

RX24U Group Disabling and Restoring PWM Output Using POE3A and MTU3d Aug 31, 2018

Summary

This application note describes procedures for disabling and restoring PWM output using the port output enable 3 (POE3A) and multi-function timer pulse unit 3 (MTU3d) modules on the RX24U Group. This functionality can be used as a fail-safe for controlling PWM output when an error is detected.

Target Device

RX24U Group

Contents

1.	Sp	pecifications
2.	Op	peration Confirmation Conditions4
3.	Ha	ardware5
3.1		Hardware Configuration Example5
3.2	2	List of Pins Used
4.	Sc	oftware7
4.1		Operation Overview7
4	.1.	1 Output Control by Input Level Detect
4	.1.	2 Output Control by Output Level Compare9
4	.1.	3 Output Control by Register Setting10
4	1.1.	4 Output Control by Comparator Output Detect11
4	.1.	5 Output Control by Oscillation Stop Detect12
4.2	2	Adding the Code Generator Plugin to a Project13
4.3	•	Code Generator Plugin Setting Items16
4	.3.	1 Clock Generation Circuit16
4	.3.	2 I/O Ports
4	.3.	3 Interrupt Controller (ICUb) 18
4	.3.	4 Multi-Function Timer Pulse Unit 3 (MTU3d)19
4	.3.	5 Port Output Enable 3 (POE3A)22
4	.3.	6 Comparator C (CMPC0)24
4	.3.	7 D/A Converter (DAa)24
4.4	ŀ	File Configuration25
4.5	5	Option-Setting Memory25
4.6	;	Constants
4.7	•	Variables
4.8	;	Functions

4	.9 Function Specifications	. 28
4	.10 Flowcharts	. 31
	4.10.1 Main Processing Routine	. 31
	4.10.2 Initial Settings	. 31
	4.10.3 D/A0 Output Voltage Value Setting	. 31
	4.10.4 Module Startup	. 32
	4.10.5 IRQ0 Interrupt Handler	. 33
	4.10.6 IRQ4 Interrupt Handler	. 34
	4.10.7 Get PWM Output Disabled Flag State	. 34
	4.10.8 Restore PWM Output	. 35
	4.10.9 Comparator Interrupt Handler	. 37
	4.10.10OEI1 Interrupt Handler	. 37
	4.10.11OEI4 Interrupt Handler	. 38
	4.10.12Oscillation Stop Detection	. 38
5.	Sample Code	.39

1. Specifications

This application note describes procedures for disabling and restoring PWM output using the port output enable 3 (POE3A) and multi-function timer pulse unit 3 (MTU3d) modules on the RX24U Group.

- The MTU3d outputs a total of six waveforms in complementary PWM mode 1: three positive-phase and three negative-phase waveforms with 50% duty, a period of 100 µs, and dead time of 2 µs.
- When one of the output disable sources (input level detect, output level compare, register setting, comparator output detect, or oscillation stop detect) shown in Figure 1.1, System Overview Diagram, is detected, the PWM output pin enters the Hi-Z state.
- After the output disable source is removed, the PWM output state can be restored by clearing to 0 the POE3A flag corresponding to the disable source. However, when output is disabled due to oscillation stop detection, the system must be reset to restore the PWM output state.

Figure 1.1 is a System Overview Diagram. The pins used are listed in Table 3.1, Pins Used and Their Functions, and the operation of the software is described in 4.1, Operation Overview.

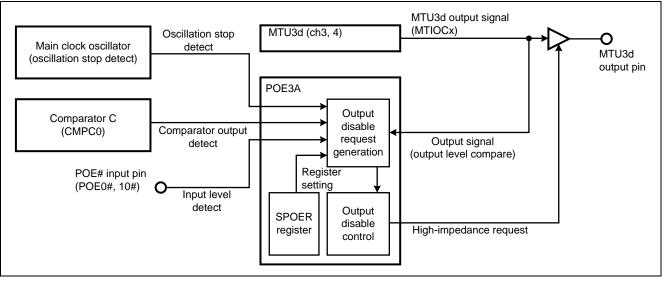


Figure 1.1 System Overview Diagram

2. Operation Confirmation Conditions

The operation of the sample code described in this application note has been confirmed under the conditions listed in Table 2.1.

Table 2.1	Operation	Confirmation	Conditions
-----------	-----------	--------------	------------

Item	Description
MCU used	R5F524UEADFB (RX24U Group)
Operating frequency	Main clock: 20 MHz
	Low-speed on-chip oscillator (LOCO): 4 MHz
	PLL: 80 MHz (main clock divided by 2 and multiplied by 8)
	System clock (ICLK): 80 MHz (PLL clock frequency divided by 1)
	Peripheral module clock (PCLKA): 80 MHz (PLL clock frequency divided by 1)
	Peripheral module clock (PCLKB): 40 MHz (PLL clock frequency divided by 2)
Operating voltage	5.0 V
Integrated development	Renesas electronics
environment	e ² studio V.6.2.0
C compiler	Renesas electronics
	C/C++ Compiler Package for RX Family V.2.08.00
	Compiler option
	The integrated development environment default settings are used.
iodefine.h version	1.0H
Code generator plugin version	1.03.00.04
Endian order	Little-endian
Operating mode	Single-chip mode
Processor mode	Supervisor mode
Sample code version	1.00
Board used	Renesas Starter Kit for RX24U
	(Product No.: RTK500524UC00000BE)

3. Hardware

3.1 Hardware Configuration Example

Figure 3.1 shows an example hardware configuration. The sample code described in this application note uses the Renesas Starter Kit for RX24U. Circuit illustrations have been omitted to provide a simplified overview of connections. When designing actual circuits, make sure to provide appropriate pin processing and ensure that the electrical characteristics are satisfied.

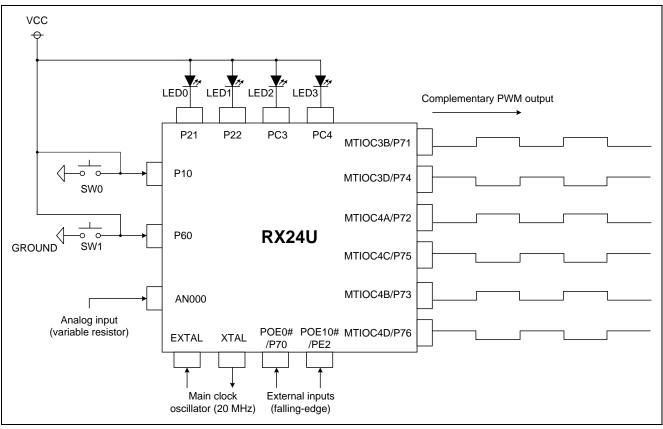


Figure 3.1 Hardware Configuration Example

3.2 List of Pins Used

Table 3.1 lists the pins used and their functions.

Table 3.1	Pins Used and Their Functions
-----------	-------------------------------

Pin Name	I/O	Description
P21, P22, PC3, PC4	Output	LEDs indicating PWM output disabled state
		(LED0, LED1, LED2, and LED3)
P10	Input	Transition switch to PWM output restored state (SW0)
P60	Input	Switch (SW1) for disabling output using SPOER register
P70/POE0#	Input	POE3A input pin
PE2/POE10#	Input	POE3A input pin (added condition)
P71/MTIOC3B	Output	PWM output pin 1
P72/MTIOC4A	Output	PWM output pin 2
P73/MTIOC4B	Output	PWM output pin 3
P74/MTIOC3D	Output	PWM output pin 1' (PWM output 1 negative-phase waveform output)
P75/MTIOC4C	Output	PWM output pin 2' (PWM output 2 negative-phase waveform output)
P76/MTIOC4D	Output	PWM output pin 3' (PWM output 3 negative-phase waveform output)
P40/AN000	Input	Analog input pin
P36/EXTAL	Output	Oscillator connection pin
P37/XTAL	Input	Oscillator connection pin

4. Software

This application note uses the code generator plugin to make initial settings to the modules used. Refer to 4.3, Code Generator Plugin Setting Items, for the code generator plugin setting values. Refer to 4.1, Operation Overview, and 4.10, Flowcharts, for an explanation of how the software operates.

