To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

>
)
j=1
=:
Q
=
o
)
Z
@)
—t
D

SH7705 Grounp
USB Function Module

Application Note

Renesas 32 bit RISC
Microcomputer

SuperHTM RISC engine Family/
SH7700 Series

Renesas Electronics Rev.1.00 2003.04

www.renesas.com

Rev. 1.0, 04/03, page ii of xii
RENESAS

Cautions

Keep safety first in your circuit designs!

1.

Renesas Technology Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble may occur
with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1.

These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corporation product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation or a third party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement
of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corporation assumes no responsibility for any damage, liability or other
loss resulting from the information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for use in
a device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology
Corporation product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or

reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they

must be exported under a license from the Japanese government and cannot be imported into a

country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or

the country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

Microsoft® Windows® 95, Windows® 98 and Windows® 2000 are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

Rev. 1.0, 04/03, page iii of vi
RENESAS

Preface

This application note describes the printer-class firmware that uses the USB Function Module in
the SH7705. This application note is provided to be used as a reference when the user creates USB
Function Module firmware.

Using printer-class communications as an example, this application note describes the
configuration of the USB Function Module that is built in the SH7705. The described system
configuration is an application example of the USB Function Module, and the contents are not
guaranteed.

In addition to this application note, the manuals listed below are also available for reference when
developing applications.

[Related manuals]

Universal Serial Bus Specification Revision 1.1

Universal Serial Bus Device Class Definition for Printing Devices
SH7705 Hardware Manual

SH7705 Solution Engine (MS7705SE01) Instruction Manual
SH7705 E10A Emulator User’s Manual

[Caution] The sample programs described in these application notes do not include firmware
related to interrupt transfer, which is a USB transport type. When using this transfer
type (see section 18.4.6 in the SH7705 Hardware Manual), the user needs to create the
program for it.

Also, the hardware specifications of the SH7705 and SH7705 Solution Engine, which
will be necessary when developing the system described above, are described in these
application notes, but more detailed information is available in the SH7705 Hardware
Manual and the SH7705 Solution Engine Instruction Manual.

Rev. 1.0, 04/03, page iv of Xii
:{EN ESNS

Contents

SECION 1 OVEIVIEWiiiiiiiiiiiieiieceeee ettt 1
Section 2 Overview of the USBccccooiiiiiiiniiiiiiicciccccccee 3
2.1 USB Connection TOPOLOZYcc.eeerieririirierieniienieeteete ettt ettt 3
2.2 USB Signal Transfer Method...........ccccooieiiiiiiiiiiiceeeeee e 5
2.3 Recognizing a Connection vs. NON-CONNECtIONcceeveerueeriiriinienienienienieeneeneeeeeenne 8
2.4 USB CONMNECIOT ...cuveuiiieiiinieniieteeit ettt ettt ettt ettt sttt eae e saesa st s eaeeanesnennesae e 9
2.5 EAPOINE...iiitiiitiiiiiieiie ettt e bt et st saee et 10
2.6 USB Packets and Data Transfer.........occcerueiriiiiniiiniiiieeieeeereeeieeee ettt 11
2.6.1 OVerview Of PACKELSoeviiiiiiiiiiiiieeeeeeeet ettt 12
2.6.2 Control TranSTer......c.eeeuiiiiiiiiiieiiee ettt sttt 15
2.6.3 BUlK Transfer.......ccocoviiiiiiiiiiniiecccceee e 18
2.6.4 Isochronous Transfer ... e 19
2.6.5 Interrupt Transfer.......coccooiiriiiiiiiiiiee et 20
2.7 USB Device FramewWoOrKccccoiiiiiiiiiiiiiiiieeeeeete ettt 22
271 DEVICE SEALES....eerureeeuieeriieeniitenite ettt rite ettt et e et e et esbe e s bt e sabeesbaesabeesbeesateesaseenaee 22
2.7.2 DevICe REQUESTEcoouiiriiiiiiiieiieiieeeeeeeee ettt 23
2.8 DBSCIIPLOT ..c.uiiiiiiiiiteieeteet ettt ettt st et b ettt e a e s bt sb e b e bt et et st sbeesaee e 25
Section 3 Overview of the USB Moduleccoceeiiniiniinniiiiiiccceee 29
3.1 Operation of the MOdUIE..........cccooiiiiiiiiiiiiiic et 29
3.2 Organization of an ENndpointcccceeciiiiiiiiniiiiiiiiiccceece e 30
3.3 Register CONfIgUIAtION......cc.coiiriiiiiiiiiiiieieee et 31
3.4 USB Command ProCeSSINGccoteriieiiriierienieieenieenieeteete ettt sttt enieete e saeesaee e 37
Section 4 Development Environmentc.ceevveeriiieiniiieiniienniee e 39
4.1 Hardware ENVITONMENtcccviiiiiiiiiiiiieiiieeiee ettt ettt ettt e esabeesaeee s 39
4.2 Software ENVITONIMENTcoouiiiiiiiiiiieiieiiieeite ettt ettt sttt sbe e st esabeesanee s 41
4.2.1 Sample Programi..........cccooiiiiiiiiiiiiitc e e 41
422 Compiling and LinKingcc.cocueevieriiniinieniineeeeieeieetesteste st 41
4.3 Loading and Executing the Program........c..ccocceoieiviiiiiiiiiiniinieneeceeeee et 43
4.3.1 Loading the Program..........ccccceveeviriiiiiiiiiiieneenieeieeieeteete sttt 44
4.3.2 Executing the Program..........cccccecciriiiiiiiiiniinieiciciiceeeeseeseeseee e 45
4.4 Printing PrOCEAULE.........cocuiiiiiiiiiiiieieeeeeee ettt 45
Section 5 Overview of the Sample Program.........cc.ccccoeceeiniiiiniiiiniiennieeneen. 47
5.1 State Transition DIagrammc..ccoeevieiiiiiiiiiiniiiceieeeeeeeest ettt sttt 47
5.2 USB CommunicCation SEAteccuecueruiriiriiriiniiieieieietesteiese sttt eeesessessesaesteesesaeeneens 49
5.3 FALE SHIUCTUTE.....veiiiiiieiiieeiteet ettt ettt ettt e s e it e sabe e sbt e e sabeesbeeesaneenaee 50

5.4 Purposes of FUNCHONSc..eoriiiiiiiiiiiiieniiieeceiceeste ettt e 51

Section 6 Sample Program OPerationcccccueercveeerieeeiveeeiieeniieeesveeenveeenns 55
6.1 MAIN LOOP. ..ttt 55
0.2 TYPES Of INIEITUPLS ..cvveeieiteiierieeieete ettt sttt et sttt e e e 56
6.2.1 Method of Branching to Different Transfer Processes...........ccccvceeveeneencenucnnnen. 57
6.3 Interrupt on Cable Connection (VBUS, BRST)cccceoiimiininiiiiiiieieneeccecee e 58
6.4 CONTOL TTANSTETS ..eeuveiiiiiiiiiiiieete ettt ettt esabe e e saeees 59
60.4.1 SELUP STAZE ...eonvieiiieieetee ettt 60
60.4.2 DAt STAZE ..c.veevieniieieeieeee et et 62
0.4.3 StALUS STAZE ...eevtieiieiiiieete ettt ettt sttt ettt 64
0.5 BULK TransTers.coueeiiiiieiertesee ettt 66
6.5.1 Bulk-Out Transfersccccoceiieiienieniieiieeeseeeeeee sttt 67
6.5.2 BulK-in Transferscccueoiiiirieeiiieieeieeeeeeeee ettt et st 68
Section 7 Analyzer Data..........coocveiiiiiiiiiiiiie e 69
7.1 Control Transfer When a Device Is CONNECtedcocevverieneenieeniiniinienienieenieeeeeeen 69
7.2 Bulk-Out Transport for Printing Out
(For the bulk-out transport, refer to section 2.6.3.)....ccccovverienieniriiiniinieneeneeeeee e 77

Rev. 1.0, 04/03, page vi of vi
RENESAS

Section 1 Overview

This application note describes how to use the USB Function Module that is built into the
SH7705, and contain examples of firmware programs.

The features of the USB Function Module contained in the SH7705 are listed below.

e An internal UDC (USB Device Controller) conforming to USB 1.1
e Automatic processing of USB controls

e Automatic processing of USB standard commands for endpoint 0 (some commands need to be
processed through the firmware)

e Full-speed (12 Mbps) transfer supported
e Various interrupt signals needed for USB transmission and reception are generated.

e Internal system clock by the USB clock frequency control register or external input (48 MHz)
can be selected.

e Low power consumption mode provided.
e Bus transceiver is included

e Power mode: Self-powered mode

Endpoint Configurations

Endpoint Max. Packet

Name Name Transfer Type Size FIFO Buffer Capacity DMA Transfer
EPOs Setup 8 bytes 8 bytes —

Endpoint 0 EPOI Control In 8 bytes 8 bytes —
EPOo Control Out 8 bytes 8 bytes —

Endpoint 1 EP1 Bulk-out 64 bytes 64 x 2 (128 bytes) Possible

Endpoint 2 EP2 Bulk-in 64 bytes 64 x 2 (128 bytes) Possible

Endpoint 3 EP3 Interrupt 8 bytes 8 bytes —

Figure 1.1 shows an example of a system configuration.

... | USB Function

Parallel cable

. SH7705SE

Figure 1.1 System Configuration Example

Rev. 1.0, 04/03, page 1 of 78
RENESAS

This system is configured of the SH7705 Solution Engine made by Hitachi ULSI Systems Co.,
Ltd. (hereafter referred to as the SH7705SE), a printer with a parallel port, and a PC containing
Windows® 2000 operating system.

The system can receive print data, transmitted from a host PC to the USB, by means of the
SH7705SE, and after converting them into the parallel format, can output the print data to a
printer. In addition, the system can use USB printer-class device drivers that are standard items in
Windows® 2000, as well as printer device drivers.

This system offers the following features.

The sample program can be used to evaluate the USB module of the SH7705 quickly.
The sample program supports USB control transfer and bulk transfer.

An E10A (PC card-type emulator) can be used, enabling efficient debugging.

sl S

Additional programs can be created to support interrupt transfer. *

Note: * Interrupt transfer programs are not provided, and will need to be created by the user.

Rev. 1.0, 04/03, page 2 of 78
RENESAS

Section 2 Overview of the USB

This chapter describes USB standards, including connection topology, transfer methods, and data
formats, for your reference in developing USB systems. For details on these standards, refer to
Universal Serial Bus Specification Revision 1.1.

2.1 USB Connection Topology

Figure 2.1 shows USB connection topology. A USB comprises a Host Controller mounted on a
PC and devices that are connected to the Host Controller. By using a special device called a hub,
you can expand the bus in order to increase the number of devices that can be connected to it. A
particular type of hub, one that is directly connected to the Host Controller, is called the root hub,
which is normally housed in the PC system unit. A maximum of five levels of hubs (except for
the root hub) can be connected (or five hubs when connected serially).

PC

Host controller

Hub| Route hub |Device|

|V V\UT
____(Hub) | Device |
5m ma_x.#
Hub Device

30m max.

Device
Device

Figure 2.1 Connection Topology

Rev. 1.0, 04/03, page 3 of 78
RENESAS

Host controller

C Device)

Figure 2.2 Logical Topology

The Host Controller keeps track of devices by assigning 7-bit addresses to them. Because a
temporary address (default address: 0000000b) is needed that is used after a device is connected
until an address is assigned to it, the maximum number of devices, including the hubs, that can be
connected to the Host Controller is 127.

The actual connection topology takes the Tree form, shown in figure 2.1; however, the logical
topology will be the Star form, illustrated in figure 2.2, a form in which the Host Controller and
the devices perform one-to-one communications in a time division protocol. All time-division
schedules (even when a device is connected via a hub, it acts as an image that is directly linked to
the Host Controller) are decided by the Host Controller. Therefore, unless a command is issued by
the Host Controller (for details, see Token Packets in section 2.6.1), a device never sends data to
the Host Controller.

Devices can operate in two transfer modes: full speed device mode that performs high-speed
transfers (12 Mbps), and low-speed device mode that performs slow transfers (1.5 Mbps).

The direction in which a data transfer takes place is defined from the point of view of the Host
Controller: the direction in which data flow from the Host Controller to a device is designated the
OUT direction; the direction in which data flow from a device to the Host Controller is designated
the IN direction.

In the OUT direction, data are transferred in a broadcast mode, wherein they are transferred to all
devices that are connected. Only data with a speed of 1.5 Mbps are transferred to low-speed
devices. (12 Mbps data are filtered by either the root hub or regular hubs. For further details see
Special Packets in section 2.6.1.)

Token packets that are transmitted in the broadcasting OUT direction contain address information
(see Token Packets in section 2.6.1 for details) that enables the devices to identify the data being
sent. Based on the address information, only the device to which the address applies operates and
responds to the data.

Rev. 1.0, 04/03, page 4 of 78
RENESAS

22 USB Signal Transfer Method

The USB comprises two signal lines (D+, D-) and two power lines (Vbus, GND). Matching this
organization, the USB cable is also internally comprised of four lines as illustrated in figure 2.3.
In cables for full-speed devices, the signal lines (D+, D-) have a twisted pair structure. Although
full-speed device cables require shielding in addition to twisted pairs, cables used for low-speed
devices require neither twisted pairs nor shielding. The maximum cable length supported is 5 m
for full-speed devices and 3 m for low-speed devices, for which neither twisted pairs nor shielding
is required.

VBus
:(DOOOOOOOOOOOOOOOOOOOOOOC@: ot
D-
— = GND
Twisted pair Shield

Note: Neither twisted pairs nor shielding are required in low-speed device cables.

Figure 2.3 USB Cable Configuration (for full-speed devices)

Data are transferred by means of differential signals using D+, D-. The transfer method employed
is the Non-Return to Zero Invert (NRZI) method, illustrated in figure 2.4, wherein when the source
data are 0, D+ and D- invert, and when they are 1, no inversion occurs. In NRZ, the occurrence of
successive 1s in the source data results in a lack of signal changes, which creates the potential
problem of a shift in synchronization between host and device. To prevent this problem, when
successive 1s occur in 6 or more bits, a 0 is inserted to cause an inversion (in a process called bit
stuffing). The Os inserted in this manner are removed by the receiving device after the data are
transferred.

In a state called the idle state where no data are transferred, in full-speed devices D+ becomes the
high level, and D- the low level; in low-speed devices, D+ becomes the low level, and D- the high
level, according to the pull-up resistance in the device.

In the USB, data are transferred in packets (see section 2.6 for details on packets).
The leading packet is called SYNC (synchronization) with a fixed value of 00000001.

The portion of a packet in which the first bit of SYNC is inverted from D+ or D-from the idle state
is called a SOP (Start Of Packet) (figure 2.6).

The end of a packet is a special signal for identifying the end of the packet, where both D+ and D-
are low levels (2-bit time), which is called an EOP (End Of Packet) (figure 2.7).

In the figures below, 2.4, 2.5, 2.6, and 2.7, the post NRZI differential signal waveform is for the
connection of a full-speed device. For the connection of a low-speed device, D+ and D- are

Rev. 1.0, 04/03, page 5 of 78
RENESAS

reversed. (Note: In the EOP, both D+ and D- assume the low level, irrespective of the transfer

speed for the device.)

