NONE: Successful data transfer end
• USB_DATA_OK: Successful data receive end
• USB_DATA_SHT: Successful data receive end, but completed with less than the specified data length
• USB_DATA_OVR: Receive data size over specified length
• USB_DATA_ERR: No response or overrun/underrun error detected
• USB_DATA_STALL: STALL response or MaxPacketSize error detected
• USB_DATA_STOP: Forced end of data transfer
• USB_DATA_TMO*: No callback when forced end occurs due to timeout.

(5) PIPECTR Register

Not used by USB-BASIC-F/W with EHCI support, so the setting value is ignored.

(6) Segment Information

Not used by USB-BASIC-F/W with EHCI support, so the setting value is ignored.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 59 of 65
Dec 7, 2012

13.3 Pipe Definitions
13.3.1 Overview
HDCD must maintain a pipe information table containing appropriate pipe settings for the relevant class driver. HDCD
must also register a pipe information table when registering a driver.

Note: The version of USB-BASIC-F/W with EHCI support uses a pipe information table to maintain interface
compatibility with the version of USB-BASIC-F/W for R8A6659x, but it does not make use of the settings
specific to the R8A6659x hardware that are contained in the pipe information table (for example, FIFO buffer
size). The unused settings are ignored.

13.3.2 Pipe Information Table
A pipe information table comprises the following six items (uint16_t × 6).

1. Pipe window select register
2. Pipe configuration register (Contains settings ignored by USB-BASIC-F/W with EHCI support.)
3. Pipe buffer specification register (Setting value ignored by USB-BASIC-F/W with EHCI support.)
4. Pipe max packet size register
5. Pipe cycle control register (Setting value ignored by USB-BASIC-F/W with EHCI support.)
6. FIFO port use method (Setting value ignored by USB-BASIC-F/W with EHCI support.)

13.3.3 Pipe Definitions
The sample pipe definitions included with USB-BASIC-F/W have the configuration shown below. The definition items
that can be included in the information table are macro defined by r_usb_cDefUSBIP.h.

Example:

uint16_t usb_gpstd_SmplEpTbl1 [] = { ← Registered information table
 USB_PIPE1, ← Pipe definition item 1
 USB_BULK|USB_BFREOFF|USB_DBLBOFF|USB_CNTMDOFF|USB_SHTNAKON|USB_DIR_P_OUT|USB_EP1,
 ← Pipe definition item 2
 (uint16_t)USB_BUF_SIZE(512u)|USB_BUF_NUMB(8u), ← Pipe definition item 3
 USB_SOFT_CHANGE, ← Pipe definition item 4
 USB_IFISOFF|USB_IITV_TIME(0u), ← Pipe definition item 5
 USB_CUSE, ← Pipe definition item 6
 :
 :
 USB_PDTBLEND
};

(1) Pipe Definition Item 1

Specifies the value to be set in the pipe window select register.

• Pipe select: Specify the pipe selection (PIPE1 to PIPE30).

Example: Pipe 1

USB_PIPE1

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 60 of 65
Dec 7, 2012

(2) Pipe Definition Item 2

Specifies the pipe configuration settings.

• Transfer type: Specify one of USB_BULK, USB_INT, or USB_ISO.
• BRDY operation specification: Not used by USB-BASIC-F/W with EHCI support, so the setting value is ignored.
• Double buffer mode: Not used by USB-BASIC-F/W with EHCI support, so the setting value is ignored.
• Continuous transmit/receive mode: Not used by USB-BASIC-F/W with EHCI support, so the setting value is

 ignored.
• SHTNAK operation specification: Not used by USB-BASIC-F/W with EHCI support, so the setting value is ignored.
• Transfer direction: Specify either USB_DIR_H(P)_OUT or USB_DIR_H(P)_IN.
• Endpoint number: Specify the endpoint number (EP1 to EP15).

Example: Bulk transfer, BFRE off, double buffer, continuous transmit/receive, OUT direction, EP2

Host mode:
USB_BULK | USB_BFREOFF | USB_DBLBON | USB_CNTMDOFF | USB_SHTNAKOFF |
USB_DIR_H_OUT | USB_EP2

(3) Pipe Definition Item 3

Setting value ignored by USB-BASIC-F/W with EHCI support.

(4) Pipe Definition Item 4

Specifies the pipe maximum packet size register and device address settings.

• Device address: Specify the device address. In the sample application the initial value is set to USB_NONE because
 the value is later changed by software.

• *Maximum packet size: Specify the maximum packet size of the pipe. In the sample application the initial value is
 set to USB_NONE because the value is later changed by software.