4.1 **Operation Overview**

- The MTU3d outputs a total of six waveforms in complementary PWM mode 1: three positive-phase and three negative-phase waveforms with 50% duty, a period of 100 µs, and dead time of 2 µs.
- When an output disable source is detected, the PWM output pin enters the Hi-Z state.
- The MTU module is disabled at the start of the interrupt handler corresponding to the output disable source.
- The LEDs that show the operating state display a different illumination pattern for each output disable source. If multiple output disable sources occur, the LED illumination pattern is that of the last output disable source generated.
- If the output disable source has been removed, pressing SW0 causes the flag corresponding to the output disable source to be cleared to 0, after which the MTU is initialized and operation starts, restoring the PWM output state. In addition, all the LEDs turn off. However, when output is disabled due to oscillation stop detection, the system must be reset to restore the PWM output state.
- If the output disable source remains and restore is not possible, LED3 lights. In this case, the flag corresponding to the output disable source remains set to 1, and the MTU remains in the disabled state.

Sections 4.1.1 to 4.1.5 describe the operation corresponding to each output disable source in the program described in this application note. Table 3.1 lists the pins used and their functions, and Table 4.1 lists the LED illumination patterns corresponding to the various operating states. Figure 4.1 to Figure 4.5 show timing charts for each output disable source. Note that these timing charts do not take dead time into account.

			LED Illumination Pattern				
Item			P21	P22	PC3	PC4	
PWM output state		Х	×	×	×		
PWM output disabled	Input level	POE0#	0	×	×		
state	detect	POE10#	Х	0	×		
	Output level co	ompare	0	0	×		
	Output control by register		Х	×	0		
	Comparator or	utput detect	0	×	0		
	Oscillation sto	p detect	×	0	0		
Restored state	Successful res	store	×	×	×	×	
(after SW0 pressed)	Restore not po	ossible				0	

Table 4.1 LED Illumination Patterns

 $O: on, \times: off, -: previous state maintained$

4.1.1 Output Control by Input Level Detect

When PWM output is restored from the disabled state, note that if a low-level signal is being input on pin POE0# or POE10#, the falling-edge, which is the input level detect (falling-edge) output disable source, does not occur, and switching once again to the PWM output disabled state does not take place, even if the POE0 or POE10 flag (POE0F or POE10F) has been cleared. For details, refer to RX24U Group User's Manual: Hardware, which is listed in the Reference Documents section.

In the program described in this application note, output disable control by register setting is enabled as part of output restore control in order to deal with the issue described above.

An output control operation example using input level detection (falling-edge detection) is described below.

- Output disable control
 - When the input on the POE0# or POE10# pin changes from high- to low-level, the value of the output disable request flag (ICSR1.POE0F or ICSR4.POE10F) changes to 1.
 - The PWM output pin enters the Hi-Z state.
 - Since level detection is used for output enable interrupt 1 (OEI1) and output enable interrupt 4 (OEI4), the interrupts of the corresponding output disable sources are disabled by the interrupt handler.
 - The LEDs illuminate as indicated in Table 4.1, LED Illumination Patterns.
- Output restore control
 - The SPOER.MTUCH34HIZ bit is set to 1 to perform PWM output disable control.
 - The POE0F or POE10F bit is cleared to 0.
 - When the SPOER.MTUCH34HIZ bit is cleared to 0 while a high-level signal is being input on pin POE0# or POE10#, the PWM output state is restored.
 - The interrupts of the corresponding output disable sources are enabled.
 - The LEDs turn off, indicating the output disabled state.

Table 4.2 lists the output disable timing using input level detect (falling-edge), and Figure 4.1 shows an output disable example (falling-edge) using input level detect. Note that since sampling is performed once each PCLK period when the output disable source setting is changed to input level detect (low-level detect), the number of cycles corresponding to the sample count are added to the duration from input level detection to output disable.

Table 4.2 Output Disable Timing Using Input Level Detect (Falling-Edge)

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREFH0 = VREFH1 = VREFH2 = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = VREFL0 = VREFL1 = VREFL2 = 0 V,

Item	Symbol	Min.	Max.	Unit
Output disable by input level detect	to		7.5* ¹	t₽Bcyc ^{*2}

Note 1. This is a reference valve. Make sure to perform careful evaluation on your system.

Note 2. t_{PBcyc}: PCLKB period

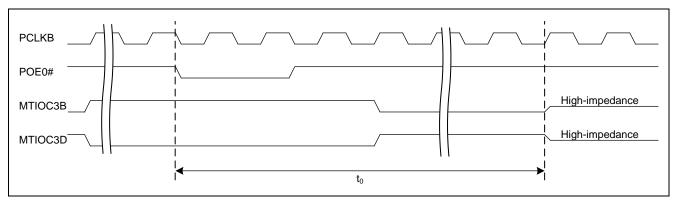


Figure 4.1 Output Disable Example (Falling-Edge) Using Input Level Detect

4.1.2 Output Control by Output Level Compare

The output-shorted pins used by the program described in this application note are MTIOC3B and MTIOC3D, MTIOC4A and MTIOC4C, and MTIOC4B and MTIOC4D. Their active level is set to low.

An output control operation example using output level comparison is described below.

- Output disable control
 - If the output-shorted pins are both at their active level for one PCLKB cycle or more, the value of the simultaneous conduction flag (OCSR1.OSF1) changes to 1.
 - The PWM output pin enters the Hi-Z state.
 - Since level detection is used for output enable interrupt 1 (OEI1), the interrupt of the corresponding output disable source is disabled by the interrupt handler.
 - The LEDs illuminate as indicated in Table 4.1, LED Illumination Patterns.
- Output restore control
 - The OCSR1.OSF1 bit is cleared, restoring the PWM output state.
 - The interrupt of the corresponding output disable source is enabled.
 - The LEDs turn off, indicating the output disabled state.

Table 4.3 lists the output disable timing using output level compare, and Figure 4.2 shows an output disable example (active level: low) using output level compare.

Table 4.3 Output Disable Timing Using Output Level Compare

Conditions: VCC = 2.7 V to 5.5V, AVCC0 = AVCC1 = AVCC2 = VREFH0 = VREFH1 = VREFH2 = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = VREFL0 = VREFL1 = VREFL2 = 0 V,

Ta = -40 to +85°C

Item	Symbol	Min.	Max.	Unit
Output disable by output level compare	t1	_	4* ¹	tPBcyc ^{≉2}

Note 1. This is a reference valve. Make sure to perform careful evaluation on your system.

Note 2. t_{PBcyc}: PCLKB period

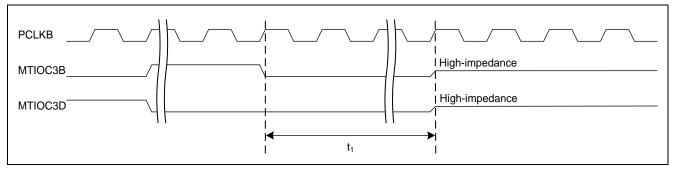


Figure 4.2 Output Disable Example (Active Level: Low) Using Output Level Compare

4.1.3 Output Control by Register Setting

An output control operation example using register setting is described below.

- Output disable control
 - Pressing SW1 causes the MTU3 and MTU4 or GPT0 to GPT2 pin output disable bit (SPOER.MTUCH34HIZ) to change to 1.
 - The PWM output pin enters the Hi-Z state.
 - The LEDs illuminate as indicated in Table 4.1, LED Illumination Patterns.
- Output restore control
 - The SPOER.MTUCH34HIZ bit is cleared, restoring the PWM output state.
 - The LEDs turn off, indicating the output disabled state.

Table 4.4 lists the output disable timing using register setting, and Figure 4.3 shows an output disable operation example using register setting.

Table 4.4 Output Disable Timing Using Register Setting

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREFH0 = VREFH1 = VREFH2 = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = VREFL0 = VREFL1 = VREFL2 = 0 V,

Ta = -40 to +85°C

Item	Symbol	Min.	Max.	Unit
Output disable by register setting	t ₂		3* ¹	tPBcyc ^{≉2}

Note 1. This is a reference valve. Make sure to perform careful evaluation on your system.

Note 2. t_{PBcyc}: PCLKB period

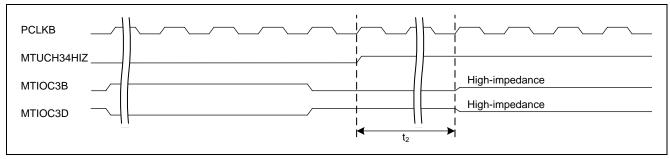


Figure 4.3 Output Disable Operation Example Using Register Setting

4.1.4 Output Control by Comparator Output Detect

When PWM output is restored from the disabled state, note that if the analog input voltage is higher than the reference input voltage while the non-inverted output setting is selected, the edge that is the comparator output detect source does not occur, and switching once again to the PWM output disabled state does not take place, even if the comparator channel 0 output detect flag (POECMPFR.C0FLAG) has been cleared. For details, refer to RX24U Group User's Manual: Hardware, which is listed in the Reference Documents section.

