
 APPLICATION NOTE

R01AN2063EJ0320 Rev.3.20 Page 1 of 50
May.29.23

RX Family
DMAC Module Using Firmware Integration Technology
Introduction
This application note describes the DMA module which uses Firmware Integration Technology (FIT). This
module uses DMA to transfer data without the CPU. In this document, this module is referred to as the DMA
FIT module.

Target Devices
• RX230 Group, RX231 Group
• RX23W Group
• RX23E-A Group
• RX23E-B Group
• RX26T Group
• RX64M Group
• RX65N Group, RX651 Group
• RX66T Group
• RX66N Group
• RX660 Group
• RX671 Group
• RX71M Group
• RX72T Group
• RX72M Group
• RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX
For details of the confirmed operation contents of each compiler, refer to “6.1 Confirmed Operation
Environment".

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 2 of 50
May.29.23

Contents

1. Overview .. 4
1.1 DMACA FIT Module .. 4
1.2 Overview of the DMACA FIT Module .. 4
1.3 Using the FIT DMACA module .. 4
1.3.1 Using FIT DMACA module in C++ project .. 4
1.4 API Overview ... 5

2. API Information .. 6
2.1 Hardware Requirements ... 6
2.2 Software Requirements ... 6
2.3 Limitations ... 6
2.3.1 RAM Location Limitations .. 6
2.4 Supported Toolchain ... 6
2.5 Interrupt vector .. 7
2.6 Header Files .. 8
2.7 Integer Types ... 8
2.8 Configuration Overview ... 8
2.9 Code Size .. 8
2.10 Parameters .. 12
2.11 Return Values .. 12
2.12 Callback function ... 13
2.13 Adding the FIT Module to Your Project ... 14
2.14 “for”, “while” and “do while” statements ... 15

3. API Functions .. 16
R_DMACA_Init() .. 16
R_DMACA_Open() .. 17
R_DMACA_Close() .. 18
R_DMACA_Create() .. 20
R_DMACA_Control() ... 26
R_DMACA_Int_Callback() ... 31
R_DMACA_Int_Enable() ... 32
R_DMACA_Init_Disable() .. 33
R_DMACA_GetVersion() ... 34

4. Pin Setting ... 35

5. Demo Projects ... 36
5.1 dma_demo_rskrx231, dma_demo_rskrx231_gcc ... 36
5.2 dma_demo_rskrx65n_2m, dma_demo_rskrx65n_2m_gcc ... 36
5.3 dma_demo_rskrx72m, dma_demo_rskrx72m_gcc ... 36

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 3 of 50
May.29.23

5.4 dma_demo_rskrx671, dma_demo_rskrx671_gcc ... 36
5.5 Adding a Demo to a Workspace .. 36
5.6 Downloading Demo Projects ... 36

6. Appendices .. 37
6.1 Confirmed Operation Environment .. 37
6.2 Troubleshooting ... 45

7. Reference Documents ... 46

Related Technical Updates ... 46

Revision History .. 47

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 4 of 50
May.29.23

1. Overview
1.1 DMACA FIT Module
The DMACA FIT module can be used by being implemented in a project as an API. See section 2.13 Adding
the FIT Module to Your Project for details on methods to implement this FIT module into a project.

1.2 Overview of the DMACA FIT Module
The DMAC is a module to transfer data without the CPU. When a DMACA transfer request is generated, the
DMAC transfers data stored at the transfer source address to the transfer destination address.

For details, see the “DMA Controller” section of the User’s Manual: Hardware.

(1) Transfer Modes
The DMAC supports the following transfer modes.

• Normal transfer mode
• Repeat transfer mode
• Block transfer mode

(2) Extended Repeat Area Function
The DMAC supports a function to specify the extended repeat areas on the transfer source and destination
addresses. With the extended repeat areas set, the address registers repeatedly indicate the addresses of
the specified extended repeat areas. However, the area (of transfer source or transfer destination) which is
specified as the repeat area or block area should not be specified as the extended repeat area.

(3) Address Update Function using Offset (DMAC0 Only)
The source and destination addresses can be updated by fixing, increment, decrement, or offset addition.
When the offset addition is selected, the offset specified by the DMACA offset register (DMOFR of DMAC0)
is added to the address every time the DMAC performs one data transfer. This function realizes a data
transfer where addresses are allocated to separated areas. Offset subtraction can also be realized by setting
a negative value in DMOFR of DMAC0. In this case, the negative value must be 2’s complement.

For example, on the RX64M the offset setting ranges are 0 bytes to (16 M – 1) bytes (00000000h to
00FFFFFFh) and –16 M bytes to –1 byte (FF000000h to FFFFFFFFh).

