
 APPLICATION NOTE

R01AN0052EJ0200 Rev. 2.00 Page 1 of 34
Sep. 17, 2010

SH7216 Group
Configuration to Receive Ethernet Frames

Summary
This application note describes the configuration example of the SH7216 microcomputers (MCUs) to receive Ethernet
frames.

Target Device
SH7216 MCU

Contents

1. Introduction.. 2

2. Applications ... 3

3. Sample Program Listing.. 17

4. References .. 33

R01AN0052EJ0200
Rev. 2.00

Sep. 17, 2010

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 2 of 34
Sep. 17, 2010

1. Introduction

1.1 Specifications
This application receives 10 Ethernet frames continuously.

1.2 Modules Used
• Pin Function Controller (PFC)
• Ethernet Controller (EtherC)
• Ethernet Controller Direct Memory Access Controller (E-DMAC)

1.3 Applicable Conditions
MCU SH7216

Internal clock: 200 MHz
Bus clock: 50 MHz Operating Frequencies
Peripheral clock: 50 MHz

Integrated Development
Environment

Renesas Electronics Corporation
High-performance Embedded Workshop Ver.4.07.00

C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ Compiler Package Ver.9.03 Release 00

Compiler Options
Default setting in the High-performance Embedded Workshop
(-cpu=sh2afpu -fpu=single -debug -gbr=auto -global_volatile=0
-opt_range=all -infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1)

1.4 Related Application Notes
For more information, refer to the following application notes:

• SH7216 Group Example of Initialization
• SH7216 Group Configuring the Ethernet PHY-LSI Auto-Negotiation
• SH7216 Group Configuration to Transmit Ethernet Frames

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 3 of 34
Sep. 17, 2010

2. Applications
This application uses the Ethernet Controller (EtherC), and the Ethernet Controller Direct Memory Access Controller
(E-DMAC).

2.1 Overview
The SH7216 always uses the EtherC and the E-DMAC in the Ethernet communication. The EtherC controls reception,
and the E-DMAC handles the DMA transfer between the transmit or receive FIFOs and the area to store data specified
by user (buffer).

2.1.1 EtherC Overview
The SH7216 includes an Ethernet Controller (EtherC) which is compliant with the IEEE 802.3 MAC (Media Access
Control) protocol. Connect the EtherC with the IEEE 802.3-compliant physical layer LSI (PHY-LSI) to transmit and
receive Ethernet/IEEE 802.3 frames. The EtherC includes one MAC layer interface. As it is connected with the E-
DMAC internally, the EtherC can access memory in high-speed.

Figure 1 shows the EtherC configuration.

E-DMAC interface

Receiver Transmitter

Command status
interface

MII

E-DMAC

EtherC

MAC

PHY

Figure 1 EtherC Configuration

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 4 of 34
Sep. 17, 2010

2.1.2 EtherC Receiver Overview
The EtherC receiver divides a frame input from the MII (Media Independent Interface) into a preamble, SFD (Start
Frame Delimiter), data, and CRC (Cyclic Redundancy Check) data. Then, the EtherC receiver outputs the portion of the
frame other than the preamble, SFD, and CRC data to the E-DMAC receiver. Figure 2 shows the state transition
diagram of the EtherC receiver. The reception sequence is as follows;

1. When the RE (Reception Enable) bit in the EtherC mode register (ECMR) is set, the EtherC transitions to the
receive idle state.

2. When it detects the SFD which follows the preamble in the receive frame, the EtherC starts reception. When the
pattern is invalid, the frame is discarded.

3. In normal mode, the EtherC starts to receive data when (i) the destination MAC address is the SH7216. (ii) the
frame is the broadcast frame, or (iii) the frame is the multicast frame. In promiscuous mode, the EtherC
automatically starts reception despite the type of frame.

4. The EtherC checks the CRC in the frame data after receiving the frame from the MII. It reflects the CRC result in
the descriptor as the status after writing the frame data to the memory. When in error, the EtherC sets the error status
in the EtherC/E-DMAC status register (EESR).

5. When the EtherC receives a frame, it transitions to idle state and is ready to receive the next frame.

Reset

RE set

RE reset

[Legend]
SFD: Start Frame Delimiter

Note: * The error frame is also sent to the buffer.

Preamble
detection

Promiscuous and
other destination address

SFD
reception

RX-DV negation

Own destination address or
broadcast or
multicast or
promiscuous

End of reception

Error
notification*

Receive error
detection

Receive error
detection

Normal reception

Reception
halted

Illegal carrier
detection

Idle
Start of frame

reception

Destination address
reception

Error
detection

Data
reception

CRC
reception

Wait for SFD
reception

Figure 2 EtherC Receiver State Transition Diagram

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 5 of 34
Sep. 17, 2010

2.1.3 E-DMAC Overview
The SH7216 includes the Direct Memory Access Controller (E-DMAC) which is directly connected with the EtherC.
The E-DMAC uses its internal DMAC to handle the DMA transfer between the transmit or receive FIFOs in the E-
DMAC and the area to store data specified by user (transmit or receive buffer). CPU cannot read or write the FIFO data
directly. The information that the E-DMAC refers during the DMA transfer is the transmit or receive descriptor, and
user must allocate these descriptors on memory. The E-DMAC retrieves the descriptor information before transmitting
or receiving Ethernet frames. Then, it reads the transmit data from the transmit buffer or writes the receive data to the
receive buffer, according to the descriptor information. Allocating multiple descriptors to make up the descriptor strings
(list) allows for transmitting or receiving multiple Ethernet frames sequentially.

This E-DMAC feature reduces the load on the CPU to transmit or receive data efficiently. Figure 3 shows the
configuration of the E-DMAC, descriptors, and buffer.

The features of the E-DMAC are as follows;

• Includes two channels (transmit and receive) of the DMAC
• Manages descriptors to reduce the load on the CPU
• Reflects the transmit/receive frame status to the descriptor
• Uses the system bus efficiently by the DMA block transfer (in units of 16-byte)
• Supports one frame per one descriptor, and one frame per multiple frames (multi buffer) - refer to section 2.1.5.

