
 APPLICATION NOTE

R01AN2066EJ0100 Rev. 1.00 Page 1 of 31
Sep. 22, 2014

RX600 & RX200 Series
Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

Abstract
The latest Simple Flash API includes definitions associated with the Firmware Integration Technology (FIT). When
using the Simple Flash API with a non-FIT project, many of those definitions are not necessary.

This application note describes the method to implement the Simple Flash API without unnecessary definitions for a
non-FIT project.

Products
 RX610 Group

 RX62N, RX621, RX62T, and RX62G Groups

 RX630, RX63N, RX631, and RX63T Groups

 RX210, RX21A, and RX220 Groups

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN2066EJ0100
Rev. 1.00

Sep. 22, 2014

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 2 of 31
Sep. 22, 2014

Contents

1. Specifications ... 3

2. Operation Confirmation Conditions .. 4

3. Reference Application Notes .. 4

4. Preparing for the Reprogramming Program ... 5
4.1 Adding Necessary Files from the Flash API .. 5
4.2 Modifying r_flash_api_rx_if.h ... 5
4.3 Modifying r_flash_api_rx210.h ... 6
4.4 Modifying r_flash_api_rx.c ... 6

5. Selecting a Method of Reprogramming .. 8
5.1 Specifying a Method of Reprogramming ... 8
5.2 Selecting an Operation During Reprogramming .. 13
5.3 Method of Transferring the Reprogramming API to the RAM .. 14

6. Additional Setting in the Integrated Development Environment ... 14

7. Software ... 15
7.1 Operation Overview ... 15
7.2 File Composition .. 16
7.3 Option-Setting Memory .. 17
7.4 Constants ... 17
7.5 Variables .. 18
7.6 Functions .. 18
7.7 Function Specifications .. 19
7.8 Flowcharts .. 21

7.8.1 Main Processing ... 21
7.8.2 Reprogramming Flash Memory .. 22
7.8.3 Reprogramming E2 DataFlash

(Subsequent Processing is Executed During Programming) .. 23
7.8.4 Reprogramming E2 DataFlash ... 25
7.8.5 Reprogramming ROM (Subsequent Processing is Executed During Programming) 26
7.8.6 Reprogramming ROM ... 28
7.8.7 Transferring Relocatable Vector to RAM .. 29
7.8.8 Disabling ROM Lock Bit Protection .. 30

8. Sample Code .. 31

9. Reference Documents .. 31

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 3 of 31
Sep. 22, 2014

1. Specifications
In this application note, the Simple Flash API is modified to have only necessary definitions for a non-FIT project to
implement the definitions in the user non-FIT project. The RX210 Group Initial Setting application note is used as an
example of a non-FIT project here.

Figure 1.1 shows the Implementing the API.

Start

Configure the integrated
development environment

(project setting)

Prepare for the reprogramming
API

Select a method of
reprogramming

1. Copy necessary files from the Flash API and add them to the user project.
 Change the name of the r_flash_api_rx_config_reference.h file.
2. Modify the copied files.

1. Modify definitions in the header file copied.
 - Reprogramming area
 - Execution area
 - Operation during reprogramming
 - Usage of the lock bit
2. Add programs depending on the selected operation during reprogramming.
3. Select a method to transfer the reprogramming program to the RAM.

1. Specify sections.

End

Figure 1.1 Implementing the API

The sample code accompanying this application note includes the sample code from the RX210 Group Initial Setting as
well as the sample code for the reprogramming program (flash_api function).
With the sample code for the reprogramming program, when reprogramming of the E2 DataFlash (flash memory for
storing data) is enabled, erasing, programming, and verification of the E2 DataFlash are executed. Subsequently, when
reprogramming of the ROM (flash memory for storing code) is enabled, erasing, programming, and verification of the
ROM are executed.

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 4 of 31
Sep. 22, 2014

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used R5F5210BBDFP (RX210 Group)
Operating frequencies - Main clock: 20 MHz

- PLL: 100 MHz (main clock divided by 2 and multiplied by 10)
- System clock (ICLK): 50 MHz (PLL divided by 2)
- Peripheral module clock B (PCLKB): 25 MHz (PLL divided by 4)
- FlashIF clock (FCLK): 25 MHz (PLL divided by 4)

Operating voltage 5.0 V
Integrated development
environment

Renesas Electronics Corporation
 High-performance Embedded Workshop Version 4.09.01

C compiler Renesas Electronics Corporation
C/C++ Compiler Package for RX Family V.1.02 Release 01

Compile options
-cpu=rx200 -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -nologo
(The default setting is used in the integrated development environment.)

iodefine.h version Version 1.4
Endian Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Renesas Starter Kit for RX210 (product part no.: R0K505210C002BE)

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.