(4) Usage Conditions of DMACA FIT Module
The usage conditions of the module are as follows.

• The r_bsp default lock function must be used.
• A single common bit must be used as the DMAC module stop setting bit and the DTC module stop setting

bit.

1.3 Using the FIT DMACA module
1.3.1 Using FIT DMACA module in C++ project
For C++ project, add FIT DMACA module interface header file within extern “C”{}:

Extern “C”
{
#include “r_smc_entry.h”
#include “r_dmaca_rx_if.h”
}

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 5 of 50
May.29.23

1.4 API Overview
Table 1.1 lists the API functions of DMACA FIT module.

Table 1.1 API Functions

Function Name Description
R_DMACA_Init() Module information initialization processing
R_DMACA_Open() Channel-specific initialization processing
R_DMACA_Close() Channel-specific end processing
R_DMACA_Create() Channel-specific register and activation source setting processing
R_DMACA_Control() Operation setting processing
R_DMACA_Int_Callback() Callback function registration processing for channel-specific transfer

end interrupt/transfer escape end interrupt
R_DMACA_Int_Enable() Channel-specific transfer end interrupt/transfer escape end interrupt

enable processing
R_DMACA_Int_Disable() Channel-specific transfer end interrupt/transfer escape end interrupt

disable processing
R_DMACA_GetVersion() Version information acquisition processing

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 6 of 50
May.29.23

2. API Information
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
The MCU used must support the following functions:

 DMAC(DMACA)
 ICU

2.2 Software Requirements
This driver is dependent upon the following FIT module:

 Renesas Board Support Package (r_bsp) v5.20 or higher.

2.3 Limitations
2.3.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.

In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR project
(EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.4 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 6.1, Confirmed Operation Environment.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 7 of 50
May.29.23

2.5 Interrupt vector
The transfer end interrupt and the escape transfer end interrupt is enabled by executing the
R_DMACA_Int_Enable() function.

Table 2.1 lists the interrupt vector used in the DMACA FIT Module.

Table 2.1 Interrupt Vector Used in the DMACA FIT Module

Device Interrupt Vector
RX230/RX231/RX23W/
RX23E-A/ RX23E-B

DMAC0I interrupt[channel0] (vector no.:198)
DMAC1I interrupt[channel1] (vector no.:199)
DMAC2I interrupt[channel2] (vector no.:200)
DMAC3I interrupt[channel3] (vector no.:201)

RX64M DMAC0I interrupt[channel0] (vector no.:120)
DMAC1I interrupt[channel1] (vector no.:121)
DMAC2I interrupt[channel2] (vector no.:122)
DMAC3I interrupt[channel3] (vector no.:123)
DMAC74I interrupt[channel4-7] (vector no.:124)

RX65N/RX651 DMAC0I interrupt[channel0] (vector no.:120)
DMAC1I interrupt[channel1] (vector no.:121)
DMAC2I interrupt[channel2] (vector no.:122)
DMAC3I interrupt[channel3] (vector no.:123)
DMAC74I interrupt[channel4-7] (vector no.:124)

RX66T DMAC0I interrupt[channel0] (vector no.:120)
DMAC1I interrupt[channel1] (vector no.:121)
DMAC2I interrupt[channel2] (vector no.:122)
DMAC3I interrupt[channel3] (vector no.:123)
DMAC74I interrupt[channel4-7] (vector no.:124)

RX71M DMAC0I interrupt[channel0] (vector no.:120)
DMAC1I interrupt[channel1] (vector no.:121)
DMAC2I interrupt[channel2] (vector no.:122)
DMAC3I interrupt[channel3] (vector no.:123)
DMAC74I interrupt[channel4-7] (vector no.:124)

RX72T DMAC0I interrupt[channel0] (vector no.:120)
DMAC1I interrupt[channel1] (vector no.:121)
DMAC2I interrupt[channel2] (vector no.:122)
DMAC3I interrupt[channel3] (vector no.:123)
DMAC74I interrupt[channel4-7] (vector no.:124)

RX72M/RX72N/RX66N/
RX671/RX660/RX26T

DMAC0I interrupt[channel0] (vector no.:120)
DMAC1I interrupt[channel1] (vector no.:121)
DMAC2I interrupt[channel2] (vector no.:122)
DMAC3I interrupt[channel3] (vector no.:123)
DMAC74I interrupt[channel4-7] (vector no.:124)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 8 of 50
May.29.23

2.6 Header Files
All API calls and their supporting interface definitions are located in r_dmaca_rx_if.h.

2.7 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

2.8 Configuration Overview
The configuration option settings of this module are located in r_dmaca_rx_config.h. The option names and
setting values are listed in the table below:

Configuration options in r_dmaca_rx_config.h

DMACA_CFG_PARAM_CHECKING_ENABLE 1

Selects whether or not parameter checking is included
in the code.
0: Parameter checking is omitted from the code at build
time.
1: Parameter checking is included in the code at build
time.
The code size can be reduced by omitting parameter
checking from the code at build time.

