
 APPLICATION NOTE

R01AN1925EJ0100 Rev. 1.00 Page 1 of 38
May 7, 2014

RX63N Group, RX631 Group
Using the RIIC to Access the EEPROM

Abstract
This application note describes using the I2C bus interface (RIIC) in the RX63N Group, RX631 Group to access the
EEPROM.

Products
RX63N Group, 176-Pin and 177-Pin Packages, ROM Capacities: 768 Kbytes to 2 Mbytes
RX63N Group, 144-Pin and 145-Pin Packages, ROM Capacities: 768 Kbytes to 2 Mbytes
RX63N Group, 100-Pin Package, ROM Capacities: 768 Kbytes to 2 Mbytes
RX631 Group, 176-Pin and 177-Pin Packages, ROM Capacities: 256 Kbytes to 2 Mbytes
RX631 Group, 144-Pin and 145-Pin Packages, ROM Capacities: 256 Kbytes to 2 Mbytes
RX631 Group, 100-Pin Package, ROM Capacities: 256 Kbytes to 2 Mbytes

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1925EJ0100
Rev. 1.00

May 7, 2014

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 2 of 38
May 7, 2014

Contents
1. Specifications ... 3

2. Confirmed Operating Conditions .. 4

3. Reference Application Notes .. 4

4. Hardware .. 5
4.1 Hardware Configuration ... 5
4.2 Pins Used ... 5

5. Software ... 6
5.1 Operation Overview ... 7

5.1.1 Writing Data to the EEPROM ... 7
5.1.2 Reading Data From the EEPROM .. 9

5.2 File Composition .. 11
5.3 Option-Setting Memory .. 11
5.4 Constants ... 12
5.5 Variables .. 13
5.6 Functions .. 15
5.7 Function Specifications .. 16
5.8 Flowcharts .. 22

5.8.1 Main Processing ... 22
5.8.2 Port Initialization ... 23
5.8.3 Peripheral Function Initialization ... 23
5.8.4 IRQ Initialization .. 24
5.8.5 Callback Function After Writing Data to the EEPROM ... 24
5.8.6 Callback Function After Reading Data From the EEPROM ... 25
5.8.7 Processing to Display Two Lines of Text on the LCD .. 26
5.8.8 RIIC Initialization ... 27
5.8.9 Processing to Start Writing Data to the EEPROM .. 29
5.8.10 Processing to Start Reading Data From the EEPROM ... 30
5.8.11 ICTXI0 Interrupt Handling .. 31
5.8.12 ICRXI0 Interrupt Handling ... 32
5.8.13 ICTEI0 Interrupt Handling .. 33
5.8.14 ICEEI0 Interrupt Handling ... 34
5.8.15 Obtain RIIC Status ... 37
5.8.16 Processing When Writing Data To or Reading Data From the EEPROM Has Ended 37

6. Sample Code .. 38

7. Reference Documents .. 38

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 3 of 38
May 7, 2014

1. Specifications
This document describes writing to and reading the EEPROM using the RIIC's single-master communication.
After release from the reset state, data (three patterns) to be displayed on the Debug LCD (hereinafter referred to as
LCD) is written to the EEPROM, and the MCU waits for switch 3 to be pushed.
Each time switch 3 (SW3) is pushed, data for each pattern to be displayed on the LCD is read from the EEPROM, and
displayed on the LCD.

• Bit rate: 100 kbps
• Data transfer size: 1 page units (16 bytes)
• Address format: 7-bit address format
• Operating modes: Master transmit mode, master receive mode

For details on the I2C bus communication format, refer to the RX63N Group, RX631 Group User’s Manual: Hardware,
or the I2C bus specification.

Table 1.1 lists the Peripheral Functions and Their Applications, and Figure 1.1 shows the Operation Overview.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
RIIC Writes data to and reads data from the EEPROM
External pin interrupt (IRQ) Switch to obtain data to be displayed on the LCD
I/O ports I/O for displaying data on the LCD

Reset state

Transmit data to the EEPROM
(16 bytes)

Release from the reset state

Waiting for switch 3 to be pushed

Data transmit ended

Receive data from the EEPROM
(16 bytes)

Push switch 3

P
us

h
sw

itc
h

3

Waiting for switch 3 to be pushed

Data receive ended

Status LCD display

Push switch 3
E2PROM R

[MCU]
RX63N

Pattern 1

[Board]
RSK

Pattern 2

[Sample]
RIIC

Pattern 3

Figure 1.1 Operation Overview

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 4 of 38
May 7, 2014

2. Confirmed Operating Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Confirmed Operating Conditions

Item Contents
MCU used R5F563NBDDFC (RX63N Group)

Operating frequencies

• Main clock: 12 MHz
• PLL clock: 192 MHz (main clock divided by 1 and multiplied by 16)
• System clock (ICLK): 96 MHz (PLL clock divided by 2)
• Peripheral module clock B (PCLKB): 48 MHz (PLL clock divided by 4)

Operating voltage 3.3 V

Integrated development
environment

Renesas Electronics Corporation
High-performance Embedded Workshop Version 4.09.01

C compiler

Renesas Electronics Corporation
C/C++ Compiler Package for RX Family V.1.02 Release 01

Compile options
-cpu=rx600 -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -nologo
The integrated development environment default settings are used.

iodefine.h version Version 1.6A
Endian Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Renesas Starter Kit+ for RX63N (product part number: R0K50563NC000BE)
EEPROM Renesas R1EX24016ASAS0A

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.

• RX63N Group, RX631 Group Initial Setting Rev. 1.10 (R01AN1245EJ0110)

• RX63N Renesas Starter Kit Sample Code for Hi-performance Embedded Workshop (R01AN1395EG0100)

The initial setting functions and LCD output functions in the application notes above are used in the sample code in this
application note. The revision number of the reference application note is current as of the issue date of this application
note. However, the latest version is always recommended. Visit the Renesas Electronics Corporation website to
download the latest version.

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 5 of 38
May 7, 2014

4. Hardware

4.1 Hardware Configuration
Figure 4.1 shows a Connection Example.

VCC

P12/SCL0

P13/SDA0

P87
P86

P07/IRQ15 P85
P84
PJ5
PF5

RX63N Group
(master)

SCL

SDA

EEPROM
(R1EX24016ASAS0A)

(slave)

LCD

DLCDD7
DLCDD6
DLCDD5
DLCDD4
DLCDRS
DLCDE

Switch 3 input

Figure 4.1 Connection Example

4.2 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

This application note assumes the 176-pin package is used. When using packages with less than 176 pins, select the pins
appropriate to the package used.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function
P12/SCL0 I/O I/O pin for the serial clock
P13/SDA0 I/O I/O pin for serial data

P87 Output Output pin for data bit 7 of the LCD
P86 Output Output pin for data bit 6 of the LCD
P85 Output Output pin for data bit 5 of the LCD
P84 Output Output pin for data bit 4 of the LCD
PJ5 Output Output pin to enable the LCD
PF5 Output Output pin to select the LCD register

P07/IRQ15 Input Switch input to execute master reception

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 6 of 38
May 7, 2014

5. Software
After release from the reset state, the RIIC is initialized.

After the RIIC is initialized, master transmission is used to write 1 page (16 bytes) of data to the EEPROM. When the
transmit processing is ended, the callback function is called. In the callback function, the RIIC status is obtained to see
if master transmission was completed successfully. If master transmission is completed successfully, the next data is
prepared to be transmitted. If a NACK response is received or if transmission was completed with an arbitration lost
detected, the same data is prepared to be written. If a timeout occurs, "[ERROR] TIMEOUT" is displayed on the LCD,
and loop processing is executed.

After 3 pages of data are written, "Push SW3" is displayed on the LCD.

When switch 3 is pushed, master reception is used to read 1 page of data from the EEPROM. When the receive
processing is ended, the callback function is called. In the callback function, the RIIC status is obtained to see if master
reception was completed successfully. If master reception was completed successfully, the data read from the EEPROM
is displayed on the LCD. If an error occurred during master reception, information about the error is displayed on the
LCD.

Settings for the peripheral functions are listed below.

RIIC

 Operating modes: Master transmit mode, master receive mode
 Address format: 7-bit address format
 Internal reference clock: PCLK/8
 Communication speed: Approx. 100 kbps *1
 Interrupts used: Transmit data empty interrupt (ICTXI)

 Transmit end interrupt (ICTEI)
 Receive data full interrupt (ICRXI)
 Stop condition detection interrupt (SPI)
 Arbitration-lost interrupt (ALI)
 Timeout interrupt (TMOI)

Note 1. The ICBRL.BRL[4:0] bits are set to 23, and the ICBRH.BRH[4:0] bits are set to 28.