In the program described in this application note, output disable control by register setting is performed as part of output restore control in order to deal with the issue described above.

An output control operation example using comparator output detection is described below.

- Output disable control
 - If the analog input voltage is higher than the reference input voltage when the comparator is set to non-inverted, the value of POECMPFR.COFLAG changes to 1.
 - The PWM output pin enters the Hi-Z state.
 - The LEDs illuminate as indicated in Table 4.1, LED Illumination Patterns.
- Output restore control
 - The SPOER.MTUCH34HIZ bit is set to 1 to perform PWM output disable control.
 - The POECMPFR.COFLAG bit is cleared to 0.
 - Clearing the SPOER.MTUCH34HIZ bit to 0 while the value of the comparator output monitor flag (CMPMON.CMPMON0) is 0 restores the PWM output state.
 - The LEDs turn off, indicating the output disabled state.

Table 4.5 lists the output disable timing using comparator output detect, and Figure 4.4 shows an output disable example using comparator output detect. The detection time of comparator C is not included in Table 4.5 and Figure 4.4.

Table 4.5 Output Disable Timing Using Comparator Output Detect

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREFH0 = VREFH1 = VREFH2 = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = VREFL0 = VREFL1 = VREFL2 = 0 V,

Ta = -40 to +85°C	Та	= -40	to	+85°C	
-------------------	----	-------	----	-------	--

Item	Symbol	Min.	Max.	Unit
Output disable by comparator output detect	t ₃	_	7* ¹	t _{PBcyc} ∗²

Note 1. This is a reference valve. Make sure to perform careful evaluation on your system. Note 2. t_{PBcvc}: PCLKB period

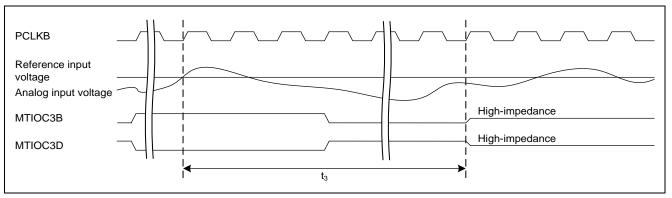


Figure 4.4 Output Disable Example Using Comparator Output Detect

4.1.5 Output Control by Oscillation Stop Detect

An output control operation example using oscillation stop detection is described below.

- Output disable control
 - When oscillation by the main clock oscillator stops, the PWM output pin enters the Hi-Z state and execution branches to an exception handler routine.
 - After the pin output changes, the values of the oscillation stop detect flags (OSTDSR.OSTDF and ICSR6.OSTSTF) change to 1.
 - The LEDs illuminate as indicated in Table 4.1, LED Illumination Patterns.
- Output restore control
 - After oscillation of the main clock restarts, the OSTDSR.OSTDF bit is cleared to 0, the clock is set again, and the ICSR6.OSTSTF bit is cleared to 0, resulting in a state in which the PWM output state can be restored. However, oscillation stop detect is a non-maskable interrupt, so only emergency measures to prevent malfunction should be implemented. Program execution should be halted, or a system reset applied.

Figure 4.6 lists the output disable timing using oscillation stop detect, and Figure 4.5 shows an output disable example using oscillation stop detect.

Table 4.6 Output Disable Timing Using Oscillation Stop Detect

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = AVCC1 = AVCC2 = VREFH0 = VREFH1 = VREFH2 = VCC to 5.5 V, VSS = AVSS0 = AVSS1 = AVSS2 = VREFL0 = VREFL1 = VREFL2 = 0 V,

Ta = -40 to +85°C

Item	Symbol	Min.	Max.	Unit
Output disable by oscillation stop detect	t4		10* ¹	μs
Flag setting by oscillation stop detect	t ₅		1	ms

Note 1. This is a reference valve. Make sure to perform careful evaluation on your system.

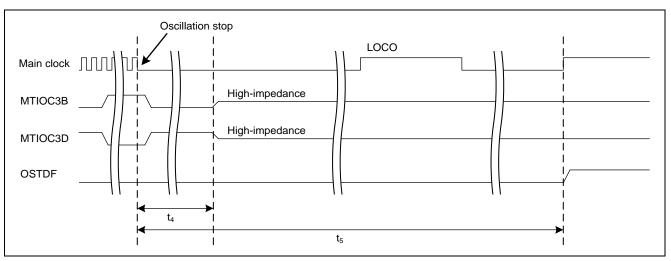


Figure 4.5 Output Disable Example Using Oscillation Stop Detect

4.2 Adding the Code Generator Plugin to a Project

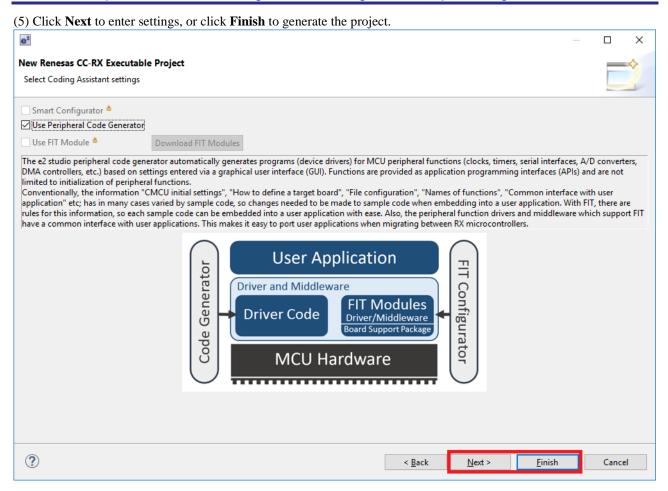
Steps (1) to (5) below provide an example of adding the code generator plugin to a project. Only the minimum settings required for the program described in this application note are made.

(1) Select Renesas CC-RX C/C++ Executable Project, and click the Next button.

e ² New C/C++ Project		_		×
Templates for New C/C++ Project				
Renesas RL78	GCC for Renesas RX C/C++ Executable Project A C/C++ Executable Project for Renesas RX using the GCC for Renesas RX Toolchain.			
Renesas RX Renesas RZ Renesas Synergy	GCC for Renesas RX C/C++ Library Project A C/C++ Library Project for Renesas RX using the GCC for Renesas RX Toolchain.			
Œ	Renesas CC-RX C/C++ Executable Project A C/C++ Project for Renesas RX using the Renesas CCRX toolchain.			
e	Renesas CC-RX C/C++ Library Project A C/C++ Library Project for Renesas RX using the Renesas CCRX toolchain.			
?	< <u>B</u> ack <u>N</u> ext > <u>F</u> inish		Cance	el

(2) Enter the project name, and click the **Next** button.

e²				×
	- RX Executable Project RX Executable Project			\$
<u>P</u> roject name: to	st			
☑ Use <u>d</u> efault le	cation			
Location:	C:\Users\a5111539\e2_studio\poe\test		Browse	
	Create Directory for Project			
Choose file syste	m: default 🖂			
Working sets				
Add projec <u>t</u>	to working sets		Ne <u>w</u>	
Working sets:		\sim	S <u>e</u> lect	
?	< <u>Back</u> <u>Next ></u> Einish		Cance	el


	(3)	Select the	target	device,	and	click	the	Next	button
--	-----	------------	--------	---------	-----	-------	-----	------	--------

Select toolchain, Toolchain Settin		
Language:	● C ○ C++	
Toolchain:	Renesas CCRX ~	
Toolchain Versio	n: v2.08.00 ~	
	Manage Toolchains	
Device Settings		Configurations
Target Device:	RSF524UEAxFB	Create Hardware Debug Configuration
_	Unlock Devices	E1 (RX) ~
Endian: L		Create Debug Configuration
Project Type: [Default 🗸 🗸	RX Simulator 🗸
		Create Release Configuration

(4) Check the box next to **Use code generation**.

e ²			—		Х
New Renesas CC-RX Executable Project				_	\diamond
Select Coding Assistant settings					
Smart Configurator 🌢					
Use Peripheral Code Generator					
Use FIT Module ^(b) Download FIT Modules					
② < Back	<u>N</u> ext >	<u>F</u> inish		Cance	el

4.3 Code Generator Plugin Setting Items

The code generator plugin setting items for each of the functions used by the program described in this application note are presented in 4.3.1 to 4.3.7. Note that each API function contains comment lines to allow users to add their own code. Do not add code or make changes to the code outside of the designated user code area.