DMACA_CFG_USE_DTC_FIT_MODULE 0

SPECIFY WHETHER THE DTC DRIVER IS USED
WITH DMACA DRIVER
0: DTC driver is not used with DMACA driver.
1: DTC driver is used with DMACA driver.

2.9 Code Size
Typical code sizes associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.8, Configuration Overview. The table lists reference values when the C compiler’s
compile options are set to their default values, as described in 2.4, Supported Toolchain. The compile option
default values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The
code size varies depending on the C compiler version and compile options.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 9 of 50
May.29.23

ROM, RAM, and Stack Code Sizes

Device

Memory Used
Renesas Compiler GCC IAR Compiler
With

Parameter
Checking

Without
Parameter
Checking

With Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX231 ROM 1,598 bytes 1,253 bytes 2,840 bytes 2,296 bytes 2,860
bytes

2,352
bytes

RAM 36 bytes 36 bytes 120 bytes 20 bytes 42 bytes 42 bytes
Maximum
stack
usage

36 bytes

36 bytes
 - - 136 bytes 136 bytes

RX23W
ROM 1,548 bytes 1,203 bytes - - - -

RAM 36 bytes 36 bytes - - -

Maximum
stack
usage

72 bytes 72 bytes - - - -

RX23E-A ROM
1,602 bytes 1,257 bytes 3,008 bytes 2,440 bytes 2,584

bytes
2,076
bytes

RAM
36 bytes 36 bytes 36 bytes 36 bytes 36 bytes 36 bytes

Maximum
stack
usage

100 bytes 100 bytes - - 92 bytes 92 bytes

RX65N ROM 1,764 bytes 1,419 bytes 3,352 bytes 2,808 bytes 3,461
bytes

2925
bytes

RAM 72 bytes 72 bytes 40 bytes 40 bytes 76 bytes 76 bytes
Maximum
stack
usage

36 bytes

36 bytes
 - - 136 bytes 136 bytes

RX66T ROM 1,732 bytes 1,478 bytes 3,376 bytes 2,832 bytes 3,439
bytes

2,916
bytes

RAM 72 bytes 72 bytes 40 bytes 40 bytes 76 bytes 76 bytes
Maximum
stack
usage

36 bytes

36 bytes
 - - 148 bytes 148 bytes

RX71M ROM 1,761 bytes 1,416 bytes 3,344 bytes 2,800 bytes 3,446
bytes

2,925
bytes

RAM 72 bytes 72 bytes 40 bytes

40 bytes
 76 bytes 76 bytes

Maximum
stack
usage

36 bytes

36 bytes
 - - 148 bytes 148 bytes

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 10 of 50
May.29.23

ROM, RAM, and Stack Code Sizes

Device

Memory Used
Renesas Compiler GCC IAR Compiler
With

Parameter
Checking

Without
Parameter
Checking

With Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX72T ROM 1,773 bytes 1,428 bytes 3,312 bytes 2,768 bytes 3,446
bytes

