
 APPLICATION NOTE

R01AN2207EJ0100 Rev.1.00 Page 1 of 122
Sep 30, 2014

RX631 Group
SH7044 to RX631 Microcontroller Migration Guide

Introduction
This application note describes points requiring special attention, points of difference, etc., that need to be borne in
mind when replacing the SH7044 with the RX631 in a user system. For detailed information on each function, refer to
the latest version of the User’s Manual: Hardware.

Target Device
RX631/RX63N

Contents

1. CPU Architecture ... 2

2. On-Chip Functions .. 30

3. Sample Code ... 118

4. Reference Documents... 121

R01AN2207EJ0100
Rev.1.00

Sep 30, 2014

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 2 of 122
Sep 30, 2014

1. CPU Architecture

1.1 Registers
The points of difference between the registers of the SH7044 and the RX631 are described below.

1.1.1 General-Purpose Registers
The SH7044 and RX631 each have 16 32-bit general-purpose registers. They differ in that the register used as the stack
pointer (SP) is different.

• SH7044: R15
• RX631: R0

On the SH7044, R0 is also used as an index register.

SH7044 RX631
31 0 31 0

R0*

R15 (SP)

R0 (SP)

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Note: * Used as the index register in the indexed register indirect and indexed GBR indirect addressing
modes. R0 may be fixed as the source or destination register, depending on the instruction.

Figure 1.1 Differences Between General-Purpose Registers

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 3 of 122
Sep 30, 2014

1.1.2 Control Registers
Figure 1.2 shows the points of difference between the control registers of the SH7044 and the RX631.

31 0 31 0

PC (program counter)

PR (procedure register)

SR (status register)

GBR (global base register)

VBR (vector base register)

MACH (multiply and accumulate register high)

MACL (multiply and accumulate register low)

PC (program counter)

ISP (interrupt stack pointer)

USP (user stack pointer)

PSW (processor status word)

INTB (interrupt table register)

BPC (backup PC)

BPSW (backup PSW)

FINTV (fast interrupt vector register)

FPSW (floating-point status word)

063

ACC (accumulator)

SH7044 RX631

Figure 1.2 Differences Between Control Registers

The RX631 has no registers corresponding to PR and GBR on the SH7044. The ACC register on the RX631
corresponds to MACH and MACL on the SH7044. An outline of the control registers that are implemented on the
RX631 but not on the SH7044 is presented below.

• Interrupt stack pointer/user stack pointer (ISP/USP)
There are two types of stack pointer (SP): the interrupt stack pointer (ISP) and the user stack pointer (USP).
Switching the stack pointer in use (ISP or USP) is accomplished by means of the stack pointer select bit (U) in the
processor status word (PSW) register.

• Interrupt table register (INTB)*
Specifies the start address of the relocatable vector table.

• Backup PC/backup PSW (BPC/BPSW)
The RX631 supports fast interrupts in addition to ordinary interrupts. For fast interrupts, the contents of PC and
PSW are saved to dedicated registers (BPC and BPSW), thereby reducing the processing time needed to save the
register data. Note that BPC and BPSW do not support multiple interrupts at the same time.

• Fast interrupt vector register (FINTV)
This register specifies the jump destination when a fast interrupt occurs.

• Floating-point status word (FPSW)
This register indicates the status of the calculation result (floating-point calculation result) generated by the RX631’s
on-chip FPU.

Note: * The functionality of this register is equivalent to that of VBR on the SH7044.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 4 of 122
Sep 30, 2014

• Differences between status registers

SR (status register) on SH7044

PSW (processor status word) on RX631

31 9 8 7 6 5 4 3 2 1 0

M Q I3 - - S TI2 I1 I0

31 4 3 2 1 028 27 24 20 17 16 15

IPL[3:0] PM U I O S Z C

Figure 1.3 Differences Between SR (SH7044) and PSW (RX631)

Table 1.1 Differences Between SR (SH7044) and PSW (RX631)

SR Bit Name PSW Bit Name Description
T C The calculation result (true/false, carry/borrow, etc.) indicated by the T bit on the

SH7044 is shown by four flags (C, Z, S, and O) on the RX631.
C: Carry flag (0/1 = No carry has occurred./A carry has occurred.)
Z: Zero flag
S: Sign flag
O: Overflow flag

Z
S
O

S  Controls the functionality that prevents overflows during ALU arithmetic
operations performed by the DSP unit of the SH7044.
On the RX631 there is no bit corresponding to the S bit, and the occurrence of
an overflow during a floating-point operation is reported by the FPSW flag. It is
also possible to perform exception handling when an overflow occurs.

I0, I1, I2, I3 IPL[3:0] These are the interrupt mask bits.
Both the SH7044 and the RX631 support level settings from 0 (lowest) to 15
(highest). Only interrupts with a priority level higher than this setting are
accepted.

Q  The Q bit is used by the DIV0U, DIV0S, and DIV1 instructions on the SH7044.
There is no corresponding bit on the RX631.

M  The M bit is used by the DIV0U, DIV0S, and DIV1 instructions on the SH7044.
There is no corresponding bit on the RX631.

 I Interrupt enable bit
0: Interrupts are disabled.
1: Interrupts are enabled.
This bit is used to enable interrupt requests on the RX631. The initial state is 0,
so it is necessary to set this bit to 1 in order to accept interrupts. Also, this bit is
cleared to 0 when an exception is accepted, and no interrupts are accepted
while its value remains 0.
Note that the interrupt status flag of the interrupt controller is reset when an
interrupt request occurs, regardless of the setting of this bit.

 U This bit specifies the stack pointer used by the RX631.
0: Interrupt stack pointer (ISP)
1: User stack pointer (USP)
This bit is cleared to 0 when an exception is accepted.

 PM This bit specifies the processor mode of the RX631.
0: Supervisor mode
1: User mode
This bit is cleared to 0 when an exception is accepted.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 5 of 122
Sep 30, 2014

1.2 Option-Setting Memory
The RX631 is provided with an option-setting memory area containing registers for selecting the microcontroller state
after a reset of the endian mode, watchdog timer operation, etc. The option-setting memory is allocated in the ROM,
and it cannot be overwritten by a software program. When programming the ROM, it is necessary to program
appropriate values in the option-setting memory as well.

1.2.1 Outline of Option-Setting Memory
An outline of the option-setting memory area is shown below.

... Register Description

... 

Address

FF7F FFE8h to
FF7F FFEFh

FF7F FFF0h to
FF7F FFF7h

FF7F FFF8h to
FF7F FFFBh

FFFF FF80h to
FFFF FF83h

FFFF FF88h to
FFFF FF8Bh

FFFF FF8Ch to
FFFF FF8Fh

b31 b0

UB code A

UB code B

Endian select register B
(MDEB)
(user boot mode)

Endian select register S
(MDES)
(single-chip mode)

Option function select register 1
(OFS1)

Option function select register 0
(OFS0)

Codes necessary when using user
boot mode.
(Do not overwrite these codes when
using USB boot mode.)

The OFS1 register is used to make the
following two settings:

Register for selecting the endian
setting of the CPU.

Register for selecting the endian
setting of the CPU.

The OFS0 register is used to make
settings for the independent watchdog
timer (IWDT) and watchdog timer
(WDT).

 

 

• Voltage monitor 0 reset is enabled/
disabled after a reset.

• HOCO oscillation is enabled/
disabled after a reset.

Figure 1.4 Option-Setting Memory Area

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 6 of 122
Sep 30, 2014

Sample settings for the option-setting memory are shown below.

/* Settings for single-chip mode and big-endian */
#define __BIG
#pragma address MDEreg=0xffffff80 // MDE register (Single Chip Mode)
#ifdef __BIG

const unsigned long MDEreg = 0xfffffff8; // big
#else

const unsigned long MDEreg = 0xffffffff; // little
#endif

Figure 1.5 Endian Setting Example

Sample settings for OFS0 and OFS1 are shown below. (The code below is included in the automatically generated
files.)

#pragma address OFS1_REG = 0xFFFFFF88 /* OFS1 register */
const unsigned long OFS1_REG = 0xFFFFFFFF;

#pragma address OFS0_REG = 0xFFFFFF8C /* OFS0 register */
const unsigned long OFS0_REG = 0xFFFFFFFF;

Figure 1.6 OFS0 and OFS1 Setting Example

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 7 of 122
Sep 30, 2014

1.2.2 Endian Setting
The SH7044 is fixed in big-endian mode. On the RX631, instructions are fixed in little-endian, and the data order is
selectable between little-endian and big-endian. The endian setting is specified by means of the endian select bits
(MDE[2:0]) in the MDES and MDEB registers in the option-setting memory.

When switching from the SH7044 to the RX631, it is possible to use big-endian order by specifying big-endian in the
option settings of the genuine Renesas compiler. This allows migration without the need to be conscious of endianness
in the user program.

The endian setting can be switched for each CS area in the external address space. However, instruction code cannot be
allocated to an external space with an endian setting that differs from that of the chip. When allocating instruction code
to an external space, ensure that an area with the same endian setting as the chip is used. (For details, see the User’s
Manual: Hardware.)

In actuality, code such as that shown in figure 1.5, Endian Setting Example, is generated automatically according to the
compiler option setting.*

Compiler option
endian = Little

Program code

Compiler

Linker

Object file
Instructions: Little-endian
Data: Little-endian

Compiler option
endian = Big

Object file
Instructions: Little-endian
Data: Big-endian

Object file
Instructions: Little-endian
Data: Little-endian

Object file
Instructions: Little-endian
Data: Big-endian

Figure 1.7 Specifying Endianness by Compiler Option

Note: * The automatically generated files work in the sample code operating environment described in section 3.1.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 8 of 122
Sep 30, 2014

1.3 Reset Function
1.3.1 Reset Sources
Table 1.2 lists the reset sources of the SH7044 and RX631.

Table 1.2 Reset Sources

 SH7044 RX631
Reset type • Power-on reset (pin reset)

• Manual reset (pin reset)
• RES# pin reset
• Power-on reset (internal reset)
• Voltage monitor 0 reset
• Voltage monitor 1 reset
• Voltage monitor 2 reset
• Deep software standby reset
• Independent watchdog timer reset
• Watchdog timer reset
• Software reset

• Reset vector configuration

The SH7044 has separate vectors for power-on resets and for manual resets (PC and SP).*
The RX631 has a single reset vector for multiple reset sources. The reset source is identified in reset status registers
0 to 2 during reset processing, and processing for the corresponding source is performed.

• Stack pointer
On the SH7044, it is necessary to specify the end address (+1) of the stack area in the reset vector. There is no stack
pointer setting area in the vector table on the RX631, so the stack pointer is set in ISP and USP.

Note: * See 1.7.4, Vector Configuration, for details of the vector tables.

FFFFFFFCh

Vector tableVector table

FFFFFF80h

SH7044 RX631

H’0000000

H’0000004

H’0000008
H’000000C

H’00003FB
Vector#255 Reset PC

Vector#0 (Power-on reset PC)
Vector#1 (Power-on reset SP)

Vector#2 (Manual reset PC)
Vector#3 (Manual reset SP)

Figure 1.8 Reset Vectors on SH7044 and RX631

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 9 of 122
Sep 30, 2014

1.3.2 Reset Sources and Initialization Scope
The initialization scope of the reset sources differs between the SH7044 and the RX631. Table 1.3 lists the reset types
and their initialization scope on the SH7044, and table 1.4 lists the reset types and their initialization scope on the
RX631. (For details, see the Userʼs Manual: Hardware.)

Table 1.3 SH7044 Reset Sources and Initialization Scope

Item Power-On Reset Manual Reset
CPU
On-chip peripheral modules 

: Reset : No reset

Table 1.4 RX631 Reset Sources and Initialization Scope

Reset Target

Reset Sources

Res# Pin
Reset

Power-On
Reset

Voltage
Monitor 0
Reset

Independent
Watchdog
Timer Reset

Watchdog
Timer
Reset

Voltage
Monitor 1
Reset

Voltage
Monitor 2
Reset

Deep Software
Standby Reset

Software
Reset

Power-on reset
detection flag

        

Cold start/warm start
determination flag

       

Voltage monitor 0 reset
detection flag

       

Independent watchdog
timer reset detection
flag

     

Independent watchdog
timer registers

     

Watchdog timer reset
detection flag

    

Watchdog timer
registers

    

Voltage monitor 1 reset
detection flag

    

Voltage monitor
function 1 registers

   *1 

Voltage monitor 2 reset
detection flag

   

Voltage monitor
function 2 registers

  *2 

Deep software standby
reset detection flag

  

Software reset
detection flag

 

Realtime clock
registers

        

High-speed on-chip
oscillator–related
registers

 

Main clock oscillator–
related registers

 

Pin states 
Low power
consumption–related
registers

 

Registers other than
the above, CPU, and
internal state

: Reset : No change
Notes: 1. Only LVD1CR1 and LVD1SR are initialized.
 2. Only LVD1CR2 and LVD2SR are initialized.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 10 of 122
Sep 30, 2014

1.4 Clock Settings
1.4.1 Clock Sources
The clock sources and clock generation circuits of the SH7044 and RX631 are listed below.

Table 1.5 List of SH7044 and RX631 Clock Sources

SH7044 RX631
Oscillator (EXTAL and XTAL) + PLL circuit • Main clock oscillator (EXTAL and XTAL) + PLL circuit

• Subclock oscillator (XCIN and XCOUT)
• High-speed on-chip oscillator (HOCO)
• Low-speed on-chip oscillator (LOCO)
• IWDT-dedicated on-chip oscillator

Note: In the description below, the high-speed on-chip oscillator is referred to as the HOCO and the low-
speed on-chip oscillator as the LOCO.

1.4.2 Clock Generation Circuit
On the SH7044 clock control is not performed in software. Each peripheral device operations in synchronization with
the system clock (ϕ) or a clock generated by the prescaler. On the RX631 a large variety of clocks operate under
software control.

On the RX631 the LOCO operates as the clock source after a reset. The operation of necessary clock sources and PLL
circuits other than the LOCO is started during system initialization, and various clocks are selected, such as the system
clock and bus clocks. When making changes to clock-related settings, it is necessary to consider the register setting
sequence and the oscillation and clock oscillation stabilization time.

See the following application note for details of the clock setting procedure.

RX63N Group, RX631 Group Initial Setting (R01AN1245EJ)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 11 of 122
Sep 30, 2014

Frequency
divider

Oscillation
stop

detector

Main clock
oscillator

Sub-clock
oscillator

High speed
on-chip

oscillator

Low speed
on-chip

oscillator

IWDT
dedicated on-
chip oscillator

PLLCR

PLL
circuit

PLLCR

SCKCR3

SCKCR

SCKCR

SCKCR

BCKCR

SCKCR2

SCKCR2

SCKCR1/1

1/6

1/3

1/2
1/4
1/8

1/16
1/32
1/64

PLIDIV[1:0] STC[5:0]

XTAL
EXTAL

XCIN

XCOUT

HOCO clock

Sub clock

LOCO clock

IWDT dedicated clock

TCK

SKSEL[2:0]
Divider

FCK[3:0]

Flash interface clock (FCLK)
To flash interface

ICK[3:0]

System clock (ICLK)
To CPU, DMAC, DTC, ROM, and RAM

PCKA[3:0]
PCKB[3:0]

Peripheral module clock (PCLKA)
To ETHERC and EDMAC
Peripheral module clock (PCLKB)
To peripheral modules other than
ETHERC and EDMAC

BCLKDIV

BCK[3:0]

External bus clock (BCLK)
To external bus controller

SDRAM clock (SDCLK)
To SDCLK pin

IEBCK[3:0]

IEBUS clock (IECLK)
To IEBUS

UCK[3:0]

USB clock (UCLK)
To USB

IWDT dedicated low-speed clock (IWDTCLK)
To IWDT

CAN clock (CANMCLK)
To CAN

JTAG clock (JTAGTCK)
To JTAG

RTC dedicated clock (RTCSCLK)
To RTC (RTCMCLK)

1/2

Main clock

BCLK pin

S
elector

S
elector

S
elector

S
elector

S
elector

S
elector

S
elector

S
elector

S
elector

S
elector

Figure 1.9 RX631 Clock Generation Circuit

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 12 of 122
Sep 30, 2014

1.5 Operation Modes
1.5.1 Comparison of Operation Modes
The table below shows a comparison of the operation modes of the SH7044 and RX631. For details of each operation
mode, see the User’s Manual: Hardware.

Table 1.6 Comparison of Operation Modes

SH7044
Operation Mode

RX631
Operation Mode Description

MCU mode 0 On-chip ROM disabled
extended mode

An operation mode in which the on-chip ROM is disabled
and the external address space is enabled. The external
bus width differs from that of mode 0 and mode 1 on the
SH7044.

MCU mode 1

MCU mode 2 On-chip ROM enabled
extended mode

An operation mode in which the on-chip ROM is enabled
and the external address space is enabled

Single-chip mode Single-chip mode An operation mode in which the on-chip ROM is enabled
and the external address space is disabled

Boot mode Boot mode An operation mode in which the on-chip flash memory
modifying program (boot program), which is stored in a
dedicated area internal to the microcontroller, is run. The
on-chip flash memory can be programmed by a device
external to the microcontroller by using the asynchronous
serial interface.

User program mode Functionality equivalent
to the SH7044 can be
implemented in ordinary
operation mode.

An operation mode that is only transitioned to when the
setting value of the FWP pin changes and in which the
on-chip flash memory is programmed by a
programming/erase control program that has been
prepared ahead of time by the user. It is possible to
implement equivalent functionality in ordinary operation
mode on the RX631, so it is not necessary to change the
pin states.

 USB boot mode /
user boot mode

An operation mode in which the on-chip flash memory
modifying program stored in the user boot area is run.
When the microcontroller is in the default factory state the
mode is USB boot mode, and when a flash memory
modifying program created by the user has been stored
in the user boot area the mode is user boot mode. It is
possible to use a user-defined interface to select between
the USB and user modes and program the on-chip flash
memory with a device external to the microcontroller.
Programming of the user boot area is only possible in
boot mode.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 13 of 122
Sep 30, 2014

1.5.2 Comparison of Memory
The figure below shows a comparison of memory maps in on-chip ROM enabled mode (on-chip ROM enabled
extended mode on the RX631).

On-chip ROM

SH7044 on-chip ROM enabled mode

Reserved area

CS0 area

CS1 area

CS2 area

CS3 area

DRAM area

Reserved area

On-chip peripheral
modules

Reserved area

On-chip RAM

0000 0000h

0004 0000h

0020 0000h

0040 0000h

0080 0000h

00C0 0000h

0100 0000h

0200 0000h

FFFF FFFFh

FFFF 8000h

FFFF 0000h

FFFF 8800h

RAM

RX631 on-chip ROM enabled
extended mode

Reserved area

On-chip ROM
(program ROM)

(dedicated for programming)

External address space
(CS area)

Reserved area

Reserved area

0000 0000h

0004 0000h

0080 0000h

0100 0000h

0800 0000h

FFFF FFFFh

FEFF E000h

FF80 0000h

FF00 0000h

Reserved area

Reserved area

Reserved area

Reserved area

Reserved area

Peripheral I/O registers

On-chip ROM
(E2 data flash)

FCU-RAM area

Peripheral I/O registers

Peripheral I/O registers

External address space
(SDRAM area)

On-chip ROM
(FCU firmware)

 (read-only)

On-chip ROM
(program ROM)

 (read-only)

0008 0000h

0010 0000h

0010 8000h
007F 8000h

007F A000h
007F C000h

007F C500h
007F FC00h

00E0 0000h

1000 0000h

FF7F C000h

FFE0 0000h

On-chip ROM (user boot)
 (read-only)

Figure 1.10 SH7044 and RX631 Memory Map Comparison (On-Chip ROM Enabled Mode)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 14 of 122
Sep 30, 2014

The figure below shows a comparison of memory maps in single-chip mode.

On-chip ROM

Single-chip mode (SH7044)

Reserved area

On-chip peripheral modules

Reserved area

On-chip RAM

0000 0000h

0004 0000h

FFFF FFFFh

FFFF 8000h

FFFF 0000h

FFFF 8800h

Single-chip mode (RX631)

RAM

Reserved area

0000 0000h
0004 0000h

FFFF FFFFh

FF80 0000h

FFE0 0000h

Reserved area

Reserved area

Reserved area

Peripheral I/O registers

On-chip ROM
(E2 data flash)

FCU-RAM area

Peripheral I/O registers

Peripheral I/O registers

Reserved area
On-chip ROM

(program ROM)
(dedicated for programming)

Reserved area

Reserved area

On-chip ROM (FCU firmware)
(read-only)

On-chip ROM (user boot)
 (read-only)

Reserved area

On-chip ROM
(program ROM)

 (read-only)

0008 0000h
0010 0000h

0010 8000h

007F 8000h

007F A000h

007F C000h

007F C500h

007F FC00h
0080 0000h

00E0 0000h

0100 0000h

FEFF E000h

FF00 0000h

FF7F C000h

Figure 1.11 SH7044 and RX631 Memory Map Comparison (Single-Chip Mode)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 15 of 122
Sep 30, 2014

The figure below shows a comparison of memory maps in on-chip ROM disabled mode.

On-chip ROM disabled mode
(SH7044)

Reserved area

On-chip peripheral modules

Reserved area

On-chip RAM

0000 0000h

0040 0000h

FFFF FFFFh

FFFF F000h

FFFF 8800h

On-chip ROM disabled mode
(RX631)
RAM

Reserved area
0000 0000h

0004 0000h

FFFF FFFFh

Reserved area

Peripheral I/O registers

Reserved area

External address space
(CS area)

0008 0000h
0010 0000h

0100 0000h

CS0 space

CS1 space

CS2 space

CS3 space

DRAM space

0080 0000h

00C0 0000h

0100 0000h

0200 0000h

FFFF 8000h

External address space
(SDRAM area)

External address space

0800 0000h

1000 0000h

FF00 0000h

Figure 1.12 SH7044 and RX631 Memory Map Comparison (On-Chip ROM Disabled Mode)

• On the RX631 the RAM is allocated to addresses adjacent to 0000 0000h and ROM (for reading data) to addresses

adjacent to FFFF FFFFh. Also, the RX631 has on-chip E2 data flash for storing data.
• On the RX631 the peripheral IO registers are allocated within the address range from 0008 0000h to 000F FFFFh,

and only the flash-related registers and peripheral clock notification register are allocated within the address range
from 007F C000h to 007F FFFFh.

• On the RX631 the external address space is allocated within the address range from 0100 0000h to 0FFF FFFFh and
configured as seven CS spaces of 16 MB each and a 128 MB SDRAM space.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 16 of 122
Sep 30, 2014

1.5.3 Operation Mode Settings
Whereas on the SH7044 operation mode settings are made only with the MD1, MD0, and FWP pins, on the RX631
operation mode settings can be made by means of the MD pin and PC7 or PA6 pin when a reset is canceled, or by
software after a reset is canceled.

Table 1.7 lists the operation modes that are determined by pin settings, and table 1.8 lists the operation modes that are
set in software after a reset is canceled.

Table 1.7 Pin Settings and Operation Modes on RX631

Pin
Mode Name MD PC7*2, PA6*2

1  Single-chip mode
0 0 Boot mode

1 USB boot mode / user boot mode*1
Notes: 1. When the microcontroller is in the default factory state the USB boot program is stored in the user

boot area and the microcontroller starts in USB boot mode.
 2. The pin differs according to the package type. For details, see the User’s Manual: Hardware.

Table 1.8 SYSCR0 Register Settings and Operation Modes on RX631

SYSCR0 Register
Mode Name ROME Bit*1 EXBE Bit

0 (ROM disabled) 0 (external bus disabled) Single-chip mode
(User boot mode) 1 (ROM enabled)*2 0 (external bus disabled)*2

0 (ROM disabled) 1 (external bus enabled) On-chip ROM disabled extended mode
1 (ROM enabled) 1 (external bus enabled) On-chip ROM enabled extended mode
Notes: 1. Once the ROME bit is cleared to 0 it cannot be set to 1 again.
 2. After the STSCR0 register is reset, ROME = 1 and EXBE = 0.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 17 of 122
Sep 30, 2014

1.6 Processor Modes
The RX CPU supports two processing modes: supervisor mode and user mode. These processor modes enable
hierarchical CPU resource protection.

This makes it possible, when replacing the SH7044 with the RX631, to replace the software by operating in supervisor
mode only, without using user mode. In other words, software can be replaced without the need to be conscious of the
processor mode.

Table 1.9 Processor Modes

Processor Modes Transition Conditions Outline
Supervisor mode • Reset cancellation

• Exception occurrence
(PSW.PM bit cleared to 0)

All CPU resources are accessible, and all
instructions can be executed (no limitations).
This is the mode in which the OS and other
system programs ordinarily operate.

User mode • PSW.PM bit set to 1

In this case, first set to 1 the
PSW.PM bit saved to the stack, then
execute the RTE instruction.
Alternately, first set to 1 the PSW.PM
bit saved to BPSW, then execute the
RTFI instruction.

Write access to some CPU resources, such
as some bits in PSW and to BPC and
BPSW, is restricted, and privileged
instructions cannot be used. This is the
mode in which user programs such as
application programs ordinarily operate.

Transitioning from supervisor mode to user mode
MVFC PSW,R1 ; The RTE instruction is used to simulate return from an exception.
OR #00100000h,R1 ;
PUSH.L R1 ;
MVFC PC,R1 ;
ADD #10,R1 ;
PUSH.L R1 ;
RTE
NOP
NOP

Transitioning from user mode to supervisor mode
Operation transitions to supervisor mode when exception handling occurs. Operation then transitions again to user
mode after the return from exception handling.

Another way to cause a transition to supervisor mode is to use an instruction that generates an unconditional trap, such
as the INT instruction or BRK instruction.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 18 of 122
Sep 30, 2014

1.7 Exception Handling
The points of difference regarding exception handling in general on the SH7044 and RX631, including interrupts, are
described below.

1.7.1 Types of Exception Handling
A comparative listing of exception sources on the SH7044 and RX631 is shown below.

Table 1.10 Exception Sources on SH7044 and RX631

SH7044 RX631 Main Points of Difference
Power-on reset Reset On the SH7044 there are separate vectors for power-on

resets and manual resets.
On the RX631 there is a single reset vector. The reset
source is identified in reset status registers 0 to 2 during
reset interrupt handling, and appropriate processing is
performed.

Manual reset

Address error Access exception On the SH7044 this exception occurs when an attempt is
made to access an access-prohibited area or an address
to which access is prohibited.
On the RX631 this exception occurs when a memory
protection error occurs.
On the SH7044 the next instruction is saved to PC when
this exception occurs.
On the RX631 the instruction that generated this
exception is saved to PC.

Interrupt (NMI) Non-maskable interrupt None
Interrupt
(external/internal)

Interrupt
(external/internal)

The RX631 also supports fast interrupts (level 15)

TRAP instruction
(TRAPA instruction)

Unconditional trap
(INT, BRK instruction)

The SH7044 has 32 sources, but the RX631 has 16
sources with dedicated vectors and up to 256 sources
when sources also used for interrupts are included.

General illegal
instruction

Undefined instruction The SH7044 has no exceptions corresponding to the
privileged instruction exception or floating-point
exception.
On the SH7044 the next instruction is saved to PC when
one of these exceptions occurs, but on the RX631 the
instruction that generated this exception is saved to PC.

Illegal slot instruction
 Privileged instruction
 Floating-point exception

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 19 of 122
Sep 30, 2014

1.7.2 Exception Handling Priority
The comparative priority of exception sources on the SH7044 and RX631 is shown below.

Table 1.11 Exception Event Priority

Priority SH7044 RX631 Remarks
High Power-on reset Reset

 Manual reset Non-maskable interrupt
 Address error exception Interrupt (external/internal)
 Interrupt (NMI) Instruction access exception
 Interrupt (external/internal) Undefined instruction exception,

privileged instruction exception

 TRAP instruction Unconditional trap
 General illegal instruction exception Operand access exception

Low Illegal slot instruction exception Floating-point exception
Note: Among interrupts, the priority is determined by the interrupt controller.