1 bit time (full speed: approx. 83 ns; low speed: approx. 667 ns)

1

—

o

-

— o
§ 2
< ®©

g 25

© T T

c £33

o ¢ 5

o > 3

hed £ o

= y ?

3

(%]

D+

Differential signal
after NRZI

D-

Figure 2.4 NRZI Transfer Method

Following insertion is shifted

Source data

Data after bit stuffing

ed for 1-bit period.

1 continued for 6-bit period, so 0 is forc:

D+
D

Differential signal
after NRZI

Figure 2.5 Bit Stuffing

Idle

-

Source data

D+

Differential signal
after NRZI

D-

Figure 2.6 SOP and SYNC

Rev. 1.0, 04/03, page 6 of 78

RENESAS

~<~———Data prior to EOP

Differential signal D+
after NRZI D-

EOP i ldle —

|

Both are
low level

Figure 2.7 EOP

For each device, the power lines (Vbus, GND) can supply a maximum of 500 mA of current at a
supply voltage of 5V.

The available current immediately after a connection is 100 mA maximum. After a connection is
made, initialization is performed using a standard command (see Standard Command in section
2.7.2) using a maximum current of 100 mA.

In these settings, the Host Controller reads information on the maximum current used by devices
that are connected (this information is contained in the Descriptor information to be explained in
section 2.8). Based on this information, if the Host Controller determines that there are no power
supply problems, the devices are allowed to increase their power consumption for the first time.

In the case of devices that require a current greater than 500 mA, a power supply must be provided
in the devices themselves.

Note: If a hub that is not self-powered (a bus-powered hub) is used, the maximum current that
can be used per port is subject to a 100 mA limitation. If a device requiring more than 100
mA is connected to a bus-powered hub, during the initialization process the Host
Controller determines that an adequate power supply cannot be provided. In this case, the
Host Controller controls the bus-powered hub so that the latter will not supply power to
any of the devices that are connected to it.

Rev. 1.0, 04/03, page 7 of 78
RENESAS

23 Recognizing a Connection vs. Non-Connection

The side downstream from the Host Controller and the hub (the device side) pulls down the D+
and D- at 15kQ. On the other hand, the device side pulls up the D+ for full-speed devices and the
D- for low-speed devices at 1.5kQ. Consequently, when a device is connected to the Host
Controller or a hub, the Host Controller or the hub can recognize the transfer rate of the device
according to which signal line, D+ or D-, is pulled up. Table 2.1 shows the relationship between
the states of D+ and D- for the Host Controller/hub. Figures 2.8 and 2.9 illustrate actual circuit
configurations.

Table 2.1 Relationship between Signal Lines and Connected Devices

D+ D- Connected Device
Pulled up Pulled down Full-speed device
Pulled down Pulled up Low-speed device
Pulled down Pulled down Device not connected
Pulled up Pulled up Disabled

Pull-up resistor
1.5kQ
USB transceiver | D+ usB USB cable uss D+ UsB transceiver
(High-speed/ D- conn. twisted pair/shielding conn. D- (High-speed)
low-speed) Type A required, 5m max. Type B
* Power lines
omitted. See 2.2.
Pull-down resistor
15kQ x 2
Host-Controller/hub Full-speed device
Figure 2.8 For Full-Speed Devices
Pull-up resistor
1.5kQ
USB transcelver D+ usB USB cable UsB D+ USB transceiver
(High-speed/ D- conn. twisted pair/shielding conn. D- i
! (High-speed)
low-speed) Type A not required, 3m max Type B
* Power lines
omitted. See 2.2
Pull-down resistor
15kQ x 2
Host Controller/hub Full-speed device

Figure 2.9 For Low-Speed Devices

Rev. 1.0, 04/03, page 8 of 78
RENESAS

2.4 USB Connector

The USB uses two types of connectors: a flat Type A connector used on the Host Controller side
(figure 2.10) and a square Type B connector used on the device side (figure 2.11). The different
connector configurations are designed to prevent physical misconnection (in the USB, connections
between Host Controllers or devices are prohibited).

In the case of a hub, a Type B connector is used on the upstream side (the Host Controller side),
and a Type-A connector is used on the downstream side (the device side).

Figure 2.10 Type A Connector

y

Figure 2.11 Type B Connector

Rev. 1.0, 04/03, page 9 of 78
RENESAS

2.5 Endpoint

Each device has FIFOs called endpoints (EPs). When sending or receiving data, the Host
Controller and the device do so through endpoints. The number of endpoints that a device can
have depends on the transfer rate for the device and is defined as in table 2.2.

Table 2.2 Number of Available Endpoints

Device Transfer Rate Endpoint No. Max. No. of Endpoints
Full speed (12 Mbps) 0to 15 16 each for IN/OUT
Low speed (1.5 Mbps) Oto2 3 each for IN/OUT

In table 2.2, the endpoint with number O is used for control transfers (section 2.6.2). All devices

must have endpoint 0. Any number of endpoints 1 to 15 can be used. The direction in which data

flow through an endpoint or the application of an endpoint can be user-defined as part of a device
design process. In USB1.0, however, interrupt transfers can occur only in the IN direction
(section 2.6.5).

For endpoints, the maximum amount of data that can be sent or received is defined for each
transfer method. Data greater than a specified side cannot be sent or received through a given
endpoint. However, any data less than the allowed maximum size (short packets) can be sent or
received. Table 2.3 shows the endpoint data sizes for each transfer method. For each endpoint,
any data size within the limits defined in table 2.3 can be specified.

Table 2.3 Max. data size (in bytes)

Transfer Method
Device transfer
rate Control transfer Bulk transfer Interrupt transfer Isochronous transfer
Full speed 8,16,32,64 8,16,32,64 Oto 64 (any 0 to 1023 (any
integer) integer)
Low speed 8 Not available 0to 8 (any integer) Not available

Note: See sections 2.6.2 to 2.6.5 for transfer methods.

Rev. 1.0, 04/03, page 10 of 78
RENESAS

2.6 USB Packets and Data Transfer

In the USB, data are transferred in units of packets. A packet is the smallest unit of data in USB
data. The USB protocol communicates using a combination of several packets, and this
combination is referred to as a transaction. In a transaction, packets appear in the following order:
token, data, and handshake.

A set of transactions is referred to as a frame (figure 2.12).

Frame (1 ms)
Setup IN ouT
transaction transaction transaction
N A N
r N N7 N
SOF ||SETUP | DATAO | ACK | IN | DATA1| ACK | OUT | DATAO | ACK | --- | SOF || SETUP | DATAO

f f ‘\ }
SOF packet Data packet

Handshake packet In each frame, the portion
devoid of a transaction is idle.

Token packet

Figure 2.12 Transactions and Frames

A frame begins with an SOF packet that is issued every millisecond and continues on to the next
SOF. The scheduling of transactions in a frame is handled completely by the Host Controller.

In each frame, the portion that is not filled with a transaction (the portion devoid of any data)
assumes an idle state, as explained in section 2.2.

Transactions are sent and received between the Host Controller and a device according to a
specified sequence. Following is a description of packets used in a USB, as well as the
characteristics and the format of each transfer method.

Rev. 1.0, 04/03, page 11 of 78
RENESAS

2.6.1 Overview of Packets

Packets used in the USB must conform to prescribed formats. As shown in table 2.4, packets can
be classified into five categories: SOF, token, data, handshake, and special. These categories are
identified using a 4-bit PID (packet ID).

Table 2.4 List of PIDs

PID Type PID Name Send Device PID[3:0]
SOF SOF Host controller 0101
Token ouT Host controller 0001
IN Host controller 1001
SETUP Host controller 1101
Data DATAO Host controller/device 0011
DATA1 Host controller/device 0010
Handshake ACK Host controller/device 0010
NAK Device 1010
STALL Device 1110
Special PRE Host controller 1100

A packet takes the following format: a packet begins with SYNC, followed by PID, PID, and CRC
(the handshake or special packet does not have a CRC), and ends with an EOP. SYNC
(synchronization) indicates the beginning of a packet and transmits a fixed value of 00000001.
The receiver of the packet performs a synchronization by using SYNC. PID indicates the type of
packet, and each type has a unique value. PID is a bit-by-bit binary complement of PID. This
complement permits the detection of errors. CRC (Cyclic Redundancy Check) is the result of
CRC-checking of each packet with the exception of SYNC, PID, and PID.

SOF (Start Of Frame): An SOF is a packet that is issued by the Host Controller at millisecond
intervals. The interval from on SOF to another is called a frame. SOFs are used to synchronize an
entire device. In addition, they are used to generate reference signals for isochronous
transmissions (section 2.6.4) or suspend-prevention signals (generated by the hub/root hub upon
receipt of a keep-alive signal: SOF) for low-speed devices. Although in terms of classification an
SOF belongs to the token packet, because it is used differently from other tokens as described
above, it represents a separate category.

SYNC | PID ' PID Frame no. CRC | EOP | PIDtype
8 bits | 4 bits, 4 bits 11 bits 5 bits | 2 bits SOF=0101

Figure 2.13 SOF Packet

Rev. 1.0, 04/03, page 12 of 78
RENESAS

Token: A token, which can only be issued by the Host Controller, is used to inform a device that a
command is being sent or the direction in which data are to be sent. Several types of token
packets exist, as described below. A token packet also includes address information that enables a
given device whether data being sent from the Host Controller are addressed to it, and endpoint
information that identifies the endpoint for a device.

e OUT token
The Host Controller issues an OUT token before sending data to a device.

e [N token
The Host Controller issues an IN token when requesting the transmission of data from a
device.

e SETUP token

This token is issued when a command is transmitted in a control transfer. See section 2.6.2 for
details on control transfers.

SYNC | PID | PID ADDR ENDP | CRC | EOP | PIDtype

8 bits | 4 bits | 4 bits 7 bits 4 bits | 5 bits | 2 bits OuUT=0001
IN=1001
SETUP=1101

Figure 2.14 Token Packet

Data: The Host Controller and devices use the data packet when transmitting data. Two types of
data packets exist, differentiated by whether PID is DATAO or DATA1. Transmission of these
data packets in an alternating fashion can detect any missing data, which enhances the reliability

of the transmission process. (Isochronous transmissions use data packets that are fixed at
DATAO.)

SYNC | PID : PID DATA CRC | EOP | PIDtype
8 bits | 4 bits | 4 bits 0~1023 bytes 16 bits | 2 bits | DATA0=0011
DATA1=1011

Figure 2.15 Data Packet

Rev. 1.0, 04/03, page 13 of 78
RENESAS

Handshake: A handshake enables the receiver to notify the sender of whether the data have been
received normally. The following types of handshake exist: (Note: A handshake is not issued in
an isochronous transfer.)

e ACK

This handshake is issued when either the Host Controller or a device has received a data packet
normally.

e NAK
A NAK is issued by a device to the Host Controller under the following conditions:

— Although OUT token packets and data packets were received from the Host, data cannot be
received because the endpoint is full.

— Although an IN token packet was received from the Host, the data to be sent are not yet
ready.

When receiving NAK, in the case of an OUT transaction, the Host Controller re-issues an
OUT token and the data that failed to be received; in the case of an IN transaction, the Host
Controller re-issues an IN token later. Because the Host Controller is defined as being able to
send and receive data packets at any time, the Host Controller never returns NAK to a device.

e STALL

A STALL handshake is issued by a device when an error condition occurs and the device
requires intervention by the Host.

e No response (no handshake packets issued)

If an error is found in a PID or a CRC result does not match, a handshaking is not performed,
and no response is generated. If a no response condition lasts more than a fixed length of time
(16~18 bit time) after transmitting data, the Host Controller or a device goes into a timeout
state and recognizes that a communication error has occurred. Subsequently, the Host
Controller re-issues the token and data for which an error condition was recognized.

SYNC | PID ! PID | EOP PID type

8 bits | 4 bits ' 4 bits | 2 bits ACK=0010
NAK=1010

STALL=1110

Note: Packets not issued if no response

Figure 2.16 Handshake Packet

Rev. 1.0, 04/03, page 14 of 78
RENESAS

Special: A PRE(PREAMBLE) packet is defined as a special packet. The PRE packet indicates to
the device that a low-speed transfer will be performed following it.

A full-speed data transfer to low-speed device can cause an error.
The PRE packet can prevent this error.

When dealing with a low-speed device, hubs (including the root hub) filter out any full-speed data
so that they are not transmitted to the low-speed device. However, when receiving a PRE packet,

the hubs stop filtering, and begin to transfer the low-speed data received from the Host Controller

to the low-speed device.

Although low-speed data are also transferred to full-speed devices, because low-speed data cannot
generate valid full-speed PIDs, there is no possibility of full-speed devices producing an error due
to the low-speed data.

SYNC | PID : PID | EOP PID type
8 bits | 4 bits; 4 bits | 2 bits PRE=1100

Note: Low-speed data following this packet

Figure 2.17 Special Packet

2.6.2 Control Transfer

A control transfer is used to issue a command to a device. This is the first transfer that occurs
when a device is connected to the Host Controller. In this case, the Host Controller uses a control
transfer on the new device in order to obtain information on the device. Therefore, whether they
are full-speed devices or low-speed devices, all devices must support this transfer method.

Control transfers can be divided into a setup stage, a data stage, and a status stage.

Note: In the following description of transfer methods, which side sends a packet is indicated on
the right side of the packet, i.e., (H) indicates the Host Controller side, (D) the device side.

Setup Stage:This is the first stage in a control transfer. In the setup stage, the Host Controller
issues a command to a device and provides instructions on what is to be sent or received.
According to this command, the device sets up the data to be sent to the Host Controller or
prepares receiving data from the Host Controller.

The setup stage for a control transfer consists of setup transactions. The size of the data packet for
a setup transaction is always 8 bytes. The Host Controller stores the command being sent in the
data packet.

Rev. 1.0, 04/03, page 15 of 78
RENESAS

The PID for a data packet is always DATAOQ. The handshake packet for a setup transaction is the
packet that the device sends to the host. In this case, the device must always return ACK.
Returning either NAK or STALL in a setup transaction is prohibited. Therefore, devices must
always be prepared to receive a setup transaction.

Sender
| Setup Token | ¢
Data (8bytes fixed) H)
PID: DATAO fixed
ACK (D)

Figure 2.18 Setup Stage
Data Stage:In the data stage, according to the command received in the setup stage, the device
repeats the receipt of the data being sent or the transmission of the data to be sent.
The direction of data never changes in the midst of a data stage.

In an IN direction data stage, if the data to be sent by the device have depleted, the device uses
either a short packet (a data packet with a byte count less than the maximum data size specified for
the device) or a 0-byte data packet to notify the Host Controller of the end of transmission.

Some commands do not have any data to be sent or received, in which case the data stage itself is
omitted.

In cases where data are sent/received repeatedly, the PID for the data packets toggles
DATA1-DATAO0—DATAL...

Sender Sender
| IN token | (H) | OUT token | (H)
DATAO/ DATAO/
DATA1 () DATA1 (H)
(toggled on trans.) (toggled on trans.)
ACK (H) ACK (D)

Figure 2.19 Data stage (left: IN, right: OUT)

Rev. 1.0, 04/03, page 16 of 78
RENESAS

Status Stage:A status stage begins when a token is transmitted in a direction opposite to the data
stage (or the setup stage if there is no data stage). For example, if an IN token is issued in a data
stage and data are transferred from a device to the Host Controller, the status stage begins when an
OUT token is issued. Thus, the data stage terminates when the direction of data is reversed.