Example 1: Maximum packet size 64, device address 3

DEV_ADDR(3) | MAX_PACKET(64)

(5) Pipe Definition Item 5

Setting value ignored by USB-BASIC-F/W with EHCI support.

(6) Pipe Definition Item 6

Setting value ignored by USB-BASIC-F/W with EHCI support.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 61 of 65
Dec 7, 2012

13.3.4 Limitations Affecting Pipe Definition Settings
• Use device class to specify transfer unit communication synchronization.
• Different pipes may not be set to the same pipe number at the same time (pipe definition item 1). (Use the

R_usb_hstd_SetPipeRegistration() function to change the pipe setting as necessary.)

Note: Do not fail to write USB_PDTBLEND at the end of the table.

13.3.5 Basic Functionality
HDCD uses the R_usb_hstd_DriverRegistration() function to register the pipe information table.

The pipe information table must be updated to match the connected device.

Analyze the descriptor (EndpointDescriptor) obtained from the device and update the pipe information table
accordingly.

(1) Pipe Information Update Functions

The sample code includes the usb_hstd_ChkPipeInfo() function, which updates the data of the pipe information table
based on the EndpointDescriptor, and the usb_hstd_SetPipeInfo() function, which makes settings in the pipe
information table according to the updated information.

• Transfer type: One among USB_BULK, USB_INT, and USB_ISO is specified.
• Transfer direction: Either USB_DIR_H_OUT or USB_DIR_H_IN is specified.
• Endpoint number: The endpoint number (EP1 to EP15) is specified.
• Maximum packet size: The maximum packet size for the pipe is specified.
• Interval duration: The interval value is specified.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 62 of 65
Dec 7, 2012

13.4 Data Transmit Operation
USB-BASIC-F/W uses the following procedure to transmit data.

[1] HDCD uses an API function to issue a data transfer request.
[2] Determine the pipe number and start data transfer.
[3] Set the data to be transmitted in the hardware and start the transfer.
[4] When the transfer completes, notify HCD TRAN by generating an interrupt in the interrupt handler.
[5] After a transfer end interrupt is received, call the callback function.

HDCD HCD UsbInt Hardware USB device

[1] Transfer request
R_usb_hstd_TransferStart()

[2]
Transfer request
USB_SIG_SEM [3] Start transfer

Transfer request

[4]
Transfer end
notification
USB-interrupt

[5] Transfer end callback
Callback()

Data send

HCD
TRAN

Transfer data
length?

Yes

No

OUT packet

ACKACK packet

Figure 13.1 Data Transmit Outline Flowchart

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 63 of 65
Dec 7, 2012

13.5 Data Receive Operation
USB-BASIC-F/W uses the following procedure to perform receive data.

[1] and [2] Same as data transmit.
[3] Set receive buffer in hardware and start reception.
[4] When the transfer completes, notify HCD TRAN by generating an interrupt in the interrupt handler.
[5] After a transfer end interrupt is received, copy the receive data to the user buffer.
[6] Call the callback function.

[2] Data transfer
request
USB_SIG_SEM

HDCD HCD UsbInt Hardware USB device

[1] Data transfer request
R_usb_hstd_TransferStart() [3] Start data

transfer
Transfer request

[4]
Transfer end
notification
USB-interrupt

[6] Transfer end callback
Callback()

Data receive

HCD
TRAN

Transfer data
length?

Yes

No

IN-packet

ACK packet

[5] Copy data

Figure 13.2 Data Receive Outline Flowchart

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 64 of 65
Dec 7, 2012

14. Restrictions
USB-BASIC-F/W for the USB 2.0 host controller IP with EHCI support is subject to the following restrictions.

1. Isochronous transfer may drop packets in a system where the MCU is subject to a high load. (For example, it may
not be possible to set in the prescribed time packets transmitted by isochronous transfer.)

2. The structures contain members of different types. (Depending on the compiler, the address alignment of the
structure members may be shifted.)

3. HDCD must be prepared by the customer.
4. USB-BASIC-F/W does not support suspend/resume of the connected hub and devices connected to the hub’s down

ports.
5. The maximum number of hub down port devices is four. If support for more than four down ports is required, the

customer must make modifications to HUBCD.
6. The version of USB-BASIC-F/W with EHCI support uses a pipe information table to maintain interface

compatibility with the version of USB-BASIC-F/W for R8A6659x, but it does not make use of the settings specific
to the R8A6659x hardware that are contained in the pipe information table (for example, FIFO buffer size).