4.3.1 Clock Generation Circuit

Figure 4.6 shows the setting items for the clock generation circuit.

📲 *Peripheral Functions 🛛		
Clock setting Block diagram		
FIT setting		
Use clock configuration in "r_bsp_config.h	Load	
Clock settings in this view will overwrite "r	_bsp_config.h" on [Generate Code]	
Main clock oscillator setting		
Operation		
Main clock oscillation source	Resonator	~
Frequency	20	(MHz)
Oscillator wait time	65536 cycles 🗸 16384	(μs)
Oscillation stop detection function	Enabled	~
High speed clock oscillator (HOCO) setting -		
Operation		
Frequency	32 MHz	~
Oscillator wait time	142 (cycles)	
PLL circuit setting		
Operation		
PLL clock source	Main clock oscillator	~
Input frequency division ratio	x 1/2 🗸	
Frequency multiplication factor	x 8 ~	
Frequency	80 (MHz)	
Low speed clock oscillator (LOCO) setting —		
Operation		
Frequency	4	(MHz)
System clock setting		
Clock source	PLL circuit	~
System clock (ICLK)	x 1 ~ 80	(MHz)
Peripheral module clock (PCLKA)	x 1 ~ 80	(MHz)
Peripheral module clock (PCLKB)	x 1/2 ~ 40	(MHz)
Peripheral module clock (PCLKD)	x 1/2 ~ 40	(MHz)
Flash IF clock (FCLK)	x 1/4 ~ 20	(MHz)
		,
IWDT-dedicated low-speed clock oscillator (IV Operation	VDTLOCO) setting	
Frequency	15	(kHz)
requercy	13	(1012)

Figure 4.6 Clock Generation Circuit Setting Items

4.3.2 I/O Ports

Figure 4.7 and Figure 4.8 show the setting items for the I/O port pins. Pins other than those corresponding to the I/O ports used by the program described in this application note are omitted. Also, pins used as peripheral functions are indicated by yellow highlighting.

📃 *Pe	ripheral	Functio	ns 🛛														
Port0 - P20	Port1	Port2	Port3	Port4	Port5	Port6	Port7	Port8	Port9	PortA	PortB	PortC	PortD	PortE	PortF	PortG	
	Unused	С) In	00)ut	🗌 Pu	III-up	CMO	S outpu	t		~		Output 1	[High-d	rive output
	Unused	С) In	۵ ()ut	Pu	ill-up	СМО	S outpu	t		~		Output 1	[High-d	rive output
	Unused	С) In	• 0	Out	🗌 Pu	ill-up	СМО	S outpu	t		~		Output 1	[_ High-d	rive output
	Unused	С) In	00)ut	🗌 Pu	ill-up	CMC)S outpu	t		~		Output 1		High-di	rive output
	Unused	С) In	00)ut	Pi	ill-up	CMC)S outpu	t		~		Output 1		_ High-di	rive output
	Unused	С) In	00)ut	🗌 Pi	ill-up	CMC	S outpu	t		~		Output 1		High-di	rive output
	Unused	С) In	00)ut	Pu	ill-up	CMO)S outpu	t		~		Output 1		High-di	rive output
	Unused	С) In	00	Out	🗌 Pu	ill-up	CMO)S outpu	t		~		Output 1		High-d	rive output

Figure 4.7 I/O Port Pin (PORT2) Setting Items

C0							
Olympic Unused C1	🔿 In	O Out	Pull-up	CMOS output	~	Output 1	High-drive output
Unused C2	⊖ In	◯ Out	Pull-up	CMOS output	~	Output 1	High-drive output
O Unused	() In	⊖ Out	Pull-up	CMOS output	~	Output 1	High-drive output
O Unused	🔿 In	Out	Pull-up	CMOS output	~	Output 1	High-drive output
O Unused	🔿 In	Out	Pull-up	CMOS output	~	Output 1	High-drive output
O Unused C6	🔿 In	⊖ Out	Pull-up	CMOS output	~	Output 1	High-drive output
Unused	🔿 In	Out	Pull-up	CMOS output	\sim	Output 1	High-drive output

Figure 4.8 I/O Port Pin (PORTC) Setting Items

4.3.3 Interrupt Controller (ICUb)

Figure 4.9 shows the setting items for the interrupt controller.

💯 *Peripheral Functions 🛛						
- Fast interrupt setting						
Fast interrupt	Interrupt source	BSC (BUSERR vect=16)	· · · · ·			
- Software interrupt setting						
Software interrupt	Priority	Level 15 (highest)	~			
- NMI setting						
NMI pin interrupt	Valid edge	Falling	 Digital filter 	No filter 🗸	0	(MHz)
-IRQ0 setting						
IRQ0	Pin	P10 .	 Digital filter 	PCLK/8	5	(MHz)
	Valid edge	Falling	 Priority 	Level 15 (highest) ~]	
-IRQ1 setting					-	
IRQ1	Pin	P11	Digital filter	No filter 🗸	0	(MHz)
	Valid edge	Low level		Level 15 (highest)		
	Valid odgo					
- IRQ2 setting				11.51		
IRQ2	Pin		 Digital filter 		0	(MHz)
	Valid edge	Low level	 Priority 	Level 15 (highest) ~		
- IRQ3 setting						
IRQ3	Pin	PB4	 Digital filter 	No filter 🗸	0	(MHz)
	Valid edge	Low level	 Priority 	Level 15 (highest) 🗸		
-IRQ4 setting						
IRQ4	Pin	P60 .	 Digital filter 	PCLK/8 ~	5	(MHz)
	Valid edge	Falling	 Priority 	Level 15 (highest) ~]	
1005	-				1	
- IRQ5 setting IRQ5	Pin	P02	Digital filter	No filter 🗸	0	(MHz)
				Level 15 (highest)		
	Valid edge	Low level		Level 15 (highest)		
-IRQ6 setting						
IRQ6	Pin	P31	 Digital filter 		0	(MHz)
	Valid edge	Low level	 Priority 	Level 15 (highest) ~		
-IRQ7 setting						
IRQ7	Pin	P20	 Digital filter 	No filter 🗸	0	(MHz)
	Valid edge	Low level	 Priority 	Level 15 (highest) 🗸		

Figure 4.9 Interrupt Controller Setting Items

4.3.4 Multi-Function Timer Pulse Unit 3 (MTU3d)

Figure 4.10 to Figure 4.12 show the setting items for multi-function timer pulse unit 3.

*Peripheral Functions	s 🕱
General setting MTU0	MTU1 MTU2 MTU3 MTU4 MTU5 MTU6 MTU7 MTU9
- Function setting	
MTU0	Unused ~
MTU1	Unused ~
MTU2	Unused ~
MTU3	Complementary PWM mode 1 V
MTU4	Unused 🗸
MTU5	Unused ~
MTU6	Unused ~
MTU7	Unused ~
MTU9	Unused ~
– MTU6, MTU7 timer sync	hronous clearing setting
Enable counter sy	ynchronous clearing at MTU0/TGRA input capture/compare match
Enable counter sy	ynchronous clearing at MTU0/TGRB input capture/compare match
Enable counter sy	ynchronous clearing at MTU0/TGRC input capture/compare match
Enable counter sy	ynchronous clearing at MTU0/TGRD input capture/compare match
Enable counter sy	ynchronous clearing at MTU1/TGRA input capture/compare match
Enable counter sy	ynchronous clearing at MTU1/TGRB input capture/compare match
Enable counter sy	ynchronous clearing at MTU2/TGRA input capture/compare match
Enable counter sy	ynchronous clearing at MTU2/TGRB input capture/compare match
- External clock pin setting	g
MTCLKA pin	P33 V Use noise filter
MTCLKB pin	P20 Vise noise filter
MTCLKC pin	P11 Vise noise filter
MTCLKD pin	P30 Vulse noise filter
Noise filter clock sele	ection PCLK ~
- A/D conversion start req	uest for generating frame synchronization signal setting
ADSM0 pin	PA7 V Source not selected V
ADSM1 pin	PA6 V Source not selected V

