
 APPLICATION NOTE

R01AN1254EJ0103 Rev.1.03 Page 1 of 80

Jan. 30, 2015

RX600, RX200 Series

I2C Bus Single Master Control Software
Using RIIC Serial Interface

Introduction

This application note describes I2C bus single master control using the RX Family I2C bus interface RIIC (RIIC),

sample code that implements that control, and use of the sample code.

In this application note, the software used to control the slave device is referred to as the upper layer and the software

that implements I2C single master basic protocol control as the lower layer. Slave devices are controlled by combining

the protocols provided by the upper and lower layers.

This sample code implements the lower layer used for I2C single master control. The user should acquire or implement

software corresponding to the upper level for slave device control.

Note that Renesas provides sample software for controlling slave devices under separate cover. This sample software is

available if required.

Target Devices

Microcontroller: RX62N, RX63N, RX63T, RX210, RX21A

Device used for verifying operation: Renesas Electronics Corporation R1EX24xxx Series I2C Serial EEPROM.

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

R01AN1254EJ0103

Rev.1.03

Jan. 30, 2015

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 2 of 80

Jan. 30, 2015

Contents

1. Specifications ... 4

2. Operation Confirmation Conditions .. 6

3. Reference Application Note .. 8

4. Peripheral Functions ... 8

5. Hardware .. 9

5.1 Pins Used ... 9

5.2 Reference Circuit ... 9

5.3 Controlling Multiple Slave Devices... 10

5.4 Maximum Transfer Speed .. 10

6. Software ... 11

6.1 Software Structure ... 11

6.2 Operation Overview ... 12

6.2.1 Master Transmission .. 12

6.2.2 Master Reception .. 14

6.2.3 Master Composite ... 15

6.3 Software Operation .. 16

6.4 Software Operating Sequence ... 18

6.5 Implementation of Slave Device Control .. 20

6.6 Communication Implementation .. 21

6.6.1 States During Control ... 21

6.6.2 Events During Control ... 21

6.6.3 Protocol State Transitions... 22

6.6.4 Protocol State Transition Table .. 26

6.6.5 Protocol State Transition Registered Functions ... 26

6.6.6 Processing at Protocol State Transitions .. 27

6.7 Interrupt Generation Timing ... 28

6.7.1 Master Transmission .. 28

6.7.2 Master Reception .. 29

6.7.3 Master Composite ... 30

6.8 Callback Function .. 31

6.9 Relationship of Data Buffers and Transmit/Receive Data ... 31

6.10 Required Memory Sizes ... 32

6.11 File Structure .. 33

6.12 Constants ... 34

6.12.1 Return Values .. 34

6.12.2 Definitions .. 35

6.13 Structures and Unions ... 36

6.13.1 I2C Communication Information Structure ... 36

6.13.2 Internal Information Management Structure .. 38

6.14 Enumerated Types ... 39

6.15 Variables .. 40

6.16 Functions .. 41

6.17 State Transition Diagram ... 42

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 3 of 80

Jan. 30, 2015

6.17.1 Error State Definitions ... 43

6.17.2 Flag States at State Transitions .. 44

6.18 Function Specifications .. 45

6.18.1 Common Processing for These Functions .. 45

6.18.2 I²C Driver Initialization Function .. 46

6.18.3 Master Transmission Start Function .. 50

6.18.4 Master Reception Start Function ... 53

6.18.5 Master Composite Start Function .. 56

6.18.6 Advance Function .. 59

6.18.7 SCL Pseudo Clock Generation Function... 64

6.18.8 I2C Driver Reset Function .. 66

7. Application Example ... 68

7.1 r_iic_drv_api.h .. 68

7.2 r_iic_drv_sfr.h... 69

7.2.1 Interrupt Handler Settings ... 71

7.3 Recovery Processing Example .. 73

7.4 Notes on Using RIIC Interrupt Handler to Call Advance Function ... 75

8. Usage Notes ... 77

8.1 Notes on Embedding ... 77

8.1.1 Include File ... 77

8.2 Notes on Initialization ... 77

8.3 Notes on the Channel State Flag and Device State Flag .. 77

8.4 Operation Verification Program ... 77

8.5 Example of Embedding .. 77

8.6 Control Methods for Multiple Slave Devices on the Same Channel .. 78

8.7 Transfer Rate Setting ... 78

8.8 Notes On Setting The #define Definitions of RIICx_ENABLE and MAX_IIC_CH_NUM 78

8.9 Port Pins Assigned as RIIC Pins.. 79

8.10 Microcontrollers Requiring Specification of Port Pins .. 79

8.11 NACK Detection Processing after Direct Transmission to Slave Address with Master

Transmission and Master Composite Operation .. 79

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 4 of 80

Jan. 30, 2015

1. Specifications

This sample code performs I2C bus single master control using the RX Family I2C bus interface. The user should

acquire or implement software corresponding to the upper layer for slave device control.

Table 1.2 lists the used peripheral functions and their uses and figure 1.1 shows a usage example.

The following provides an overview of the functions provided by this software.

 This sample code is an I2C bus single master device driver that uses the RX Family microcontroller as the master

device using its I2C bus interface.

 This sample code implements the protocols in the I2C-bus specification. It supports master transmission, master

reception, and master composite (master transmission master reception) operation.

 Four transmission patterns can be set up for master transmission. Table 1.1 lists the operating patterns.

 The sample code supports multiple channels. Simultaneous communication using multiple channels is possible.

 Multiple slave devices with different type name can be controlled on a channel bus. However, while communication

is in progress (the period from when the start condition occurs to when the stop condition occurs), communication

with other devices is not possible.

 Communication is implemented by functions (start functions) that start various protocol control operations and the

function (the advance function) that monitors communication and advances the processing. The communication

state can be determined from the return values from the advance function.

 The start functions generate the start condition. The operations following that until the stop condition is generated

are performed by calling the advance function to perform the processing forward.

 Interrupts are generated on completion of start condition generation, slave address transmission, data transmission,

data reception, and stop condition generation.

 The communication rate can be set by the user. (Supported rates: up to 400 kHz (max)) However, if multiple devices

are connected on the same channel, the communication rate must be set to match that of the slowest device.

 If communication is stopped by the influence of noise or other issues (in cases where an interrupt is not generated),

an error can be returned from the advance function. If the number of advance function calls exceeds the limit, the

sample code determines that communication has stopped due to an abnormal situation and a “no response error” is

returned. This upper limit can be set by the user.

 If a NACK error occurs, a stop condition is occurred.

 The sample code provides SCL clock generation processing. If a synchronization discrepancy occurs between the

master and slave due to noise or other problem and the I2C bus goes to the SDA = low hold state, the SCL pseudo

clock generation function can be called to force the slave device internal state to successful and terminate.

 This sample code only supports communication between 7-bit address devices. Special addresses (e.g. general call

addresses) are not supported.

Table 1.1 Master Communication Operation Patterns

 ST Generation Slave Address

Transmission

First Data

Transmission

Second Data

Transmission

SP Generation

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Legend:

ST: Start condition

SP: Stop condition

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 5 of 80

Jan. 30, 2015

Table 1.2 Peripheral Function and Its Application

Peripheral Function Application

RIIC I2C bus interface

One channel (required)

RX

Channel 0

RIIC0

Channel 1

RIIC1

Slave

device A

Slave

device B

Slave

device C

Serial data bus

Serial clock

Slave

device D

Slave

device E

Serial data bus

Serial clock

Figure 1.1 Usage Example

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 6 of 80

Jan. 30, 2015

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

(1) RX62N

Table 2.1 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RX62N Group (program ROM: 512 KB, RAM: 64 KB)

Memory used for evaluation Renesas Electronics

R1EV24xxx/R1EX24xxx/HN58X24xxx Series I2C Serial EEPROM

Operating frequency ICLK: 96 MHz, PCLK: 48 MHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

High-performance embedded Workshop Version 4.09.01.007

C compiler Renesas Electronics

C/C++ Compiler Package for RX Family (Toolchain 1.2.1.0)

Compile option

Default settings*1 of integrated development environment used as compile

options.

Note: 1. Optimization level: 2; optimization method: optimize for size

Endian mode Big endian/Little endian

Sample code version Ver. 1.13

Software used Renesas Electronics

Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RX62N

(2) RX63N

Table 2.2 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RX63N Group (program ROM: 1 MB, RAM: 128 KB)

Memory used for evaluation Renesas Electronics

R1EV24xxx/R1EX24xxx/HN58X24xxx Series I2C Serial EEPROM

Operating frequency ICLK: 96 MHz, PCLKB: 48 MHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

High-performance embedded Workshop Version 4.09.01.007

C compiler Renesas Electronics

C/C++ Compiler Package for RX Family (Toolchain 1.2.1.0)

Compile option

Default settings*1 of integrated development environment used as compile

options.

Note: 1. Optimization level: 2; optimization method: optimize for size

Endian mode Big endian/Little endian

Sample code version Ver. 1.13

Software used Renesas Electronics

Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RX63N

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 7 of 80

Jan. 30, 2015

(3) RX63T

Table 2.3 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RX63T Group (program ROM: 512 KB, RAM: 64 KB)

Memory used for evaluation Renesas Electronics

R1EV24xxx/R1EX24xxx/HN58X24xxx Series I2C Serial EEPROM

Operating frequency ICLK: 96 MHz, PCLKB: 48 MHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

CubeSuite+ V2.00.00

C compiler Renesas Electronics

C/C++ Compiler Package for RX Family (Toolchain 2.00.00)

Compile option

Default settings*1 of integrated development environment used as compile

options.

Note: 1. Optimization level: 2; optimization method: optimize for size

Endian mode Big endian/Little endian

Sample code version Ver. 1.13

Software used Renesas Electronics

Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RX63T

(4) RX210

Table 2.4 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RX210 Group (program ROM: 512 KB, RAM: 64 KB)

Memory used for evaluation Renesas Electronics

R1EV24xxx/R1EX24xxx/HN58X24xxx Series I2C Serial EEPROM

Operating frequency ICLK: 50 MHz, PCLKB: 25 MHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

High-performance embedded Workshop Version 4.09.01.007

C compiler Renesas Electronics

C/C++ Compiler Package for RX Family (Toolchain 1.2.1.0)

Compile option

Default settings*1 of integrated development environment used as compile

options.

Note: 1. Optimization level: 2; optimization method: optimize for size

Endian mode Big endian/Little endian

Sample code version Ver. 1.13

Software used Renesas Electronics

Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used Renesas Starter Kit for RX210

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 8 of 80

Jan. 30, 2015

(5) RX21A

Table 2.5 Operation Confirmation Conditions

Item Contents

MCU used for evaluation RX21A Group (program ROM: 512 KB, RAM: 64 KB)

Memory used for evaluation Renesas Electronics

R1EV24xxx/R1EX24xxx/HN58X24xxx Series I2C Serial EEPROM

Operating frequency ICLK: 50 MHz, PCLKB: 25 MHz

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics

High-performance embedded Workshop Version 4.09.01.007

C compiler Renesas Electronics

C/C++ Compiler Package for RX Family (Toolchain 1.2.1.0)

Compile option

Default settings*1 of integrated development environment used as compile

options.

Note: 1. Optimization level: 2; optimization method: optimize for size

Endian mode Big endian/Little endian

Sample code version Ver. 1.13

Software used Renesas Electronics

Renesas R1EX24xxx Series Serial EEPROM Control Software

(R01AN1075EJ), ver. 1.01

Board used HSBRX21AP-B (Hokuto Denshi Co., Ltd.)

3. Reference Application Note

For additional information associated with this document, refer to the following application note.

 Renesas R1EX24xxx Series Serial EEPROM Control Software (R01AN1075EJ)

4. Peripheral Functions

The RX Family microcontrollers provide two I2C bus control peripheral functions: the I2C bus interface and serial

communication interface simplified I2C bus module.

This application note uses the I2C bus interface.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 9 of 80

Jan. 30, 2015

5. Hardware

5.1 Pins Used

Table 5.1 lists the Pins Used and Their Functions.

Table 5.1 Pins Used and Their Functions

Pin Name I/O Description

SCL

(SCL in figure 5.1)

Output Serial clock output

SDA

(SDA in figure 5.1)

I/O Serial data I/O

5.2 Reference Circuit

Figure 5.1 shows an example connection between the RX Family I2C bus interface and an I2C slave device. Since the

output is N-ch open drain, the serial clock line and serial data bus line require external pull-up resistors. Select resistors

that are appropriate for the system. Also consider adding damping resistors to the signal lines to ensure matching circuit

characteristics.

RX

SCL

SDA

I
2
C device

Vcc

SCL

SDA

SCL: Serial clock output pin

SDA: Serial data I/O pin

Add external pull-up

resistors.

 The pins on the MCU used for serial I/O depend on the MCU model.

 These pins are designated as the SCL pin and SDA pin in this application note to match the notations

used in the sample code.

Figure 5.1 Connection Between RX Family I2C Bus Interface and I2C Slave Device

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 10 of 80

Jan. 30, 2015

5.3 Controlling Multiple Slave Devices

The sample code supports use of multiple channels. In addition, multiple slave devices with different type name can be

connected to a channel bus and controlled. However, communication with other devices is not possible during the

period from when the start condition occurs to when the stop condition occurs.

Example: Devices A and B connected to channel 0 and device C connected to channel 1

Reference:ST: Start condition

SP: Stop condition

Channel 0 bus

Channel 1 bus

Slave device A

Communication in progress

Device A

ST generation successful

Device B

ST generation failed

Slave device B
Communication in progress

Device B

ST generation successful

Device B

SP generation finished

Slave device C

Communication in progress

Slave device C

Communication in progress

Device C

SP generation

finished

Device C

ST generation

successful

Time axis

Device A

SP generation finished

Device A

ST generation failed

Device C

ST generation

successful

Device C

SP generation

finished

Multiple devices on the same

channel cannot communicate

simultaneously.

Communication on channel 1

possible while channel 0

communication in progress.

Figure 5.2 Example of Control of Multiple Slave Devices

5.4 Maximum Transfer Speed

The maximum transfer speed setting is 400 kHz.

However, when both standard mode and fast mode devices are connected to the same channel, the standard mode

maximum setting of 100 kHz must be observed.

The maximum transfer speeds of mixed bus systems are listed below.

Table 5.2 Maximum Transfer Speeds of Mixed Bus Systems

Communication Device Mixed Devices

Fast Mode Standard Mode

Fast mode 0 to 400 kHz 0 to 100 kHz

Standard mode 0 to 100 kHz 0 to 100 kHz

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 11 of 80

Jan. 30, 2015

6. Software

6.1 Software Structure

This sample code takes the software used to control slave devices as the upper layer and the software that implements

I2C bus single master basic protocol control to be the lower layer. The upper layer combines protocols provided by the

lower layer to control slave devices.