As illustrated in figure 2.20, a status stage is associated with three patterns: an IN direction data
stage, an OUT direction data stage, and no data stage.

The data packet following the transmission of a token in the status stage must contain a packet
with a 0-byte data length with a DATA1 PID.

IN dir. data stage UT dir. data stag Setup stage only

(Fig. 2.19, left) (Fig. 2.19, right) (Fig. 2.18)
Sender Sender Sender
[ouTtoken |) | INtoken |) | INtoken | (H)
DATA1 DATA1 DATA1
(0 byte) (H) (0 byte) (D) (0 byte) (D)
ACK (D) ACK (H) ACK (H)

Note: left: after IN data stage
middle: after IN data stage
right: after setup stage only

Figure 2.20 Status Stage

The reason that the reversal of direction brings on the status stage is that the data stage is defined
so that it can be terminated even before the Host Controller has received or transmitted all the data
that were requested by means of a setup stage command.

Figure 2.21 shows an example of a control transfer that has an IN direction data stage. Suppose
that the Host Controller requests 32-byte data in the setup stage; after the setup stage has ended,
the Host Controller issues an IN token; according to this command, the device sends 88-byte data
(if the maximum packet size is 88 bytes); and the Host Controller issues ACK. At this point, the
device will have sent 8 bytes out of the 32 bytes. If more data are needed, the Host Controller re-
issues the IN token. When no more data are needed, the Host Controller issues the OUT token.
The OUT token changes the direction of data, and at this time the status stage is brought on, and
the control transfer ends.

Rev. 1.0, 04/03, page 17 of 78
RENESAS

Setup stage
(Fig. 2.18)

Data stage <

Status stage <

Figure 2.21 Data Stage Interrupted

2.6.3 Bulk Transfer

A bulk transfer is used to send large quantities of data without error when the transfer process is
not subject to a time constraint. In a bulk transfer, the data transfer speed is not guaranteed, but
data integrity is guaranteed. If a data error is found (e.g., a CRC mismatch), the receiver does not
issue a handshake. If ACK is not returned, the sender re-transmits the affected data. If there is no
room in the FIFO or the data to be sent are not yet ready, the sender issues NAK. The amount of
data that can be transferred in a bulk transfer can be specified in the MAX packet size. A bulk
transfer cannot be used with low-speed devices.

If an IN token is issued by the Host Controller (left side in figure 2.22), data are transmitted from
the device and a handshake is issued by the Host Controller.

If an OUT token is issued by the Host Controller (right side in figure 2.22), data are transmitted
from the Host Controller, and a handshake is issued by the device.

In both bulk IN/OUT, each time a data send/receive action is repeated, the PID for the data packet
toggles DATAO—DATA1—-DATAO...

Rev. 1.0, 04/03, page 18 of 78
RENESAS

Sender Sender

INtoken | () | OUTtoken [(H)
DATAO0/ DATAO/
DATAI1 ©) DATA1 (H)
(toggled on trans.) (toggled on trans.)
(H) D)
ACK ACK

Figure 2.22 Bulk Transfer (left: IN, right: OUT)

2.64 Isochronous Transfer

An Isochronous transfer is used to send continuous data, such as audio data and moving pictures.
Isochronous transfers are priority-scheduled so that a data transfer occurs at a rate of once per
frame (1 ms). In an Isochronous transfer, however, offset values from an SOF packet cannot be
guaranteed. In other words, the first transfer can occur at the end of a frame and the next transfer
can occur at the beginning of the frame. Devices are required to be able to handle these
contingencies.

Isochronous transfers cannot be used with low-speed devices.
As shown in figure 2.23, Isochronous transactions do not contain handshake packets.

Unlike a bulk transfer, in an Isochronous transfer, data are not re-sent even if there are errors in the
data that are transferred. The maximum size of a data packet that can be specified for an
Isochronous transfer is 1023 bytes.

The PID for the data packet is fixed at DATAO (the PID does not toggle).

Sender Sender
IN token I (H) I OUT token I (H)
DATAO,fixed D DATAO,fixed H
(no toggle) (©) (no toggle) (H)

No handshaking

Figure 2.23 Isochronous Transfer (left: IN, right: OUT)

Rev. 1.0, 04/03, page 19 of 78
RENESAS

2.6.5 Interrupt Transfer

In an interrupt transfer, the Host Controller generates IN transactions for devices in specified
cycles. Devices can specify to the Host Controller the cycle in which transactions are to be
generated. A cycle can be specified in 1 to 255 frames. The Host Controller starts an IN
transaction at least once per specified cycle. Note that although devices are not accessed in
intervals less than a specified cycle, they can be accessed in intervals greater than a specified
cycle. (Only IN interrupt transfers are supported in USB1.0, but USB1.1 supports both IN and
OUT interrupt transfers.)

Interrupt transfers can be used with both full-speed/low-speed devices.

The maximum data packet size that can be specified is 64 bytes for full-speed devices and 8 bytes
for low-speed devices.

Each time a data receive action is repeated, the PID for the data packet toggles
DATAO—DATA1—DATAO...

In an interrupt-in transfer, if the Host Controller generates an IN token and the device has data to
transmit, the device sends a data packet, as illustrated in figure 2.24 (a) (left). If the device has no
transmit data when an IN token is generated, the device issues NAK instead of sending a data
packet, as shown in figure 2.24 (a) (right)

When the device When the device
has data to transmit has no data to transmit

W]]

Sender

DATAO/ NAK
(D) DATA1
(toggled on trans.)

ACK

Figure 2.24 (a) Interrupt-In Transfer

In an interrupt-out transfer, the Host Controller sends an OUT token then data to the device. When
the device has received the data, it sends an ACK packet, as illustrated in figure 2.24 (b) (left). If
the device failed to receive data following the OUT token sent from the host controller, the device
sends a NAK packet instead of an ACK packet, as shown in figure 2.24 (b) (right)

Rev. 1.0, 04/03, page 20 of 78
RENESAS

Sender When the device When the device

can receive data cannot receive data
(H) ouT ouT
DATAO/ DATAO/
(H) DATA1 DATA1
(toggled on trans.) (toggled on trans.)
(D) ACK NAK

Figure 2.24 (b) Interrupt-Out Transfer

Rev. 1.0, 04/03, page 21 of 78
RENESAS

2.7 USB Device Framework

For plug-and-play, for the USB, detailed procedures are established from connecting the USB
cable to configuring the system. This section explains those procedures.

2.7.1 Device States

USB devices can have the various states shown in figure 2.25. A device can be used only when it
has transited to the configuration state.

<Attached state>
The device, attached to the root hub or a
hub, is not powered on.

Attached | \

Hub Configured.
Hub Reset.

\ Bus inactive <Powered state>
owere Suspended The root hub or hubs have been

I_\\ Bus activity configured by the Host Controller, and

they are supplying the power to the device.
In this state, all signals are ignored until
the reset signal is received.

U Bus inactive
<Default state>
Default -———— Suspended The device that has been reset is
I—\\ Bus activity

automatically assigned address 0.
m I Set Address request I

<Address state>
A device-specific address other than 0
is assigned with the SetAddress command

4%5"13& (Standard Commands in section 2.7.2).

Bus activity -
<Configured state>
The configuration has been set by the
I Set Configuration request I Host.

. . <Suspended state>
- Eusliiolve If no bus traffic is detected for more than
Configured Suspended))
W 3ms, the device goes into the power-
saving mode. After returning from this
state, the device regains the original state.

Figure 2.25 USB Device State

Rev. 1.0, 04/03, page 22 of 78
RENESAS

2.7.2 Device Request

For a device to be able to transit to the configuration state, it must respond to the commands issued
by the Host Controller. Commands issued by the Host Controller are called device requests, and
their format is defined by the USB standard. The Host Controller issues device requests in the
setup stage in a control transfer.

Three types of device requests are available:

e Standard commands

These commands are defined in the USB standard. All devices must support these commands.
Table 2.5 shows a list of standard commands.

For details on standard commands, refer to the standards documentation.

Table 2.5 List of Standard Commands
Direction of

Command Name Function Data Stage Data Stage
Clear_Feature Clears the endpoint stall. N

o
(Endpoint_stall)
Clear_Feature Clears the device remote N

o
(Device_Remote_Wakeup) ~Wakeup feature.
Get_Configuration Gets configuration information. Yes IN
Get_Descriptor Gets device descriptor
(Device) information. Yes IN
Get_Descriptor Gets configuration descriptor
(Config) information. Yes IN
Get_Descriptor Gets string descriptor
(String) information. Yes IN
Get_lInterface Gets interface information. Yes IN
Get_Status(Device) Gets device status information. Yes IN

Gets interface status
Get_Status(Interface) information. Yes IN
Get_Status(EndPoint) Gets endpoint status Yes IN
information.

Set_Address Sets the device address. No

RENESAS

Rev. 1.0, 04/03, page 23 of 78

Direction of

Command Name Function Data Stage Data Stage
Set_Descriptor Sets the device descriptor.
] Yes Out
(Device)
Set_Descriptor Sets the configuration descriptor.
. Yes Out
(Config)
Set_Descriptor Sets the string descriptor.
] Yes Out
(String)
Set_Configuration Sets configuration. No
Set_Feature Sets the endpoint to the Stall
- stage No
(EndPoint_Stall) :
Set_Feature Sets the device to the wakeup N
o}
(Device_Remote_Wakeup) state.
Set_lInterface Sets an interface. No
Posts a specific frame number
Sync_Frame on the endpoint during an Yes out

Isochronous transfer (if a special
number is required).

e (Class command

Class commands other than hub commands are established by corporate groups, subject to
certification by the USB-IF (USB Implementers Forum). Several classes exist: audio class,
common class, HID (Human Interface Device) class, and printer class.

e Vendor command

Vendor commands can be defined freely by device designers, provided that the commands
conform to the same format as other commands.

Rev. 1.0, 04/03, page 24 of 78

RENESAS

2.8 Descriptor

Each USB device is associated with what is called descriptor information that indicates the type,
characteristics, and attributes of the device itself. By obtaining device information on a device, the
Host Controller can recognize the type of device that is connected to a given bus.

Standard USB devices have the following descriptors: device, configuration, interface, and

endpoint.

These descriptors are described in tables 2.6, 2.7, 2.8, and 2.9.

Table 2.6 Device Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x12)

bDescriptorType 1 Descriptor type (fixed at 0x01)

bcdUSB 2 USB version, represented in BCD

bDeviceClass 1 Class code: 0: no class; OxFF: vendor class

1 to OxFE: special class
bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code: 0: no specific protocol used
OxFF: vendor-specific protocol

bMaxPacketSize0 1 Maximum packet for endpoint O

idVendor 2 Vendor ID (assigned to manufacturers by the
USB-IF)

idProduct 2 Product ID (assigned to each device by
manufacturer)

bcdDevice 2 Device version, represented in BCD

iManufacturer 1 Index to a string descriptor indicating the
manufacturer's name

iProduct 1 Index to a string descriptor indicating the device

name

iSerialNumber

Index to a string descriptor indicating the serial
number of the device

bNumConfigurations

1

Number of configurable devices

Note: USB Implementers Forum

Rev. 1.0, 04/03, page 25 of 78

RENESAS

Table 2.7 Configuration Descriptor

Field Size (in bytes) Description
bLength 1 Descriptor size (fixed at 0x09)
bDescriptorType 1 Descriptor type (fixed at 0x02)
wTotalLength 2 Total length of descriptor
bNumlnterface 1 Number of interfaces associated with descriptor
bConfiguration 1 Argument value (1 or higher) for the selection of
Value this descriptor using Set_Configuration
iConfiguration 1 Index to a string descriptor
bmAttributes 1 Device power supply

Bit 7: bus power;

bit 6: self-power;

bit 5: remote wakeup;

bits 4 to O: reserved

MaxPower 1 Specifies the maximum bus power consumption

in units of 2 mA.

Table 2.8 Interface Descriptor

Field Size (in bytes) Description
bLength 1 Descriptor size (fixed at 0x09)
bDescriptorType 1 Descriptor type (fixed at 0x04)

binterfaceNumber

1

Zero-base index number that represents this
interface in the configuration(]

bAlternateSetting

An argument value for the selection of alternate
settings using Set_Interface.

bNumEndpoints

Number of endpoints associated with a device
(exclusive of endpoint 0)

binterfaceClass

Class code 0: no class;
OxFF: vendor class;
1 to OxFE: special class

binterfaceSubClass

Subclass code

bInterfaceProtocol

Protocol code 0: no specific protocols used
O0xFF: vendor-specific protocol

iinterface

Index to the string descriptor representing this
interface

Rev. 1.0, 04/03, page 26 of 78

RENESAS

Table 2.9 Endpoint Descriptor

Field Size (in bytes) Description
bLength 1 Descriptor size (fixed at 0x07)
bDescriptorType 1 Descriptor type (fixed at 0x05)
bEndpointAddress 1 Endpoint address: bit 7: direction (0:OUT 1:IN);
bits 6 to 4: reserved (0);
bits 3 to 0: endpoint number
bmAttributes 1 Endpoint transfer method:
bits 7 to 2: reserved (0);
bits 1 to O: transfer method (0:
control, 1: Isochronous ,
2: bulk, 3: interrupt)
wMaxPacketSize 2 Maximum packet size

binterval

Specifies polling intervals in units of ms.
Specify 1 for Isochronous transfers.
Ignored for bulk or control transfers.

Rev. 1.0, 04/03, page 27 of 78

RENESAS

Rev. 1.0, 04/03, page 28 of 78
RENESAS

Section 3 Overview of the USB Module

3.1 Operation of the Module

This section explains the operation of the USB module internal to the SH7705. Commands and
data that are sent by the host are stored in the EP (FIFO) in the USB Module for each transfer
type. When reading data, you should access the data register for a given endpoint. When sending
data to the host, you should write them to the data register for the endpoint (figure 3.1).

peripheral bus USB function module
Status and
control registers
Interrupt requests D+
DMA transfer requests
ubc Transceiver D-
FIFO
. B
Clock (48MHz)
Legend

UDC : USB Device Controller

Figure 3.1 USB Module Block Diagram

Rev. 1.0, 04/03, page 29 of 78
RENESAS

3.2 Organization of an Endpoint

The USB function module internal to the SH7705 has four endpoints. Table 3.1 shows the
organization of USB function module endpoints.