On the SH7044 address errors have higher priority than interrupts (internal or external), but on the RX631 both
instruction access exceptions and operand access exceptions have lower priority than interrupts.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 20 of 122
Sep 30, 2014

1.7.3 Basic Processing Sequence of Exception Handling
The basic processing sequence interrupt exception handling on the SH7044 and RX631 is shown below.

User program running

Return to user program

Save SR on the interrupt stack

Save PC on the stack
Set PC to the address of the next
instruction after the just executed
instruction

Write the interrupt priority level to I3
to I0 in SR

Interrupt handler specified by vector
setting

Run interrupt handler

Restore PC and SR from stack

User program running

Return to user program

Save PSW on the interrupt stack

Interrupt handler specified by vector
setting

Run interrupt handler

Restore PSW and PC from stack

Clear to 0 PM, U, and I in PSW

Save the next instruction PC on the
stack*

Write the interrupt priority level to
IPL[3:0] in PSW

SH7044 RX631

Interrupt generation (internal/external)
Generate an interrupt when the
interrupt priority level is higher than the
value set in the interrupt mask bits (I3
to I0) in SR

Interrupt generation (internal/external)
Generate an interrupt when the
interrupt priority level is higher than
the value set in the interrupt mask bits
(IPL[3:0]) in PSW

Note: * When the instruction being executed is RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR,

SUNTIL, or SWHILE, the PC of the instruction being executed is saved on the stack.

Figure 1.13 Interrupt (Internal/External) Processing Sequence

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 21 of 122
Sep 30, 2014

1.7.4 Vector Configuration
Both the SH7044 and RX631 have a relocatable vector configuration, which allows the vector table to be reallocated.
On the SH7044 the vector base register (VBR) specifies the start of the vector table. (Note that VBR is initialized to 0
after a reset, so it is not possible to change the reset vector.)

On the RX631 there are clearly separated fixed relocatable vector tables. System exceptions such as resets are assigned
a fixed vector that cannot be reallocated. Reallocatable interrupt and unconditional trap vectors are assigned in a
relocatable vector table, and the start address of the relocatable vector table is set in the interrupt table register (INTB).
Also, the fast interrupt vector is set in the FINTV register.

Figure 1.14 shows the differences between the vector tables.

FFFFFFFCh

Fixed vector tableVector table

FFFFFF80h

SH7044 RX631

H’0000000

H’0000004
H’0000008
H’000000C

H’00003FB
Vector #255 Reset PC

Vector #0 (power-on reset PC)
Vector #1 (power-on reset SP)
Vector #2 (manual reset PC)
Vector #3 (manual reset SP)

VBR
Vector base register

INTB
Interrupt table register

Relocatable vector table

Vector #0

Vector #255

Figure 1.14 Vector Table Settings

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 22 of 122
Sep 30, 2014

1.7.5 Interrupt Masking by SR (SH7044) and PSW (RX631)
On the RX631 the I bits in control register PSW are used to set the interrupt mask level. The I bits indicate which
interrupts are enabled and which are disabled.

Table 1.12 Interrupt-Related Bits in SR and PSW

SH7044 RX631
Description SR Register PSW Register

I0, I1, I2, I3 IPL[3:0] CPU interrupt mask level (priority level)
Setting value: 0 to Fh (levels 0 to 15)

When an interrupt request occurs, this level setting is compared
with the priority level set for the individual interrupt source, and the
interrupt is enabled if its level setting is higher than the mask level.

 I Interrupt enable bit
0: Interrupts are disabled.
1: Interrupts are enabled.

When an interrupt occurs, the interrupt status flag in the interrupt
controller is set to 1. After a system reset, this bit is set to 1,
enabling acceptance of interrupts. When an exception is accepted,
this bit is cleared to 0 and no interrupts are accepted while its value
remains 0.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 23 of 122
Sep 30, 2014

1.8 Interrupt Handling
This section describes the differences in interrupt handling between the SH7044 and RX631, with the focus on the
interrupt controller.

1.8.1 Interrupt Controller
Table 1.13 lists the differences in the interrupt controller specifications.

Table 1.13 Comparison of Interrupt Controller Specifications

Item SH7044 RX631
Interrupts Peripheral function

interrupts
• Interrupts from peripheral

modules
• Interrupt detection:

Edge/level*1

• Interrupts from peripheral
modules

• Interrupt detection:
Edge/level*1

• Group interrupt function
support

• Unit selection function support
 External pin

interrupts
• IRQ0 to IRQ7 pins
• Sources: 8
• Interrupt detection: Low level or

falling edge can be specified
for each source.

• IRQ0 to IRQ15 pins
• Sources: 16
• Interrupt detection: Low level,

falling edge, rising edge, or
both edges can be specified for
each source.

• Digital filter function support
 Software interrupts None Supported
 Interrupt priority A level from 0 to Fh can be

specified for each source by a
register setting.

A level from 0 to Fh can be
specified for each source by a
register setting.

 Fast interrupt
function

None Supported

 DTC and DMAC
control

Activation supported*2 Activation supported

Non-
maskable
interrupts

NMI pin interrupts • Interrupt detection method
(selection of falling or rising
edge)

• NMI input level read bit
provided

• Interrupt detection method
(selection of falling or rising
edge)

• Digital filter function support

 Other sources • CPU address error
• DMAC or DTC address error
• TRAP instruction

(TRAPA instruction)
• General illegal instruction

(undefined code)
• Illegal slot instruction

• Interrupt at oscillation stop
detection

• WDT underflow or refresh error
• IWDT underflow or refresh

error
• Voltage monitor 1 interrupt
• Voltage monitor 2 interrupt
• Undefined instruction exception
• Privileged instruction exception
• Access exception
• Floating-point exception
• Unconditional trap

Notes: 1. The detection method is fixed for fixed-connection peripheral modules.
 2. On the SH7044 activation source setting is performed on the DTC or DMAC.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 24 of 122
Sep 30, 2014

Interrupt request
registers are
provided for both
the peripheral
module and the
interrupt controller.

Peripheral module

Interrupt request enable register

Interrupt source flag register

DTC/DMAC

DTC/DMAC activation enable control
DTC/DMAC activation source setting
CPU interrupt processing after transfer

Disable transfer at NMI occurrence function

RX631

Interrupt controller

IRQ control register i (IRQCRi) (i = 0 to 15)
Interrupt source priority register n (IPRn) (n = 000 to 253)

IRQ pin digital filter control register
Interrupt request enable register m (IERm) (m = 02h to 1Fh)
Interrupt request register n (IRn) (n = vector number)
Fast interrupt set register (FIR)
Software interrupt activation register (SWINTR)
DTC activation enable register n (DTCERn) (n = interrupt vector number)
DMAC activation request select register m (DMRSRm) (m = DMAC channel number)
Non-maskable interrupt control registers (NMISR, NMIER, and NMICLR)
NMI pin control registers (NMICR, NMIFLTE, and NMIFLTC)
Group m interrupt control registers (GRPm, GENm, and GCRm) (m = group number)
Unit selecting register (SEL)

Peripheral module

Interrupt request enable register

DTC/DMAC

DTC/DMAC activation enable control
CPU interrupt processing after transfer

: Not implemented on the RX.

SH7044

Interrupt controller

IRQ status register (ISR)
Interrupt control register (ICR)
Interrupt priority registers (IPRx)

Figure 1.15 Differences Between Interrupt Controller Registers

Figure 1.15 shows the differences between the interrupt controllers of the SH7044 and RX631.

The interrupt controller of the SH7044 controls IRQ interrupt flags, while peripheral module interrupt flags are
controlled by the peripheral modules.

On the RX631 the interrupt controller controls all interrupt status flags, for both IRQs and peripheral modules.* In
addition, the interrupt controller controls the activation source settings for the DTC and DMAC. The disable transfer at
NMI occurrence function of the DTC and DMAC on the SH7044 is not implemented on the RX631.

Note: * The interrupt controller contains an interrupt request register for each interrupt source, but there are also
interrupt enable bits implemented in the peripheral modules. (For details, see the Userʼs Manual: Hardware.)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 25 of 122
Sep 30, 2014

1.8.2 Interrupt Flag Management
When a peripheral module of the SH7044 generates an interrupt by edge detection, the corresponding interrupt flag
(interrupt source flag) in the interrupt handler is cleared (the flag is cleared and a dummy read is performed). This is
done because the interrupt will be generated once again if the flag is not cleared by the handler. On the RX631 the
interrupt flags (interrupt status flags) are managed internally by the interrupt controller. The interrupt controller has a
function whereby when it sends an interrupt request to the CPU or DTC/DMAC and receives a response indicating that
it was accepted, it automatically clears the corresponding interrupt status flag. It is therefore not necessary to clear the
flag and do a dummy read as on the SH7044. Note that in the case of interrupts generated by level detection the source
flags reside in the peripheral modules, so they do need to be cleared. For details, see the User’s Manual: Hardware.

Compare priority

Software interrupt handler

CPU/DTC/
DMAC

Interrupt occurrence

Interrupt source flag

Enable interrupt

RTE

2. Compares priority and sends interrupt request to CPU.
3. Goes to exception handling
 according to exception vector.Interrupt controller

1. Interrupt request

Peripheral module

Clear interrupt flag

Interrupt handling

4. Clears interrupt flag in
peripheral module and does a
dummy read.

Figure 1.16 SH7044 Peripheral Module Interrupt (Edge Detection)

Software interrupt handler

CPU/DTC/
DMAC

Interrupt occurrence

Interrupt request bit

RTE

2. Compares priority and performs interrupt request.
4. Goes to exception handling

according to exception vector.Interrupt controller

1. Interrupt request

Peripheral module

Interrupt handling
3. Replies indicating

interrupt request
receipt.

When a response indicating interrupt request receipt is
received from the CPU (or DTC/DMAC), the interrupt flag is
cleared automatically. It is not necessary for the handler to
clear the flag and do a dummy read.

Note: In the case of interrupts generated by level detection, it is necessary
to clear the source flag of the interrupt generation source in the
peripheral module in order to clear the interrupt status flag.

Compare priority

Interrupt request enable bit

Interrupt status flag

Figure 1.17 RX631 Peripheral Module Interrupt (Edge Detection)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 26 of 122
Sep 30, 2014

1.8.3 Fast Interrupt Control
In addition to ordinary interrupts, the RX631 supports fast interrupts.

Ordinary interrupt: After determining the interrupt priority it is necessary to save the contents of the control registers
and general-purpose registers to the internal RAM or the external RAM by software.

Fast interrupt: Operation gives the interrupt the highest priority. When the interrupt occurs, the contents of the control
registers are saved to dedicated registers, allowing interrupt activation to be realized faster than an ordinary interrupt.

It is possible to assign a portion of the general-purpose registers to exclusive use for interrupts by setting a compiler
option. This eliminates the need to save and restore the contents of the general-purpose registers, further speeding up
the interrupt.

Return to user program

Determine priority level

Return to user program
Shaded items: Processing exclusive

to fast interrupts

Determine priority level
(fixed at level 15)

Ordinary interrupt Fast interrupt

Interrupt occurrence Fast interrupt occurrence

Save PSW on interrupt stack Save PSW to interrupt BPSW

Clear to 0 PM, U, and I in PSW Clear to 0 PM, U, and I in PSW

Save the next instruction PC
on the stack*

Save the next instruction PC on the
BPC

Write interrupt priority level to
IPL[3:0] in PSW

Write interrupt priority level 15
to IPL[3:0] in PSW

Send vector table setting to
interrupt handler

Send FINTV setting to interrupt
handler

Run interrupt handler Run interrupt handler

Restore PSW and PC from stack Restore PSW and PC from
dedicated registers

User program running User program running

Saving PSW and PC

6 cycles ⇒ 4 cycles

Saving and restoring
general-purpose registers

X cycles*

Restoring PSW and PC
6 cycles ⇒ 4 cycles

Difference: 6 + X cycles

Difference in number
of cycles

3 cycles ⇒ 1 cycle

: Processing that differs between ordinary interrupts and fast interrupts
Note: * Fast interrupts have a single save register stage. Therefore, multistage fast interrupts are not

possible. It is necessary to decide on a single function that will use fast interrupts.

Figure 1.18 Differences Between Ordinary Interrupts and Fast Interrupts

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 27 of 122
Sep 30, 2014

1.8.4 Digital Filter
The RX631 is provided with a digital filter function for the IRQ and NMI level signals. The sampling clock for the
digital filter can be specified, and interrupt signals that do not last for at least three cycles of the sampling clock base are
not accepted. This improves the system’s noise tolerance.

1 2 1 2 3 1 2 1 2 3Sampling clock
IRQ pin

Interrupt request flag

Figure 1.19 Digital Filter Operation Example

1.8.5 Multiple Interrupts
On the SH7044 if a high-priority interrupt occurs while a low-priority interrupt handler is running, the low-priority
interrupt handler is suspended and the high-priority interrupt handler is executed. Once the high-priority interrupt
handler finishes, the suspended low-priority interrupt handler is restarted.

On the RX631 if a high-priority interrupt occurs while a low-priority interrupt handler is running, the high-priority
interrupt is not accepted until the low-priority interrupt handler finishes. This is because the PSW.I bit is cleared to 0
(interrupts are disabled) in a normal interrupt handler. In order to realize handling of multiple interrupts equivalent to
that of the SH7044, it is necessary to set the PSW.I bit to 1 (interrupts are enabled) in the interrupt handler.

Application Low-priority interrupt High-priority interrupt

Handling of low-priority
interrupt is suspended.
Processing transitions to
high-priority interrupt.

Low-priority interrupt
handler is restarted.

Occurrence of low-priority
interrupt

Occurrence of high-priority
interrupt

Completion of high-priority
interrupt handling

Completion of low-priority
interrupt handling

Figure 1.20 SH7044 Multiple Interrupt Sequence

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 28 of 122
Sep 30, 2014

Application Low-priority interrupt High-priority interrupt

Occurrence of low-priority
interrupt

Occurrence of high-priority
interrupt

Completion of low-priority
interrupt handling

Completion of high-priority
interrupt handling

Handling of low-priority
interrupt is not
suspended.

After handling of low-
priority interrupt,
processing transitions to
high-priority interrupt.

Figure 1.21 RX631 Interrupt Sequence (Not Controlled by PSW.I Bit)

Application Low-priority interrupt High-priority interrupt

Handling of low-priority
interrupt is suspended.
Processing transitions to
high-priority interrupt.

Low-priority interrupt
handler is restarted.

Occurrence of low-priority
interrupt

Occurrence of high-priority
interrupt

Completion of low-priority
interrupt handling

Completion of high-priority
interrupt handling

PSW.I = 1

Figure 1.22 RX631 Interrupt Sequence (Controlled by PSW.I Bit)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 29 of 122
Sep 30, 2014

1.8.6 Unit Selection Function
As shown in figure 1.23, among the interrupts on the RX631, some of the interrupt sources of the MTU and TPU are
assigned to common vectors. When using the unit selection function, it is necessary to select the interrupt source by
means of a selector (register).

MTU

TPU

SEL

0

1

IRn IR

Figure 1.23 Unit Selection Function

1.8.7 Group Interrupts
Group interrupts allow multiple interrupt sources to be assigned to a single vector. Group interrupt detection is by
means of a logical OR operation on all the interrupt requests assigned to the group. This means that when an interrupt
request is detected, it is necessary to identify the interrupt request from among those in the group by means of software.

IS31

IS30

IS1

IS0

IRn.IR

Peripheral module

Peripheral module

Peripheral module

Peripheral module

Interrupt request

Interrupt request

Interrupt request

Interrupt request

...
...

...
... ...
...

...
...

GENm.EN31

GENm.EN30

GENm.EN1

GENm.EN0

GRPm

Figure 1.24 Group Interrupts

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 30 of 122
Sep 30, 2014

2. On-Chip Functions

2.1 List of On-Chip Functions

Table 2.1 List of Peripheral Functions

SH7044 RX631
Clock oscillator (CPG) Clock generation circuit
User break controller (UBC) 
Data transfer controller (DTC) Data transfer controller (DTCa)
Bus state controller (BSC) Bus controller (BSC)
Direct memory access controller (DMAC) DMA controller (DMACA)

EXDMA controller (EXDMACa)
Multifunction timer pulse unit (MTU) Multifunction timer pulse unit 2 (MTU2a)
Watchdog timer (WDT) Watchdog timer (WDTA)

Independent watchdog timer (IWDTa)
Serial communication interface (SCI) Serial communication interfaces (SCIc and SCId)
High-speed A/D converter (other than A mask)
Mid-speed A/D converter (A mask)

12-bit A/D converter (S12ADa)
10-bit A/D converter (ADb)

Compare match timer (CMT) Compare match timer (CMT)
Pin function controller (PFC) Multi-function pin controller (MPC)
I/O ports (I/O) I/O port
Flash memory (256 KB)*1 Flash memory*2
RAM (4 KB) RAM (maximum 256 KB)
Low power consumption function Low power consumption function
 Voltage detection circuit (LVDA)

Frequency measurement circuit
Battery backup function
Register write protection function
Memory protection unit (MPU)
Port output enable 2 (POE2a)
16-bit timer pulse unit (TPUa)
Programmable pulse generator (PPG)
8-bit timer (TMR)
Realtime clock (RTCa)
Ethernet controller (ETHERC)
Ethernet controller direct memory access controller
(EDMAC)
USB 2.0 Host/Function module (USBa)
I2C bus interface (RIIC)
CAN module (CAN)
Serial peripheral interface (RSPI)
IEBus™ controller (IEB)
CRC calculator (CRC)
D/A converter (DAa)
Parallel data capture unit (PDC)
Temperature sensor
Boundary scan

Notes: 1. Some versions of the SH7044 have on-chip mask ROM.
 2. The RX631 group has up to 2 KB of on-chip flash memory (ROM) for storing code and up to 32 KB

of on-chip flash memory for storing data (E2 data flash). There are also ROM-less versions of the
RX631. For details, see the Userʼs Manual: Hardware.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 31 of 122
Sep 30, 2014

2.2 I/O Ports
2.2.1 Number of I/O Ports

Table 2.2 Number of I/O Ports on SH7044 and RX631

Item Package Port Function
Number of I/O ports on SH7044 QFP-112 I/O: 74

Input: 8
Total: 82

Number of I/O ports on RX631 TFLGA-177
LFBGA -176
LQFP -176

I/O: 133
Input: 1
Pull-up resistor: 133
Open-drain output: 133
5 V tolerant: 18

TFLGA-145
LQFP-144

I/O: 111
Input: 1
Pull-up resistor: 111
Open-drain output: 111
5 V tolerant: 18

TFLGA-100
LQFP-100

I/O: 78
Input: 1
Pull-up resistor: 78
Open-drain output: 78
5 V tolerant: 17

TFLGA-64
LQFP-64

I/O: 42
Input: 1
Pull-up resistor: 42
Open-drain output: 42
5 V tolerant: 23
8-bit port switching function

LQFP-48 I/O: 30
Input: 1
Pull-up resistor: 30
Open-drain output: 30
5 V tolerant: 18
8-bit port switching function

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 32 of 122
Sep 30, 2014

2.2.2 I/O Settings
Both the SH7044 and RX631 have multiplexed pins. Therefore, it is necessary to make pin settings to assign each pin to
either general I/O or an on-chip module function.

On the SH7044 port functions are determined by settings made to the pin function controller (PFC). The I/O ports range
from A to F, and with the exception of port F, which is input-only, each port can be assigned to either general I/O or an
on-chip module function. Ports A to E are assigned to either general I/O or an on-chip module function the making
settings in registers PnIOR and PnCR (n: port A to E). The general concept of I/O settings on the SH7044 and the
functions of the various registers are described below.

PnDR (data register)

PFC

PnIOR

PnCR
Peripheral function 2

Peripheral function 1

Pin

Figure 2.1 SH7044 I/O Settings

Table 2.3 Register Configuration on SH7044 for I/O Ports and Pin Function Controller

Module Name Function Name Function
I/O port PnDR Port n data register Port n data register
PFC PnIOR Port n IO register Selects the port n I/O direction.
 PnCR Port n control register Selects the pin function.
 IFCR IRQ function control register Specifies the IRQ output pin state.

Note that the functions that can be assigned to pins and the functions that can be specified by the PFC differ according
to the SH7044’s operation mode (microcontroller mode 0, 1, or 2, or single-chip mode).

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 33 of 122
Sep 30, 2014

The RX631 is provided with I/O ports 0 to 9, A to G, and J, and the configuration of the registers corresponding to these
I/O ports is shown below. The port I/O registers include dedicated input and dedicated output registers.

The following types of I/O port settings are supported on the RX631.

• Open drain control register: Port output format selection
CMOS output, N-channel open-drain output, or P-channel open-drain output

• Pull-up control register: Input pull-up resistor on/off selection
• Drive capacity control register: Selection between normal drive output and high drive output
• 5 V tolerant input ports are provided.

As on the SH7044, the pins are multiplexed, so it is necessary to make pin function settings in the I/O port module and
the multi-function pin controller (MPC).

I/O settings on the RX631 are described below.

Pin

Peripheral
function 2

Peripheral
function 1 MPC

P0nPFS

PFCSE

P1nPFS

PJ3PFS

PFAOEx

PFCSSx

PWPR

PFBCRx

PFENET

PFUSBx

I/O port I

PODR

PDR

PIDR

PMR

I/O port II

PCR

DSCR

ODR

Figure 2.2 I/O Settings on the RX631

To use a pin for general I/O, it is sufficient to make settings in the I/O port registers (settings in PMR, PDR, ODR, PCR,
and DSCR). Table 2.4 lists the registers in which the settings are made. Figure 2.3 is a flowchart of the setting
procedure.

To use a pin for a peripheral function, the pin must be assigned to the peripheral function in the pin function control
register (PxnPFS) in the MPC. Tables 2.4 and 2.5 list the registers in which the settings are made. Figure 2.4 is a
flowchart of the setting procedure.

For example settings for use with peripheral functions that include general I/O, see the section describing the specific
peripheral function.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 34 of 122
Sep 30, 2014

Table 2.4 RX631 I/O Port Register Configuration

Register Function Name Function
PDR Port direction register Specifies input or output for pins selected as general I/O

ports.
PODR Port output register Stores pin output data for general output ports.
PIDR Port input register Reflects pin states for general input ports.
PMR Port mode register Used for port pin function settings.

Specifies whether each pin is used as a general I/O port or
for a peripheral function.

ODR0 Open drain control register 0 Selects the port output format from among the following:
• CMOS output
• N-channel open drain
• P-channel open drain

ODR1 Open drain control register 1 Selects the port output format from among the following:
• CMOS output
• N-channel open drain

PCR Pull-up control register Turns the port input pull-up resistor on or off.
DSCR Drive capacity control register Specifies the drive capacity.

• Normal drive output
• High drive output

PSRA Port switching register A Dedicated register for 64-pin packages
Selects between PB6, PB7 and PC0, PC1 general I/O
function.

PSRB Port switching register B Dedicated register for 48-pin packages
Selects between PB0, PB1, PB3, and PB5 and PC0, PC1,
PC2, and PC3 general I/O function.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 35 of 122
Sep 30, 2014

Table 2.5 RX631 Multi-Function Pin Controller Registers

Register Function Name Function
PWPR Write-protect register Write-protect function for PxxPFS register

xx: 0n to 9n, An to Gn, J3
P0nPFS P0n pin function control register Register for selecting the pin function

(port 0 pin function selection)
P1nPFS P1n pin function control register Register for selecting the pin function

(port 1 pin function selection)
P2nPFS P2n pin function control register Register for selecting the pin function

(port 2 pin function selection)

PFnPFS PFn pin function control register Register for selecting the pin function
(port F pin function selection)

PJ3PFS PJ3 pin function control register Register for selecting the pin function
(port J pin function selection)

PFCSE CS output enable register Disables or enables output on CSn# (n: 0 to 7).
PFCSS0 CS output pin select register 0 Selects output pins for CS0 to CS3.
PFCSS1 CS output pin select register 1 Selects output pins for CS4 to CS7.
PFAOE0 Address output enable register 0 Settings when using pins for address bus
PFAOE1 Address output enable register 1 Settings when using pins for address bus
PFBCR0 External bus control register 0 Settings when using pins for external bus
PFBCR1 External bus control register 1 Settings when using pins for external bus
PFENET Ethernet control register Ethernet mode setting (PMII or MII)
PFUSB0 USB0 control register USB0 pin function settings
PFUSB1 USB1 control register USB1 pin function settings

The initialization sequence when using RX631 I/O ports for general I/O is shown below.

Pin settings

Set PMR

Set PDR

Set ODR/PCR, set DSCR

END

Set PODR

Specifies open-drain output, input pull-up resistor on
or off, and the drive capacity.

Sets the pin output value.

Sets the pin output value.

Set the mode to general I/O.

: These settings are made
 only if necessary.

Figure 2.3 Using RX631 I/O Ports for General I/O

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 36 of 122
Sep 30, 2014

The initialization sequence when assigning pin functions to RX631 I/O ports is shown below.

Pin settings

Set PODR

Set MSTPCRx

END

Set PRCR Cancel protect. → Cancels write protection on low power
consumption function–related registers.

Set the pin output to the initial value.

Set ODR/PCR and set DSCR Specifies open-drain output, input pull-up resistor
enabled or disabled, and the drive capacity.

The initial pin condition is assumed to be general input
(the default).

Cancels the module stop state for the function module to be
used (x: A, B, or C).

Set PRCR Apply protect. → Applies write protection to low power
consumption function–related registers.

Set PDR Sets the port direction.

Set PMR Sets the mode to general port.

Set PWPR Cancels protect on PxxPFS register.

Set PxxPFS Selects the pin function to be used.

Set PFCSE, PFCSSx, PFAOEx,
and PFBCRx When using the external bus, sets each corresponding CSn#.

Set PMR*

Set PWPR Enables protect on the PxxPFS register.

Selects pin function as the mode. Note that PMR remains
set to general input when using analog pins.

Make individual module settings* Makes register settings for the module used.

: These settings are made
 only if necessary.

Note: * The order of PMR settings and module settings differs according to the module.

Figure 2.4 Assigning Pin Functions to RX631 I/O Ports

Note: For details on the MPC settings used to assign functions to pins, see the section describing the specific

peripheral function.

On the RX631 the individual modules are in the stopped state*1 by default. Therefore, it is necessary to cancel module
stop with the module stop control register (MSTPCRx) of the low power consumption function before making
peripheral function settings. In addition, write protection has been applied to MSTPCRx by the register write protection
function. Thus, to overwrite MSTPCRx it is necessary to first make it writeable by using the protect register (PRCR).

Note: 1. The DMAC, DTC, and RAM are in the operable state by default.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 37 of 122
Sep 30, 2014

2.2.3 General I/O
General I/O port setting examples for the SH7044 and RX631 are shown below.

Table 2.6 shows an example of using PB2 on the SH7044, and P34 on the RX631, for general input.

Table 2.6 Pin Settings for General Input

Procedure SH7044 Setting Example RX631 Setting Example
1 Set the pin I/O direction to input. PBIOR.PB2IOR = 0 PORT3.PDR.B4 = 0
2 Set general pins as general ports. PBCR2.PB2MD1 = 0

PBCR2.PB2MD0 = 0
PORT3.PMR.B4 = 0

Table 2.7 shows an example of using PB2 on the SH7044, and P34 on the RX631, for general output. The output value
is 1.

Table 2.7 Pin Settings for General Output

Procedure SH7044 Setting Example RX631 Setting Example
1 Set the pin to output. PBDR.PB2DR = 1 PORT3.PODR.B4 = 1
2 Set the pin I/O direction to output. PBIOR.PB2IOR = 1 PORT3.PDR.B4 = 1
3 Set pins as general ports. PBCR2.PB2MD1 = 0

PBCR2.PB2MD0 = 0
PORT3.PMR.B4 = 0

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 38 of 122
Sep 30, 2014

2.3 Buses
This section describes the points of difference between the bus specifications of the two microcontrollers.

2.3.1 Comparison of Specifications
The main differences between the buses of the SH7044 and RX631 are shown below.

Table 2.8 SH7044 and RX631 Bus Comparison

Item SH7044 RX631
External bus
address space

• External address spaces CS0 to CS3
(4 MB each)

Notes: 1. CS0 is 2 MB when on-chip ROM
is enabled.

 2. 4 MB in on-chip ROM disabled
mode.