This sample code is positioned as lower layer used for I2C bus single master control.

Slave device control software

I
2
C single master driver: API

Upper

Lower

User application

Slave device

Sample code

I
2
C single master driver: SUB

I
2
C single master driver: INT

I
2
C single master driver: SFR

Legend:

API: User interface function

SUB: Internal function

INT: Interrupt handler

SFR: IP dependent processing

Figure 6.1 Software Structure

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 12 of 80

Jan. 30, 2015

6.2 Operation Overview

This sample code implements I2C bus single master control using the RX Family MCU I2C bus interface.

In particular, it implements the following single master protocols.

Table 6.1 Control Protocols

No. Control Protocol Outline

1 Master transmission Transfers data from the master (microcontroller) to the slave device.

There are four transmission patterns that can be used.

2 Master reception The master (microcontroller) receives data from the slave device.

3 Master composite After master transmission, a master reception operation is performed.

6.2.1 Master Transmission

There are four transmission patterns that can be used for master transmission. The function can be selected by the

method used to set up the I2C communication information structure, which manages the communication information.

See section 6.13.1, Communication information structure, for details on setting up this structure.

(1) Pattern 1

Data is transferred from the master (microcontroller) to the slave device.

First, a start condition (ST) is generated and then the slave device address is transmitted. During this transmission, the

8th bit is the transfer direction specification bit and a 0 (write) is transmitted for data transmission. Next, the first data is

transmitted. The first data is used when there is data to be transmitted in advance before performing the data

transmission. For example, if the slave device is an EEPROM, the EEPROM internal address can be transmitted. Next,

the second data is transmitted. The second data is the data to be written to the slave device. When a data transmission

has been started and all data transmission has completed, a stop condition (SP) is generated, releasing the bus.

SCLn

SDAn

Start Stop

Legend:

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge “0”

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7 SP

ACKSlave address

(8th bit: “0”)

1st data 1st data (n) 2nd data

(Transmit data)

2nd data (n)

(Transmit data)

ACK ACK ACK ACK

Figure 6.2 Master Transmission (Pattern 1) Signals

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 13 of 80

Jan. 30, 2015

(2) Pattern 2

Data is transferred from the master (microcontroller) to the slave device. However, the first data is not transferred.

Operation from start condition (ST) generation through slave device address transmission is the same as for pattern 1.

However, after that the second data is transferred without sending the first data. When all data transmission has

completed, a stop condition (SP) is generated, releasing the bus.

SCLn

SDAn

Legend:

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge “0”

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

Start StopACKSlave address

(8th bit: “0”)

2nd data

(Transmit data)

2nd data (n)

(Transmit data)

ACK ACK

Figure 6.3 Master Transmission (Pattern 2) Signals

(3) Pattern 3

Operation from start condition (ST) generation through slave device address transmission is the same as in successful

operation. In cases where neither the first data nor the second data are set up, however, a stop condition (SP) is

generated releasing the bus without transferring any data.

This pattern is useful for detecting connected devices or when performing acknowledge polling to verify the EEPROM

rewriting state.

SCLn

SDAn

ST 1 2 3 4 5 6 7 8 9 SP

Start StopSlave address

(8th bit: “0”)

ACK

Legend:

ST: Start condition generation

SP: Stop condition generation

ACK: Acknowledge “0”

Figure 6.4 Master Transmission (Pattern 3) Signals

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 14 of 80

Jan. 30, 2015

(4) Pattern 4

In this pattern, after a start condition (ST) is generated, a stop condition (SP) is generated and released the bus without

transmitting the slave address, first data, or second data when those data are not set up.

This pattern is useful for just releasing the bus.

ST

SCLn

SDAn

Start Stop

SP
Legend:

ST: Start condition generation

SP: Stop condition generation

Figure 6.5 Master Transmission (Pattern 4) Signals

6.2.2 Master Reception

In master reception, the master (microcontroller) receives data from a slave device.

Here a start condition (ST) is generated and then the slave device address is transmitted. Since the 8th bit at this time is

the transfer direction specification bit, a 1 (read) is transmitted when this data is transmitted. Next, data reception starts.

Although an ACK is transmitted after each single byte of data is received during reception, a NACK is transmitted only

after the last data to notify the slave device that reception processing has terminated. When all the data has been

received, a stop condition (SP) is generated, releasing the bus.

SCLn

SDAn

Legend:

ST: Start condition generation NACK: Acknowledge “1”

SP: Stop condition generation ACK: Acknowledge “0”

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

Start StopACKSlave address

(8th bit: “0”)

2nd data

(Receive data)

2nd data

(Receive data (n))

ACK NACK

Figure 6.6 Master Reception Signals

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 15 of 80

Jan. 30, 2015

6.2.3 Master Composite

In this mode, data is first transmitted from the master (microcontroller) to the slave device (master transmission). After

this transmission completes, a restart condition is generated, the transfer direction is changed to 1 (read) and the master

receives data from the slave device (master reception).

First, a start condition (ST) is generated and then the slave device address is transmitted. During this transmission, the

8th bit is the transfer direction specification bit and a 0 (write) is transmitted for data transmission. When the data

transmission completes, a restart condition (RST) is generated and the slave address is transmitted. At this time, a 1

(read) is transmitted as the transfer direction specification bit. Next, data reception starts. Although an ACK is

transmitted after each single byte of data is received during reception, a NACK is transmitted only after the last data to

notify the slave device that reception processing has terminated. When all the data has been received, a stop condition

(SP) is generated, releasing the bus.

SCLn

SDAn

ST 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7 SPRST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Start Stop

Legend:

ST: Start condition generation NACK: Acknowledge “1”

SP: Stop condition generation ACK: Acknowledge “0”

RST: Start condition generation

ACKSlave address

(8th bit: “0”)

1st data

(Transmit data (n))

Slave address

(8th bit: “1”)

2nd data

(Receive data (n))

2nd data

(Receive data (n))

ACK ACK ACK NACKRestart

Figure 6.7 Master Composite Signals

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 16 of 80

Jan. 30, 2015

6.3 Software Operation

Communication is started by calling the start function. After that, I2C bus communication is moved forward by the user

calling the advance function. Two modes of software operation, one in which the advance function is called by the RIIC

interrupt handler and one in which it is called by the main processing routine, are described below.

(1) Calling the Advance Function from the RIIC Interrupt Handler

Communication is started by calling the start function. To confirm that communication has finished, specify a callback

function to set a flag, etc. The callback function is called when either a successful end or an error end occurs. It is

possible to determine whether communication ended successfully or with an error by reading the channel status flag

(g_iic_ChStatus[]).

No

Yes

Interrupt handler

Interrupt

generation

Clear user-defined flag

1. Clears the flag set by the

callback function.

Disable RIIC interrupts

Start function

Enable RIIC interrupts

Callback function

*
1

User-defined flag set?

Calls

the callback

function.

5. Completion

determination

4. Determines successful end

or error end from the channel

status flag and sets the user-

defined flag.

2. Specifies the callback function.

Starts communication.

3. Interrupt handling

Calls the advance function.

Executes communication.

Note: 1. If the RIIC interrupt handler is used to call the advance function, processing should be added by

the user for disabling and enabling RIIC interrupts before the start functions are called. If an RIIC

interrupt occurs in the interval before a start function is called, multiple API calls will overlap and

processing will end before the advance function can run. This will prevent subsequent

communication from occurring.

Figure 6.8 Software Operation Example: Calling the Advance Function from the RIIC Interrupt Handler

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 17 of 80

Jan. 30, 2015

(2) Calling the Advance Function from the Main Processing Routine

Communication is started by calling the start function. Continue calling the advance function from the main processing

routine until communication finishes. While communication is in progress, the status can be verified by checking the

return values from the advance function.

An event flag (g_iic_Event[]) is set when an interrupt occurs. The advance function monitors the event flag

(g_iic_Event[]) and executes communication when it confirms that the event flag (g_iic_Event[]) has been set. For

details of the event flag, see table 6.20.

No

Yes

Interrupt handler

Interrupt

generation

Start function

Advance function

Successful
completion or error?

2. Interrupt handling

Sets event flag.

3. When it has confirmed that the event

flag is set, the advance function clears

the event flag (R_IIC_EV_INIT) and

runs communication processing.

1. Communication

start

4. Completion determination

Return value of advance

function

Figure 6.9 Software Operation Example: Calling the Advance Function from the Main Processing Routine

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 18 of 80

Jan. 30, 2015

6.4 Software Operating Sequence

The figures below shows the operating sequence when the advance function is called by the RIIC interrupt handler and

when it is called by the main processing routine.

(1) Calling the Advance Function from the RIIC Interrupt Handler

User system Driver Interrupt handler Slave device

Start function

I
2
C interrupt handler

Interrupt source

Write, read, etc.

Interrupt source

Interrupt source

Interrupt source

Communication

started

Communication

finished

I
2
C interrupt handler

I
2
C interrupt handler

I
2
C interrupt handler

Processing to proceed

with I
2
C communication

Start condition generation

Write, read, etc.

Calls advance

function.

Processing to proceed

with I
2
C communication

Checks finished

determination.

Stop condition generation

Figure 6.10 Sequence: Calling the Advance Function from the RIIC Interrupt Handler

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 19 of 80

Jan. 30, 2015

(2) Calling the Advance Function from the Main Processing Routine

User system Driver Interrupt handler Slave device

Start function

Advance function

I
2
C interrupt handler

Interrupt source

Write, read, etc.

Advance function

Interrupt source

Interrupt source

Advance function

Interrupt source

Advance function

Sets return value to finished determination result.

Checks finished

determination.

Communication

started

Communication

finished

Processing to proceed with I
2
C

communication does not take place

because I
2
C interrupt did not occur

immediately beforehand.

I
2
C interrupt handler

I
2
C interrupt handler

I
2
C interrupt handler

Advance function

Start condition generation

Slave address transmission

Stop condition generation

Write, read, etc.

Sets event flag.

Processing to proceed with I
2
C communication

Processing to proceed with I
2
C communication

Figure 6.11 Sequence: Calling the Advance Function from the Main Processing Routine

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 20 of 80

Jan. 30, 2015

6.5 Implementation of Slave Device Control

(1) Slave Device Management

Information such as the channels used and the communication data is managed in a structure. Communication between

multiple devices on a channel is implemented by setting up a structure for each slave device controlled.

See section 6.13.1, I2C Communication Information Structure for details on this structure.

(2) Channel Status Management

Exclusive control of multiple slave devices connected to a bus is implemented using the g_iic_ChStatus[] channel state

flag. See the g_iic_ChStatus[] entry in section 6.15, Variables, for details on the channel state flags.

One of these flags exists for each channel and they are managed in a global variable. These flags are set to the

R_IIC_IDLE/R_IIC_FINISH/R_IIC_NACK state (the idle state (communication possible)) if I2C driver initialization

completes and communication is not performed on the corresponding bus. The state of these flags is set to

R_IIC_COMMUNICATION (communication in progress) during communication. Since these flags are always checked

at the start of communication, communication with another device on the same channel will never be started during

communication. Simultaneous communication over multiple channels is implemented by managing these flags for each

channel.

(3) Device State Management

Control of multiple slave devices on the same channel is supported with the *pDevStatus device state flag member in

the I2C communication information structure. The communication state of the corresponding device is stored in the

device state flag. See section 8.6, Control Methods for Multiple Slave Devices on the Same Channel, for details on the

use of these flags.

MCU

I
2
C

Channel 0

Serial data bus

Serial clock

I
2
C

Channel 1

Slave

device A
 Slave

device B
 Slave

device C

Serial data bus

Serial clock

Slave

device D
 Slave

device E

Channel 0 channel state flag g_iic_ChStatus[0]

Slave A

device state

flag

Channel 1 channel state flag g_iic_ChStatus[1]

Slave B

device state

flag

Slave C

device state

flag

Slave D

device state

flag

Slave E

device state

flag

Figure 6.12 Slave Device Control

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 21 of 80

Jan. 30, 2015

6.6 Communication Implementation

This sample code manages start conditions, slave device communication, and other processing as a single protocol, and

implements communication combinations with this protocol.

6.6.1 States During Control

The following states are defined to implement protocol control.

Table 6.2 States Used for Protocol Control (enum r_iic_drv_internal_status_t)

No. Constant Name Description

STS0 R_IIC_STS_NO_INIT Uninitialized state

STS1 R_IIC_STS_IDLE Idle state

STS2 R_IIC_STS_ST_COND_WAIT Start condition generation complete wait state

STS3 R_IIC_STS_SEND_SLVADR_W_WAIT Slave address [Write] transmission complete wait state

STS4 R_IIC_STS_SEND_SLVADR_R_WAIT Slave address [Read] transmission complete wait state

STS5 R_IIC_STS_SEND_DATA_WAIT Data transmission complete wait state

STS6 R_IIC_STS_RECEIVE_DATA_WAIT Data reception complete wait state

STS7 R_IIC_STS_SP_COND_WAIT Stop condition generation complete wait state

6.6.2 Events During Control

The following events generated during protocol control are defined.

Note that not only interrupts, but calls the interface functions provided by this sample code are defined as events.

Table 6.3 Events Used for Protocol Control (enum r_iic_drv_internal_event_t)

No. Event Event Definition

EV0 R_IIC_EV_INIT Call r_iic_drv_init_driver()

EV1 R_IIC_EV_GEN_START_COND Call r_iic_drv_generate_start_cond()

EV2 R_IIC_EV_INT_START ICEEI interrupt generation (interrupt flag: START)

EV3 R_IIC_EV_INT_ADD ICTEI interrupt generation

EV4 R_IIC_EV_INT_SEND ICTEI interrupt generation

EV5 R_IIC_EV_INT_RECEIVE ICRXI interrupt generation

EV6 R_IIC_EV_INT_STOP ICEEI interrupt generation (interrupt flag: STOP)

EV7 R_IIC_EV_INT_AL ICEEI interrupt generation (interrupt flag: AL)

EV8 R_IIC_EV_INT_NACK ICEEI interrupt generation (interrupt flag: NACK)

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 22 of 80

Jan. 30, 2015

6.6.3 Protocol State Transitions

In this sample code, the state transitions on calls the provided interface functions and when I2C interrupts occur. The

following figures show the protocol state transitions.

[R_IIC_STS_NO_INIT]

Uninitialized state

[R_IIC_STS_IDLE]

Idle state

(1) EV0 (call r_iic_drv_init_driver())/

• Initialization processing

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right.