2,925
bytes

RAM 72 bytes 72 bytes 40 bytes

40 bytes
 76 bytes 76 bytes

Maximum
stack
usage

36 bytes 36 bytes - - 148 bytes 148 bytes

RX72M
ROM 1,776 bytes 1,431 bytes 3,472 bytes 2,920 bytes 3,338

bytes
2,817
bytes

RAM 72 bytes 72 bytes 40 bytes 40 bytes 72 bytes 72 bytes

Maximum
stack
usage

80 bytes 80 bytes - - 156 bytes 156 bytes

RX72N
ROM 1832 bytes 1487 bytes 3517 bytes 2968 bytes 3175

bytes
2657
bytes

RAM 72 bytes 72 bytes 72 bytes 72 bytes 72 bytes 72 bytes

Maximum
stack
usage

32 bytes 28 bytes - - 96 bytes 96 bytes

RX66N
ROM 1832 bytes 1487 bytes 3520 bytes 2968 bytes 3179

bytes
2775
bytes

RAM 72 bytes 72 bytes 72 bytes 72 bytes 72 bytes 72 bytes

Maximum
stack
usage

32 bytes 28 bytes - - 96 bytes 96 bytes

RX671
ROM 1761 bytes 1465 bytes 3568 bytes 3072 bytes 3159

bytes
2695
bytes

RAM 72 bytes 72 bytes 40 bytes 40 bytes 72 bytes 72 bytes

Maximum
stack
usage

52 bytes 44 bytes - - 96 bytes 96 bytes

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 11 of 50
May.29.23

ROM, RAM, and Stack Code Sizes

Device

Memory Used
Renesas Compiler GCC IAR Compiler
With

Parameter
Checking

Without
Parameter
Checking

With Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX660 ROM 1,792 bytes 1,460 bytes 3600 bytes 3,040 bytes 3,487
bytes

2,863
bytes

RAM 72 bytes 72 bytes 128 bytes 128 bytes 76 bytes 76 bytes
Maximum
stack
usage

60 bytes

56 bytes
 - - 188 bytes 188 bytes

RX26T
ROM 1881 bytes 1549 bytes 2472 bytes 1968 bytes 3224

bytes
2703
bytes

RAM 72 bytes 72 bytes 128 bytes 128 bytes 72 bytes 72 bytes

Maximum
stack
usage

72 bytes

68 bytes
 - - 128 bytes 128 bytes

RX23E-B
ROM 1569 bytes 1237 bytes 2008 bytes 1496 bytes 2634

bytes
2126
bytes

RAM 36 bytes 36 bytes 36 bytes 36 bytes 36 bytes 36 bytes

Maximum
stack
usage

52 bytes

48 bytes
 - - 120 bytes 120 bytes

Note 1 The memory sizes listed apply when the default settings listed in, “Configuration Overview”, are used.

The memory sizes differ according to the definitions selected.
Note 2 Under confirmation conditions listed the following
• r_dmaca_rx.c
• r_dmaca_rx_target.c
Note 3 The required memory sizes differ according to the C compiler version and the compile conditions.
Note 4 The memory sizes listed apply when the little endian. The above memory sizes also differ according

to endian mode.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 12 of 50
May.29.23

2.10 Parameters
This section describes the parameter structure used by the API functions in this module. The structure is
located in r_dmaca_rx_if.h as are the prototype declarations of API functions.

typedef struct st_dmaca_transfer_data_cfg
{
 dmaca_transfer_mode_t transfer_mode; /* Transfer Mode */
 dmaca_repeat_block_side_t repeat_block_side;
 /* Repeat Area in Repeat or Block Transfer Mode */
 dmaca_data_size_t data_size; /* Transfer Data Size */
 dmaca_activation_source_t act_source; /* Activation Source */
 dmaca_request_source_t request_source; /* Transfer Request Source */
 dmaca_dti_t dtie_request; /* Transfer End Interrupt Request */
 dmaca_esi_t esie_request; /* Transfer Escape End Interrupt Request */
 dmaca_rpti_t rptie_request; /* Repeat Size End Interrupt Request */
 dmaca_sari_t sarie_request; /* Source Address Extended Repeat Area
Overflow Interrupt Request */
 dmaca_dari_t darie_request; /* Destination Address Extended Repeat Area
Overflow Interrupt Request */
 dmaca_src_addr_mode_t src_addr_mode; /* Address Mode of Source */
 dmaca_src_addr_repeat_area_t src_addr_repeat_area;/* Source Address
Extended Repeat Area */
 dmaca_des_addr_mode_t des_addr_mode;/* Address Mode of Destination */
 dmaca_des_addr_repeat_area_t des_addr_repeat_area; /* Destination
Address Extended Repeat Area */
 uint32_t offset_value;/* Offset value for DMA Offset Register (DMOFR) */
 dmaca_interrupt_select_t interrupt_sel; /* Configurable Options for
Interrupt Select */
 void *p_src_addr; /* Start Address of Source */
 void *p_des_addr; /* Start Address of Destination */
 uint32_t transfer_count; /* Transfer Count */
 uint16_t block_size; /* Repeat Size or Block Size */
 uint8_t rsv[2];
} dmaca_transfer_data_cfg_t;