- RX210 Group Initial Setting Rev. 2.20 (R01AN1002EJ) (1)
- RX600 & RX200 Series Simple Flash API for RX Rev.2.50 (R01AN0544EU)

Note:

1. The initial setting functions in the RX210 Group Initial Setting application note above are used in the
sample code in this application note. The revision number of the RX210 Group Initial Setting
application note is current as of when this application note was made. However the latest version is
always recommended. Visit the Renesas Electronics Corporation website to check and download the
latest version.

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 5 of 31
Sep. 22, 2014

4. Preparing for the Reprogramming Program

4.1 Adding Necessary Files from the Flash API
Copy the following files from the Simple Flash API project to add them to the user project.

The locations in the brackets below indicate original locations in the Simple Flash API project.

 r_flash_api_rx_if.h (location: \r_flash_api_rx)

 r_flash_api_rx210.h (location: \r_flash_api_rx\src\targets\rx210)

 r_flash_api_rx.c (location: \r_flash_api_rx\src)

 r_flash_api_rx_config_reference.h (location: \r_flash_api_rx\ref)

Rename the r_flash_api_rx_config_reference.h file to r_flash_api_rx_config.h when adding to the user project.

4.2 Modifying r_flash_api_rx_if.h
The r_flash_api_rx_if.h file needs to be modified as follows:

 Delete platform.h.

// /* Used to get which MCU is currently being used. */
// #include "platform.h"

 Delete read processing in r_flash_api_rxXXX.h.

/* Memory specifics for the each MCU group */
// #if defined(BSP_MCU_RX610)
// #include "./src/targets/rx610/r_flash_api_rx610.h"
// #elif defined(BSP_MCU_RX621) || defined(BSP_MCU_RX62N)
// #include "./src/targets/rx62n/r_flash_api_rx62n.h"
// #elif defined(BSP_MCU_RX62T)
// #include "./src/targets/rx62t/r_flash_api_rx62t.h"
// #elif defined(BSP_MCU_RX62G)
// #include "./src/targets/rx62g/r_flash_api_rx62g.h"
// #elif defined(BSP_MCU_RX630)
// #include "./src/targets/rx630/r_flash_api_rx630.h"
// #elif defined(BSP_MCU_RX631) || defined(BSP_MCU_RX63N)
// #include "./src/targets/rx63n/r_flash_api_rx63n.h"
// #elif defined(BSP_MCU_RX63T)
// #include "./src/targets/rx63t/r_flash_api_rx63t.h"
// #elif defined(BSP_MCU_RX210)
// #include "./src/targets/rx210/r_flash_api_rx210.h"
// #elif defined(BSP_MCU_RX21A)
// #include "./src/targets/rx21a/r_flash_api_rx21a.h"
// #elif defined(BSP_MCU_RX220)
// #include "./src/targets/rx220/r_flash_api_rx220.h"
// #else
// #error "!!! No 'targets' folder for this MCU Group !!!"
// #endif

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 6 of 31
Sep. 22, 2014

4.3 Modifying r_flash_api_rx210.h
The r_flash_api_rx210.h file needs to be modified as follows:

 Add definitions.

#define BSP_ROM_SIZE_BYTES (524288)
#define BSP_RAM_SIZE_BYTES (65536)
#define BSP_DATA_FLASH_SIZE_BYTES (8192)

#define ROM_PE_ADDR ((0x100000000-BSP_ROM_SIZE_BYTES)&(0x00FFFFFF))

#define BSP_ICLK_HZ (50000000)
#define BSP_FCLK_HZ (25000000)

/* FCU-RAM address define */
/* FCU F/W Store Address */
#define FCU_PRG_TOP (0xFEFFE000)
/* FCU RAM Address */
#define FCU_RAM_TOP (0x007F8000)
/* FCU RAM Size */
#define FCU_RAM_SIZE (0x2000)

Note: • Modify the values of these definitions according to the MCU used and the user system.

 Add the hardware lock mcu_lock_t.

typedef enum
{
 BSP_LOCK_FLASH = 0,
 BSP_NUM_LOCKS //This entry is not a valid lock. It is used for sizing g_bsp_Locks[] array below.
 Do not touch!
} mcu_lock_t;

4.4 Modifying r_flash_api_rx.c
The r_flash_api_rx.c file needs to be modified as follows:

 Add #include for stdint.h and stdbool.h.

#include <stdint.h>
#include <stdbool.h>

 Replace #include "mcu_info.h" with "r_flash_api_rx210.h".

// #include "mcu_info.h"
#include "r_flash_api_rx210.h"

 Delete #include for "platform.h" and "r_flash_api_rx_private.h".

// #include "platform.h"
// #include "r_flash_api_rx_private.h"

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 7 of 31
Sep. 22, 2014

 Modify the directory level of iodefine.h according to the user project.
The following shows an example when the directory of iodefine.h is one level above the directory of
r_flash_api_rx.c.