SH7216

Transmit
descriptor

Receive
descriptor

Transmit buffer

Receive buffer

External memory

External
bus

interface

Internal bus

Internal
bus

interface

E-DMAC

Descriptor
information

Descriptor
information

Transmit
DMAC

Receive
DMAC

Transmit FIFO

Receive FIFO
EtherC

Figure 3 E-DMAC, Descriptors, and Buffer Configuration

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 6 of 34
Sep. 17, 2010

2.1.4 Descriptor Overview
The E-DMAC requires the descriptor information (data), which includes the address storing transmit or receive data to
use the DMA transfer. There are two types of descriptors; the transmit descriptor and receive descriptor. When the TR
bit in the E-DMAC transmit request register (EDTRR) is set to 1, the E-DMAC automatically starts reading the transmit
descriptor. When the RR bit in the E-DMAC receive request register (EDRRR) is set to 1, the E-DMAC automatically
starts reading the receive descriptor. Before starting transmission or reception, user must include information regarding
the DMA transfer of the transmit or receive data in the transmit or receive descriptor. After transmitting or receiving
Ethernet frames are completed, the E-DMAC sets the enable/disable bit in the descriptor (TACT bit when transmitting,
RACT bit when receiving), and reflects the transmission or reception result in the status bit (TFS25 to TFS0 when
transmitting, RFS26 to RFS0 when receiving).

Align the descriptor on the read- and write-enabled memory, and set the starting descriptor (The first descriptor read by
the E-DMAC) address in the Transmit descriptor list start address register (TDLAR) or the Receive descriptor list start
address register (RDLAR). When using multiple descriptors as the descriptor string (descriptor list), align the
descriptors on the contiguous addresses, according to the length of descriptor set in bits DL0 and DL1 in the E-DMAC
mode register (EDMR).

2.1.5 Receive Descriptor Overview
Figure 4 shows the relationship between the receive descriptor and the receive buffer.

The receive descriptor consists of RD0, RD1, RD2, and padding in units of 32-bit from the top of the data. RD0
indicates if the receive descriptor is valid or invalid, the descriptor configuration information and status information.
RD1 indicates the size of the receive buffer (RBL) and the data length of the received frame (RFL) referred by the
receive descriptor. RD2 indicates the starting address in the receive buffer. The length of padding is determined by the
descriptor length specified in bits DL0 and DL1 in the EDMR register.

According to the receive descriptor setting, both storing all receive data in one frame in the receive buffer by one
descriptor (one frame per one descriptor), and storing all receive data in one frame in the receive buffer by multiple
descriptors (one frame per multiple descriptors) are allowed. When using one frame per multiple descriptors, user must
prepare multiple descriptors (descriptor list). When the E-DMAC receives the frame longer than the RBL in the
descriptor, it uses following descriptors to transfer the frame to the receive buffer.

For example, when the E-DMAC receives 1514 bytes of the Ethernet frames upon setting the RBL as 500 bytes, it
transfers the 500-byte Ethernet frames at a time from the first descriptor to buffers, and transfers the last 14-byte frames
to the fourth buffer.

RBL

RBA

Padding (4 or 20 or 52 bytes) (1)

有効送信データ

31 26

31 0

Receive descriptor Receive buffer

RFS26 to RFS0RD0

RD1

RD2

Valid receive data

30 29 28 27 0

31 16

Starting address

Receive buffer length15 0

RFL
Receive frame length

R
A
C
T

R
F
P
1

R
D
L
E

R
F
P
0

R
F
E

Note 1: This is a redundant area to add missing bytes from the descriptor length (16, 32, or 64 bytes).

Figure 4 Relationship between the Receive Descriptor and the Receive Buffer

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 7 of 34
Sep. 17, 2010

2.1.6 Setting the Receive Descriptor
Figure 5 shows an example of setting to use three receive descriptors and three receive buffers. This example uses 1536
bytes in each receive buffer to set one frame per one descriptor. The following figure simplifies the receive descriptors
as only RD0. Numbers shown in the figure indicates sequence to execute.

Set the receive descriptor as following steps;

1. Set 0 in bits RFP1, RFP0, RFE, RFS26 to RFS0 in all descriptors.
2. Set 0 in the RDLE bit in descriptors 1 and 2. Then, set 1 in the RDLE bit in descriptor 3 and complete the descriptor

processing to read descriptor 1. These settings create the descriptor ring structure.
3. Before starting to receive data, set 1536 bytes (receive buffer size) in the RBL in RD1 in all descriptors, and specify

the RBA bit in RD2 as the starting address in the corresponding receive buffer. (This step is not described in Figure
5.)

4. Set 1 in the RACT bit in all descriptors to receive data continuously. Details on the setting procedure are described
in the next chapter.

0 0 01 0 0 0 • • 0
Descriptor 1

(omitted)

RFS26 to RFS0

R
A
C
T

R
F
P
1

R
D
L
E

R
F
P
0

R
F
E

0 0 01 0 0 0 • • 0
Descriptor 2

Descriptor 3
1 0 01 0 0 0 • • 0

Receive descriptor

Receive buffer

(1)

(2)

(3)

(4)

(5)

(6)

(omitted)

(omitted)

Figure 5 Relationship between 3 Receive Descriptors and 3 Receive Buffers

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 8 of 34
Sep. 17, 2010

2.1.7 Operation Procedure (When Receiving)
The E-DMAC activates when writing 1 to the Receive request (RR) bit in the EDRRR register upon the RE bit in the
ECMR is 1. After the EtherC and E-DMAC are reset by software, the E-DMAC reads the descriptor specified by the
Receive descriptor list start address register (RDLAR) and enters the receive-ready state if the RACT bit is 1 (valid).
When the EtherC receives frames to the local node (the address allowed by the EtherC to receive), it stores the receive
data in the receive FIFO. When the RACT bit in the receive descriptor is 1, the EtherC transfers the data to the receive
buffer specified in RD2 (When the RACT bit is 0, which indicates invalid, the EtherC clears the RR bit to stop the E-
DMAC reception). When the length of the frame received is longer than the buffer length specified in RD1, the E-
DMAC writes back the descriptor (RFP = B'10 or B'00) when the buffer is full. Then, it reads the following descriptor.
When receiving frames is completed or receive operation is suspended due to error, the E-DMAC writes back such
descriptor (RFP = B'11 or B'01). If the E-DMAC is set to receive data continuously, that is when the Receive request bit
reset (RNR) bit in the Receiving method control register (RMCR) is 1, it reads the next descriptor and enters the
receive-ready state when the RACT bit is 1. When the RACT bit is 0 (the receive buffer is empty) or the E-DMAC is
not set to receive data continuously (the RNR bit in the RMCR register is 0), the E-DMAC sets the RR bit in the
EDRRR register to 0 and completes receiving. When setting the RR bit to 1 again, the E-DMAC receives the descriptor
next to the last descriptor received. If the Receive request bit non-reset mode bit (RNC) in the RMCR register is set to 1,
the RR bit in the EDRRR register will not be set to 0 when the receive descriptor is empty. The E-DMAC continues
receiving data.