 If the SCL line rising time (tr) is 1000 ns, and the SCL line falling time (tf) is 300 ns, then the actual

communication speed is calculated as follows:

= 1 ÷ { [(ICBRH.BRH[4:0] + 1) + (ICBRL.BRL[4:0] + 1)] ÷ Internal reference clock + tr + tf }

= 1 ÷ { [28 + 1) + (23 + 1)] ÷ (40 MHz ÷ 8) + 1000 (ns) + 300 (ns) }

= 98684.2 bps

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 7 of 38
May 7, 2014

5.1 Operation Overview
5.1.1 Writing Data to the EEPROM
(1) Starting master transmission

After confirming that the ICCR2.BBSY flag is 0 (bus free state), RIIC_BUSY (busy state) is set to the RIIC status
variable (riic_status), the ICIER.TIE bit is set to 1 (ICTXI0 interrupt is enabled), and the ICCR2.ST bit is set to 1
(requests to issue a start condition).

(2) Issuing a start condition
When a start condition is issued, the ICCR2.BBSY flag becomes 1 (bus busy state). In addition, an ICTXI0
interrupt request is generated. In the ICTXI0 interrupt handling, the EEPROM storage address and W bit (0) are
written to the ICDRT register.

(3) Transmitting data
When data is transferred from the ICDRT register to the ICDRS register, the ICTXI0 interrupt request is generated
again. In the ICTXI0 interrupt handling, the write address for the EEPROM is written to the ICDRT register.

(4) Receiving an ACK or NACK
At the rising edge of the ninth bit on the SCL, the EEPROM outputs an ACK or NACK signal.
If an ACK signal is received, RIIC communication continues, and the ICTXI0 interrupt request is generated. In the
ICTXI0 interrupt handling, data written to the EEPROM is written to the ICDRT register from the first byte.
If a NACK signal is received, RIIC communication is suspended, and the ICEEI0 interrupt request is generated. In
the ICEEI0 interrupt handling, RIIC_NACK (NACK received) is set to the RIIC status variable, and the
ICCR2.SP bit is set to 1 (requests to issue a stop condition).

(5) Writing the last data
When 1 page (16 bytes) of data written to the EEPROM has been written to the ICDRT register, the ICIER.TIE bit
is set to 0 (ICTXI0 interrupt is disabled) and the ICIER.TEIE bit is set to 1 (ICTEI0 interrupt is enabled).

(6) End of data transmission
When the last data has been transmitted, the ICTEI0 interrupt is generated. In the ICTEI0 interrupt handling, the
ICIER.TEIE bit is set to 0 (ICTEI0 interrupt is disabled) and the ICCR2.SP bit is set to 1.

(7) Issuing a stop condition
When a stop condition is issued, the ICEEI0 interrupt request is generated. In the ICEEI0 interrupt handling, if
transmission was completed successfully, set RIIC_RDY (ready state) to the RIIC status variable, and call the
callback function.
When a stop condition is issued after receiving a NACK (when the RIIC status variable is RIIC_NACK), do not
set the RIIC status variable, and call the callback function.

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 8 of 38
May 7, 2014

Figure 5.1 shows the Timing Diagram When Writing Data to the EEPROM.

SLVADDR WA MEMADDR A 1st byte A 15th byte A 16th byte A

(1) (2) (3) (4) (5) (6) (7)

Flag becomes 1 when a
start condition is issued

Flag becomes 0 when a
start condition is issued

Flag becomes 0 when an interrupt is accepted

Bit becomes 0 when a
start condition is issued

Flag becomes 0 when
the TEND flag is 0

High

Low
SCL output

High

Low
SDA output

1

0

1

0

1

0

0

1

1

0

1

0

1

0

1

0

RIIC0.ICCR2.BBSY flag

RIIC0.ICCR2.ST bit

RIIC0.ICCR2.SP bit

RIIC0.ICIER.TIE bit

RIIC0.ICIER.TEIE bit

IR flag for the
ICTXI0 interrupt

IR flag for the
ICTEI0 interrupt

IR flag for the
ICEEI0 interrupt

Flag becomes 0 when a stop
condition is issued and the
bus free time has elapsed

SLVADDR: Slave address
MEMADDR: Write address
A: ACK
W: Write signal

Figure 5.1 Timing Diagram When Writing Data to the EEPROM

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 9 of 38
May 7, 2014

5.1.2 Reading Data From the EEPROM

(1) Starting master transmission
When a falling edge is detected on the IRQ15 pin, if the ICCR2.BBSY flag is confirmed to be 0 (bus free state),
RIIC_BUSY (busy state) is set to the RIIC status variable (riic_status), the ICIER.TIE bit is set to 1 (ICTXI0
interrupt is enabled), the ICIER.RIE bit is set to 1 (ICRXI0 interrupt is enabled), and the ICCR2.ST bit is set to 1
(requests to issue a start condition).

(2) Issuing a start condition
When a start condition is issued, the ICCR2.BBSY flag becomes 1 (bus busy state). In addition, the ICTXI0
interrupt request is generated. In the ICTXI0 interrupt handling, the slave address for the EEPROM and the W bit
(0) are written to the ICDRT register.

(3) Transmitting the address
When data is transferred from the ICDRT register to the ICDRS register, the ICTXI0 interrupt request is generated
again. In the ICTXI0 interrupt handling, the read address for the EEPROM is written to the ICDRT register, the
ICIER.TIE bit is set to 0 (ICTXI0 interrupt is disabled), and the ICIER.TEIE bit is set to 1 (ICTEI0 interrupt is
enabled).

(4) Receiving an ACK or NACK
On the rising edge of the ninth bit of the SCL, the EEPROM outputs an ACK signal or NACK signal.
If an ACK signal is received, RIIC communication continues.
If a NACK signal is received, RIIC communication is suspended, and the ICEEI0 interrupt request is generated. In
the ICEEI0 interrupt handling, RIIC_NACK (NACK received) is set to the RIIC status variable, and the ICCR2.SP
bit is set to 1 (requests to issue a stop condition).

(5) Starting master reception
When the read address been transmitted, the ICTEI0 interrupt request is generated. In the ICTEI0 interrupt
handling, the ICIER.TEIE bit is set to 0 (ICTEI0 interrupt is disabled), the ICIER.TIE bit is set to 1 (ICTXI0
interrupt is enabled), and the ICCR2.RS bit is set to 1 (requests to issue a restart condition).

(6) Issuing a restart condition
When a restart condition is issued, the ICTXI0 interrupt request is generated. In the ICTXI0 interrupt handling, the
slave address for the EEPROM and the R bit (1) are written to the ICDRT register.

(7) Receiving an ACK or NACK
On the rising edge of the ninth bit of the SCL, the EEPROM outputs an ACK signal or NACK signal.
If an ACK signal is received, the ICCR2.TRS bit becomes 0 (receive mode), and the ICRXI0 interrupt request is
generated. In the ICRXI0 interrupt handling, a dummy read is performed on the ICDRR register.
If a NACK signal is received, RIIC communication is suspended, and the ICEEI0 interrupt request is generated. In
the ICEEI0 interrupt handling, RIIC_NACK (NACK received) is set to the RIIC status variable, and the ICCR2.SP
bit is set to 1 (requests to issue a stop condition).

(8) End of data reception
When all data has been received, the ICRXI0 interrupt request is generated. In addition, at the ninth bit of the SCL,
the ICMR3.ACKBT bit value is output. In the ICRXI0 interrupt handling, the received data in the ICDDR register
is read.

(9) Receiving the last data
When the last data has been received, after the ICCR2.SP bit is set to 1 (requests to issue a stop condition), the
received data in the ICDRR register is read.

(10) Issuing a stop condition
When a stop condition is issued, the ICEEI0 interrupt request is generated. In the ICEEI0 interrupt handling, if
data reception is completed successfully, RIIC_RDY (ready state) is set to the RIIC status variable, and the
callback function is called.
When a stop condition is issued (when the RIIC status variable is RIIC_NACK) after a NACK is received, the
callback function is called without the RIIC status variable being set.

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 10 of 38
May 7, 2014

Figure 5.2 shows the Timing Diagram for Master Reception.