• External address spaces CS0 to CS7
(16 MB × 8)

DRAM/SDRAM
dedicated space

DRAM space (maximum 16 MB) SDRAM space (maximum 128 MB)

Bus width Settable to 8 or 16 bits by area. Settable to 8, 16, or 32 bits by area.
Endianness Big-endian (fixed) The endianness can be set independently

for each area.*
Bus arbitration • CPU bus and external bus have fixed

priority.
• External bus: Priority selectable from

the following: 1) fixed priority, 2) toggle
priority

• Internal bus: fixed
Other access
control

• Output of _RAS and _CAS signals for
DRAM

• Ability to generate a RAS precharge
time assurance Tp cycle

• DRAM burst access function
• Ability to specify the DRAM refresh

interval
• Ability to insert wait cycles using an

external _WAIT signal
• Ability to access address data

multiplexed I/O devices

CS area
• Ability to insert recovery cycles
• Cycle wait function
• CSn# signal timing setting
• RD# and WR# signal timing control
• Write access mode
• Ability to access address data

multiplexed I/O devices
SDRAM area
• Multiplexed output of row and column

addresses
• Auto refresh and self-refresh
• CAS latency setting
Write buffer
• Write buffer function

Note: * See 1.2.2.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 39 of 122
Sep 30, 2014

2.3.2 Bus Configuration
The bus configurations of the SH7044 and RX631 are compared below.

The configuration of the SH7044’s bus state controller is shown below.

Wait control
block

Bus interface

Interrupt
controller

Area control
block

Memory
control block

WCR1

WCR2

BCR1

BCR2

DCR

RTCSR

RTCNT

Comparator

RTCOR

W AIT

CS0 to CS3

AH

RD

RDWR

W RHH, W RHL

W RH, W RL

CASHH, CASHL

CASH, CASL

RAS

CM interrupt request

BSC

WCR1: Wait control register 1
WCR2: Wait control register 2
BCR1: Bus control register 1
BCR2: Bus control register 2

DCR: DRAM area control register
RTCSR: Refresh timer control/status register
RTCNT: Refresh timer counter
RTCOR: Refresh time constant register

Internal bus

M
odule bus

P
eripheral bus

Figure 2.5 SH7044 Bus State Controller Configuration

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 40 of 122
Sep 30, 2014

The bus configurations of the RX631 is shown below.

CPU

RAM ROM

EXDMAC

Write buffer

DTC/
DMAC(s) Peripheral

function
Peripheral
function

Peripheral
function

Peripheral
function

ROM
(P/E)

E2 data
flach

Peripheral
function

SDRAMC CSC

DTC/
DMAC(m) EDMAC

Bus error
monitoring

block

......

ICLK synchronized

Instruction bus

Operand bus

Memory
bus 2

Memory
bus 1

Internal main bus 1

Internal main bus 2

Internal
peripheral
bus 1

BCLK
synchronized

SDCLK
synchronized

BCLK
synchronized

External bus

PCLKB synchronized PCLKA synchronized FCLK synchronized

Internal
peripheral
buses 2, 3

Internal
peripheral
bus 4

Internal
peripheral
bus 5

Notes: 1. Arrows with solid lines indicate the direction of access requests from the bus master.
2. DTC/DMAC(m) indicates the master function access and DTC/DMAC(s) register access.

CSC: CS area controller
SDRAMC: SDRAM area controller

External bus controller

Figure 2.6 RX631 Bus Configuration

The bus types on the RX631 are listed below. The RX631 has a different bus architecture than the SH7044, and the
memory buses, internal buses, and peripheral buses each have multiple stages. This enables parallel operation by the
CPU and DMAC or DTC, and between the modules on the peripheral buses, thereby speeding up operation overall.

Table 2.9 RX631 Buses

Bus Connected modules, etc. Clock
CPU buses
(instruction bus and operand bus)

Instruction bus: CPU, on-chip Memory
Operand bus: CPU, on-chip Memory

ICLK

Memory bus 1 On-chip RAM ICLK
Memory bus 2 On-chip ROM ICLK
Internal main bus 1 CPU ICLK
Internal main bus 2 DTC, DMAC, EDMAC ICLK
Internal peripheral bus 1 DTC, DMAC, EXDMAC, interrupt controller, bus error

monitoring block
ICLK
(EXDMA: PCLKB)

Internal peripheral bus 2 Peripheral functions (peripheral functions other than
those connected to peripheral buses 1, 3, 4, 5, and 6)

PCLKB

Internal peripheral bus 3 USB PLCKB
Internal peripheral bus 4 EDMAC, ETHERC PLCKA
Internal peripheral bus 5 Normally reserved area 
Internal peripheral bus 6 ROM (P/E), E2 data flash FCLK
External buses (CS areas) External devices BCLK
External buses (SDRAM) SDRAM SDCLK
ICLK: System clock PCLKA: Peripheral clock A PCLKB: Peripheral clock B
FCLK: FlashIF clock BCLK: External bus clock SDCLK: SDRAM clock

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 41 of 122
Sep 30, 2014

2.3.3 External Bus Interface Setting Examples
Refer to the following application note for external bus interface setting examples.

RX63N Group, RX631 Group Read/Write Operations in 16-Bit SDRAM Using the SDRAMC (R01AN1705EJ)

2.4 Interrupt Controller
2.4.1 IRQ Usage Example
A setting example using IRQ3 is shown below. PB5 is used as the IRQ3 input pin on the SH7044. P33 is used as the
IRQ3 input pin on the RX631.

Table 2.10 Interrupt Initial Setting Example (IRQ3 Settings)

Procedure SH7044 RX631
1 Make I/O port

settings.
PBIOR.PB5IOR = 0
(general input pin setting)
PBCR2.PB5MD1, PBCR2.PB5MD0 = 01b
(IRQ3 interrupt input pin)

PORT3.PDR.B3 = 0
(P33 input setting)
PORT3.PMR.B3 = 0
(P33 GPIO setting)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1
(PFS write enabled)
MPC.P33PFS.ISEL = 1
(interrupt function setting IRQ3-DS)
MPC.PWPR.PFSWE = 0
(PFS write disabled)
MPC.PWPR.B0WI = 1

2 Make interrupt
controller settings.

ICR.IRQ3S = 1
(IRQ detection: Falling edge)
IPRA = 0x000F
(bits 3 to 0: interrupt level 15)

IRQCR3.IRQMD = 1
(IRQ detection: Falling edge)
IRQFLTE0.FLTEN3 = 1
(IRQ3 digital noise filter enabled)
IRQFLTC0.FCLKSEL3 = 3;
(sampling PCLK/64)
IR067 = 0 (interrupt flag cleared)
IER08.IEN3 = 1 (IRQ3 enabled)
IPR067 = 15 (interrupt level 15)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 42 of 122
Sep 30, 2014

2.5 Data Transfer Controller (DTC)
2.5.1 Comparison of Specifications
On both the SH7044 and RX631 the transfer information is located in RAM, and DTC vectors are used to specify
transfer information. The basic operation of the three transfer modes (normal transfer mode, repeat transfer mode, and
block transfer mode) is the same on both microcontrollers. The DTC specifications of the SH7044 and RX631 are listed
below.

Table 2.11 Comparison of DLC Specifications on SH7044 and RX631

Item SH7044 RX631
Transfer modes • Normal transfer mode

• Repeat transfer mode
• Block transfer mode

• Normal transfer mode
• Repeat transfer mode
• Block transfer mode

Activation sources • External interrupt
• Peripheral function interrupt
• Software trigger

• External interrupt
• Peripheral function interrupt
• Software trigger

Activation enable/disable
control

Activated by DTC enable register of
DTC module.

Activated by DTC activation enable
register of interrupt controller.

Transfer spaces Transfer between the following spaces
is possible:
• On-chip memory space
• On-chip peripheral module space

(excluding DMAC and DTC)
• External memory space
• Memory-mapped external device

space

Note: One of the specified areas must

be in the on-chip memory space
or on-chip peripheral module
space.

Transfer between the following spaces
is possible:
• On-chip memory space
• On-chip peripheral module space

(excluding DMAC and DTC)
• External memory space
• Memory-mapped external device

space

Note: One of the specified areas must

be in the on-chip memory space
or on-chip peripheral module
space.

Transfer units May be specified as 8, 16, or 32 bits.
Block size: May be specified within
range of 0 to 65,535.

1 data unit: May be specified as 8, 16,
or 32 bits.
1 block: May be specified within range
of 1 to 256 data units.

CPU interrupt requests • An interrupt generated by a CPU interrupt request may be used as the DTC
activation source.

• A CPU interrupt at single data unit transfer-end may be used.
• A CPU interrupt after transfer of a specified number of data units may be

used.
Method Control information is allocated for each interrupt source by using DTC vectors.
Other Chain transfer • Chain transfer

• The following functions can be used
to shorten the transfer duration and
reduce memory usage:
 Transfer information read

skipping
 Write-back skipping
 Short-address mode

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 43 of 122
Sep 30, 2014

2.5.2 Register Configuration
The register configuration of the DTC is shown below.

Table 2.12 List of DTC Registers on SH7044 and RX631

Item SH7044 RX631
Transfer mode selection DTC mode register (DTMR)

DTC mode 1, 0 (MD1 or MD0)
DTC mode register A (MRA)
DTC transfer mode select bits

Selection of repeat area or
block area as transfer
destination or transfer source

DTC mode register (DTMR)
DTC transfer mode select (DTS)

DTC mode register B (MRB)
DTC transfer mode select bits

Data transfer size selection DTC mode register (DTMR)
DTC data transfer size 1 or 0 (SZ1 or SZ0)

DTC mode register A (MRA)
DTC data transfer size bits

Transfer source:
Address state after transfer

DTC mode register (DTMR)
Source address mode 1 or 0 (SM1 or SM0)

DTC mode register A (MRA)
Transfer source address addressing mode
bits

Transfer destination:
Address state after transfer

DTC mode register (DTMR)
Destination address mode 1 or 0 (DM1 or
DM0)

DTC mode register B (MRB)
Transfer destination address addressing
mode bits

Chain
transfer
selection

Transfer-end/
continue, enable/
disable

DTC mode register (DTMR)
DTC chain enable (CHNE)

DTC mode register B (MRB)
DTC chain transfer enable bit (CHNE)

Continuous transfer/
transfer at change of
transfer counter

 DTC mode register B (MRB)
DTC chain transfer select bit (CHNE)

Interrupt request enable/
disable

DTC mode register (DTMR)
DTC interrupt select (DISEL)

DTC mode register B (MRB)
DTC interrupt select bit (DISEL)

DTC transfer suspend/
resume by NMI

DTC mode register (DTMR)
DTCNMI mode (NMIM)*1



Transfer source address DTC source address register
(DTSAR)

DTC transfer source register (SAR)

Transfer destination address DTC destination address register
(DTDAR)

DTC transfer destination register
(DAR)

Initial address DTC initial address register
(DTIAR)*2



Transfer count specification DTC transfer count register A
(DTCRA)
Specifies the transfer count.

DTC transfer count register A (CRA)
Specifies the transfer count.

Block
transfer
mode

Data unit transfer
count

DTC transfer count register A
(DTCRA)
Specifies the block transfer count.

DTC transfer count register B (CRB)
Specifies the block transfer count.

Block length
specification

DTC transfer count register B
(DTCRB)
Specifies the block length.

DTC transfer count register A (CRA)
Specifies the block length.

DTC activation disable/enable DTC enable register (DTER)
DTC enable bit

DTC activation enable register
(ICU.DTCERn)

DTC module operate/stop  DTC module start register (DTCST)
DTC module start bit

Base address DTC information base register
(DTBR)*3

DTC vector base register
(DTCVBR)

Full address mode/
Short address mode

 DTC address mode register
(DTCADMOD)

NMI interrupt generation
enable/disable

DTC control/status register
(DTCSR)
NMI flag bit (NMIF)

Non-maskable interrupt status
register (ICU.NMISR)
NMI status flag

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 44 of 122
Sep 30, 2014

Item SH7044 RX631
DTC activation by software
enable/disable

DTC control/status register
(DTCSR)
DTC software activation enable bit (SWDTE)

Software interrupt activation register
(ICU.SWINTR)
Software interrupt activation bit (SWINT)

DTC vector address setting for
DTC activation by software

DTC control/status register
(DTCSR)
Software activation vectors 7 to 0
(DTVEC7 to DTVEC0)

DTC status register (DTCSTS)
VECN[7:0] bits
(DTC-activating vector number monitoring
bits)

Showing of DTC transfer
operation state

 DTC status register (DTCSTS)
DTC active flag

Read skipping enable  DTC Control Register (DTCCR)
DTC transfer information read skipping
enable bit

Notes: 1. Not implemented on the RX631.
 2. Initial address setting is necessary on the SH7044 but not on the RX631.
 3. The information base register content on the SH7044 is included in the DTC vector base register

address content on the RX631.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 45 of 122
Sep 30, 2014

2.5.3 Transfer Modes
The differences in the operation of the transfer modes is described below.

Table 2.13 Normal Transfer Mode

Item SH7044 RX631
Transfer size 1 byte, 1 word, or 1 longword 1 byte, 1 word, or 1 longword
Transfer count 1 to 65,536 1 to 65,536

Table 2.14 Repeat Transfer Mode (The method of specifying the repeat area differs.)

Item SH7044 RX631
Transfer size 1 byte, 1 word, or 1 longword 1 byte, 1 word, or 1 longword
Transfer count 1 to 256 1 to 256
Repeat area
specification method

The repeat mode and whether either the
source or destination is the repeat area
is specified in the mode register.
The repeat address is specified in the
repeat initial address register.

The concept of the repeat initial address
does not apply, and the initial value of
SAR or DAR is repeated.

Table 2.15 Block Transfer Mode (The way of conceptualizing the single block size differs.)

Item SH7044 RX631
Transfer size Transferring a single block Transferring a single block
Single block size 1 to 65,536 bytes 1 to 256 data units

The data unit can be byte, word, or
longword.

Transfer count 1 to 65,536 1 to 65,536

2.5.4 Activation Source Setting
On the SH7044 activation sources of the DTC are set in the DTC enable registers (DTEA to DTEE). On the RX631
DTC activation sources are set in the DTC activation enable registers (DTCERn, n: vector number) of the interrupt
controller, and this enables DTC activation by interrupts.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 46 of 122
Sep 30, 2014

2.5.5 DTC Vector Configuration
The DTC vector configuration on the SH7044 and RX631 is shown below.

On the SH7044 the DTC vector table starts from the fixed address 400h. The upper 16 bits of the transfer information
addresses are stored in the DTC information base register (DTBR), and the 16-bit address for each activation source is
stored in the DTC vector table.

Transfer
information 1

(TGI3A source)

Transfer
information 2
(ADI source)

xxxxh

DTC information base register
(DTBR)

Note: DTBR does not specify the start of the vector table.

DTC vector table

TGI4A
TGI4B
TGI4C

yyyyh(TGI3A)

zzzzh(ADI)

400h
402h
404h

40Ah

422h

xxxx 0000h
+ 0000 yyyyh

xxxx 0000h
+ 0000 zzzzh

Figure 2.7 DTC Vector Configuration on SH7044

On the RX631 the vector table start address is specified by the DTC vector base register (DTVBR). Vectors can be set
in 4 KB units within the range from 0000 0000h to 07FF F000h and from F800 0000h to FFFF F000h. As with interrupt
vectors, the vectors are numbered 0 to 255, and a 32-bit transfer information address can be specified for each vector. In
contrast to the SH7044’s DTC vector table, which starts from the fixed address 400h, on the RX631 the start address
can be set in the DTC vector base register, so there is more flexibility in specifying the DTC vector table area.

Transfer
information 1
(CMI0 source)

Transfer
information 2
(ADI0 source)

xxxxx000h

DTC vector base register (DTVBR)

DTC vector table

DTC vector 000
DTC vector 001
DTC vector 002

yyyyyyyyh(CMI0)

zzzzzzzzh(ADI0)

DTVBR + 0
DTVBR + 4
DTVBR + 8

DTVBR+70h

DTVBR+188h

yyyyyyyyh

 Vector 255

zzzzzzzzh

Figure 2.8 DTC Vector Configuration on RX631

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 47 of 122
Sep 30, 2014

2.5.6 Allocation of Transfer Information
The format of transfer information differs between the SH7044 and the RX631.

On the SH7044 a different transfer information format is used for each transfer mode. On the RX631 all transfer modes
use the same transfer information format. Note, however, that on the RX631 the DTC transfer information is affected by
the endianness setting. The transfer information format of each mode on the SH7044 (a) and the full-address mode
transfer information format on the RX631 (b) are shown below.

Normal mode

Memory space Memory space

Transfer
information start
address

DTMR
DTCRA

DTSAR

DTDAR

DTMR
DTCRA

DTIAR

DTSAR

DTDAR

DTMR
DTCRA

DTCRB

DTSAR

DTDAR

Repeat mode Block transfer mode

(a) SH7044 transfer information format

Allotment of transfer information in full address mode

Low-order address
Items in parentheses () are
low-order addresses when

allocated in big-endian area.

3(0) 2(1) 1(2) 0(3)

MRA MRB Reserved
(write 0)

4 bytes

DAR

CRA CRB

MRA MRB Reserved
(write 0)

SAR

DAR

CRA CRB

Start address

Chain transfer

Transfer information
for single transfer
(4 longwords)

Transfer information for
second transfer of chain
transfer (4 longwords)

(b) RX631 transfer information format in full address mode

Memory space

SAR

Figure 2.9 DTC Transfer Information Formats on SH7044 and RX631

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 48 of 122
Sep 30, 2014

The RX631 supports a short-address mode in which addresses can be specified in 24 bits. The size of the transfer
information is four longwords in full-address mode but only three longwords in short-address mode. This reduces the
time it takes the DTC to read transfer information and enables it to start up faster. In addition, less RAM is needed to
store the transfer information. The transfer information format in short-address mode is shown below.

Allotment of transfer information in short address mode

Low-order address
Items in parentheses () are
low-order addresses when

allocated in big-endian area.

3(0) 2(1) 1(2) 0(3)

MRA SAR

MRB DAR

CRA CRB

MRA SAR

MRB DAR

CRA CRB

4 bytes

Start address

Chain transfer

Transfer information for
single transfer
(3 longwords)

Transfer information for
second transfer of chain
transfer (3 longwords)

Figure 2.10 RX631 DTC Transfer Information Format in Short-Address Mode

Short-address mode supports 16 megabytes of transfer space in address ranges 00000000h to 007FFFFFh and
FF800000h to FFFFFFFFh (excluding reserved areas).

2.5.7 Module Stop
The initial state of the peripheral modules of the RX631 is stopped, due to the low power consumption function.
However, the initial state of the DTC is operational, so there is no need to cancel the module stop state. Module stop can
be applied to the DTC, but doing so also stops the DMAC because the same control bit in the module stop control
register is used for both the DTC and the DMAC. (The EXDAMC and EDMAC are controlled separately.)

2.5.8 Data Transfer Controller (DTC) Setting Example (Repeat Transfer)
In the data transfer controller (DTC) setting example shown below for the SH7044 and RX631, the DTC is used to
implement data transfer between the serial communication interface (SCI) and the on-chip RAM. Refer to 2.9.4 for an
initial setting example for the SCI. In the example shown here, the use of SCI interrupts for DTC activation is the only
portion of the settings that differs between the microcontrollers.

< Specifications >

1. The RSK+RX63N board is used, and the SCI transfer mode is asynchronous serial transfer.
2. When an SCI transmit data-empty interrupt request occurs, the DTC transfers one byte of transmit data from the

transmit buffer in the on-chip RAM to the transmit data register of the SCI.
3. When an SCI receive data-full interrupt request occurs, the DTC transfers one byte of receive data to the receive

buffer in the on-chip RAM.
4. When transmission of 32 bytes finishes (DTC transfer-end), a transmit interrupt (TXI) is generated.
5. When reception of 32 bytes finishes (DTC transfer-end), a receive interrupt (RXI) is generated.
6. At successful completion, LED1 turns on. LED2 turns on if an error interrupt occurs.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 49 of 122
Sep 30, 2014

SCI RAM

Transmit buffer
(32 bytes)

Receive buffer
(32 bytes)

DTC

Communication target
microcontroller

RXD

TXD

TXD

RXD

Transmission
transfer

Reception
transfer

Transfer start Transmit/receive
interrupt

RSK+ RX63N

Figure 2.11 Example of Data Transfer between RAM and SCI Using DTC

Table 2.16 DTC Transfer Specifications

Item Transmit Transfer Receive Transfer
Transfer mode Repeat mode Repeat mode
Transfer count 32 32
Transfer size Byte Byte
Transfer source On-chip RAM (transmit buffer) Receive data register (SCI)
Transfer
destination

Transmit data register (SCI) On-chip RAM (receive buffer)

Transfer source
address

Transfer source address incremented
following transfer

Fixed

Transfer
destination address

Fixed Transfer destination address incremented
following transfer

Activation sources SCI transmit data-empty interrupt SCI receive data-full interrupt
Interrupt handling Interrupt to CPU when transfer of

specified data finishes
Interrupt to CPU when transfer of
specified data finishes

Address mode Full address mode Full address mode

A DTC initial setting example is shown below.

1. DTC_TX is the transmit transfer information structure.
DTC_RX is the receive transfer information structure.

2. The DTC vector tables are allocated as follows.
SH7044 #pragma address DTC_VECT_TABLE = 0x400 (address defined by user)
volatile unsigned short DTC_VECT_TABLE[34];
RX631 #pragma address DTC_VECT_TABLE = 0x00010000 (address defined by user)
volatile unsigned long DTC_VECT_TABLE[256];

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 50 of 122
Sep 30, 2014

Table 2.17 DTC Normal Transfer Initial Setting Example
Procedure SH7044 Setting Example RX631 Setting Example
1 Make transfer

information
settings
(transmitting
side).

DTC_TX.DTMR.SM1, DTC_TX.DTMR.SM0 = 2
(increment transfer source)
DTC_TX.DTMR.DM1, DTC_TX.DTMR.DM0 = 0
(fixed transfer destination address)
DTC_TX.DTMR.MD1, DTC_TX.DTMR.MD0 = 1
(repeat transfer mode)
DTC_TX.DTMR.SZ1, DTC_TX.DTMR.SZ0 = 0
(data size: byte)
DTC_TX.DTMR.DTS = D.C
DTC_TX.DTMR.CHNE = 0
(DTC data transfer-end)
DTC_TX.DTMR.DISEL = 1
(interrupt enabled at data transfer-end)
DTC_TX.DTSAR = transmit buffer start address
DTC_TX.DTDAR = SCI.TDR address
DTC_TX.DTCRAH = 32 (transfer count)

DTC_TX.MRA.SM = 2
(increment transfer source)
DTC_TX.MRA.SZ = 0 (data size: byte)
DTC_TX.MRA.MD = 1
(repeat transfer mode)
DTC_TX.MRB.DM = 0
(fixed transfer destination address)
DTC_TX.MRB.DISEL = 0
(interrupt generation at data transfer-end)
DTC_TX.MRB.CHNE = 0
(chain transfer disabled)
DTC_TX.SAR = transmit buffer start address
DTC_TX.DAR = SCI.TDR address
DTC_TX.CRAH = 32 (transfer count)

2 Make transfer
information
settings
(receiving side).

DTC_RX.DTMR.SM1, DTC_RX.DTMR.SM0 = 0
(fixed transfer source)
DTC_RX.DTMR.DM1, DTC_RX.DTMR.DM0 = 2
(increment transfer destination)
DTC_RX.DTMR.MD1, DTC_RX.DTMR.MD0 = 1
(repeat transfer mode)
DTC_RX.DTMR.SZ1, DTC_RX.DTMR.SZ0 = 0
(data size: byte)
DTC_RX.DTMR.DTS = D.C
DTC_RX.DTMR.CHNE = 0
(DTC data transfer-end)
DTC_RX.DTMR.DISEL = 1
(interrupt enabled at data transfer-end)
DTC_RX.DTSAR = SCI.RDR address
DTC_RX.DTDAR = receive buffer address
DTC_RX.DTCRAH = 32 (transfer count)

DTC_RX.MRA.SM = 0
(fixed transfer source address)
DTC_RX.MRA.SZ = 0 (data size: byte)
DTC_RX.MRA.MD = 1
(repeat transfer mode)
DTC_RX.MRB.DM = 2
(increment transfer destination)
DTC_RX.MRB.DISEL = 0
(interrupt generation at data transfer-end)
DTC_RX.MRB.CHNE = 0
(chain transfer disabled)
DTC_RX.SAR = SCI.RDR address
DTC_RX.DAR = receive buffer address
DTC_RX.CRAH = 32 (transfer count)

3 Make DTC
vector table
settings.

DTC_VECT_TABLE[29]
= lower bits of DTC_RX address
DTC_VECT_TABLE[30]
= lower bits of DTC_TX address
DTBR = upper bits of DTC_RX address

DTC_VECT_TABLE[215]
= DTC_TX address
DTC_VECT_TABLE[214]
= DTC_RX address
DTC.DTCVBR = DTC vector address

4 Set address
mode.

No address mode setting on SH7044 DTC.DTCADMOD = 0 (full address mode)

5 Initial address DTC_RX. DTIAR = Initial address 
6 Set activation

sources.
DTED3 = 1 (DTC activated by SCI.RXI0)
DTED2 = 1 (DTC activated by SCI.TXI0)

DTCER214 = 1
(DTC activation by SCI receive interrupt)
DTCER215 = 1
(DTC activation by SCI transmit interrupt)

7 Make SCI
settings.

Make SCI asynchronous transfer settings.
Make settings in table 2.41 for SCI function or ICU function.
Enable TXI interrupts, RXI interrupts, and error interrupts.
The DTC will not operate if interrupts are not enabled.

8 Activate DTC
module.

No module activation setting on SH7044 DTC.DTCST.DTCST = 1
(DTC module operating)

Note: When transmission of 32 bytes of data finishes, a transmit interrupt (TXI) is generated.
 When reception of 32 bytes of data finishes, a receive interrupt (RXI) is generated.
 The details of the handling of the above interrupts are not stipulated. The sample code implements

end processing for the transmit and receive interrupts.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 51 of 122
Sep 30, 2014

2.6 Direct Memory Access Controller (DMAC)
Direct memory access control functionality is implemented on the SH7044 by an on-chip DMAC and on the RX631 by
an on-chip DMACA and by a dedicated on-chip EXDMACa for transfers between external areas. The internal bus
configuration of the RX631 differs from that of SH microcontrollers. It supports independent data transfers by CPU
instruction execution and by the DMAC or DTC for improved transfer performance.

2.6.1 Comparison of Specifications
The functions and features of the SH7044 and RX631 are shown below.

Table 2.18 Comparison of SH7044 (DMAC) and RX631 (DMACA and EXDMACa) Functions

Item
SH7044 RX631
DMAC DMACA EXDMACa

Number of channels 4 channels 4 channels 2 channels
Maximum transfer
count (maximum
transfer data unit
count on RX)

16 M (16,777,216) 1 M data units
(block transfer mode max.
total transfer count: 1,024
data units × 1,024 blocks)

1 M data units
(block transfer mode max.
total transfer count: 1,024
data units × 1,024 blocks)

DMA activation
sources

• External request
• On-chip module

request
• Auto request

• (External requests not
supported.)

• On-chip module request
• Software trigger
• Trigger input to external

interrupt input pin

• External request
• On-chip module

request
• Software trigger

Channel priority Selectable between the
following:
• Fixed
• Round robin

Fixed
(channel 0 > channel 1 >
channel 2 > channel 3)

Fixed
(channel 0 > channel 1)

Transfer
data

1 data unit 8 bits, 16 bits, 32 bits 8 bits, 16 bits, 32 bits 8 bits, 16 bits, 32 bits
Block size  Data units: 1 to 1,024 Data units: 1 to 1,024
Cluster size   Data units: 1 to 8

Transfer modes • None
(The transfer mode
on the SH is
equivalent to normal
transfer mode on the
RX.)

• Normal transfer mode
• Repeat transfer mode
• Block transfer mode

• Normal transfer mode
• Repeat transfer mode
• Block transfer mode
• Cluster transfer mode

Bus modes • Cycle-steal mode
• Burst mode

 

Address modes • Single address
mode

• Dual address mode

 • Single address mode
• Dual address mode

Interrupt
request

Transfer-
end
interrupt

Generated after
completion of the
number of transfers
specified by the transfer
counter.