typedef enum e_dmaca_command
{
 DMACA_CMD_ENABLE = 0, /* Enables DMA transfer. */
 DMACA_CMD_ALL_ENABLE, /* Enables DMAC activation. */
 DMACA_CMD_RESUME, /* Resumes DMA transfer. */
 DMACA_CMD_DISABLE, /* Enables DMA transfer. */
 DMACA_CMD_ALL_DISABLE, /* Disables DMAC activation. */
 DMACA_CMD_SOFT_REQ_WITH_AUTO_CLR_REQ, /* SWREQ bit is cleared automatically
after DMA transfer. */
 DMACA_CMD_SOFT_REQ_NOT_CLR_REQ, /* SWREQ bit is not cleared after DMA
transfer. */
 DMACA_CMD_SOFT_REQ_CLR, /* Clears DMACA Software request flag. */
 DMACA_CMD_STATUS_GET, /* Gets the current status of DMACA. */
 DMACA_CMD_ESIF_STATUS_CLR, /* Clears Transfer Escape End Interrupt Flag.
 */
 DMACA_CMD_DTIF_STATUS_CLR /* Clears Transfer Interrupt Flag. */
} dmaca_command_t;

2.11 Return Values
This section describes return values of API functions. This enumeration is located in r_dmaca_rx_if.h as are
the prototype declarations of API functions.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 13 of 50
May.29.23

typedef enum e_dmaca_return
{
 DMACA_SUCCESS_OTHER_CH_BUSY = 0, /* Other DMAC channels are locked, */
 /* so that cannot set to module stop state. */
 DMACA_SUCCESS_DTC_BUSY, /* DTC is locked, */
 /* so that cannot set to module stop state. */
 DMACA_SUCCESS,
 DMACA_ERR_INVALID_CH, /* Channel is invalid. */
 DMACA_ERR_INVALID_ARG, /* Parameters are invalid. */
 DMACA_ERR_INVALID_HANDLER_ADDR, /* Invalid function address is set, */
 /* and any previous function has been unregistered. */
 DMACA_ERR_INVALID_COMMAND, /* Command is invalid. */
 DMACA_ERR_NULL_PTR, /* Argument pointers are NULL. */
 DMACA_ERR_BUSY, /* Resource has been locked by other process. */
 DMACA_ERR_SOFTWARE_REQUESTED, /* DMA transfer request by software
has been generated already, */
 /* so that cannot execute command. */
 DMACA_ERR_SOFTWARE_REQUEST_DISABLED, /* Transfer Request Source is not
Software. */
 DMACA_ERR_INTERNAL /* DMACA driver internal error */
 } dmaca_return_t;

2.12 Callback function
In this module, the callback function specified by the user is called when the transfer end interrupt and the
escape transfer end interrupt occurs.

The callback function is specified by storing the address of the user function in the
“R_DMACA_Int_Callback()” structure member (see 2.10, Parameters). When the callback function is called,
the variable which stores the constant is passed as the argument.

The argument is passed as void type. Thus the argument of the callback function is cast to a void pointer.

When using a value in the callback function, type cast the value.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 14 of 50
May.29.23

2.13 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for
details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 15 of 50
May.29.23

2.14 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /*

WAIT_LOOP */

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 16 of 50
May.29.23

3. API Functions

R_DMACA_Init()
This function is used to initialize the DMAC’s internal information.

Format
void R_DMACA_Init (void)

Parameters
None.

Return Values
None.

Properties
Prototype declarations are contained in r_dmaca_rx_if.h.

Description
Initializes the usage status of each DMA channel (internal information). Also, cancels the registered callback
functions for all DMAC transfer end interrupts/transfer escape end interrupts (DMAC0I, DMAC1I, DMAC2I,
DMAC3I, and DMAC74I). If DMAC transfer end interrupts/transfer escape end interrupts will be used, run the
R_DMACA_Init() function beforehand, and then use the R_DMACA_Int_Callback() function (described
below) to register the callback functions.

Example
#include "r_dmaca_rx_if.h"

/* When using the DMACA driver, run the R_DMACA_Init() function first. */
R_DMACA_Init();

Special Notes:
When using the DMACA driver, run the R_DMACA_Init() function first. It is recommended to run at hardware
setup operation.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 17 of 50
May.29.23

R_DMACA_Open()
This function is run after calling R_DMACA_Init() when using the APIs of the DMACA FIT module.

Format
dmaca_return_t R_DMACA_Open (

 uint8_t channel

)

Parameters
uint8_t channel

DMAC channel number.

Return Values
[DMACA_SUCCESS] /* Successful operation*/
[DMACA_ERR_INVALID_CH] /* Channel is invalid.*/
[DMACA_ERR_BUSY] /* Resource has been locked by other process.*/

Properties
Prototype declarations are contained in r_dmaca_rx_if.h.

Description
Locks*1 the DMAC channel specified by the argument channel, then makes initial settings. Releases the
DMAC from the module stop state, then activates the DMAC. Also, initializes the activation source selection
register for the specified DMAC channel.