(1) (3) (9)(8)(4) (5) (6) (7) (10)
(2)

SLVADDR W
A MEMADDR A SLVADDR R A 1st byte A 16th byte N

Becomes 1 when a
start condition is issued

Becomes 0 when a restart
condition is issued

Become 0 when an
interrupt is accepted

Becomes 0 when the
TEND flag becomes 0

Become 0 when an
interrupt is accepted

Becomes 0 when a
stop condition is issued

Becomes 0 when the bus
free time elapses after a

stop condition is detected

SLVADDR: Slave address
MEMADDR: Read address
A: ACK
N: NACK
W: Write signal
R: Read signal

High

Low

High

Low

High

Low

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

IRQ15 pin

SCL output

SDA output

RIIC0.ICCR2.BBSY flag

RIIC0.ICCR2.ST bit

RIIC0.ICCR2.RS bit

RIIC0.ICCR2.SP bit

RIIC0.ICIER.TIE bit

RIIC0.ICIER.TEIE bit

RIIC0.ICIER.RIE bit

IR flag for the
ICTXI0 interrupt

IR flag for the
ICTEI0 interrupt

IR flag for the
ICRXI0 interrupt

IR flag for the
ICEEI0 interrupt

Figure 5.2 Timing Diagram for Master Reception

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 11 of 38
May 7, 2014

5.2 File Composition
Table 5.1 lists the Files Used in the Sample Code, Table 5.2 lists the Standard Include Files, and Table 5.3 lists the
Functions and Setting Values for the Reference Application Notes. Files generated by the integrated development
environment are not included in this table.

Table 5.1 Files Used in the Sample Code

File Name Outline
main.c Main processing
riic.c Processing for writing to and reading the EEPROM
riic.h Header file for riic.c

Table 5.2 Standard Include Files
File Name Outline

stdbool.h This file defines the macros associated with the Boolean and its value.
stdint.h This file defines the macros declaring the integer type with the specified width.
machine.h This file defines the types of intrinsic functions for the RX Family.

Table 5.3 Functions and Setting Values for the Reference Application Notes
File Name Function Setting Value

r_init_stop_module.c R_INIT_StopModule() —

r_init_stop_module.h — The module-stop state is canceled for the
DMAC/DTC, EXDMAC, RAM0, and RAM1.

r_init_non_existent_port.c R_INIT_NonExistentPort() —
r_init_non_existent_port.h — Set to 176-pin package
r_init_clock.c R_INIT_Clock() —
r_init_clock.h — Sub-clock not used

lcd.c Init_LCD()
Display_LCD() —

lcd.h — —
rskrx63ndef.h — —

5.3 Option-Setting Memory
Table 5.4 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 5.4 Option-Setting Memory Configured in the Sample Code
Symbol Addresses Setting Value Contents

OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh The IWDT is stopped after a reset.
The WDT is stopped after a reset.

OFS1 FFFF FF8Bh to FFFF FF88h FFFF FFFFh The voltage monitor 0 reset is disabled after a
reset. HOCO oscillation is disabled after a reset.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 12 of 38
May 7, 2014

5.4 Constants
Table 5.5 to Table 5.7 list the constants used in the sample code.

Table 5.5 Constants Used in the Sample Code (main.c)

Constant Name Setting Value Contents
EEPROM_ADDR 0x50 EEPROM device address
EEPROM_PAGE_SIZE 16 EEPROM page size
EEPROM_RW_SIZE 16 Size for reading from and writing to the EEPROM
DISP_PTN_NUM 3 Number of patterns for displayed text
LCD_LINE_SIZE 8 Number of characters on one line of the LCD
MSG_TIMEOUT_ERROR "[ERROR] TIMEOUT " Message when a timeout error occurs
MSG_AL_ERROR "[ERROR] AL " Message when arbitration lost occurs
MSG_NACK_ERROR "[ERROR] NACK " Message when a NACK is received
SW3_REQ IR(ICU, IRQ15) IR flag for switch 3 (IRQ15)
SW_ON 1 Switch 3 is detected as being pushed
SW_OFF 0 Switch 3 is not detected as being pushed

Table 5.6 Constants Used in the Sample Code (riic.h)
Constant Name Setting Value Contents

RIIC_RDY 0x00 RIIC status (ready state)
RIIC_BUSY 0x01 RIIC status (busy state)
RIIC_NACK 0x02 RIIC status (NACK received)
RIIC_AL 0x03 RIIC status (arbitration lost occurred)
RIIC_TIMEOUT 0x04 RIIC status (timeout occurred)
RIIC_OK 0x00 RIIC processing completed successfully
RIIC_FAIL 0x01 RIIC processing failed
RIIC_PARAM_ERR 0x02 Parameter error
NULL 0x00000000 NULL is specified

Table 5.7 Constants Used in the Sample Code (riic.c)
Constant Name Setting Value Contents

RIIC_W_BIT 0xFE Masked data for the write bit setting
RIIC_R_BIT 0x01 Data for the read bit setting
RIIC_WRITE_SLVADDR 1 Slave address size (in bytes)
RIIC_WRITE_MEMADDR 1 Memory address size (in bytes)

RIIC_WRITE_HEADDER RIIC_WRITE_SLVADDR +
RIIC_WRITE_MEMADDR Specified address size

RIIC_MD_INIT 0 RIIC operating mode (initialization)
RIIC_MD_WRITE 1 RIIC operating mode (data write mode)
RIIC_MD_READ_ADDR 2 RIIC operating mode (read address setting mode)
RIIC_MD_READ_DATA 3 RIIC operating mode (data read mode)
RIIC_CNT_SLVADDR 0 Determine the slave address transmission
RIIC_CNT_MEMADDR 1 Determine the memory address transmission

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 13 of 38
May 7, 2014

5.5 Variables
Table 5.8 and Table 5.9 list the static variables, and Table 5.10 list the const Variable.

Table 5.8 static Variables (main.c)

Type Variable Name Contents Functions Used

uint8_t read_buf[16] Storage buffer for data read from the EEPROM main
cb_read_end

uint8_t wpt Write pointer Main
cb_write_end

uint8_t rpt Read pointer Main
cb_read_end

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 14 of 38
May 7, 2014

Table 5.9 static Variables (riic.c)
Type Variable Name Contents Functions Used

uint8_t riic_status RIIC status

RIIC_Init
RIIC_Write
RIIC_Read
Excep_RIIC0_EEI0
RIIC_GetStatus

uint8_t riic_slv_addr Storage area for the EEPROM slave address

RIIC_Write
RIIC_Read
Excep_RIIC0_TXI0
Excep_RIIC0_TEI0

uint8_t riic_mem_addr Storage area for the EEPROM memory address
RIIC_Write
RIIC_Read
Excep_RIIC0_TXI0

uint8_t p_riic_rx_buf Pointer for the storage buffer for data read from
the EEPROM

RIIC_Read
Excep_RIIC0_RXI0

uint8_t p_riic_tx_buf Pointer for the storage buffer for data written to
the EEPROM

RIIC_Write
Excep_RIIC0_TXI0

uint8_t riic_tx_cnt RIIC transmit counter

RIIC_Write
RIIC_Read
Excep_RIIC0_TXI0
Excep_RIIC0_TEI0

uint8_t riic_tx_size RIIC transmit size

RIIC_Write
RIIC_Read
Excep_RIIC0_TXI0
Excep_RIIC0_TEI0

uint8_t riic_rx_cnt RIIC receive counter
RIIC_Write
RIIC_Read
Excep_RIIC0_RXI0

uint8_t riic_rx_size RIIC receive size
RIIC_Write
RIIC_Read
Excep_RIIC0_RXI0

uint8_t riic_rw_mode RIIC R/W mode

RIIC_Init
RIIC_Write
RIIC_Read
Excep_RIIC0_TXI0
Excep_RIIC0_TEI0
Excep_RIIC0_EEI0

CallBackFunc pcb_riic_end Storage area for the callback function pointer
RIIC_Write
RIIC_Read
Excep_RIIC0_EEI0

Table 5.10 const Variable (main.c)
Type Variable Name Contents Function Used

static const uint8_t write_buf[DISP_PTN_NUM][16]

Example of text written to the
EEPROM
Pattern 1: "[MCU] RX63N "
Pattern 2: "[Board] RSK "
Pattern 3: "[Sample]RIIC "

main

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 15 of 38
May 7, 2014

5.6 Functions
Table 5.11 and Table 5.12 list the functions.

Table 5.11 Functions in main.c

Function Name Outline
main Main processing
port_init Port initialization
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_NonExistentPort Nonexistent port initialization
R_INIT_Clock Clock initialization
peripheral_init Peripheral function initialization
IRQ_Init IRQ initialization
cb_write_end Callback function after writing data to the EEPROM
cb_read_end Callback function after reading data from the EEPROM
Display_LCD_All Processing to display two lines of text on the LCD
Init_LCD LCD initialization
Display_LCD Processing to display text on the LCD

Table 5.12 Functions in riic.c

Function Name Outline
RIIC_Init RIIC initialization
RIIC_Write Processing to start writing data to the EEPROM
RIIC_Read Processing to start reading data from the EEPROM
Excep_RIIC0_TXI0 ICTXI0 interrupt handling
Excep_RIIC0_RXI0 ICRXI0 interrupt handling
Excep_RIIC0_TEI0 ICTEI0 interrupt handling
Excep_RIIC0_EEI0 ICEEI0 interrupt handling
RIIC_GetStatus Obtain RIIC status
RIIC_proc_end Processing when writing data to or reading data from the EEPROM has ended

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 16 of 38
May 7, 2014

5.7 Function Specifications
The following tables list the specifications for the functions in the sample code.

main
Outline Main processing
Header None

Declaration void main(void)
Description After the initial settings, data to be displayed on the LCD is written to the EEPROM. After the

data is written, when a falling edge is detected on the IRQ15 pin, data to be displayed on the
LCD is read from the EEPROM.