Generated after completion of the number of transfers
specified by the transfer counter.

Transfer
escape-end
interrupt

 Generated after completion of data transfer equivalent to
the repeat size or when the extended repeat area
overflows.

Other • Source address
reload function

• Extended repeat area
function

• Extended repeat area
function
Direct data transfer to the
TFTLCD panel is possible.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 52 of 122
Sep 30, 2014

2.6.2 DMAC Block Diagram
A block diagram of the SH7044’s DMAC is shown below.

On-chip ROM

On-chip RAM

On-chip peripheral
module

External ROM

External RAM

External I/O
(memory-mapped)

External I/O
(with

acknowledgement)

SARn

DARn

DMATCRn

CHCRn

DMAOR

Count control

Register control

Start control

Request priority
control

Bus interface

Bus state
controller

DMAC module

DREQo, DREQ1
MTU

SCI0, SCI1
A/D converter*

DEIn

DACK0, DACK1
DRAK0, DRAK1

DMAOR: DMAC operation register
SARn: DMA source address registers
DARn: DMA destination address registers
DMATCRn: DMA transfer count registers
CHCRn: DMA channel control registers
n: 0, 1, 2, 3

P
eripheral bus

Internal bus

Note: * A/D on other than A mask products, A/D1 on A mask products.

Figure 2.12 SH7044 DMAC Block Diagram

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 53 of 122
Sep 30, 2014

A block diagram of the RX631’s DMACA is shown below.

Internal main bus 2

Memory bus 2 Memory bus 1

Interrupt
controller

DMA
transfer
request

arbitration

DMAC response
control

Register control

Bus interface

DMAC
control
circuit

Internal peripheral bus 1

DMAC

Start control DMAC register

DMA start
request

4

4

4DMAC
response

Interrupt
request

External bus
controller

Internal peripheral
buses 1 to 6

ROM RAM

Internal main bus 1
Internal main bus 2

DMAC channels
(CH0 to CH3)

DMSAR
DMDAR
DMCRA
DMCRB
DMOFR
DMTMD
DMAMD
DMSTS
DMCNT

DMAC core
Transfer source address

Transfer destination address

Transfer counter
Block counter
Transfer mode

Figure 2.13 RX631 DMACA Block Diagram

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 54 of 122
Sep 30, 2014

A block diagram of the RX631’s EXDMACa is shown below.

Peripheral
module

Internal peripheral bus 1

SEL

Interrupt
controller

DMA transfer
request

arbitration

EXDMAC
response control

External bus controller

Register control

EXDMAC
control
circuit

Bus interface

EDMAST

CLSBR0 to
CLSBR7

External bus Internal main bus 1
Internal main bus 2

Cluster transfer information
EDACK

EDREQ

2

2

2Interrupt
request

2

DMA start
request

Start control

EXDMAC
EXDMAC register(Channel 0, channel 1)

EDMSAR
EDMDAR
EDMCRA
EDMCRB
EDMOFR
EDMTMD
EDMAMD
EDMSTS
EDMCNT
EDMINT

EDMOMD
EDMREQ
EDMRMD
EDMERF
EDMPRF

EXDMAC core
Transfer source address

Transfer destination address

Transfer counter
Block counter
Transfer mode

Interrupt controller

Unit selection

S
elector

Figure 2.14 RX631 EXDMACa Block Diagram

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 55 of 122
Sep 30, 2014

2.6.3 Comparison of Registers
Table 2.19 compares the DMAC registers of the SH7044 and the DMACA registers of the RX631.

Table 2.20 compares the DMAC registers of the SH7044 and the EXDMACa registers of the RX631.

Table 2.19 SH7044/RX631 DMAC/DMACA Register Comparison

Note: In the register symbols above, n and m represent the respective DMA channel numbers.

Table 2.20 SH7044/RX631 DMAC/EXDMACa Register Comparison

SH7044 RX631
DMAC n: 0 to 3 EXDMACa p: 0 to 1
DMA operation register (DMAOR) EXDMA module start register (EDMAST)
DMA source address register n (SARn) EXDMA transfer source register p (EXDMACp.EDMSAR)
DMA destination register n (DARn) EXDMA transfer destination register p

(EXDMACp.EDMDAR)
DMA transfer count register n (DMATCRn) EXDMA transfer counter register p (EXDMACp.EDMCRA)
DMA channel control register (CHCRn) EXDMA block transfer count register p

(EXDMACp.EDMCRB)
 EXDMA output setting register p (EXDMACp.EDMOMD)

EXDMA transfer mode register p (EXDMACp.EDMTMD)
EXDMA interrupt setting register p (EXDMACp.EDMINT)
EXDMA address mode register p (EXDMACp.EDMAMD)
EXDMA transfer enable register p (EXDMACp.EDMCNT)
EXDMA software start register p (EXDMACp.DEMREQ)
EXDMA status register p (EXDMACp.EDMSTS)
EXDMA external request sense mode register p
(EXDMACp.EDMRMD)
EXDMA external request flag register p
(EXDMACp.EDMERF)
EXDMA peripheral request flag register p
(EXDMACp.EDMPRF)
EXDMA offset register (EXDMAC0.EDMOFR)
Cluster buffer register y (CLDBR0 to CLDBR7)

Note: In the register symbols above, n and p represent the respective DMA channel numbers.

SH7044 RX631
DMAC n: 0 to 3 DMACA m: 0 to 3
DMA operation register (DMAOR) DMA module start register (DMAST)
DMA source address register n (SARn) DMA transfer source register m (DMACm.DMSAR)
DMA destination register n (DARn) DMA transfer destination register m (DMACm.DMDAR)
DMA transfer count register n (DMATCRn) DMA transfer counter register m (DMACm.DMCRA)
DMA channel control register (CHCRn) DMA block transfer count register m (DMACm.DMCRB)
 DMA transfer mode register m (DMACm.DMTMD)

DMA interrupt setting register m (DMACm.DMINT)
DMA address mode register m (DMACm.DMAMD)
DMA transfer enable register m (DMACm.DMCNT)
DMA software start register m (DMACm.DMREQ)
DMA status register m (DMACm.DMSTS)
DMA activation source flag control register m
(DMACm.DMCSL)
DMA offset register (DMAC0.DMOFR)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 56 of 122
Sep 30, 2014

2.6.4 Channel Priority
Table 2.21 shows the channel priority for DMA transfers. On the RX631 the channel priority is fixed.

Table 2.21 DMA Transfer Channel Priority

Type
SH7044 RX631
DMAC DMACA EXDMACa

Fixed One of the following three patterns:
1. CH0 > CH1> CH2 > CH3
2. CH0 > CH2 > CH3 > CH1
3. CH2 > CH0 > CH1 > CH3

CH0 > CH1 > CH2 > CH3 CH0 > CH1

Round robin When transfer of one transfer unit finishes,
the priority of the channel on which transfer
has finished is reduced to the lowest level.

 

2.6.5 DMA Activation Sources and Settings
Table 2.22 lists the types of transfer activation sources of the respective DMAC modules.

Table 2.22 DMA Activation Source Comparison

DMA Activation Sources
SH7044 RX631
DMAC DMACA EXDMACa

Activation by software Supported Supported Supported
Activation by external
device via request pin

Supported
(activation by _DREQ
signal)

Not supported Supported
(activation by EDREQn
signal)

Activation by peripheral
module

Supported Supported
(activation by interrupt
via external interrupt
input also supported)

Supported
(MTU1 or TPU7
compare match A)

On the SH7044, DMA activation by peripheral module requires that the activation source be specified by a resource
selector setting in the DMA channel control register (RS3 to RS0 in CHCRx). On the RX631 (DMACA) DMA
activation by peripheral module requires specification of the activation source’s vector number in the DMAC activation
request select register (DMRSRm, m: channel 0 to 3) of the interrupt controller.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 57 of 122
Sep 30, 2014

2.6.6 Transfer Sources and Destinations
The transfer sources and destinations supported by each DMA are listed below.

Table 2.23 SH7044 DMAC Transfer Sources and Destinations

Transfer Sources

Transfer Destination
External Device
with DACK

External
Memory

Memory-Mapped
External Device

On-Chip
Memory

On-Chip
Peripheral Module

External Device
with DACK

Not supported Not supported Not supported

External Memory
Memory-Mapped
External Device

On-Chip Memory Not supported
On-Chip Peripheral
Module

Not supported

: Single address mode transfers supported. : Dual address mode transfers supported.

Table 2.24 RX631 DMACA Transfer Sources and Destinations

Transfer Sources

Transfer Destination
External Device
with EDACK

External
Memory

Memory-Mapped
External Device

On-Chip
Memory

On-Chip
Peripheral Module

External Device
with DACK

Not supported Not supported Not supported Not supported Not supported

External Memory Not supported
Memory-Mapped
External Device

Not supported

On-Chip Memory Not supported
On-Chip Peripheral
Module

Not supported

: Transfers supported.

Table 2.25 RX631 EXDMACa Transfer Sources and Destinations

Transfer Sources

Transfer Destination
External Device
with EDACK

External
Memory

Memory-Mapped
External Device

On-Chip
Memory

On-Chip
Peripheral Module

External Device
with EDACK

Not supported Not supported Not supported

External Memory Not supported Not supported
Memory-Mapped
External Device

 Not supported Not supported

On-Chip Memory Not supported Not supported Not supported Not supported Not supported
On-Chip Peripheral
Module

Not supported Not supported Not supported Not supported Not supported

: Single address mode transfers supported. : Dual address mode transfers supported.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 58 of 122
Sep 30, 2014

2.6.7 Transfer Modes
The transfer modes of the SH7044 and RX631 are described below.

The concept of transfer mode does not apply on the SH7044. When switching to the RX631, the equivalent transfer
mode is normal transfer mode. However, if the source address reload function was used on the SH7044, it is possible to
achieve equivalent results on the RX631 by using repeat mode to repeat the source address for four transfer units. This
makes it possible to reproduce the transfer method of the SH7044 by using the transfer modes of the RX631.

Table 2.26 RX631 Transfer Modes

Transfer Mode DMACA EXDMACa Remarks
Normal transfer Equivalent to the transfer method of the SH7044
Repeat transfer Usable as a substitute for source address reload on

the SH7044
Block transfer
Cluster transfer Not supported

2.6.8 Address Modes
The SH7044 has two address modes: single address mode and dual address mode.

The EXDMACa of the RX631 has a single address mode and a dual address mode like the SH7044. In single address
mode a DMA transfer can be completed in a single bus cycle. Two bus cycles are required to complete a DMA transfer
in dual address mode. On the DMACA the address mode concept does not apply, but the method of specifying
addresses and the operation are equivalent to dual address mode on the SH7044.

2.6.9 Bus Modes
On the SH7044 the bus mode can be specified as either cycle-steal mode or burst mode. In cycle-steal mode the bus is
released to another bus master when a single transfer finishes. In burst mode the bus is not released after the start of a
DMA transfer until the transfer finishes.

On the RX631 it is not possible to specify the bus mode of the DMACA or EXDMACa. This is because the bus
architecture differs from that of the SH7044. The RX631 supports parallel operation when the bus master accesses a
different slave. On the RX631 it is possible for the DMAC to perform transfers between the peripheral bus and the
external bus while the CPU is accessing the ROM to fetch CPU instructions or the RAM to manipulate operands.

Figure 2.15 shows an example in which the DMAC accesses the peripheral bus and the external bus using internal main
bus 2 while the CPU is accessing the ROM and RAM.

CPU instruction fetch

CPU operand

DMAC

ROM ROM ROM ROM ROM ROM ROM

RAM RAM RAM RAM RAM RAM RAM

Peripheral External

Peripheral bus
access External bus access

RAM access

ROM access

Figure 2.15 Parallel Bus Operation

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 59 of 122
Sep 30, 2014

2.6.10 Module Stop
The initial state of the peripheral modules of the RX631 is stopped, due to the low power consumption function.
However, the initial state of the DMACA is operational, so there is no need to cancel the module stop state. Module
stop can be applied to the DMACA, but doing so also stops the DTC because the same control bit in the module stop
control register is used for both the DTC and the DMAC.

The initial state of the EXDMAC is stopped. Do not fail to cancel the module stop state when making settings to the
module. Before accessing the module stop control register to cancel the module stop state, first cancel register write
protection.

2.6.11 Direct Memory Access Controller (DMAC) Setting Example
In the direct memory access controller (DMAC) setting example shown below for the SH7044 and RX631, the DMAC
is used to implement data transfer between the serial communication interface (SCI) and the on-chip RAM. Refer to
2.9.6 for an initial setting example for the SCI. In the example shown here, the use of SCI interrupts for DMAC
activation is the only portion of the settings that differs between the microcontrollers.

< Specifications >

1. The RSK+RX63N board is used, and the SCI transfer mode is clock-synchronous serial transfer.
2. When an SCI receive data-full interrupt request occurs, the DMAC transfers one byte of receive data to the receive

buffer in the on-chip RAM.
3. When reception of 32 bytes finishes (DMA transfer-end), a DMA transfer-end interrupt is generated.
4. At successful completion, LED1 turns on. LED2 turns on if an error interrupt occurs.

SCI RAM

Receive buffer
(32 bytes)

DMAC

Communication target
microcontroller

TXD

CLK

RXD

CLK

Reception
transfer

Transfer start
Receive interrupt

RSK+ RX63N

Figure 2.16 Example of Data Transfer between RAM and SCI Using DMAC

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 60 of 122
Sep 30, 2014

Table 2.27 DMAC Transfer Specifications

Item Receive Transfer Remarks
Channel used DMAC0
Transfer mode Normal transfer mode
Transfer count 32
Transfer size Byte
Transfer source Receive data register (SCI)
Transfer destination On-chip RAM (receive buffer)
Transfer source address Fixed
Transfer destination
address

Transfer destination address incremented following transfer

Activation sources SCI receive data-full interrupt RXI0 interrupt
Interrupt handling DMAC transfer-end interrupt DMAC0I
Pins used P21/RXD0

P22/SCK0

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 61 of 122
Sep 30, 2014

An initial setting example in which the DMAC is used to transfer data between the SCI and a receive buffer (in on-chip
RAM) is shown below.

Table 2.28 DMAC Normal Transfer Initial Setting Example
Procedure SH7044 Setting Example RX631 Setting Example
1 Make peripheral

function settings
(SCI initial settings).

Make SCI clock-synchronous slave receive settings.
Make settings in table 2.56 for SCI function or ICU function.
Enable RXI interrupts and error interrupts.
The DTC will not operate if interrupts are not enabled.
(Set item 12 in table 2.56, interrupt enable in the interrupt controller, after making DMA
settings.)

2 Stop DMA transfer. CHCR0.DE = 0
(DMAC0 operation disabled)

IER18.IEN16 = 0
(DMAC0I interrupt disabled)
DMAC0.DMCNT.DTE = 0
(DMA transfer disabled)

3 Set DMAC activation
source.

None DMRSR0 = 214
(vector number set to 214/RXI0)

4 Make DMA address
mode settings.

CHCR0.SM1, CHCR0.SM0 = 0
(fixed transfer source address mode)
CHCR0.DM1, CHCR0.DM0 = 1
(increment transfer destination address
mode)

DMAC0.DMAMD.SM = 0
(fixed transfer source address mode)
DMAC0.DMAMD.DM = 2
(increment transfer destination address
mode)

5 Make DMA transfer
mode settings.

CHCR0.RS3 to CHCR0.RS0 = 1101b
(transfer request sources set to SCI0 and
RXI0)
CHCR0.TM = 0 (cycle-steal bus mode)
CHCR0.TS1, CHCR0.TS0 = 0
(transfer data size: 8 bits)

DMAC0.DMTMD.DCTG = 1
(transfer requests: peripheral module)
DMAC0.DMTMD.SZ = 0
(transfer data size: 8 bits)
DMAC0.DMTMD.MD = 0
(transfer mode: normal transfer)

6 Set transfer source
address.

SAR0 = RDR address DMAC0.DMSAR = SCI.RDR address

7 Set transfer
destination address.

DAR0 = receive buffer address DMAC0.DMDAR = receive buffer address

8 Set transfer size. DMATCR0 = 32 DMAC0.DMCRA = 32
9 Make interrupt

selection setting.
None DMAC0.DMCSL.DISEL = 0

(activation source interrupt flag 0 cleared at
transfer start)

10 Set DMA priority. DMAOR.PR1, DMAOR.PR0 = 0
(priority mode: CH0 > 1 > 2 > 3 fixed)

None

11 Set DMA interrupt
level.

IPRC = 0x5000
(DMAC0 interrupt priority set to 5)

IPR198 = 5
(DMAC0I interrupt level set to 5)

12 Set DMA interrupt. CHCR0.IE = 1
(transfer-end interrupt enabled)

DMAC0.DMINT.DTIE = 1
(transfer-end interrupt enabled)

13 Enable DMA transfer. CHCR0.DE = 1
(DMAC0 operation enabled)

IER18.IEN16 = 1
(DMAC0I interrupt enabled)
DMAC0.DMCNT.DTE = 1
(DMA transfer enabled)

14 Start peripheral
functions.

Make settings in item 12 in table 2.56, SCI Clock-Synchronous Slave Receive Initial
Setting Example, for SCI function or ICU function to start SCI function operation.

15 Activate DMA module. DMACOR.DME = 1
(DMA master enable)

DMAC.DMAST.DMST = 1
(DMAC activation enabled)

A DMA transfer-end interrupt (DMA0I) is generated when reception of 32 bytes of data finishes. The details of DMA
transfer-end interrupt handling are not stipulated. The sample code implements SCI end processing.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 62 of 122
Sep 30, 2014

2.7 Multifunction Timer Pulse Unit (MTU)
2.7.1 Comparison of Specifications

Table 2.29 Comparison of MTU Specifications on SH7044 and RX631

Item SH7044 RX631
Pulse I/O Maximum 16
Pulse input  3
Count clock Selectable for each channel among six

clocks based on the internal clock (φ)
and eight clocks employing external
clocks (TCLKA, TCLKB, TCLKC, and
TCLKD).

Selectable for each channel among
seven or eight clocks using PCLK,
MTCLKA, MTCLKB, MTCLKC, and
MTCLKD (four for MTU5).

Function description The MTU2a of the RX631 includes the functionality of the MTU of the SH7044 (and
they are software compatible).

Function
settings

MTU0 to
MTU4

• Compare match waveform output (selectable among 0, 1, and toggled)
• Input capture function (selectable among rising, falling, and both edges)
• Synchronous operation

 Synchronized writing to multiple timers (TCNT)
 Clearing synchronized with compare match or input capture
 I/O with various registers in synchronization with counter

• PWM mode
 PWM output with user-specified duty
 Up to 12-phase PWM output combined with synchronous operation

MTU0,
MTU3,
MTU4

• Support for buffer operation settings
• Input capture register with double-buffer configuration
• Auto-overwriting of output compare register
• AC synchronous motor drive mode on RX631

MTU1,
MTU2

Up- or down-counting of two-phase encoder pulses in phase counting mode

MTU3,
MTU4

A total of six-phase waveform output, including three phases each for positive
and negative complementary PWM, by interlocking operation

MTU5  Counter function for dead time
compensation

Complementary PWM
mode

Interrupts at counter peaks and troughs

Interrupt sources
(See separate listing
for details.)

23 28

Buffer operation Automatic transfer of register contents
Trigger generation A/D converter start trigger A/D converter start trigger

PPG output trigger
DMAC activation MTU0 to MTU4: TGRA compare match or input capture

Note: On the SH7044 the registers are named TGRnA (n: channel number).
DTC
activation

MTU0 to
MTU3

TGR compare match or input capture

MTU4 TGR compare match or input capture, TCNT overflow or underflow
MTU5  TGR compare match or input capture

A/D conversion start
triggers

MTU0 to MTU4: TGRA compare match or input capture
Added to MTU0 on RX631: TGRE and TGRF compare match
Added to MTU4 on RX631: TCNT underflow in complementary PWM mode

(troughs)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 63 of 122
Sep 30, 2014

Item SH7044 RX631
PPG triggers  MTU0 to MTU3: TGRA and TGRB

compare match or input capture
A/D conversion start
request delay function

 MTU4: Start request at match of
TADCORA or TADCORB and TCNT

Interrupt skipping
function

 MTU3: TGRA compare match interrupt
skipping
MTU4: TCIV interrupt skipping

Table 2.30 List of MTU Interrupt Sources on SH7044 and RX631

n: Channel number : Compatible between SH7044 and RX631 ∆: Added on RX631

2.7.2 Handling of Interrupt Flags
The RX631’s MTU2a and the SH7044’s MTU are software compatible. With the exception of changes to the timer
status register (TSR) interrupt flags, it is possible to migrate the functions of MTU0 to MTU4 on the SH7044 without
changing the registers. (It is necessary to make separate changes to the initial settings, such as the pin settings.) The one
significant difference is that on the RX631 the timer status register (TSR) contains no interrupt flags. Nevertheless, it is
possible to implement equivalent processing by using the interrupt request register (IR) in the interrupt controller
corresponding to the MTU (IR142 and above).

Item
SH7044/RX631 RX631
MTU0 MTU1 MTU2 MTU3 MTU4 MTU5

Compare match/input capture nA
Compare match/input capture nB
Compare match/input capture nC
Compare match/input capture nD
Overflow
Underflow
Compare match nE ∆
Compare match nF ∆
Compare match/input capture nU ∆
Compare match/input capture nV ∆
Compare match/input capture nW ∆

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 64 of 122
Sep 30, 2014

2.7.3 List of Registers
Whether or not changes to the register settings are needed when switching from the SH7044 to the RX631 is indicated
below.

Table 2.31 List of MTU Registers

Register Name SH7044 (MTU) RX631 (MTU2a) Change
Timer control register TCR0 to TCR4 MTU0.TCR to MTU5.TCR

 MTU5.TCRU/V/W *
Timer mode register TMDR0 to TMDR4 MTU0.TMDR to MTU4.TMDR
Timer I/O control register TIOR0H, TIOR3H,

TIOR4H
MTU0.TIORH, MTU3.TIORH,
MTU4.TIORH

TIOR1, TIOR2 MTU1.TIOR, MTU2.TIOR
TIOR0L, TIOR3L,
TIOR4L

MTU0.TIORL, MTU3.TIORL,
TU4.TIORL

Timer compare match clear register TCNTCMPCLR *
Timer interrupt enable register TIER0 MTU0.TIER

TIER1, TIER2 MTU1.TIER , MTU2.TIER
TIER3, TIER4 MTU3.TIER, MTU4.TIER
 MTU0.TIER2 MTU5.TIER *1

Timer status register TSR0 MTU0.TSR ∆
TSR1, TSR2 MTU1.TSR MTU2.TSR ∆
TSR3, TSR4 MTU3.TSR MTU4.TSR ∆

Timer buffer operation transfer
mode register

 MTU0.TBTM, MTU3.TBTM,
MTU4.TBTM

*

Timer input capture control register MTU1.TICCR *
Timer A/D conversion start request
control register

 MTU4.TADCR *

Timer A/D conversion start request
cycle set registers A and B

 MTU4.TADCORA,
MTU4.TADCORB

*

Timer A/D conversion start request
cycle set buffer registers A and B

 MTU4.TADCOBRA,
MTU4.TADCOBRB

*

Timer counter TCNT0 to TCNT4 MTU0.TCNT to MTU4.TCNT
 MTU5.TCNTU/V/W *

Timer general register TGR0, TGR3, TGR4
(A, B, C, D)

MTU0.TGRA to D
MTU3.TGRA to D
MTU4.TGRA to D

 MTU0.TGRE,F *

TGR1, TGR2 (A, B) MTU1.TGRA,B
MTU2.TGRA,B

Timer start register TSTR MTU.TSTR
Timer synchronous register TSYR MTU.TSYR
Timer read/write enable register MTU.TRWER *

Timer output master enable
register

TOER MTU.TOER

Timer output control register TOCR MTU.TOCR1
 MTU.TOCR2 *

Timer output level buffer register MTU.TOLBR *

Timer gate control register TGCR MTU.TGCR
Timer sub counter TCNTS MTU.TCNTS
Timer dead time data register TDDR MTU.TDDR
Timer period data register TCDR MTU.TCDR

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 65 of 122
Sep 30, 2014

Register Name SH7044 (MTU) RX631 (MTU2a) Change
Timer period buffer register TCBR MTU.TCBR
Timer interrupt skipping set register MTU.TITCR *
Timer interrupt skipping counter MTU.TITCNT *
Timer buffer transfer set register MTU.TBTER *
Timer dead time enable register MTU.TDER *
Timer waveform control register MTU.TWCR *
Noise filter control register MTU0.NFCR to MTU4.NFCR *

: Registers with identical bit assignments on the SH7044 and RX631
: Registers where the RX631 has new functions (bits) assigned. (Except for the new function bits, the bit

assignments are identical.)
∆: On the RX631 these registers contain no interrupt flags.
Note: * Registers with no equivalents on the SH7044. (These registers are for new functions added in the

MTU2. When migrating programs that use the SH7044’s MTU, the initial values can be used
unaltered without any problem.)

2.7.4 Unit Selection Function
Some interrupt sources of the MTU and TPU are assigned to common vectors. It is therefore necessary when using the
MTU to specify which interrupt will be using each vector by setting the corresponding selector. (For details, see 1.8.6,
Unit Selection Function.)

2.7.5 Module Stop
The initial state of the peripheral modules of the RX631 is stopped, due to the low power consumption function. The
initial state of the MTU is stopped as well. Do not fail to cancel the module stop state when making settings to the
module. Before accessing the module stop control register to cancel the module stop state, first cancel register write
protection.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 66 of 122
Sep 30, 2014

2.7.6 MTU Output Compare Match Setting Example
In the setting example shown below for the SH7044 and RX631, the multifunction timer pulse unit (MTU) is used to
implement output compare match functionality.

< Specifications >

1. The RSK+RX63N board is used.
2. The MTU4 is used to output pulses with 50% duty of the specified cycle. The specified cycle is fixed at 1 ms.

Table 2.32 MTU Output Compare Match Specifications

Item Description Remarks
Count clock Rising edge of PCLKB/1 PCLKB = 48 MHz
Operating mode Normal mode
Synchronous operation Not used.
Counter clear source TGRA output compare
Timer general register Used as output compare register.
Pin used P24/MTIOC4A For pulse output

Figure 2.17 illustrates the operation. In this setting example no software processing is involved after the initial settings
to the MTU. The pulse output is generated automatically in hardware.