7. Due to restriction item 6, the maximum number of connected devices and the maximum number of pipes are
restricted as follows, due to limitations imposed by the pipe information table specifications.
 Maximum number of connected devices: 14
 Maximum number of pipes: 30

8. When using isochronous transfer, the transfer data for a single transfer request (R_usb_hstd_TransferStart()) may
not exceed the maximum packet size.

9. High-speed isochronous transfer does not support the high-bandwidth specification.
10. USB-BASIC-F/W does not include a function to synchronize with the audio clock of an audio device in cases where

an audio class driver with an isochronous out transfer function is used as the HDCD. Therefore, issues such as noise
may arise during isochronous out transfer with an audio device. Functionality for synchronization with the audio
clock of an audio device must be implemented as part of the customer’s system.

11. USB-BASIC-F/W with EHCI support does not include a function for adjusting the SOF interval.
12. USB-BASIC-F/W with EHCI support uses the USB communication buffer memory specified by the

R_usb_hstd_TransferStart() function as direct transfer memory for the hardware. After the
R_usb_hstd_TransferStart function is called, the high-level software must not access the USB communication buffer
memory until the transfer completes. In addition, during receive transfers do not perform write access even outside
the USB communication buffer if write access near either end of the buffer area involves loading data from both
ends of the USB communication buffer into cache memory. Doing so could disrupt the consistency of cache
memory and physical memory. To avoid this problem, use the following workarounds.
 Do not perform write accesses to the memory near the USB communication buffer during transfers.
 Align both ends of the USB transfer buffer with cache memory boundaries.
 Use a non-cached area as the USB communication buffer.

SH7734 Group USB 2.0 Host Controller IP with Renesas EHCI Support USB Basic Firmware µITRON Version

R01AN1453EJ0101 Rev.1.01 Page 65 of 65
Dec 7, 2012

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description
Page Summary

1.00 Nov.25.11 — First edition issued
1.01 Dec.7.12 10 4.3 Debug Information Output Macro

Macro definitions of debug information are amended
 16 6.2.1 Folder Structure

“smpl” folder is renamed to “SMPL”.
 “SmplMain” folder is added

 18 Table 6.1 List of Files
“r_usb_cKernelId.h” and “usb_usr.h” is added
The path of “SMPL” and “hubd” folders are amended
“ROOT” folder is renamed to “SmplMain”.

 20 6.4 Sections
The restriction of assignment of isochronous transfer descriptor
is added.

 1-65 This application note number is changed.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

	1. Document Overview
	1.1 Overview
	1.2 Related Documents
	1.3 List of Terms

	2. Overview
	2.1 Features of USB-BASIC-F/W
	2.2 Development Goal
	2.3 Functions
	2.4 Task Structure
	2.5 Outline Flowchart
	2.6 µITRON Task Association Chart

	3. Using USB-BASIC-F/W
	3.1 Overview
	3.2 Making Changes to USB-BASIC-F/W
	3.3 Preparing HDCD
	3.4 Note

	4. User-Defined Macros
	4.1 Overview
	4.2 µITRON System Call Macro
	4.3 Debug Information Output Macro

	5. User-Defined Information
	5.1 Overview
	5.2 User-Defined System Information File (r_usb_cDefUsrPb.h)
	5.2.1 USB Port Specification
	5.2.2 Specification of OS Create System Call Support
	5.2.3 CPU Byte Endian Specification

	5.3 User-Defined Information File (r_usb_cDefUsr.h)
	5.3.1 Control Read Data Buffer Size
	5.3.2 Device Address
	5.3.3 Number of Hub Down Ports (when Host Function Selected)

	5.4 EHCI User-Defined Information File (r_usb_hEhciDefUsr.h)
	5.4.1 Specification of EHCI Hardware Address
	5.4.2 Specification of EHCI Periodic Frame List Size
	5.4.3 Specification of EHCI Queue Head Data Structure Maximum Memory Size
	5.4.4 Specification of EHCI qTD Data Structure Maximum Memory Size
	5.4.5 Specification of EHCI iTD Data Structure Maximum Memory Size
	5.4.6 Specification of EHCI siTD Data Structure Maximum Memory Size
	5.4.7 Specification of EHCI iTD Data Structure Maximum Data Transfer Size
	5.4.8 Specification of EHCI Timeout Duration