Arguments None
Return Value None

port_init

Outline Port initialization
Header None

Declaration static void port_init(void)
Description This function initializes the ports.
Arguments None

Return Value None

R_INIT_StopModule

Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h

Declaration void R_INIT_StopModule(void)
Description This function configures settings to enter the module-stop state.
Arguments None

Return Value None
Remark Transition to the module-stop state is not performed in the sample code. For more

information on this function, refer to the RX63N Group, RX631 Group Initial Setting Rev.
1.10 application note.

R_INIT_NonExistentPort

Outline Nonexistent port initialization
Header r_init_non_existent_port.h

Declaration void R_INIT_NonExistentPort(void)
Description This function initializes port direction registers for ports that do not exist in products with less

than 176 pins.
Arguments None

Return Value None
Remarks The number of pins in the sample code is set for the 176-pin package (PIN_SIZE=176).

After this function is called, when writing in byte units to the PDR and PODR registers which
have nonexistent ports, set the corresponding bits for nonexistent ports as follows: set the
I/O select bits in the PDR registers to 1 and set the output data store bits in the PODR
registers to 0. For more information on this function, refer to the RX63N Group, RX631
Group Initial Setting Rev. 1.10 application note.

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 17 of 38
May 7, 2014

R_INIT_Clock

Outline Clock initialization
Header r_init_clock.h

Declaration void R_INIT_Clock(void)
Description This function initializes the clocks.
Arguments None

Return Value None
Remark In the sample code, the PLL clock is selected as the system clock, and the sub-clock is not

used. For more information on this function, refer to the RX63N Group, RX631 Group Initial
Setting Rev. 1.10 application note.

peripheral_init

Outline Peripheral function initialization
Header None

Declaration static void peripheral_init(void)
Description This function initializes the peripheral functions being used.
Arguments None

Return Value None

IRQ_Init

Outline IRQ initialization
Header None

Declaration static void IRQ_Init(void)
Description This function initializes IRQ15.
Arguments None

Return Value None

cb_write_end

Outline Callback function after writing data to the EEPROM
Header None

Declaration static void cb_write_end (void)
Description After obtaining the RIIC status, if data has been written to the EEPROM, the write pointer is

updated. If a timeout occurred, a timeout error message is displayed on the LCD.
Arguments None

Return Value None

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 18 of 38
May 7, 2014

cb_read_end
Outline Callback function after reading data to the EEPROM
Header None

Declaration static void cb_read_end (void)
Description After obtaining the RIIC status, if data has been read from the EEPROM, the data read from

the EEPROM is displayed on the LCD, and the read pointer is updated. If an error occurred,
an error message is displayed on the LCD.

Arguments None
Return Value None

Display_LCD_All

Outline Processing to display two lines of text on the LCD
Header None

Declaration static void Display_LCD_All(uint8_t *p_disp)
Description This function displays the specified text on the LCD.
Arguments uint8_t* p_disp: Text displayed

Return Value None

Init_LCD

Outline LCD initialization
Header lcd.h

Declaration void Init_LCD(void)
Description This function initializes the LCD.
Arguments None

Return Value None
Remarks This function uses the Renesas StarterKit sample code for the RX63N High-performance

Embedded Workshop.

Display_LCD

Outline Processing for displaying the LCD
Header lcd.h

Declaration void Display_LCD(uint8_t position, uint8_t* string)
Description This function displays the specified text on the LCD.
Arguments uint8_t position: Position to display text

uint8_t* string: Text to be displayed
Return Value None

Remarks This function uses the Renesas StarterKit sample code for the RX63N High-performance
Embedded Workshop.

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 19 of 38
May 7, 2014

RIIC_Init
Outline RIIC initialization
Header riic.h

Declaration void RIIC_Init (void)
Description This function initializes the RIIC.
Arguments None

Return Value None

RIIC_Write

Outline Processing to start writing data to the EEPROM
Header riic.h

Declaration uint8_t RIIC_Write (uint8_t slv_addr, uint8_t mem_addr, uint8_t * pbuf, uint8_t num,
CallBackFunc pcb)

Description After setting information for writing to the EEPROM, a start condition is output and the data
starts being written to the EEPROM.

Arguments uint8_t slv_addr: EEPROM slave address
uint8_t mem_addr: EEPROM write address
uint8_t* pbuf: Storage pointer for data to be written to the EEPROM
uint8_t num: Size of data to be written to the EEPROM
CallBackFunc pcb: Callback function when the write operation has ended

Return Value RIIC_OK: Processing to start writing data to the EEPROM was successful.
RIIC_FAIL: Processing to start writing data to the EEPROM failed.

RIIC_Read

Outline Processing to start reading data from the EEPROM
Header riic.h

Declaration uint8_t RIIC_Read (uint8_t slv_addr, uint8_t mem_addr, uint8_t * pbuf, uint8_t num,
CallBackFunc pcb)

Description After setting information for reading from the EEPROM is set, a start condition is output and
the data starts being read from the EEPROM.

Arguments uint8_t slv_addr: EEPROM slave address
uint8_t mem_addr: EEPROM read address
uint8_t* pbuf: Storage pointer for data to be read from the EEPROM
uint8_t num: Size of data to be read from the EEPROM
CallBackFunc pcb: Callback function when the read operation has ended

Return Value RIIC_OK: Processing to start reading data from the EEPROM was successful.
RIIC_FAIL: Processing to start reading data from the EEPROM failed.
RIIC_PARAM_ERR: The argument value is undefined.

Excep_RIIC0_TXI0

Outline ICTXI0 interrupt handling
Header None

Declaration static void Excep_RIIC0_TXI0(void)
Description This function performs ICTXI0 interrupt handling. Transmit data is written to the ICDRT

register. After the last data is written, the ICTXI0 interrupt request is disabled. In addition,
the ICTEI0 interrupt request is enabled when master transmission is performed.

Arguments None
Return Value None

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 20 of 38
May 7, 2014

Excep_RIIC0_RXI0
Outline ICRXI0 interrupt handling
Header None

Declaration static void Excep_RIIC0_RXI0(void)
Description This function performs ICRXI0 interrupt handling. Receive data is read from the ICDRR

register. When the last data is received, a stop condition is output, and then the receive data
is read.

Arguments None
Return Value None

Excep_RIIC0_TEI0

Outline ICTEI0 interrupt handling
Header None

Declaration static void Excep_RIIC0_TEI0(void)
Description This function performs ICTEI0 interrupt handling.

When ICTEI0 interrupt handling is performed in the EEPROM write processing, after the
ICTEI0 interrupt request is disabled, a stop condition is output.
When ICTEI0 interrupt handling is performed in the EEPROM read processing, after the
ICTEI0 interrupt request is disabled, a restart condition is output.

Arguments None
Return Value None

Excep_RIIC0_EEI0

Outline ICEEI0 interrupt handling
Header None

Declaration static void Excep_RIIC0_EEI0(void)
Description This function performs ICEEI0 interrupt handling.

When the source of the interrupt request is stop condition detection without NACK reception,
RIIC_RDY is set as the RIIC status variable, and the callback function is called.
When the sources of the interrupt request are stop condition detection and NACK reception,
the RIIC status variable is not changed, and the callback function is called.
When the source of the interrupt request is arbitration lost occurring, RIIC_AL is set as the
RIIC status variable, and the callback function is called.
When the source of the interrupt request is a timeout, RIIC_TIMEOUT is set as the RIIC
status variable, and the callback function is called.
When the source of the interrupt request is NACK reception, RIIC_NACK is set as the RIIC
status variable, and the stop condition is output.