TCNT4 count value

TGRA

0000h

MTIOC4A pin 50% 50%

1 cycle
(1 ms)

Figure 2.17 MTU Output Compare Match Operation

RSK+ RX63N

RX63N

MTIOC4A
Pulse output

Figure 2.18 MTU Output Compare Match Connection Diagram

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 67 of 122
Sep 30, 2014

Table 2.33 MTU Output Compare Match Initial Setting Example

Procedure
SH7044 Example Settings
Pφ (Peripheral Clock): 20 MHz

RX631 Example Settings
PCLK (Peripheral Clock): 48 MHz

1 Cancel module stop state. (No module stop function) SYSTEM .PRCR = 0xA502
SYSTEM .MSTPCRA.MSTPA9 = 0
SYSTEM .PRCR = 0xA500

2 Stop MTU. TSTR.CST4 = 0 (TCNT stopped)
TSYR.SYNC4 = 0
(independent operation enabled)
TCNT4 = 0x0000 (TCNT0 cleared)
TGR4A = 0x0000 (TGR0A cleared)

MTU.TSTR.CST4 = 0 (TCNT stopped)
MTU.TSYR.SYNC4 = 0
(independent operation enabled)
MTU4.TCNT = 0x0000
(TCNT cleared)
MTU4.TGRA = 0x0000
(TGRA cleared)

3 Make I/O port settings (pin
I/O and pin function
settings).

PFC settings
PEIOR.PE12IOR = 1 (output)
PECR1.PE12MD = 1
(TIOC4A selected)

MTIOC4A pin settings in MPC
PORT2.PDR.B4 = 1 (output)
PORT2.PMR.B4 = 0 (GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1
(PFS write enabled)
MPC.P24PFS = 0x01 (pin function setting)
MPC.PWPR.PFSWE = 0
(PFS write disabled)
MPC.PWPR.B0WI = 1

4 Select counter clock; select
edge.

Internal clock: φ/1
TCR4.TPSC2 to TCR4.TPSC0 = 000b
TCR4.CKEG1 to TCR4.CKEG0
= TCR4.CKEG0
(counting at rising edge)

Internal clock: φ/1
MTU4.TCR.TPSC2 to MTU4.TCR.TPSC0
= 000b
MTU4.TCR.CKEG1 to MTU4.TCR.CKEG0
= 0 (counting at rising edge)

5 Make counter operation
and TCNT clear source
settings.

TGR4A compare match, input capture,
and TCNT clear source TGR4A
TCR4.CCLR2 to TCR4.CCLR0
= 001b

TGRA.MTU4 compare match, input
capture, and TCNT clear source TGR4A
MTU4.TCR.CCLR2 to MTU4.TCR.CCLR0
= 001b

6 Enable TOIC4A output
(MTU3 and MTU4 only).

TOER.OE4A = 1 MTU.TOER.OE4A = 1

7 Make timer I/O control
settings.

Output compare register: TGR4A
Initial output: 0, output toggled at
compare match
TIOR4H.IOA3 to TIOR4H.IOA0
= 0011b

Output compare register: MTU4.TGRA
Initial output: 0, output toggled at compare
match
MTU4.TIORH.IOA3 to MTU4.TIORH.IOA0
= 0011b

8 Set TGRA (setting value:
1/2 cycle duration).

TGR4A = 2710h MTU4.TGRA = 5DE6h

9 Make timer mode register
settings.

TMDR4.BFB = 0 (normal operation)
TMDR4.BFA = 0 (normal operation)
TMDR4.MD3 to TMDR4.MD0 = 0
(normal operation)

MTU4.TMDR.BFB = 0 (normal operation)
MTU4.TMDR.BFA = 0 (normal operation)
MTU4.TMDR.MD3 to MTU4.TMDR.MD0
= 0 (normal operation)
PORT2.PMR.B4 = 1 (peripheral function)

10 Enable timer operation. TSTR.CST4 = 1
(TCNT0 count operation)

MTU.TSTR.CST4 = 1
(TCNT0 count operation)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 68 of 122
Sep 30, 2014

2.7.7 MTU Input Capture Setting Example
In the setting example shown below for the SH7044 and RX631, the input capture function of the multifunction timer
pulse unit (MTU) is used to measure the input pulse width.

< Specifications >

1. The RSK+RX63N board is used.
2. The high duration of the pulse input on the pin is measured, and the result is stored in the RAM.
3. If the pulse width measurement range* is exceeded, LED1 turns on and processing ends.

Note: * Measurement is not possible when the TCNT overflow count exceeds FFFFh.

Table 2.34 MTU Input Capture Specifications

Item Description Remarks
Count clock Rising edge of PCLKB/1 PCLKB = 48 MHz
Operating mode Normal mode
Synchronous operation Not used.
Counter clear source TGRA Input capture
Timer general register Input capture register
Pin used P34/MTIOC0A (input capture at both edges) Pulse input

P05 (GPIO) LED1 output
Interrupt sources MTU0 input capture A interrupt

Overflow interrupt

RSK+ RX63N

RX63N

MTIOC0A
Pulse input

P05 LED1 output

Input capture is used to measure
the high duration of the pulse input.

Figure 2.19 MTU Pin Connections

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 69 of 122
Sep 30, 2014

[1] [2] [3] [4] [5] [6] [7]

0
0

(A)
0

(B) (B) (A) (A) (B)
01000

Pulse 1 Pulse 2

TCNT value
FFFFh = (C)

(B)
(A)

0000h

MTIOCO0A pin

TSTR.CST0

Measurement-in-
progress flag*

MTU0.TGR value

Overflow count*

: Input capture generation timing ([2], [3], [5], and [7] in figure)
 The value of TCNT is transferred to TGRA. Also, an input capture interrupt is generated at the same time.
: TCNT overflow generation timing ([4] and [6] in figure)
An overflow interrupt is generated when a TCNT overflow occurs. When the value of TCNT is FFFFh, indicating an
edge input, the value of TCNT is transferred to TGRA and no overflow interrupt is generated, but an input capture
interrupt is generated.

Shaded portion: Counter values used as measurement values
Overflow count (set in variable area)

Note: * Processed by software.

Figure 2.20 MTU Input Capture Operation

< Description of Pulse Width Measurement Operation >

The operating principle of pulse width measurement of pulses 1 and 2 is described below, assuming the conditions
shown in figure 2.20 above.

[1] MTU0 starts counting when the TSTR.CST0 bit is set to 1 (start count).
[2] An input capture interrupt is generated when a rising edge is input on the MTIOC0A pin. The handler of this

interrupt first confirms that the pin is in the high state, then it sets the measurement-in-progress flag to 1, clears the
overflow count to 0, and starts measuring pulse 1.

[3] An input capture interrupt is generated when a falling edge is input on the MTIOC0A pin. The handler of this
interrupt first confirms that the pin is in the low state, then it determines that measurement of the width of pulse 1
has finished, clears the measurement-in-progress flag to 0, and calculates the width of pulse 1 based on the
MTU0.TCNT overflow count (0) and the value of MTU0.TGRA (B).

[4] An overflow interrupt is generated when MTU0.TCNT overflows, and the handler of this interrupt checks the
measurement-in-progress flag. The value of the measurement-in-progress flag is 0, so the overflow count is not
incremented.

[5] An input capture interrupt is generated when a rising edge is input on the MTIOC0A pin. The handler of this
interrupt first confirms that the pin is in the high state, then it sets the measurement-in-progress flag to 1, clears the
overflow count to 0, and starts measuring pulse 2.

[6] An overflow interrupt is generated when MTU0.TCNT overflows, and the handler of this interrupt checks the
measurement-in-progress flag. The value of the measurement-in-progress flag is 1, so the overflow count is
incremented, changing the overflow count from (0) to (1).

[7] An input capture interrupt is generated when a falling edge is input on the MTIOC0A pin. The handler of this
interrupt first confirms that the pin is in the low state, then it determines that measurement of the width of pulse 2
has finished, clears the measurement-in-progress flag to 0, and calculates the width of pulse 2 based on the
MTU0.TCNT overflow count (1) and the value of MTU0.TGRA (B).

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 70 of 122
Sep 30, 2014

Table 2.35 MTU Input Capture Initial Setting Example

Procedure
SH7044 Example Settings
Pφ (Peripheral Clock): 20 MHz

RX631 Example Settings
PCLK (Peripheral Clock): 48 MHz

1 Cancel module stop state. (No module stop function) SYSTEM.PRCR = 0xA502
SYSTEM.MSTPCRA.MSTPA9 = 0
SYSTEM.PRCR = 0xA500

2

Disable interrupts. TIER0.TGIEA = 0 (TGIA disabled)
TIER0.TCIEV = 0 (TCIV disabled)

IER11.IEN6 = 0
(vector 142 and TGIA0 disabled)
IER0D.IEN3 = 0
(vector 107 interrupt disabled)
GEN01.EN0 = 0
(group 01 interrupts disabled)
MTU0.TIER.TGIEA = 0
MTU0.TIER.TCIEV = 0

3 Make noise filter settings.
(Use of the noise filter is
not essential.)

 MTU0.NFCR.BIT.NFAEN = 1;
MTU0.NFCR.BIT.NFCS = 0;
2-cycle wait

3 Clear the interrupt source.  IR142 = 0
4 Set the unit selector.  SEL.CN0 = 0 (MTU0 setting)
5

Stop MTU. TSTR.CST0 = 0 (TCNT stopped)
TSYR.SYNC0 = 0
(independent operation enabled)
TCNT0 = 0x0000 (TCNT0 cleared)
TGR0A = 0x0000 (TGR0A cleared)

MTU.TSTR.CST0 = 0 (TCNT stopped)
MTU.TSYR.SYNC0 = 0
(independent operation enabled)
MTU0.TCNT = 0x0000 (TCNT cleared)
MTU0.TGRA = 0x0000 (TGRA cleared)

6

Make I/O port settings
(pin I/O and pin function
settings).

PFC settings
PEIOR.PE0IOR = 1 (input)
PECR2.PE0MD1 to PECR2.PE0MD0
= 01 (TIOC0A selected)

MTIOC0A pin settings in MPC
PORT3.PDR.B4 = 0 (input)
PORT3.PMR.B4 = 0 (GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1
(PFS write enabled)
MPC.P34PFS = 0x01 (pin function setting)
MPC.PWPR.PFSWE = 0
(PFS write disabled)
MPC.PWPR.B0WI = 1
PORT3.PMR.B4 = 1 (peripheral function)

7 Select counter clock;
select edge.

Internal clock: φ/1
TCR0.TPSC2 to TCR0.TPSC0 = 000b
TCR0.CKEG1 to TCR0.CKEG0 = 0
(counting at rising edge)

Internal clock: φ/1
MTU0.TCR.TPSC2 to MTU0.TCR.TPSC0
= 000b
MTU0.TCR.CKEG1 to MTU0.TCR.CKEG0
= 0 (counting at rising edge)

8 Make counter operation
and TCNT clear source
settings.

TGR0A compare match, input capture,
and TCNT clear source TGR0A
TCR0.CCLR2 to TCR0.CCLR0 = 001b

MTU0.TGRA compare match, input
capture, and TCNT clear source TGRA
MTU0.TCR.CCLR2 to MTU0.TCR.CCLR0
= 001b

9 Make timer I/O control
settings.

TGR0A: input capture register
Input capture at both edges on input pin
TIOC0A
TIOR0H.IOA3 to TIOR0H.IOA0 = 1010b

MTU0.TGRA: input capture register
Input capture at both edges on input pin
MTIOC0A
MTU0.TIORH.IOA3 to MTU0.TIORH.IOA0
= 1010b

10

Make timer mode register
settings.

TMDR0.BFB = 0 (normal operation)
TMDR0.BFA = 0 (normal operation)
TMDR0.MD3 to TMDR0.MD0 = 0
(normal operation)

MTU0.TMDR.BFB = 0 (normal operation)
MTU0.TMDR.BFA = 0 (normal operation)
MTU0.TMDR.MD3 to MTU0.TMDR.MD0
= 0 (normal operation)

11 Make interrupt priority
register settings.

IPRD.WORD = 0x5000 (MTU0: level 5) IPR142 = 5 (TGIA0: level 3)
IPR107 = 5 (GROUP1: level 4)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 71 of 122
Sep 30, 2014

Procedure
SH7044 Example Settings
Pφ (Peripheral Clock): 20 MHz

RX631 Example Settings
PCLK (Peripheral Clock): 48 MHz

12

Enable interrupts. TIER0.TGIEA = 1 (TGIA enabled)
TIER0.TCIEV = 1 (TCIV enabled)

MTU0.TIER.TGIEA = 1
MTU0.TIER.TCIEV = 1
IER11.IEN6 = 1
(vector 142 and TGIA0 enabled)
IER0D.IEN3 = 1
(vector 107 interrupt enabled)
GEN01.EN0 = 1
(group 01 interrupts enabled)

13 Enable timer operation. TSTR.CST0 = 1
(TCNT0 count operation)

MTU.TSTR.CST0 = 1
(TCNT0 count operation)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 72 of 122
Sep 30, 2014

2.8 Watchdog Timers
2.8.1 Comparison of Specifications
The SH7044 incorporates the WDT as its watchdog timer module. The RX631 incorporates, in addition to the WDTA,
the IWDTa, which operates on a dedicated independent clock. The specifications of these modules are compared below.

Table 2.36 Comparison of WDT, WDTA, and IWDTa Specifications on SH7044 and RX631

Item
SH7044 RX631
WDT WDTA IWDTa

Clock source System clock (φ) Peripheral clock (PCLK) IWDT dedicated clock
(IWDTCLK)

Clock frequency
division ratio

φ/2, 64, 128, 256, 512,
1024, 4096, 8192

PCLK/4, 64, 128, 512,
4096, 8192

IWDTCLK/1, 16, 32, 64,
128, 256

Count operation 8-bit up-counter 14-bit down-counter 14-bit down-counter
Operating
modes

• Watchdog timer mode
• Interval timer mode

Watchdog timer mode only Watchdog timer mode only

Count start
condition

Timer enable bit in timer
control register set to
“enabled”

Selectable between the
following:

1. Automatic count
start after a reset (auto-
start mode)
2. Count start by
refresh operation
(register start mode)

Selectable between the
following:

1. Automatic count
start after a reset (auto-
start mode)
2. Count start by
refresh operation
(register start mode)

Count stop
condition

Watchdog timer mode
• Overflow
• Power-on reset
Interval timer mode
• Timer enable bit in timer

control register set to
“disabled”

• Power-on reset

• Underflow
• Reset (down-counter,

return to register initial
value)

• Refresh error

• Underflow
• Reset (down-counter,

return to register initial
value)

• Refresh error

Operation at
overflow/
underflow

Watchdog timer mode
• WDTOVF output
• Internal reset
Interval timer mode
• Interrupt

• Internal reset
• Interrupt

• Internal reset
• Interrupt

Other  The following are specified
by settings in option
function select register 0:
• Clock frequency division

ratio
• Refresh window

start/end
• Timeout period
• Operation at underflow

The following are specified
by settings in option
function select register 0:
• Clock frequency division

ratio
• Refresh window

start/end
• Timeout period
• Operation at underflow

: Function not implemented on SH7044.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 73 of 122
Sep 30, 2014

2.8.2 Module Stop
The initial state of the peripheral modules of the RX631 is stopped, due to the low power consumption function.
However, the WDTA and IWDTa have no module stop function. Their initial operating state is determined by settings
in the option-setting memory. Note that when all modules are stopped, the WDTA stops counting and retains its state.
The operation of the IWDTa when all modules are stopped is selectable between operational and stopped by a setting in
the option-setting memory.

2.9 Serial Communication Interface
2.9.1 Comparison of Specifications
In contrast to the SCI of the SH7044, the RX631 integrates the SCIc and SCId. In addition to the conventional
asynchronous and clock-synchronous transfer modes, the SCIc provides smartcard (IC card) interface support as an
extended asynchronous mode. In addition, it supports simple I2C bus interface single master operation and simple SPI
bus interface mode. The SCId provides all the functions of the SCIc and adds extended serial interface support. For
details of the transfer modes that are not supported on the SH7044, refer to the User’s Manual: Hardware.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 74 of 122
Sep 30, 2014

Table 2.37 SCI Differences

Item SH7044 RX631
Number of channels 2 channels (SCI0, SCI1) 13 channels SCIc: SCI0 to SCI11

 SCId: SCI12
Serial communication modes • Asynchronous

• Clock-synchronous
• Asynchronous
• Clock-synchronous
• Smartcard interface
• Simple I2C bus
• Simple SPI bus

Transfer speed Any bit rate may be selected using the on-chip baud rate generator.
Full-duplex communication Transmit block: Support for continuous transmission using double-buffer

configuration
Receive block: Support for continuous reception using double-buffer

configuration
Data transfer LSB-first only Selectable between LSB-first and MSB-

first (MSB-first only on simple I2C bus)
Interrupt sources • Transmit data-empty

• Transmit-end
• Receive data-full
• Receive error

• Transmit data-empty
• Transmit-end
• Receive data-full
• Receive error
• Start condition*
• Restart condition*
• Stop condition generation-end*
Note: * Used in simple I2C mode.

Asynchronous
mode

Data length 7 bits, 8 bits
Stop bits 1 bit, 2 bits
Parity Even parity, odd parity, or no parity
Receive error
detection

Parity error, overrun error, or framing error

Hardware flow
control

No Yes
(controllable using CTS and RTSn pins)

Break detection Possible by reading level of RxDn pin directly when a framing error
occurs

Clock source Selectable between internal
and external clock

Selectable between internal and
external clock
Ability to input transfer rate clock from
TMR (SCI5 and SCI6)

Multi-processor
communication

Yes

Noise
cancellation

No On-chip digital noise filter for input on
RXDn pins

Clock-
synchronous
mode

Data length 8 bits
Receive error
detection

Overrun error

Hardware flow
control

No Yes
(controllable using CTS and RTSn pins)

Smartcard interface No Yes
Simple I2C mode No Yes
Simple SPI mode No Yes
Extended serial mode No Implemented on SCId (SCI12) only

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 75 of 122
Sep 30, 2014

A comparison of the on-chip SCI registers is shown below.

Table 2.38 SCI Communication Registers

SH7044 RX631 Changed
Transmit data register (TDR) Transmit data register (TDR)
Transmit shift register (TSR) Transmit shift register (TSR)
Receive data register (RDR) Receive data register (RDR)
Receive shift register (RSR) Receive shift register (RSR)
Serial mode register (SMR) Serial mode register (SMR)
Serial control register (SCR) Serial control register (SCR)
Serial status register (SSR) Serial status register (SSR) *1
Bit rate register (BBR) Bit rate register (BBR)
 Smartcard mode register (SCMR)
 Serial extended mode register (SEMR)
 Noise filter setting register (SNFR) *2
 I2C mode registers 1 to 3 (SIMR1 to SIMR3) *2
 I2C status register (SISR) 
 SPI mode register (SPMR) *2*3
 Extended serial mode enable register (ESMER) 
 Control registers 0 to 3 (CR0 to CR3) 
 Port control register (PCR) 
 Interrupt control register (ICR) 
 Status register (STR) 
 Status clear register (STCR) 
 Control field 0 data register (CF0DR) 
 Control field 0 compare enable register (CF0CR) 
 Control field 0 receive data register (CF0RR) 
 Primary control field 1 data register (PCF1DR) 
 Secondary control field 1 data register (SCF1DR) 
 Control field 1 compare enable register (CF1CR) 
 Control field 1 receive data register (CF1RR) 
 Timer control register (TCR) 
 Timer mode register (TMR) 
 Timer prescaler register (TPRE) 
 Timer count register (TCNT) 

: Registers with identical bit assignments on the SH7044 and RX631
: Registers not present on the SH7044 that are required when using functions.

: Registers with no equivalents on the SH7044. (When migrating programs that use the SH7044’s SCI, the
initial values can be used unaltered without any problem.)

Notes: 1. Only TDRE and RDRF differ.
 2. When migrating programs, the initial values can be used unaltered.
 3. For information on register settings required when performing flow control using the CTS and RTS

pins, and register bit assignments, see the User’s Manual: Hardware.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 76 of 122
Sep 30, 2014

2.9.2 Switching SCIs
Differences such as the following should be borne in mind when switching from the SH7044’s SCI to the SCIc or SCId
on the RX631:

1. TDRE and RDRF
The transmit register-empty (TDRE) and receive data-full (RDRF) flags in the serial status register of the SH7044
are not implemented on the SCIc or SCId modules of the RX631. The TDRE and RDRF flags on the SH7044
correspond to the IR (TXI) and IR (RXI) flags, respectively, of the interrupt controller on the RX631. When using
an interrupt handler, IR (TXI) and IR (RXI) are both cleared automatically by the interrupt controller, so no
additional processing is needed to clear the flags. Note that when polling is used the interrupt flags must be cleared
in the same manner as on the SH7044.

2. Determination of one-bit period and clock source selection
For communication in asynchronous mode, external clock input or TMR clock input can be selected as the clock
source for determining the one-bit period by a setting in the serial extended mode register (SEMR). Also, the
number of base clock cycles per one-bit period can be set to 8 or 16.

3. Digital noise filter
The digital noise filter is activated or disabled by a setting in the serial extended mode register (SEMR). When
enabling the noise filter, make sure to make the appropriate noise filter clock select setting in the noise filter setting
register (SNFR).

4. Receive error interrupt
The receive error interrupt is assigned to a group interrupt. The use of a group interrupt means that receive errors for
12 channels, SCI0 to SCI12, are assigned to a single vector. Therefore, when a receive error interrupt is generated it
is necessary to detect the channel on which the error occurred by means of the ISn (n: channel number) flags in
group interrupt source register 12 (GRP12). Within each channel, error handling for overrun errors, framing errors,
and parity errors is the same as on the SH7044.

2.9.3 Module Stop
The initial state of the peripheral modules of the RX631 is stopped, due to the low power consumption function. The
initial state of the SCI is also stopped. Do not fail to cancel the module stop state when making settings to the module.
Before accessing the module stop control register to cancel the module stop state, first cancel register write protection.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 77 of 122
Sep 30, 2014

2.9.4 Asynchronous Communication Setting Example
(Interrupt Method/Polling Method)

A setting example for asynchronous serial communication using the serial communication interface (SCI) of the
SH7044 and RX631 is presented below.

< Specifications >

1. SCI0 on the RSK+RX63N board is used to make a loopback connection to TXD and RXD.
2. A total of 32 bytes of data are transmitted from the transmit buffer, and then the same data is received.
3. For the interrupt method, transmit and receive interrupts are used; transmission starts when the transmit data-empty

interrupt occurs, and reception starts when the receive data register-full interrupt occurs.
4. For the polling method, no interrupts are used; the timing of data transmission and reception are based on polling of

the transmit and receive interrupt source flags.
5. After the microcontroller is initialized, LED0 turns on when the SCI is ready for transmit and receive operation.

LED1 turns on when transmission and reception end. LED2 turns on if a receive error occurs.

Table 2.39 SCI Asynchronous Communication Specifications

Item Description Remarks
Communication mode Asynchronous serial communication
Transfer speed 38,400 bps
Data length 8 bits
Stop bits 1 bit
Parity None
Hardware flow control None
Bit order LSB-first
SCI channel used SCI0 fixed
Pins used P20/TXD0

P21/RXD0
P03/GPIO LED0 output
P05/GPIO LED1 output
P10/GPIO LED2 output

RSK+ RX63N

P10 LED2 output

P05 LED1 output

P03 LED0 output

RXD

TXD
Return from TXD to RXD

Figure 2.21 SCI Connection Specifications

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 78 of 122
Sep 30, 2014

List of related registers

The SCI0 interrupt-related registers and the interrupt sources on the SH7044 and RX631 are listed below. In order to
reproduce the receive, transmit, transmit-end, and receive error interrupts of the SH7044 on the RX631, it is necessary
to be aware of the resource settings for each and flags listed in table 2.40.

Table 2.40 SCI Interrupt-Related Resources (Asynchronous Communication)

Item
SH7044 RX631
RXI0 TXI0 TEI0 ERI0 RXI0 TXI0 TEI0 ERI0

Interrupt priority
registers

IPRF (7-4)*1 IPR214*1 IPR114*1

Interrupt enable
registers

SCR
.RIE

SCR
.TIE

SCR
.TEIE

SCR
.RIE

IER1A
.IEN6*1

IER1A
.IEN7*1

IER1B
.IEN0*1

IER0E
.IEN2*1

SCR
.RIE

SCR
.TIE

SCR
.TEIE

SCR
.RIE
GEN12
.EN0*1

Interrupt request
registers
(source flags)*2

SSR
.RDRF

SSR
.TDRE

SSR
.TEND

SSR
.ORER

SSR
.FER

SSR
.PER

IR214 IR215 IR216 IR114
GRP12
.IS0
SSR
.ORER

SSR
.FER

SSR
.PER

Notes: 1. Used for interrupt handling. Not used when the polling method is employed.
 2. When the polling method is employed, source detection is implemented by polling these registers.

The register symbols and full names are as follows:

• SH7044
IPRF: Interrupt priority level setting register
FSCR and SSR are listed in table 2.38.

• RX631
IPRxxx: Interrupt source priority register (xxx: vector number)
IER1A, IER1B, and IER0E: Interrupt request enable registers 1A, 1B, and 0E
IRxxx: Interrupt request register (xxx: vector number)
GENxx: Group xx interrupt enable register
GRPxx: Group xx interrupt source register
SCR and SSR are listed in table 2.38.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 79 of 122
Sep 30, 2014

The initial setting procedure for asynchronous communication using the SCI is shown below.

Table 2.41 SCI Asynchronous Communication Initial Setting Example

(Common to Interrupt Method and Polling Method)

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

1 Disable SCI interrupts.

The interrupt controller has no
enable register.

IER1A.IEN6 = 0 (RXI0)
IER1A.IEN7 = 0 (TXI0)
IER1B.IEN0 = 0 (TEI0)
IER0E.IEN2 = 0 (ERI0: group interrupt)
GEN12.EN0 = 0 (ERI0: SCI0)

2 Cancel module stop
state.

(No module stop function) SYSTEM.PRCR = 0xA502
SYSTEM.MSTPCRB.MSTPB31 = 0
SYSTEM.PRCR = 0xA500

3 Initialize SCR. SCR.TIE, RIE, TE, RE, TEIE = 0 SCR.TIE, RIE, TE, RE, TEIE = 0
Wait until SCR is cleared to 0.

4

Make I/O port settings
(RX631 only)

PFC setting is performed in step 11. PORT2.PODR.B0 = 1 (set to output 1)
PORT2.PDR.B0 = 1 (set to output)
PORT2.PDR.B1 = 0 (set to input)
PORT2.PMR.B0 = 0 (set to general I/O)
PORT2.PMR.B1 = 0 (set to general I/O)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1 (PFS write enables)
MPC.P20PFS = 0x0A (TX pin setting)
MPC.P21PFS = 0x0A (RX pin setting)
MPC.PWPR.PFSWE = 0 (PFS write disabled)
MPC.PWPR.B0WI = 1
PORT2.PMR.B0 = 1 (set to peripheral function)
PORT2.PMR.B1 = 1 (set to peripheral function)

5 Enable clock. Internal clock/SCK pin: input
SCR.CKE0, SCR.CKE1 = 00b

On-chip baud rate generator
SCKn pin: I/O port
SCR.CKE0, SCR.CKE1 = 00b

6 Initialize SIMR and
SPMR.

 SIMR.IICM = 0
SPMR.CKPH, CKPOL = 0
(Items that are the initial value are omitted.)

7 Make transmit and
receive format settings.

SMR.C/_A = 0 (asynchronous)
SMR.CHR = 0 (8 bits)
SMR.PE = 0 (no parity)
SMR.STOP = 0 (1 stop bit)
SMR.MP = 0
(multi-processor disabled)
SMR.CKS0, SMR.CKS1 = 00b

SMR.CM = 0 (asynchronous)
SMR.CHR = 0 (8 bits)
SMR.PE = 0 (no parity)
SMR.STOP = 0 (1 stop bit)
SMR.MP = 0 (multi-processor disabled)
SMR.CKS0, SMR.CKS1 = 00b

8 Make SCMR and SEMR
settings.

(This function not implemented.) SCMR.SMIF = 0
(serial communication interface mode)
SCMR.SINV = 0
(no inversion of transmit and receive data)
SCMR.SDIR = 0 (LSB-first)
SEMR.ABCS = 0
(transfer rate 1 bit period equal to 16 cycles of
base clock)
SEMR.NFEN = 0 (digital noise filter disabled)

9 Set bit rate (BRR). 38,400 bps
BRR = 15

38,400 bps
BRR = 38

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 80 of 122
Sep 30, 2014

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

10 At initialization, wait one-
bit period before
enabling transmit and
receive.

At initialization, transmit and receive
are enabled after one-bit period
ends.

←

11

Make I/O port settings
(SH7044 only)

PFC setting is performed.
PAIORL.PA1IOR = 1 (output)
PAIORL.PA0IOR = 0 (input)
PACRL2.PA1MD = 1 (TX0)
PACRL2.PA0MD = 1 (RX0)

Port setting is performed in step 4.

12 Clear interrupt sources.  IR214 = 0 (RXI0)
IR215 = 0 (TXI0)

13

Set RIE, RE, TIE, and
TE in SCR to “enabled”
(enable transmit and
receive).

SCR.RIE, RE = 1
SCR.TIE, TE = 1
Note: For polling: RIE and TIE in

SCR are cleared to 0.

SCR.RIE, RE = 1
SCR.TIE, TE = 1
Note: Polling target is IR, so RIE and TIE in

SCR are set to 1.
14

• Enable interrupts
on interrupt
controller.

• Set priority.
Note: For polling, skip

step 14.