// #include "iodefine.h"
 #include "..¥iodefine.h"

 Add functions R_BSP_HardwareLock and R_BSP_HardwareUnlock

bool R_BSP_HardwareLock(mcu_lock_t const hw_index);
bool R_BSP_HardwareUnlock(mcu_lock_t const hw_index);

/***
* Function Name: R_BSP_HardwareLock
* Description: Attempt to acquire the lock that has been sent in. This function takes in a peripheral index into
* the array that holds hardware locks.
* Arguments: hw_index -
* Index in locks array to the hardware resource to lock.
* Return Value: true -
* Lock was acquired.
* false -
* Lock was not acquired.
***/
bool R_BSP_HardwareLock (mcu_lock_t const hw_index)
{
 return true;
} /* End of function R_BSP_HardwareLock() */
/***
* Function Name: R_BSP_HardwareUnlock
* Description: Release hold on lock.
* Arguments: hw_index -
* Index in locks array to the hardware resource to unlock.
* Return Value: true -
* Lock was released.
* false -
* Lock was not released.
***/
bool R_BSP_HardwareUnlock (mcu_lock_t const hw_index)
{
 return true;
} /* End of function R_BSP_HardwareUnlock() */

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 8 of 31
Sep. 22, 2014

5. Selecting a Method of Reprogramming
This section describes methods of reprogramming with selection of a reprogramming area, an execution area, an
operation during reprogramming, and a RAM transfer method.

5.1 Specifying a Method of Reprogramming
Operations and control methods vary depending on the selected reprogramming area, execution area, and operation
during reprogramming. Select one of the methods listed in Table 5.1 and configure r_flash_api_rx_config.h accordingly.

Table 5.2 to Table 5.12 list settings in r_flash_api_rx_config.h. Numbers in table titles correspond to numbers in Table
5.1.

Table 5.1 Methods of Reprogramming

No. Reprogramm-
ing Area

Program
Execution

Area
Operation During Reprogramming Lock Bit Protection

(ROM Only)

1

ROM,
E2 DataFlash RAM

Subsequent processing not executed (1) Disabled by the API
2 Subsequent processing executed (2) Disabled by the API

3 Subsequent processing not executed (1) Disabled by the user
program

4

ROM:
Subsequent processing not executed (1)
E2 DataFlash:
Subsequent processing executed (2)

Disabled by the user
program (3)

5

ROM RAM

Subsequent processing not executed (1) Disabled by the API
6 Subsequent processing executed (2) Disabled by the API

7 Subsequent processing not executed (1) Disabled by the user
program

8

E2 DataFlash
RAM

Subsequent processing not executed (1)

—
9 Subsequent processing executed (2)
10

ROM
Subsequent processing not executed (1)

11 Subsequent processing executed (2)
Notes:

1. Waits for completion of reprogramming processing, and the subsequent processing is not executed.
2. Subsequent processing of reprogramming processing is executed.
3. When the lock bit protection is disabled by the user program, the operation 'subsequent processing

executed' cannot be selected with the ROM. Always choose the operation 'subsequent processing
not executed' with the ROM.

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 9 of 31
Sep. 22, 2014

Table 5.2 No. 1: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is not stored in the
RAM. // #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Wait for completion of reprogramming
processing for the E2 DataFlash and
the subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit protection is disabled
automatically by the API. #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

Table 5.3 No. 2: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is stored in the
RAM. #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Subsequent processing is executed
during reprogramming the E2
DataFlash.

#define FLASH_API_RX_CFG_DATA_FLASH_BGO

Subsequent processing is executed
during reprogramming the ROM. #define FLASH_API_RX_CFG_ROM_BGO

The lock bit protection is disabled
automatically by the API. #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

Table 5.4 No. 3: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is not stored in the
RAM. // #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Wait for completion of reprogramming
processing for the E2 DataFlash and
the subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit protection is disabled by
the user program. // #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 10 of 31
Sep. 22, 2014

Table 5.5 No. 4: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is stored in the
RAM. #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Subsequent processing is executed
during reprogramming the E2
DataFlash.

#define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit protection is disabled by
the user program. // #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

Table 5.6 No. 5: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is not stored in the
RAM. // #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Wait for completion of reprogramming
processing for the E2 DataFlash and
the subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit program is disabled
automatically by the API. #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

Table 5.7 No. 6: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is stored in the
RAM. #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Wait for completion of reprogramming
processing for the E2 DataFlash and
the subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_DATA_FLASH_BGO

Subsequent processing is executed
during reprogramming the ROM. #define FLASH_API_RX_CFG_ROM_BGO

The lock bit program is disabled
automatically by the API. #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 11 of 31
Sep. 22, 2014

Table 5.8 No. 7: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is not stored in the
RAM. // #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Wait for completion of reprogramming
processing for the E2 DataFlash and
the subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit protection is disabled by
the user program. // #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

Table 5.9 No. 8: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is not stored in the
RAM. // #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Wait for completion of reprogramming
processing for the E2 DataFlash and
the subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit program is disabled
automatically by the API (default). #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

Table 5.10 No. 9: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

Programming data is stored in the
RAM. #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Subsequent processing is executed
during reprogramming the E2
DataFlash.