Note: 1. The DMACA FIT module uses the r_bsp default lock function. As a result, the specified DMAC
channel is in the locked state after a successful end.

Example
#include “r_dmaca_rx_if.h”
volatile dmaca_return_t ret;

ret = R_DMACA_Open(DMACA_CH0);

Special Notes:
None.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 18 of 50
May.29.23

R_DMACA_Close()
This function is used to release the resources of the DMAC channel currently in use.

Format
dmaca_return_t R_DMACA_Close (

 uint8_t channel

)

Parameters
uint8_t channel

DMAC channel number.

Return Values
[DMACA_SUCCESS] /* Successful operation*/
[DMACA_SUCCESS_OTHER_CH_BUSY] /* Successful operation. Other DMAC channels are

locked.*/
[DMACA_SUCCESS_DTC_BUSY] /* Successful operation. DTC is locked. */
[DMACA_ERR_INVALID_CH] /* Channel is invalid. */
[DMACA_ERR_INTERNAL] /* DMACA driver internal error */

Properties
Prototype declarations are contained in r_dmaca_rx_if.h.

Description
Unlocks*1 the DMAC channel specified by the argument channel and clears to 0 the DMA transfer enable
(DTE) bit of the specified DMAC channel to disable DMA transfers. If all DMAC channels are unlocked, the
function clears the DMAC operation enable (DMST) bit to prevent DMAC activation. If in addition DTC is
unlocked, the function sets the DMAC and DTC to the module stop state.*2

Note: 1. The DMACA FIT module uses the r_bsp default lock function. As a result, the specified DMAC
channel is in the unlocked state after a successful end.

 2. Because a shared bit is used as both the DMAC module stop setting bit and the DTC module stop
setting bit, the function confirms that the DTC is unlocked before making the module stop setting.
(For details, see the “Low Power Consumption” section in the User’s Manual: Hardware.

Change the processing method to match the combination of modules used, as shown below.

DMAC Control DTC Control Processing Method
DMACA FIT module
(lock function control function
present, DTC lock state checking
function present)

DTC FIT module
(lock function control function
present, DMAC lock state
checking function present)

See case 1.

Other than the above See case 2.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 19 of 50
May.29.23

Case 1: Using the r_bsp Default Lock Function and Controlling the DTC with the DTC FIT Module*1

The function uses the r_bsp default lock function to confirm that all DMAC channels are unlocked and that
the DTC is unlocked, then puts the DMAC into the module stop state.

Note: 1. A necessary condition is that the DTC FIT module has a module stop control function that confirms
the locked state of the DMAC.

Case 2: Control Other Than the Above
The user must provide code to confirm that all DMAC channels are unlocked and that the DTC is unlocked
(not in use). The DMACA FIT module includes an empty function for this purpose.

If the r_bsp default lock function is not used, insert the program code for checking the locked/unlocked state
of all the DMAC channels and the DTC after the line marked /* do something */ in the
r_dmaca_check_DMACA_DTC_locking_byUSER() function in the file r_dmaca_rx_target.c.

Even if the r_bsp default lock function is used, if the DTC FIT module is not used to control the DTC, insert
program code for checking the locked/unlocked state of the DTC after the line marked /* do something */ in
the r_dmaca_check_DTC_locking_byUSER() function in the file r_dmaca_rx_target.c.

Note that the dmaca_chk_locking_sw_t type shown below should be used for the return value of the
r_dmaca_check_DMACA_DTC_locking_byUSER() function or r_dmaca_check_DTC_locking_byUSER()
function.

dmaca_chk_locking_sw_t type
DMACA_ALL_CH_UNLOCKED_AND_DTC_UNLOCKED
 /* All DMAC channels and DTC are unlocked. */
DMACA_ALL_CH_UNLOCKED_BUT_DTC_LOCKED
 /* All DMAC channels are unlocked, but DTC is locked. */
DMACA_LOCKED_CH_EXIST /* Other DMAC channels are locked. */

Example
#include “r_dmaca_rx_if.h”
volatile dmaca_return_t ret;

ret = R_DMACA_Close(DMACA_CH0);
if (DMACA_SUCCESS != ret)
{
 /* do something */
}

Special Notes:
When controlling the DTC without using the DTC FIT module, make sure to monitor the usage of the DTC
and control locking and unlocking of the DTC so that calling this function does not set the DTC to the module
stop state. Note that even if the DTC has not been activated, it is necessary to keep it in the locked state
when not making DTC transfer settings.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 20 of 50
May.29.23

R_DMACA_Create()
This function is used to make DMAC register settings and to specify the activation source.