INTC.IPRF.WORD = 0x0050
(level 5)

IPR214 = 0x05 (level 5)
IPR114 = 0x05 (level 5)
IER1A.IEN6 = 1 (RXI0)
IER0E.IEN2 = 1 (ERI0)
GEN12.EN0 = 1 (ERI0: SCI0)
IER1A.IEN7 = 1 (TXI0)

Note: Shaded portions indicate places where polling settings differ.

SCI transmission and reception during asynchronous communication (interrupt method) is described below.

Table 2.42 Example of Receive Data-Full Interrupt Handling during SCI Asynchronous

Communication

Procedure SH7044 Setting Example RX631 Setting Example
Read receive data. Read out contents of RDR to

receive buffer.
Read out contents of RDR to
receive buffer.

Clear receive data register-full
flag.

After reading SSR.RDRF, clear to
0.

IR214 is cleared automatically.

End reception when the receive
byte count reaches 32.

SCR.RIE = 0
SCR.RE = 0

SCR.RIE = 0
SCR.RE = 0
IER1A.IEN6 = 0 (RXI0)
IER0E.IEN2 = 0 (ERI0: vector 114)
GEN12.EN0 = 0 (ERI0: group 12)
IR214 = 0

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 81 of 122
Sep 30, 2014

Table 2.43 Example of Transmit Data-Empty Interrupt Handling during SCI Asynchronous
Communication

Procedure SH7044 Setting Example RX631 Setting Example
1 Write transmit data. Write data to TDR. Write data to TDR.
2 Clear the transmit data

register-empty flag to 0.
After reading SSR.TDRE, clear to
0.

IR215 is cleared automatically.

3 Determine state of TEND. If TEND is ON, go to step 4 If TEND is ON, go to step 4
(because transmission may not
succeed if TE is cleared before
data transmission completes).

4 End transmission when the
transmit byte count reaches
32. (On RX631, perform
TEND interrupt handling.)

SCR.TIE = 0
SCR.TE = 0
< TEND interrupt setting >
SCR.TEIE = 1

SCR.TIE = 0
SCR.TE = 0
IER1A.IEN7 = 0 (TXI0)
IR215 = 0
< TEND interrupt setting >
IER1B.IEN0 = 1
SCR.TEIE = 1

The details of the handling of errors and the TEND interrupt are not stipulated in the sample software. However, on the
RX631 the receive error interrupt is assigned to a group interrupt. Therefore, it is necessary to detect the interrupt flag
from the group.

Table 2.44 Example of Error Interrupt Handling during SCI Asynchronous Communication

Procedure SH7044 Setting Example RX631 Setting Example
1 Group interrupt

determination
The SH7044 does not have group
interrupts.

Continue with following processing
if GRP12.IS0 (SCI0 receive error) is
set to 1.

2 Overrun error
determination

Perform error processing if
SSR.ORER is set to 1.

Perform error processing if
SSR.ORER is set to 1.

3 Framing error
determination

Perform error processing if
SSR.FER is set to 1.

Perform error processing if
SSR.FER is set to 1.

4 Parity error determination Perform error processing if
SSR.PER is set to 1.

Perform error processing if
SSR.PER is set to 1.

Table 2.45 Example of TEND Interrupt Handling during SCI Asynchronous Communication

Procedure SH7044 Setting Example RX631 Setting Example
1 Perform TEND interrupt

handling.

Set TX port to GPIO.
PACRL2.PA1MD = 0 (TX0)
SCR.TEIE = 0

Set TX port to GPIO.
PORT2.PMR.B0 = 0 (GPIO)
IER1B.IEN0 = 0
SCR.TEIE = 0

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 82 of 122
Sep 30, 2014

SCI transmission and reception during asynchronous communication (polling method) is described below.

In the polling method no interrupts are used, and step 13 in table 2.41, SCI Asynchronous Communication Initial
Setting Example (Common to Interrupt Method and Polling Method), is extended as shown below.

Table 2.47 Example of Transmit and Receive Processing during SCI Asynchronous Communication

(Polling Method)

Procedure SH7044 Setting Example RX631 Setting Example
Receive processing
1 Read receive error and

determine error type.
⇒ If receive error, go to
receive error handling.
⇒ If not receive error, go
to step 2.

If ORER, FER, or PER in SSR ≠ 0,
go to receive error handling.

If ORER, FER, or PER in SSR ≠ 0,
go to receive error handling.

2 Monitor receive data
register-full flag.
⇒ If ON, go to step 3.
⇒ If OFF, go to transmit
processing.

If SSR.RDRF = 1, perform receive
processing.
⇒ Go to step 3.
If SSR.RDRF = 0, go to transmit
processing.

If IR214 = 1, perform receive
processing.
⇒ Go to step 3.
If IR214 = 0, go to transmit
processing.

3 Read receive data from
RDR.

Read RDR and store the data in the
receive buffer.

Read RDR and store the data in the
receive buffer.

4 Clear receive data register-
full flag.

Clear SSR.RDRF to 0. Clear IR214 to 0.

5

If receive counter value is
32 bytes or more, end
receive.

Receive is finished.
SCR.RE = 0

Receive is finished.
SCR.RIE = 0
SCR.RE = 0
IR214 = 0

Transmit processing
6 Monitor transmit data-

empty flag.
⇒ If ON, go to step 7.
⇒ If OFF, go to receive
processing.

If SSR.TDRE = 1, perform transmit
processing.
⇒ If ON, go to step 7.
⇒ If OFF, go to receive processing.

If IR215 = 1, perform transmit
processing.
⇒ If ON, go to step 7.
⇒ If OFF, go to receive processing.

7 Write transmit data to TDR. Write transmit data to TDR. Write transmit data to TDR.
8 Clear transmit data-empty

flag.
Clear SSR.TDRE. Clear IR215 to 0.

9 If receive counter value is
32 bytes or more, end
transmit.

Transmit and receive are finished.
SCR.TE = 0

Transmit and receive are finished.
SCR.TE = 0
SCR.TIE = 0
IR215 = 0

10

If transmit and receive are both finished, end processing.
Otherwise, go to step 1.

Error handling
11 Receive error handling The details of error handling are not

stipulated.
The details of error handling are not
stipulated.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 83 of 122
Sep 30, 2014

2.9.5 Clock-Synchronous Master Transmit Setting Example
(Interrupt Method/Polling Method)

A setting example for clock-synchronous master transmit processing using the serial communication interface (SCI) of
the SH7044 and RX631 is described below.

< Specifications >

1. SCI0 on the RSK+RX63N board is used.
2. For the interrupt method, the transmit data-empty interrupt is used to start transmission.
3. For the polling method, no interrupts are used; the interrupt source flag (IR215) is polled and data transmission

starts when the interrupt source is detected.
4. Master transmit processing ends after 32 bytes of data have been transmitted.
5. LED0 turns on when transmission starts, and LED1 turns on when transmission ends.

Note: LED2 turns on if an error occurs.

Table 2.48 SCI Clock-Synchronous Communication Specifications (Master Transmit)

Item Description Remarks
Communication mode Clock-synchronous serial

communication

Transfer speed 100 kbps B = 119
Data length 8 bits
Hardware flow control None
SCI channel used SCI0 fixed
Bit order LSB-first
Synchronous clock Internal clock The SCK pin is the sync clock output.
Pins used P20/TXD0

P22/SCK0
P03/GPIO LED0 output
P05/GPIO LED1 output
P10/GPIO LED2 output

RSK+ RX63N

CLK
LED2 output

RXD
LED1 output

TXD
LED0 output

P10

P05

P03

Communication target microcontroller

CLK

TXD

RXD

Figure 2.22 Clock-Synchronous Serial Communication Connection Specifications (Master Transmit)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 84 of 122
Sep 30, 2014

List of related registers

The SCI0 interrupt-related registers and the interrupt sources on the SH7044 and RX631 are listed below. In order to
reproduce the receive, transmit, transmit-end, and receive error interrupts of the SH7044 on the RX631, it is necessary
to be aware of the resource settings for each and flags listed in table 2.49. Unlike asynchronous communication, overrun
error is the only error interrupt source.

Table 2.49 SCI Interrupt-Related Resources (Clock Synchronous Communication)

Item
SH7044 RX631
RXI0 TXI0 TEI0 ERI0 RXI0 TXI0 TEI0 ERI0

Interrupt priority
registers

IPRF (7-4)*1 IPR214*1 IPR114*1

Interrupt enable
registers

SCR
.RIE

SCR
.TIE

SCR
.TEIE

SCR
.RIE

IER1A
.IEN6*1

IER1A
.IEN7*1

IER1B
.IEN0*1

IER0E
.IEN2*1

SCR
.RIE

SCR
.TIE

SCR
.TEIE

SCR
.RIE
GEN12
.EN0*1

Interrupt request
registers
(source flags)*2

SSR
.RDRF

SSR
.TDRE

SSR
.TEND

SSR
.ORER

IR214 IR215 IR216 IR114
GRP12
.IS0
SSR
.ORER

Notes: 1. Used for interrupt handling. Not used when the polling method is employed.
 2. When the polling method is employed, source detection is implemented by polling these registers.

The register symbols and full names are as follows:

• SH7044
IPRF: Interrupt priority level setting register F
SCR and SSR are listed in table 2.38.

• RX631
IPRxxx: Interrupt source priority register (xxx: vector number)
IER1A, IER1B, and IER0E: Interrupt request enable registers 1A, 1B, and 0E
IRxxx: Interrupt request register (xxx: vector number)
GENxx: Group xx interrupt enable register
GRPxx: Group xx interrupt source register
SCR and SSR are listed in table 2.38.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 85 of 122
Sep 30, 2014

The initial setting procedure for SCI clock-synchronous master transmit operation is shown below. Note that the initial
setting processing is common to the interrupt method and the polling method.

Table 2.50 SCI Clock-Synchronous Master Transmit Initial Setting Example

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

1 Disable SCI interrupts. (This function not implemented.) IER1A.IEN6 = 0 (RXI0)
IER1A.IEN7 = 0 (TXI0)
IER1B.IEN0 = 0 (TEI0)
IER0E.IEN2 = 0 (ERI0: group interrupt)
GEN12.EN0 = 0 (ERI0: SCI0)

2 Cancel module stop
state.

(No module stop function) SYSTEM.PRCR = 0xA502
SYSTEM.MSTPCRB.MSTPB31 = 0
SYSTEM.PRCR = 0xA500

3 Initialize SCR. SCR.TIE, RIE, TE, RE, TEIE = 0 SCR.TIE, RIE, TE, RE, TEIE = 0
Wait until SCR is cleared to 0.

4

Make I/O port settings
(RX631 only)

PFC setting is performed in step 11. PORT2.PODR.B0 = 1 (set to output 1)
PORT2.PODR.B2 = 1 (set to output 1)
PORT2.PDR.B0 = 1 (TX output)
PORT2.PDR.B2 = 1 (SCK output)
PORT2.PMR.B0 = 0 (GPIO)
PORT2.PMR.B2 = 0 (GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1 (PFS write enables)
MPC.P20PFS = 0x0A (TX pin setting)
MPC.P22PFS = 0X0A (SCK pin setting)
MPC.PWPR.PFSWE = 0 (PFS write disabled)
MPC.PWPR.B0WI = 1

5 Enable clock. Internal clock/SCK pin: output
SCR.CKE0, SCR.CKE1 = 00b

On-chip baud rate generator
SCKn pin: output port
SCR.CKE0, SCR.CKE1 = 00b

6 Initialize SIMR and
SPMR.

(This function not implemented.) SIMR.IICM = 0
SPMR.CKPH, CKPOL = 0
(Items that are the initial value are omitted.)

7 Make transmit and
receive format settings.

SMR.C/_A = 1 (clock-synchronous)
SMR.CKS0, SMR.CKS1 = 00b

SMR.CM = 1 (clock-synchronous)
SMR.CKS0, SMR.CKS1 = 00b

8 Make SCMR settings. (This function not implemented.) SCMR.SMIF = 0
(serial communication interface mode)
SCMR.SINV = 0
(no inversion of transmit and receive data)
SCMR.SDIR = 0 (LSB-first)

9 Set bit rate (BRR). 100 kbps
BRR = 49

100 kbps
BRR = 119

10 At initialization, wait one-
bit period before
enabling transmit.

At initialization, transmit is enabled
after one-bit period ends.

←

11

Make I/O port settings
(SH7044 only)

PFC setting is performed.
PAIORL.PA1IOR = 1 (output)
PAIORL.PA0IOR = 0 (input)
PAIORL.PA2IOR = 1 (output)
PACRL2.PA1MD = 1 (TX0)
PACRL2.PA0MD = 1 (RX0)
PACRL2.PA2MD0,
PACRL2.PA2MD1 = 01b (SCK0)

Implemented in step 4.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 86 of 122
Sep 30, 2014

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

12

• Enable interrupts
on interrupt
controller.

• Set priority.
• Clear interrupt

sources.

INTC.IPRF.WORD = 0x0050
 (level 5)
SCR.TIE = 1
SCR.TE = 1
Note: For polling: TIE in SCR are

cleared to 0.

IPR214 = 0x05 (level 5)*
IPR114 = 0x05 (level 5)*

IR215 = 0
SCR.TIE, TE, TEIE = 1
(both turned ON simultaneously)
PORT2.PMR.B0 = 1 (peripheral function)
PORT2.PMR.B2 = 1 (peripheral function)
IER1A.IEN7 = 1 (TXI0)*
Note: * Not set when polling is used.

Note: Shaded portions indicate places where polling settings differ.

Transmit interrupt handling during SCI clock-synchronous master transmit operation (interrupt handling method) is
described below.

Table 2.51 Example of Transmit Interrupt Handling during SCI Clock-Synchronous Master Transmit

Operation (Interrupt Handling Method)

Procedure SH7044 Setting Example RX631 Setting Example
1 Write transmit data to TDR. Write data to TDR. Write data to TDR.
2 Clear the transmit data register-

empty flag to 0.
After reading SSR.TDRE, clear
to 0.

IR215 is cleared automatically.

3 End transmission when the
transmit byte count reaches 32.
(On RX631, perform TEND
interrupt handling.)

SCR.TIE = 0 SCR.TIE = 0
IER1A.IEN7 = 0 (TXI0)
IR215 = 0
< TEND interrupt setting >
Determines that SSR.TEND == 1
and sets IER1B.IEN0 = 1.

Table 2.52 Example of TEND Interrupt Handling during SCI Clock-Synchronous Master Transmit

Operation (Interrupt Handling Method)

Procedure SH7044 Setting Example RX631 Setting Example
1 Perform TEND interrupt

handling.
Perform TEND interrupt handling
(details not stipulated).

Set TX port to GPIO.
PORT2.PMR.B0 = 0 (GPIO)
IER1B.IEN0 = 0
SCR.TEIE = 0

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 87 of 122
Sep 30, 2014

SCI clock-synchronous master transmit processing (polling method) is described below. In the polling method no
interrupts are used. As the procedure, step 12 in table 2.53, SCI Clock-Synchronous Master Transmit Initial Setting
Example, is extended as shown below.

Table 2.54 Example of SCI Clock-Synchronous Master Transmit Processing (Polling Method)

Procedure SH7044 Setting Example RX631 Setting Example
1 Poll transmit data-empty

flag.
Run transmit processing
when transmit-empty
occurs.

Polling target: SSR.TDRE = 1
If SSR.TDRE = 1, perform transmit
processing in step 2 and after.

Polling target: IR215
If IR215 = 1, perform transmit
processing in step 2 and after.

2 Write transmit data to
TDR.

Write transmit data to TDR. Write transmit data to TDR.

3 Clear transmit data-empty
flag.

Clear SSR.TDRE. Clear IR215 to 0.

4 End transmission when the
transmit byte count
reaches 32.

SCR.TIE = 0 SCR.TIE = 0
IR215 = 0
Note: Handling of TEND is up to

the user.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 88 of 122
Sep 30, 2014

2.9.6 Clock-Synchronous Slave Receive Setting Example
(Interrupt Method/Polling Method)

A setting example for clock-synchronous slave receive processing using the serial communication interface (SCI) of the
SH7044 and RX631 is presented below.

< Slave Receive Processing >

1. SCI0 on the RSK+RX63N board is used.
2. For the interrupt method, the receive data register-full interrupt is used to start receive processing.
3. For the polling method, no interrupts are used; the interrupt source flag (IR214) is polled. Data reception takes place

when an interrupt request is detected.
4. Slave receive processing ends after 32 bytes of data have been received.
5. LED0 turns on when reception starts, and LED1 turns on when reception ends. LED2 turns on if a receive error

occurs.

Table 2.55 SCI Clock-Synchronous Communication Specifications (Slave Receive)

Item Description Remarks
Communication mode Clock-synchronous serial

communication

Transfer speed 100 kbps B = 119
Data length 8 bits
Hardware flow control None
SCI channel used SCI0 fixed
Bit order LSB-first
Synchronous clock External clock The SCK pin is the sync clock input.
Pins used P21/RXD0

P22/SCK0
P03/GPIO LED0 output
P05/GPIO LED1 output
P10/GPIO LED2 output

RSK+ RX63N

CLK
LED2 output

RXD
LED1 output

TXD
LED0 output

P10

P05

P03

CLK

TXD

RXD

Communication target microcontroller

Figure 2.23 Clock-Synchronous Serial Communication Connection Specifications (Slave Receive)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 89 of 122
Sep 30, 2014

The initial setting procedure for SCI clock-synchronous slave receive operation is shown below. Note that the initial
setting processing is common to the interrupt method and the polling method. For information on interrupt-related
resources, see table 2.49.

Table 2.56 SCI Clock-Synchronous Slave Receive Initial Setting Example

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

1 Disable SCI interrupts. The interrupt controller has no enable
register.

IER1A.IEN6 = 0 (RXI0)
IER1A.IEN7 = 0 (TXI0)
IER1B.IEN0 = 0 (TEI0)
IER0E.IEN2 = 0 (ERI0: group interrupt)
GEN12.EN0 = 0 (ERI0: SCI0)

2 Cancel module stop state. (No module stop function) SYSTEM.PRCR = 0xA502
SYSTEM.MSTPCRB.MSTPB31 = 0
SYSTEM.PRCR = 0xA500

3 Initialize SCR. SCR.TIE, RIE, TE, RE, TEIE = 0 SCR.TIE, RIE, TE, RE, TEIE = 0
Wait until SCR is cleared to 0.

4

Make I/O port settings
(RX631 only)

PFC setting is performed in step 11. PORT2.PDR.B1 = 0 (RX input)
PORT2.PDR.B2 = 0 (SCK input)
PORT2.PMR.B1 = 0 (GPIO)
PORT2.PMR.B2 = 0 (GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1
(PFS write enables)
MPC.P21PFS = 0x0A (RX pin setting)
MPC.P22PFS = 0X0A (SCK pin setting)
MPC.PWPR.PFSWE = 0
(PFS write disabled)
MPC.PWPR.B0WI = 1
PORT2.PMR.B1 = 1 (peripheral function)
PORT2.PMR.B2 = 1 (peripheral function)

5 Enable clock. External clock/SCK pin clock input
SCR.CKE0, SCR.CKE1 = 10b

External clock/SCKn pin as input port
SCR.CKE0, SCR.CKE1 = 10b

6 Initialize SIMR and SPMR (No such setting on the SH7044) SIMR.IICM = 0
SPMR.CKPH, CKPOL = 0
(Items that are the initial value are
omitted.)

7 Make transmit and receive
format settings.

SMR.C/_A = 1 (clock-synchronous)
SMR.CKS0, SMR.CKS1 = 00b

SMR.CM = 1 (clock-synchronous)
SMR.CKS0, SMR.CKS1 = 00b

8 Make SCMR settings. (No such setting on the SH7044) SCMR.SMIF = 0
(serial communication interface mode)
SCMR.SINV = 0
(no inversion of transmit and receive data)
SCMR.SDIR = 0 (LSB-first)

9 Set bit rate (BRR). 100 kbps
BRR = 49

100 kbps
BRR = 119

10 At initialization, wait one-
bit period before enabling
receive.

At initialization, transmit/receive is
enabled after one-bit period ends.

←

11

Make I/O port settings
(SH7044 only)

PFC setting is performed.
PAIORL.PA1IOR = 1 (output)
PAIORL.PA0IOR = 0 (input)
PAIORL.PA2IOR = 0 (input)
PACRL2.PA1MD = 1 (TX0)
PACRL2.PA0MD = 1 (RX0)
PACRL2.PA2MD0, PACRL2.PA2MD1
= 01b (SCK0)

Implemented in step 4.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 90 of 122
Sep 30, 2014

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

12

• Enable interrupts on
interrupt controller.

• Set priority.
• Clear interrupt

sources.

INTC.IPRF.WORD = 0x0050
 (level 5)
SCR.RIE = 1
SCR.RE = 1
Note: For polling: RIE in SCR are

cleared to 0.

IPR214 = 0x05 (level 5)*
IPR114 = 0x05 (level 5)*
IR214 = 0
SCR.RIE, RE = 1
(both turned ON simultaneously)
IER1A.IEN6 = 1 (RXI0)*
IER0E.IEN2 = 1 (ERI0)*
GEN12.EN0 = 1 (ERI0: SCI0)*
Note: * Not set by processing when

polling is used.
Note: Shaded portions indicate places where polling settings differ.

Interrupt handling during SCI clock-synchronous slave receive operation (interrupt handling method) is described
below.

Table 2.57 Example of Interrupt Handling during SCI Clock-Synchronous Slave Receive Operation

(Interrupt Handling Method)

Procedure SH7044 Setting Example RX631 Setting Example
1 Read receive data. Read out contents of RDR to

receive buffer.
Read out contents of RDR to
receive buffer.

2 Clear receive data register-full
flag.

After reading SSR.RDRF, clear
to 0.

IR214 is cleared automatically.

4 End reception when the receive
byte count reaches 32.

SCR.RIE = 0 SCR.RIE = 0
IER1A.IEN6 = 0 (RXI0)
IER0E.IEN2 = 0
(ERI0: group interrupt)
GEN12.EN0 = 0 (ERI0: SCI0)
IR214 = 0

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 91 of 122
Sep 30, 2014

During clock-synchronous communication overrun errors are the only receive errors detected. Implement error handler
code to accommodate overrun errors. On the RX631 the receive error interrupt is assigned to a group interrupt.
Therefore, it is necessary to detect the interrupt flag from the group.

SCI clock-synchronous slave receive processing (polling method) is described below. In the polling method no
interrupts are used. As the procedure, step 12 in table 2.56, SCI Clock-Synchronous Slave Receive Initial Setting
Example, is extended as shown below.

Table 2.59 Example of SCI Clock-Synchronous Slave Receive (Polling Method)

Procedure SH7044 Setting Example RX631 Setting Example
1 Read receive error and

determine error type.
⇒ If receive error, go to receive
error handling.
⇒ If not receive error, go to
step 2.

If ORER in SSR ≠ 0, go to
receive error handling.

If ORER in SSR ≠ 0, go to
receive error handling.

2 Poll the receive data register-
full flag, and if the register is full
perform receive processing in
step 3 and after.

Polling target: SSR.RDRF
If SSR.RDRF = 1, perform
receive processing.

If IR214 = 1, perform receive
processing.
⇒ Go to step 3.
If IR214 = 0, go to receive
processing.

3 Read receive data from RDR. Read RDR and store the data in
the receive buffer.

Read RDR and store the data in
the receive buffer.

4 Clear receive data register-full
flag.

Clear SSR.RDRF to 0. Clear IR214 to 0.

5 If receive counter value is 32
bytes or more, end receive.

Receive is finished.
SCR.RIE = 0

Receive is finished.
SCR.RIE = 0
IR214 = 0

Error handling
6 Receive error handling The details of error handling are

not stipulated.
The details of error handling are
not stipulated.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 92 of 122
Sep 30, 2014

2.10 Mid-Speed A/D Converter
2.10.1 Comparison of Specifications
The functions and features of the mid-speed A/D converter on the SH7044, and the 10-bit A/D converter (ADb) and
12-bit A/D converter (S12ADa) on the RX631, are compared below.

Table 2.60 Comparison of Mid-Speed A/D Converter Specifications on SH7044 and RX631

Item

SH7044 RX631
Mid-Speed
A/D Converter

10-Bit A/D Converter
(ADb)

12-Bit A/D Converter
(S12ADa)

Resolution 10 bits 10 bits 12 bits
Number of input
channels

8 channels
(4 channels × 2)

8 channels + 1 extended
channel

Max. 21 channels

A/D conversion
method

Successive approximation Successive approximation Successive approximation

Conversion speed 6.7 μs per channel
(operating frequency:
20 MHz, CKS = 1)

1.0 μs per channel
(PCLK: 50 MHz)

1.0 μs per channel
(ADCLK: 50 MHz)

Conversion modes • Single mode
• Scan mode

• Single channel mode
• Scan mode

 Continuous scan
mode

 Single scan mode

• (No single channel
mode)

• Scan mode
 Continuous scan

mode
 Single scan mode

A/D conversion start
conditions

• Software trigger
• Trigger by timer (MTU)
• Asynchronous trigger

(ADTRG pin)

• Software trigger
• Trigger by timer

(MTU, TPU, TMR)
• Asynchronous trigger

(ADTRG# pin)

• Software trigger
• Trigger by timer

(MTU, TPU, TMR)
• Asynchronous trigger

(ADTRG0# pin)
Other functions • Support for

simultaneous
conversion of
2 channels

• Adjustable number of
sampling states

• Self-diagnostic function

• Adjustable number of
sampling states

• A/D-converted value
addition mode

Operations linked to
A/D conversion-end
interrupt

• CPU interrupt
generation

• DMAC or DTC
activation

• CPU interrupt
generation

• DMAC or DTC
activation

• CPU interrupt
generation

• DMAC or DTC
activation

Low power
consumption
function

None Support for module stop
state setting

Support for module stop
state setting

Conversion targets AN pin AN pin
Self-diagnostic
(fault detection)

AN pin
Internal reference voltage
Temperature sensor

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 93 of 122
Sep 30, 2014

2.10.2 Input Channels and Operation
The mid-speed A/D converter of the SH7044 and the A/D converters of the RX631 differ as described below.

A/D converter
module 0

A/D converter
module 1

10-bit A/D converter
module

12-bit A/D converter
module

AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7

AN000
AN1
AN2
AN3
AN4
AN5
AN6
AN7

AN0
AN001
AN002

AN019
AN020

SH7044 RX631 (ADb) RX631 (S12ADa)

Figure 2.24 Comparison of SH7044 and RX631 A/D Converter Configurations

As shown in figure 2.24, each module of the SH7044’s A/D converter supports four analog input channels. The two
modules can operate at the same time, but continuous scan bridging both modules is not supported. The ADb and
S12ADa A/D converters of the RX631 support eight and 21 channels, respectively, but each is a single converter
module. The A/D converters of the RX631 can perform sequential A/D conversion of the input on specified channels,
but they cannot convert multiple channels simultaneously. The scanning sequence of each module is listed below.

Table 2.61 A/D Converter Conversion Sequence (All Channels Specified)

Microcontroller A/D Converter Conversion Sequence
SH7044 AD0 AN0 ⇒ AN1 ⇒ AN2 ⇒ AN3

AD1 AN4 ⇒ AN5 ⇒ AN6 ⇒ AN7
RX631 ADb AN0 ⇒ AN1 ⇒ AN2 ⇒ AN3 ⇒ AN4 ⇒ AN5 ⇒ AN6 ⇒ AN7

S12ADa AN000 ⇒ AN001 ⇒ AN002 ⇒⇒⇒ Omitted ⇒⇒ AN019 ⇒ AN020

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 94 of 122
Sep 30, 2014

2.10.3 Operating Modes
The mid-speed A/D converter of the SH7044 has two operating modes: single mode and scan mode.

Table 2.62 lists the conversion modes of the SH7044 and the equivalent conversion modes on the RX631.

Table 2.62 Correspondence of A/D Converter Operating Modes

No.
SH7044
(Mid-Speed A/D Converter) RX631 (ADb) RX631 (S12ADa)

1 Single mode Single channel mode Single scan mode
(1 channel only specified)

2 Scan mode
(single-cycle conversion end)

Scan mode
(single scan mode)

Single scan mode
(multiple channels specified)

3 Scan mode
(continuous conversion)

Scan mode
(continuous scan mode)

Continuous scan mode

An overview of the various modes is provided below.