#define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit program is disabled
automatically by the API (default). #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 12 of 31
Sep. 22, 2014

Table 5.11 No. 10: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is not reprogrammed. // define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING
Programming data is not stored in the
RAM. // #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Wait for completion of reprogramming
processing for the E2 DataFlash and
the subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit program is disabled
automatically by the API (default). #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

Table 5.12 No. 11: Settings in r_flash_api_rx_config.h

Changed Contents Code after the Change
The ROM is not reprogrammed. // define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING
Programming data is stored in the
RAM. #define FLASH_API_RX_CFG_FLASH_TO_FLASH

Subsequent processing is executed
during reprogramming the E2
DataFlash.

#define FLASH_API_RX_CFG_DATA_FLASH_BGO

Wait for completion of reprogramming
processing for the ROM and the
subsequent processing is not
executed.

// #define FLASH_API_RX_CFG_ROM_BGO

The lock bit program is disabled
automatically by the API (default). #define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 13 of 31
Sep. 22, 2014

5.2 Selecting an Operation During Reprogramming
When the operation 'subsequent processing executed' is selected as an operation during reprogramming, the flash ready
interrupt generation is enabled and completion of reprogramming is confirmed in the interrupt handling.

The interrupt priority level of the flash ready interrupt is shown in Table 5.13.

If the flash ready interrupt and another interrupt occur simultaneously, a higher priority interrupt is executed first.

Table 5.13 Interrupt Priority Level of the Flash Ready Interrupt

Setting Code after the Level is Set
The priority level of the flash ready
interrupt is set to 5. #define FLASH_API_RX_CFG_FLASH_READY_IPL 5

The following four functions must be written in the reprogramming program. Use the functions adding required
processing.

Refer to the section "Using Non-Blocking Background Operations" in the Simple Flash API for RX application note.

 void FlashEraseDone(void)

 void FlashWriteDone(void)

 void FlashBlankCheckDone(uint8_t result)

 void FlashError(void)

When the operation 'subsequent processing executed' is selected, make sure that registers which are write disabled must
not be rewritten within the loop of the processing during ROM/E2 DataFlash P/E mode. When in ROM/E2 DataFlash
P/E mode, processing in the loop including additional processing are executed in P/E mode.

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 14 of 31
Sep. 22, 2014

5.3 Method of Transferring the Reprogramming API to the RAM
When APIs used for reprogramming are executed in the RAM, the APIs need to be transferred from the ROM to the
RAM. The transfer method can be selected from the following two methods.

 Transfer is performed at a given timing.

 Transfer is performed immediately after a reset.

Table 5.14 and Table 5.15 list definitions in r_flash_api_rx_config.h for each method.

Table 5.14 Settings in r_flash_api_rx_config.h (Transfer at a Given Timing)

Setting Code after Setting
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

The R_FlashCodeCopy function is
used to transfer programs. #define FLASH_API_RX_CFG_COPY_CODE_BY_API

Table 5.15 Settings in r_flash_api_rx_config.h (Transfer Immediately After a Reset)

Setting Code after Setting
The ROM is reprogrammed (program
executed in the RAM). #define FLASH_API_RX_CFG_ENABLE_ROM_PROGRAMMING

The R_FlashCodeCopy function is not
used to transfer programs. // #define FLASH_API_RX_CFG_COPY_CODE_BY_API

Note: • When selecting the method to transfer immediately after a reset, the dbsct.c file which is made when
generating the project needs to be modified.

When the reprogramming program is executed in the RAM, write codes for transferring the program from the ROM to
the RAM after a reset.

- When using the R_FlashCodeCopy function for ROM to RAM transfer, add processing to call the R_FlashCodeCopy
function.

- When not using the R_FlashCodeCopy function for ROM to RAM transfer, add a code to the dbsct.c file as shown in
red below.

 { __sectop("D"), __secend("D"), __sectop("R") },
 { __sectop("D_2"), __secend("D_2"), __sectop("R_2") },
 { __sectop("D_1"), __secend("D_1"), __sectop("R_1") },
 { __sectop("PFRAM"), __secend("PFRAM"), __sectop("RPFRAM") }

6. Additional Setting in the Integrated Development Environment
The following settings are required to specify sections in the integrated development environment.

For details on the settings, refer to the section "Putting Flash API Code in RAM" in the Simple Flash API for RX
application note.

 Define the PFRAM section in the ROM area.

 Define the RPFRAM section in the RAM area.

 Specify the linker setting so that code in the FRAM section is executed in the RAM.

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 15 of 31
Sep. 22, 2014

7. Software

7.1 Operation Overview
This section describes the sample code for the reprogramming program.

The ROM and the E2 DataFlash are reprogrammed using APIs from the Simple Flash API.

In the reprogramming areas, all areas in the E2 DataFlash and blocks 255 to 16 in the ROM are erased, and the content
in the start address of each block is reprogrammed to the following:
"hello world0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".