Table 3.1 Endpoint Configuration
FIFO Buffer DMA

Name of Endpoint Symbol Type of Transfer = Max. Packet Size Capacity Transfer
EPOs Setup 8 bytes 8 bytes —
Endpoint 0 EPOi Control-IN 8 bytes 8 bytes —
EPOo Control-OUT 8 bytes 8 bytes —
64x2
Endpoint 1 EP1 Bulk-out 64 bytes Possible
(128 bytes)
64x%2
Endpoint 2 EP2 Bulk-in 64 bytes Possible
(128 bytes)
Endpoint 3 EP3 Interrupt 8 bytes 8 bytes —

Rev. 1.0, 04/03, page 30 of 78
RENESAS

33 Register Configuration
Table 3.2 shows the configuration of USB function module registers.

Table 3.2 Register Configuration

Initial Access

Name Abbreviation RW Value Address Size
EPOi data register EPDROI W — H'A4480000 8
EPOo data register EPDR0OO R — H'A4480004 8
EPOs data register EPDROS R — H'A4480008 8
EP1 data register EPDR1 R — H'A448000C 8
EP2 data register EPDR2 w — H'A4480010 8
EP3 data register EPDR3 w — H'A4480014 8
Interrupt flag register 0 IFRO R/W H'10 H'A4480018 8
Interrupt flag register 1 IFR1 R/W H'00 H'A448001C 8
Trigger register TRG w — H'A4480020 8
FIFO clear register FCLR w — H'A4480024 8
EPOo received data size EPSZ00 R H'00 H'A4480028 8
register

Data status register DASTS R H'00 H'A448002C 8
Endpoint stall register EPSTL R/W H'00 H'A4480030 8
Interrupt enable register 0 IERO R/W H'00 H'A4480034 8
Interrupt enable register 1 IER1 R/W H'00 H'A4480038 8
EP1 received data size register EPSZ1 R H'00 H'A448003C 8
DMA setting register DMAR R/W H'00 H'A4480040 8
Interrupt selection register 0 ISRO R/W H'00 H'A4480044 8
Interrupt selection register 1 ISR1 R/W H'07 H'A4480048 8
Transceiver control register XVERCR R/W H'00 H'A4480060 8

Following is a description of registers that are frequently used in this sample program. For
information on all registers, refer to the SH7705 hardware manual.

Rev. 1.0, 04/03, page 31 of 78
RENESAS

1. EPOi Data Register (EPDROI)

This is an 8-byte FIFO buffer for the transmission of endpoint 0. This register holds 1 packet
of transmission data in response to Control IN. The transmission data are set when 1 packet of
data is written and EPOiPKTE in the trigger register is set. When an ACK handshake is
returned from the host after the data has been sent, EPOiTS in interrupt flag register O is set.
The FIFO buffer can be cleared using EPOICLR of the FIFO clear register.

2. EPOo Data Register (EPDR0O)

This is an 8-byte FIFO buffer for the reception of endpoint 0. Received data for endpoint 0,
exclusive of the setup command, are stored in this buffer. Upon normal reception of data,
EPOoTS in interrupt flag register O is set, and the number of received bytes is indicated in the
EPOo received data size register. After the data are read, setting EPOORDFN in the USB
trigger register makes the reception of another packet possible. The FIFO buffer can be
cleared using EPO0CLR of the USBFIFO clear register.

3. EPOs Data Register (EPDROS)

This is an 8-byte FIFO buffer solely for the reception of the setup command for endpoint 0.
When the setup command to be processed by the application is received and command data are
successfully stored, SETUPTS in interrupt flag register O is set. Because the setup command
must always be received, any data remaining in the buffer will be overwritten by the new data.
If the reception of another command is initiated while the current command is being read, the
read data are invalidated so that the read action by the application can be disabled in favor of
the reception action.

4. EPI1 Data Register (EPDR1)

This is a 128-byte FIFO buffer for the reception of endpoint 1. This is a double buffer with a
capacity 2 times the maximum packet size. Upon the successful reception of 1 byte of data
from the host, EPIFULL of interrupt flag register 0 is set. The number of received bytes is
indicated in the EP1 received data size register. Writing the value 1 to EPIRDFN of the
trigger register after data are read makes the read-side buffer ready for reception of other data.
The received data in the FIFO buffer are available for DMA transfer. The FIFO buffer can be
cleared using EP1CLR of the FIFO clear register.

5. EP2 Data Register (EPDR2)

This is a 128-byte FIFO buffer for the transmission of endpoint 2. This is a double buffer with
a capacity 2 times the maximum packet size. Writing the transmission data to the FIFO buffer
and setting EP2PKTE in the trigger register sets 1 packet of transmission data and the double
buffer is switched. The transmission data to the FIFO buffer are available for DMA transfer.
The FIFO buffer can be cleared using EP2CLR of the FIFO clear register.

Rev. 1.0, 04/03, page 32 of 78
RENESAS

. EP3 Data Register (EPDR3)

This is an 8-byte FIFO buffer for the transmission of endpoint 3. This buffer holds 1 packet of
transmission data for the interrupt transfer of endpoint 3. Writing 1 packet of data and setting
EP3PKTE in the trigger register sets the transmission data. Upon normal transmission of 1
packet of data and reception of an ACK handshake from the host, EP3TS for the interrupt flag
register is set. The FIFO buffer can be cleared using EP3CLR of the FIFO clear register.

. Interrupt Flag Register 0 (IFRO)

Together with interrupt flag register 1, this register indicates the interrupt status necessary for
the application. When an interrupt source is generated, the corresponding bit is set to 1, and a
CPU interrupt request is generated in combination with interrupt enable register 0. However,
EPIFULL and EP2EMPTY cannot be cleared because they are status registers.

Bit: 7 6 5 4 3 2 1 0

EP1 EP2 EP2 |SETUP| EPOo | EPOI EPOI

Bitname: | BRST |ty | 7R [empry| 15 | 18 | TR TS

R/W: R/W R R/W R R/W R/W R/W R/W
Initial value: 0 0 0 1 0 0 0 0

Bit 7: bus reset

1 is set in this bit when a bus reset signal is detected on the USB bus.

Bit 6: EP1 FIFO full

1 is set in this bit when endpoint 1 (bulk OUT) successfully receives 1 packet of data from the
host. The value 1 is retained as long as valid data exist in the FIFO buffer.

Bit 5: EP2 transfer request

1 is set in this bit when an IN token for endpoint 2 (bulk IN) is received from the Host
Controller and no valid transmission data exist in the FIFO buffer. NAK handshake signals are
returned to the Host Controller until data are written to the FIFO buffer and packet-send-enable
is set.

Bit 4: EP2 FIFO empty

This bit is set when at least one of the transmission FIFO buffers (double buffer configuration)
for endpoint 2 is available for the writing of transmission data.

Bit 3: setup command received

1 is set in this bit when the setup command to be decoded by the application is received by
endpoint 0 and an ACK handshake is returned to the Host Controller.

Rev. 1.0, 04/03, page 33 of 78
RENESAS

e Bit 2: EPOo received

1 is set in this bit when endpoint 0 successfully receives data from the Host Controller, stores
them in the FIFO buffer, and returns an ACK handshake to the Host Controller.

e Bit 1: EPOi transfer request

1 is set in this bit when an IN token for endpoint 0 is received from the Host Controller and

valid transmission data do not exist in the FIFO buffer. NAK handshake signals are returned

to the Host Controller until data are written to the FIFO buffer and packet-send-enable is set.
e Bit 0: EPOi transmitted

1 is set in this bit when data are transmitted from endpoint O to the Host Controller and an
ACK handshake is returned.

8. Interrupt Flag Register 1(IFR1)

Bit: 7 6 5 4 3 2 1 0

. . EP3 EP3
Bit name: — — — — |vBUSMN = TS VBUS
R/W: R R R R R R/W R/W R/W
Initial value: 0 0 0 0 0 0 0 0

e Bits 7 to 4: reserved

e Bit 3: USB Connect Status
This bit is a status bit for monitoring the state of the VBUS pin. It reflects the state of the
VBUS pin.

e Bit 2: EP3 transfer request
1 is set in this bit when an IN token for endpoint 3 (an interrupt) is received from the Host

Controller and no valid transmission data exist in the FIFO buffer. A NAK handshake is
returned to the host until data is written to the FIFO buffer and packet transmission is enabled.

e Bit 1: EP3 transmitted
1 is set in this bit when data are sent from endpoint 3 to the Host Controller and an ACK
handshake is returned.

e Bit 0: USB bus connected
1 is set in this bit when connected to or disconnected from the USB bus. The VBUS pin is

used to detect connection/disconnection. The VBUS pin, required in the Module, should
always be connected.

Rev. 1.0, 04/03, page 34 of 78
RENESAS

9.

Trigger Register (TRG)
Bit: 7 6 5 4 3 2 1 0
Bitname: | | EP3 | EP1 | EP2 | | EPOs | EPO0 | EPOI
' PKTE | RDFN | PKTE RDFN | RDFN | PKTE
R/W: w w w w w w w w

Bit 7: reserved

Bit 6: EP3 packet enabled

Transmission data are set by writing 1 to this bit after writing 1 packet of data to the FIFO
buffer for the transmission of endpoint 3.

Bit 5: EP1 read

Write 1 to this bit after 1 packet of data is read from the FIFO buffer for endpoint 1. The FIFO
buffer for the receiving of endpoint 1 is a double-buffer. Writing 1 to this bit initializes the
buffer from which data have been read and makes it available for the reception of another
packet.

Bit 4: endpoint 2 packet enabled

Write 1 to this bit after data for the FIFO buffer for endpoint 2 have been read. Writing 1
makes the buffer available for the transmission or receipt of data for the next data stage. NAK
handshakes will be returned in response to any send/receive requests from the host in the data
stage until such time as 1 is written to this bit.

Bit 3: reserved

Bit 2: EPOs read

Write 1 to this bit after data for the FIFO buffer for EPOs commands have been read. Writing 1
makes the buffer available for the transmission or reception of data for the next data stage.
NAK handshakes will be returned in response to any send/receive requests from the host in the
data stage until such time as 1 is written to this bit.

Bit 1: EPOo read

Writing 1 to this bit after 1 packet of data is read from the FIFO buffer for the transmission of
endpoint 0 initializes the FIFO buffer and makes it available for the receipt of another packet.

Bit 0: EPOi packet enabled

Writing 1 to this bit after 1 packet of data is written to the FIFO buffer for the transmission of
endpoint 0 sets the transmission data.

Rev. 1.0, 04/03, page 35 of 78
RENESAS

10. Interrupt Enable Register O (IERO)

This register enables interrupt requests for interrupt flag register O (IFR0). When this register
is set to 1, and a corresponding interrupt flag is set, an interrupt request is generated on the
CPU. The associated interrupt vector number is determined by the contents of interrupt
selection register O (ISRO).

Bit: 7 6 5 4 3 2 1 0

EP1 EP2 EP2 |SETUP| EPOo | EPOI EPOI

Bitname: 1 BRST| ey | TR |empy| 75 | 18 | TR | TS

R/W: R/W R R/W R R/W R/W R/W R/W
Initial value: 0 0 0 1 0 0 0 0

11. Interrupt Enable Register 1 (IER1)

This register enables interrupt requests for interrupt flag register 1 (IFR1). When this register
is set to 1, and a corresponding interrupt flag is set, an interrupt request is generated on the
CPU. The associated interrupt vector number is determined by the contents of interrupt
selection register 1 (ISR1).

Bit: 7 6 5 4 3 2 1 0

. . EP3 EP3
Bit name: — — — — — TR TS VBUS
R/W: R R R R R R/W R/W R/W
Initial value: 0 0 0 0 0 0 0 0

Rev. 1.0, 04/03, page 36 of 78
RENESAS

34 USB Command Processing

USB standard commands that are sent by the Host Controller during a control transfer can be
divided into two types: commands that are automatically processed by the USB Function Module
and commands that require processing by the user. All class commands and vendor commands
must be decoded by the user. Table 3.3 shows the classification of commands that require
decoding by the user and commands that do not require decoding.

Table 3.3 Command Decoding

User Decoding Required User Decoding Not Required
Clear Feature Get Descriptor
Get Configuration Class/Vendor command

Get Interface
Get Status

Set Address

Set Configuration
Set Feature

Set Interface

For commands that do not require decoding by the user, the USB Function Module automatically
processes command decoding, data stages, and status stages. When receiving a command that
requires decoding by the user, the Function Module saves it in the FIFO for EPOs. Upon normal
reception of a command, the USB Function Module generates a SETUPTS interrupt. Upon
detecting this interrupt, the user needs to read and process the endpoint data.

Rev. 1.0, 04/03, page 37 of 78
RENESAS

Rev. 1.0, 04/03, page 38 of 78
RENESAS

Section 4 Development Environment

This chapter looks at the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

e SH7705 Solution Engine (hereafter called the SH7705SE; type number: MS7705SEO1)
manufactured by Hitachi ULSI Systems Co., Ltd.

e Super I/O expansion connector board (MSUSIOEXO01) manufactured by Hitachi ULSI
Systems Co., Ltd.

e SH7705 E10A Emulator manufactured by Renesas Technology Corp.
e PC (Windows® 95/98) equipped with a PCMCIA slot

e PC (Windows® 2000) to serve as the USB host

e Parallel-port printer

e USB cable

e Parallel cable

e High-Performance Debugging Interface (hereafter called the HDI) manufactured by Renesas
Technology Corp.

e High-Performance Embedded Workshop (hereafter called the HEW) manufactured by Renesas
Technology Corp.

4.1 Hardware Environment

Figure 4.1 shows device connections.

| E10A PC (Windows® 95/98) |

SH7705SE

Super I/0O expansion connector board

Used to install HDI and
HEW, and for program

AC adapter
compiling and connector boarda, included with
SolutionEngine

yAAY4

USB cable

USB host PC (Windows® 2000) |

Parallel cable

Used as the USB host;
outputs printing data

Printer

Figure 4.1 Device Connections

Rev. 1.0, 04/03, page 39 of 78
RENESAS

1.

SH7705SE

Some DIP switch settings on the SH7705SE board must be changed from those at shipment.
Before turning on the power, ensure that the switches are set as follows. There is no need to
change any other DIP switches.

Table 4.1 DIP Switch Settings

At Time of Shipment After Change DIP Switch Function
SW3-6 OFF SW3-6 ON Select the endian
SW3-7 OFF SW3-7 ON Select E10A emulator
SW3-8 ON SW3-8 OFF Select E10A emulator

2. Super I/O expansion connector board

For an explanation of connection with the SH7705SE, please refer to the instruction manual
for the SolutionEngine. This expansion connector board is not included with the
SolutionEngine, and must be purchased separately.

USB host PC

A PC with Windows® 2000 installed and with a USB port is used as the USB host. This
system uses printer-class device drivers installed as a standard part of the Windows® 2000
system, and so there is no need to install new drivers.

E10A PC

The E10A should be inserted into a PC card slot and connected to the SH7705SE via an
interface cable. After connection, start the HDI and perform emulation.

Rev. 1.0, 04/03, page 40 of 78

RENESAS

4.2

Software Environment

A sample program, as well as the compiler and linker used, are explained.

42.1 Sample Program

Files required for the sample program are all stored in the SH7705 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are indicated in figure 4.2 below.

| SH7705 |

/CatProType. h

~

CatTypedef.h SetMacro.h SetPrinterInfo.h, ioaddr.h
SetSystemSwitch.h SetUsblnfo.h SH7705.h SysMemMap.h
DoBulk.c DoControl.c Dolnterrupt.c DoRequest.c ppout.c
StartUp.c UsbMain.c DoRegestPrinterClass.c sct.src AsmFunction.src
debugger.ABS debugger.MAP debugger.MOT log.txt dwfinf (folder)
BildOfHew.bat InkSet1.sub

7705E10A.hdc

.

Figure 4.2 Files Included in the Folder

422 Compiling and Linking
The sample program is compiled and linked using the following software.

High-Performance Embedded Workshop Version 1.0 (release 9) (hereafter HEW)

When HEW is installed* in C:\Hew, the procedure for compiling and linking the program is as
follows.