Figure 6 shows the flow chart of receiving frames (one frame per one descriptor, specifying to receive data
continuously).

... Repeats the same operation

Initializes the
EtherC/E-DMAC

Sets the EtherC/E-DMAC
registers

Reads the receive descriptor

Sets the receive descriptor
and receive buffer

Activates the receiver

SH7216 + memory E-DMAC Receive FIFO EtherC Ethernet

Transfers the receive data

Receives the frame

Reception is completed
Writes back

the receive descriptor

Reads the next receive descriptor
(Prepares for receiving next frame)

Figure 6 Flow Chart of Receiving (One Frame per One Descriptor)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 9 of 34
Sep. 17, 2010

2.1.8 Setting Procedure (When Receiving)
This section describes the basic settings for receiving Ethernet frames. Figure 7 and Figure 8 show flow charts of
receiving Ethernet frames.

• Reset the EtherC/E-DMAC by software:
 Write 1 to the SWR bit in the E-DMAC mode register (EDMR).
 Disable accessing registers in all Ethernet-related modules on the reset channel during
 issuing the software reset (internal bus clock is 64 cycles).

Start

• Set the transmit/receive descriptors (8 for each) on memory and the end of the
descriptor ring.
 - RD0: (RACT): Set this bit to 1 (as valid).
 (RDLE): Set the RDLE bit in the last descriptor to 1 (set the RDLE bit in other
 descriptors to 0)
 (RFP): As this item is written back by the E-DMAC, setting is not required.
 - RD1 (RBL): Specify the byte length of the receive buffer by 32 × n.
 (RFL): As this item is written back by the E-DMAC, setting is not required
 - RD2: Specify the starting address in the receive buffer corresponding to each
 descriptor. Set the buffer address at 32-byte boundary.
 - Padding area: The E-DMAC does not use this area. This area can be set by user.
• Set the transmit/receive buffer address on memory to the descriptor.

Set the EtherC interrupt enable register
(ECSIPR)

Set the transmit/receive descriptor

Reset the EtherC/E-DMAC by software

• Enable interrupts corresponding to bits in the EtherC status register (ECSR)

Set the E-DMAC mode register (EDMR)
• Specify big endian format. Specify the transmit/receive descriptor length to 16
bytes

1

Set the Receive frame length register (RFLR) • Set the maximum frame length

Set the MAC address high, low registers
(MAHR, MALR)

• Set the MAC address

• Clear bits in the EESR to 1

Set the EtherC mode register (ECMR) • Specify half-duplex mode, promiscuous mode as the normal operation

Clear the EtherC status register (ECSR) • Clear bits in the ECSR to 1

Set the IPG register (IPGR) • Set gaps between packets
 Specify H'14 for 96-bit time

Clear the EtherC/E-DMAC status register
(EESR)

Clear the EtherC/E-DMAC status interrupt
enable register (EESIPR)

• Enable interrupts corresponding to bits in the EtherC/E-DMAC status register (EESR)

Figure 7 Receiving Ethernet Frames (1/2)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 10 of 34
Sep. 17, 2010

End

Clear the Transmit descriptor list start address
register (TDLAR)

Set the EtherC mode register (ECMR)

Retrieve the duplex mode

• Set the starting address in the transmit descriptor list:
 According to the specified descriptor length, set the lower bytes as follows:
 – 16-byte boundary: TDLA [3:0] = B'0000
 – 32-byte boundary: TDLA [4:0] = B'00000
 – 64-byte boundary: TDLA [5:0] = B'000000
Allocate the memory area at the same boundary.

• Retrieve the operation mode (full-duplex mode or half-duplex mode) from the auto-
negotiation results with the PHY-LSI.
For more information on the auto-negotiation setting, refer to the application note
"SH7216 Group, Configuring the Ethernet PHY-LSI Auto-Negotiation".

Activate the receiver

1

Initialize the PHY-LSI • Set the reset bit in MII register 0 to 1

• Set the starting address in the receive descriptor list:
 According to the specified descriptor length, set the lower bytes as follows;
 – 16-byte boundary: RDLA [3:0] = B'0000
 – 32-byte boundary: RDLA [4:0] = B'00000
 – 64-byte boundary: RDLA [5:0] = B'000000
Allocate the memory area at the same boundary.

Clear the Receive descriptor list start address
register (RDLAR)

• Enable the reception and transmission on the EtherC

Set the Transmit/receive status copy enable
register (TRSCER)

Set the FIFO depth register (FDR)

• Clear bits in the TRSCER to 0 to copy the values in the EtherC/E-DMAC status
register to the corresponding descriptor.

• Specify the transmit and receive FIFO size

Set the Receiving method control register
(RMCR)

• Set how to control the RR bit in the ETRRR register

• Set the RR bit in the EDRRR register to 1 to activate the receiver

Auto-negotiation
completed?

Yes

No

Set the transmit FIFO threshold register
(TFTR)

• Clear bits in the TFTR to 0 to set the transmit FIFO in store and forward mode

Figure 8 Receiving Ethernet Frames (2/2)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 11 of 34
Sep. 17, 2010

2.2 Sample Program Operation
The sample program uses the EtherC and the E-DMAC to receive 10 Ethernet frames from the host at the other end. It
has receive descriptors and 256-byte receive buffers (total: 8). Also, it sets the RNR bit in the RMCR register to 1 to
receive frames continuously.

The sample program transfers the portion of the Ethernet frame other than the preamble, SFD, and CRC data.

Figure 9 shows the operation environment of the sample program. Figure 10 shows the Ethernet frame format.

Host SH7216 Evaluation board

Ethernet cross cable

MAC address: 00-01-02-03-04-05 00-0E-35-18-34-FA (Example)
IP address: 192.168.0.3 192.168.0.5

Direction to receive frames

Figure 9 Sample Program Operation Environment

Preamble SFD
Destination

MAC
address

Source MAC
address

Type/
length Data CRC

Unit: byte 7 1 6 6 2 46 to 1500 4

Data to transfer to the receive buffer: 60 to 1514 bytes

Figure 10 Ethernet Frame Format

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 12 of 34
Sep. 17, 2010

2.3 Descriptor Definition in the Sample Program
The E-DMAC does not use the padding area in the descriptor, and that area can be used by user. The sample program
sets the starting address in the next descriptor in the padding area to create the ring structure by software. Figure 11
shows the definition of the receive descriptor structure in the sample program and example to use the receive descriptor
string.