Figure 6.13 Initialization State Transition Diagram

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 23 of 80

Jan. 30, 2015

(1) EV1 (call r_iic_drv_generate _start_cond())/

• Start of start condition generation

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right.

(2) EV2 (ICEEI interrupt generation)

[Slave address buffer pointer != NULL]/

• Start of slave address transmission (transfer direction: write)

[R_IIC_STS_IDLE]

Idle state

[R_IIC_STS_ST_COND_WAIT]

Start condition generation

complete wait state

[R_IIC_STS_SEND_SLVADR

_W_WAIT]

Slave address [Write] transmission

complete wait state

[R_IIC_STS_SEND_DATA

_WAIT]

Data transmission complete

wait state

[R_IIC_STS_SP_COND

_WAIT]

Stop condition generation

complete wait state

Pattern 4 operation

(3) EV2 (ICEEI interrupt generation)

[Slave address buffer pointer == NULL]/

• Start of stop condition generation

Pattern 3 operation

(6) EV3 (ICTEI interrupt generation)

[First data buffer pointer == NULL &&

second data buffer pointer == NULL]/

• Start of stop condition generation

(10) EV4 (ICTEI interrupt generation)

[When second data write has completed]/

• Start of stop condition generation

(11) EV6 (ICEEI interrupt generation)

• Termination processing

Pattern 1 operation

(4) EV3 (ICTEI interrupt generation)

[First data buffer pointer != NULL]/

• Start of transmission of the first byte of

the 1st data

(7) EV4 (ICTEI interrupt generation)

[First data continuous write in progress]/

• Start of transmission of the second or later

byte of the 1st data

(8) EV4 (ICTEI interrupt generation)

[When first data write has completed]/

• Start of transmission of the first byte of the

2nd data

(9) EV4 (ICTEI interrupt generation)

[Second data continuous write in progress]/

• Start of transmission of the second or later

byte of the 2nd data

Pattern 2 operation

(5) EV3 (ICTEI interrupt generation)

[First data buffer pointer == NULL &&

second data buffer pointer != NULL]/

• Start of transmission of the first byte of the 2nd data

Figure 6.14 Master Transmission State Transition Diagram

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 24 of 80

Jan. 30, 2015

(2) EV2 (ICEEI interrupt generation)/

• Start of slave address transmission (transfer direction: read)

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right. [R_IIC_STS_IDLE]

Idle state

[R_IIC_STS_ST_COND_WAIT]

Start condition generation

complete wait state

[R_IIC_STS_SEND_SLVADR

_R_WAIT]

Slave address [Read] transmission

complete wait state

[R_IIC_STS_RECEIVE

_DATA_WAIT]

Data reception complete

wait state

[R_IIC_STS_SP_COND

_WAIT]

Stop condition generation

complete wait state

(1) EV1 (call r_iic_drv_generate_start_cond())/

• Start of start condition generation

(3) EV5 (ICRXI interrupt generation)/

• Start of first data reception

(5) EV5 (ICRXI interrupt generation)

[When read has completed]/

• Start of stop condition generation

(6) EV6 (ICEEI interrupt generation)

• Termination processing

(4) EV5 (ICRXI interrupt generation)

[Continuous read in progress]/

• Start of reception of the second or later data

Figure 6.15 Master Reception State Transition Diagram

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 25 of 80

Jan. 30, 2015

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right.

[R_IIC_STS_IDLE]

Idle state

[R_IIC_STS_ST_COND_WAIT]

Start condition generation

complete wait state

[R_IIC_STS_SEND_SLVADR

_W_WAIT]

Slave address [Write] transmission

complete wait state

[R_IIC_STS_SP_COND

_WAIT]

Stop condition generation

complete wait state

[R_IIC_STS_RECEIVE

_DATA_WAIT]

Data reception complete

wait state

(1) EV1 (call r_iic_drv_generate_start_cond())/

• Start of start condition generation

(2) EV2 (ICEEI interrupt generation)

[The previous state was the idle state]/

• Start of slave address transmission

 (transfer direction: write)

(3) EV3 (ICTEI interrupt generation)/

• Start of first data transmission

(5) EV4 (ICTEI interrupt generation)

[When write has completed]/

• Start of restart condition

generation

[R_IIC_STS_SEND

_SLVADR_R_WAIT]

Slave address [Read]

transmission complete wait

state

(7) EV5 (ICRXI interrupt generation)/

• Start of first data reception

(9) EV5 (ICRXI interrupt generation)

[When read has completed]/

• Start of stop condition generation (10) EV6 (ICEEI interrupt generation)/

• Termination processing

(4) EV4 (ICTEI interrupt generation)

[Continuous write in progress]/

• Start of transmission of the second or

later data

(8) EV5 (ICRXI interrupt generation)

[Continuous read in progress]/

• Start of reception of the second or later

data

[R_IIC_STS_SEND_DATA

_WAIT]

Data transmission complete

wait state

(6) EV2 (ICEEI interrupt generation)

[The previous state was data transmission

complete wait]/

• Start of retransmission of slave address

 (transfer direction: read)

Figure 6.16 Master Composite State Transition Diagram

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 26 of 80

Jan. 30, 2015

6.6.4 Protocol State Transition Table

The processing for the operations when the events in table 6.3 occur in the states shown in table 6.2 is defined in the

following state transition table.

For STS0 and following states, see the “No.” column in table 6.2. For EV0 and other events, see the “No.” column in

table 6.3. See table 6.5 for Func0 and the following functions.

Table 6.4 Protocol State Transition Table (gc_iic_mtx_tbl[][])

 Event

State EV0 EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8

STS0
Uninitialized state

[R_IIC_STS_NO_INIT]
Func0 ERR ERR ERR ERR ERR ERR ERR ERR

STS1
Idle state

[R_IIC_STS_IDLE]
ERR Func1 ERR ERR ERR ERR ERR ERR ERR

STS2

Start condition generation complete wait

state

[R_IIC_STS_ST_COND_WAIT]

ERR ERR Func2 ERR ERR ERR ERR Func7 Func8

STS3

Slave address [Write] transmission

complete wait state

[R_IIC_STS_SEND_SLVADR_W_WAIT]

ERR ERR ERR Func3 ERR ERR ERR Func7 Func8

STS4

Slave address [Read] transmission

complete wait state

[R_IIC_STS_SEND_SLVADR_R_WAIT]

ERR ERR ERR ERR ERR Func3 ERR Func7 Func8

STS5
Data transmission complete wait state

[R_IIC_STS_SEND_DATA_WAIT]
ERR ERR ERR ERR Func4 ERR ERR Func7 Func8

STS6
Data reception complete wait state

[R_IIC_STS_RECEIVE_DATA_WAIT]
ERR ERR ERR ERR ERR Func5 ERR Func7 Func8

STS7

Stop condition generation complete wait

state

[R_IIC_STS_SP_COND_WAIT]

ERR ERR ERR ERR ERR ERR Func6 Func7 Func8

Note: “ERR” indicates R_IIC_ERR_OTHER. Cases where an event that has no meaning in that state is

reported are all handled as errors.

6.6.5 Protocol State Transition Registered Functions

The functions registered in the state transition table are defined as follows.

Table 6.5 Protocol State Transition Registered Functions

Processing Function Overview

Func0 r_iic_drv_init_driver() Initialization

Func1 r_iic_drv_generate_start_cond() Start condition generation

Func2 r_iic_drv_arter_gen_start_cond() Processing after start condition generation

Func3 r_iic_drv_after_send_slvadr() Post slave address transmission completion processing

Func4 r_iic_drv_write_data_sending() Data transmission

Func5 r_iic_drv_read_data_receiving() Data reception

Func6 r_iic_drv_release() Communication termination

Func7 r_iic_drv_arbitration_lost() Arbitration lost error handling

Func8 r_iic_drv_nack() NACK error handling

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 27 of 80

Jan. 30, 2015

6.6.6 Processing at Protocol State Transitions

This section describes the processing performed by r_iic_drv_func_table() (referred to below as the processing that

advances communication) when a protocol state transition occurs.

Event: An API call or an interrupt

Action: Call r_iic_drv_func()

Acquire current state

Select corresponding function from the

protocol state transition table (g_iic_mtx_tbl[][])

Call selected function

END

Clear event flag in g_iic_Event[]

Calls the function registered in the protocol state

transition table for the current state and the current event.

Returns R_IIC_ERR_OTHER if the corresponding

protocol state transition table entry is NULL.

The channel state flag and the device state flag are

modified in this processing.

Figure 6.17 Communication Advance Processing Calling Mechanism

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 28 of 80

Jan. 30, 2015

6.7 Interrupt Generation Timing

This section describes the interrupt timing in this driver.

Legend:

ST: Start condition

AD6-AD0: Slave address

/W: Transfer direction bit “0” (Write)

R: Transfer direction bit “1” (Read)

/ACK: Acknowledge “0”

NACK: Acknowledge “1”

D7-D0: Data

RST: Restart condition

SP: Stop condition

6.7.1 Master Transmission

(1) Pattern 1

ST AD6-AD0 /W /ACK D7-D0 /ACK D7-D0 /ACK SP

▲1: ICEEI (START) interrupt — start condition detected

▲2: ICTEI interrupt — address transmission complete (transfer direction bit: write)*1

▲3: ICTEI interrupt — data transmission complete (1st data unit)*1

▲4: ICTEI interrupt — data transmission complete (2nd data unit)*1

▲5: ICEEI (STOP) interrupt — stop condition detected

(2) Pattern 2

ST AD6-AD0 /W /ACK D7-D0 /ACK SP

▲1: ICEEI (START) interrupt — start condition detected

▲2: ICTEI interrupt — address transmission complete (transfer direction bit: write)*1

▲3: ICTEI interrupt — data transmission complete (2nd data unit)*1

▲4: ICEEI (STOP) interrupt — stop condition detected

▲2 ▲3 ▲4 ▲5 ▲1

▲2 ▲3 ▲4 ▲1

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 29 of 80

Jan. 30, 2015

(3) Pattern 3

ST AD6-AD0 /W /ACK SP

▲1: ICEEI (START) interrupt — start condition detected

▲2: ICTEI interrupt — address transmission complete (transfer direction bit: write)*1

▲3: ICEEI (STOP) interrupt — stop condition detected

(4) Pattern 4

ST SP

▲1: ICEEI (START) interrupt — start condition detected

▲2: ICEEI (STOP) interrupt — stop condition detected

6.7.2 Master Reception

ST AD6-AD0 R /ACK D7-D0 /ACK D7-D0 NACK SP

▲1: ICEEI (START) interrupt — start condition detected

▲2: ICRXI interrupt — address transmission complete (transfer direction bit: Read)*1

▲3: ICRXI interrupt — Final data unit – 1 reception complete (2nd data unit)*1

▲4: ICRXI interrupt — Final data unit reception complete (2nd data unit)*2

▲5: ICEEI (STOP) interrupt — stop condition detected

▲2 ▲3 ▲1

▲2 ▲1

▲2 ▲3 ▲4 ▲5 ▲1

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 30 of 80

Jan. 30, 2015

6.7.3 Master Composite

ST AD6-AD0 /W /ACK D7-D0 /ACK RST AD6-AD0 R

/ACK D7-D0 /ACK D7-D0 NACK SP

▲1: ICEEI (START) interrupt — start condition detected

▲2: ICTEI interrupt — address transmission complete (transfer direction bit: write)*1

▲3: ICTEI interrupt — data transmission complete (1st data unit)*1

▲4: ICEEI (START) interrupt — restart condition detected

▲5: ICRXI interrupt — address transmission complete (transfer direction bit: Read)*1

▲6: ICRXI interrupt — Final data unit – 1 reception complete (2nd data unit)*1

▲7: ICRXI interrupt — Final data unit reception complete (2nd data unit)*2

▲8: ICEEI (STOP) interrupt — stop condition detected

Notes: 1. Generated at the rise of the ninth clock pulse.

 2. Generated at the rise of the eight clock pulse.

▲2 ▲3 ▲1 ▲4

▲5 ▲6 ▲7 ▲8

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 31 of 80

Jan. 30, 2015

6.8 Callback Function

This function is called either if communication completes successfully or if it terminated with an error. To use this

functionality, specify a function name for the CallBackFunc member of the I2C communication information structure.

See section 6.13.1, I2C Communication Information Structure for details on this structure.

6.9 Relationship of Data Buffers and Transmit/Receive Data

The sample code is a block device driver, and transmit/receive data pointers are set as arguments. The relationship of

the data alignment of the data buffers in RAM and the transmit/receive order is described below. Regardless of the

endian mode or serial communication function used, data is transmitted in the transmit data buffer alignment order, and

data is written to the receive data buffer in the order received.

Master transmit

Transmit data buffer in RAM (numbers indicate bytes)

Data transmission order

0 1 • • • 508 509 510 511

Data reception order

Master receive

0 1 • • • 508 509 510 511

Data transmission order

0 1 • • • 508 509 510 511

Write to receive data buffer

Write to slave device (numbers indicate bytes)

Read from slave device (numbers indicate bytes)

Data buffer in RAM (numbers indicate bytes)

0 1 • • • 508 509 510 511

Figure 6.18 Storage of Transfer Data

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 32 of 80

Jan. 30, 2015

6.10 Required Memory Sizes

The following lists the required memory sizes. The memory sizes listed below apply when one channel is used. The

required memory sizes differ according to the number of channels used.

(1) RX63N

Table 6.7 Required Memory Sizes

Memory Used Size Remarks

ROM 4,648 bytes

(little endian)

r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

RAM 30 bytes

(little endian)

r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

Maximum usable user stack 84 bytes

Maximum usable interrupt stack 4 bytes

Note: The required memory sizes differ according to the C compiler version and the compile options.

(2) RX210

Table 6.8 Required Memory Sizes

Memory Used Size Remarks

ROM 4,654 bytes

(little endian)

r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

RAM 30 bytes

(little endian)

r_iic_drv_api.c

r_iic_drv_int.c

r_iic_drv_sfr.c

r_iic_drv_sub.c

Maximum usable user stack 84 bytes

Maximum usable interrupt stack 4 bytes

Note: The required memory sizes differ according to the C compiler version and the compile options.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 33 of 80

Jan. 30, 2015

6.11 File Structure

Table 6.11 lists the files used by the sample code. Note that files that are generated automatically by the integrated

development environment are not listed.