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling. (figure
4.3)

C:\
I— \Hew

\Tmp

Figure 4.3 Creating a Working Folder

Rev. 1.0, 04/03, page 41 of 78
RENESAS

Next, the folder in which the sample program is stored (SH7705) should be copied to any arbitrary
drive. In addition to the sample program, this folder contains a batch file named BildOfHew.bat.
This batch file sets the path, specifies compile options, specifies a log file indicating the compile
and linking results, and performs other operations. When BildOfHew.bat is executed, compiling
and linking are performed. As a result, a Motorola S-type format file named debugger.MOT is
created within the folder. This is the executable file. At the same time, a map file named
debugger.MAP and a log file named log.txt are created. The map file indicates the program size

and variable addresses. The compile results (whether there are any errors etc.) are recorded in the
log file.

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and
settings for environment variables used by the compiler in BildOfHew.bat, as well as
the library settings in InkSet1.sub, must be changed. Here the compiler path setting
should be changed to the path of shc.exe, and the setting for the environment variable
shc_lib used by the compiler should be set to the folder of shc.exe; the shc_inc setting
should be changed to the folder of machine.h, and the setting of shc_tmp should
specify the work folder for the compiler. The library setting should specify the path of

shepic.lib.
/I SH7705 l
)

Batch file Execution results
BildOfHew.bat —p debugger.ABS
Execusion debugger.MOT
debugger.MAP
log.txt

Figure 4.4 Compile Results

Rev. 1.0, 04/03, page 42 of 78
RENESAS

4.3 Loading and Executing the Program

Figure 4.5 shows the memory map for the sample program.

SH7705SE SRAM memory (area 0)

01CO0 0000

01C0 0245 R and B areas 582 bytes

A1C0 0256 Approximately

A1DF FFEF Stack area 2 Mbytes

SH7705SE SRAM (area 3)

ACO00 0000)

ACO00 00EB PResetException area 236 bytes
Empty area

ACO00 0100 .

AC00 013F PGeneralExceptions area 64 bytes

ACO00 0400 Emply area

AC00 045D PTLBMissException area 94 bytes
Empty area

ACO00 0600

ACO0 0648 Pinterrupt area 76 bytes
Empty area

ﬁggg 1222 PNonCash area 868 bytes
Empty area

0C00 1400

0C00 2528 P,C,and D area * 4392 bytes
Empty area

ACO00 4000

ADEF EBFF Bulk transfer data area 32 Mbytes
Empty area

Notes: The memory map differs according to the compiler version, compiling conditions,
firmware upgrade, etc.
* Placed in the P3 cache write-back space. Consequently the address bits A31-29
are 110.

Figure 4.5 Memory Map

Rev. 1.0, 04/03, page 43 of 78
RENESAS

As shown in figure 4.5, this sample program allocates the PResetException, PGeneralExceptions,
PTLBMissException, PInterrupt, PNonCash, P, C, and D areas in SDRAM, and the R and B areas
in SRAM. In order to use the E10A for break and other functions, the program must be placed in
RAM in this way. These memory allocations are specified by the InkSet1.sub file in the SH7727
folder. When incorporating the program in ROM by writing it to flash memory or some other
media, this file must be modified.

43.1 Loading the Program

In order to load the sample program into the SDRAM of the SH7705SE, the following procedure
is used.

e Insert the E10A into the PC for use with the E10A, in which the HDI has been installed, and
connect the E10A to the SH7705SE via a user cable.

e Turn on the power to the E10A PC, to start up the machine.
e The HDI is started.
e Turn on the power to the SH7705SE.

e A dialog (figure 4.6) is displayed on the PC screen; turn the SH7705SE reset switch (SW1) on,
and after resetting the CPU, click the OK button, or press the Enter key.

e Select CommandLine in the View menu to open a window (figure 4.7), click the BatchFile
button on the upper left, and specify the 7705E10A.hdc file in the SH7705 folder. As a result
the BSC is set, and accessing of the SDRAM is made possible. Also, the program counter (PC)
is set. If the value of the program counter needs to be changed, modify the 7705E10A.hdc file.

e Select LoadProgram... from the File menu; in the Load Program dialog box, specify
debugger.ABS in the SH7705 folder.

Through the above procedure, the sample program can be loaded into the SH7705SE SDRAM.

HOI

& Flease, reset the user system and press <Enter? key.

Figure 4.6 Reset Request Dialog

Rev. 1.0, 04/03, page 44 of 78
RENESAS

BB Gommand Linena bateh fileno loe il =] E3

T —
=

Batch file

Figure 4.7 Command Line Input

432 Executing the Program

In order to execute the program which was loaded in section 4.3.1, select Go from the Run menu.

4.4 Printing Procedure

With the program executed, insert the USB cable series B connected into the SH7705SE, and
connect the series A connected at the opposite end to the USB host PC. After control transfer is
completed, USB printing support is displayed below USB host controller in the device manager,
and the host PC recognizes the SH7705SE as a printer device.

Next, the printer driver*' is installed. Open the printer from the Start menu Settings item, and
double-click on the Add a printer icon. A setup wizard is started; in port selection, check USB001
Virtual Printer Port for USB**. Specify the printer to be used (the manufacturer name and printer
model). When the wizard processing is completed, a test print should be performed; if the driver is
correctly installed, the printer will output a print test.

Notes: 1. In this sample program, bidirectional communication with the printer is not supported;
please be sure to use a printer driver included as standard with Windows® 2000.

2. If a printer-class device has previously been connected to the host PC, the number may
be different (USB002, USB003, etc.). In this case, select the highest-numbered port.

Rev. 1.0, 04/03, page 45 of 78
RENESAS

Rev. 1.0, 04/03, page 46 of 78
RENESAS

Section 5 Overview of the Sample Program

In this section, features of the sample program and its structure are explained. This sample
program runs on the SH7705SE, and initiates USB transfers by means of interrupts from the USB
function module. Of the interrupts from modules in the SH7705, there are two interrupts related to
the USB function module: USIO and USII, but in this sample program, only USIO is used.

Features of this program are as follows.

e Control transfer can be performed.

e Bulk-out transfer can be used to receive data from the host controller.

e Bulk-in transfer can be used to send data to the host controller.

e The Ultra I/O mounted on the SH7705SE can be used to output data to a printer.

5.1 State Transition Diagram

Figure 5.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 5.1, there are transitions between four states.

Immediately after power is applied, the reset
state is entered.After completion of initial
settings, execution enters the main loop and
the system is in a stationary state. The names
of files which can make transitions to each
state are also shown.

Startup.c
Reset state

Completion of initial settings

Startup.c

t.
ppouto Stationary

Manual reset
Parallel output state

When there is data

Interrupt generation (USI0) usB communlcatlon ends
Startup.c
¥> communlcatlon @
state
UsbMain.c
DoRequest.c Error generation
DoControl.c
DoBulk.c

Figure 5.1 State Transition Diagram

Rev. 1.0, 04/03, page 47 of 78
RENESAS

e Reset State

Upon power-on reset and manual reset, this state is entered. In the reset state, the SH7705
mainly performs initial settings.

e Stationary State

When initial settings are completed, a stationary state is entered in the main loop. Here, the
presence of printing data from the host is constantly monitored; if there is data, the parallel
output state is entered, and data is output to the printer.

e USB Communication State

In the stationary state, when an interrupt from the USB module occurs, this state is entered. In
the USB communication state, data transfer is performed by a transfer method according to the
type of interrupt. The interrupts used in this sample program are indicated by interrupt flag
register 0 (IFR0), and there are eight interrupt types in all. When an interrupt factor occurs, the
corresponding bits in IFRO are set.

e Error State

When an error occurs while in the USB communication state, this state is entered. In the case
of a transition to the error state, there is a problem with the USB communication contents.
When communication is performed normally, there are no transitions to the error state. If the
error state is entered, the firmware should be reexamined. In order to recover from the error
state, perform a power-on reset or a manual reset.

Rev. 1.0, 04/03, page 48 of 78
RENESAS

5.2 USB Communication State

The USB communication state can be further divided into three states according to the transfer
type (see figure 5.2). When an interrupt occurs, first there is a transition to the USB
communication state, and then there is further branching to a transfer state according to the
interrupt type. The branching method is explained in section 6, Sample Program Operation.

JUSB communication state

Jajsuel} [01U0D
lejsuel) ui-yng
lejsuel) Jno-ying

DoBulk.c

DoRequest.c
oControl.c

UsbMain.c

Figure 5.2 USB Communication State

Rev. 1.0, 04/03, page 49 of 78
RENESAS

53 File Structure

This sample program consists of eight source files and nine header files. The overall file structure
is shown in table 5.1. Each function is arranged in one file by transfer method or function type.

Table 5.1 File Structure
Filename Main purpose
Makes microcomputer initial settings
StartUp.c) P g
Clears ring buffer
. Discriminates interrupt factors
UsbMain.c

Sends/receives packets

DoRequest.c

Processes setup commands issued by host

DoControl.c

Executes control transfer

DoBulk.c

Executes bulk transfer

DoRequestPrinter Class.c

Processes printer-class commands

ppout.c

Controls ring buffer
Initializes printer
Outputs data to printer

AsmFunction.src

Makes stack settings

CatProType.h

Declares prototypes

CatTypedef.h

Defines basic structures used in the USB firmware

SysMemMap.h

Defines SH7727SE memory map addresses

SetPrinterinfo.h

Makes initial settings of variables and definition of constants

needed to support printer class

SetUsblnfo.h

Makes initial settings of variables needed to support USB

SetSystemSwitch.h

Sets system operation

SetMacro.h Defines macros
SH7705.h Defines SH7705 registers
ioaddr.h Defines Ultra I/O registers

Rev. 1.0, 04/03, page 50 of 78

RENESAS

54 Purposes of Functions

Table 5.2 shows functions contained in each file and their purposes.

Table 5.2-1 UsbMain.c
File in Which Stored

Function Name

Purpose

UsbMain.c

Discriminates interrupt factors, and calls

BranchOfint function according to interrupt
GetPacket Writes data transferred from the host
controller to RAM
Writes data transferred from the host
GetPacket4 controller to RAM in longwords (provided for
ring-buffer)
Writes data transferred from the host
GetPacket4S controller to RAM in longwords (not provided
for ring buffer, full-speed version)
PutPacket Writes data for transfer to the host controller
to the USB module
Writes data for transfer to the host controller
PutPacket4 to the USB module in longwords (provided
for ring buffer)
Writes data for transfer to the host controller
PutPacket4S to the USB module in longwords (not
provided for ring buffer, full-speed version)
SetControlOutContents Overwrites data with that sent from the host
SetUsbModule Makes USB module initial settings
ActBusReset Clears FIFO on receiving bus reset
Performs USB cable connection interrupt
ActBusVcc o s
(not used in this sample application)
ConvRealn Reaq§ data of a specified byte length from a
specified address
ConvReflexn Reads data of a specified byte length from

specified addresses, in reverse order

In UsbMain.c, interrupt factors are discriminated by the USB interrupt flag register, and functions
are called according to the interrupt type. Also, packets are sent and received between the host
controller and function modules.

Rev. 1.0, 04/03, page 51 of 78

RENESAS

Table 5.2-2 StartUp.c

File in Which Stored Function Name

Purpose

CallResetException

Performs the operation for the reset
exception and calls the following function

CallGeneralExceptions

Calls the function for the general exception
except for the TLB miss

CallTLBMissException

Calls the function for the TLB miss

Callinterrupt

Calls the function for the interrupt request

StartUp.c)
SetPowerOnSection

Initializes modules and memory and
transfers execution to main loop

_INITSCT

Copies variables with initial values to RAM
work area

InitMemory

Clears RAM area used in bulk
communication

InitSystem

Pull-up control of USB bus

Upon power-on reset or manual reset, the CallResetException is called. Here the SH7705 initial
values are set. Then, SetPowerOnSection clears RAM areas used in control transfer and bulk

transfer.

Table 5.2-3 ppout.c

File in Which Stored Function Name Purpose
Monitors the empty space in the buffer and
) temporarily stops bulk-out transfer if
ActPrintOut necessary
Calls bulk-out functions
Monitors the empty space in the buffer and
) restarts bulk-out transfer if necessary
LptMain .
Passes the read pointer as argument to
ppout.c LptPortWrite
LptPortOpen Initializes printer
LptPortWrite Outputs data from parallel port
parallel_conf Initializes Ultra I/O parallel port
Reads data from Ultra I/O configuration
read_w :
register
write_w Writes data to Ultra I/O configuration register

In ppout.c, print data stored in RAM is written to the Ultra I/O register, and strobe and other

signals are controlled to output data to the printer.

Rev. 1.0, 04/03, page 52 of 78

RENESAS

Table 5.2-4 DoRequest.c

File in Which Stored Function Name Purpose
DecStandardCommands Decodes command issued by host
DoRequest.c controller, processes standard commands

DecVenderCommands Processes vendor commands

During control transfer, commands sent from the host controller are decoded, and commands are
processed. In this sample program, a vendor ID of 045B (vendor: Renesas) is used. When the
customer develops a product, the customer should obtain a vendor ID at the USB Implementers'
Forum. Because vendor commands are not used, DecVenderCommands does not perform any
action. In order to use a vendor command, the customer should develop a program.

Table 5.2-5 DoControl.c

File in Which Stored Function Name Purpose

ActControl Controls the setup stage for control transfer

Controls the data stage and the status
ActControlln stage for control transfer (data stage
transferred in in direction)

DoControl.c Controls the data stage and the status
ActControlOut stage for control transfer (data stage
transferred in out direction)

Allocates the data stage and the status
ActControlInOut stage of control transfer to ActControlln and
ActControlOut

When a control transfer interrupt (SETUP TS) is input, ActControl acquires the command, and
decoding is performed by DecStandardCommands to discern the transfer direction of the
command. Then, if the control transfer interrupts (EPOo TS, EP0Oi TR, and EPOi TS) are occurred,
the data stage and the status stage are performed by ActControlln or ActControlOut which are
called depending on the transfer direction by ActControllnOut.

Table 5.2-6 DoBulk.c

File in Which Stored Function Name Purpose
ActBulkOut Performs bulk-out transfer

DoBulk.c ActBulkin Performs bulk-in transfer
ActBulkinReady Performs preparations for bulk-in transfer

Processing related to bulk transfer is performed. ActBulkInReady is used only in bulk-in transfer.

Rev. 1.0, 04/03, page 53 of 78
RENESAS

Table 5.2-7 DoRequestPrinterClass.c

File in Which Stored Function Name Purpose

DoRequestPrinterClass.c ~ DecPrinterClassCommands Processes printer-class command

Processing for printer class commands is performed. In this sample program, an IEEE 1284
database ID is not used, and so 0 is output. When using an IEEE 1284 device ID, the output value
should be set by the customer.

Figure 5.3 shows the interrelationship between the functions explained in table 5.2. The upper-side
functions can call the lower-side functions. Also, multiple functions can call the same function. In
the stationary state, interrupt function Calllnterrupt calls BranchOfInt, and BranchOfInt calls other
functions. Figure 5.3 shows the hierarchical relation of functions; there is no order for function
calling. For information on the order in which functions are called, please refer to the flow charts
of section 6, Sample Program Operation.

CallResetException

SetPowerOnSection
I
I [I I I
LptMain LptPortOpen InitSystem InitMemory _INITSCT
|
[]
arallel f SetUsbModul
LptPortWrite PEICIELEE etsooduie
write_w read_w

Callinterrupt

BranchOfInt

ActControllnOut
I I
ActControl ActControlOut ActControlln ActPrintOut ActBulsReset

DecStandardCommands GetPacket SetControlOutContents PutPacket

ActBulkOut

ConvReflexn DecPrinterClassCommands

DecVenderCommands GetPacket

Figure 5.3 Interrelationship between Functions

Rev. 1.0, 04/03, page 54 of 78
RENESAS

Section 6 Sample Program Operation

In this chapter, the operation of the sample program is explained, relating it to the operation of the
USB function module.