Starting address in descriptor 2

Starting address in descriptor 3

Starting address in descriptor 4

Starting address in descriptor 1

Starting address in descriptor 5

Starting address in descriptor 6

Starting address in descriptor 7

Starting address in descriptor 8

Descriptor 1

Descriptor 4

Descriptor 3

Descriptor 2

Descriptor 5

Descriptor 8

Descriptor 7

Descriptor 6

Receive descriptor string
(Ring structure)

Receive descriptor structure definition

typedef struct Descriptor
{

uint32_t status;
uint16_t bufsize;
uint16_t size;
int8_t *buf_p;
struct Descriptor *next;

} ethfifo;

Figure 11 Receive Descriptor Structure Definition and Example to Use the Receive Descriptor String

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 13 of 34
Sep. 17, 2010

2.4 Sample Program Flow Chart
Figure 12 to Figure 15 shows flow charts of the sample program. For details on the function to retrieve the auto-
negotiation result (phy_set_autonegotiate function), refer to the application note "SH7216 Group, Configuring the
Ethernet PHY-LSI Auto-Negotiation".

Start

Main function

No

Yes

No

Yes

No

Yes

Ethernet is open: R_Ether_Open

Receive Ethernet frames:
R_Ether_Read

Ethernet is closed:
R_Ether_Close

End

Configuration Clear the module standby on the Ethernet Controller,
and sets the Pin Function Controller.

Successful?

Received frames
successfully?

Received 10
frames?

Figure 12 Sample Program Flow Chart (1/4)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 14 of 34
Sep. 17, 2010

Start

phy_init: Initialize the PHY-LSI

Initialize the buffer and descriptor

Initialize the EtherC/E-DMAC register

phy_set_autonegotiate:
Start to PHY auto-negotiation

Specify the EtherC as full-duplex mode

R_ETHER_OK R_ETHER_ERROR

Start

R_ETHER_OK

R_Ether_Open
Ethernet Open Function

R_Ether_Close
Ethernet Close Function

For more information about the phy_init function and
the phy_set_autonegotiate function, refer to the
application note "SH7216 Group, Configuring the
Ethernet PHY-LSI Auto-Negotiation".

No

Yes

No

Yes

No

Yes

Activate the E-DMAC receiver

For more information about initializing the buffer and
descriptor, and initializing the EtherC/E-DMAC register,
refer to 2.1.8 Setting Procedure (When Receiving).

Enable the transmission/reception
on the EtherC

Disable the transmission/reception
on the EtherC

Successful?

Successful?

Full-duplex?

Figure 13 Sample Program Flow Chart (2/4)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 15 of 34
Sep. 17, 2010

Start

_eth_fifoRead:
Read the receive descriptor

End

Request to start reception on the E-DMAC

R_Ether_Read
Ethernet Frame Receive Function

No

Yes

No

Yes

No

Yes

No

Yes

Set the status of the receive descriptor
(Set the RACT bit to 1, and clear other bits to 0)

Activate the receiver

Set the flag to indicate that
1 frame read is completed

No

Yes

Count the received data size

No

Yes

R_ETHER_OK

Set the status of the receive descriptor
(Set the RACT bit to 1, clear bits RFP1, and

RFP0 to 0)

Increment the pointer to the current descriptor

This function returns R_ETHER_OK,
since it receives no frames.

Return the received data size

R_ETHER_OK

Not received?

Frame error
occurred?

Start of frame?

End of frame?

Received
1 frame?

E-DMAC is set to
disable reception?

Clear the received data size to 0

Figure 14 Sample Program Flow Chart (3/4)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 16 of 34
Sep. 17, 2010

_eth_fifoRead
Receive Descriptor Read Function

Start

Calculate the received data size
in the current descriptor by the

received frame size

Return the received data size as
the return value

Return an error (transferring data)
as the return value

End

Yes

No

Yes

No

Return an error (frame error) as
the return value

Yes

No

Set the buffer size as same as the
received data size in the current

descriptor

Write the received data

Frame error
occurred?

End of frame?

The current
descriptor is receiving

data?

Figure 15 Sample Program Flow Chart (4/4)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 17 of 34
Sep. 17, 2010

3. Sample Program Listing

3.1 Sample Program Listing "main.c" (1/3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

/***

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corp. and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2009(2010). Renesas Electronics Corporation. All Rights Reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7216 Sample Program

* File Name : main.c

* Abstract : Configuration to Receive Ethernet Frames

* Version : 2.00.00

* Device : SH7216

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release00).

* OS : None

* H/W Platform: R0K572167 (CPU board)

* Description : Configures the MCU for the Ethernet reception and receives

* : Ethernet frames.

**

* History : Nov.18,2009 Ver.1.00.00

* : Jul.23,2010 Ver.2.00.00 Comply with the Renesas API

*""FILE COMMENT END""**/

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 18 of 34
Sep. 17, 2010

3.2 Sample Program Listing "main.c" (2/3)

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

#include "iodefine.h"

#include "stdint.h"

#include "r_ether.h"

#include "phy.h"

/* ==== Prototype Declaration ==== */

void main(void);

/* ==== Variable Declaration ==== */

static uint8_t macaddr[] = {

 0x00,0x01,0x02,0x03,0x04,0x05, /* Source MAC address (00:01:02:03:04:05) */

};

static uint8_t r_frame[10][1536]; /* Buffer to store the receive frame */

/*""FUNC COMMENT""**

 * ID :

 * Outline : Sample program main

 *--

 * Include : "iodefine.h", "stdint.h", "r_ether.h", and "phy.h"

 *--

 * Declaration : void main(void);

 *--

 * Description : Uses the internal Ethernet Controller (EtherC) and the Ethernet

 * : Controller Dynamic Memory Access Controller (E-DMAC) to receive

 * : Ethernet frames. Ethernet PHY-LSI RTL8201CP (Realtek) is used

 * : in this application.

 * : Uses multiple receive descriptors to receive frames continuously.