Figure 4.10 Multi-Function Timer Pulse Unit 3 (General Setting) Setting Items

RX24U Group

Disabling and Restoring PWM Output Using POE3A and MTU3d

🕎 Peripheral Functions 🛛				
General setting MTU0 MTU1 MTU2 MTU3 MTU4 MTU5 MTU6 MTU7 MTU9				
PWM waveforms without i	pping positive and negativ non-overlapping interval a	e PWM waveforms (12 phases in total) can be output. re also available. .TCNT function as up/down-counters.		
- Synchronous mode setting				
Include this channel in	n the synchronous operation	'n		
- Count source setting				
Counter clock selection	nter clock selection PCLK ~			
- Clock edge setting				
Rising edge	○ Falling edge	◯ Both edges		
-TCNT3 counter setting				
Counter clear source	Disabled counter clear		~	
- PWM output setting				
Timer operation period		100 µs V (Actual value: 100)		
Enable dead time	Dead time	2 µs ✓ (Actual value: 2)		
MTU3.TGRA register valu	ue	4160		
MTU3.TGRB register value	ue	2000		
MTU4.TGRA register valu	ue	2000		
MTU4.TGRB register valu		2000		
-				
- Brushless DC motor control	-			
	ase output control by softv	vare or external input signal		
Method to control output External input		External input	~	
Positive-phase output cor	ntrol (initial value)	Level output	~	
Negative-phase output co	ontrol (initial value)	Level output	~	
- Buffer register and synchror	nous clearing operation se	ting		
Enable synchronous of	counter clearing on MTU3/	TGRA compare match		
Waveform output imm	ediately before synchrono	us clearing is retained		
Data transfer timing from	buffer to temporary registe	r Do not link with interrupt skipping function 1	~	
-Output setting				
Enable MTIOC3A togg	gle output	MTIOC4A pin P72 ~		
MTIOC3A pin	P11 ~	MTIOC4B pin P73 ~		
MTIOC3B pin	P71 ~	MTIOC4C pin P75 ~		
MTIOC3D pin	P74 ~	MTIOC4D pin P76 ~		
Buffer transfer timing of P	Buffer transfer timing of PWM output level setting Does not transfer data from the buffer register 🗸			
I phase bitis output low	el of MTIOC3B pin (positiv	ve-nhase)		
Active level:L (Initial out	put:H,output at compare m	atch on up-count:L,output at compare match on down-count:H)	~	

Figure 4.11 Multi-Function Timer Pulse Unit 3 (Channel: MTU3) Setting Items (1/2)

RX24U Group

Disabling and Restoring PWM Output Using POE3A and MTU3d

💯 Peripheral Functions 🛛			
General setting MTU0 M	TU1 MTU2 MTU3 M	MTU4 MTU5 MTU6 MTU7 MTU9	
Six phases of non-overlap PWM waveforms without r	Complementary PWM mode description Six phases of non-overlapping positive and negative PWM waveforms (12 phases in total) can be output. PWM waveforms without non-overlapping interval are also available. MTU3.TCNT, MTU4.TCNT, MTU6.TCNT, and MTU7.TCNT function as up/down-counters.		
-Synchronous mode setting			
Include this channel in	n the synchronous operation	ion	
- Count source setting	Count source setting		
Counter clock selection	ounter clock selection PCLK ~		
-Clock edge setting			
 Rising edge 	 Falling edge 	◯ Both edges	
-TCNT3 counter setting			
Counter clear source	Disabled counter clear	~	
- PWM output setting			
Timer operation period		100	
Enable dead time	Dead time	2 (Actual value: 2)	
MTU3.TGRA register valu	ue	4160	
MTU3.TGRB register valu	ue	2000	
MTU4.TGRA register valu	ue	2000	
MTU4.TGRB register valu	ue	2000	
- Brushless DC motor control	satting		
	-	ware or external input signal	
Method to control output	Enable U, V and W phase output control by software or external input signal		
		Level output	
Negative-phase output co	Negative-phase output control (initial value) Level output 🗸		
-Buffer register and synchron	ous clearing operation se	etting	
Enable synchronous of	counter clearing on MTU3/	/TGRA compare match	
Waveform output imme	ediately before synchrono	bus clearing is retained	
Data transfer timing from	buffer to temporary registe	Do not link with interrupt skipping function 1 v	
-Output setting			
Enable MTIOC3A togg	le outout	NTIOCAA -i-	
		MTIOC4A pin P72 V	
MTIOC3A pin	P11 ~	MTIOC4B pin P73 ~	
MTIOC3B pin	P71 ~	MTIOC4C pin P75 ~	
MTIOC3D pin	P74 ~	MTIOC4D pin P76 ~	
Buffer transfer timing of P	WM output level setting	Does not transfer data from the buffer register \sim	
U phase: Initial output leve	el of MTIOC3B pin (positiv	ive-phase)	
Active level:L (Initial out	put:H,output at compare m	match on up-count:L,output at compare match on down-count:H) ~	

Figure 4.12 Multi-Function Timer Pulse Unit 3 (Channel: MTU3) Setting Items (2/2)

4.3.5	Port Output Enable 3 (POE3A)	
-------	------------------------------	--

Figure 4.13 and Figure 4.14 show the setting items for port output enable 3. Setting locations not used by the program described in this application note are omitted.

2 *Peripheral Functions ☆
- Port Output Enable 3 operation setting
O Unused 💿 Used
Note: Please select the pin and active level as set in MTU/GPT
These settings are omitted because they are not used by the program described in this application note.
- MTU9 output pin control setting
These settings are omitted because they are not used by the program described in this application note.
- MTU3 and MTU4 / GPT0, GPT1 and GPT2 output Port 7 pin control setting
Target pins for switching to high-impedance state or general I/O port pins
Enable MTU3/GPT0
MTIOC3B/GTIOC0A and MTIOC3D/GTIOC0B pin Controls high-impedance state of P71 and P74 v
Enable MTU4/GPT1
MTIOC4A/GTIOC1A and MTIOC4C/GTIOC1B pin Controls high-impedance state of P72 and P75
Enable MTU4/GPT2
MTIOC4B/GTIOC2A and MTIOC4D/GTIOC2B pin Controls high-impedance state of P73 and P76 v
Additional of high-impedance control/port switching control conditions
Comparator detection (Toggle CMADDMT34ZE bit)
Comparator Channel 0 Comparator Channel 1 Comparator Channel 2 Comparator Channel 3
POE4# input level detection
POE8# input level detection
POE10# input level detection
POE11# input level detection
POE12# input level detection
High-impedance control/port switching control condition
POE0# pin input
Enable output short high-impedance when any one of the three pairs of two-phase output pins assigned to ports P71 to P76 for MTU complementary PWM output (MTU3 and MTU4) or GPT output (GPT0 to GPT2) has simultaneously become an active level
Specify an active level for the short-circuit detection of MTU3 and MTU4/ GPT0 to GPT2
MTIOC3B/GTIOC0A Active level Active Level - Low V
MTIOC3D/GTIOC0B Active level Active Level - Low
MTIOC4A/GTIOC1A Active level Active Level - Low
MTIOC4C/GTIOC1B Active level Active Level - Low
MTIOC4B/GTIOC2A Active level Active Level - Low
MTIOC4D/GTIOC2B Active level Active Level - Low
-MTU3 and MTU4 / GPT0, GPT1 and GPT2 output Port 1 pin control setting
These settings are omitted because they are not used by the program described in this application note.
-MTU6 and MTU7 output pin control setting
These settings are omitted because they are not used by the program described in this application note.