6.1 Main Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers of
internal peripheral modules are initialized. Next, reset interrupt function CallResetException is
called to process the reset exception and to call function SetPowerOnSection. Figure 6.1 is a flow
chart for the operation from the reset interrupt to the stationary state.

Microcomputer reset
CallResetException
SetPowerOnSection

£ | Microcomputer initial settingsl
\ | RAM is cleared to 0 |

| Variables are initializedl

After initial values have been set,
this program enters the main loop. -
RAM areas are constantly monitored Y

for the presence of pint data. If print
data is present, the data is output to
the printer as it appears.

rint data present?

| Output to printer? |

L

Figure 6.1 Main Loop

Rev. 1.0, 04/03, page 55 of 78
RENESAS

6.2 Types of Interrupts

As explained in section 5.1, State Transition Diagram, the interrupts used in this sample program
are indicated by the interrupt flag register O (IFRO); there are a total of eight types of interrupts.
When an interrupt factor occurs, the corresponding bits in the interrupt flag register are set to 1,
and a USIO interrupt request is sent to the CPU. In the sample program, the interrupt flag registers
are read as a result of this interrupt request, and the corresponding USB communication is
performed. Figure 6.2 shows the interrupt flag registers and their relation to USB communication.

Interrupt flag register 0 (IFRO)

Bit: 7 6 5 4 3 2 1 0

EP1 EP2 EP2 |SETUP| EPOo | EPOI EPOi

BitName: [BRST| ryy) [TR |empTy| Ts s | TR TS

Cable connection Bulk-out transfer Bulk-in transfer Control transfer

Interrupt flag register 1 (IFR1)

Bit: 7 6 5 4 3 2 1 0
. EP3 EP3
g — _ — — |VBUSMN
Bit Name: R TS VBUSF
Not used Not usedx Not used

Note: Because this sample program does not support interrupt transfers, the interrupt associated with
EP3 is not used.

Figure 6.2 Types of Interrupt Flags

Rev. 1.0, 04/03, page 56 of 78
RENESAS

6.2.1 Method of Branching to Different Transfer Processes

In this sample program the transfer method is determined by the type of interrupt from the USB
module as describe in section 5, Overview of the Sample Program. Branching to the different
transfer methods is executed by BranchOfInt in UsbMain.c. Table 6.1 shows the relations between
the types of interrupts and the functions called by BranchOflInt.

Table 6.1 Interrupt Types and Functions Called on Branching

Register Name Bit Bit Name Name of Function Called
0 EPOI TS ActControlInOut
1 EPOi TR ActControlinOut
2 EPOo TS ActControlInOut
3 SETUP TS ActControl
IFRO 4 EP2 EMPTY ActBulkin
5 EP2 TR ActBulkinReady
6 EP1 FULL ActPrintOut
7 BRST ActBusReset

The EPOiTS and EPOoTS interrupts are used both for control-in and control-out transfer. Hence in

order to manage the direction and stage of control transfer, the sample program has three states:
TRANS_IN, TRANS_OUT, and WAIT. For details, refer to section 6.4, Control Transfers.

In the SH7705 hardware manual, operation of the USB function module when an interrupt occurs,
and a summary of operation on the application side, are described. From the next section, details
of application-side firmware are explained for each USB transfer method.

Rev. 1.0, 04/03, page 57 of 78
RENESAS

6.3 Interrupt on Cable Connection (VBUS, BRST)

This interrupt occurs when the cable of the USB function module is connected to the host
controller. On the application side, after completion of initial microcomputer settings, a
specialized port is employed to pull-up the USB data bus D+. By means of this pull-up, the host
controller recognizes that the device has been connected (figure 6.3).

USB function module Sample program

—l | SetPowerOnSection | |-

. Port D1 set as an output port
' Microcomputer initial to control D+ pull-up
' settings § *
Cable disconnected \ # \
\L/ngés=0 t Port M6 set to VBUS
core rese E Output port D1 set to v
! high and D+ pull-up
! enabled Port D1 set to low and
Cable connected D+ pull-up desabled
| USB cable connected | ! ¢ *
' Main loop USB interrupt level
! selected with IPRF
: Clock to the USB module
D+ pull-up enabled? : stopped by STBCR2/MSTP9
E USB source clock set
! as an external input clock
UDC core reset E by UCLKCR
canceled ' *
E Internal bus transceiver set
| AdBusReset | to be used by XVERCR
Bus reset signal received FI0 interrupt
IFR/BRST=1 generated +
Bus reset interrupt Interrupt flag cleared Clock supply to the
+ USB module started by
STBCR2/MSTP9
Wait for setup command All FIFOs cleared +
receive complete interrupf] + Port D1 set to high and
) D+ pull-up enabled
Al stall bits cleared

v

Media status variables cleared

Figure 6.3 Interrupt on Cable Connection

Rev. 1.0, 04/03, page 58 of 78
RENESAS

6.4 Control Transfers

In control transfers, bits O to 3 of the interrupt flag registers are used. Control transfers can be
divided into two types according to the direction of data in the data stage (figure 6.4). In the data
stage, data transfers from the host controller to the USB function module are control-out transfers,
and transfers in the opposite direction are control-in transfers.

Control-out transfers

Host controller

ﬂ,

USB function module

Control-in transfers

M (Data stage)

Host controller

ﬂ

USB function module

M (Data stage)

Figure 6.4 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (figure 6.5).
Further, the data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. Hence
the same interrupt flag is used to call a function to perform control-in or control-out transfers (cf.
Table 6.1). For this reason, the firmware must use states to manage the type of control transfer
currently being performed, whether control-in or control-out, (figure 6.5) and must call the
appropriate function. States in the data stage (TRANS_IN and TRANS_OUT) are determined by

commands received in the setup stage.

Rev. 1.0, 04/03, page 59 of 78
RENESAS

' Setup stage ' Data stage ' Status stage
Control-in | SETUP (0) || IN (1) || IN (0) | | IN (0/1) || OouT (1) |
DATAO : DATA1 DATAO DATA0/1 DATA1
Firmware state El WAIT |E| TRANS_IN |E WAIT E
controlout || seTup© |i| outry || out@ | | outomy [i| way |
: DATAO i\ DATA1 DATAO DATAO/1 | DATA1
Firmware state ;| WAIT || TRANS_OUT | WAIT
Nodata | [seTup (o) |: Lon]
| DATA0 ! '\ DATA1
Firmware state || WAIT |:[TRANS_ouUT © WAIT

Figure 6.5 Status in Control Transfers

64.1 Setup Stage

In the setup stage, the host and function modules exchange commands. For both control-in and
control-out transfer, the firmware goes into the WAIT state. Depending on the type of command
issued, discrimination between control-in transfer and control-out transfer is performed, and the
state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is determined.

e Commands for control-in transfers: ~ GetDescriptor (TRANS_IN) Standard command
GetDevicelD (TRANS_IN) Class command
GetPortStatus (TRANS_IN) Class command

e Commands for control-out transfers: SoftReset (TRANS_OUT) Class command

Figure 6.6 shows operation of the sample program in the setup stage. The figure on the left shows
operation of the USB function module.

Rev. 1.0, 04/03, page 60 of 78
RENESAS

USB function module

—

Sample program

Setup token received

v

8-byte command data
received at EPOs

v

Application processing

>MV

command?
Yes Automatic
Y processing by
USB module

Setup command receive
complete flag set
(IFR/SETUP TS=1)

USIO interrupt

EPO00/EPOi FIFO cleared

v

I Firmware state set to WAIT I

Read pointer and write pointer for
command buffer initialized
GetPacket4S
|

| Readdatafrom EPOs FIFO |

\

” BranchOfint ”
” ActControl J
/
SETUP TS flag cleared

genarated
+ EPOs read complete bit set to 1
| To data stage | (TRG/EPOs RDFN = 1)
F I DecStandardCommands
Yes
Vender command’?>
* No
DecVender DecPrinterClass
Commands Commands
No
A No Corresponding
Corresponding Corresponding stanwi?éﬁ gﬁgmwdand
command? command? be processed?
No
Yes Yes Yes
¢
v Process preparation of
Get/Set Descriptor
Firmware sate set to STALL Y Y >
/
1es Firmware sate >
STALL?
No
is IN? No
Y
Firmware state set to Firmware state set to
TRANS_IN TRANS_OUT
T T
Y Y
; . Set interrupt enable bit for Set interrupt enable bit for
| Mask EPOV/EP interrupt | Control In Transfer | Control Out Transfer |
+ | PutPacket ||
| Set EPO STALL bit | Write data to FIFO
' >
\
I To data stage I
Figure 6.6 Setup Stage

Rev. 1.0, 04/03, page 61 of 78

RENESAS

6.4.2 Data Stage

In the data stage, the host and function module exchange data. The firmware state becomes
TRANS_IN for control-in transfers, and TRANS_OUT for control-out transfers, according to the
result of decoding of the command in the setup stage. Figures 6.7 and 6.8 show the operation of
the sample program in the data stage of control transfer.

USB function module

In-token received

Sample program

BranchOflnt
I | ActControllnOut | I

Firmware state is
TRANS_OUT?

To Control-out

—» transfer

TRG/EPOs RDFN
G/EPOs (figure 6.8)

setto 1?

NO

ActControl In
When data direction changes,
data stage is completed and
status stage is entered.

YES

Receive complete interrupt?
(IFRO/EPO0 TS)

Valid data in
EPOi FIFO?

A 4

| Status stage I

IFRO/EPOI TS
interrupt flag cleared

PutPacket I

EPOi transmit flag set USIO interrupt generated v

(IFRO/EPOITS=1)

Data written to EPOI
data register

v

EPOi packet cnable bit set to 1
(TRG/EPOi PKTE=1)

Figure 6.7 Data Stage (Control-In Transfer)

Rev. 1.0, 04/03, page 62 of 78
RENESAS

|
|
USB function module H Sample program

Out-token received ' BranchOfint
” ActControllnOut “

1 is written to To Control-in
TRG/EPOs RDFN? Firmware state is L) transfer
TRANS_OUT? (figure 6.7)
P YES YES
A 4 ActControlOut
|Data received from hostl v

When data direction changes,
data stage is completed and
status stage is entered.

eceive complete
interrupt?
(IFRO/EPO0 TS)

 Geo
Uslo

[EPOO receive complete flag set| _interrupt genarated
(IFRO/EPOO TS=1)

Status stage

EPOo receive complete
flag cleared
(IFRO/EP0O0 TS=0)

GetPacket I

A4

Data read from EPOo receive
data size register (EPSZ00)

v

Data read from EPOo
data register (EPDROo)

v

EPOo read complete bit set to 1
(TRG/EPOo RDFN=1)

TRG/EPOs RDFN
setto 1?

Figure 6.8 Data Stage (Control-Out Transfer)

Rev. 1.0, 04/03, page 63 of 78
RENESAS

64.3 Status Stage

The status stage begins with a token for the opposite direction from the data stage. That is, in
control-in transfer, the status stage begins with an out-token from the host controller; in control-
out transfer, it begins with an in-token from the host controller.

USB function module Sample program

BranchOfint
I | ActControlInOut | I

Firmwar$ YES To Controk-out

| Out-token received |

y
|0 byte received from hostl

p transfer
.@ ' TRANS_OUT? -
A 4 USIO interrupt - (figure 6.10)
. generated NO
EPOo receive complete flag set| L |
(IFRO/EPOo0 TS=1) ActControl IN
3 . [—

v
Control transfer end

Receive complete interrupt?

(IFRO/EP00 TS) YES

y
EPOo-related interrupt
flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

v

EPOo receive complete flag set to 1
(TRG/EPOo0 RDFN=1)

v

| Control-in transfer end

Data stage

Figure 6.9 Status Stage (Control-In Transfer)

Rev. 1.0, 04/03, page 64 of 78
RENESAS

USB function module

In-token received

generated

Valid data in

USI0 interrupt;

Sample program

—}” BranchOfInt | |

EPOi FIFO?

i

EPOi transmit complete flag
set (IFRO/EPQo TS=1)

USIO interrupt

generated

Control transfer end

: | ActControllnOut | I

Firmware state is NO

TRANS_OUT?

v

To Control-in
transfer
(figure 6.9)

YES

EPOo receive
complete interrupt?
(IFRO/EPOO TS)

Data stage

EPOi transmit request interrupt?
(IFRO/EPO0 TS)

YES

EPOi transfer request flag cleared
(IFRO/EPOi TR=0)

I SetControlOutContents I

EPOi packet enable bit set to 1
(TRG/EPOi PKTE=1)

EPOo transmit complete flag
cleared (IFRO/EPOi TS=0)

l

Firmware state
changed to WAIT

Figure 6.10 Status Stage (Control-Out Transfer)

RENESAS

Rev. 1.0, 04/03, page 65 of 78

6.5 Bulk Transfers

In bulk transfers, bits 4 to 6 of the interrupt flag register are used. Bulk transfers can also be
divided into two types according to the direction of data transmission (figure 6.11).

When data is transferred from the host controller to the USB function module, the transfer is
called a bulk-out transfer; when data is transferred in the opposite direction, it is a bulk-in transfer.

Bulk-out transfers

Host controller

USB function module

—]
| Data |

Bulk-in transfers

Host controller <E:| USB function module

| Data I

Figure 6.11 Bulk Transfers

Rev. 1.0, 04/03, page 66 of 78
RENESAS

6.5.1 Bulk-Out Transfers

The operation of the sample program in bulk-out transfers is shown in figure 6.12.

USB function module

Out-token received

EP1 FIFO empty?

Data received from host

EP1 FIFO full status set generated

USIO interrupt

Sample program

USBFIO interrupt
generated

BranchOfint

USBIFRO/EP1FULL

ActPrintOut
v

s empty space in bulk YES
transmit data area smalle

EP1 FIFO full status interrupt

than maximum packet disabled
ize x 87
NO
v

YES

Bulk transmit data can be

ActBukout ||

(IFRO/EP1 FULL=1) A

]

|

NO

Both EP1 FIFOs empty?

EP1 FIFO full status cleared
(IFRO/EP1 FULL=0)

accessed in longwords?,

[Gerpacker]]

Data read from EP1 receive
data size register (EPSZ1)

v

GetPacket4 []

Data read from EP1 receive
data size register (EPSZ1)

v

Y

Data read in bytes from EP1 data
register (EPDR1) and stored in buffer

Data read in longwords from EP1 data
register (EPDR1) and stored in buffer

v

¥

EP1 read complete bit set to 1
(TRG/EP1 RDFN=1)

EP1 read complete bit set to 1
(TRG/EP1 RDFN=1)

A

Figure 6.12 Bulk-Out Transfers

RENESAS

Rev. 1.0, 04/03, page 67 of 78

6.5.2 Bulk-in Transfers

Figure 6.13 shows the operation of the sample program in bulk-in transfers.