Arguments None
Return Value None

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 21 of 38
May 7, 2014

RIIC_GetStatus
Outline Obtain RIIC status
Header riic.h

Declaration uint8_t RIIC_GetStatus (void)
Description This function returns the RIIC status.
Arguments None

Return Value RIIC_RDY: Ready state
RIIC_BUSY: Busy state
RIIC_NACK: NACK received
RIIC_AL: Arbitration lost occurred
RIIC_TIMEOUT: Timeout occurred

RIIC_proc_end

Outline Processing when writing data to or reading data from the EEPROM has ended
Header None

Declaration static void RIIC_proc_end(void)
Description All RIIC0 interrupt requests are disabled, and bits ICMR3.RDRFS, ICMR3.ACKBT, and

ICMR3.WAIT are initialized.
Arguments None

Return Value None

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 22 of 38
May 7, 2014

5.8 Flowcharts
5.8.1 Main Processing
Figure 5.3 shows the Main Processing.

main

Disable maskable interrupts I flag ← 0

Port initialization
port_init()

Stop processing for active peripheral
functions after a reset
R_INIT_StopModule()

Nonexistent port initialization
R_INIT_NonExistentPort()

Clock initialization
R_INIT_Clock()

Peripheral function initialization
peripheral_init()

Enable maskable interrupts I flag ← 1

Read the IR079 register
IR flag = 0: IRQ15 interrupt request is not generated

= 1: IRQ15 interrupt request is generated

Debug LCD initialization
Init_LCD()

Initialize the RAM

Have all patterns
been written?

Yes

No

Processing to start writing data to the
EEPROM

RIIC_Write()

RIIC_Write() return value:
RIIC_OK: Processing to start writing data to the EEPROM was successful.
RIIC_FAIL: Processing to start writing data to the EEPROM failed.

Was processing to start
writing data successful?

Yes

No

Obtain RIIC status
RIIC_GetStatus()

Is RIIC transmission complete?

Yes

No

RIIC_GetStatus() return value:
RIIC_BUSY: RIIC is transmitting data

Processing for displaying the LCD
Display_LCD() "Push SW3" is displayed on the first line of the LCD

Display processing for the LCD
Display_LCD() "E2PROM R" is displayed on the second line of the LCD

Has the switch for
reading been pushed?

No

Yes
Clear the switch request Read the IR079 register

IR flag ← 0

Processing to start reading data to the
EEPROM

RIIC_Read()

Was processing to start
reading data successful?

Yes

No

RIIC_Read() return value:
RIIC_OK: Processing to start reading data to the EEPROM was successful.
RIIC_FAIL: Processing to start reading data to the EEPROM failed.
RIIC_PARAM_ERR: The argument value is undefined.

Figure 5.3 Main Processing

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 23 of 38
May 7, 2014

5.8.2 Port Initialization
Figure 5.4 shows the Port Initialization.

port_init

Set the port direction PORT1.PDR register
B2 bit ← 0: P12/SCK0: Input
B3 bit ← 0: P13/SDA0: Input

PORT0.PDR register
B7 bit ← 0: P07/IRQ15: Input

Set the port mode PORT1.PMR register
B2 bit ← 0: P12/SCL0: Uses the pin as a general I/O pin.
B3 bit ← 0: P13/SDA0: Uses the pin as a general I/O pin.

PORT0.PMR register
B7 bit ← 0: P07/IRQ15: Uses the pin as a general I/O pin.

return

Set the output data for the LCD ports PORT8.PODR register
Bits B7 to B4 ← 0000b: DLCD: Initial value (0) is output

PORTJ.PODR register
B5 bit ← 0: DLCDRS: Initial value (0) is output

PORTF.PODR register
B5 bit ← 0: DLCDE: Initial value (0) is output

Set the LCD port direction PORT8.PDR register
Bits B7 to B4 ← 1111b: DLCD: Output

PORTJ.PDR register
B5 bit ← 1: DLCDRS: Output

PORTF.PDR register
B5 bit ← 1: DLCDE: Output

Figure 5.4 Port Initialization

5.8.3 Peripheral Function Initialization
Figure 5.5 shows the Peripheral Function Initialization.

peripheral_init

RIIC initialization
RIIC_Init()

IRQ pin initialization
IRQ_Init()

return

Figure 5.5 Peripheral Function Initialization

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 24 of 38
May 7, 2014

5.8.4 IRQ Initialization
Figure 5.6 shows the IRQ Initialization.

IRQ_Init

Disable the IRQ15 interrupt request IER09 register
IEN7 bit ← 0

Set the IRQ15 port PWPR register
B0WI bit ← 0: Writing to the PFSWE bit is enabled

PWPR register
PFSWE bit ← 1: Writing to the PFS register is enabled

P07PFS register
ISEL bit ← 1: Used as IRQ15 input pin

PWPR register
PFSWE bit ← 0: Writing to the PFS register is disabled

PWPR register
B0WI bit ← 1: Writing to the PFSWE bit is disabled

Disable the IRQ15 digital filter IRQFLTE1 register
FLTEN15 bit ← 0

Select the IRQ15 detection method IRQCR15 register ← 04h
Bits IRQMD[1:0] = 01b: Falling edge

Clear the IRQ15 interrupt request IR079 register
IR flag ← 0

Enable the IRQ15 digital filter IRQFLTE1 register
FLTEN15 bit ← 1

return

Set the IRQ15 sampling clock IRQFLTC1 register
Bits FCLKSEL15[1:0] ← 01b: PCLK/8

Figure 5.6 IRQ Initialization

5.8.5 Callback Function After Writing Data to the EEPROM
Figure 5.7 shows the Callback Function After Writing Data to the EEPROM.

cb_write_end

RIIC_GetStatus() return value: RIIC_RDY: Ready state
RIIC_TIMEOUT: Timeout occurred
RIIC_AL: Arbitration lost occurred
RIIC_NACK: NACK reception

Increment the write pointer

Was the
write operation completed

successfully?

Yes

No

Did a timeout occur?

return result

Obtain RIIC status
RIIC_GetStatus()

No

Error message (timeout) is
displayed on the LCD

Yes

Processing to display two lines of
text on the LCD

Display_LCD_All()

Figure 5.7 Callback Function After Writing Data to the EEPROM

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 25 of 38
May 7, 2014

5.8.6 Callback Function After Reading Data From the EEPROM
Figure 5.8 shows the Callback Function After Reading Data From the EEPROM.

cb_read_end

RIIC_GetStatus() return value: RIIC_RDY: Ready state
RIIC_TIMEOUT: Timeout occurred
RIIC_AL: Arbitration lost occurred
RIIC_NACK: NACK reception

Update the read pointer

Verify the status
of the RIIC

RIIC_RDY

return

Obtain RIIC status
RIIC_GetStatus()

Text read from the EEPROM
is displayed on the LCD

Processing to display two lines of text on the LCD
Display_LCD_All()

RIIC_TIMEOUT

Processing to display two lines of text on the LCD
Display_LCD_All()

Error message (timeout)
is displayed on the LCD

RIIC_AL

Processing to display two lines of text on the LCD
Display_LCD_All()

Error message (arbitration
lost) is displayed on the LCD

RIIC_NACK

NACK processing to display two lines of text on the LCD
Display_LCD_All()

Error message (NACK received)
is displayed on the LCD

Figure 5.8 Callback Function After Reading Data From the EEPROM

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 26 of 38
May 7, 2014

5.8.7 Processing to Display Two Lines of Text on the LCD
Figure 5.9 shows Processing to Display Two Lines of Text on the LCD.

Display_LCD_ALL Argument
uint8_t *p_disp: Storage pointer for data to be displayed on the LCD

Has the buffer
for one line

been copied?

Yes

No

Processing to display text on the LCD
Display_LCD() Display text from the line display buffer on the first line

Has the buffer
for one line

been copied?