Figure 4.13 Port Output Enable 3 Setting Items (1/2)

RX24U Group

🚆 *Peripheral Functions 🛛		
- GPT0, GPT1, GPT2 and GPT3 output pin control se	atting	
These settings are omitted b	ecause they are not used by the progra	am described in this application note.
POEn# input setting		
POE0# pin	P70 ~	
POE0 mode select accepts a request	On the falling edge of POE0# input	~
Output enable interrupt 1 (OEI1: Interrupt by F	2OE0F and OSF1)	
Interrupt generation condition	POE0F and OSF1	
POE4# pin	P96 ~	
POE4 mode select accepts a request	On the falling edge of POE4# input	×
Output enable interrupt 2 (OEI2: Interrupt by F	20E4F and OSF2)	
Interrupt generation condition	POE4F and OSF2 V	
POE8# pin	PB4 V	
POE8 mode select accepts a request	On the falling edge of POE8# input	~
Output enable interrupt 3 (OEI3: Interrupt by F	20E8F)	
POE10# pin	PE2 ~	
POE10 mode select accepts a request	On the falling edge of POE10# input	~
POE11# pin	PE3 🗸	
POE11 mode select accepts a request	On the falling edge of POE11# input	×
Output enable interrupt 4 (OEI4: Interrupt by F	20E10F, POE11F and OSF3)	
Interrupt generation condition	POE10F ~	
POE12# pin	P01 ~	
POE12 mode select accepts a request	On the falling edge of POE12# input	×
Output enable interrupt 5 (OEI5: Interrupt by F	POE4F and POE12F)	
Interrupt generation condition	POE4F and POE12F 🗸	
Priority (OEI1, OEI2, OEI3, OEI4 and OEI5)	Level 15 (highest)	
- Detection of Comparator setting		
Enable request to place pins in the high-impe	dance on detection of Comparator Channel 0 output	
Enable request to place pins in the high-impe	dance on detection of Comparator Channel 1 output	
Enable request to place pins in the high-impe	dance on detection of Comparator Channel 2 output	
Enable request to place pins in the high-impe	dance on detection of Comparator Channel 3 output	
Detection of stopped oscillation setting		
Enable request to switch pins to the high-imp	edance state or general I/O port on detection of stopped oscillation	

Figure 4.14 Port Output Enable 3 Setting Items (2/2)

4.3.6 Comparator C (CMPC0)

Figure 4.15 and Figure 4.16 show the setting items for comparator C.

🕎 *Peripheral Functions 🔀				
General setting	Comparator C0	Comparator C1	omparator C2 Comparator C3	
- Operation setting	g			
🔽 Use com	parator C0		Use comparator C1	
Use com	parator C2		Use comparator C3	

*Peripheral Function	15 🖾		
General setting Comp	arator C0 Comparator C1	1 Comparator C2 Comparator C3	
- Input setting			
Comparator input se	elect	AN000 ~	
- Reference voltage sett	ng		
On-chip D/A cor	verter0 (Please set D/A 0)) On-chip D/A converter1 (Please set D/A 1)	
- Digital filter setting			
Enable digital fil	ter		
Sampling clock		PCLK/8 V 5000 (kHz)	
-Output setting			
Output polarity		Normal ~	
Enable output (C	OMP0)	P24 ~	
Enable compara	tor C0 interrupt (CMPC0)		
Edge select		Rising ~	
Priority		Level 15 (highest) 🗸	

Figure 4.16 Comparator C (Comparator C0) Setting Items

4.3.7 D/A Converter (DAa)

Figure 4.17 shows the setting items for D/A converter.

🚂 *Peripheral Functions 🛛	
- D/A converter operation setting	
O Unused	Used
- D/A output setting	
☑ Use DA0	Use DA1
DA Data format	Right-alignment ~
- D/A-A/D synchronous setting	
Unused	○ Used

Figure 4.17 D/A Converter Setting Items

4.4 File Configuration

Table 4.7 lists the files used by the sample code. Files that are generated automatically by the integrated development environment and code generator plugin, and whose contents have not been modified, are not listed.

Table 4.7	Files Used by Sample Code
-----------	---------------------------

File Name	Outline	Remarks File generated by code generator plugin	
r_cg_main.c	Main processing routine, D/A converter a startup, comparator C startup, IRQ0 interrupt enable, IRQ4 interrupt enable, MTU3d startup, OEI1 interrupt enable, OEI4 interrupt enable		
r_cg_icu_user.c	IRQ0 (SW0) and IRQ4 (SW1) interrupt handlers	File generated by code generator plugin	
r_cg_poe3_user.c	Input level detect interrupt handler (POE0#, POE10#), output level compare interrupt handler	File generated by code generator plugin	
r_cg_cmpc_user.c	Comparator output detect interrupt handler	File generated by code generator plugin	
r_cg_cgc_user.c	Oscillation stop detect interrupt handler (NMI)	File generated by code generator plugin	
r_cg_userdefine.h	List of constants added after code generation	File generated by code generator plugin	

4.5 Option-Setting Memory

Table 4.8 lists the option-setting memory states used by the sample code. If necessary, these should be changed to optimal values.

Table 4.8 Option-Setting Memory States Used by Sample Code

Symbol	Address	Setting Value	Description
OFS0	FFFF FF8Ch to FFFF FF8Fh	FFFF FFFFh	IWDT halted after a reset
OFS1	FFFF FF88h to FFFF FF8Bh	FFFF FFFFh	Voltage monitoring 0 reset disabled after reset
MDE	FFFF FF80h to FFFF FF83h	FFFF FFFFh	Little-endian selected

4.6 Constants

Table 4.9 lists the constants used in the sample code.

Table 4.9 Constants

	Setting	_
Constant Name	Value	Contents
LED_ON	0	LED is on.
LED_OFF	1	LED is off.
LOW_LEVEL	0	I/O port output level is low.
HIGH_LEVEL	1	I/O port output level is high.
OUTPUT_STATE_NORMAL	0	PWM output state is normal.
OUTPUT_STATE_STOP	1	PWM output state is disabled (all disable sources included).
DETECTED	1	PWM output disable source detected.
NOT_DETECTED	0	PWM output disable source not detected.
DA0_VALUE	80h	D/A0 setting value

4.7 Variables

Table 4.10 lists the variables.

Table 4.10 Variables

Туре	Variable Name	Description	Used by Function
uint8_t	poe_state_of_irq0	PWM output state variable used by irq0	r_icu_irq0_interrupt
uint8_t	poe_flag_state	PWM output disable source flag state variable	get_poe_stop_flag
static uint8_t	poe0_state_of_detect	POE0# pin input level detect state variable	return_to_pwm_output
static uint8_t	poe10_state_of_detect	POE10# pin input level detect state variable	return_to_pwm_output
static uint8_t	comparator_state_of_detect	Comparator output detect state variable	return_to_pwm_output

4.8 Functions

Table 4.11 lists the functions.

Table 4.11 Functions

Function Name	Outline
main	Main processing routine
R_MAIN_UserInit	Initial settings
da0_set_output_value	D/A0 value setting
module_start	Module start
r_icu_irq0_interrupt	IRQ0 interrupt handler
r_icu_irq4_interrupt	IRQ4 interrupt handler
get_poe_stop_flag	Get PWM output disable flag state
return_to_pwm_output	PWM output restore processing
r_cmpc_cmpc0_interrupt	Comparator interrupt handler
r_poe3_oei1_interrupt	OEI1 interrupt handler
r_poe3_oei4_interrupt	OEI4 interrupt handler
r_cgc_oscillation_stop_nmi_interrupt	Oscillation stop detect processing

4.9 **Function Specifications**

main	
Outline	Main processing routine
Header	None
Declaration	void main(void)
Description	This is the main processing routine.
Arguments	None
Return Value	None
Remarks	This function is generated by the code generator plugin.
	In the sample program, processing other than initial settings is performed by interrupt handlers.

R_MAIN_UserInit	
Outline	Initial settings
Header	None
Declaration	void R_MAIN_UserInit(void)
Description	Makes initial settings.
Arguments	None
Return Value	None
Remarks	This function is generated by the code generator plugin.

da0_set_output_va	alue
Outline	D/A0 value setting
Header	None
Declaration	static void da0_set_output_value(void)
Description	Sets the D/A0 value used as the comparator's reference input voltage.
Arguments	None
Return Value	None

module_start	
Outline	Module start
Header	None
Declaration	static void module_start(void)
Description	Starts a peripheral function and enables interrupts.
Arguments	None
Return Value	None

r_icu_irq0_interrupt	
Outline	IRQ0 interrupt handler
Header	None
Declaration	static void r_icu_irq0_interrupt(void)
Description	Restores PWM output from the disabled state.
Arguments	None
Return Value	None
Remarks	This interrupt handler is generated by the code generator plugin.
	It is run when the irq0 interrupt occurs (when SW0 is pressed).

r_icu_irq4_interrupt	
Outline	IRQ4 interrupt handler
Header	None
Declaration	static void r_icu_irq4_interrupt(void)
Description	Disables output using the SPOER register.
Arguments	None
Return Value	None
Remarks	This interrupt handler is generated by the code generator plugin.
	It is run when the irq4 interrupt occurs (when SW1 is pressed).

get_poe_stop_flag	
Outline	Get PWM output disable flag state
Header	None
Declaration	static uint8_t get_poe_stop_flag(void)
Description	This function obtains the state of the PWM output pin.
Arguments	None
Return Value	OUTPUT_STATE_NORMAL
	The PWM output state is normal.
	OUTPUT_STATE_STOP
	The PWM output state is stopped.