Table 2.63 Overview of A/D Converter Operating Modes

Microcontroller Operating Mode Operational Overview
SH7044

Single mode A/D conversion is performed once on the single specified channel
only.
If interrupts are enabled, an ADI interrupt is generated.

Scan mode

Conversion is performed successively on analog input from the
specified channels (or channel), starting from the lowest-numbered
channel.
When conversion of all the specified channels finishes (single-cycle
conversion end), an ADI interrupt is generated.
If conversion has not finished, it continues.

RX631
(ADb)

Single channel
mode

A/D conversion is performed once on the single specified channel
only.
If interrupts are enabled, an ADI0 interrupt is generated.

Scan mode Single scan mode:
• Conversion is performed successively on analog input from the

specified channels (or channel), starting from the lowest-
numbered channel.

• In single scan mode conversion is performed for one cycle only.
• When a single conversion cycle finishes, an ADI0 interrupt is

generated.
Continuous scan mode:
The above single scan mode operation is repeated multiple times.

RX631
(S12ADa)

Single scan mode Conversion is performed successively on analog input from the
specified channels (or channel), starting from the lowest-numbered
channel.
When conversion of all the specified channels finishes (single-cycle
conversion end), an S12ADI0 interrupt is generated.
In single scan mode conversion is performed for one cycle only.

Continuous scan
mode

Single scan mode is repeated multiple times on the S12ADa.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 95 of 122
Sep 30, 2014

2.10.4 Module Stop
The initial state of the peripheral modules of the RX631 is stopped, due to the low power consumption function. The
initial state of the A/D converter modules (ADb and S12ADa) is also stopped. Do not fail to cancel the module stop
state when making settings to these modules. Before accessing the module stop control register to cancel the module
stop state, first cancel register write protection.

2.10.5 A/D Converter Single Channel Mode Setting Example
A setting example for switching from the SH7044 (single mode) to the RX631 (single channel mode) is shown below.

< Single Channel Mode Specifications >

1. The 10-bit A/D converter on the RSK+RX63N board is used.
2. The A/D conversion start timing is based on the MTU4 compare match trigger.
3. AN0 is used for analog input, and the operating mode is single channel mode. An ADI0 interrupt is generated when

conversion finishes, and the result is stored in the RAM.

The above operations are repeated multiple times.

Table 2.64 10-Bit A/D Converter Setting Specifications

Item Description Remarks
Channel used AN0
Interrupt handling A/D conversion-end interrupt

(ADI0 interrupt)

Operating mode Single channel mode SH7044 single mode
Clock selection PCLK/2 PCLK = 48 MHz
Conversion start trigger and cycle MTU4 compare match A (1 ms cycle)*
Extended analog input Not used
Data alignment Flush-left Only used for AN0:ADDRA
Pins used PE02/AN0 Analog input
Note: * Refer to tables 2.32 and 2.33 for MTU settings.

RSK+ RX63N

RX63N

AN0 Analog input

Figure 2.25 10-Bit A/D Converter Setting Connection Specifications

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 96 of 122
Sep 30, 2014

A setting example for switching from the mid-speed A/D converter on the SH7044 to the 10-bit A/D converter on the
RX631 is shown below.

Table 2.65 10-Bit A/D Converter Initial Setting Example

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

1 Cancel module stop
state.

(No module stop function) SYSTEM.PRCR = 0xA502
SYSTEM.MSTPCRA.MSTPA23 = 0
SYSTEM.PRCR = 0xA500

2

Disable interrupts. ADCSR0.ADIE = 0
(interrupts disabled)
ADCSR1.ADIE = 0
(interrupts disabled)

IER0C.IEN2 = 0
(vector 98, ADI0 disabled)
ADCSR.ADIE = 0
(interrupts disabled)

3

Disable A/D converter. ADCSR0.ADST = 0
(A/D0 disabled)
ADCSR1.ADST = 0
(A/D1 disabled)

ADCSR.ADST = 0 (A/D disabled)

4

Make I/O port settings
(pin I/O and pin function
settings).

I/O settings are not needed
because AN0 is assigned as an
input-only port (PFDR).

Pin AN0 set in MPC
PORTE.PDR.B2 = 0 (input)
PORTE.PMR.B2 = 0 (GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1
(PFS write enables)
MPC.PE2PFS = 0x80 (analog function)
MPC.PWPR.PFSWE = 0
(PFS write disabled)
MPC.PWPR.B0WI = 1

5 Set operating mode.
Select clock.
Specify channel.
Set start trigger.

ADCSR0.SCAN = 0
(single mode)
ADCSR0.CKS = 0
(conversion duration: 266 states)
ADCSR0.CH1, ADCSR0.CH0
= 0 (AN0)
ADCR0.TRGE = 1
(trigger enabled)

ADCSR.CH = 000b (AN0)
ADCR.MODE = 0
(single channel mode)
ADCR.CKS = 2 (PCLK/2)
ADCR.TRGS = 001b
(MTU0 to MTU4 trigger enabled)

6 ADDR format Only flush-left supported, so no
setting needed.

ADCR2.DPSEL = 1 (data flush-left)

7 Make settings to interrupt
priority register.

IPRG.WORD = 0x5000
(A/D0 and A/D1: level 5)

IPR098 = 5 (ADI0: level 5)

8

Enable interrupts. ADCSR0.ADIE = 1
(interrupts enabled)

IER0C.IEN2 = 1
(vector 98, ADI0 enabled)
ADCSR.ADIE = 1 (interrupts enabled)

9

Start A/D conversion. ADCSR0.ADST = 1 (A/D0 start)
Note: Simultaneous A/D0 and

A/D1 conversion start when
using external trigger.

ADCSR.ADST = 1 (A/D0 start)
Note: The sample program uses MTU4

to start A/D conversion.

10

Perform handling of A/D
conversion-end interrupt.

ADCSR.ADF = 0
• Read interrupt flag and clear

to 0.

The interrupt flag is cleared
automatically.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 97 of 122
Sep 30, 2014

2.10.6 A/D Converter Continuous Scan Mode Setting Example
Settings for continuous scan mode operation on the SH7044 and RX631 are shown below.

< Continuous Scan Mode Specifications >

1. The 10-bit A/D converter on the RSK+RX63N board is used.
2. The A/D conversion start timing is based on the software trigger.
3. Three channels of analog input are used, AN0, AN1, and AN2, and the operating mode is continuous scan mode.

When conversion finishes the conversion result is stored in the RAM by the handler of the ADI0 interrupt.

Table 2.66 10-Bit A/D Converter Setting Specifications

Item Description Remarks
Channel used AN0, AN1, and AN2
Interrupt handling A/D conversion-end interrupt

(ADI0 interrupt)

Operating Mode Continuous scan mode SH7044 scan mode
Clock selection PCLK/2 PCLK = 48 MHz
Conversion start trigger and cycle Software trigger

(Conversion repeats after start.)

Extended analog input Not used
Data alignment Flush-left AN0: ADDRA

AN1: ADDRB
AN2: ADDRC

Pins used PE02/AN0 Analog input 0
PE03/AN1 Analog input 1
PE04/AN2 Analog input 2

RSK+ RX63N

RX63N

AN0 Analog input 0

AN1 Analog input 1

AN2 Analog input 2

Figure 2.26 10-Bit A/D Converter Setting Connection Specifications

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 98 of 122
Sep 30, 2014

An initial setting example for switching from the mid-speed A/D converter on the SH7044 to the 10-bit A/D converter
on the RX631 is shown below.

Table 2.67 10-Bit A/D Converter Initial Setting Example

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

1 Cancel module stop
state.

(No module stop function) SYSTEM.PRCR = 0xA502
SYSTEM.MSTPCRA.MSTPA23 = 0
SYSTEM.PRCR = 0xA500

2

Disable interrupts. ADCSR0.ADIE = 0
(interrupts disabled)
ADCSR1.ADIE = 0
(interrupts disabled)

IER0C.IEN2 = 0
(vector 98, ADI0 disabled)
ADCSR.ADIE = 0 (interrupts disabled)

3

Disable A/D converter. ADCSR0.ADST = 0
(A/D0 disabled)
ADCSR1.ADST = 0
(A/D1 disabled)

ADCSR.ADST = 0 (A/D disabled)

4

Make I/O port settings
(pin I/O and pin function
settings).

I/O settings are not needed
because AN0 is assigned as an
input-only port (PFDR).

Pin AN0 set in MPC
PORTE.PDR.B2 = 0 (input)
PORTE.PDR.B3 = 0 (input)
PORTE.PDR.B4 = 0 (input)
PORTE.PMR.B2 = 0 (GPIO)
PORTE.PMR.B3 = 0 (GPIO)
PORTE.PMR.B4 = 0 (GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1
(PFS write enables)
MPC.PE2PFS = 0x80 (analog function)
MPC.PE3PFS = 0x80 (analog function)
MPC.PE4PFS = 0x80 (analog function)
MPC.PWPR.PFSWE = 0
(PFS write disabled)
MPC.PWPR.B0WI = 1

5 Set operating mode.
Select clock.
Specify channel.
Set start trigger.

ADCSR0.SCAN = 1
(scan mode)
ADCSR0.CKS = 0
(conversion duration: 266 states)
ADCSR0.CH1, ADCSR0.CH0
= 10b (AN0, AN1, and AN2)
ADCR0.TRGE = 0
(software trigger)

ADCSR.CH = 010b
(AN0, AN1, and AN2)
ADCR.MODE = 2
(continuous scan mode)
ADCR.CKS = 2 (PCLK/2)
ADCR.TRGS = 0 (software trigger)

6 ADDR format Only flush-left supported, so no
setting needed.

ADCR2.DPSEL = 1 (data flush-left)

7 Make settings to
interrupt priority register.

IPRG.WORD = 0x5000
(A/D0 and A/D1: level 5)

IPR098 = 5 (ADI0: level 5)

8

Enable interrupts. ADCSR0.ADIE = 1
(interrupts enabled)

IER0C.IEN2 = 1
(vector 98, ADI0 enabled)
ADCSR.ADIE = 1 (interrupts enabled)

9 Start A/D conversion. ADCSR0.ADST = 1 (A/D0 start) ADCSR.ADST = 1 (A/D start)
10

Perform handling of A/D
conversion-end interrupt.

ADCSR.ADF = 0
• Read interrupt flag and clear

to 0.

The interrupt flag is cleared
automatically.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 99 of 122
Sep 30, 2014

2.11 High-Speed A/D Converter
2.11.1 Comparison of Specifications
The functions and features of the high-speed A/D converter on the SH7044, and the 10-bit A/D converter (ADb) and
12-bit A/D converter (S12ADa) on the RX631, are compared below.

Table 2.68 Comparison of High-Speed A/D Converter Specifications on SH7044 and RX631

Item

SH7044 RX631
High-Speed
A/D Converter

10-Bit A/D Converter
(ADb)

12-Bit A/D Converter
(S12ADa)

Resolution 10 bits 10 bits 12 bits
Number of input
channels

8 channels 8 channels + 1 extended
channel

Max. 21 channels

A/D conversion
method

Successive approximation Successive approximation Successive approximation

Conversion speed 2.9 μs per channel
(operating frequency:
28 MHz)

1.0 μs per channel
(PCLK: 50 MHz)

1.0 μs per channel
(ADCLK: 50 MHz)

Operating modes • Selectable between
select mode and group
mode

• Selectable between
single mode and scan
mode

• Single channel mode
• Scan mode

 Continuous scan
mode

 Single scan mode

• (No single channel
mode)

• Scan mode
 Continuous scan

mode
 Single scan mode

A/D conversion start
conditions

• Software trigger
• Trigger by timer

(MTU)
• Asynchronous trigger

(ADTRG pin)

• Software trigger
• Trigger by timer

(MTU, TPU, TMR)
• Asynchronous trigger

(ADTRG# pin)

• Software trigger
• Trigger by timer

(MTU, TPU, TMR)
• Asynchronous trigger

(ADTRG0# pin)
Other functions • Buffer operation

• 2-channel
simultaneous sampling

• Adjustable number of
sampling states

• Self-diagnostic function

• Adjustable number of
sampling states

• A/D-converted value
addition mode

Operations linked to
A/D conversion-end
interrupt

• CPU interrupt
generation

• DMAC or DTC
activation

• CPU interrupt
generation

• DMAC or DTC
activation

• CPU interrupt
generation

• DMAC or DTC
activation

Low power
consumption
function

None Support for module stop
state setting

Support for module stop
state setting

Conversion targets AN pin AN pin
Self-diagnostic
(fault detection)

AN pin
Internal reference voltage
Temperature sensor

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 100 of 122
Sep 30, 2014

2.11.2 Operating Modes
The operation of the SH7044’s high-speed A/D converter is determined by the following mode settings in combination.

• Channel designation mode
Select mode: A single channel is specified.
Group mode: Multiple channels are specified.

• Converter operation mode
Single mode: A/D conversion is activated once.
Scan mode: A/D conversion is activated repeatedly.

Table 2.69 SH7044 High-Speed A/D Converter Operating Modes

Operating Mode Single Mode Scan Mode
Select mode 1 conversion of 1 channel Repeated conversions of 1 channel
Group mode 1 conversion of multiple channels Repeated conversions of multiple channels

The corresponding operating modes, when switching from the SH7044’s high-speed A/D converter, are listed below.

Table 2.70 A/D Converter Operating Mode Correspondences

No.
SH7044
(high-speed A/D converter) RX631 (ADb) RX631 (S12ADa)

1 Select single mode Single channel mode Single scan mode
(only 1 channel specified)

2 Select scan mode Continuous scan mode in scan
mode

Continuous scan mode
(only 1 channel specified)

3 Group single mode Single scan mode in scan mode Single scan mode
(multiple channels specified)

4

Group scan mode Continuous scan mode in scan
mode

Continuous scan mode
(multiple channels specified)

For a description of the operating modes on the RX631 (ADb and S12ADa), see table 2.63.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 101 of 122
Sep 30, 2014

2.11.3 Module Stop
The initial state of the peripheral modules of the RX631 is stopped, due to the low power consumption function. The
initial state of the A/D converter modules (ADb and S12ADa) is also stopped. Do not fail to cancel the module stop
state when making settings to these modules. Before accessing the module stop control register to cancel the module
stop state, first cancel register write protection.

2.11.4 Other Differences
The 10-bit A/D converter on the RX631 has no functions equivalent to simultaneous sampling, low-power conversion
mode, and buffer operation, all of which are supported by the high-speed A/D converter on the SH7044.

2.11.5 A/D Converter Setting Example
An A/D converter setting example is shown below.

The following setting example applies to the case where the high-speed A/D converter (group scan mode) of the
SH7044 is being replaced by the RX631 (continuous scan mode). In addition, table 2.73 lists differences in the settings
corresponding to the other operating modes of the SH7044.

< Continuous Scan Mode Specifications >

1. The 10-bit A/D converter on the RSK+RX63N board is used.
2. The A/D conversion start timing is based on the software trigger.
3. Three channels of analog input are used, AN0, AN1, and AN2, and the operating mode is continuous scan mode.

When conversion finishes the conversion result is stored in the RAM by the handler of the ADI0 interrupt.

Table 2.71 10-Bit A/D Converter Setting Specifications

Item Description Remarks
Channel used AN0, AN1, and AN2
Interrupt handling A/D conversion-end interrupt (ADI0 interrupt)
Operating Mode Continuous scan mode SH7044 scan mode
Clock selection PCLK/2 PCLK = 48 MHz
Conversion start trigger and cycle Software trigger (Conversion repeats after start.)
Extended analog input Not used
Data alignment Flush-right AN0: ADDRA

AN1: ADDRB
AN2: ADDRC

Pins used PE02/AN0 Analog input 0
PE03/AN1 Analog input 1
PE04/AN2 Analog input 2

RSK+ RX63N

RX63N

AN0 Analog input 0

AN1 Analog input 1

AN2 Analog input 2

Figure 2.27 10-Bit A/D Converter Setting Connection Specifications

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 102 of 122
Sep 30, 2014

An initial setting example for switching from the high-speed A/D converter on the SH7044 to the 10-bit A/D converter
on the RX631 is shown below.

Table 2.72 10-Bit A/D Converter Initial Setting Example

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

1 Cancel module stop state. (No module stop function) SYSTEM.PRCR = 0xA502
SYSTEM.MSTPCRA.MSTPA23 = 0
SYSTEM.PRCR = 0xA500

2 Disable interrupts. ADCSR.ADIE = 0
(interrupts disabled)

IER0C.IEN2 = 0 (vector 98, ADI0 disabled)
ADCSR.ADIE = 0 (interrupts disabled)

3 Disable A/D converter. ADCSR.ADST = 0 (A/D0 disabled) ADCSR.ADST = 0 (A/D disabled)
4 Make I/O port settings (pin

I/O and pin function
settings).

I/O settings are not needed because
AN0 is assigned as an input-only port
(PFDR).

Pin AN0 set in MPC
PORTE.PDR.B2 = 0 (input)
PORTE.PDR.B3 = 0 (input)
PORTE.PDR.B4 = 0 (input)
PORTE.PMR.B2 = 0 (GPIO)
PORTE.PMR.B3 = 0 (GPIO)
PORTE.PMR.B4 = 0 (GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1
(PFS write enables)
MPC.PE2PFS = 0x80 (analog function)
MPC.PE3PFS = 0x80 (analog function)
MPC.PE4PFS = 0x80 (analog function)
MPC.PWPR.PFSWE = 0
(PFS write disabled)
MPC.PWPR.B0WI = 1

5 Make ADCSR settings. ADCSR.CKS = 0
(conversion duration: 40 states)
ADCSR.GRP = 1 (group mode)
ADCSR.CH2 to ADCSR.CH0 = 2
(AN0, AN1, and AN2)

ADCSR.CH = 2 (AN0, AN1, and AN2)

6

Make ADCR settings. ADCR.PWR = 1
(high-speed start mode)
ADCR.TRGS1, ADCR.TRGS0 = 0
(software trigger)
ADCR.SCAN = 1 (scan mode)
ADCR.DSMP = 0 (normal sampling)
ADCR.BUFE1, ADCR.BUFE0 = 0
(normal operation)

ADCR.MODE = 2 (continuous scan mode)
ADCR.CKS = 2 (PCLK/2)
ADCR.TRGS = 000b (software trigger)

7 ADDR format Only flush-right supported, so no
setting needed.

ADCR2.DPSEL = 0 (data flush-right)

8 Make settings to interrupt
priority register.

IPRG.WORD = 0x5000
(A/D0 and A/D1: level 5)

IPR098 = 5 (ADI0: level 5)

9

Enable interrupts. ADCSR.ADIE = 1
(interrupts enabled)

IER0C.IEN2 = 1 (vector 98, ADI0 enabled)
ADCSR.ADIE = 1 (interrupts enabled)

10

Start A/D conversion. ADCSR.ADST = 1 (A/D start) ADCSR.ADST = 1 (A/D start)

11 Perform handling of A/D
conversion-end interrupt.

ADCSR.ADF = 0
• Read interrupt flag and clear to

0.

The interrupt flag is cleared automatically.

Note: Make changes to the values in the shaded portions to make I/O port settings or select/change the
operating mode. Table 2.73 lists the settings on the RX631 that correspond to the various operating
modes on the SH7044.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 103 of 122
Sep 30, 2014

Change the setting values in the shaded portions of table 2.72 to select among the modes listed below:

Table 2.73 Corresponding A/D Converter Operating Mode Settings (SH7044 to RX631)

No. SH7044 High-Speed A/D Converter RX631 (ADb)
1 Select single mode Single channel mode

ADCSR.GRP = 0 (select mode)
ADCSR.CH2 to ADCSR.CH0 = 0 (AN0)
ADCR.SCAN = 0 (single mode)

PORTE.PDR.B2 = 0 (input)
PORTE.PMR.B2 = 0 (GPIO)
MPC.PE2PFS = 0x80 (analog function)

ADCSR.CH = 0 (AN0)
ADCR.MODE = 0 (single channel mode)

2 Select scan mode Continuous scan mode (single channel)
ADCSR.GRP = 0 (select mode)
ADCSR.CH2 to ADCSR.CH0 = 0 (AN0)
ADCR.SCAN = 1 (scan mode)

PORTE.PDR.B2 = 0 (input)
PORTE.PMR.B2 = 0 (GPIO)
MPC.PE2PFS = 0x80 (analog function)

ADCSR.CH = 0 (AN0)
ADCR.MODE = 2 (continuous scan mode)

3 Group single mode Scan mode (multiple channels)
ADCSR.GRP = 1 (group mode)
ADCSR.CH2 to ADCSR.CH0 = 2
(AN0, AN1, and AN2)
ADCR.SCAN = 0 (single mode)

PORTE.PDR.B2 = 0 (input)
PORTE.PDR.B3 = 0 (input)
PORTE.PDR.B4 = 0 (input)
PORTE.PMR.B2 = 0 (GPIO)
PORTE.PMR.B3 = 0 (GPIO)
PORTE.PMR.B4 = 0 (GPIO)
MPC.PE2PFS = 0x80 (analog function)
MPC.PE3PFS = 0x80 (analog function)
MPC.PE4PFS = 0x80 (analog function)

ADCSR.CH = 2 (AN0, AN1, and AN2)
ADCR.MODE = 1 (scan mode)

4 Group scan mode Continuous scan mode (multiple channels)
ADCSR.GRP = 1 (group mode)
ADCSR.CH2 to ADCSR.CH0 = 2
(AN0, AN1, and AN2)
ADCR.SCAN = 1 (scan mode)

PORTE.PDR.B2 = 0 (input)
PORTE.PDR.B3 = 0 (input)
PORTE.PDR.B4 = 0 (input)
PORTE.PMR.B2 = 0 (GPIO)
PORTE.PMR.B3 = 0 (GPIO)
PORTE.PMR.B4 = 0 (GPIO)
MPC.PE2PFS = 0x80 (analog function)
MPC.PE3PFS = 0x80 (analog function)
MPC.PE4PFS = 0x80 (analog function)

ADCSR.CH = 2 (AN0, AN1, and AN2)
ADCR.MODE = 2 (continuous scan mode)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 104 of 122
Sep 30, 2014

Note that the changes for each operating mode and the conversion start triggers in the included sample code are as
follows:

Table 2.74 Sample Code Description

Operating Mode Conversion Channel(s) Conversion Start Trigger Remarks
Single channel mode AN0 MTU4 compare match
Continuous scan mode
(single channel)

AN0 Software trigger

Scan mode (multiple channels) AN0, AN1, and AN2 MTU4 compare match
Continuous scan mode
(multiple channels)

AN0, AN1, and AN2 Software trigger

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 105 of 122
Sep 30, 2014

2.12 Compare Match Timer (CMT)
2.12.1 Comparison of Specifications

Table 2.75 Comparison of SH7044 and RX631 CMT Specifications

Item SH7044 RX631
Clock Each channel selectable among 4

internal clocks
(φ/8, φ/32, φ/128, and φ/512)

Each channel selectable among 4
internal clocks
(PCLK/8, PCLK/32, PCLK/128, and
PCLK/512)

Number of units (channels) 1 unit (total 2 channels) 2 units (total 4 channels)
Interrupt sources Support for separate compare match

interrupt requests for each
(CMI0 and CMI1)

Support for separate compare match
interrupt requests for each
(CMI0, CMI1, CMI2, and CMI3)

2.12.2 CMT Replacement
The CMT of the SH7044 and the CMT of the RX631 are software compatible. However, the compare match timer
control and status registers (CMCSR0 and CMCSR1) on the RX631 do not contain interrupt flags, so it is necessary to
use the interrupt controller’s interrupt flags instead. In addition, it is not necessary to clear the flags in the compare
match interrupt handler. (The interrupt controller automatically clears the associated flag when an interrupt is accepted.)
A comparison of the compare match timer registers of the SH7044 and RX631 is shown below.

Table 2.76 List of Compare Match Timer Registers

Register Name SH7044 RX631 Changed
Unit 0 (channels 0 and 1) corresponds to channels 0 and 1 on the SH7044.
Compare match timer start
register

CMSTR CMSTR0

Compare match timer
control/status registers

CMCSR0, CMCSR1 CMT0.CMCR, CMT1.CMCR *

Compare match timer counters CMCNT0, CMCNT1 CMT0.CMCNT, CMT1, CMCNT
Compare match timer constant
registers

CMCOR0, CMCOR1 CMT0.CMCOR, CMT1, CMCOR

Unit 1 (channels 2 and 3) below has no corresponding channels on the SH7044.
 CMSTR1

CMT2.CMCR, CMT3.CMCR *
CMT2.CMCNT, CMT3, CMCNT
CMT2.CMCOR, CMT3, CMCOR

: Registers with identical bit assignments on the SH7044 and RX631
: Unit 1 registers. The bit assignments are the same as for unit 0.

Note: * These registers so not contain interrupt flags. Use the IR bits of the interrupt controller instead.

2.12.3 Module Stop
The initial state of the peripheral modules of the RX631 is stopped, due to the low power consumption function. The
initial state of the CMT is also stopped. Do not fail to cancel the module stop state when making settings to the module.
Before accessing the module stop control register to cancel the module stop state, first cancel register write protection.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 106 of 122
Sep 30, 2014

2.12.4 Compare Match Timer Setting Example
A compare match timer setting example comparing the SH7044 and RX631 is shown below.

< Specifications >

1. CMT unit 0, channel 0 on the RSK+RX63N board is used.
2. The compare match interrupt (CMI0) is used to turn LED1 one and off in 0.5-second cycles.

Table 2.77 Compare Match Timer Setting Specifications

Item Description Remarks
Count clock PCLK/512 PCLK = 48 MHz
Counter value (CMCOR) B71Bh
Other LED1 P05 GPIO

RSK+ RX63N

RX63N

P05 LED1

Figure 2.28 Compare Match Timer Connection Specifications

CMCNT count value

CMCOR

0000h

500 ms 500 ms
LED1 ON

OFF

[1] [2] [3]

[1] LED1 turns on at a compare match interrupt.
[2] LED1 turns off at a compare match interrupt.
[3] Afterward, [1] and [2] are repeated multiple times.

Figure 2.29 Compare Match Timer Operation Example

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 107 of 122
Sep 30, 2014

Table 2.78 Compare Match Timer Initial Setting Example

Procedure
SH7044 Setting Example
Pφ (Peripheral Clock): 20 MHz

RX631 Setting Example
PCLK (Peripheral Clock): 48 MHz

1 Cancel module stop
state.

(No module stop function) SYSTEM.PRCR = 0xA502
SYSTEM.MSTPCRA.MSTPA15 = 0
SYSTEM.PRCR = 0xA500

2

Disable interrupts. CMCSR.CMIE = 1
(compare match interrupt disabled)

IER03.IEN4 = 0
(vector 28, CMI0 disabled)
CMT0.CMCR.CMIE = 0

3 Disable timer. CMSTR.STR0 = 0
4 Select counter clock. CMCSR.CKS0 to CMCSR.CKS1

= 11b (φ/512)
CMT0.CMCR.CKS0 to
CMT0.CMCR.CKS1 = 11b
(PCLK/512)

5 Clear timer counter. CMCNT0 = 0000h
(counter cleared)

CMT0.CMCNT = 0000h
(counter cleared)

6 Set compare match
cycle.

CMCOR0 = 4C4Bh CMT0.CMCOR = B71Bh

7

Enable interrupts. CMCSR.CMIE = 1
(compare match enables)
INTC.IPRG.WORD = 0x0050
(interrupt priority: 5)

CMT0.CMCR.CMIE = 1
(compare match enables)
IPR004 = 5 (CMI0 interrupt priority: 5)
IR028 = 0 (CMI0 interrupt flag cleared)
IER03.IEN4 = 1
(vector 28, CMI0 enabled)

8 Enable timer operation. CMSTR.STR0 = 1 (start timer)
9

Interrupt handler
(Clear flag.)