USB function module

In-token received

USIO interrupt
generated

Sample program

p{ | BranchOfint

USBIFRO/EP2 TR interrupt

ActBulkinReady I

(IFRO/EP2 TR=0)

EP2 transfer request flag cleared

A4

(IERO/EP2 EMPTY)

EP2 FIFO empty interrupt enabled

On enabling empty interrupt,
u| interrupts are generated

YES EP2 empty status set

?
EP2 FIFO empty? (IFRO/EP2 EMPTY=1)

USIO interrupt generated

EP2 empty status cleared
(IFRO/EP2 EMPTY=0)

Is transmit data a YES

short packet?

NO

ActBukin ||

disabled

EP2 FIFO empty interrupt

(IERO/EP2 EMPTY=0)

ulk transmit data can be
accessed in longwords?

NO

PutPacket I

Data written
in bytes

YES

PutPacket I
Data written
in longwords

EP2 packet enable bit set to 1
(TRG/EP2 PKTE=1)

EP2 packet enable bit set to 1
(TRG/EP2 PKTE=1)

Figure 6.13 Bulk-In Transfers

Rev. 1.0, 04/03, page 68 of 78

RENESAS

Section 7 Analyzer Data

In this chapter, we look at how measurement is carried out with the USB Inspector, a USB
protocol analyzer made by CATC (http://www.catc.com), using the USB function module in the
SH7705, and at what happens to the data as it actually flows along the bus. The following gives
the description for control transfer when a device is connected and bulk-out transport in printing
out as examples. For more detailed information on packets, see section 2.6.1.

Note: The Packet # found in front of each packet is the packet number used when measuring.

The Idle found at the end of each packet indicates the idle between packets (see
sections 2.2 and 2.6).

7.1 Control Transfer When a Device Is Connected

Figure 7.1 shows the measurement made, with a device connected to the host controller, while
shifting from the power-on state (the power is supplied to Vbus) until the configuration state (the

device is ready for being used (configuration state). For details on the state transitions, see section
2.7.1.

Though the packet scheduling may differ depending on the host controller, the command flow to
the configuration state is always the same.

Rev. 1.0, 04/03, page 69 of 78
RENESAS

((e21n0q)J01dUIDSEQ19Y)) JojSuel] |043U0D

) Jajsuel) |04jU0D

SSeIppy 19S

(

m“m « Reset signal. A transition is made from power-on state to default state.
19.21 mi cands L4893

Frome A [REiEg
ﬂ 00000001 | OAS Qn 146 woa || 113as | * SOF packet Frame
(1ms),
Froms A RS
m Q0000031 DshS ERETS Oald 11285
* Only SOF packets continue in this period
Frome 4
Q0000031 DS Dx1Fd Dx10 £
/ m « Setup token packet (default address used)

167 = Frame
[Feow=l? | C5ee DaTA [TFCiE | Setup (1ms)
[788 || ooo0a0ai | owca B0 0F 0001 00 00 40 00 OKBBQQ « Data packet (8 bytes) stage
[Fack=l® | #=F Gethescnptor (Device) command
[788 |[00000001 | owae || 11801 | ACK handshake packet
| Packal ¥ || Sync I SOF CRCE
| 17d || LLLLTTE] | [EFr] ax1F1 Qw2 5
- scoch I m « In token packet (default address used) +

171 Q000001 D9 [GFTaL] [AP%] Dwdd £

Frame
DeTA Data (1ms
7z 00000001 I 12 01 1001 00 00 00 04 OrBEEE a < Data packet (8 bytes) i ()
stage (in)
[Fackel® | 5% | (device descriptor information)
| 173 || Q000001 I Dxd B | 11797
| Packal & || Sync I SOF CRCE
| 174 || Q00001 I DidS Qs1F2 [AFtli] 11365
| Fackal & || Sync SOF CRCS
| 175 || Q0000031 I DS Dx1F3 dx1F
| FPackal & || Sync I auT ENGE .
L | B T I e I s « Out-token packet (default address used) Frame
AT AT Status “
[Fackal® | OSSN == | ms)
7T) <« Data packet (0 byte) stage
Fackzl & Syno I Y=
\l 174 __Q00aat I Dxd B | 11866
[Fackal® || Syne EEE FE=rat
| 172 || Q00001 I [AFY-Y3 Ox1Fd Qw01 2d&2
140 Slarl al Pasal
Reset signal is input again

141 10.59 millisecands 2432
| Fackzl & || Syno | SOF Framz &
| 142 || Q0000001 I QxAS Dx1FF [iFLi]=) 11264

* Only SOF packets continue in this period
| Fackal & | | Sync I SOF CRCS
293 || [EELLGEGE] I APy Dx2EE PTr] 5
P kel &
KH ﬁ « Setup token packet (default address used)
s Frame
| Fackel A | [0 [CATa0 DATA [CRCTE | etup 1ms

295 || [LLLTTTag] I [P a0 Q5 02 00 Q0 0 9D OO OasD?&B « Data paCket (8 bytes) stage ()

Fackel & Eyne BT (SeLAddress (address: 2) command

Q0000001 Ord B 11801
| Packel & | | Sync I SOF CRCE
297 || Q0000001 I DndS Da2éF as19 3

Packﬂlh‘ Sync In ADDR Iiﬂ]ﬁ.-CRCS

H 00000801 | 0x98 | 0s00 | Os:8 | 0:08 ms « In-token packet (default address used)
s Frame

_Pack.el.ﬁ' tatus

T . « Data packet (0 byte) stage (1ms)
| Packal & | | Sync I X

[=¢¢ |[eg9ooocor | owa& || 11aat | < ACK handshake packet

| Fackel & || Sync I SOF CROS
| ETaE] || [EELLGEGE] I APy D270 Dx0E 11985
* Only SOF packets continue in this period
Rev. 1.0, 04/03, page 70 of 78

RENESAS

Note: A transition is made to address state.

| Fackal & | | Sync I SOF SRS
509 LTI TudS ax274 DD 5
| Il I

_Pack.el [}
=T 3 « Setup token packet (address: 2) ?
Frame
[Fachel® | A L TA Setup
[=71 || ooo0acal | owes 80 06 00 01 00 00 12 00 a7 ZF & <« Data packet (8 bytes) stage (1ms)
[Fechel® Eync BT (Get_Descriptor (Device) command)
| S12 || Q0000001 I Ord B | 11801
| Packel & | | Sync I SOF CRCE
| G153 || Q000001 I DndS Da27a as1F 5
H RN = CF [©FCS | .
EiL 00000001 | 098 | 0s02 | 08 | 0715 T < In-token packet (address: 2) Frame
(@)
g Fackal ¥ TATTE Data stage
% — [=Re] Data packet (8 bytes) (in) 1/3 (1ms)
=1 [Fachel® | 5<% | . (device descriptor information)
8 [316 || 0990001 [&wdB || 11757 PID:DATAT
(2]
Q [Fackal® || Sync R TRCE m
6 | 317 | | Q0000001 I APy Q2T A ax1b g
i~ LR =roF | =Rcs « In-token packet (address: 2)
g S14a Q000001 A= As02 [iFta] as15 5 F
rame
] [Fecel? | oo DATA e Data stage
-g_ [3@ || ooodacal | owca 5B 04 010000010800 o:7755 || 9 | <« Data packet (8 bytes) (in) 2/3 (1ms)
S [Pkl | A <% | PID:DATAO (device descriptor information)
D | G20 || QD000 I Ord B | 1173948
<.
Q | Fackel & || Sync | SOF TRCE
< [=7 |[00000001 | owsE 0n2IE Ta02 5
H L =CF | cRos .
S22 Q000001 [AEE= Aw02 [aFa) 0515 5 « |n_t0ken paCket (address' 2) Frame
Data stage
Fache & C 1ms
_ « Data packet (2 bytes) (in) 3/3 ()
[Fe=l? | = PID:DATA1 device descriptor information) ¢
| G2d || __QQ0ad1 I QsdE | 11445
| Fackal & || Sync I SOF CRCS
| G325 || Q0000001 I DA Dr2 T as1s &
[Fecel? | EE] ouT ENGF | SFEE | Outtok ot (add 5
[328 |[00000001 [Osd7 | 0s0z | 00 | w15 | < Out-token packet (address: 2) Frame
Status
(1ms)
o 27 & | « Data packet (0 byte) stage
S Fachal & Syne =
g S248 Q0000001 Ord B 114885
g [Fackal® || Bync [=9F ERCE
a | S29 || Q000001 I DshS Qw270 Qw03 11965
‘:'; [Feckel® | =oF TRCS
6 | G330 || Q0000001 I DA Ox2TE Qs &
@
— Packel &
's ﬁ « Setup token packet (address: 2) L
[0 N
5 [Fackal® = oA DA T4 [Croie | Setup Frame
=1 332 || 00o090ai | Geca 80 08 00 02 00 A A9 Ad aﬂszo & « Data packet (8 bytes) stage (1ms)
5]
% [Faehel® | =% (Get_Descriptor (config) command)
S [555 |[09000001 | GwdE || 11400
3
-

Rev. 1.0, 04/03, page 71 of 78

RENESAS

((Byuon)i01duosa@ 19n)) Jajsuel) [04JU0D

((Byuon)io1duosag 19n) Jajsuel} [04JU0D

[Fe=l¥ | = TACE
[35 |[00000dal | owés 0u27F TR 1E 5
= C0R Il Rl : :

335 00000001 | 0x9& | 0s02 | Os8 | 0#15 5 ¢ In-token packet (address: 2) Frame
[Fachald | EESE Data stage 1ms

T] « Data packet (8 bytes) (in) 1/2 ()
[Fackal & Sync (configuration descriptor information)

TEF || 000000a1 | TedE | 11798 PID:DATA1

Packal & Syne [T

334 00000001 | O#8E 04280 TROF
= #C0R il | :

339 00000001 | 0xd& | 0s02 | 0w | 0r15 7 < In-toke packet (address: 2) Frame
[Fackeld | 120 TRCTE | Data stage (1ms)
[540 |[0000001 | 0+c3 10 an8acE || 9 « Data packet (1 byte) (in) 2/2
I Pa::'::lﬁ Il Ojg;;m I 24‘31"; | PID:DATAO (configuration descriptor information) *

_ E
[Feo=l? | = TACE
[542 || 090000a1 | awhs 05281 @i 10 5
[Feoel® |0 a0 ENGF | GRCE | """
[585 |[09000001 | Gwa7 | 0s02 | owo | Tw15 3 « Out-token packet (address: .
T Status rame
A 1

a4 aoa0aanl | dsbz [RFlaTili] & « Data packet (0 byte) stage (1ms)
[Feoml? | 255 |
[335 |[ooo0acail | o || 11a&s
[Fackeld || Eyne [55F ERCE m
T 04282 Taiz || 11965 Frame
[Fe=l? | e Frame § (1ms)

[537 |[0990033l | osas 0u283 (L) 5

Pachal§
ﬁ « Setup token packet (address: 2) $ *
[Fao=l? | C5ee DT [TFoiE] Setup Frame
[335 || ooooooat | owes B0 08 00 02 00 00 FF 00 axgns <« Data packet (8 bytes) stage (1ms)
[Fack=l® | #=x (Get_Descnptor (config) command) *
[350 |[00000001 | GwaE || 11800 *
[Feoel? | IEE = TREE
[551 |[009090a1 | dwAs Onzd [TEH] 5

352 00000001 | Ox9& | 0#02 0w 15 5 « In-token packet (address: 2)

Frame
Data stage

553 00000001 | 0ib2 0902 2000010100 40 OREO4F a « Data packet (8 bytes) (in) 1/5 (1ms)

IPa;;lff H Ooggggm | :?; I% PID:DATA1 (configuration descriptor information) *
- :
| Fao=l? | = TRES

TE5 || 00000001 | GRS 04285 s 5
m 002‘3‘3301 06 " ENCE ‘3':“13: ﬁ < In token packet (address: 2) *

Frame
[Fackel® Syne CATAD Data stage
[557 |[00000001 | o+ « Data packet (8 bytes) (in) 2/5 (1ms)
Ipa;;u H Sy I AT I L QD:DA-D (configuration descriptor information) *
[Fachel® Syne SOF TR
[350 |[00909001 | asas 05288 0w0E 5
[Fechel? | = I ALCR [Rt :

a.;aa ooogggm 0s98 | 0n02 Ta 1S 7 « In-token packet (address: 2)

Frame
Fackal ¥ DT
== M 0 packet (5 byos) e

Rev. 1.0, 04/03, page 7

(configuration descriptor information) :
PID:DATA1 Data stage

(in) 3/5

2 of 78
RENESAS

((Byuon)i01duosag19n) Jajsuel) |04U0D

((e21n0g)J01dUosa @ 19Y)) Jajsuel] |043U0D

Fackal & Swnc BCH
[382 [LELLTGLE] Dud B 11797 +
| Packel & || Syne LRSS
G363 || 00330001 I Qa5 Qw2a7T GEXE] 3
Packﬂl [} Sync ADDR EMCP | TRCS .
oooooom Qwdé | Ond2 | Ox0 | Ol 5 « In-token packet (address: 2) * Frame
Data stage “
Pachal & TRCIE ms)
&% [o] m « Data packet (8 bytes) (in) 4/5
[Fecrel® | PID:DATAO (configuration descriptor information) *
| SEE || [LTiTalala] I Quad B | 11799
Fackal & Swnc CRCS
_0aaaaa Qa5 dx288 AR}
H il =MCT | CRoS .
] 00000001 | Os38 | Qw02 | 00 | Os15 5 < In-token packet (address: 2)
DaTal AT R « Data packet (0 byte) Data stage ~ Frame
=])) . in) 5/5 1ms
(when all descriptor information has been (in) ()
| Fackal & || Syne AR .
[=70 || 9o0aooai | 7B | 11862 PID:DATA1 transmitted)
| Packal & || Syne I SOF LCRCE Frame
| ETA || Q030001 I Qahd Q289 Q51E 11965
(1ms)
[Fackeld || Sync [=oF CRGS
| ST || 00330001 I Quh S EFEE) as1s g
[Fe=hel® |] 20T m ENDR [TRCE H
[575 |[o0eccocal | owa7 | Owd2 | awo | 015 _| « Out-token packet (address: 2) * Frame
Fackal & CATAA D Tt CRCE
[E2EE] « Data packet (0 byte) Status (1ms)
=74 & stage
| Fackal & || Syne I AR
| 375 || 00330001 I Qad B | 11865
| Fackel & ” Sync SRIE
| STE ” Q000001 I APy Ox286 [iFTikd 119&5
* Only SOF packets continue in this period
| Fackal & || Syno CRCS
425 | | EGLLGELE] I DuhE Dx 184 D02 5
P kal & SETUP ACCR LRSS
/ H - ﬁ « Setup token packet (address: 2) *
Frame
[Fackal® || Eync CA TAD AT TRCTE Setup (1ms)
[227 || 900oadai | 0st= 80 06 0a 01 00 A0 12 00 Ga0TZF & <« Data packet (8 bytes) stage
[Pkl | FE] (Get_Descriptor (Device) command)
| 4248 || Q030001 I OrdE | 11801
| Packal & || Syns SOF LTRCE
429 || LT TiTalag] I [aFr] EERET asil g
Packﬂl [Sync ACDR EMNCFP CROS .
00000001 0#9& | Ox02 [AFT) LTI £ < In-token packet (address: 2) * Frame
Fackal § Data stage (1ms)
[T S0]
a31 00000001 | 0#b2 1201 10010000 00 08 O#G8EE a | < Data packet (8 bytes) (in) 1/3
[Pack=t# | N >=F | device descriptor information
[432 |[oooooool | owaB || 11797 PID:DATA1 (P)
| FPacksl & || Sync I SOF Frama &
433 | | Q030001 I [apY-Y3 D18 0x03
Packﬂl [Sync ADDR EMNCF CRCS .
00000001 [aF3=T1 Qxd2 Dwd asls g « In-token paCKet (address' 2) F
Data stage rame
Fackal & Sync CaTad CRS1E N
I A3 H 0000000 1 I T [] ﬁ « Data packet (8 bytes) (in) 2/3 (1ms)
[Fackel® | HER_| i (device descriptor information)
[#38 || 00000001 | OedE |[11797 | N\, PID:DATAO
| Packal® || Sync [=9F CRGE .
337 || 00000001 | OwAs 0% 180 LT3 5 <« In token packet (address: 2)
Packﬂl [] Sync ADDR EMCP CRCE
0000000 1 A= [aptaF] Dad as15 T :
Frame
(1ms)