 *--

 * Argument : void

 *--

 * Return Value : void

 *--

 * Note : None

 *""FUNC COMMENT END""**/

void main(void)

{

 int32_t i;

 int32_t ret;

 uint32_t ch = 0;

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 19 of 34
Sep. 17, 2010

3.3 Sample Program Listing "main.c" (3/3)

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

 /* ==== Clears the module standby on the EtherC/E-DMAC ==== */

 STB.CR4.BIT._ETHER = 0;

 /* ==== Sets the PFC (For the EtherC) ==== */

 PFC.PACRL4.BIT.PA12MD = 7; /* TX_CLK (input) */

 PFC.PACRL3.WORD = 0x7777; /* TX_EN,MII_TXD0,MII_TXD1,MII_TXD2 (output) */

 PFC.PACRL2.BIT.PA7MD = 7; /* MII_TXD3 (output) */

 PFC.PACRL2.BIT.PA6MD = 7; /* TX_ER (output) */

 PFC.PDCRH4.WORD = 0x7777; /* RX_DV,RX_ER,MII_RXD3,MII_RXD2 (input) */

 PFC.PDCRH3.WORD = 0x7777; /* MII_RXD1,MII_RXD0,RX_CLK,CRS (input) */

 PFC.PDCRH2.WORD = 0x7777; /* COL (input),WOL,EXOUT,MDC (input) */

 PFC.PDCRH1.BIT.PD19MD = 7; /* LINKSTA (input) */

 PFC.PDCRH1.BIT.PD18MD = 7; /* MDIO (input/output) */

 /* ==== Ethernet configuration ==== */

 ret = R_Ether_Open(ch, &macaddr[0]);

 if(R_ETHER_OK == ret){

 /* ==== Starts receiving 10 frames ==== */

 for(i = 0; i < 10; i++){

 /* ---- Receives frames ---- */

 ret = R_Ether_Read(ch, &r_frame[i][0]);

 if(ret == R_ETHER_OK){

 i--;

 }

 }

 }

 /* ==== Stops transmitting/receiving Ethernet frames ==== */

 R_Ether_Close(ch);

 while(1){

 /* sleep */

 }

}

/* End of file */

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 20 of 34
Sep. 17, 2010

3.4 Sample Program Listing "r_ether.c" (1/10)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

/***

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corp. and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2009(2010). Renesas Electronics Corporation. All Rights Reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7216 Sample Program

* File Name : r_ether.c

* Version : 2.00.00

* Device : SH7216

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release00).

* OS : None

* H/W Platform: R0K572167 (CPU board)

* Description : Ethernet module device driver

**

* History : Jun.10.2009 Ver.1.00.00

* : Jul.23,2010 Ver.2.00.00 Comply with the Renesas API

*""FILE COMMENT END""**/

#include <machine.h>

#include <string.h>

#include "iodefine.h"

#include "stdint.h"

#include "r_ether.h"

#include "phy.h"

/* ==== Prototype Declaration ==== */

void _eth_fifoInit(ethfifo p[], uint32_t status);

int32_t _eth_fifoWrite(ethfifo *p, int8_t buf[], int32_t size);

int32_t _eth_fifoRead(ethfifo *p, int8_t buf[]);

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 21 of 34
Sep. 17, 2010

3.5 Sample Program Listing "r_ether.c" (2/10)
56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

#pragma section _RX_DESC

volatile ethfifo rxDesc[ENTRY]; /* Receive descriptor */

#pragma section _TX_DESC

volatile ethfifo txDesc[ENTRY]; /* Transmit descriptor */

#pragma section

#pragma section _RX_BUFF

int8_t rxbuf[ENTRY][BUFSIZE]; /* Receive data buffer */

#pragma section _TX_BUFF

int8_t txbuf[ENTRY][BUFSIZE]; /* Transmit data buffer */

#pragma section

/* ==== Initializes the Ethernet device driver control structure ==== */

struct ei_device le0 =

{

 "eth0", /* device name */

 0, /* open */

 0, /* Tx_act */

 0, /* Rx_act */

 0, /* txing */

 0, /* irq lock */

 0, /* dmaing */

 0, /* current receive descriptor */

 0, /* current transmit descriptor */

 0, /* save irq */

 {

 0, /* rx packets */

 0, /* tx packets */

 0, /* rx errors */

 0, /* tx errors */

 0, /* rx dropped */

 0, /* tx dropped */

 0, /* multicast */

 0, /* collisions */

 0, /* rx length errors */

 0, /* rx over errors */

 0, /* rx CRC errors */

 0, /* rx frame errors */

 0, /* rx fifo errors */

 0, /* rx missed errors */

 0, /* tx aborted errors */

 0, /* tx carrier errors */

 0, /* tx fifo errors */

 0, /* tx heartbeat errors */

 0 /* tx window errors */

 },

 0, /* MAC 0 */

 0, /* MAC 1 */

 0, /* MAC 2 */

 0, /* MAC 3 */

 0, /* MAC 4 */

 0 /* MAC 5 */

};

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 22 of 34
Sep. 17, 2010

3.6 Sample Program Listing "r_ether.c" (3/10)

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

/*""FUNC COMMENT""**

 * ID :

 * Outline : Ethernet open

 *--

 * Include : "iodefine.h" , "phy.h", "r_ether.h" and "stdint.h"

 *--

 * Declaration : int32_t R_Ether_Open(uint32_t ch, uint8_t mac_addr[]);

 *--

 * Description : Initializes the EtherC, E-DMAC, PHY, and buffer memory.

 * : Initializes the MCU for the Ethernet and enables the MCU to

 * : transmit and receive Ethernet frames.

 * : When failed to initialize, it returns an error.

 *--

 * Argument : uint32_t ch; I : Ethernet channel number

 * : uint8_t mac_addr[]; I : MAC address of such Ethernet channel

 *--

 * Return Value : R_ETHER_OK; Succeeded to initialize

 * : R_ETHER_ERROR; Failed to initialize

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int32_t R_Ether_Open(uint32_t ch, uint8_t mac_addr[])

{

 int32_t i;

 uint32_t mac;

 uint16_t phydata;

 ch = ch; /* Avoids the warning */

 /* ==== Configures the Ethernet device driver ==== */

 le0.open = 1;

 /* ==== Sets the descriptor ==== */

 _eth_fifoInit(rxDesc, (uint32_t)ACT);

 _eth_fifoInit(txDesc, (uint32_t)0);

 le0.rxcurrent = &rxDesc[0];

 le0.txcurrent = &txDesc[0];

 /* ==== Sets the MAC address ==== */

 le0.mac_addr[0] = mac_addr[0];

 le0.mac_addr[1] = mac_addr[1];

 le0.mac_addr[2] = mac_addr[2];

 le0.mac_addr[3] = mac_addr[3];

 le0.mac_addr[4] = mac_addr[4];

 le0.mac_addr[5] = mac_addr[5];