return_to_pwm_ou	itput
Outline	PWM output restore processing
Header	None
Declaration	static void return_to_pwm_output(void)
Description	Performs processing to restore the PWM output state when the output disable source has been removed.
Arguments	None
Return Value	None
Remarks	

r_cmpc_cmpc0_interrupt	
Outline	Comparator interrupt handler
Header	None
Declaration	static void r_cmpc_cmpc0_interrupt(void)
Description	Controls LED illumination and disabling of the MTU as part of the processing of PWM output disabling by comparator output detection.
Arguments	None
Return Value	None
Remarks	This interrupt handler is generated by the code generator plugin. It is run when the comparator output interrupt occurs.

r_poe3_oei1_inter	rupt
Outline	OEI1 interrupt handler
Header	None
Declaration	static void r_poe3_oei1_interrupt(void)
Description	Controls LED illumination and disabling of the MTU as part of the processing of PWM output disabling by POE0# input level detection or output level comparison on pins P71 to P76.
Arguments	None
Return Value	None
Remarks	This interrupt handler is generated by the code generator plugin.
	It is run when output enable interrupt 1 occurs.

r_poe3_oei4_interrupt		
Outline	OEI4 interrupt handler	
Header	None	
Declaration	static void r_poe3_oei4_interrupt(void)	
Description	Controls LED illumination and disabling of the MTU as part of the processing of PWM output disabling by POE10# input level detection.	
Arguments	None	
Return Value	None	
Remarks	narksThis interrupt handler is generated by the code generator plugin.It is run when output enable interrupt 4 occurs.	

r_cgc_oscillation_stop_nmi_interrupt		
Outline	Oscillation stop detect processing	
Header	r_cg_cgc.h	
Declaration	void r_cgc_oscillation_stop_nmi_interrupt(void)	
Description	Controls LED illumination and disabling of the MTU as part of the processing of PWM output disabling by oscillation stop detection (NMI), then waits until an MCU reset is applied.	
Arguments	None	
Return Value	rn Value None	
Remarks	This interrupt handler is generated by the code generator plugin. It is run when generation of the main clock stops.	

4.10 Flowcharts

Flowcharts of program operation are presented in 4.10.1 to 4.10.12. Functions generated by the code generator plugin, whose contents have not been modified, are omitted. For details of functions generated by the code generator plugin, refer to e² studio Code Generator User's Manual: RX API Reference, which is listed in the Reference Documents section.

4.10.1 Main Processing Routine

Figure 4.18 presents a flowchart of the main processing routine.

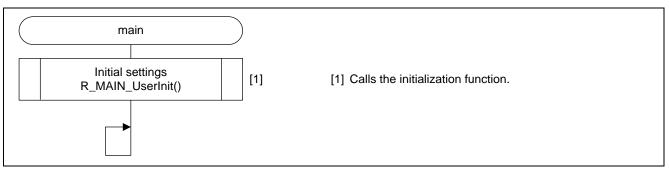
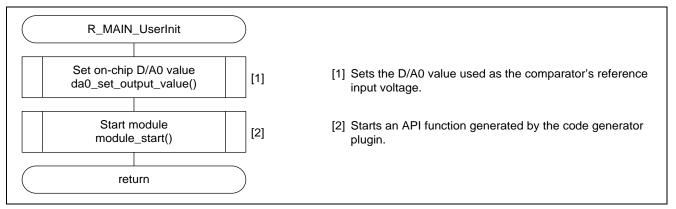



Figure 4.18 Flowchart of Main Processing Routine

4.10.2 Initial Settings

Figure 4.19 presents a flowchart of the initial settings.

4.10.3 D/A0 Output Voltage Value Setting

Figure 4.20 presents a flowchart of D/A0 output voltage value setting.

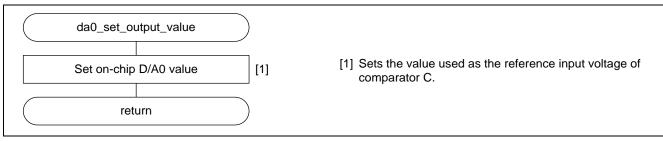


Figure 4.20 Flowchart of D/A0 Output Voltage Value Setting

4.10.4 Module Startup

Figure 4.21 presents a flowchart of module startup.

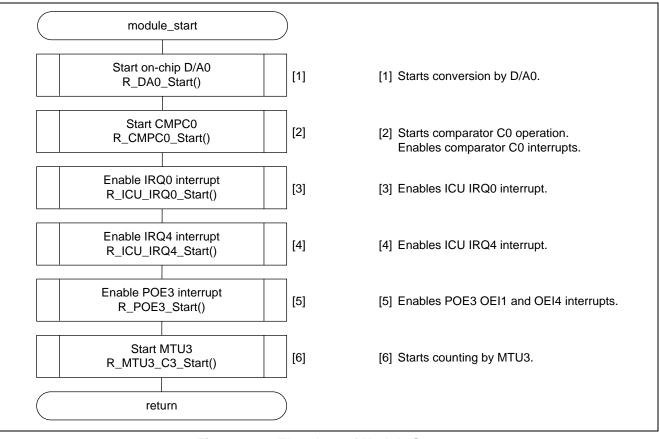


Figure 4.21 Flowchart of Module Startup

4.10.5 IRQ0 Interrupt Handler

Figure 4.22 presents a flowchart of the IRQ0 interrupt handler

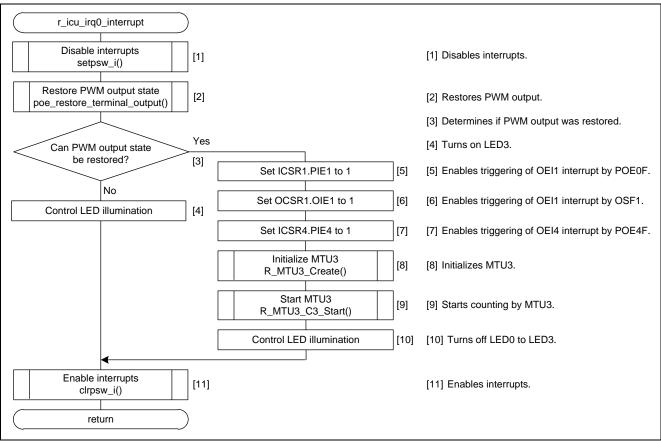


Figure 4.22 Flowchart of IRQ0 Interrupt Handler

4.10.6 IRQ4 Interrupt Handler

Figure 4.23 presents a flowchart of the IRQ4 interrupt handler.

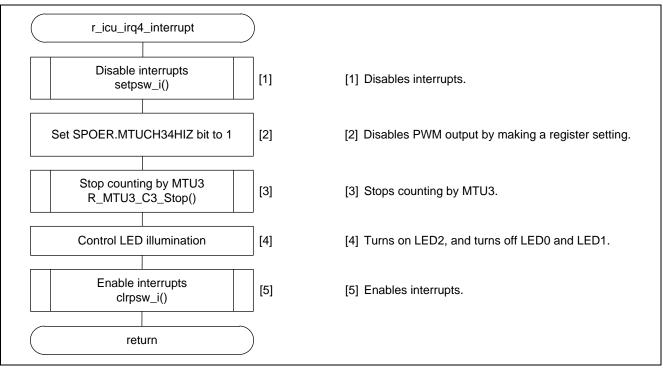


Figure 4.23 Flowchart of IRQ4 Interrupt Handler

4.10.7 Get PWM Output Disabled Flag State

Figure 4.24 presents a flowchart of getting the PWM output disabled flag state.

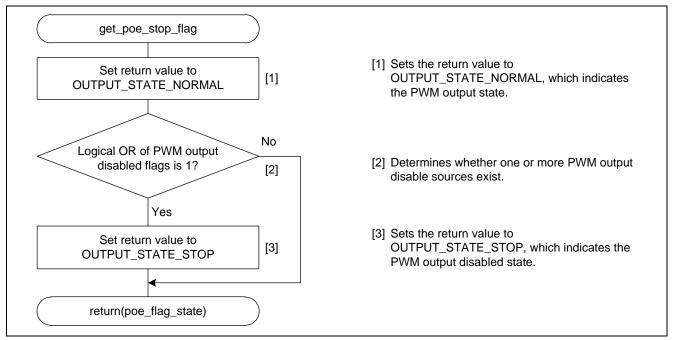


Figure 4.24 Flowchart of Getting PWM Output Disabled Flag State

4.10.8 Restore PWM Output

Figure 4.25 and Figure 4.26 present a flowchart of restoring PWM output.