Figure 7.1 shows the Memory Map.

On-chip flash memory
(FCU firmware, read only)

On-chip flash memory
(ROM, write only)

FCU-RAM area

Area for erasing,
programming, and verifying of

the E2 DataFlash

Area for erasing,
programming, and verifying of

the ROM

0000 0000h

0008 0000h

FFFF FFFFh

On-chip RAM

Reserved area

0010 0000h
Peripheral I/O registers

FF00 0000h

FFFF 8000h

Reserved area

0001 0000h
Reserved area

Reserved area

007F 8000h

007F A000h

0010 2000h

On-chip flash memory
(E2 DataFlash)

On-chip flash memory
(ROM)

FFF8 0000h

(Block 16)

(Block 256)

Reserved area

0080 0000h

Peripheral I/O registers

Reserved area

Peripheral I/O registers

007F C000h

007F C500h

007F FC00h

0100 0000h

Reserved area
00F0 0000h

Reprogramming code
(including the Flash API)

FEFF E000h

Figure 7.1 Memory Map

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 16 of 31
Sep. 22, 2014

7.2 File Composition
Table 7.1 lists the Files Used in the Sample Code, Table 7.2 lists the Standard Include File, Table 7.3 lists the Functions
and Their Settings in the RX210 Group Initial Setting Application Note, and Table 7.4 lists the File in the Simple Flash
API. Files generated by the integrated development environment are not included in this table.

Table 7.1 Files Used in the Sample Code

File Name Outline Remarks
main.c Main processing

flash_write_main.c Sample processing for reprogramming the ROM
and the E2 DataFlash

flash_api_rx.c Flash memory reprogramming program
(Simple Flash API)

r_flash_api_rx.c modified as
described in 4.4

flash_api_rx_if.h Header file for flash_api_rx.c r_flash_api_rx_if.h modified as
described in 4.2

flash_api_rx210.h Header file for flash_api_rx.c r_flash_api_rx210.h modified as
described in 4.3

Table 7.2 Standard Include File

File Name Outline
stdbool.h Defines macros associated with Boolean and its value.
stdint.h Defines macros declaring the integer type with the specified width.
machine.h Defines types of intrinsic functions for the RX Family.

Table 7.3 Functions and Their Settings in the RX210 Group Initial Setting Application Note

File Name Function Contents
r_init_stop_module.c R_INIT_StopModule() —

r_init_stop_module.h — Module-stop state is canceled for DMAC/DTC,
EXDMAC, RAM0, and RAM1.

r_init_non_existent_port.c R_INIT_NonExistentPort() —
r_init_non_existent_port.h — 100-pin package is specified.
r_init_clock.c R_INIT_Clock() —
r_init_clock.h — Clock setting No. 1 is specified.

Table 7.4 File in the Simple Flash API

(RX600 & RX200 Series Simple Flash API for RX application note)

File Name Function Contents

r_flash_api_rx_config.h —

- Reprograms the ROM and the E2 DataFlash.
- Executes reprogramming processing in the
RAM, waits for the completion of the
reprogramming. The subsequent processing is
not executed.

- Lock bit protection is disabled by the API.

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 17 of 31
Sep. 22, 2014

7.3 Option-Setting Memory
Table 7.5 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the
user system.

Table 7.5 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents

OFS0 FFFF FF8Fh to FFFF FF8Ch FFFF FFFFh The IWDT is stopped after a reset.
The WDT is stopped after a reset.

OFS1 FFFF FF8Bh to FFFF FF88h FFFF FFFFh

The voltage monitor 0 reset is disabled
after a reset.
HOCO oscillation is disabled after a
reset.

MDES FFFF FF83h to FFFF FF80h FFFF FFFFh Little endian
MDEB FF7F FFF8h to FF7F FFFBh FFFF FFFFh Little endian

7.4 Constants
Table 7.6 lists the Constants Used in the Sample Code.

Table 7.6 Constants Used in the Sample Code

Constant Name Setting Value Contents
E2FLASH_WRITE_START 0 Reprogramming of the E2 DataFlash started
E2FLASH_WRITE_ERASE 1 Erasing the E2 DataFlash
E2FLASH_WRITE_BLANK 2 Blank checking the E2 DataFlash
E2FLASH_WRITE_PROGRAM 3 Programming the E2 DataFlash
E2FLASH_WRITE_FIN 4 E2 DataFlash reprogramming completed
FLASH_WRITE_START 0 Reprogramming of the ROM started
FLASH_WRITE_ERASE 1 Erasing the ROM
FLASH_WRITE_PROGRAM 2 Programming the ROM
FLASH_WRITE_FIN 3 ROM reprogramming completed
ROM_RESERVED_BYTES 32768 Storage size for the reprogramming program
E2FLASH_WRITE_ENABLE Enabled Reprogramming of the E2 DataFlash enabled
FLASH_WRITE_ENABLE Enabled Reprogramming of the ROM enabled