 /* ==== Initializes the E-DMAC/EtherC ==== */

 EDMAC.EDMR.BIT.SWR = 1; /* Enables the software reset */

 for(i = 0 ; i < 0x00000100 ; i++); /* Waits until the E-DMAC/EtherC are initialized */

 /* (B clock: 64 cycles) */

 EDMAC.EDMR.LONG = 0x00000000; /* Sets the E-DMAC mode register */

 /* (Big endian mode) */

 /* (Transmit/receive descriptor length: 16 bytes) */

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 23 of 34
Sep. 17, 2010

3.7 Sample Program Listing "r_ether.c" (4/10)

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

 /* ==== Initializes the EtherC ==== */

 EtherC.ECMR.LONG = 0x00000000; /* Sets the EtherC mode register */

 /* (Sets the duplex mode as half-duplex) */

 /* (Sets promiscuous mode as normal operation) */

 EtherC.ECSR.LONG = 0x00000037; /* Clears all of the EtherC status */

 /* (BFR, PSRTO, LCHNG, MPD, ICD) */

 EtherC.ECSIPR.LONG = 0x00000020; /* Disables the EtherC interrupt */

 /* bit31~6 : Reserve : 0 ----- Reserved bits */

 /* bit5 : BFSIPR : 1 ----- Disables the continuous broadcast frame */

 /* reception interrupt */

 /* bit4 : PSRTOIP : 0 ----- Disables the PAUSE frame retransmit retry over */

 /* bit3 : Reserve : 0 ----- Reserved bit */

 /* bit2 : LCHNGIP : 0 ----- Disables the link signal change interrupt */

 /* bit1 : MPDIP : 0 ----- Disables the Magic Packet detection interrupt */

 /* bit0 : ICDIP : 0 ----- Disables the illegal carrier detection interrupt */

 EtherC.RFLR.LONG = 1518; /* Sets the maximum receive frame length */

 EtherC.IPGR.LONG = 0x00000014; /* Sets the gap between packets (96-bit time) */

 /* ==== Sets the MAC address ==== */

 mac = ((uint32_t)mac_addr[0] << 24) |

 ((uint32_t)mac_addr[1] << 16) |

 ((uint32_t)mac_addr[2] << 8) |

 (uint32_t)mac_addr[3];

 EtherC.MAHR = mac;

 mac = ((uint32_t)mac_addr[4] << 8) |

 (uint32_t)mac_addr[5];

 EtherC.MALR.LONG = mac;

 /* ==== Initializes the E-DMAC ==== */

 EDMAC.EESR.LONG = 0x47FF0F9F; /* Initializes the EtherC/E-DMAC status register */

 EDMAC.EESIPR.LONG = 0x00000000; /* Initializes the EtherC/E-DMAC status */

 /* interrupt enable register */

 EDMAC.RDLAR = le0.rxcurrent; /* Sets the receive descriptor start address */

 EDMAC.TDLAR = le0.txcurrent; /* Sets the transmit descriptor start address */

 EDMAC.TRSCER.LONG = 0x00000000; /* Brings the EtherC/E-DMAC status register */

 /* value to the descriptor */

 EDMAC.TFTR.LONG = 0x00000000; /* Sets store and forward mode */

 EDMAC.FDR.LONG = 0x00000000; /* Sets the transmit/receive FIFO capacity */

 /* (256 bytes) */

 EDMAC.RMCR.LONG = 0x00000001; /* Sets to receive data continuously other */

 /* than the receive descriptor is empty */

 /* ==== Initializes the PHY ==== */

 phydata = phy_init();

 if(phydata == R_PHY_ERROR){

 return R_ETHER_ERROR;

 }

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 24 of 34
Sep. 17, 2010

3.8 Sample Program Listing "r_ether.c" (5/10)

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

 /* ==== Starts the PHY auto-negotiation ==== */

 phydata = phy_set_autonegotiate();

 /* ---- Determines whether to auto-negotiate or not ---- */

 if(phydata == R_PHY_ERROR){ /* Failed to auto-negotiate */

 return R_ETHER_ERROR;

 }

 /* ---- Detects the performance of the link partner ---- */

 if(phydata & 0x0100){ /* Detects PHY-LSI register 0 */

 /* bit8 : DuplexMode : 1 ---- Supports */

 /* full-duplex mode */

 EtherC.ECMR.BIT.DM = 1; /* Full-duplex communication */

 }

 /* ==== Enables the EtherC transmission/reception ==== */

 EtherC.ECMR.BIT.RE = 1;

 EtherC.ECMR.BIT.TE = 1;

 /* ==== Enables the E-DMAC reception ==== */

 EDMAC.EDRRR.LONG = 0x00000001;

 return R_ETHER_OK;

}

/*""FUNC COMMENT""**

 * ID :

 * Outline : Ethernet close

 *--

 * Include : "iodefine.h" , "r_ether.h" and "stdint.h"

 *--

 * Declaration : int32_t R_Ether_Close(uint32_t ch);

 *--

 * Description : Stops the EtherC/E-DMAC.

 *--

 * Argument : uint32_t ch; I : Ethernet channel number

 *--

 * Return Value : R_ETHER_OK; Disables the EtherC transmission/reception

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int32_t R_Ether_Close(uint32_t ch)

{

 ch = ch; /* Avoids the warning */

 le0.open = 0;

 EtherC.ECMR.LONG = 0x00000000; /* Disables the EtherC transmission/reception */

 le0.irqlock = 1;

 return R_ETHER_OK;

}

(omitted)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 25 of 34
Sep. 17, 2010

3.9 Sample Program Listing "r_ether.c" (6/10)

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

/*""FUNC COMMENT""**

 * ID :

 * Outline : Receive frames

 *--

 * Include : "iodefine.h" , "r_ether.h" and "stdint.h"

 *--

 * Declaration : int32_t R_Ether_Read(uint32_t ch, void *buf);

 *--

 * Description : Copies the specified frame from the buffer registered in the

 * : receive descriptor and receives the frame.

 * : Detects the data not received, and error occurred.