Table 6.9 File Structure

\an_r01an1254ej0103_rx_iic <DIR> Sample code folder

 r01an1254ej0103_rx.pdf Application note

 \source <DIR> Folder containing the program

 \r_iic_drv_rx <DIR> I2C single master control software folder

 r_iic_drv_api.c API source file

 r_iic_drv_api.h API header file

 r_iic_drv_int.c Interrupt handler source file

 r_iic_drv_int.h Interrupt handler header file

 r_iic_drv_sfr.h.rx21a Common register definitions header file (for the RX21A)

 r_iic_drv_sfr.h.rx62n Common register definitions header file (for the RX62N)

 r_iic_drv_sfr.h.rx63n Common register definitions header file (for the RX63N)

 r_iic_drv_sfr.h.rx63t Common register definitions header file (for the RX63T)

 r_iic_drv_sfr.h.rx210 Common register definitions header file (for the RX210)

 r_iic_drv_sfr_rx21a.c Common register definitions source file (for the RX21A)

 r_iic_drv_sfr_rx62n.c Common register definitions source file (for the RX62N)

 r_iic_drv_sfr_rx63n.c Common register definitions source file (for the RX63N)

 r_iic_drv_sfr_rx63t.c Common register definitions source file (for the RX63T)

 r_iic_drv_sfr_rx210.c Common register definitions source file (for the RX210)

 r_iic_drv_sub.c Internal function source file

 r_iic_drv_sub.h Internal function header file

 \sample <DIR> Folder containing the program for verifying EEPROM

operation

 sample_background.c Sample program for verifying EEPROM operation when

calling the advance function from the RIIC interrupt handler

 sample_foreground.c Sample program for verifying EEPROM operation when

calling the advance function from the main processing

routine

Note: A file with a filename of the form r_iic_drv_sfr.hXXX has been created for each microcontroller. One of

these must be renamed to r_iic_drv_sfr.h and used. If there is no such file for the microcontroller used,

the user must refer to these files and create an appropriate r_iic_drv_sfr.h file.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 34 of 80

Jan. 30, 2015

6.12 Constants

6.12.1 Return Values

The return value, channel state flag, and device state flag management values used in the sample code are listed below.

Table 6.10 Return Values, Channel State Flag, and Device State Flag Management Values

(defined in r_iic_drv_api.h)

Constant Name Setting Value Description

R_IIC_NO_INIT (error_t)(0) Uninitialized state

R_IIC_IDLE (error_t)(1) Idle state: ready for communication

R_IIC_FINISH (error_t)(2) Idle state: previous communication complete, ready for

communication

R_IIC_NACK (error_t)(3) Idle state: previous communication NACK complete,

ready for communication

R_IIC_COMMUNICATION (error_t)(4) Communication in progress

R_IIC_LOCK_FUNC (error_t)(5) API processing in progress

This state occurs in the following cases:

 When another API function is called during API

processing

R_IIC_BUS_BUSY (error_t)(6) Bus busy

This state occurs in the following cases:

 When, during communication, either the initialization

function or a start function has been called

 When another device is communicating over the

same channel and either a start function or the

advance function has been called

R_IIC_ERR_PARAM (error_t)(-1) Parameter error

R_IIC_ERR_AL (error_t)(-2) Arbitration lost error

R_IIC_ERR_NON_REPLY (error_t)(-3) No response error

R_IIC_ERR_SDA_LOW_HOLD (error_t)(-4) SDA held low error when SDL pseudo clock generate

function called

R_IIC_ERR_OTHER (error_t)(-5) Other error

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 35 of 80

Jan. 30, 2015

6.12.2 Definitions

The definitions of the constants used in the sample code are listed below, broken down by file.

Table 6.11 Constants Defined in r_iic_drv_api.h

Constant Name Setting Value Description

MAX_IIC_CH_NUM (uint8_t)(1) One plus the maximum number of channels that can be used

at the same time.

Sets to 1 in this sample code.

REPLY_CNT (uinit32_t)(10000) Advanced function counter*1

STOP_COND_WAIT (uint16_t)(1000) Stop condition generation wait counter*1

BUSCHK_CNT (uint16_t)(1000) Bus busy check counter*1

SDACHK_CNT (uint16_t)(1000) SDA level check counter*1

GEN_SCLCLK_WAIT (uint16_t)(1000) Pseudo clock generation wait counter*1

W_CODE (uint8_t)(0x00) Setting value when slave address transfer direction is “write”

R_CODE (uint8_t)(0x01) Setting value when slave address transfer direction is “Read”

R_IIC_HI (uint8_t)(0x01) Port “H”

R_IIC_LOW (uint8_t)(0x00) Port “L”

R_IIC_OUT (uint8_t)(0x01) Port Output

R_IIC_IN (uint8_t)(0x00) Port Input

R_IIC_FALSE (uint8_t)(0x00) Flag "OFF"

R_IIC_TRUE (uint8_t)(0x01) Flag "ON"

Note: 1. Counter value settings

These are counters for software loops. This means that the loop time will depend on the system

clock actually used. These values must be set according to the system clock used.

Table 6.12 Constants Defined in r_iic_drv_sfr.h.rxXXX

(XXX represents the microcontroller model number.)

Constant Name Setting Value Description

R_IIC_CHx_LCLK (uint8_t)(0xED) I2C bus bit rate low-level register (ICBRL) setting for

channel x (x = channel number)*2

R_IIC_CHx_HCLK (uint8_t)(0xE6) I2C bus bit rate high-level register (ICBRL) setting for

channel x (x = channel number)*2

R_IIC_CHx_ICMR1_INIT (uint8_t)(0x28) I2C bus mode register 1 (ICMR1) setting for

channel x (x = channel number)*2

R_IIC_IPR_CHx_EEI_INIT (uint8_t)(0x02) ICEEIx interrupt priority for channel x (x = channel number)

R_IIC_IPR_CHx_RXI_INIT (uint8_t)(0x02) ICRXIx interrupt priority for channel x (x = channel number)

R_IIC_IPR_CHx_TXI_INIT (uint8_t)(0x02) ICTXIx interrupt priority for channel x (x = channel number)

R_IIC_IPR_CHx_TEI_INIT (uint8_t)(0x02) ICTEIx interrupt priority for channel x (x = channel number)

Note: 2. Transfer rate setting

The transfer clock is determined by the following settings. These settings must be made for each

channel used. Define each setting as needed. For details of the setting procedure, see the RX

Family User’s Manual: Hardware.

 Internal reference clock select bits (CKS[2:0]) in I2C bus mode register 1 (ICMR1)

 I2C bus bit rate low-level register (ICBRL)

 I2C bus bit rate high-level register (ICBRH)

The maximum setting is 400 kHz. However, if standard mode devices and fast mode devices are

used together, the standard mode maximum rate of 100 kHz must be used as the setting. Note

that it may be necessary to modify the setting value since the rise time (tR) and fall time (tF) of the

SDA and SCL signals differ according to the pull-up resistance and the wiring capacitance.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 36 of 80

Jan. 30, 2015

6.13 Structures and Unions

6.13.1 I2C Communication Information Structure

The figure below shows the I2C communication information structure used in the sample code. An instance of this

structure must be set up for each slave device used.

typedef struct

{

 uint8_t *pSlvAdr; /* Pointer for Slave address buffer */

 uint8_t *pData1st; /* Pointer for 1st Data buffer */

 uint8_t *pData2nd; /* Pointer for 2nd Data buffer */

 error_t *pDevStatus; /* Device status flag */

 uint32_t Cnt1st; /* 1st Data counter */

 uint32_t Cnt2nd; /* 2nd Data counter */

 r_iic_callback CallBackFunc; /* Callback function */

 uint8_t ChNo; /* Channel No. */

 uint8_t rsv1;

 uint8_t rsv2;

 uint8_t rsv3;

} r_iic_drv_info_t;

Figure 6.19 I2C Communication Information Structure

(1) Structure Members

The table below lists the structure members. See tables 6.16 and 6.17 for details on setting the r_iic_drv_info_t

members.

Table 6.13 Structure r_iic_drv_info_t Members

Structure member Description

*pSlvAdr Slave address storage buffer pointer

Allocate one byte for this data.

*pData1st 1st data storage buffer pointer

*pData2nd 2nd data storage buffer pointer

*pDevStatus Device state flag pointer

Device states can be checked during communication, even when multiple

devices are connected to the same channel. Allocate one byte for this data.

See section 8.6 for a usage example.

Cnt1st 1st data counter (byte count)

Cnt2nd 2nd data counter (byte count)

CallBackFunc Callback function

ChNo Channel number of the used device

Set this to the channel number of the bus used.

rsv1

rsv2

rsv3

Alignment adjustment members

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 37 of 80

Jan. 30, 2015

(2) Settings

Table 6.16 lists the allowable range of user settings for the structure r_iic_drv_info_t members for master transmission

and table 6.17 lists those for master reception and master composite.

Table 6.14 User Setting Ranges for r_iic_drv_info_t Members: Master Transmission

Structure

Member

Allowable User Setting Range

Master Transmission

Pattern 1

Master Transmission

Pattern 2

Master Transmission

Pattern 3

Master Transmission

Pattern 4

*pSlvAdr Slave address storage

source address

Slave address storage

source address

Slave address storage

source address

NULL

*pData1st 1st data storage source

address

NULL NULL NULL

*pData2nd 2nd data (transmit

data) storage source

address

Second data (transmit

data) storage source

address

NULL NULL

*pDevStatus Device state storage

source address

Device state storage

source address

Device state storage

source address

Device state storage

source address

Cnt1st 0000 0001h*1 to

FFFF FFFFh

(Invalid setting) (Invalid setting) (Invalid setting)

Cnt2nd 0000 0001h*1 to

FFFF FFFFh

0000 0001h*1 to

FFFF FFFFh

(Invalid setting) (Invalid setting)

CallBackFunc If used: specify the

name of the function. If

not, set to NULL.

If used: specify the

name of the function. If

not, set to NULL.

If used: specify the

name of the function. If

not, set to NULL.

If used: specify the

name of the function. If

not, set to NULL.

ChNo 00h to FFh 00h to FFh 00h to FFh 00h to FFh

rsv1, rsv2, rsv3 (Invalid setting) (Invalid setting) (Invalid setting) (Invalid setting)

Table 6.15 User Setting Ranges for r_iic_drv_info_t Members: Master Reception and Master

Composite

Structure

Member

Allowable User Setting Range

Master Reception Master Composite

*pSlvAdr Slave address storage

source address

Slave address storage

source address

*pData1st (Invalid setting) 1st data storage

source address

*pData2nd 2nd data (receive data)

storage destination

address

2nd data (receive data)

storage destination

address

*pDevStatus Device state storage

source address

Device state storage

source address

Cnt1st (Invalid setting) 0000 0001h*1 to

FFFF FFFFh

Cnt2nd 0000 0001h*1 to

FFFF FFFFh

0000 0001h*1 to

FFFF FFFFh

CallBackFunc If used: specify the

name of the function. If

not, set to NULL.

If used: specify the

name of the function. If

not, set to NULL.

ChNo 00h to FFh 00h to FFh

rsv1, rsv2, rsv3 (Invalid setting) (Invalid setting)

Note: 1. The value 0 is illegal in both table 6.16 and table 6.17.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 38 of 80

Jan. 30, 2015

(3) Callback Function

This function is called either if communication completes successfully or if it terminated with an error. To use this

functionality, specify a function name for the CallBackFunc member.

(4) Notes On Settings

During master transmission, the data stored in the members of this structure is referenced to determine what operation

to perform. This sample code may fail to operate correctly if any values other than those listed in table 6.16 are used.

6.13.2 Internal Information Management Structure

The figure below shows the internal information management structure used by the sample code. Since this structure is

controlled by the sample code, there is no need for it to be set by the user.

typedef struct

{

 r_iic_drv_internal_mode_t Mode; /* Mode of Control Protocol */

 r_iic_drv_internal_status_t N_status; /* Internal Status of NOW */

 r_iic_drv_internal_status_t B_status; /* Internal Status of BEFORE */

} r_iic_drv_internal_info_t;

Figure 6.20 Internal information management structure

(1) Structure Members

The table lists the structure members.

Table 6.16 Structure r_iic_drv_internal_info_t Members

Structure Member Description

Mode I2C protocol mode

See table 6.19 for the definition of the data stored.

N_status The protocol control current state. Values defined in table 6.2 are stored in this

member.

B_status The protocol control previous state. Values defined in table 6.2 are stored in this

member.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 39 of 80

Jan. 30, 2015

6.14 Enumerated Types

The enumerated type definitions used in the sample code are listed below.

Table 6.17 I2C Protocol Operating Modes (enum r_iic_drv_internal_mode_t)

 Description

R_IIC_MODE_NONE No communication state

This mode is transitioned to from the uninitialized state or from the idle

state.

R_IIC_MODE_WRITE Master transmission in progress

This mode is transitioned to by starting communication with the master

transmission start function R_IIC_Drv_MasterTx().

R_IIC_MODE_READ Master reception in progress

This mode is transitioned to by starting communication with the master

reception start function R_IIC_Drv_MasterRx().

R_IIC_MODE_COMBINED Master composite operation in progress

This mode is transitioned to by starting communication with the master

composite start function R_IIC_Drv_MasterTRx().

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 40 of 80

Jan. 30, 2015

6.15 Variables

Table 6.20 lists the global variable.

Table 6.18 Global Variable

Type Valuable Description Function Used

uint8_t g_iic_ChStatus[MA

X_IIC_CH_NUM]

Channel state flag

The communication state defined in

table 6.12 can be checked.

Set this variable to R_IIC_NO_INIT at

initialization.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

R_IIC_Drv_GenClk

R_IIC_Drv_Reset

r_iic_drv_intern

al_event_t

g_iic_Event[MAX_II

C_CH_NUM]

Event flag

This flag is set when an interrupt occurs

and is cleared by the advance function.

The value after clearing is

R_IIC_EV_INIT. See table 6.3 for the

setting values, and see figure 6.9 for the

relationship between setting and

clearing.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

r_iic_drv_intern

al_info_t

g_iic_InternalInfo[M

AX_IIC_CH_NUM]

Internal information management

This variable is managed by the sample

code and must not be set by the user.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

uint32_t g_iic_ReplyCnt[MA

X_IIC_CH_NUM]

Advance function counter

This is the upper limit on the number of

calls the advance function. It is

decremented by the advance function

called by the user. It is initialized when

an event occurs. If it reaches 0, the

channel state flag and the device state

flag are set to

R_IIC_ERR_NON_REPLY.

The counter value can be modified with

the REPLY_CNT macro definition. This

macro should be set appropriately for

the actual user system.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

bool g_iic_Api[MAX_IIC_

CH_NUM]

API flag

This flag is used to prevent multiple calls

this sample code’s API.

It is set when API processing starts and

cleared after that processing completes.

R_IIC_Drv_Init

R_IIC_Drv_MasterTx

R_IIC_Drv_MasterRx

R_IIC_Drv_MasterTRx

R_IIC_Drv_Advance

R_IIC_Drv_GenClk

R_IIC_Drv_Reset

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 41 of 80

Jan. 30, 2015

6.16 Functions

Table 6.21 lists the Functions.