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 18 of 31
Sep. 22, 2014

7.5 Variables
Table 7.7 lists the Global Variables.

Table 7.7 Global Variables

Type Variable Name Contents Function Used
uint8_t E2Flash_WriteStatus Status of E2 DataFlash reprogramming main
uint8_t Flash_WriteStatus Status of ROM reprogramming main

7.6 Functions
Table 7.8 lists the Functions.

Table 7.8 Functions

Function Name Outline
main Main processing
flash_write Reprogramming flash memory

E2Flash_Write_start Peprogramming E2 DataFlash
(subsequent processing is executed during programming)

E2Flash_Write Reprogramming E2 DataFlash

Flash_Write_start Reprogramming ROM
(subsequent processing is executed during programming)

Flash_Write Reprogramming ROM
rom_bgo_init Transferring relocatable vector to RAM
lock_bit_tests Disabling ROM lock bit protection

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 19 of 31
Sep. 22, 2014

7.7 Function Specifications
The following tables list the sample code function specifications.

main
Outline Main processing
Header None
Declaration void main(void);
Description After initialization, the function for reprogramming the flash memory is called.
Arguments None
Return Value None

flash_api
Outline Reprogramming flash memory
Header None
Declaration void flash_api (void)
Description The function for reprogramming the flash memory is executed. The function to be

executed is selected according to the enable/disable setting of reprogramming and
the selected operation during reprogramming.

Arguments None
Return Value None

E2Flash_Write_start
Outline Reprogramming E2 DataFlash

(subsequent processing is executed during programming)
Header None
Declaration static void E2Flash_Write_start (void)
Description Reprogramming of the E2 DataFlash is executed. If the FCU command is issued

successfully, the subsequent processing is executed until the command execution is
completed.

Arguments None
Return Value None

E2Flash_Write
Outline Reprogramming E2 DataFlash
Header None
Declaration static void E2Flash_Write (void)
Description Reprogramming of the E2 DataFlash is executed. If the FCU command is issued, a

loop is performed within the processing until the command execution is completed.
Arguments None
Return Value None

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 20 of 31
Sep. 22, 2014

Flash_Write_start
Outline Reprogramming ROM

(subsequent processing is executed during programming)
Header None
Declaration static void Flash_Write_start (void)
Description Reprogramming of the ROM is executed. If the FCU command is issued

successfully, the subsequent processing is executed until the command execution is
completed.

Arguments None
Return Value None

Flash_Write
Outline Reprogramming ROM
Header None
Declaration static void Flash_Write (void)
Description Reprogramming of the ROM is executed. After issuing the FCU command, a loop is

performed within the processing until the command execution is completed.
Arguments None
Return Value None

rom_bgo_init
Outline Transferring relocatable vector to RAM
Header None
Declaration static void rom_bgo_init(void)
Description The relocatable vector table is transferred to the RAM to use the flash ready

interrupt.
Arguments None
Return Value None

lock_bit_tests
Outline Disabling ROM lock bit protection
Header None
Declaration static void lock_bit_tests (void)
Description Lock bit protection is disabled for the ROM. If the result of the issued read lock bit

status command is "lock bit enabled", the lock bit protection is disabled and block
erasing is executed.

Arguments None
Return Value None

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 21 of 31
Sep. 22, 2014

7.8 Flowcharts
7.8.1 Main Processing
Figure 7.2 shows the Main Processing.

When FLASH_API_RX_CFG_COPY_CODE_BY_API (API is copied to the RAM) is specified:

I flag ← 0Disable maskable interrupts

main

Stop processing for active
peripheral functions after a reset

R_INIT_StopModule()

Nonexistent port initialization
R_INIT_NonExistentPort()

Clock initialization
R_INIT_Clock()

I flag ← 1Enable maskable interrupts

ROM to RAM transfer of
programming processing

R_FlashCodeCopy()

Reprogramming flash memory
flash_write()

Figure 7.2 Main Processing

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 22 of 31
Sep. 22, 2014

7.8.2 Reprogramming Flash Memory
Figure 7.3 shows the Reprogramming Flash Memory.

flash_write

Reprogramming ROM
Flash_Write_start()

Has
the ROM reprogramming

completed?

Yes

No

Reprogramming E2
DataFlash

E2Flash_Write_start()

Has
the E2 DataFlash
reprogramming

completed?

Yes

No

When FLASH_API_RX_CFG_DATA_FLASH_BGO (BGO (background operations)
reprogramming of the E2 DataFlash) is specified:

When FLASH_API_RX_CFG_ROM_BGO (BGO reprogramming of the ROM)
is specified:

Reprogramming
E2 DataFlash

E2Flash_Write()

When FLASH_API_RX_CFG_DATA_FLASH_BGO (BGO reprogramming of the E2
DataFlash) is not specified:

Reprogramming ROM
Flash_Write()

return

When E2FLASH_WRITE_ENABLE (reprogramming the E2 DataFlash) is specified:

When FLASH_WRITE_ENABLE (reprogramming the ROM) is specified:

Clear the processing status E2 DataFlash processing status ← 1 (E2Flash_WRITE_START)

Clear the processing status ROM processing status ← 0 (Flash_WRITE_START)

Clear the flash processing
completion flag for the previous

operation

E2 DataFlash processing status = 3 (E2Flash_WRITE_FIN)?