Format
dmaca_return_t R_DMACA_Create (

 uint8_t channel,

 damca_transfer_data_cfg_t * p_data_cfg

)

Parameters
uint8_t channel

DMAC channel number.

damca_transfer_data_cfg_t *p_data_cfg

Pointer to dmaca_transfer_data_cfg_t DMAC transfer information structure.

Setting Values of Members of dmaca_transfer_data_cfg_t Structure

Structure
Member

Short
Description Setting Value Setting Details

transfer_mode Transfer
Mode

DMACA_TRANSFER_MODE_NORMAL Normal transfer
DMACA_TRANSFER_MODE_REPEAT Repeat transfer
DMACA_TRANSFER_MODE_BLOCK Block transfer

repeat_block_
side

Repeat Area
in Repeat or
Block
Transfer
Mode

DMACA_REPEAT_BLOCK_DESTINATION The destination is
specified as the repeat
area or block area.

DMACA_REPEAT_BLOCK_SOURCE The source is specified
as the repeat area or
block area.

DMACA_REPEAT_BLOCK_DISABLE The repeat area or block
area is not specified.

data_size Transfer
Data Size

DMACA_DATA_SIZE_BYTE 8-bit
DMACA_DATA_SIZE_WORD 16-bit
DMACA_DATA_SIZE_LWORD 32-bit

act_source DMACA
Activation
Source

Member of enum_ir enumerated type list of
constants in file Iodefine.h

Interrupt vector number
of DMAC activation
source

request_sourc
e

DMACA
Transfer
Request
Source

DMACA_TRANSFER_REQUEST_SOFTWAR
E

Software

DMACA_TRANSFER_REQUEST_PERIPHER
AL

Interrupts from peripheral
modules or external
interrupt input pins.

dtie_request Transfer End
Interrupt
Request

DMACA_TRANSFER_END_INTERRUPT_DIS
ABLE

Disables the transfer end
interrupt request.

DMACA_TRANSFER_END_INTERRUPT_EN
ABLE

Enables the transfer end
interrupt request.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 21 of 50
May.29.23

esie_request Transfer
Escape End
Interrupt
Request

DMACA_TRANSFER_ESCAPE_END_INTER
RUPT_
DISABLE

Disables the transfer
escape end interrupt
request.

DMACA_TRANSFER_ESCAPE_END_INTER
RUPT_
ENABLE

Enables the transfer
escape end interrupt
request.

rptie_request Repeat Size
End Interrupt
Request

DMACA_REPEAT_SIZE_END_INTERRUPT_
DISABLE

Disables the repeat size
end interrupt request.

DMACA_REPEAT_SIZE_END_INTERRUPT_
ENABLE

Enables the repeat size
end interrupt request.

sarie_request Source
Address
Extended
Repeat Area
Overflow
Interrupt
Request

DMACA_SRC_ADDR_EXT_REP_AREA_OVE
R_
INTERRUPT_DISABLE

Disables an interrupt
request for an extended
repeat area overflow on
the source address

DMACA_SRC_ADDR_EXT_REP_AREA_OVE
R_
INTERRUPT_ENABLE

Enables an interrupt
request for an extended
repeat area overflow on
the source address

darie_request Destination
Address
Extended
Repeat Area
Overflow
Interrupt
Request

DMACA_DES_ADDR_EXT_REP_AREA_OVE
R_
INTERRUPT_DISABLE

Disables an interrupt
request for an extended
repeat area overflow on
the destination address

DMACA_DES_ADDR_EXT_REP_AREA_OVE
R_
INTERRUPT_ENABLE

Enables an interrupt
request for an extended
repeat area overflow on
the destination address

src_addr_mode Address
Mode of
Source

DMACA_SRC_ADDR_FIXED Destination address is
fixed.