Rev. 1.0, 04/03, page 73 of 78

RENESAS

((Byuon)ioidyosag1en) Jajsuely |04U0D

((e21n0Q)I01d !Josaq_la%a;sueu J0J3U0D

e « Data packet (2 bytes) Data stage
439 .
. . . . in
(device descriptor information) (in) 3/3
[Fockeld | ST A<t | PID:DATAT
| EEN] | | Q030001 OrdB | 11444
[Packeld | e TRCE
| 441 || Q00001 I [P Qs 14E dE1E =
[Fackel | NS <UT B[RS | ““““““ « Out-token packet (address: 2)
| 4d 2 | | Q030001 I Q@7 Qw02 Dwd I ax15 Frame
Status (1ms)

443 aaaa0aal a2 00000 a « Data packet (0 byte) stage

[Fackal® || SHync B +
\| 444 |[T 000001 | 0«48 || 11488

| Packal & | | Sync SRIE

| 445 | | Q00001 I [apY-Y3 Oz 18F a0l 11965

[Fachel® || Syne [S0F Frama §

| ddE | | LT TiTalag] | [aFr] Qsi9d asld g

_Packﬂl [

a7 5 « Setup token packet (address: 2) f Frame
[Fecielv | e o550 DATH Setup (1ms)

EEFI| | @00oaa01 [P 80 06 00 02 0 A0 99 91 OnF&2a & « Data packet (8 bytes) stage

FPackal & = ATH : e
I i H e [was I e (Get_Descriptor (config) command)
| Fackal & | | Sync I SOF Frama &
| 454 | | Q030001 I [ap-ty 05191 as09 5
Syne o Anch I « In-token packet (address: 2)

451 Q000001 DG Qw0Z Da15 5 Frame
[Fackeld | EEE Data stage 1ms

753 ﬁ « Data packet (8 bytes) (in) 1/5 (1ms)
[FackelF | E << | . (configuration descriptor information)
| 453 || Q000001 I Dxd B | 11797 PlDDATA1
| Fackal & || Sync I SOF CRCE
| 454 | | LLLLTTE] | [EFr] PREF] T 5
Syne LGN ='CF [SRS « In-token packet (address: 2)

455 Q000001 D9 Qw02 Dx15 £ Frame
[Peckal® | S| 520 4T, [SRCTE | Da_ta stage (1ms)
[#58][cooocoot | owcs 10 03 04 00 00 0Z 07 a1 0as22.32 « Data packet (8 bytes) (in) 2/5
I pa:;,;u H ajgggm I :‘i’; I i @:DAD (configuration descriptor information) +

[al i
| Pack=l # || Sync SOF CRCE
| 454 || Q000001 I DidS 05193 Oild 5
REEEER(eiim v co- B EGEn :

459 Q0000031 GPEr] Qw02 Dwd Dx15 7 <« |n_t0ken pa(:ket (addreSS. 2) Frame
[Fackeld | S0 Data stage 1ms

T a « Data packet (8 bytes) (in) 3/5 ()
[Fackal® | Eyne | . (configuration descriptor information)
| EER || LLLLTTE] I Qad B | 11797 PID:DATA1
| Fackal# | Hync SAF CRG5

482 || Q000001 I DuhS Dx194 Oxdh, £

Packﬂlfl' Sync IM ADCR ENCF LRSS P |n-t0ken packet (addl'eSS: 2)
00000001 DG Qw0Z Da15 7 .
[Fackel® | Sync FER Y] [Frame
| 484 || —000aa1 I D=3 Q0 OF a5 42 92 40 40 0 [APT:]syar:] a «— Data packet (8 byteS) (1 mS)

Rev. 1.0, 04/03, page 74

(configuration descriptor information)

PID:DATAO

of 78
RENESAS

Data stage
(in) 4/5

((Byuon)ioiduosag 1en) Jajsuely [0JJUOD

) J8JSuel] [041U0D

0 189

nByuo
N

(uoneus

| Fackal & || Sync I X |
| 485 || __00aad1 I OrdB | 11797 + ¢
| FPacksl & || Sync SOF CRCE
EEE || Q000001 I DudS 05195 ax15 5
Packﬂl [Sync ADCR IEEEE CRCS
oooooom OnDE | a2 T 1E 5 « In token packet (address: 2)
Frame
m « Data packet (0 byte) Data stage (1mg)
4aa (in) 5/5
Packal & Hyns X
I ECE] H 00400001 | GndE | 11862 L'D DA-@(when all descriptor information has been +
[Pachel® || Sync [=9F TROE transmitted)
| 470 || Q000001 I APy Dx 196 a1y 119&5
| Pack=l # || Sync I SOF CRCE
| 471 || Q000001 I DrdS Ds197 as048 5
| Facksl & || Sync I auT ENCF CROS
[#72_ |[09090001 | 087 | os02 | ded | Ga15 | « Out token packet (address: 2) f
Frame
Status
« Data packet (0 byte
73 & p (0 byte) stage (1ms)
| Fackal & || Sync X |
| 474 || EGLLGGE] I OrdB | 1148585 +
| Fack=l & || Sync | S0OF Framz &
| 475 || Q000001 I DudS 051948 ax18 11265
| Fachal & || Sync CRCE
47E || EGLLGELE] I DuhE 0199 Q0¥ 5
Packal &
/ ﬁ « Setup token packet (address: 2) f
Frame
[[Packel ¥ | e [CATea D4 T Setup (1ms)
478 || 60008001 [iF7e=] a0 43 a1 4a A0 A0 A 00 GwEdAd & « Data packet (8 bytes) stage
[Packel® || Syne ATK, |
| 479 || Q030001 I OrdB | 11802
[Packeld | e [=5F TRCE
[480 || 000001 | 0nAS D5 194 [T 5
ACDR EMNCFP CROS
EER] 00000001 | Ox9& | Osd2 | Osd | G#15 5 < In-token packet (address: 2) Frame
staws (1m9)
367] « Data packet (0 byte) stage
[Fackal® || Sync =3
| 4835 || EGLLGELE] I OndB | 114881
[Packeld || Sync [=°F SRS
[484 [00coacoi ["awaS | ow19E dals || 11965 Note: A transition is made to configuration state

* Only SOF packets continue in this period

Rev. 1.0, 04/03, page 75 of 78
RENESAS

(QI~eama@1en) Jajsuel; |0JjU0D

[Fackale || Hync SOF CRCS
*
[520 || coooooat | 0sA5 0w 1BF anl7

! « Setup token packet (address: 2)
sz21
s Frame
[Feel? | o0 AT etup 1ms
[522 |[ooooooal | owcm A1 00 00 00 00 00 F1 03 T+BEAE & | < Data packet (8 bytes) stage (1ms)
Fackal Syne ATH
523 00300001 Dud B 11799
[Fackeld | e SOF TR
| S2d ” [iaTalalalN] D5 0130 [aptal=}
) N so0R Sl KR
525 00000001 | Q#98 | Ox02 | 0s0 | 0#15 5 « Setup token packet (address: 2) f E
rame
« Data packet (0 bylte) . . Data (1ms)
g2 7 Note: IEEE1284 device ID data is returned in 0 byte stage (in)
[Pl 7 | e ==~ for evaluation. When the device is incorporated in
[5=F || ooooacai | &6 |[11aaz the system, return the device ID the user got.
Packal § Syne S0F SRSE
oS24 00300001 Dad5 0x121 Oxld 11965
[Fackale || Eyne S0F ERCE
| EE ” Q0300001 DiAd Qs 152 Q1
[FPackal &] Sync auT ENGF | GRS
[530 |[0ooooaai | owa7 | 002 | dsd | Tw 1 3 « Out-token packet (address: 2) E
rame
AT, Status
531 0Aa00aa 1 Onliz ORO000 & « Data packet (0 byte) stage (1ms)

[Fe==l¥ | 2%]
532 || 99990001 | asaB |[11885

Fackal# || Sync | S°F SRS
535 |[T 000000071 | 09sAF ERE==] GETE] 11965

Frame
(1ms) t

Fackel & ” Hywnc I SOF SRS
Sad ” [LTTTarag] I [AErY GERE=Y Qu17 11965

Frame
(1ms)

Fackel & Swnc S0F SRS
535 Q000001 [AFr Oz 15 [iFLiT:] 119E5

Note: The stationary state continues until a bulk transfer is performed.

Figure 7.1 Control Transfer When a Device is Connected

Rev. 1.0, 04/03, page 76 of 78
RENESAS

7.2 Bulk-Out Transport for Printing Out (For the bulk-out transport, refer to
section 2.6.3.)

Figure 7.2 shows the measurement results when the bulk-out transport (printing out) is performed
from the host controller to this device.

For each transfer, the PID of data packets is toggled like DATAO — DATA1 — DATAO.

= [==F TRCE |
[To0000001 | owas QS0 a5 || 5

|Packﬂl.ﬁ' ” Hyno I QauT EMCFE | SRS
| 22 ” Q0000001 IOxE? [iFTiF] asl IOxI-B |]

[Feel? | &7 |
[= || 900000t TRCE | PID:DATA

«Out token packet (Address: 2)

Data packet (64 bytes)

Jos] .
c Print-out data
=
8.< 1E40 1E40 1E 28 520800 00 5245 A0 4F 54 45 31 S0 4002 00 D0 OO 53 AE O3 00 00 90 a1 1B 9000 00 1B 248
; | 70100 ME28 S501 00 0A 1BESSO0 1E28 69 01 0000 16 19 31 16 28 &5 02 00 00 |
[
> TRCIE Idke
@
Qr1ALT
) [o=1an7 [[& |
|Packﬂl.ﬁ' ” Sync ACK |
3 |[90000001 | owdE || &t «ACK handshake packet

[Fackel® | [oot EWBP | TRCS |
= [908a8aal | a7 % @i | oeid |[3 «Out token packet (Address: 2)
Data packet (64 bytes)

Syne BATAL
= 00000001 02 PID:DATA z (Print-out data)

03 B2 430200 71 10 16 28 63 04 00 24 00 4E OF 1628 76 02 00 BS 00 16 72 00 1E 5SS F0 00 1B ZE 00 04 04
1 1800 D IFFZSAOL B2 76 0200 01 00 1B 72 00 1B SC FO 00 1E 2E 00 A 04 01 148 |

20 ”

Q0000001

|0x{33|

PID:DATAO

Jajsuel} N0 N
JSuelIno ying
‘ 0

EIS
[& |
[Ferel7 | (EE] 2% |
\[__=*__ || 0oooddat | owE || &2 «ACK handshake
Fache 7 | R <07 EWDE | TFes |)
] [(oocasoat [awar | 0x02 | o1 | os18 || 3 «Out token packet (Address: 2)
[Fache (7 | B o7%0 |

Data packet (64 bytes)
(Print-out data)

0000 SFFROD TE28 TG 0200 01 00 1E 7200 1ESCFO 00 1E2E 00 04 04 01 14 00 00 3F FE A0 1B 28 76 02 a0
Q100 TE7F2 M0 1ESCFO 00 1EQE QD 04 0401 1800 00 FF FOOD 16 248 76 02 00 01 00 |

LRSS dle
OxEDES

Jajsuel} 1o ying
A

[Fackel® ([T] #crc | «ACK handshake packet
\l h] ” GGG I Oad B | &1
([F=<t=% | I °'7 EIEEN[CRE5| «Out token packet (Address: 2)
| 3] ” LLLLTTTN] I D587 Qxd2 aui I ax1d | &
CESESY Data packet (64 bytes)

&2 Q0000001 w02

PID:DATA1

J9ySueI} N0 YNg
A
‘ D

(Print-out data)

1IE7200 1E SCFOO0 1EQE Q00 QA QA DT 180000 FF FOOD 1E 28 76§ 02 00 01 00 1E 72 00 1E SCFO 00 1E 2E 00
0805801 1800 00 FF FOOD 1E 28 76 0200 0100 16 72 00 16 5C FO 00 16 2E 00 04 04 |

die
[ooEzs |[a |

| Packal § ” Syns I ATK |

| KN «ACK handshake packet

Figure 7.2 Bulk-Out Transport for Printing Out

Rev. 1.0, 04/03, page 77 of 78
RENESAS

Rev. 1.0, 04/03, page 78 of 78
RENESAS

SH7705 USB Function Module Application Note

Publication Date: Rev.1.00, April 15, 2003

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Technical Documentation & Information Department
Renesas Kodaira Semiconductor Co., Ltd.

©2003 Renesas Technology Corp. All rights reserved. Printed in Japan.

SH7705 Grounp USB Function Module
Application Note

LENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJO5B0014-0100Z

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	Section 2 Overview of the USB
	2.1	USB Connection Topology
	2.2	USB Signal Transfer Method
	2.3	Recognizing a Connection vs. Non-Connection
	2.4	USB Connector
	2.5	Endpoint
	2.6	USB Packets and Data Transfer
	2.6.1	Overview of Packets
	2.6.2	Control Transfer
	2.6.3	Bulk Transfer
	2.6.4	Isochronous Transfer
	2.6.5	Interrupt Transfer

	2.7	USB Device Framework
	2.7.1	Device States
	2.7.2	Device Request

	2.8	Descriptor

	Section 3 Overview of the USB Module
	3.1	Operation of the Module
	3.2	Organization of an Endpoint
	3.3	Register Configuration
	3.4	USB Command Processing

	Section 4 Development Environment
	4.1	Hardware Environment
	4.2	Software Environment
	4.2.1	Sample Program
	4.2.2	Compiling and Linking

	4.3	Loading and Executing the Program
	4.3.1	Loading the Program
	4.3.2	Executing the Program

	4.4	Printing Procedure

	Section 5 Overview of the Sample Program
	5.1	State Transition Diagram
	5.2	USB Communication State
	5.3	File Structure
	5.4	Purposes of Functions

	Section 6 Sample Program Operation
	6.1	Main Loop
	6.2	Types of Interrupts
	6.2.1	Method of Branching to Different Transfer Processes

	6.3	Interrupt on Cable Connection (VBUS, BRST)
	6.4	Control Transfers
	6.4.1	Setup Stage
	6.4.2	Data Stage
	6.4.3	Status Stage

	6.5	Bulk Transfers
	6.5.1	Bulk-Out Transfers
	6.5.2	Bulk-in Transfers

	Section 7 Analyzer Data
	7.1	Control Transfer When a Device Is Connected
	7.2 Bulk-Out Transport for Printing Out (For the bulk-out transport, refer to section 2.6.3.)

	Colophon
	Back cover