ROM processing status = 3 (Flash_WRITE_FIN)?

When FLASH_API_RX_CFG_ROM_BGO (BGO reprogramming of the ROM)
is not specified:

Clear the flash processing
completion flag for the previous

operation

Figure 7.3 Reprogramming Flash Memory

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 23 of 31
Sep. 22, 2014

7.8.3 Reprogramming E2 DataFlash
(Subsequent Processing is Executed During Programming)

Figure 7.4 and Figure 7.5 show the Reprogramming E2 DataFlash (Subsequent Processing is Executed During
Programming).

E2Flash_Write_start

E2 DataFlash
access control

R_FlashDataAreaAccess()

Obtaining block address of flash
g_flash_BlockAddresses()

Erase processing for
E2 DataFlash

R_FlashErase()

Was the
erase operation completed

successfully?

Yes

No

Is the status
of the flash processing

completion flag for the previous
operation

"completed"?

Yes

No

returnClear the flash processing completion
flag for the previous operation

Is the processing status
"programming started"?

Yes

No

Is it the first program operation?

Yes

No

Set "erasing" as the processing status

return

A
E2 DataFlash blank check

R_FlashDataAreaBlankCheck()

Yes

No

Set "blank checking" as the
processing status

return

Is the processing
status "erasing"?

Figure 7.4 Reprogramming E2 DataFlash (Subsequent Processing is Executed During
Programming) (1/2)

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 24 of 31
Sep. 22, 2014

return

Yes

No

Program processing for
E2 DataFlash

R_FlashWrite()

Yes

No

Read the programmed area of
the E2 DataFlash

Compare the programming data and
the read data (verification)

Yes

No

Update the number of blocks
to be reprogrammed

Yes

No

return

Set "programming completed"
as the processing status

A

Yes

No Is the processing
status "blank checking"?

Was
the blank check completed

successfully?

Was
the programming completed

successfully?

Set "programming" as the processing
status

Is the
verification result

"matched"?

Has E2
DataFlash programming
completed for all data?

Set "programming started"
as the processing status

Figure 7.5 Reprogramming E2 DataFlash (Subsequent Processing is Executed During
Programming) (2/2)

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 25 of 31
Sep. 22, 2014

7.8.4 Reprogramming E2 DataFlash
Figure 7.6 shows the Reprogramming E2 DataFlash.

E2Flash_Write

E2 DataFlash blank check
R_FlashDataAreaBlankCheck()

return

Clear the number of blocks to be
reprogrammed

g_loop(number of blocks to be reprogrammed) ← 0

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Was the
erase operation completed

successfully?

E2 DataFlash
access control

R_FlashDataAreaAccess()

Obtaining the block address
 of flash

g_flash_BlockAddresses()

Erase processing for
E2 DataFlash

R_FlashErase()

Was
the blank check completed

successfully?

Program processing for
E2 DataFlash

R_FlashWrite()

Was
the programming completed

successfully?

Read the programmed area of
E2 DataFlash

Compare the programming data and
the read data (verification)

Is the
verification result

'matched'?

Update the number of blocks
to be reprogrammed

Has E2
DataFlash programming
completed for all data?

Figure 7.6 Reprogramming E2 DataFlash

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 26 of 31
Sep. 22, 2014

7.8.5 Reprogramming ROM (Subsequent Processing is Executed During Programming)
Figure 7.7 and Figure 7.8 show the Reprogramming ROM (Subsequent Processing is Executed During Programming).

Flash_Write_start

Transfer relocatable vector to
RAM

rom_bgo_init()

Obtaining block address of flash
g_flash_BlockAddresses()

Erase processing for ROM
R_FlashErase()

Yes

No

Yes

No

return

Yes

No

Yes

No

return

A

(The address is changed to the address for
programming at the same time.)

Clear the flash processing completion
flag for the previous operation

Is the processing status
"programming started"?

Is it the first program operation?

g_loop(number of blocks to be reprogrammed)

Was
the erase operation completed

successfully?

Set "erasing" as the processing status

Is the status
of the flash processing

completion flag for the previous
operation

"completed"?

Set the block number to start
programming as the number of blocks

to be reprogrammed

Figure 7.7 Reprogramming ROM
(Subsequent Processing is Executed During Programming) (1/2)

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 27 of 31
Sep. 22, 2014

return

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

return

A

Is the processing
status "erasing"?

Blank check the ROM

Was
the blank check completed

successfully?

Program processing for ROM
R_FlashWrite()

Was
the programming completed

successfully?