Table 6.19 Functions

Function Description

R_IIC_Drv_Init() I2C driver initialization function

R_IIC_Drv_MasterTx() Master transmission start function

R_IIC_Drv_MasterRx() Master reception start function

R_IIC_Drv_MasterTRx() Master composite start function

R_IIC_Drv_Advance() Advance function

R_IIC_Drv_GenClk() SCL pseudo clock generation function

R_IIC_Drv_Reset() I2C driver reset function

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 42 of 80

Jan. 30, 2015

6.17 State Transition Diagram

Figure 6.21 is a diagram showing state transitions for each channel.

Call R_IIC_Drv_Reset()

• I
2
C driver reset processing

Uninitialized state

Idle state

Communication

in progress

Error state

Call R_IIC_Drv_Reset()/

• I
2
C driver reset processing

Notation of state

Notation conventions
Event [condition]/action

• Events are notated on the left.

• Actions when events occur are

 notated on the right.

Call R_IIC_Drv_Init()

[Bus free state]/

• Initialization processing

Call R_IIC_Drv_MasterTx()

[Bus free state]/

• Master transmission start processing

Call R_IIC_Drv_MasterRx()

[Bus free state]/

• Master reception start processing

Call R_IIC_Drv_MasterTRx()

[Bus free state]/

• Master composite start processing

Call R_IIC_Drv_Advance()

[Communication in progress]/

• Communication state monitoring

• Processing to proceed with I
2
C

 communication

Call R_IIC_Drv_Advance()

[Successful completion or NACK detected]/

• Communication termination processing

Call R_IIC_Drv_MasterTx()

[Error generation]/

• Setting of error state in return value

Call R_IIC_Drv_MasterRx()

[Error generation]/

• Setting of error state in return value

Call R_IIC_Drv_MasterTRx()

[Error generation]/

• Setting of error state in return value

Call R_IIC_Drv_Advance()

[Error generation]/

• Setting of error state in return value

Call R_IIC_Drv_MasterTx()

[After low-level hold of the SDA

and SCL lines is released and

initialization]/

• Master transmission pattern 4

 start processing

Call R_IIC_Drv_Reset()

• I
2
C driver reset processing

Call R_IIC_Drv_GenClk()

• SCL pseudo clock generation processing

Call R_IIC_Drv_Init()

[After SCL pseudo clock generation processing

called or after I
2
C driver reset processing called]/

• Initialization

Figure 6.21 State Transition Diagram

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 43 of 80

Jan. 30, 2015

6.17.1 Error State Definitions

In this sample code, occurrences of the following phenomena are defined to be error states. Error occurrences can be

verified from the return values after return from the API functions. See the return values from each of the API functions

in section 6.18, Function Specifications, for methods for responding when an error occurs.

(1) Parameter Error

Return value: R_IIC_ERR_PARAM

If the arguments were not set appropriately when an API function was called.

(2) Arbitration Lost

Return value: R_IIC_ERR_AL

If arbitration was lost. See the RX Family User’s Manual: Hardware for the conditions where this occurs.

(3) No Response Error

Return value: R_IIC_NON_REPLY

The following cases result in a no response error.

 If the number of advance function calls exceeds the limit

 When a start function was called, if the bus was monitored for a fixed time but was not released

 If the start condition generation processing was performed but it was not detected after a fixed time had passed

 If the stop condition generation processing was performed when the advance function was called but it was not

detected after a fixed time had passed

Note that the start condition generation wait time is measured with a software loop. The counter value can be set by the

user. Set this value according to the system clock used. See table 6.13 for the definition of this counter.

(4) SDA Held Low (Recovery not possible)

Return value: R_IIC_ERR_SDA_LOW_HOLD

If an SCL pseudo clock was generated but SDA remained held at the low level.

(5) Other Errors

Return value: R_IIC_ERR_OTHER

If an error other than (1) to (4) above occurred.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 44 of 80

Jan. 30, 2015

6.17.2 Flag States at State Transitions

Table 6.22 lists the states of the flags when a state transition occurs.

Table 6.20 Flag States at State Transitions

State Channel State Flag Device State Flag

(Communicating Device)

I2C Protocol Operating

Mode

Current State of The Protocol

Control

 g_iic_ChStatus[] I2C Communication

Information Structure

*pDevStatus

Internal Communication

Information Structure

Mode

Internal Communication Information

Structure

N_status

Uninitialized state R_IIC_NO_INIT R_IIC_NO_INIT R_IIC_MODE_NONE R_IIC_STS_NO_INIT

Idle state R_IIC_IDLE

R_IIC_FINISH

R_IIC_NACK

R_IIC_IDLE

R_IIC_FINISH

R_IIC_NACK

R_IIC_MODE_NONE R_IIC_STS_IDLE

Communication in

progress

(master

transmission)

R_IIC_COMMUNICATION R_IIC_COMMUNICATION R_IIC_MODE_WRITE R_IIC_STS_ST_COND_WAIT

 R_IIC_STS_SEND_SLVADR_W_WAIT

 R_IIC_STS_SEND_SLVADR_R_WAIT

 R_IIC_STS_SEND_DATA_WAIT

 R_IIC_STS_RECEIVE_DATA_WAIT

 R_IIC_STS_SP_COND_WAIT

Communication in

progress

(master reception)

R_IIC_COMMUNICATION R_IIC_COMMUNICATION R_IIC_MODE_READ R_IIC_STS_ST_COND_WAIT

 R_IIC_STS_SEND_SLVADR_W_WAIT

 R_IIC_STS_SEND_SLVADR_R_WAIT

 R_IIC_STS_SEND_DATA_WAIT

 R_IIC_STS_RECEIVE_DATA_WAIT

 R_IIC_STS_SP_COND_WAIT

Communication in

progress

(master

composite)

R_IIC_COMMUNICATION R_IIC_COMMUNICATION R_IIC_MODE_COMBINED R_IIC_STS_ST_COND_WAIT

 R_IIC_STS_SEND_SLVADR_W_WAIT

 R_IIC_STS_SEND_SLVADR_R_WAIT

 R_IIC_STS_SEND_DATA_WAIT

 R_IIC_STS_RECEIVE_DATA_WAIT

 R_IIC_STS_SP_COND_WAIT

Error state R_IIC_ERR_PARAM R_IIC_ERR_PARAM

 R_IIC_ERR_AL R_IIC_ERR_AL

 R_IIC_ERR_NON_REPLY R_IIC_ERR_NON_REPLY

 R_IIC_ERR_SCL_GENCLK R_IIC_ERR_SCL_GENCLK

 R_IIC_ERR_OTHER R_IIC_ERR_OTHER

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 45 of 80

Jan. 30, 2015

6.18 Function Specifications

6.18.1 Common Processing for These Functions

This sample code has an API that can be operated once. If this sample code’s API is called during execution of this API

processing, the processing is not performed and the function terminates. The value R_IIC_LOCK_FUNC is returned in

this case.

An API flag is provided to prevent simultaneous calls the API. This flag is set while API processing is being performed.

This mechanism operates as follows: at the start of API processing the flag is checked and the processing is only

performed if the flag is not set. Figure 6.22 presents an overview of this processing as flowcharts.

This processing is performed for the functions defined in section 6.16. The subsequent processing indicated as “user

API processing” in figure 6.22 is described in section 6.18.2 and the following sections.

User API

API function processing return value

API flags

Lock API flags

R_IIC_LOCK_FUNC

API flag unlock processing

Checks whether or not there is a function that is currently processing.

If not, sets the API flag.

Function used state

No function used state

“User API processing”

One of the functions listed at left is run.

Clears the API flag.

Parameter check
Parameter error

R_IIC_ERR_PARAM

Parameter confirmed

r_iic_drv_init

r_iic_drv_mastertx

r_iic_drv_masterrx

r_iic_drv_mastertrx

r_iic_drv_advance

r_iic_drv_genclk

r_iic_drv_reset

Figure 6.22 Simplified Flowchart of Processing to Prevent Multiple Overlapping Function Calls

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 46 of 80

Jan. 30, 2015

6.18.2 I²C Driver Initialization Function

R_IIC_Drv_Init

Outline I2C driver initialization function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h

Declaration error_t R_IIC_Drv_Init(r_iic_drv_info_t *pRIic_Info)

Description Initializes the corresponding channel.

 The following must be set up to use this function.

The ChNo member of the r_iic_drv_info_t structure; The channel number used

The channel state flag (g_iic_ChStatus[]); Sets R_IIC_NO_INIT*1

The device state flag (*(pRIic_Info.pDevStatus)); Sets R_IIC_NO_INIT*1

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I2C communication information structure

Return Value R_IIC_IDLE

In the channel uninitialized state, this function performs the initialization and transitions
to the idle state. The channel state flag and device state flag are set to R_IIC_IDLE.

In the already initialized state, initialization is not performed and the device state flag is
set to R_IIC_IDLE.

 Communication is now possible by calling the start function.

R_IIC_FINISH / R_IIC_NACK

This is the result of executing the preprocessing. Since the start function can be called,
initialization is not performed. The channel state flag and device state flag are not
changed.

 Communication is now possible by calling the start function.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

Communication is in progress. Initialization is not possible. The channel state flag and
device state flag are not changed.

 Call the advance function to terminate communication.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are not changed.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

A no replay error occurred. The channel state flag and device state flag are not
changed.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 47 of 80

Jan. 30, 2015

 R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I2C communication information structure is set up correctly.

Remarks Note: 1. Before calling the initialization function, set R_IIC_NO_INIT. If the initialization

function is called without setting this, the initialization processing may not be

performed.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 48 of 80

Jan. 30, 2015

R_iiC_drv_init

State flag setting:

R_IIC_IDLE

Channel state

Idle state

Communication in progress

Error state

Uninitialized state:

R_IIC_NO_INIT

Check the channel state flag state.

Sets the channel state flag and the device state flag.

Sets the current state of protocol control to the uninitialized state.

Check channel state flag

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

R_IIC_IDLE

R_IIC_FINISH

R_IIC_NACK

R_IIC_BUS_BUSY

Initialize internal

management state

Initialize RAM

A

Set up port input pin

Disable MPC

Cancel module stop

Pin state: Hi-Z

Assigns pin to port function.*
1

Cancels module stop state of RIIC.

Note: 1. If an MPC is present, the multi-function pin controller setting is disabled.

 If no MPC is present, the pin is disabled in the input buffer control register.

Figure 6.23 I2C Driver Initialization Function Overview Flowchart (1/2)

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 49 of 80

Jan. 30, 2015

R_IIC_IDLE

Set state flag:

R_IIC_ERR_OTHER

Error?

Error

Successful processing

A

Driver initialization processing

I
2
C disable processing

R_IIC_ERR_OTHER

Initializes I
2
C related registers.

Disable MPC (port function)*
1

Internal reset state

Interrupts stopped

 IER: Requests disabled

 IPR: Initialized

 IR: Cleared

 RIIC.ICIER: Disabled

Note: 1. If an MPC is present, the multi-function pin controller setting is disabled.

 If no MPC is present, the pin is disabled in the input buffer control register.

Figure 6.24 I2C Driver Initialization Function Overview Flowchart (2/2)

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 50 of 80

Jan. 30, 2015

6.18.3 Master Transmission Start Function

R_IIC_Drv_MasterTx

Outline Master transmission start function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h

Declaration error_t R_IIC_Drv_MasterTx (r_iic_drv_info_t *pRIic_Info)

Description Starts master transmission.

 The r_iic_drv_info_t I2C communication information structure must be set up to

perform this operation. See table 6.16 for details on that setup.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I2C communication information structure

Return Value R_IIC_COMMUNICATION

Master transmission started. The channel state flag and device state flag are set to
R_IIC_COMMUNICATION.

 Call the advance function to terminate communication.

R_IIC_NO_INIT

Initialization was not performed.*1 The channel state flag and device state flag are not
changed.

 Call the initialization function and assure its processing has completed.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

Communication is in progress. It was not possible to start master transmission. The
channel state flag and device state flag are not changed.

 Call the advance function to terminate communication.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are not changed.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

Either the bus was not released or it was not possible to detect the start condition. The
channel state flag and device state flag are set to R_IIC_ERR_NON_REPLY.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I2C communication information structure is set up correctly.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 51 of 80

Jan. 30, 2015

Remarks At the point this function returns, I2C communication has not completed. The advance

function must be called to terminate I2C communication.

 The communication state after calling the start function can be checked with the return

value from the advance function.

Note: 1. Even if initialization was performed once, the driver may enter the uninitialized

state if another device on the same channel subsequently calls the I2C driver

setting function. In such cases, call the I2C driver initialization function once

again before calling the start function.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 52 of 80

Jan. 30, 2015

Error?

r_iic_drv_mastertx

R_IIC_ERR_NON_REPLY

Error

State flag setting:

R_IIC_ERR_NON_REPLY

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Channel state

R_IIC_NO_INIT

R_IIC_BUS_BUSY

Uninitialized state

Communication in progress

Error state

Idle state

Successful

processing

Check the channel state flag state.

If a callback function is defined, specifies that function.

State flag setting:

R_IIC_COMMUNICATION

R_IIC_COMMUNICATION

Enables interrupts

(RIIC.ICIER: enabled, IR: cleared, IER: requests enabled).

Cancels internal reset, enables MPC (RIIC pin function).*
1

Note: 1. If an MPC is present, the multi-function pin controller setting

is enabled.

If no MPC is present, the pin is enabled in the input buffer

control register.

Checks the bus busy state.

Generates the start condition.

Initialize advance function counter

I
2
C protocol mode setting:

R_IIC_MODE_WRITE

Sets the channel state flag

and the device state flag.

Check channel state flag

Set up callback function

Initialize RAM

I
2
C enable processing

Processing to advance

communication

I
2
C disable processing

Disable MPC (port function)*
1

Internal reset state

Interrupts stopped

 IER: Requests disabled

 IPR: Initialized

 IR: Cleared

 RIIC.ICIER: Disabled

Figure 6.25 Master Transmission Start Function Overview Flowchart

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 53 of 80

Jan. 30, 2015

6.18.4 Master Reception Start Function

R_IIC_Drv_MasterRx

Outline Master reception start function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h

Declaration error_t R_IIC_Drv_MasterRx (r_iic_drv_info_t *pRIic_Info)

Description Starts master reception.

 The r_iic_drv_info_t I2C communication information structure must be set up to

perform this operation. See table 6.17 for details on that setup.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I2C communication information structure

Return Value R_IIC_COMMUNICATION

Master reception started. The channel state flag and device state flag are set to
R_IIC_COMMUNICATION.