No

Yes

Processing to display text on the LCD
RIIC_Read()

Copy 1 byte of data to be displayed on the
LCD to the line display buffer

Increment the storage pointer for data to be
displayed on the LCD

Set 0 (end of text) to the line display buffer

return

Copy 1 byte of data to be displayed on the
LCD to the line display buffer

Increment the storage pointer for data to be
displayed on the LCD

Set 0 (end of text) to the line display buffer

Display text from the line display buffer on the second line

Figure 5.9 Processing to Display Two Lines of Text on the LCD

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 27 of 38
May 7, 2014

5.8.8 RIIC Initialization
Figure 5.10 and Figure 5.11 show RIIC initialization.

RIIC_Init

Disable write protection PRCR register ← A502h
PRC1 bit = 1: Writing to the registers related to low power consumption is enabled

Cancel the module-stop state MSTPCRB register
MSTPB21 bit ← 0: The RIIC0 module-stop state is canceled

Enable write protection PRCR register ← A500h
PRC1 bit = 0: Writing to the registers related to low power consumption is disabled

Reset the RIIC RIIC0.ICCR1 register
ICE bit ← 0: I2C bus interface disabled
IICRST bit ← 1: Initiates the RIIC reset or internal reset *1

Enable the RIIC bus interface RIIC0.ICCR1 register
ICE bit ← 1: I2C bus interface enabled

Setting to disable the slave address RIIC0.ICSER register ← 00h
SAR0E bit = 0: Slave address in SARL0 and SARU0 is disabled.
SAR1E bit = 0: Slave address in SARL1 and SARU1 is disabled.
SAR2E bit = 0: Slave address in SARL2 and SARU2 is disabled.
GCAE bit = 0: General call address detection is disabled.
DIDE bit = 0: Device-ID address detection is disabled.
HOAE bit = 0: Host address detection is disabled.

Select the internal reference clock RIIC0.ICMR1 register
Bits CKS[2:0] ← 011b: PCLK/8 clock

Set the high width of the SCL clock RIIC0.ICBRH register
Bits BRH[4:0] ← 23: High width = (23 + 1) ÷ (PCLK/8) = 4.0 µs

Set the low width of the SCL clock RIIC0.ICBRL register
Bits BRL[4:0] ← 28: Low width = (28 + 1) ÷ (PCLK/8) = 4.83 µs

Set the timeout and set the SDA output delay RIIC0.ICMR2 register ← 46h
TMOS bit = 0: Long mode is selected.
TMOL bit = 1: Count is enabled while the SCL0 line is at a low level.
TMOH bit = 1: Count is enabled while the SCL0 line is at a high level.
Bits SDDL[2:0] = 100b: 4 IICφ cycles
DLCS bit = 0: The internal references clock (IICφ) is selected as the

clock source of the SDA output delay counter.

Select the I2C bus RIIC0.ICMR3 register ← 00h
RDRFS bit = 0: The RDRF flag is set at the rising edge of the ninth SCK clock cycle.
SMBS bit = 0: The I2C bus is selected.

Initialize the timeout internal counter RIIC0.ICMR2 register
TMWE bit ← 1: Write to the timeout function internal counter is enabled.

RIIC0.TMOCNTL register ← 00h
RIIC0.TMOCNTU register ← 00h

Select the I2C bus functions RIIC0.ICFER register ← 53h
TMOE bit = 1: The timeout function is enabled.
MALE bit = 1: Master arbitration-lost detection is enabled.
NALE bit = 0: NACK transmission arbitration-lost detection is disabled.
SALE bit = 0: Slave arbitration-lost detection is disabled.
NACKE bit = 1: Transfer operation is suspended during NACK reception.
NFE bit = 0: No digital noise filter circuit is used.
SCLE bit = 1: An SCL synchronous circuit is used.
FMPE bit = 0: No fm+ slope control circuit is used for the SCL0 pin and SDA0 pin.

A

Note 1. When the ICCR1.IICRST bit is set to 1 while the ICCR1.ICE bit is 0, the RIIC enters the reset state.

Figure 5.10 RIIC Initialization (1/2)

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 28 of 38
May 7, 2014

Disable interrupt sources RIIC0.ICIER register ← 00h
TMOIE bit = 0: Timeout interrupt request is disabled.
ALIE bit = 0: Arbitration-lost interrupt request is disabled.
STIE bit = 0: Start condition detection interrupt request is disabled.
SPIE bit = 0: Stop condition detection interrupt request is disabled.
NAKIE bit = 0: NACK reception interrupt request is disabled.
RIE bit = 0: Receive data full interrupt request is disabled.
TEIE bit = 0: Transmit end interrupt request is disabled.
TIE bit = 0: Transmit data empty interrupt request is disabled.

return

A

Set the interrupt priority level IPR182 register
Bits IPR[3:0] ← 0001b: Priority level for the ICEEI0 interrupt is level 1

IPR183 register
Bits IPR[3:0] ← 0001b: Priority level for the ICRXI0 interrupt is level 1

IPR184 register
Bits IPR[3:0] ← 0001b: Priority level for the ICTXI0 interrupt is level 1

IPR185 register
Bits IPR[3:0] ← 0001b: Priority level for the ICTEI0 interrupt is level 1

Clear the interrupt requests IR183 register
IR flag ← 0: ICRXI0 interrupt request not generated

IR184 register
IR flag ← 0: ICTXI0 interrupt request not generated

Disable the interrupt requests IER16 register
IEN6 bit ← 0: ICEEI0 interrupt request is disabled
IEN7 bit ← 0: ICRXI0 interrupt request is disabled

IER17 register
IEN0 bit ← 0: ICTXI0 interrupt request is disabled
IEN1 bit ← 0: ICTEI0 interrupt request is disabled

Select the I/O port functions PWPR register
B0WI bit ← 0: Writing to the PFSWE bit is enabled

PWPR register
PFSWE bit ← 1: Writing to the PFS register is enabled

P12PFS register ← 0Fh
Bits PSEL[4:0] = 01111b: Select the P12 pin function: SCL0

P13PFS register ← 0Fh
Bits PSEL[4:0] = 01111b: Select the P13 pin function: SDA0

PWPR register
PFSWE bit ← 0: Writing to the PFS register is disabled

PWPR register
B0WI bit ← 1: Writing to the PFSWE bit is disabled

PORT1.PMR register
B2 bit ← 1: P12/SCL0: Uses the pin as an I/O port for peripheral functions
B3 bit ← 1: P13/SDA0: Uses the pin as an I/O port for peripheral functions

Clear the RIIC reset RIIC0.ICCR1 register
IICRST bit ← 0: Clears the RIIC reset or internal reset

Initialize the R/W mode riic_rw_mode ← RIIC_MD_INIT: Initialized state

Initialize the status riic_status ← RIIC_RDY: Ready state

Figure 5.11 RIIC Initialization (2/2)

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 29 of 38
May 7, 2014

5.8.9 Processing to Start Writing Data to the EEPROM
Figure 5.12 shows Processing to Start Writing Data to the EEPROM.

RIIC_Write Arguments
uint8_t slv_addr: EEPROM slave address
uint8_t mem_addr: EEPROM write address
uint8_t pbuf: Storage pointer for data to be written to the EEROM
uint8_t num: Size of data to be written to the EEPROM
CallBackFunc pcb: Callback function when the write operation has ended

Set FAIL as the execution result result ← RIIC_FAIL

RIIC is not in
the busy state and the RIIC

bus is free

No((riic_status == RIIC_BUSY) || (RIIC0.ICCR2.BIT.BBSY != 0))

Yes((riic_status != RIIC_BUSY) && (RIIC0.ICCR2.BIT.BBSY == 0))

Set information for RIIC to write data
to the EEPROM

riic_slv_addr ← (slv_addr << 1) & RIIC_W_BIT: Set the slave address and the write bit
riic_mem_addr ← mem_addr: Set the memory address
riic_tx_cnt ← 0: Initialize the number of transmissions
riic_tx_size ← num + RIIC_WRITE_HEADDER: Set the size of the data to be transmitted
riic_rx_cnt ← 0: Initialize the number of receptions
riic_rx_size ← 0: Initialize the size of the data to be transmitted
p_riic_tx_buf ← pbuf: Set the data to be transmitted

Set the callback function pcb_riic_end ← pcb: Callback function setting

Set the RIIC status to busy riic_status ← RIIC_BUSY

Set the data write mode to R/W mode riic_rw_mode ← RIIC_MD_WRITE

Clear the I2C bus status RIIC0.ICSR2 register ← 00h
TMOF flag = 0: Timeout is not detected.
AL flag = 0: Arbitration is not lost.
START flag = 0: Start condition is not detected.
STOP flag = 0: Stop condition is not detected.
NACKF flag = 0: NACK is not detected.

Enable the interrupt sources RIIC0.ICIER register ← 9Bh
TMOIE bit = 1: Timeout interrupt request is enabled.
ALIE bit = 1: Arbitration-lost interrupt request is enabled.
SPIE bit = 1: Stop condition detection interrupt request is enabled.
NAKIE bit = 1: NACK reception interrupt request is enabled.
TIE bit = 1: Transmit data empty interrupt request is enabled.