 *--

 * Argument : uint32_t ch; I : Ethernet channel number

 * : void *buf; I : Pointer to the area to store the receive data

 *--

 * Return Value : R_ETHER_OK; No data received

 * : 1 or bigger; Receive data size

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int32_t R_Ether_Read(uint32_t ch, void *buf)

{

 int32_t receivesize = 0; /* Receive data size */

 int32_t recvd; /* Receive data size or receive descriptor status */

 int32_t flag = 1; /* 1 frame reception incomplete flag */

 /* (1: 1 frame reception incomplete) */

 uint8_t readcount = 0; /* Number of times to read the receive */

 /* descriptor until completing to receive 1 frame */

 int8_t *data = (int8_t *)buf; /* Pointer to the area to store the receive data */

 ch = ch; /* Avoids the warning */

 /* ==== Receives 1 frame ==== */

 while (flag){

 recvd = _eth_fifoRead(le0.rxcurrent, data);

 readcount++;

 /* ---- No data received ---- */

 if (readcount >= 2 && receivesize == 0){

 return R_ETHER_OK; /* No data received */

 }

 /* ---- No received data ---- */

 if (recvd == -1){

 }

 /* ---- Receive frame error ---- */

 else if (recvd == -2){

 le0.stat.rx_errors++;

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 26 of 34
Sep. 17, 2010

3.10 Sample Program Listing "r_ether.c" (7/10)

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

 /* ---- Sets the receive descriptor to transmit again and exit ---- */

 receivesize = 0; /* to set the return value as "R_ETHER_OK" */

 le0.rxcurrent->status &= ~(FP1 | FP0 | FE);

 le0.rxcurrent->status &= ~(RMAF | RRF | RTLF | RTSF | PRE | CERF);

 le0.rxcurrent->status |= ACT;

 le0.rxcurrent = le0.rxcurrent->next;

 /* ---- Starts receiving frame ---- */

 if (EDMAC.EDRRR.LONG == 0x00000000L){

 EDMAC.EDRRR.LONG = 0x00000001L;

 }

 }

 /* ---- With the received data ---- */

 else{

 /* ---- Receives the start of the frame ---- */

 if ((le0.rxcurrent->status & FP1) == FP1){

 receivesize = 0;

 }

 /* ---- Receives the end of the frame (receiving the frame is completed) ---- */

 if ((le0.rxcurrent->status & FP0) == FP0){

 le0.stat.rx_packets++; /* Counts the total number of receive frames */

 flag = 0; /* Sets 1 frame receive incomplete flag */

 /* (0: receiving 1 frame is completed) */

 }

 /* ---- Counts the received data as the frame size ---- */

 receivesize += recvd;

 /* ---- Sets the receive descriptor to continue receiving data again ---- */

 le0.rxcurrent->status &= ~(FP1 | FP0);

 le0.rxcurrent->status |= ACT;

 le0.rxcurrent = le0.rxcurrent->next;

 /* ---- Updates the receive data storing area ---- */

 data += recvd;

 /* ==== Determines the E-DMAC receive request ==== */

 if (EDMAC.EDRRR.LONG == 0x00000000L){

 EDMAC.EDRRR.LONG = 0x00000001L;

 }

 }

 }

 return (int32_t)receivesize;

}

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 27 of 34
Sep. 17, 2010

3.11 Sample Program Listing "r_ether.c" (8/10)

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

/*""FUNC COMMENT""**

 * ID :

 * Outline : Initialize the FIFO

 *--

 * Include :

 *--

 * Declaration : void _eth_fifoInit(ethfifo p[], uint32_t status);

 *--

 * Description : Initializes the E-DMAC descriptor

 *--

 * Argument : ethfifo p[]; O : Pointer to the descriptor

 * : uint32_t status; I : Descriptor default status

 *--

 * Return Value : void

 *--

 * Note : None

 *""FUNC COMMENT END""**/

void _eth_fifoInit(ethfifo p[], uint32_t status)

{

 ethfifo *current = 0;

 int32_t i, j;

 for(i = 0 ; i < ENTRY ; i++){

 current = &p[i];

 /* ==== Detects the descriptor status ==== */

 if(status == 0){

 current->buf_p = &txbuf[i][0]; /* Determines to transmit when the ACT bit is 0 */

 }

 else{

 current->buf_p = &rxbuf[i][0]; /* Determines to receive when the ACT bit is 1 */

 }

 /* ==== Clears the buffer ==== */

 for(j = 0 ; j < BUFSIZE ; j++){

 current->buf_p[j] = 0;

 }

 current->bufsize = BUFSIZE;

 current->size = 0;

 current->status = status;

 current->next = &p[i+1];

 }

 /* ==== Waits until the last FIFO entry is completed ==== */

 current->status |= DL; /* Sets the current descriptor as the end of the descriptor ring

*/

 current->next = &p[0];

}

(omitted)

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 28 of 34
Sep. 17, 2010

3.12 Sample Program Listing "r_ether.c" (9/10)

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

/*""FUNC COMMENT""**

 * ID :

 * Outline : Read the receive descriptor

 *--

 * Include :

 *--

 * Declaration : int32_t _eth_fifoRead(ethfifo *p, int8_t buf[]);

 *--

 * Description : Reads the data from the receive descriptor to the area specified

 * : by the argument.

 *--

 * Argument : ethfifo *p; O : Pointer to the current descriptor

 * : int8_t buf[]; O : Pointer to the area to store the receive data

 *--

 * Return Value : 0 or bigger; Retrieved data size

 * : -1; The current descriptor is receiving data or preparing

 * : for reception

 * : -2; Receive frame error occurred

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int32_t _eth_fifoRead(ethfifo *p, int8_t buf[])

{

 int32_t i, temp_size; /* Buffer size counter (bytes) */

 ethfifo *current = p;

 /* ==== The current descriptor is receiving data or preparing for reception ==== */

 if((current->status & ACT) != 0){

 return (-1); /* This is not an error */

 }

 /* ==== Receive frame error ==== */

 else if((current->status & FE) != 0){

 return (-2); /* Descriptor must be updated */

 }

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 29 of 34
Sep. 17, 2010

3.13 Sample Program Listing "r_ether.c" (10/10)

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

 /* ==== Normal reception ==== */

 else{

 /* ---- At the end of the frame (receiving 1 frame is completed) ---- */

 if ((current->status & FP0) == FP0){

 /* ---- Calculates the receive data size of the current descriptor ---- */

 temp_size = current->size; /* Total number of bytes of the frame */

 while (temp_size > BUFSIZE){

 temp_size -= BUFSIZE; /* Calculates the data size received */

 /* at the end of the frame */

 }

 }

 /* ---- Not at the end of the frame ---- */

 else{

 temp_size = BUFSIZE;

 }

 /* ---- Copies data from the receive descriptor to receive buffer ---- */

 for (i = 0; i < temp_size; i++){

 buf[i] = current->buf_p[i];

 }

 return (temp_size); /* Receive data size */

 }

}

/* End of File */

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 30 of 34
Sep. 17, 2010

3.14 Sample Program Listing "r_ether.h" (1/3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

/***

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corp. and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2009(2010). Renesas Electronics Corporation. All Rights Reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7216 Sample Program

* File Name : r_ether.h

* Version : 2.00.00

* Device : SH7216

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release00).