 Call the advance function to terminate communication.

R_IIC_NO_INIT

Initialization was not performed.*1 The channel state flag and device state flag are not
changed.

 Call the initialization function and assure its processing has completed.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

Communication is in progress. It was not possible to start master reception. The
channel state flag and device state flag are not changed.

 Call the advance function to terminate communication.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are not changed.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

Either the bus was not released or it was not possible to detect the start condition. The
channel state flag and device state flag are set to R_IIC_ERR_NON_REPLY.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I2C communication information structure is set up correctly.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 54 of 80

Jan. 30, 2015

Remarks At the point this function returns, I2C communication has not completed. The advance

function must be called to terminate I2C communication.

 The communication state after calling the start function can be checked with the return

value from the advance function.

Note: 1. Even if initialization was performed once, the driver may enter the uninitialized

state if another device on the same channel subsequently calls the I2C driver

setting function. In such cases, call the I2C driver initialization function once

again before calling the start function.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 55 of 80

Jan. 30, 2015

Error

r_iic_drv_masterrx

R_IIC_ERR_NON_REPLY

Error

State flag setting:

R_IIC_ERR_NON_REPLY

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Channel state

R_IIC_NO_INIT

R_IIC_BUS_BUSY

Uninitialized state

Communication in progress

Error state

Idle state

Successful

processing

Check the channel state flag state.

Sets the channel state flag

and the device state flag.

Checks the bus busy state.

Generates the start condition.

State flag setting:

R_IIC_COMMUNICATION

If a callback function is defined,

specifies that function.

R_IIC_COMMUNICATION

Check channel state flag

Set up callback function

Initialize RAM

Initialize advance function counter

I
2
C protocol mode setting:

R_IIC_MODE_READ

I
2
C enable processing

Processing to advance

communication

I
2
C disable processing

Enables interrupts

(RIIC.ICIER: enabled, IR: cleared, IER: requests enabled).

Cancels internal reset, enables MPC (RIIC pin function).*
1

Note: 1. If an MPC is present, the multi-function pin controller setting

is enabled.

If no MPC is present, the pin is enabled in the input buffer

control register.

Disable MPC (port function)*
1

Internal reset state

Interrupts stopped

 IER: Requests disabled

 IPR: Initialized

 IR: Cleared

 RIIC.ICIER: Disabled

Figure 6.26 Master Reception Start Function Overview Flowchart

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 56 of 80

Jan. 30, 2015

6.18.5 Master Composite Start Function

R_IIC_Drv_MasterTRx

Outline Master composite start function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h

Declaration error_t R_IIC_Drv_MasterTRx (r_iic_drv_info_t *pRIic_Info)

Description Starts master composite communication.

 The r_iic_drv_info_t I2C communication information structure must be set up to

perform this operation. See table 6.17 for details on that setup.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I2C communication information structure

Return Value R_IIC_COMMUNICATION

Master composite communication was started. The channel state flag and device state
flag are set to R_IIC_COMMUNICATION.

 Call the advance function to terminate communication.

R_IIC_NO_INIT

Initialization was not performed.*1 The channel state flag and device state flag are not
changed.

 Call the initialization function and assure its processing has completed.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

Communication is in progress. It was not possible to start master composite
communication. The channel state flag and device state flag are not changed.

 Call the advance function to terminate communication.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are not changed.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

Either the bus was not released or it was not possible to detect the start condition. The
channel state flag and device state flag are set to R_IIC_ERR_NON_REPLY.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I2C communication information structure is set up correctly.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 57 of 80

Jan. 30, 2015

Remarks At the point this function returns, I2C communication has not completed. The advance

function must be called to terminate I2C communication.

 The communication state after calling the start function can be checked with the return

value from the advance function.

Note: 1. Even if initialization was performed once, the driver may enter the uninitialized

state if another device on the same channel subsequently calls the I2C driver

setting function. In such cases, call the I2C driver initialization function once

again before calling the start function.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 58 of 80

Jan. 30, 2015

Error

r_iic_drv_mastertrx

R_IIC_ERR_NON_REPLY

Error

I
2
C protocol mode setting:

R_IIC_MODE_COMBINED

State flag setting:

R_IIC_ERR_NON_REPLY

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Channel state

R_IIC_NO_INIT

R_IIC_BUS_BUSY

Uninitialized state

Communication in progress

Error state

Idle state

Successful

processing

Check the channel state flag state.

Sets the channel state flag

and the device state flag.

State flag setting:

R_IIC_COMMUNICATION

If a callback function is defined,

specifies that function.

R_IIC_COMMUNICATION

Check channel state flag

Set up callback function

Initialize RAM

I
2
C enable processing

Processing to advance

communication

I
2
C disable processing

Initialize advance function counter

Enables interrupts

(RIIC.ICIER: enabled, IR: cleared, IER: requests enabled).

Cancels internal reset, enables MPC (RIIC pin function).*
1

Note: 1. If an MPC is present, the multi-function pin controller setting

is enabled.

If no MPC is present, the pin is enabled in the input buffer

control register.

Checks the bus busy state.

Generates the start condition.

Disable MPC (port function)*
1

Internal reset state

Interrupts stopped

 IER: Requests disabled

 IPR: Initialized

 IR: Cleared

 RIIC.ICIER: Disabled

Figure 6.27 Master Composite Start Function Overview Flowchart

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 59 of 80

Jan. 30, 2015

6.18.6 Advance Function

R_IIC_Drv_Advance

Outline Advance function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h

Declaration error_t R_IIC_Drv_Advance (r_iic_drv_info_t *pRIic_Info)

Description Monitors the communication and performs processing to advance communication.

Returns the communication state in the return value.

 It is necessary to terminate communication with the advance function to start the next

communication.

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I2C communication information structure

Return Value R_IIC_COMMUNICATION

Communication is in progress. The channel state flag and device state flag are not
changed.

 Call the advance function to terminate communication.

R_IIC_FINISH

All communication completed successfully. The channel state flag and device state
flag are set to R_IIC_FINISH.

Performs no processing if communication had already terminated. The channel state
flag and device state flag are not changed.

 Communication is now possible by calling the start function.

R_IIC_NACK

NACK was detected. A stop condition was generated and communication terminated.
The channel state flag and device state flag are set to R_IIC_NACK.

Performs no processing if communication had already terminated. The channel state
flag and device state flag are not changed.

 Communication is now possible by calling the start function.

R_IIC_NO_INIT

Initialization was not performed. The channel state flag and device state flag are not
changed.

 Call the initialization function and assure its processing has completed.

R_IIC_IDLE

The system is in the idle state. The channel state flag and device state flag are not
changed.

 Communication is now possible by calling the start function.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_BUS_BUSY

The requested processing was not performed because another device was
communicating on the same channel. The channel state flag and device state flag are
not changed.

 Terminate the communication with the other device.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Set up the arguments as required by this function.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 60 of 80

Jan. 30, 2015

 R_IIC_ERR_AL

Arbitration was lost. The channel state flag and device state flag are set to
R_IIC_ERR_AL.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 See section 7.3, Recovery Processing Example, and perform that recovery

processing.

R_IIC_ERR_NON_REPLY

The following occurred. The channel state flag and device state flag are set to
R_IIC_ERR_NON_REPLY.

 The number of calling the advance function exceeded the limit.

 Although stop condition generation processing was performed, a stop condition

was not detected within a fixed period.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 SDA or SCL may have been held low due to noise or some other problem. See

section 7.3, Recovery Processing Example, and perform that recovery processing.

R_IIC_ERR_SDA_LOW_HOLD

SDA is in the state where it has not recovered from the low-level hold state. The
channel state flag and device state flag are not changed.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

Some other error occurred. The channel state flag and device state flag are set to
R_IIC_ERR_OTHER.

If an error had already occurred, no processing is performed. The channel state flag
and device state flag are not changed.

 Check the following items.

 Check that the I2C communication information structure is set up correctly.

Remarks This function checks the parameters.

 If the event flag (g_iic_Event[]) is set, the following processing is performed.

The advance function counter (g_iic_ReplyCnt[]) is initialized.

Communication advance processing is performed.

If the processing proceeded successfully, the function checks whether all
communication completed. When all communication has completed, the channel state
flag is set to R_IIC_FINISH.

 If the event flag (g_iic_Event[]) is not set, the following processing is performed.

The advance function counter (g_iic_ReplyCnt[]) is decremented.

If the advance function counter is 0, the return value is set to
R_IIC_ERR_NON_REPLY.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 61 of 80

Jan. 30, 2015

r_iic_drv_advance

Check events

No event occurred

R_IIC_ERR_AL

R_IIC_ERR_NON_REPLY

R_IIC_ERR_SDA_LOW_HOLD

R_IIC_ERR_OTHER

Channel state

R_IIC_NO_INIT

R_IIC_IDLE

R_IIC_FINISH

R_IIC_NACK

Communication in progress:

R_IIC_COMMUNICATION

Uninitialized state

Idle state

Error state

An event occurred

Check the channel state flag state.

R_IIC_BUS_BUSY

Communication by other device in progress

Check channel state flag

A B

Figure 6.28 Advanced Function Overview Flowchart (1/3)

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 62 of 80

Jan. 30, 2015

Processing for

communication

Check advance
function counter

Decrement advance function counter

R_IIC_COMMUNICATION R_IIC_ERR_NON_REPLY

Initialize advance function counter

Return value

Set state flag:

R_IIC_FINISH

R_IIC_FINISH

R_IIC_COMMUNICATION

Successful processing,

all communication complete

Counter == 0 (no response error)

Counter > 0

If a callback function was

set up.

Successful processing,

not all communication complete

Set state flag:

R_IIC_ERR_NON_REPLY

One of the following is executed as communication

advance processing. The processing that

corresponds to the event that occurred is performed.

 Slave address transmission

 Data transmission

 Data reception

 Restart condition generation

 Stop condition generation

 Communication termination processing

If a callback function was

set up.

I
2
C disable processing

Callback function

Callback function

I
2
C disable processing

A

B

C

Disable MPC (port function)*
1

Internal reset state

Interrupts stopped

 IER: Requests disabled

 IPR: Initialized

 IR: Cleared

 RIIC.ICIER: Disabled

Disable MPC (port function)*
1

Internal reset state

Interrupts stopped

 IER: Requests disabled

 IPR: Initialized

 IR: Cleared

 RIIC.ICIER: Disabled

Note: 1. If an MPC is present, the multi-function pin controller setting is disabled.

 If no MPC is present, the pin is disabled in the input buffer control register.

Figure 6.29 Advanced Function Overview Flowchart (2/3)

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 63 of 80

Jan. 30, 2015

Error state

Set state flag:

R_IIC_ERR_AL

Ret

Set state flag:

R_IIC_ERR_OTHER

Set state flag:

R_IIC_NACK

Ret

Stop condition detected?

Set state flag:

R_IIC_ERR_NON_REPLY

Set Ret to R_IIC_NACK
Set Ret to

R_IIC_ERR_NON_REPLY

Not detected

NACK detected

Other error

Arbitration lost occurred

Other

Detected

If a callback function was set up.

If a callback function was set up.

C

Wait for stop condition

generation completion

I
2
C disable processing I

2
C disable processing

Callback function

I
2
C disable processing I

2
C disable processing

Callback function

Disable MPC (port function)*
1

Internal reset state

Interrupts stopped

 IER: Requests disabled

 IPR: Initialized

 IR: Cleared

 RIIC.ICIER: Disabled

Note: 1. If an MPC is present, the multi-function pin controller setting is disabled.

 If no MPC is present, the pin is disabled in the input buffer control register.

Figure 6.30 Advanced Function Overview Flowchart (3/3)

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 64 of 80

Jan. 30, 2015

6.18.7 SCL Pseudo Clock Generation Function

R_IIC_Drv_GenClk

Outline SCL pseudo clock generation function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h

Declaration error_t R_IIC_Drv_GenClk (r_iic_drv_info_t *pRIic_Info, uint8_t ClkCnt)

Description This function generates an SCL pseudo clock. If a synchronization discrepancy occurs

between the master and slave due to noise or other problem and SDA is held at the

low level, this function can correct the internal state of the slave.

 Do not use this function in normal states. Use of this function during normal operation

can result in communication problems.

 The following must be set up to use this function.

The ChNo member of the r_iic_drv_info_t structure; The channel number used

The clock count ClkCnt; 01h to FFh

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I2C communication information structure

uint8_t ClkCnt ; SCL clock count

Return Value R_IIC_NO_INIT

The SDA line has gone to the high level, correction of the internal state of the slave
device completed, and the system is in the uninitialized state. The channel state flag
and device state flag are set to R_IIC_NO_INIT.

 Perform the following operations to restart communication.

(1) Call the initialization function

(2) Call master transmission with pattern 4*1

(3) Terminate communication by calling the advance function.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_SDA_LOW_HOLD

Although an SCL pseudo clock was generated, SDA remains in the low hold state.
The channel state flag and device state flag are set to R_IIC_ERR_SDA_LOW_HOLD.

 Check the system states, including whether a slave device is holding SDA low and

whether a low-level signal has not been output from the master device.

R_IIC_ERR_OTHER

The clock could not be generated. The channel status flag and device status flag are
set to R_IIC_ERR_OTHER.

 The clock can be output under the following conditions.

 Bus free state (ICCR2.BBSY flag = 0) or master mode (ICCR2.MST bit = 1 and

BBSY flag =1).

 The SCL line of the communication device is not being held low.

Remarks If SDA is at the low level when SDA is set to the high-impedance state, the bus will be

seen as not having been released.

 When SDA is low, the SCL pin is switched to port output, and a clock (low->high) is

input to the bus until SDA goes high.

 An error is returned if SDA remains low when the set number of clock cycles have

been generated.

 Since it is common for communication units to consist of 9 clock cycles, we

recommend setting the number of clock cycles to at least 9 cycles.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 65 of 80

Jan. 30, 2015

 Note: 1. In master transmission (pattern 4) the stop condition is generated after

generation of the start condition. This processing is performed to ensure that

the bus is free.

Check SDA

Clock count == 0?

Channel state flag setting:

R_IIC_ERR_SDA_LOW_HOLD

No

Yes

SDA = High

SDA = Low

R_IIC_NO_INIT

Clock count == 0?

R_IIC_ERR_SDA_LOW_HOLD

r_iic_drv_genclk

Channel state flag setting:

R_IIC_NO_INIT

Decrement clock count

Counter == 0 (SDA = Low)

Counter > 0 (SDA = High)

ICCR1.CLO = 1

(Generates one clock pulse on SCL line.)

Specify master mode

I
2
C enable processing

Cancels MST/TRS protect and enables master transmission mode.