Enable the interrupt requests IER16 register
IEN6 bit ← 1: ICEEI0 interrupt request is enabled

IER17 register
IEN0 bit ← 1: ICTXI0 interrupt request is enabled

Issue the start condition RIIC0.ICCR2 register
ST bit ← 1: Requests to issue a start condition

Set OK as the execution result result ← RIIC_OK

return result

Figure 5.12 Processing to Start Writing Data to the EEPROM

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 30 of 38
May 7, 2014

5.8.10 Processing to Start Reading Data From the EEPROM
Figure 5.13 shows Processing to Start Reading Data From the EEPROM.

RIIC_Read Arguments
uint8_t slv_addr: EEPROM slave address
uint8_t mem_addr: EEPROM write address
uint8_t pbuf: Storage pointer for data to be read from the EEPROM
uint8_t num: Size of data to be read from the EEPROM
CallBackFunc pcb: Callback function when the read operation has ended

Set FAIL as the execution result result ← RIIC_FAIL

RIIC is not in
the busy state and the RIIC

bus is free

No((riic_status == RIIC_BUSY) || (RIIC0.ICCR2.BIT.BBSY != 0))

Yes((riic_status != RIIC_BUSY) && (RIIC0.ICCR2.BIT.BBSY == 0))

Set information for RIIC to read data
from the EEPROM

riic_slv_addr ← (slv_addr << 1) & RIIC_W_BIT: Set the slave address and the write bit
riic_mem_addr ← mem_addr: Set the memory address
riic_tx_cnt ← 0: Initialize the number of transmissions
riic_tx_size ← RIIC_WRITE_HEADDER: Set the size of the data to be transmitted
riic_rx_cnt ← 0: Initialize the number of receptions
riic_rx_size ← num: Initialize the size of the data to be received
p_riic_rx_buf ← pbuf: Set the receive buffer

Set the callback function pcb_riic_end ← pcb: Callback function setting

Set the RIIC status to busy riic_status ← RIIC_BUSY

Set the read address setting mode to
R/W mode

riic_rw_mode ← RIIC_MD_READ_ADDR

Clear the I2C bus status RIIC0.ICSR2 register ← 00h
TMOF flag = 0: Timeout is not detected.
AL flag = 0: Arbitration is not lost.
START flag = 0: Start condition is not detected.
STOP flag = 0: Stop condition is not detected.
NACKF flag = 0: NACK is not detected.

Enable the interrupt sources RIIC0.ICIER register ← BBh
TMOIE bit = 1: Timeout interrupt request is enabled.
ALIE bit = 1: Arbitration-lost interrupt request is enabled.
SPIE bit = 1: Stop condition detection interrupt request is enabled.
NAKIE bit = 1: NACK reception interrupt request is enabled.
RIE bit = 1: Receive data full interrupt request is enabled.
TIE bit = 1: Transmit data empty interrupt request is enabled.

Enable the interrupt requests IER16 register
IEN6 bit ← 1: ICEEI0 interrupt request is enabled
IEN7 bit ← 1: ICRXI0 interrupt request is enabled

IER17 register
IEN0 bit ← 1: ICTXI0 interrupt request is enabled

Issue the start condition RIIC0.ICCR2 register
ST bit ← 1: Requests to issue a start condition

Set OK as the execution result result ← RIIC_OK

return result

Is the size of the data
received 1 or larger?

No(num == 0)

Yes(num >= 1)
Set a parameter error as the execution

result result ← RIIC_PARAM_ERROR

Figure 5.13 Processing to Start Reading Data From the EEPROM

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 31 of 38
May 7, 2014

5.8.11 ICTXI0 Interrupt Handling

Figure 5.14 shows ICTXI0 Interrupt Handling.

Excep_RIIC0_TXI0

RIIC0.TMOCNTL register ← 00h
RIIC0.TMOCNTU register ← 00h

Set the slave address as the transmit data

Determine the
number of master

transmissions

RIIC_CNT_SLVADDR (when transmitting the slave address)

return

RIIC0.ICDRT register ← riic_slv_addr

RIIC_CNT_MEMADDR (when transmitting the memory address)

riic_tx_cnt ← riic_tx_cnt + 1

Initialize the timeout internal timer

Set the memory address as the transmit data RIIC0.ICDRT register ← riic_mem_addr

default (when transmitting the write data)

Set data to be written to the EEPROM
as the transmit data RIIC0.ICDRT register ← p_riic_tx_buf[riic_tx_cnt - RIIC_WRITE_HEADDER]

Increment the number of master
transmissions by 1

Has all transmit data
been written?

No

Yes

Disable the ICTXI0 interrupt request IER17 register
IEN0 bit ← 0: ICTXI0 interrupt request is disabled

Disable the ICTXI0 interrupt source RIIC0.ICIER register
TIE bit ← 0: Transmit data empty interrupt request is disabled.

Clear the ICTXI0 interrupt request IR184 register
IR flag ← 0: ICTXI0 interrupt request is not generated

Is the RIIC in
data write mode or read
address setting mode?

No

Yes

Enable the ICTEI0 interrupt source RIIC0.ICIER register
TEIE bit ← 1: Transmit end interrupt request is enabled.

Enable the ICTEI0 interrupt request IER17 register
IEN1 bit ← 1: ICTEI0 interrupt request is enabled

Figure 5.14 ICTXI0 Interrupt Handling

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 32 of 38
May 7, 2014

5.8.12 ICRXI0 Interrupt Handling
Figure 5.15 shows ICRXI0 Interrupt Handling.

Excep_RIIC0_RXI0

RIIC0.TMOCNTL register ← 00h
RIIC0.TMOCNTU register ← 00h

Have the last data
been received?

return

Initialize the timeout internal timer

Issue the stop condition RIIC0.ICSR2 register
STOP flag ← 0: Stop condition is not detected.

RIIC0.ICCR2 register
SP bit ← 1: Requests to issue a stop condition.

Import receive data

Is the next data
the third from the last, data

or is the size of the data
received 1 ?

No

Yes

Select the RDRF flag set timing RIIC0.ICMR3 register
RDRFS bit ← 1: The RDRF flag is set at the rising edge of the eighth

SCL clock cycle

Was the
first ICRXI0 interrupt request

generated?

No

Yes
Dummy read the RIIC0.ICDRR

register
Read the RIIC0.ICDRR register

Increment the number of master
receptions by 1 riic_rx_cnt ← riic_rx_cnt + 1

No

Yes

Read the RIIC0.ICDRR register

Set the NACK transmission RIIC0.ICMR3 register
ACKWP bit ← 1: Modification of the ACKBT is enabled.
ACKBT bit ← 1: A 1 is sent as the acknowledge bit (NACK transmission).
ACKWP bit ← 0: Modification of the ACKBT is disabled.

Set no WAIT RIIC0.ICMR3 register
WAIT bit ← 0: No WAIT

return

Set a WAIT RIIC0.ICMR3 register
WAIT bit ← 1: WAIT

Is the next data
the second from the

last data?

No

Yes

Set the NACK transmission RIIC0.ICMR3 register
ACKWP bit ← 1: Modification of the ACKBT is enabled.
ACKBT bit ← 1: A 1 is sent as the acknowledge bit (NACK transmission).
ACKWP bit ← 0: Modification of the ACKBT is disabled.

Read the receive data

Figure 5.15 ICRXI0 Interrupt Handling

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 33 of 38
May 7, 2014

5.8.13 ICTEI0 Interrupt Handling
Figure 5.16 shows ICTEI0 Interrupt Handling.

Excep_RIIC0_TEI0

Determine the interrupt
request source

An interrupt request
is generated

No interrupt request is generated

RIIC0.ICIER register
TEIE bit: 0: ICTEI0 interrupt is disabled.

1: ICTEI0 interrupt is enabled.

RIIC0.ICSR2 register
TEND flag: 0: Data is being transmitted.

 1: Data has been transmitted.

Disable the ICTEI0 interrupt request IER17 register
IEN1 bit ← 0: ICTEI0 interrupt request is disabled

Clear the TEND flag RIIC0.ICSR2 register
TEND flag ← 0

Disable the ICTEI0 interrupt source RIIC0.ICIER register
TEIE bit ← 0: Transmit end interrupt request is disabled.

Initialize the timeout internal timer RIIC0.TMOCNTL register ← 00h
RIIC0.TMOCNTU register ← 00h

Is the
operating mode data write

mode?

No

Yes

Issue the stop condition RIIC0.ICSR2 register
STOP flag ← 0: Stop condition is not detected.

RIIC0.ICCR2 register
SP bit ← 1: Requests to issue a stop condition.

Is the
operating mode

read address setting
mode?