* OS : None

* H/W Platform: R0K572167 (CPU board)

* Description : Ethernet module device driver

**

* History : Jun.10.2009 Ver.1.00.00

* : Jul.23,2010 Ver.2.00.00 Comply with the Renesas API

*""FILE COMMENT END""**/

#ifndef ETH_H

#define ETH_H

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 31 of 34
Sep. 17, 2010

3.15 Sample Program Listing "r_ether.h" (2/3)

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

/* ==== Type definition ==== */

typedef struct Descriptor

{

 uint32_t status;

 uint16_t bufsize;

 uint16_t size;

 int8_t *buf_p;

 struct Descriptor *next;

} ethfifo;

/* ==== Macro definition ==== */

#define BUFSIZE 256

#define ENTRY 8

#define ACT 0x80000000

#define DL 0x40000000

#define FP1 0x20000000

#define FP0 0x10000000

#define FE 0x08000000

#define RFOVER 0x00000200

#define RMAF 0x00000080

#define RRF 0x00000010

#define RTLF 0x00000008

#define RTSF 0x00000004

#define PRE 0x00000002

#define CERF 0x00000001

#define ITF 0x00000010

#define CND 0x00000008

#define DLC 0x00000004

#define CD 0x00000002

#define TRO 0x00000001

/* ==== Renesas Ethernet API return defines ==== */

#define R_ETHER_OK 0

#define R_ETHER_ERROR -1

#define R_ETHER_HARD_ERROR -3

#define R_ETHER_RECOVERABLE -4

#define R_ETHER_NO_DATA -5

/* ==== Prototype Declaration ==== */

/* ==== Renesas Ethernet API prototypes ==== */

int32_t R_Ether_Open(uint32_t ch, uint8_t mac_addr[]);

int32_t R_Ether_Close(uint32_t ch);

int32_t R_Ether_Write(uint32_t ch, void *buf, uint32_t len);

int32_t R_Ether_Read(uint32_t ch, void *buf);

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 32 of 34
Sep. 17, 2010

3.16 Sample Program Listing "r_ether.h" (3/3)

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

/* ==== Ethernet collected data ==== */

struct enet_stats

{

 uint32_t rx_packets;

 uint32_t tx_packets;

 uint32_t rx_errors;

 uint32_t tx_errors;

 uint32_t rx_dropped;

 uint32_t tx_dropped;

 uint32_t multicast;

 uint32_t collisions;

 /* ---- Receive error ---- */

 uint32_t rx_length_errors;

 uint32_t rx_over_errors;

 uint32_t rx_crc_errors;

 uint32_t rx_frame_errors;

 uint32_t rx_fifo_errors;

 uint32_t rx_missed_errors;

 /* ---- Transmit error ---- */

 uint32_t tx_aborted_errors;

 uint32_t tx_carrier_errors;

 uint32_t tx_fifo_errors;

 uint32_t tx_heartbeat_errors;

 uint32_t tx_window_errors;

};

struct ei_device

{

 const int8_t *name; /* Device name */

 uint8_t open;

 uint8_t Tx_act;

 uint8_t Rx_act;

 uint8_t txing;

 uint8_t irqlock;

 uint8_t dmaing;

 ethfifo *rxcurrent; /* Receive current descriptor */

 ethfifo *txcurrent; /* Transmit current descriptor */

 uint8_t save_irq;

 struct enet_stats stat; /* Ethernet collected data */

 uint8_t mac_addr[6]; /* MAC address storage area */

};

#endif /* ETH_H */

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 33 of 34
Sep. 17, 2010

4. References
• Software Manual

SH-2A, SH-2A FPU Software Manual Rev. 3.00
The latest version of the software manual can be downloaded from the Renesas Electronics website.

• Hardware Manual

SH7214 Group, SH7216 Group Hardware User’s Manual Rev. 2.00
The latest version of the hardware user’s manual can be downloaded from the Renesas Electronics website.

SH7216 Group Configuration to Receive Ethernet Frames

R01AN0052EJ0200 Rev. 2.00 Page 34 of 34
Sep. 17, 2010

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Feb.12.10 — First edition issued
2.00 Sep.17.10 All pages Updated to comply with the Renesas API

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Introduction
	1.1 Specifications
	1.2 Modules Used
	1.3 Applicable Conditions
	1.4 Related Application Notes

	2. Applications
	2.1 Overview
	2.1.1 EtherC Overview
	2.1.2 EtherC Receiver Overview
	2.1.3 E-DMAC Overview
	2.1.4 Descriptor Overview
	2.1.5 Receive Descriptor Overview
	2.1.6 Setting the Receive Descriptor
	2.1.7 Operation Procedure (When Receiving)
	2.1.8 Setting Procedure (When Receiving)

	2.2 Sample Program Operation
	2.3 Descriptor Definition in the Sample Program
	2.4 Sample Program Flow Chart

	3. Sample Program Listing
	3.1 Sample Program Listing "main.c" (1/3)
	3.2 Sample Program Listing "main.c" (2/3)
	3.3 Sample Program Listing "main.c" (3/3)
	3.4 Sample Program Listing "r_ether.c" (1/10)
	3.5 Sample Program Listing "r_ether.c" (2/10)
	3.6 Sample Program Listing "r_ether.c" (3/10)
	3.7 Sample Program Listing "r_ether.c" (4/10)
	3.8 Sample Program Listing "r_ether.c" (5/10)
	3.9 Sample Program Listing "r_ether.c" (6/10)
	3.10 Sample Program Listing "r_ether.c" (7/10)
	3.11 Sample Program Listing "r_ether.c" (8/10)
	3.12 Sample Program Listing "r_ether.c" (9/10)
	3.13 Sample Program Listing "r_ether.c" (10/10)
	3.14 Sample Program Listing "r_ether.h" (1/3)
	3.15 Sample Program Listing "r_ether.h" (2/3)
	3.16 Sample Program Listing "r_ether.h" (3/3)

	4. References