Additional SCL clock output

processing

Clock generation error

Channel state flag setting:

R_IIC_ERR_OTHER

R_IIC_ERR_OTHER

I
2
C disable processing Internal reset state

Interrupts stopped

(IER: Requests disabled, IPR: Initialized, IR: Cleared, RIIC.IER: Disabled)

Enables interrupts

(RIIC.ICIER: enabled, IR: cleared, IER: requests enabled).

Cancels internal reset.

Figure 6.31 SCL Pseudo-Clock Generation Function Overview Flowchart

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 66 of 80

Jan. 30, 2015

6.18.8 I2C Driver Reset Function

R_IIC_Drv_Reset

Outline I2C driver reset function

Header r_iic_drv_api.h, r_iic_drv_sub.h, r_iic_drv_int.h, r_iic_drv_sfr.h

Declaration error_t R_IIC_Drv_Reset(r_iic_drv_info_t *pRIic_Info)

Description Resets the I2C driver for the corresponding channel.

 Stops the RIIC and performs an internal reset by setting ICCR1.ICE to 1 and IICRST

to 1.*1

 If this function is called while communication is in progress, it forcibly stops that

communication.

 The following must be set up to use this function.

The ChNo member of the r_iic_drv_info_t structure; The channel number used

Arguments r_iic_drv_info_t *pRIic_Info ; Pointer to I2C communication information structure

Return Value R_IIC_NO_INIT

An internal reset was performed and the RIIC goes to the uninitialized state. The
channel state flag and device state flag are set to R_IIC_NO_INIT.

 Perform the following operations to restart communication.

(1) Call the initialization function

(2) Call master transmission with pattern 4*2

(3) Terminate communication by calling the advance function.

R_IIC_LOCK_FUNC

The processing was not performed because another API operation was being
performed. The channel state flag and device state flag are not changed.

 Call the function after processing of the other API finishes.

R_IIC_ERR_PARAM

A parameter error was detected. The arguments were not set up. The channel state
flag and device state flag are not changed.

 Set up the arguments as required by this function.

R_IIC_ERR_OTHER

An error other than the above occurred. The channel status flag and device status flag
are set to R_IIC_ERR_OTHER.

No processing takes place if an error has already occurred. The channel state flag and
device state flag are not changed.

 Check the following items.

 Check that the I2C communication information structure is set up correctly.

Remarks To restart communication, it is also necessary to call the I2C driver initialization

function.

 If the RIIC is forcibly stopped during communication, the results of that communication

are not guaranteed.

Notes: 1. Registers and bits affected by an internal reset

SCLO and SDAO bits in I2C bus control register 1 (ICCR1)

ST bit in I2C bus control register 2 (ICCR2)

BC[2:0] bits in I2C bus mode register 1 (ICMR1)

I2C bus status register 1 (ICSR1)

I2C bus status register 2 (ICSR2)

I2C bus shift register (ICDRS)

 2. In master transmission (pattern 4) the stop condition is generated after

generation of the start condition. This processing is performed to ensure that the

bus is free.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 67 of 80

Jan. 30, 2015

R_IIC_NO_INIT

r_iic_drv_reset

Channel state flag setting:

R_IIC_NO_INIT

I
2
C disable processing

Internal reset state

Interrupts stopped

 IER: Requests disabled

 IPR: Initialized

 IR: Cleared

 RIIC.ICIER: Disabled

Figure 6.32 I2C Driver Reset Function Overview Flowchart

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 68 of 80

Jan. 30, 2015

7. Application Example

7.1 r_iic_drv_api.h

This section presents and examples of settings for actual use.

The section in each file that need to be set are marked with the comment "/**SET**".

(1) Selecting the RIIC Channel Used

Specify the I2C channel used. The amount of ROM used can be minimized by commenting out the unused channels.

In the example below, channels 0 and 1 are used.

/*--*/

/* Select channels to enable. */

/*--*/

#define RIIC0_ENABLE

#define RIIC1_ENABLE

(2) Defining the Maximum Number of Channels Used

Set this item to the largest channel number used plus one.

In the example below, channels 0 and 1 are used. Since the largest channel number used here is 1, this item is set to 2.

/*--*/

/* Define channel No.(max) + 1. */

/*--*/

#define MAX_IIC_CH_NUM (uint8_t)(2)

(3) Definition when Calling the Advance Function from the RIIC Interrupt Handler

Make the following definition if the advance function will be called by the RIIC interrupt handler.

/*--*/

/* Define to use an advance processing by RIIC interrupt handler. */

/*--*/

#define CALL_ADVANCE_INTERRUPT

(4) Counter Definitions

These are the counter values for various software loops. As such, the loop times will change with the system clock used.

These setting values should be reviewed as necessary.

/*--*/

/* Define counter. */

/*--*/

#define REPLY_CNT (uint32_t)(100000) /* Counter of non-reply errors */

#define STOP_COND_WAIT (uint16_t)(1000)

 /* Counter of waiting stop condition generation */

#define BUSCHK_CNT (uint16_t)(1000) /* Counter of checking bus busy */

#define SDACHK_CNT (uint16_t)(1000) /* Counter of checking SDA level */

#define GEN_SCLCLK_WAIT (uint16_t)(1000)

 /* Counter of waiting SCL clock setting */

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 69 of 80

Jan. 30, 2015

7.2 r_iic_drv_sfr.h

A file with a filename of the form r_iic_drv_sfr.hXXX has been created for each microcontroller. One of these must be

renamed to r_iic_drv_sfr.h and used. If there is no such file for the microcontroller used, the user must refer to these

files and create an appropriate r_iic_drv_sfr.h file.

This section presents and examples of settings for actual use.

The section in each file that need to be set are marked with the comment "/**SET**/".

(1) Defining the Transfer Clock

Define the transfer clock by making the settings listed below. These values must be set for each channel used. See the

RX Family Userʼs Manual: Hardware for details on the setting procedure.

 Internal reference clock select bits (CKS[2:0]) in I2C bus mode register 1 (ICMR1)

 I2C bus bit rate low-level register (ICBRL)

 I2C bus bit rate high-level register (ICBRH)

The maximum setting is 400 kHz. However, if standard mode devices and fast mode devices are used together, the

standard mode maximum setting of 100 kHz must be used. Note that it may be necessary to modify the setting value

since the rise time (tR) and fall time (tF) of the SDA and SCL signals differ according to the pull-up resistance and the

wiring capacitance.

Sample settings for channels 0 and 1 are shown below.

/*--*/

/* Define frequency as iic channel. (Please add a channel as needed.) */

/*--*/

/* The I2C transfer rate is calculated using the following expression. */

/* Transfer rate = 1 / {[(ICBRH + 1) + (ICBRL + 1)] / (PCLK*Division ratio)

 + SCLn line rising time [tr] + SCLn line falling time [tf]} */

/* Note1:Division ratio sets it by ICMR1.CKS[2:0]. */

/* Freq = 400KHz at main system clock = 48MHz */

#define R_IIC_CH0_LCLK (uint8_t)(0xED) /* Channel 0 ICBRL register setting */

#define R_IIC_CH0_HCLK (uint8_t)(0xE6) /* Channel 0 ICBRH register setting */

#define R_IIC_CH1_LCLK (uint8_t)(0xED) /* Channel 1 ICBRL register setting */

#define R_IIC_CH1_HCLK (uint8_t)(0xE6) /* Channel 1 ICBRH register setting */

/* Sets ICMR1 register.*/

#define R_IIC_CH0_ICMR1_INIT (uint8_t)(0x28)

 /* Channel 0 ICMR1 register setting */

#define R_IIC_CH1_ICMR1_INIT (uint8_t)(0x28)

 /* Channel 1 ICMR1 register setting */

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 70 of 80

Jan. 30, 2015

(2) Defining Port Numbers

When using channel 0 on the RX210 or RX21A, define the port numbers of the pins to be used.

Sample settings for port 12 (SCL0) and port 13 (SDA0) of channel 0 are shown below.

/*--*/

/* Define channel register. */

/*--*/

#ifdef RIIC0_ENABLE

/* Define port registers */

#define R_IIC_PDR_SCL0 PORT1.PDR.BIT.B2

 /* SCL0 Port direction register */

#define R_IIC_PDR_SDA0 PORT1.PDR.BIT.B3

 /* SDA0 Port direction register */

#define R_IIC_PODR_SCL0 PORT1.PODR.BIT.B2

 /* SCL0 Port output data register */

#define R_IIC_PODR_SDA0 PORT1.PIDR.BIT.B3

 /* SDA0 Port output data register */

#define R_IIC_PIDR_SCL0 PORT1.PODR.BIT.B2

 /* SCL0 Port input data register */

#define R_IIC_PIDR_SDA0 PORT1.PIDR.BIT.B3

 /* SDA0 Port input data register */

#define R_IIC_PMR_SCL0 PORT1.PMR.BIT.B2 /* SCL0 Port mode register */

#define R_IIC_PMR_SDA0 PORT1.PMR.BIT.B3 /* SDA0 Port mode register */

#define R_IIC_DSCR_SCL0 PORT1.DSCR.BIT.B2

 /* SCL0 Drive capacity control register */

#define R_IIC_DSCR_SDA0 PORT1.DSCR.BIT.B3

 /* SDA0 Drive capacity control register */

#define R_IIC_PCR_SCL0 PORT1.PCR.BIT.B2

 /* SCL0 Pull-up resistor control register */

#define R_IIC_PCR_SDA0 PORT1.PCR.BIT.B3

 /* SDA0 Pull-up resistor control register */

(3) Multi-Function Pin Controller (MPC) Definitions

When using channel 0 on the RX210 or RX21A, define the multi-function pin controller (MPC) register numbers of the

pins to be used.

Sample settings for port 12 (SCL0) and port 13 (SDA0) of channel 0 are shown below.

/* Define Pin function control registers */

#define R_IIC_MPC_SCL0 MPC.P12PFS.BYTE

 /* SCL0 Pin function control register */

#define R_IIC_MPC_SDA0 MPC.P13PFS.BYTE

 /* SDA0 Pin function control register */

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 71 of 80

Jan. 30, 2015

(4) Defining the RIIC Interrupt Priorities

Define the interrupt priorities of the RIIC channel to be used by making the appropriate settings in the interrupt source

priority register (IPR). These values must be set for each channel used.

Sample settings for defining the priorities of the RIIC interrupts as level 2 are shown below.

/* Sets interrupt source priority initialization. */

#define R_IIC_IPR_CH0_EEI_INIT (uint8_t)(0x02)

 /* EEIx interrupt source priority initialization */

#define R_IIC_IPR_CH0_RXI_INIT (uint8_t)(0x02)

 /* RXIx interrupt source priority initialization */

#define R_IIC_IPR_CH0_TXI_INIT (uint8_t)(0x02)

 /* TXIx interrupt source priority initialization */

#define R_IIC_IPR_CH0_TEI_INIT (uint8_t)(0x02)

 /* TEIx interrupt source priority initialization */

7.2.1 Interrupt Handler Settings

The interrupts used in the sample code are the ICEEI, ICTEI, and ICRXI interrupts.

Sample settings are shown below for the case where the vect.h (headers of vector function) and intprg.c (vector function

definitions) files generated by the integrated development environment are used and for the case where they are not

used.

(1) Using the Generated Files

Define the interrupt handler functions for the channel used by r_iic_drv_int.c in the portion of intprg.c that defines the

RIIC interrupts.

Sample settings for channel 0 are shown below.

// RIIC0 EEI0

void Excep_RIIC0_EEI0(void){ r_iic_drv_intRIIC0_EEI_isr(); }

// RIIC0 RXI0

void Excep_RIIC0_RXI0(void){ r_iic_drv_intRIIC0_RXI_isr(); }

// RIIC0 TEI0

void Excep_RIIC0_TEI0(void){ r_iic_drv_intRIIC0_TEI_isr(); }

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 72 of 80

Jan. 30, 2015

(2) Not Using the Generated Files

Define #pragma interrupt as the interrupt handler function for the channel used by r_iic_drv_int.c.

Sample settings for channel 0 are shown below.

ICEEI Interrupt Definition

#pragma interrupt (r_iic_drv_intRIIC0_EEI_isr(vect=VECT_RIIC0_RXI0))

void r_iic_drv_intRIIC0_EEI_isr(void)

ICRXI Interrupt Definition

#pragma interrupt (r_iic_drv_intRIIC0_RXI_isr(vect=VECT_RIIC0_RXI0))

void r_iic_drv_intRIIC0_RXI_isr(void)

ICTEI Interrupt Definition

#pragma interrupt (r_iic_drv_intRIIC0_TEI_isr(vect=VECT_RIIC0_TEI0))

void r_iic_drv_intRIIC0_TEI_isr(void)

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 73 of 80

Jan. 30, 2015

7.3 Recovery Processing Example

Recovery processing to return to communication when SDA or SCL is being held low is described below. Follow the

steps shown below in the processing. Figure 7.1 shows an example of recovery processing by means of SCL pseudo

clock generation.

Note that the RIIC enters idle mode after the recovery processing described here. From this state, communication can be

initiated by calling the start function.

SCLn

SDAn

Low

High

ST SP

Start Stop

[6] Recovery

 finished
Pseudo clock

[1] I
2
C driver reset

 function

[2] SCL pseudo clock

 generation function

[3] I
2
C driver

 initialization function

[4] Master

 transmission start

 function

[5] Advance function

[1] Resets the I
2
C bus internally.

[2] Generates a pseudo clock on SCL, releasing the slave device from the low-hold state.

[3] Performs initialization to enable master transmission (pattern 4).

[4] Starts master transmission (pattern 4). Generates the start condition, then generates the

stop condition.

[5] Ends communication by using the advance function.

[6] The module is in the idle state. Subsequently, communication can be initiated by calling the

start function.

Figure 7.1 Example of Recovery Processing Using SCL Pseudo Clock Generation

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 74 of 80

Jan. 30, 2015

[1] I2C bus driver reset function: R_IIC_Drv_Reset()

This function cancels the hold state of SDA and SCL by performing an internal reset.

After this function finishes its processing, verify that SDA and SCL are high level. If SDA or SCL remain held low

after a reset, it is possible that they are being held low by the slave device or that a low signal is being output by the

master device.

[2] SCL pseudo clock generation function: R_IIC_Drv_GenClk()

If SDA is being held low, this function generates a pseudo clock on SCL to end the internal processing of the slave

device so that SDA goes high.

If the return value is R_IIC_SDA_HIGH, SDA is high level and the low-hold state was canceled. The return value is

R_IIC_ERR_SDA_LOW_HOLD if it was not possible to release SDA from the low-hold state. In this case it is

necessary to reassess the state of the system.