No

Yes
Set the information for reading

data from the EEPROM
riic_slv_addr ← riic_slv_addr | RIIC_R_BIT: Set the slave address and read bit
riic_rw_mode ← RIIC_MD_READ_DATA: Set the R/W mode as the data read mode
riic_tx_cnt ← 0: Initialize the number of transmissions
riic_tx_size ← 1: Set the size of the data to be transmitted (slave address only)

Issue the restart condition RIIC0.ICSR2 register
START flag ← 0: Start condition is not detected.

RIIC0.ICCR2 register
RS bit ← 1: Requests to issue a restart condition.

Enable the ICTXI0 interrupt
source

RIIC0.ICIER register
TIE bit ← 1: Transmit data empty interrupt request is enabled.

Enable the interrupt requests IER17 register
IEN0 bit ← 1: ICTXI0 interrupt request is enabled

Is the IR flag 0 ?No

Yes

return

Read the IR185 register
IR flag = 0: No interrupt request is generated

 = 1: An interrupt request is generated

Figure 5.16 ICTEI0 Interrupt Handling

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 34 of 38
May 7, 2014

5.8.14 ICEEI0 Interrupt Handling
Figure 5.17 and Figure 5.18 show the ICEEI0 Interrupt Handling.

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 35 of 38
May 7, 2014

Excep_RIIC0_EEI0

B

Initialize the timeout internal timer RIIC0.TMOCNTL register ← 00h
RIIC0.TMOCNTU register ← 00h

Was a
timeout detection interrupt request

generated?

No

Yes

Set the timeout as the status riic_status ← RIIC_TIMEOUT

Clear the timeout detection flag RIIC0.ICSR2 register
TMOF flag ← 0: Timeout is not detected.

Reset the RIIC RIIC0.ICCR1 register
ICE bit ← 0: I2C bus interface disabled.
IICRST bit ← 1: Initiates the RIIC reset or internal reset.

Clear the RIIC reset RIIC0.ICCR1 register
IICRST bit ← 0: Clears the RIIC reset or internal reset.

Was the callback function called?
No

Yes
Callback function

pcb_riic_end()

Was the
arbitration lost interrupt request

generated?

No

Yes

Set arbitration lost detected as the status riic_status ← RIIC_AL

Clear the arbitration-lost detection flag RIIC0.ICSR2 register
AL flag ← 0: Arbitration is not lost.

Processing when writing data to or reading
data from the EEPROM has ended

RIIC_proc_end()

Was the callback function called?
No

Yes

Callback function
pcb_riic_end()

Was the start
condition detection interrupt request

generated?

No

Clear the start condition detection flag RIIC0.ICSR2 register
START flag ← 0: Start condition is not detected.

A

Yes

Figure 5.17 ICEEI0 Interrupt Handling (1/2)

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 36 of 38
May 7, 2014

A

Was the stop condition
detection interrupt requested?

No

Yes

Is the RIIC in the busy state?
No

Yes
Set the RIIC status to ready riic_status ← RIIC_RDY

Clear the stop condition detection flag RIIC0.ICSR2 register
STOP flag ← 0: Stop condition is not detected.

Processing when writing data to or reading data
from the EEPROM has ended

RIIC_proc_end()

Was the callback function called?
No

Yes
Callback function

pcb_riic_end()

Was the NACK reception
interrupt requested?

No

Yes
Set NACK reception as the RIIC status riic_status ← RIIC_NACK

Clear the NACK detection flag RIIC0.ICSR2 register
NACKF flag ← 0: NACK is not detected.

Issue the stop detection RIIC0.ICSR2 register
STOP flag ← 0: Stop condition is not detected.

RIIC0.ICCR2 register
SP bit ← 0: Requests to issue a stop condition.

Is the operating mode
data read mode?

No

Yes
Dummy read the RIIC0.ICDRR register

Disable the ICRXI0 interrupt request IER16 register
IEN7 bit ← 0: ICRXI0 interrupt request is disabled

Disable the ICRXI0 interrupt source RIIC0.ICIER register
RIE bit ← 0: Receive data full interrupt request is disabled.

Clear the ICRXI0 interrupt request IR183 register
IR flag ← 0: ICRXI0 interrupt request is not generated

Is the IR flag 0 ?
No

Yes

Read the IR182 register
IR flag = 0: No interrupt request is generated

= 1: An interrupt request is generated
return

B

Figure 5.18 ICEEI0 Interrupt Handling (2/2)

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 37 of 38
May 7, 2014

5.8.15 Obtain RIIC Status
Figure 5.19 shows the Obtain RIIC Status.

RIIC_GetStatus

return riic_status

Figure 5.19 Obtain RIIC Status

5.8.16 Processing When Writing Data To or Reading Data From the EEPROM Has Ended

Figure 5.20 shows Processing When Writing Data To or Reading Data From the EEPROM Has Ended.

RIIC_proc_end

Disable interrupt requests IER16 register
IEN6 bit ← 0: ICEEI0 interrupt request is disabled
IEN7 bit ← 0: ICRXI0 interrupt request is disabled

IER17 register
IEN0 bit ← 0: ICTXI0 interrupt request is disabled
IEN1 bit ← 0: ICTEI0 interrupt request is disabled

Disable interrupt sources *1 RIIC0.ICIER register ← 00h
TMOIE bit = 0: Timeout interrupt request is disabled.
ALIE bit = 0: Arbitration-lost interrupt is disabled.
STIE bit = 0: Start condition detection interrupt request is disabled.
SPIE bit = 0: Stop condition detection interrupt request is disabled.
NAKIE bit = 0: NACK reception interrupt request is disabled.
RIE bit = 0: Receive data full interrupt request is disabled.
TEIE bit = 0: Transmit end interrupt request is disabled.
TIE bit = 0: Transmit data empty interrupt request is disabled.

Clear the interrupt requests IR183 register
IR flag ← 0: No ICRXI0 interrupt request is generated

IR184 register
IR flag ← 0: No ICTXI0 interrupt request is generated

Select the RDRF flag set timing RIIC0.ICMR3 register
RDRFS bit ← 0: The RDRF flag is set at the rising edge of the ninth SCL clock cycle.

Set ACK transmission RIIC0.ICMR3 register
ACKWP bit ← 1: Modification of the ACKBT bit is enabled.
ACKBT bit ← 0: A 0 is sent as the acknowledge bit (ACK transmission).
ACKWP bit ← 0: Modification of the ACKBT bit is disabled.

Dummy read the RIIC0.ICDRR register

Set no wait RIIC0.ICMR3 register
WAIT bit ← 0: No WAIT

return

Note 1. After writing to the ICIER register, confirm that the value written can be read.

Figure 5.20 Processing When Writing Data To or Reading Data From the EEPROM Has Ended

RX63N Group, RX631 Group Using the RIIC to Access the EEPROM

R01AN1925EJ0100 Rev. 1.00 Page 38 of 38
May 7, 2014

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
User’s Manual: Hardware

RX63N Group, RX631 Group User’s Manual: Hardware Rev.1.70 (R01UH0041EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User’s Manual Rev.1.00 (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY RX63N Group, RX631 Group Application Note Using the RIIC to
Access the EEPROM

Rev. Date
Description

Page Summary
1.00 May 7, 2014 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	1. Specifications
	2. Confirmed Operating Conditions
	3. Reference Application Notes
	4. Hardware
	4.1 Hardware Configuration
	4.2 Pins Used

	5. Software
	5.1 Operation Overview
	5.1.1 Writing Data to the EEPROM
	5.1.2 Reading Data From the EEPROM

	5.2 File Composition
	5.3 Option-Setting Memory
	5.4 Constants
	5.5 Variables
	5.6 Functions
	5.7 Function Specifications
	5.8 Flowcharts
	5.8.1 Main Processing
	5.8.2 Port Initialization
	5.8.3 Peripheral Function Initialization
	5.8.4 IRQ Initialization
	5.8.5 Callback Function After Writing Data to the EEPROM
	5.8.6 Callback Function After Reading Data From the EEPROM
	5.8.7 Processing to Display Two Lines of Text on the LCD
	5.8.8 RIIC Initialization
	5.8.9 Processing to Start Writing Data to the EEPROM
	5.8.10 Processing to Start Reading Data From the EEPROM
	5.8.11 ICTXI0 Interrupt Handling
	5.8.12 ICRXI0 Interrupt Handling
	5.8.13 ICTEI0 Interrupt Handling
	5.8.14 ICEEI0 Interrupt Handling
	5.8.15 Obtain RIIC Status
	5.8.16 Processing When Writing Data To or Reading Data From the EEPROM Has Ended

	6. Sample Code
	7. Reference Documents