CMCSR.CMF = 0
(after reading CMCSR, CMF = 0)

The interrupt flag is cleared
automatically.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 108 of 122
Sep 30, 2014

2.13 Flash Memory
2.13.1 Comparison of Specifications

Table 2.79 Comparison of Flash Memory Specifications on SH7044 and RX631

Item SH7044 RX631
Size • 256 KB • ROM area

User area: Max. 2 MB
User boot area: 16 KB

Block size × block count • 1 KB × 4 (4 KB)
• 28 KB × 1 (28 KB)
• 32 KB × 7 (224 KB)

Each area: 512 KB
• Area 0

4 KB × 8 (32 KB)
16 KB × 30 (480 KB)

• Area 1
32 K × 16 (512 KB)

• Area 2
64 K × 8 (512 KB)

• Area 3
64 K × 8 (512 KB)

Operating modes • Program mode
• Erase mode
• Program verify mode
• Erase verify mode

On-chip dedicated programming
sequencer (FCU)
P/E execution by FCU commands
• FCU mode

P/E normal mode
Status read mode
Lock bit read mode

Write and erase units • Write: 32-byte units
• Erase: Block units

• Write
 User area: 128-byte units
 User boot area: 128-byte units

• Erase
 User area: Block units
 User boot area: 16 KB units

Write count 100 times 1,000 times
Programming modes • On-board programming

 Boot mode
 User programming mode

• Writer mode

• On-board programming
 Boot mode
 USB boot mode
 User boot mode
 Single-chip mode

• Off-board programming
Ability to program user boot area
using a flash writer

Other • Automatic bit rate adjustment
• RAM-based flash memory

emulation function
• Protect mode

• Automatic bit rate adjustment
• Suspend/resume function
• Protect function

P/E: Program/erase

The RX Simple Flash API can be used to program the on-chip flash memory on the RX631.

The RX Simple Flash API is provided to customers to allow them to easily program and erase the on-chip flash memory
on the RX631. See the following application note for instructions on using the API and embedding it in applications:

RX600 & RX200 Series Simple Flash API for RX (R01AN0544EU)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 109 of 122
Sep 30, 2014

2.14 Low Power Consumption Function
2.14.1 Comparison of Mode Specifications
The low-power modes on the SH7044 are sleep mode and standby mode. The states of the clock, CPU, and on-chip
modules in each mode are listed below:

Table 2.80 SH7044 Low-Power Modes

Item Clock CPU On-Chip Modules
Sleep mode Operating Stopped Operating
Standby mode Stopped Stopped Stopped

The low-power modes on the RX631 are sleep mode, all-module clock stop mode, software standby mode, and deep
software standby mode. Table 2.81 lists the states of the on-chip modules in each mode.

Table 2.81 RX631 Low-Power Modes

Function/State Sleep Mode
All-Module Clock
Stop Mode

Software
Standby Mode

Deep Software
Standby Mode

Main clock oscillator Operation possible Operation possible Operation possible Operation possible
Sub-clock oscillator Operation possible Operation possible Operation possible Operation possible
High-speed on-chip
oscillator

Operation possible Operation possible Stopped Stopped

Low-speed on-chip
oscillator

Operation possible Operation possible Stopped Stopped

IWDT dedicated
on-chip oscillator

Operation possible Operation possible Operation possible Stopped
(settings undetermined)

PLL Operation possible Operation possible Stopped Stopped
CPU Stopped

(settings retained)
Stopped
(settings retained)

Stopped
(settings retained)

Stopped
(settings undetermined)

RAM1
(0001 0000h to
0003 FFFFh)

Operation possible
(settings retained)

Stopped
(settings retained)

Stopped
(settings retained)

Stopped
(settings undetermined)

RAM0
(0000 0000h to
0000 FFFFh)

Operation possible
(settings retained)

Stopped
(settings retained)

Stopped
(settings retained)

Stopped
(settings retained/
undetermined)*

Flash memory Operating Stopped
(settings retained)

Stopped
(settings retained)

Stopped
(settings retained)

USB 2.0 Host/Function
module (USB)

Operation possible Stopped Stopped Stopped
(settings retained/
undetermined)

Watchdog timer (WDT) Stopped
(settings retained)

Stopped
(settings retained)

Stopped
(settings retained)

Stopped
(settings undetermined)

Independent watchdog
timer (IWDT)

Operation possible Operation possible Operation possible Stopped
(settings undetermined)

Realtime clock (RTC) Operation possible Operation possible Operation possible Operation possible
Port output enable 2
(POE2)

Operation possible Operation possible Stopped
(settings retained)

Stopped
(settings undetermined)

8-bit timer (TMR) Operation possible Operation possible Stopped
(settings retained)

Stopped
(settings undetermined)

Voltage detection
circuit (LVD)

Operation possible Operation possible Operation possible Operation possible

Power-on reset circuit Operating Operating Operating Operating
Peripheral modules Operation possible Stopped

(settings retained)
Stopped
(settings retained)

Stopped
(settings undetermined)

I/O ports Operating Settings retained Settings retained Settings retained

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 110 of 122
Sep 30, 2014

“Operation possible” indicates a state in which a control register setting can be used to start and stop the
module.
“Stopped (settings retained)” indicates a state in which the values of the internal registers are retained and
the internal state is operation suspended.
“Stopped (settings undetermined)” indicates a state in which the values of the internal registers are
undetermined and the internal state is power-off.
Note: * Either “settings retained” or “settings undetermined” may be selected by means of a register

setting.

2.14.2 Mode Transitions
Figure 2.30 diagrams the transitions between the operating modes of the RX631.

Internal reset state
(deep software standby

reset)

1
2 3

4
5

6

7

89

Normal operation mode
(program execution state)

Deep software
standby mode

Software
standby mode

All-module clock
stop mode

Sleep mode
Reset state

Figure 2.30 RX631 Mode Transitions

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 111 of 122
Sep 30, 2014

The events and transition conditions shown in figure 2.30 are listed below:

Table 2.82 List of RX631 Mode Transitions and Events

No. Event
Transition Condition
(The following conditions are specified before the event.)

1 RES# pin = high 
2 WAIT instruction executed SBYCR.SSBY = 0
3 All interrupts 
4 WAIT instruction executed SBYCR.SSBY = 0 MSTPCRA.ACSE = 1 MSTPCRA = FFFF FF[C-F]Fh

MSTPCRB = FFFF FFFFh MSTPCRC[31:16] = FFFFh
5 External and peripheral

interrupts
External pin interrupts (NMI, IRQ0 to IRQ15)
Peripheral function interrupts (8-bit timer, RTC alarm, RTC cycle, IWDT,
USB suspend/resume, voltage monitor 1, voltage monitor 2, oscillation
stop detection)*

6 WAIT instruction executed SBYCR.SSBY = 1, DPSBYCR.DPSBY = 0
7 External and peripheral

interrupts
External pin interrupts (NMI, IRQ0 to IRQ15)
Peripheral function interrupts (RTC alarm, RTC cycle, IWDT, USB
suspend/resume, voltage monitor 1, voltage monitor 2)*

8 WAIT instruction executed SBYCR.SSBY = 1, DPSBYCR.DPSBY = 1
9 External and peripheral

interrupts
Some pins used as external pin interrupt sources (NMI, IRQ0-DS to
IRQ15-DS, SCL2-DS, SDA2-DS, CRX1-DS), peripheral function
interrupts (RTC alarm, RTC cycle, USB suspend/resume, voltage monitor
1, voltage monitor 2)*

After one of the above interrupts occurs the internal reset state lasts for a
specified duration, after which the internal reset and deep software
standby mode are canceled at the same time, and the CPU operates in
normal operation mode using the LOCO (recovery after a reset).

Note: * Each interrupt has detailed conditions. For descriptions, see the User’s Manual: Hardware.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 112 of 122
Sep 30, 2014

2.14.3 Mode Transition Setting Example
A mode transition setting example using the RX631 is shown below.

< Specifications >

1. The RSK+RX63N board is used.
2. After a reset, settings are made to enable input from SW2 (IRQ8-DS), to wait for SW2 to be pressed, and to

implement all of the mode transitions listed below by pressing SW2.
3. The MTU4 (compare match A) and TMR compare match pin output is monitored to confirm the mode transitions.

(TMR stands for TMR0 and TMR1, and is used as a 16-bit timer.) Note that TMR is set to operate even after the
transition to all-module clock stop mode.

Note

On the RX63N RSK, SW2 is not connected to the IRQ8-DS pin. Therefore, the following changes must be made to the
RSK when doing debugging using the sample source code.

(Details of changes)

• Connect the JA1 23-pin connector that is connected to SW2 to the JA1 9-pin connector that is connected to the
IRQ8-DS pin.

• Mount the unmounted R83 (0 Ω resistor). (Make a direct connection to the R83).
• Remove the R84 (resistor) mounted on the board.

Table 2.83 lists the mode transitions and the operation of the modules.

Table 2.83 RX631 Mode Transition Setting and Operation Specifications

No.
SW2
Pressed State Transition

LED2
(GPIO)

LED3
(GPIO)

MTIOC4A
Pin TMO0 Pin

1  RES pin ⇒ normal operation
mode

Flashing Off Toggled
output

Toggled
output

2 1st SLEEP mode Sustained Toggled
output

Toggled
output

3 2nd Normal operation mode Flashing Toggled
output

Toggled
output

4 3rd All-module clock stop mode Sustained Stop
sustained

Toggled
output

5 4th Normal operation mode Flashing Toggled
output

Toggled
output

6 5th Software standby mode Sustained Stop
sustained

Stop
sustained

7 6th Normal operation mode Flashing Toggled
output

Toggled
output

8 7th Deep software standby mode Undefined Stop
undefined

Stop
undefined

9 8th Deep software standby mode
⇒ normal operation mode

Off On Stop Stop

Note: When returning to normal mode, MTU and TMR are both initialized.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 113 of 122
Sep 30, 2014

RSK+ RX63N

RX63N

P10 LED2

P11 LED3

MTIOC4A Pulse output

TMO0 Pulse output

SW2 P40 (IRQ8-DS)

Figure 2.31 Mode Transition Setting Connection Specifications

Table 2.84 Setting Specifications

Item Description Remarks
CPU
 Processor mode Supervisor mode
TMR0, TMR1
 Count clock PCLK/1 PCLK = 48 MHz
 Operating mode 16-bit counter mode

(TMR0 and TMR1 used in cascade connection)

 Counter clear setting Cleared by compare match A
 Interrupts Compare match A and B disabled

Overflow interrupt disabled
(Also disabled by interrupt controller)

 TCORA setting value 5DE6h TMR0 + TMR1
 Output selection Inverted output
 Pins used P22/TMO0 Pulse output
SW2 (IRQ8-DS)
 SW2 (IRQ8-DS) Used as mode transition trigger switch

P40/IRQ8-DS

 Interrupt priority Level 15
 Digital noise filter Used*1
 Return from deep software

standby
The SW2 signal is used as the deep software
standby cancel signal, so connect it to P40.*2

LED
 LED2 Flashing during SW2 press wait duration

(normal state).
P10

 LED3 Turns on at return from deep software standby. P11
Pins used by MTU4
 Compare match A output pin P24/MTIOC4A Pulse output
Notes: 1. The digital noise filter is used when transitioning from normal operation mode to any of the low-

power modes. The digital noise filter is not used when returning.
 2. SW2 is not connected to P40 (IRQ8-DS) by default.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 114 of 122
Sep 30, 2014

Figure 2.32 is a flowchart of mode transition processing.

Deep software standby flag?

Transition state
determination

Make initial clock settings

Make initial interrupt settings
(IRQ8-DS)

Initialize MTU

Initialize TMR0 and TMR1

Wait for SW2 input

Execute WAIT instruction

Turn off LED2 and LED3

Turn on LED3, infinite loop

Start

Specify sleep mode Specify all-module
clock stop mode

Specify deep software
standby mode

Specify software
standby mode

Flash LED2 while waiting for SW2 input
Run transition processing when SW2 is
pressed (IRQ8)

Transition processing

Transition to each low-power state when a WAIT instruction is
executed, and return to the normal state when SW2 is pressed.
Note: When returning from deep software standby mode, after

cancellation perform reset processing and then start.

Return from deep software standby

#RES pin

Figure 2.32 Mode Transition Processing Flowchart

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 115 of 122
Sep 30, 2014

Settings associated with mode transitions are listed below.

Refer to section 2.7.6 for details of MTU4 settings.

Table 2.85 LED2 and LED3 Settings (Initially Off)

Procedure Setting Example
1 Make GPIO settings

(LED2 and LED3 off).
PORT1.PODR.B0 = 1 (LED2 off)
PORT1.PDR.B0 = 1 (output)
PORT1.PMR.B0 = 0 (GPIO)
PORT1.PODR.B1 = 1 (LED3 off)
PORT1.PDR.B1 = 1 (output)
PORT1.PMR.B1 = 0 (GPIO)

Table 2.86 Interrupt Initial Setting Example (IRQ8-DS Settings)

Procedure Setting Example
1 Make interrupt settings

and pin settings.
PORT4.PDR.B0 = 0 (P00 input)
PORT4.PMR.B0 = 0 (P00GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1 (PFS write enables)
MPC.P40PFS.ISEL = 1 (interrupt function setting IRQ8-DS)
MPC.PWPR.PFSWE = 0 (PFS write disabled)
MPC.PWPR.B0WI = 1

2 Enable interrupts, etc. IRQCR8.IRQMD = 1 (IRQ detection: Falling edge)
IRQFLTE1.FLTEN8 = 1 (IRQ8 digital noise filter enabled)
IRQFLTC1.FCLKSEL8 = 3; (digital noise filter sampling: PCLK/32)
IR072 = 0 (interrupt flag cleared)
IPR072 = 15 (interrupt level: 15)
IER09.IEN0 = 1 (IRQ8 enabled)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 116 of 122
Sep 30, 2014

Table 2.87 TMR0 and TMR1 Example Settings
(Cascade Connection, 16-Bit Timer, Compare Match A Toggled Output)

Procedure Setting Example
1 Cancel module stop on

TMR0 and TMR1.
SYSTEM.PRCR.WORD = 0xA502;
SYSTEM.MSTPCRA. MSTPA5 = 0
SYSTEM.PRCR.WORD = 0xA500;

2 Clear and stop TMR
timers.

TMR0.TCNT = 0x00 (TMR0 TCNT cleared)
TMR1.TCNT = 0x00 (TMR1 TCNT cleared)
TMR0.TCCR = 0x00 (TMR0 clock stopped)
TMR1.TCCR = 0x00 (TMR1 clock stopped)

3 Make TMO0 I/O
settings.

PORT2.PDR.B2 = 1 (P22 output)
PORT2.PMR.B2 = 0 (P22GPIO)
MPC.PWPR.B0WI = 0
MPC.PWPR.PFSWE = 1 (PFS write enables)
MPC.P22PFS = 05h (pin P22 set to TMO0)
MPC.PWPR.PFSWE = 0 (PFS write disabled)
MPC.PWPR.B0WI = 1
PORT2.PMR.B2 = 1 (pin function setting)

4 Make TOCRA settings. TMR0.TOCRA = 5Dh
TMR1.TOCRA = E6h

5 Make TCR settings. TMR0.TCR.CCLR = 1 (cleared by compare match A)
TMR0.TCR.OVIE = 0 (overflow interrupt requests disabled)
TMR0.TCR.CMIEA = 0 (compare match A interrupt requests disabled)
TMR0.TCR.CMIEB = 0 (compare match B interrupt requests disabled)
TMR1.TCR: Left at default

6 Make TCSR settings. TMR0.TCSR.OSA = 3 (pin TMO0 inverted output)
TMR1.TCSR: Default setting

7 Make TCCR settings.
(TCNT start)

TMR0.TCCR.CSS = 3 (TMR1.TCNT counts at overflow signal)
TMR1.TCCR.CKS = 000b (counting at PCLK/1 ⇒ CKS and CSS combined)
TMR1.TCCR.CSS = 01b

Table 2.88 Sleep Mode Setting Example

Procedure Setting Example
1 Cancel protect. SYSTEM.PRCR = A503h (cancel protect)

2 Set standby control
register.

SYSTEM.SBYCR.SSBY = 0 (no software standby)

3 Enable protect. SYSTEM.PRCR = A500h (enable protect)

Table 2.89 All-Module Clock Stop Mode Setting Example

Procedure Setting Example
1 Cancel protect. SYSTEM.PRCR = A503h (cancel protect)
2 Set standby control

register.
SYSTEM.SBYCR.SSBY = 0 (no software standby)
SYSTEM.SBYCR.OPE = 0 (high-impedance bus output)

3 Set module stop
registers A, B, and C.

SYSTEM.MSTPCRA.ACSE = 1 (all-module clock stop enabled)
SYSTEM.MSTPCRA = FFFF FFDFh
(transition to module stop state, excluding TMR0 and TMR1)
SYSTEM.MSTPCRB = FFFF FFFFh (transition to module stop state)
SYSTEM.MSTPCRC = FFFF0000h
(transition to module stop state, excluding RAM)

4 Enable protect. SYSTEM.PRCR = A500h (enable protect)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 117 of 122
Sep 30, 2014

Table 2.90 Software Standby Setting Example

Procedure Setting Example
1 Cancel protect. SYSTEM.PRCR = A503h (cancel protect)
2 Set standby control

register.
SYSTEM.SBYCR.SSBY = 1 (software standby enabled)
SYSTEM.SBYCR.OPE = 0 (high-impedance bus output)

3 Make deep software
standby mode setting.

SYSTEM.DPSBYCR.DPSBY = 0 (deep software standby disabled)

4 Enable protect. SYSTEM.PRCR = A500h (enable protect)

Table 2.91 Deep Software Standby Setting Example

Procedure Setting Example
1 Cancel protect. SYSTEM.PRCR = A503h (cancel protect)
2 Set standby control

register.
SYSTEM.SBYCR.SSBY = 1 (software standby enabled)
SYSTEM.SBYCR.OPE = 0 (high-impedance bus output)

3 Make deep software
standby mode setting.

SYSTEM.DPSBYCR.DPSBY = 1 (deep software standby enabled)
SYSTEM.DPSIER1.DIRQ8E = 1
(deep software standby enabled by IRQ8-DS)

4 Clear deep software
standby interrupt flag.

SYSTEM.DPSIFR1.DIRQ8F = 0
(cancel request flag cleared by IRQ8-DS pin)

5 Enable protect. SYSTEM.PRCR = A500h (enable protect)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 118 of 122
Sep 30, 2014

3. Sample Code

3.1 Operating Environment
The sample code associated with this application note has been confirmed to run in the following environment.

Table 3.1 Operating Environment

Item Description
Microcontroller used R5F563NB (RX63N Group)
Operating frequency • Main clock: 12 MHz

• Sub clock: 32.768 kHz
• PLL: 192 MHz (main clock divided by 1 and multiplied by 16)
• HOCO: Stopped
• System clock (ICLK): 96 MHz (PLL divided by 2)
• Peripheral module clock A (PCLKA): 96 MHz (PLL divided by 2)
• Peripheral module clock B (PCLKB): 48 MHz (PLL divided by 4)

Operating voltage 3.3 V
Integrated development
environment

Renesas Electronics Corporation
High-performance Embedded Workshop (Version 4.09.01.007)

C compiler Renesas Electronics Corporation
C/C++ Compiler Package for RX Family (V.1.02 Release 01)

 CPU series (type) RX600 (RX63N)

 Optimization None

 iodefine.h version 1.6A

 Endian Big endian
Operating Mode Single-chip mode

(on-chip ROM enabled extended mode only when using SDRAM)
Processor mode Supervisor mode
Sample code version 1.00
Board used Renesas Starter Kit+ for RX63N (Product type: R0K50563NC010BR)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 119 of 122
Sep 30, 2014

3.2 Sample Code Configuration
The configuration of the sample code is shown below.

Files generated automatically by integrated development environment

Note: * Table 3.2 lists the sample code projects.

Automatically generated files to which changes have been
made

WorkSpace RX631_SampleProgram

Sample code*

Sample code configuration

Applications
Samples
HEW Workspace File

source
Debug
Release

......
intprg.c
vect.h

main.c
r_init_clock.c
r_init_clock.h
r_init_non_existent_port.c
r_init_non_existent_port.h
r_init_stop_module.c
r_init_stop_module.h

… Sample code
main routine

Initial setting
functions

: Folder name : File name

Figure 3.1 Sample Code Configuration

Initial Settings
The initial setting function of this application note uses the sample code from Group, RX631 Group: Initial Setting
Example, Rev. 1.00. This revision was current when this application note was produced.

Items Requiring Changes in Automatically Generated Files
The file main.c specifies interrupt declarations, vector registrations, and interrupt handlers. Portions of the automatically
generated files intprg.c and vect.h duplicate settings and code in main.c, so they have been modified as follows:

intprg.c: Interrupt handlers that are specified in main.c have been commented out.

vect.h: The interrupt function declarations and vector registrations in vect.h have been commented out.

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 120 of 122
Sep 30, 2014

Table 3.2 List of Sample Code Projects

Sample Project Name Related Items
DTC_normal_transfer_mode 2.5.8
DMA_normal_transfer_mode 2.6.11
MTU_compare_match 2.7.6
MTU_input_capture 2.7.7
SCI_asynchronous_interrupt 2.9.4
SCI_asynchronous_polling
SCI_sync_master_transmit_int 2.9.5
SCI_sync_master_transmit_pol
SCI_sync_slave_receive_int 2.9.6
SCI_sync_slave_receive_pol
AD_single_channel_mode 2.10.5
AD_continuous_scan_single_ch 2.11.5
AD_continuous_scan_multi_ch 2.10.6

2.11.5
AD_single_scan_mode_multi_ch 2.11.5
CMT_compare_match 2.12.4
Low_power_consumption_mode 2.14.3

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 121 of 122
Sep 30, 2014

4. Reference Documents

4.1 Reference Documents
Section 4.1 lists the documents referenced in the preparation of this application note. When referring to the documents
listed below, substitute the latest version if a newer version is available. The latest versions of these documents can be
confirmed and downloaded from the Renesas Electronics Website.

Table 4.1 Reference Documents

Reference Documents
SH7040, SH7041, SH7042, SH7043, SH7044, SH7045 Group Hardware Manual (REJ09B0044-0600O)
SH-1/SH-2/SH-DSP Software Manual (REJ09B0171-0500O)
RX63N Group, RX631 Group User’s Manual: Hardware (R01UH0041EJ)
RX Family User’s Manual: Software (R01US0032EJ)
[HEW] Renesas Starter Kit+ for RX63N User’s Manual (R20UT0438EG)
Renesas Starter Kit+ for RX63N CPU Board Schematics (R20UT0437EG)
RX63N Group, RX631 Group Initial Setting (R01AN1245EJ)
RX63N Group, RX631 Group Asynchronous Communication Using the SCI (R01AN1449EJ)
RX63N Group, RX631 Group Synchronous SCIc Communication Using the DMACA (R01AN1064EJ)
RX63N Group, RX631 Group Pulse Width Measurement Using MTU2a (R01AN1237EJ)
RX63N Group, RX631 Group I2S Communication Using RSPI, DTCa, and MTU2a (R01AN1339EJ)
RX63N Group, RX631 Group Exiting Software Standby Mode Using the RTCa (R01AN1067EJ)
RX63N Group, RX631 Group Read/Write Operations in 16-Bit SDRAM Using the SDRAMC (R01AN1705EJ)
RX600 & RX200 Series Simple Flash API for RX (R01AN0544EU)

RX631 Group SH7044 to RX631 Microcontroller Migration Guide

R01AN2207EJ0100 Rev.1.00 Page 122 of 122
Sep 30, 2014

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date
Description
Page Summary

1.00 Sep 30, 2014  First edition issued

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different type number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	Introduction

	Target Device

	Contents

	1.
CPU Architecture
	1.1 Registers
	1.1.1 General-Purpose Registers
	1.1.2 Control Registers

	1.2 Option-Setting Memory
	1.2.1 Outline of Option-Setting Memory
	1.2.2 Endian Setting

	1.3 Reset Function
	1.3.1 Reset Sources
	1.3.2 Reset Sources and Initialization Scope

	1.4 Clock Settings
	1.4.1 Clock Sources
	1.4.2 Clock Generation Circuit

	1.5 Operation Modes
	1.5.1 Comparison of Operation Modes
	1.5.2 Comparison of Memory
	1.5.3 Operation Mode Settings

	1.6 Processor Modes
	Transitioning from supervisor mode to user mode
	Transitioning from user mode to supervisor mode

	1.7 Exception Handling
	1.7.1 Types of Exception Handling
	1.7.2 Exception Handling Priority
	1.7.3 Basic Processing Sequence of Exception Handling
	1.7.4 Vector Configuration
	1.7.5 Interrupt Masking by SR (SH7044) and PSW (RX631)

	1.8 Interrupt Handling
	1.8.1 Interrupt Controller
	1.8.2 Interrupt Flag Management
	1.8.3 Fast Interrupt Control
	1.8.4 Digital Filter
	1.8.5 Multiple Interrupts
	1.8.6 Unit Selection Function
	1.8.7 Group Interrupts

	2. On-Chip Functions
	2.1 List of On-Chip Functions
	2.2 I/O Ports
	2.2.1 Number of I/O Ports
	2.2.2 I/O Settings
	2.2.3 General I/O

	2.3 Buses
	2.3.1 Comparison of Specifications
	2.3.2 Bus Configuration
	2.3.3 External Bus Interface Setting Examples

	2.4 Interrupt Controller
	2.4.1 IRQ Usage Example

	2.5 Data Transfer Controller (DTC)
	2.5.1 Comparison of Specifications
	2.5.2 Register Configuration
	2.5.3 Transfer Modes
	2.5.4 Activation Source Setting
	2.5.5 DTC Vector Configuration
	2.5.6 Allocation of Transfer Information
	2.5.7 Module Stop
	2.5.8 Data Transfer Controller (DTC) Setting Example (Repeat Transfer)

	2.6 Direct Memory Access Controller (DMAC)
	2.6.1 Comparison of Specifications
	2.6.2 DMAC Block Diagram
	2.6.3 Comparison of Registers
	2.6.4 Channel Priority
	2.6.5 DMA Activation Sources and Settings
	2.6.6 Transfer Sources and Destinations
	2.6.7 Transfer Modes
	2.6.8 Address Modes
	2.6.9 Bus Modes
	2.6.10 Module Stop
	2.6.11 Direct Memory Access Controller (DMAC) Setting Example

	2.7 Multifunction Timer Pulse Unit (MTU)
	2.7.1 Comparison of Specifications
	2.7.2 Handling of Interrupt Flags
	2.7.3 List of Registers
	2.7.4 Unit Selection Function
	2.7.5 Module Stop
	2.7.6 MTU Output Compare Match Setting Example
	2.7.7 MTU Input Capture Setting Example

	2.8 Watchdog Timers
	2.8.1 Comparison of Specifications
	2.8.2 Module Stop

	2.9 Serial Communication Interface
	2.9.1 Comparison of Specifications
	2.9.2 Switching SCIs
	2.9.3 Module Stop
	2.9.4 Asynchronous Communication Setting Example (Interrupt Method/Polling Method)
	2.9.5 Clock-Synchronous Master Transmit Setting Example (Interrupt Method/Polling Method)
	2.9.6 Clock-Synchronous Slave Receive Setting Example (Interrupt Method/Polling Method)

	2.10 Mid-Speed A/D Converter
	2.10.1 Comparison of Specifications
	2.10.2 Input Channels and Operation
	2.10.3 Operating Modes
	2.10.4 Module Stop
	2.10.5 A/D Converter Single Channel Mode Setting Example
	2.10.6 A/D Converter Continuous Scan Mode Setting Example

	2.11 High-Speed A/D Converter
	2.11.1 Comparison of Specifications
	2.11.2 Operating Modes
	2.11.3 Module Stop
	2.11.4 Other Differences
	2.11.5 A/D Converter Setting Example

	2.12 Compare Match Timer (CMT)
	2.12.1 Comparison of Specifications
	2.12.2 CMT Replacement
	2.12.3 Module Stop
	2.12.4 Compare Match Timer Setting Example
	Table 2.78 Compare Match Timer Initial Setting Example

	2.13 Flash Memory
	2.13.1 Comparison of Specifications

	2.14 Low Power Consumption Function
	2.14.1 Comparison of Mode Specifications
	2.14.2 Mode Transitions
	2.14.3 Mode Transition Setting Example

	3. Sample Code
	3.1 Operating Environment
	3.2 Sample Code Configuration
	Initial Settings
	Items Requiring Changes in Automatically Generated Files

	4. Reference Documents
	4.1 Reference Documents

	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products
	Notice

	Sales Offices