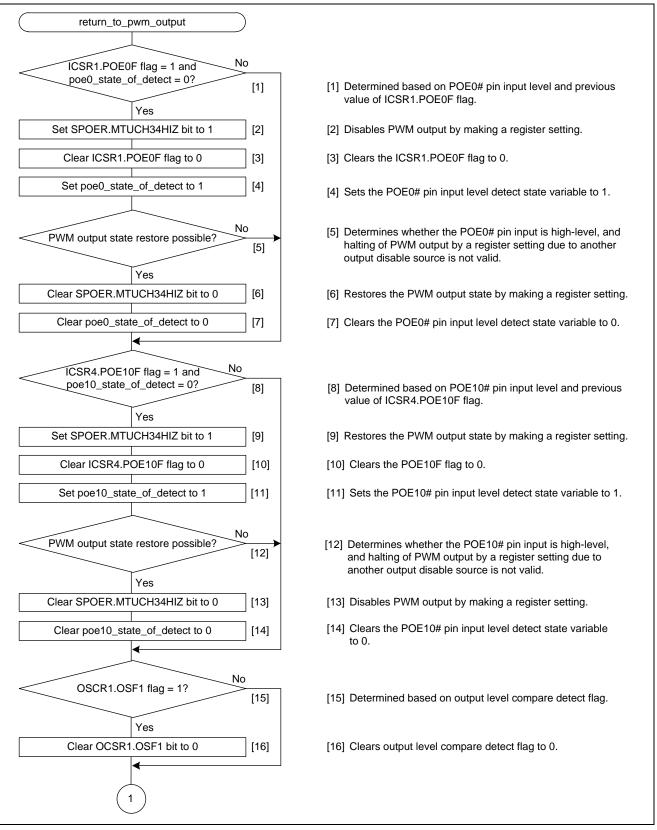


Figure 4.25 Flowchart of Restoring PWM Output (1/2)

RX24U Group

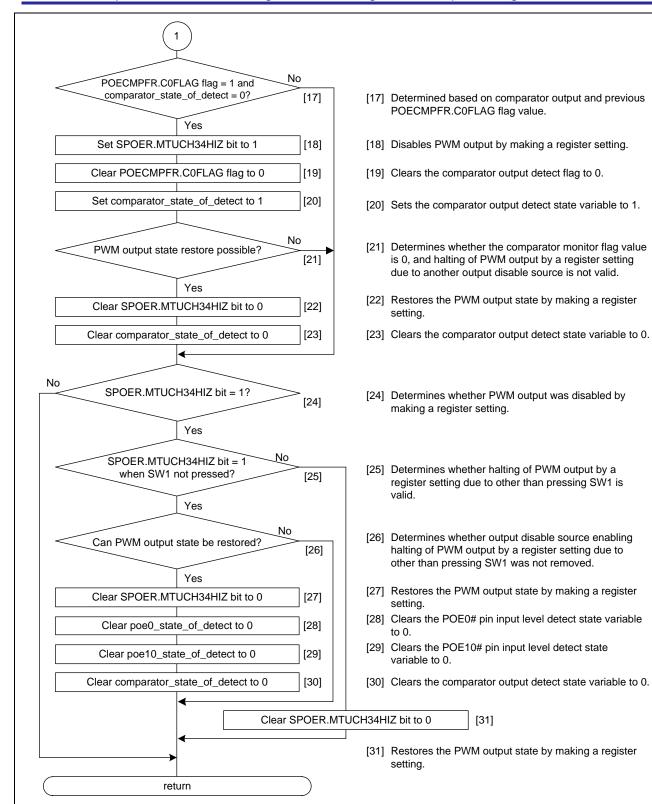


Figure 4.26 Flowchart of Restoring PWM Output (2/2)

4.10.9 Comparator Interrupt Handler

Figure 4.27 presents a flowchart of the comparator interrupt handler.

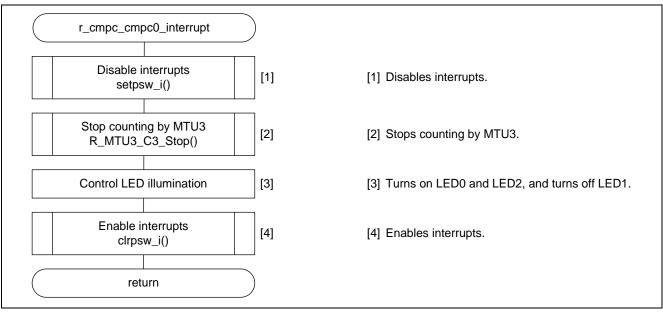


Figure 4.27 Flowchart of Comparator Interrupt Handler

4.10.10 OEI1 Interrupt Handler

Figure 4.28 presents a flowchart of the OEI1 interrupt handler.

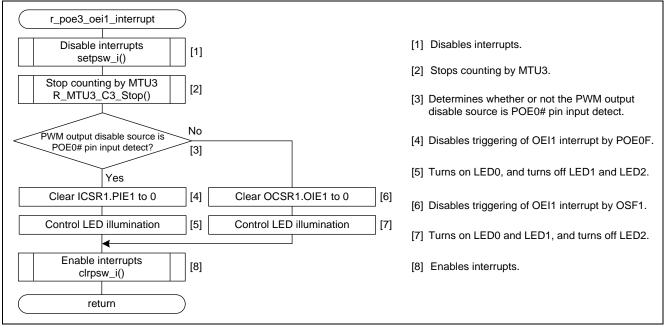


Figure 4.28 Flowchart of OEI1 Interrupt Handler

4.10.11 OEl4 Interrupt Handler

Figure 4.29 presents a flowchart of the OEI4 interrupt handler.

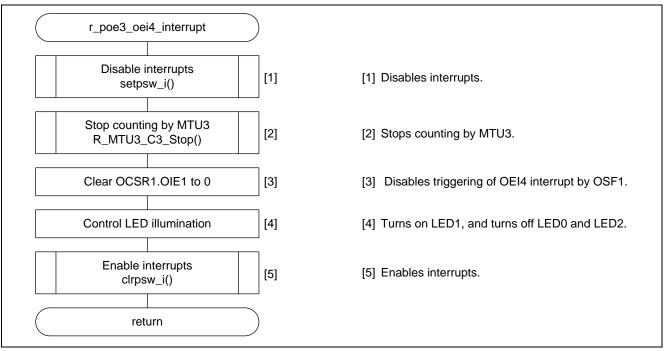


Figure 4.29 Flowchart of OEI4 Interrupt Handler

4.10.12 Oscillation Stop Detection

Figure 4.30 presents a flowchart of oscillation stop detection.

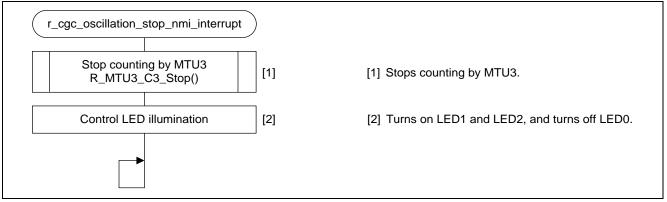


Figure 4.30 Flowchart of Oscillation Stop Detection

5. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

Reference Documents

User's Manual: Hardware RX24U Group User's Manual: Hardware Rev.1.00 (R01UH0658) (The latest versions can be downloaded from the Renesas Electronics website.)

User's Manual: RX API Reference e² studio Code Generator User's Manual: RX API Reference Rev.1.30 (R20UT2864EJ0130)

User's Manual: Renesas Starter Kit Renesas Starter Kit for RX24U User's Manual Rev.1.00 (R20UT3758EG0100)

CPU Board Schematics: Renesas Starter Kit Renesas Starter Kit for RX24U CPU Board Schematics Rev.1.00 (R20UT3757EG0100)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Supported Technical Updates

This application note reflects the contents of the following technical updates:

There are no supported technical updates.

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u> Inquiries <u>http://www.renesas.com/contact/</u>

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description		
Rev.	Date	Page	Summary	
1.00	Aug. 31, 2018		First edition issued	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not
access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise.
 When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for velucting the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. Murphy Ranch Road, Milpitas, CA 95035, U.S.A. +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700 **Renesas Electronics Europe GmbH** Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Si No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338