Set "programming" as the processing
status

Read the programmed area
of the ROM

Compare the programming data and
the read data (verification)

Is the
verification result

"matched"?

Update the number of blocks
to be reprogrammed

Has ROM
 programming completed for all

data?

Set "programming completed"
as the processing status

Set "programming started"
as the processing status

Figure 7.8 Reprogramming ROM
(Subsequent Processing is Executed During Programming) (2/2)

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 28 of 31
Sep. 22, 2014

7.8.6 Reprogramming ROM
Figure 7.9 shows the Reprogramming ROM.

Flash_Write

return

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Disabling ROM lock bit
protection

lock_bit_tests()

When FLASH_API_RX_CFG_IGNORE_LOCK_BITS (lock bit protection disabled) and
FLASH_API_RX_CFG_ROM_BGO (BGO reprogramming of the flash memory) are not defined:

When either of FLASH_API_RX_CFG_IGNORE_LOCK_BITS (lock bit protection disabled) or
FLASH_API_RX_CFG_ROM_BGO (BGO reprogramming of the flash memory) is defined:

Set the block number to start
programming as the number of blocks

to be reprogrammed
g_loop(number of blocks to be reprogrammed)

Obtaining block address of flash
g_flash_BlockAddresses()

(The address is changed to the address for
programming at the same time.)

Erase processing for ROM
R_FlashErase()

Was the
erase operation completed

successfully?

Read the erased area and
blank check the area

Was
the blank check completed

 successfully?

Program processing for ROM
R_FlashWrite()

Was
the programming completed

successfully?

Read the programmed area of
the ROM

Compare the programming data and
the read data (verification)

Is the
verification result

"matched"?

Update the number of blocks
to be reprogrammed

Was
ROM programming completed

for all data?

Figure 7.9 Reprogramming ROM

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 29 of 31
Sep. 22, 2014

7.8.7 Transferring Relocatable Vector to RAM
Figure 7.10 shows the Transferring Relocatable Vector to RAM.

rom_bgo_init

Obtain an address of the vector
table in the ROM

Specify the start address of the
vector table in the RAM

Transfer the vector table from the
ROM to the RAM

return

Obtains an address from the INTB register.

Reads 256 address data in the vector table and transfers
them to the RAM (ram_vector_table).

Sets the start address of the RAM (ram_vector_table)
to the INTB register.

Figure 7.10 Transferring Relocatable Vector to RAM

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 30 of 31
Sep. 22, 2014

7.8.8 Disabling ROM Lock Bit Protection
Figure 7.11 shows the Disabling ROM Lock Bit Protection.

lock_bit_tests

return

Disabling ROM lock bit
protection

R_FlashSetLockBitProtection()

Yes

No

Yes

No

Yes

No

ROM lock bit read processing
R_FlashReadLockBit()

Is lock
bit protection

enabled?

Has lock
bit protection been disabled

successfully?

Erase processing for ROM
R_FlashErase()

Was
the erase operation completed

successfully?

ROM lock bit read processing
R_FlashReadLockBit()

Is lock
bit protection

disabled?

No

Yes

Figure 7.11 Disabling ROM Lock Bit Protection

RX600 & RX200 Series Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

R01AN2066EJ0100 Rev. 1.00 Page 31 of 31
Sep. 22, 2014

8. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

9. Reference Documents
User’s Manual: Hardware

RX210 Group User’s Manual: Hardware Rev.1.50 (R01UH0037EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User’s Manual Rev.1.00 (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY
RX600 & RX200 Series Application Note

Reprogramming the On-Chip Flash Memory
Using Simple Flash API for RX

Rev. Date
Description

Page Summary
1.00 Sep. 22, 2014 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Preparing for the Reprogramming Program
	4.1 Adding Necessary Files from the Flash API
	4.2 Modifying r_flash_api_rx_if.h
	4.3 Modifying r_flash_api_rx210.h
	4.4 Modifying r_flash_api_rx.c

	5. Selecting a Method of Reprogramming
	5.1 Specifying a Method of Reprogramming
	5.2 Selecting an Operation During Reprogramming
	5.3 Method of Transferring the Reprogramming API to the RAM

	6. Additional Setting in the Integrated Development Environment
	7. Software
	7.1 Operation Overview
	7.2 File Composition
	7.3 Option-Setting Memory
	7.4 Constants
	7.5 Variables
	7.6 Functions
	7.7 Function Specifications
	7.8 Flowcharts
	7.8.1 Main Processing
	7.8.2 Reprogramming Flash Memory
	7.8.3 Reprogramming E2 DataFlash (Subsequent Processing is Executed During Programming)
	7.8.4 Reprogramming E2 DataFlash
	7.8.5 Reprogramming ROM (Subsequent Processing is Executed During Programming)
	7.8.6 Reprogramming ROM
	7.8.7 Transferring Relocatable Vector to RAM
	7.8.8 Disabling ROM Lock Bit Protection

	8. Sample Code
	9. Reference Documents