	5.5 OHCI User-Defined Information File (r_usb_hOhciDefUsr.h)
	5.5.1 Specification of OHCI Hardware Address
	5.5.2 Specification of OHCI Endpoint Data Structure Maximum Memory Size
	5.5.3 Specification of OHCI Endpoint Descriptor Data Structure Maximum Memory Size
	5.5.4 Specification of OHCI Transfer Descriptor Data Structure Maximum Memory Size
	5.5.5 Specification of OHCI Maximum Isochronous Device Count
	5.5.6 Specification of OHCI Maximum Isochronous Data Transfer Size
	5.5.7 Specification of OHCI Maximum Isochronous Frame Count
	5.5.8 Specification of OHCI Timeout Duration

	6. Sample Program
	6.1 Overview
	6.2 List of Files
	6.2.1 Folder Structure
	6.2.2 List of Files

	6.3 µITRON System Resources
	6.4 Sections
	6.5 µITRON configurator
	6.6 Creating and Starting µITRON Tasks
	6.7 µITRON System Calls

	7. Host Driver (HCD)
	7.1 Basic Functionality
	7.2 Issuing Requests to HCD
	7.3 Notes on Using HCD
	7.3.1 Bus Occupation Rate and Pipe Contention
	7.3.2 Device Addresses
	7.3.3 Running Multiple Instances of HDCD
	7.3.4 Starting HDCD

	7.4 HCD Task Startup Sequence
	7.5 HCD Outline Flowchart
	7.6 HCD API Functions
	7.6.1 Details of HCD API Functions

	7.7 HCD Callback Functions
	7.8 Structure Definitions
	7.8.1 USB_HCDINFO_t Structure
	7.8.2 Information Registered in HCD (USB_HCDREG_t Structure)

	8. HCD Transfer (HCD TRN)
	8.1 Basic Functionality
	8.2 Issuing Requests to HCD Transfer
	8.3 HCD Transfer Task Startup Sequence
	8.4 HCD Transfer Outline flowchart

	9. HCD System (HCD SYS)
	9.1 Basic Functionality
	9.2 Port State Change Notification
	9.3 Bus Reset Hardware Control
	9.4 Detach Processing Hardware Control
	9.5 HCD System Task Startup Sequence
	9.6 HCD System Outline Flowchart

	10. Host Control Transfer
	10.1 Overview
	10.1.1 Basic Specifications
	10.1.2 Notification of Transfer Result

	10.2 Control Transfer Operation
	10.2.1 Control Write Operation
	10.2.2 Control Read Operation

	10.3 Control Transfer Sequence
	10.3.1 No-Data Control Sequence
	10.3.2 Control Write Sequence
	10.3.3 Control Read Sequence

	11. Host Manager (MGR)
	11.1 Basic Functionality
	11.2 Registering HDCD
	11.3 Device State Management
	11.4 USB Standard Requests
	11.5 Checking and Starting HDCD
	11.6 MGR Outline Flowchart
	11.7 MGR API Functions
	11.7.1 Details of MGR API Functions

	11.8 Details of Callback Functions
	11.9 Structure Definitions
	11.9.1 USB_MGRINFO_t Structure

	11.10 Device State Management
	11.10.1 State Transition Outline Sequence
	11.10.2 Attach/Detach
	11.10.3 Suspend/Resume

	11.11 Enumeration

	12. Hub Class Driver (HUBCD)
	12.1 Basic Functionality
	12.2 HUBCD API Functions
	12.2.1 Details of HUBCD API Functions

	12.3 Down Port State Management
	12.4 Connecting Devices to Down Ports
	12.5 Class Requests
	12.6 Down Port Device State Management
	12.6.1 Hub Attach/Detach

	12.7 Down Port State Management and Enumeration

	13. Data Transfer
	13.1 Overview
	13.1.1 Basic Specifications
	13.1.2 Feedback of Transfer Result
	13.1.3 Note on Data Transfer
	13.1.4 Note on Data Reception

	13.2 USB Communication Structure (USB_UTR_t Structure)
	(1) USB Communication Buffer Address
	(2) USB Communication Data Length
	(3) Setup Packet Data
	(4) USB Communication Status
	(5) PIPECTR Register
	(6) Segment Information

	13.3 Pipe Definitions
	13.3.1 Overview
	13.3.2 Pipe Information Table
	13.3.3 Pipe Definitions
	(1) Pipe Definition Item 1
	(2) Pipe Definition Item 2
	(3) Pipe Definition Item 3
	(4) Pipe Definition Item 4
	(5) Pipe Definition Item 5
	(6) Pipe Definition Item 6

	13.3.4 Limitations Affecting Pipe Definition Settings
	13.3.5 Basic Functionality
	(1) Pipe Information Update Functions

	13.4 Data Transmit Operation
	13.5 Data Receive Operation

	14. Restrictions
	Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products