[3] I2C driver initialization: R_IIC_Drv_Init()

If the preceding processing has released SDA and SCL from the low-hold state, call the I2C driver initialization

function.

[4] Bus release processing: R_IIC_Drv_MasterTx() pattern 4

Releases the bus by generating the stop condition. In the sample code, master transmission pattern 4 generates the

start condition and then generates the stop condition.

Make settings for pattern 4, then call the master transmission start function.

[5] Advance function: R_IIC_Drv_Advance()

Call the advance function to finish the processing started in item [4].

The RIIC enters the idle state after a successful end. From this state, communication can be initiated by calling the

start function.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 75 of 80

Jan. 30, 2015

7.4 Notes on Using RIIC Interrupt Handler to Call Advance Function

Make sure to ensure the conditions listed below when using the RIIC interrupt handler to call the advance function.

(1) Enabling of #define CALL_ADVANCE_INTERRUPT

As described in item (3) of 7.1, define CALL_ADVANCE_INTERRUPT.

(2) Defining of I2C Communication Information Structure

Define the following global I2C communication information structure in the main processing routine, as defined in

r_iic_drv_int.h. This definition must be made for each channel used.

#ifdef CALL_ADVANCE_INTERRUPT

 #ifdef RIIC0_ENABLE

extern r_iic_drv_info_t g_iic_Info_ch0; /* Channel 0 IIC driver

information*/

 #endif /* #ifdef RIIC0_ENABLE */

 #ifdef RIIC1_ENABLE

extern r_iic_drv_info_t g_iic_Info_ch1; /* Channel 1 IIC driver

information*/

 #endif /* #ifdef RIIC1_ENABLE */

 #ifdef RIIC2_ENABLE

extern r_iic_drv_info_t g_iic_Info_ch2; /* Channel 2 IIC driver

information*/

 #endif /* #ifdef RIIC2_ENABLE */

 #ifdef RIIC3_ENABLE

extern r_iic_drv_info_t g_iic_Info_ch3; /* Channel 3 IIC driver

information*/

 #endif /* #ifdef RIIC3_ENABLE */

#endif /*#ifdef CALL_ADVANCE_INTERRUPT*/

(3) Addition of RIIC Interrupt Disable/Enable Processing when Calling Start Function

When using the RIIC interrupt handler to call the advance function, add processing on the user side to disable and

enable RIIC interrupts before and after calls to the various start functions.

If during the above interval an RIIC interrupt occurs and the RIIC interrupt handler calls the advance function, multiple

API calls will overlap and processing will end before the advance function can run. This will prevent subsequent

communication from occurring.

(4) Method of Determining Completion of Communication

To confirm that communication has finished, specify a callback function to set a flag, etc. The callback function is

called when either a successful end or an error end occurs.

The callback function should be created by the user and specified in the CallBackFunc member of the I2C

communication information structure.

(5) Method of Determining Successful End and Error End

After communication ends, whether a successful end and error end occurred can be confirmed by reading the channel

status flag (g_iic_ChStatus[]).

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 76 of 80

Jan. 30, 2015

(6) Disabling of Calls to API Functions Other Than Calls to Advance Function by RIIC Interrupt Handler

During Communication

When using the RIIC interrupt handler to call the advance function, do not make calls to API functions other than calls

to the advance function by the RIIC interrupt handler while communication is in progress.

If an API function is called while communication is in progress and an RIIC interrupt occurs while the API function is

running, multiple API calls will overlap when the RIIC interrupt handler calls the advance function, causing processing

to end before the advance function can run. This will prevent subsequent communication from occurring.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 77 of 80

Jan. 30, 2015

8. Usage Notes

8.1 Notes on Embedding

8.1.1 Include File

Include the following header files when embedding this sample code in an application.

 r_iic_drv_api.h

 r_iic_drv_sub.h

 r_iic_drv_sfr.h

 r_iic_drv_int.h

8.2 Notes on Initialization

When performing initialization for the first time after system startup, set the channel status flag g_iic_ChStatus[] to R

_IIC_NO_INIT for all channels to be used. Also, set the device status flag *(pRIic_Info.pDevStatus) to

R_IIC_NO_INIT for all slave devices to be used.

After setting both flags, set the structure information for the slave devices to be used in the I2C driver initialization

function, then call the I2C driver initialization function. Complete initialization of all slave devices as the first step

before proceeding.

After this, making settings to the channel status flags and device status flags is prohibited as this is handled by the

sample code.

8.3 Notes on the Channel State Flag and Device State Flag

This sample code maintains the consistency of the communication state using the channel state flag and device state

flag. Communication operation is not guaranteed if these flags are modified after first initialization.

8.4 Operation Verification Program

The operation verification program supplied with the sample code writes to and reads from EEPROM.

8.5 Example of Embedding

Refer to the operation verification program sample_background.c for the method of embedding to be used when calling

the advance function from the RIIC interrupt handler. Also make sure to follow the guidelines contained in 7.4, Notes

on Using RIIC Interrupt Handler to Call Advance Function.

For the method of embedding to be used when calling the advance function from the main processing routine, refer to

operation verification program sample_foreground.c.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 78 of 80

Jan. 30, 2015

8.6 Control Methods for Multiple Slave Devices on the Same Channel

Use the following procedure to control multiple slave devices on the same channel.

The processing in the item (1) below can prevent communication from being performed with devices in the not

communicating state.

(1) Verify that the device state flag in the I2C communication information structure for the slave device that is the object

of the advance function call is “R_IIC_COMMUNICATION”.

(2) Call the advance function.

(3) Repeat steps (1) and (2) until communication completes.

(4) Communication has completed. After this, communication is possible by calling a start function.

The advance function moves forward the processing of the slave device while communication is in progress, without

identifying the specific slave device. Therefore, the processing of a slave device can be moved forward while

communication is in progress even if the value of the device status flag is other than R_IIC_COMMUNICATION

(communication in progress).

8.7 Transfer Rate Setting

The transfer rate must be set for each channel. Transfer rates up to a maximum of 400 kHz can be set.

Note, however, that if standard mode devices and fast mode devices are used together, the standard mode maximum rate

of 100 kHz must be set. Set the transfer rate using R_IIC_CHx_LCLK, R_IIC_CHx_LCLK, and

R_IIC_CHx_ICMR1_INIT (where x is the channel number) defined in table 6.14.

8.8 Notes On Setting The #define Definitions of RIICx_ENABLE and
MAX_IIC_CH_NUM

This section described the settings for the case where only channel 2 will be used.

Enable only the definition of RIIC2_ENABLE for the RIICx_ENABLE #define definitions. This masks out the source

code for channel 0 and channel 1.

/*--*/

/* Select channels to enable. */

/*--*/

/* #define RIIC0_ENABLE */

/* #define RIIC1_ENABLE */

#define RIIC2_ENABLE

Set the #define definition of MAX_IIC_CH_NUM to 3. Note that although the number of channels used is 1, the value

set here must be the largest channel number used plus one.

/*--*/

/* Define channel No.(max) + 1. */

/*--*/

#define MAX_IIC_CH_NUM (uint8_t)(3)

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 79 of 80

Jan. 30, 2015

8.9 Port Pins Assigned as RIIC Pins

The port pins on each microcontroller assigned as RIIC pins are listed below.

Table 8.1 Port Pins Assigned as RIIC Pins

MCU
Pin

Count

Channel

Count

RIIC0 RIIC1 RIIC2 RIIC3

SCL0 SDA0 SCL1 SDA1 SCL2 SDA2 SCL3 SDA3

RX62N 176 2 P12 P13 P21 P20 — — — —

145 2 P12 P13 P21 P20 — — — —

100 1 P12 P13 — — — — — —

85 2 P12 P13 P21 P20 — — — —

RX63N/

RX631

177,176 4 P12 P13 P21 P20 P16 P17 PC0 PC1

145,144 4 P12 P13 P21 P20 P16 P17 PC0 PC1

100 2 P12 P13 — — P16 P17 — —

64 1 — — — — P16 P17 — —

48 1 — — — — P16 P17 — —

RX63T 144 2 PB1 PB2 P25 P26 — — — —

120 2 PB1 PB2 P25 P26 — — — —

112 1 PB1 PB2 — — — — — —

100 1 PB1 PB2 — — — — — —

64 1 PB1 PB2 — — — — — —

48 1 PB1 PB2 — — — — — —

RX210 145,144 1 P12, P16 P13, P17 — — — — — —

100 1 P12, P16 P13, P17 — — — — — —

80 1 P12, P16 P13, P17 — — — — — —

64 1 P16 P17 — — — — — —

48 1 P16 P17 — — — — — —

RX21A 100 2 P12, P16 P13, P17 P21 P20 — — — —

80 2 P12, P16 P13, P17 P21 P20 — — — —

64 1 P16 P17 — — — — — —

8.10 Microcontrollers Requiring Specification of Port Pins

As shown in 8.9, either of two ports can be used for SCL and for SDA on channel 0 on the RX210 and RX21A. When

this channel us used, specify which of the two ports to be used for SCL and for SDA.

8.11 NACK Detection Processing after Direct Transmission to Slave Address with
Master Transmission and Master Composite Operation

During master transmission or master composite operation, if a NACK is received on the ninth bit of slave address

transmission (transfer direction bit: 1 (read)), a dummy read of the I2C bus receive data register (ICDRR) occurs after

the stop condition generation settings.

The receive data-full flag is set to 1 even when a NACK is detected under the above conditions. The dummy read of

ICDRR is performed to clear this flag.

RX600, RX200 Series I2C Bus Single Master Control Software Using RIIC Serial Interface

R01AN1254EJ0103 Rev.1.03 Page 80 of 80

Jan. 30, 2015

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY
RX600, RX200 Application Note I²C Bus Single Master Control

Software Using RIIC Serial Interface

Rev. Date
Description

Page Summary

1.03 Jan. 30, 2015 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

I2C-bus is a trademark of NXP B.V.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Specifications
	2. Operation Confirmation Conditions
	(1) RX62N
	(2) RX63N
	(3) RX63T
	(4) RX210
	(5) RX21A

	3. Reference Application Note
	4. Peripheral Functions
	5. Hardware
	5.1 Pins Used
	5.2 Reference Circuit
	5.3 Controlling Multiple Slave Devices
	5.4 Maximum Transfer Speed

	6. Software
	6.1 Software Structure
	6.2 Operation Overview
	6.2.1 Master Transmission
	(1) Pattern 1
	(2) Pattern 2
	(3) Pattern 3
	(4) Pattern 4

	6.2.2 Master Reception
	6.2.3 Master Composite

	6.3 Software Operation
	(1) Calling the Advance Function from the RIIC Interrupt Handler
	(2) Calling the Advance Function from the Main Processing Routine

	6.4 Software Operating Sequence
	(1) Calling the Advance Function from the RIIC Interrupt Handler
	(2) Calling the Advance Function from the Main Processing Routine

	6.5 Implementation of Slave Device Control
	(1) Slave Device Management
	(2) Channel Status Management
	(3) Device State Management

	6.6 Communication Implementation
	6.6.1 States During Control
	6.6.2 Events During Control
	6.6.3 Protocol State Transitions
	6.6.4 Protocol State Transition Table
	6.6.5 Protocol State Transition Registered Functions
	6.6.6 Processing at Protocol State Transitions

	6.7 Interrupt Generation Timing
	6.7.1 Master Transmission
	(1) Pattern 1
	(2) Pattern 2
	(3) Pattern 3
	(4) Pattern 4

	6.7.2 Master Reception
	6.7.3 Master Composite

	6.8 Callback Function
	6.9 Relationship of Data Buffers and Transmit/Receive Data
	6.10 Required Memory Sizes
	(1) RX63N
	(2) RX210

	6.11 File Structure
	6.12 Constants
	6.12.1 Return Values
	6.12.2 Definitions

	6.13 Structures and Unions
	6.13.1 I2C Communication Information Structure
	(1) Structure Members
	(2) Settings
	(3) Callback Function
	(4) Notes On Settings

	6.13.2 Internal Information Management Structure
	(1) Structure Members

	6.14 Enumerated Types
	6.15 Variables
	6.16 Functions
	6.17 State Transition Diagram
	6.17.1 Error State Definitions
	(1) Parameter Error
	(2) Arbitration Lost
	(3) No Response Error
	(4) SDA Held Low (Recovery not possible)
	(5) Other Errors

	6.17.2 Flag States at State Transitions

	6.18 Function Specifications
	6.18.1 Common Processing for These Functions
	6.18.2 I²C Driver Initialization Function
	6.18.3 Master Transmission Start Function
	6.18.4 Master Reception Start Function
	6.18.5 Master Composite Start Function
	6.18.6 Advance Function
	6.18.7 SCL Pseudo Clock Generation Function
	6.18.8 I2C Driver Reset Function

	7. Application Example
	7.1 r_iic_drv_api.h
	(1) Selecting the RIIC Channel Used
	(2) Defining the Maximum Number of Channels Used
	(3) Definition when Calling the Advance Function from the RIIC Interrupt Handler
	(4) Counter Definitions

	7.2 r_iic_drv_sfr.h
	(1) Defining the Transfer Clock
	(2) Defining Port Numbers
	(3) Multi-Function Pin Controller (MPC) Definitions
	(4) Defining the RIIC Interrupt Priorities
	7.2.1 Interrupt Handler Settings
	(1) Using the Generated Files
	(2) Not Using the Generated Files

	7.3 Recovery Processing Example
	7.4 Notes on Using RIIC Interrupt Handler to Call Advance Function
	(1) Enabling of #define CALL_ADVANCE_INTERRUPT
	(2) Defining of I2C Communication Information Structure
	(3) Addition of RIIC Interrupt Disable/Enable Processing when Calling Start Function
	(4) Method of Determining Completion of Communication
	(5) Method of Determining Successful End and Error End
	(6) Disabling of Calls to API Functions Other Than Calls to Advance Function by RIIC Interrupt Handler During Communication

	8. Usage Notes
	8.1 Notes on Embedding
	8.1.1 Include File

	8.2 Notes on Initialization
	8.3 Notes on the Channel State Flag and Device State Flag
	8.4 Operation Verification Program
	8.5 Example of Embedding
	8.6 Control Methods for Multiple Slave Devices on the Same Channel
	8.7 Transfer Rate Setting
	8.8 Notes On Setting The #define Definitions of RIICx_ENABLE and MAX_IIC_CH_NUM
	8.9 Port Pins Assigned as RIIC Pins
	8.10 Microcontrollers Requiring Specification of Port Pins
	8.11 NACK Detection Processing after Direct Transmission to Slave Address with Master Transmission and Master Composite Operation