DMACA_SRC_ADDR_OFFSET Offset addition
DMACA_SRC_ADDR_INCR Source address is

incremented
DMACA_SRC_ADDR_DECR Source address is

decremented
src_addr_repea
t_area

Source
Address
Extended
Repeat Area

DMACA_SRC_ADDR_EXT_REP_AREA_NON
E

Not specified

DMACA_SRC_ADDR_EXT_REP_AREA_2B
DMACA_SRC_ADDR_EXT_REP_AREA_4B
DMACA_SRC_ADDR_EXT_REP_AREA_8B
DMACA_SRC_ADDR_EXT_REP_AREA_16B
DMACA_SRC_ADDR_EXT_REP_AREA_32B
DMACA_SRC_ADDR_EXT_REP_AREA_64B
DMACA_SRC_ADDR_EXT_REP_AREA_128B
DMACA_SRC_ADDR_EXT_REP_AREA_256B
DMACA_SRC_ADDR_EXT_REP_AREA_512B
DMACA_SRC_ADDR_EXT_REP_AREA_1KB
DMACA_SRC_ADDR_EXT_REP_AREA_2KB
DMACA_SRC_ADDR_EXT_REP_AREA_4KB
DMACA_SRC_ADDR_EXT_REP_AREA_8KB
DMACA_SRC_ADDR_EXT_REP_AREA_16K
B
DMACA_SRC_ADDR_EXT_REP_AREA_32K
B
DMACA_SRC_ADDR_EXT_REP_AREA_64K
B
DMACA_SRC_ADDR_EXT_REP_AREA_128K

 2 bytes
 4 bytes
 8 bytes
 16 bytes
 32 bytes
 64 bytes
 128 bytes
 256 bytes
 512 bytes
 1K bytes
 2K bytes
 4K bytes
 8K bytes
 16K bytes
 32K bytes
 64K bytes
128K bytes
256K bytes
512K bytes

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 22 of 50
May.29.23

B
DMACA_SRC_ADDR_EXT_REP_AREA_256K
B
DMACA_SRC_ADDR_EXT_REP_AREA_512K
B
DMACA_SRC_ADDR_EXT_REP_AREA_1MB
DMACA_SRC_ADDR_EXT_REP_AREA_2MB
DMACA_SRC_ADDR_EXT_REP_AREA_4MB
DMACA_SRC_ADDR_EXT_REP_AREA_8MB
DMACA_SRC_ADDR_EXT_REP_AREA_16M
B
DMACA_SRC_ADDR_EXT_REP_AREA_32M
B
DMACA_SRC_ADDR_EXT_REP_AREA_64M
B
DMACA_SRC_ADDR_EXT_REP_AREA_128
MB

 1M bytes
 2M bytes
 4M bytes
 8M bytes
 16M bytes
 32M bytes
 64M bytes
128M bytes

des_addr_mod
e

Address
Mode of
Destination

DMACA_DES_ADDR_FIXED Destination address is
fixed.

DMACA_DES_ADDR_OFFSET Offset addition
DMACA_DES_ADDR_INCR Destination address is

incremented.
DMACA_DES_ADDR_DECR Destination address is

decremented.
des_addr_rep
eat_area

Destination
Address
Extended
Repeat Area

DMACA_DES_ADDR_EXT_REP_AREA_NON
E

Not specified

DMACA_DES_ADDR_EXT_REP_AREA_2B
DMACA_DES_ADDR_EXT_REP_AREA_4B
DMACA_DES_ADDR_EXT_REP_AREA_8B
DMACA_DES_ADDR_EXT_REP_AREA_16B
DMACA_DES_ADDR_EXT_REP_AREA_32B
DMACA_DES_ADDR_EXT_REP_AREA_64B
DMACA_DES_ADDR_EXT_REP_AREA_128
DMACA_DES_ADDR_EXT_REP_AREA_256B
DMACA_DES_ADDR_EXT_REP_AREA_512B
DMACA_DES_ADDR_EXT_REP_AREA_1KB
DMACA_DES_ADDR_EXT_REP_AREA_2KB
DMACA_DES_ADDR_EXT_REP_AREA_4KB
DMACA_DES_ADDR_EXT_REP_AREA_8KB
DMACA_DES_ADDR_EXT_REP_AREA_16KB
DMACA_DES_ADDR_EXT_REP_AREA_32KB
DMACA_DES_ADDR_EXT_REP_AREA_64KB
DMACA_DES_ADDR_EXT_REP_AREA_128K
B
DMACA_DES_ADDR_EXT_REP_AREA_256K
B
DMACA_DES_ADDR_EXT_REP_AREA_512K
B
DMACA_DES_ADDR_EXT_REP_AREA_1MB
DMACA_DES_ADDR_EXT_REP_AREA_2MB
DMACA_DES_ADDR_EXT_REP_AREA_4MB
DMACA_DES_ADDR_EXT_REP_AREA_8MB
DMACA_DES_ADDR_EXT_REP_AREA_16M
B

 2 bytes
 4 bytes
 8 bytes
 16 bytes
 32 bytes
 64 bytes
 128 bytes
 256 bytes
 512 bytes
 1K bytes
 2K bytes
 4K bytes
 8K bytes
 16K bytes
 32K bytes
 64K bytes
128K bytes
256K bytes
512K bytes
 1M bytes
 2M bytes
 4M bytes
 8M bytes
 16M bytes
 32M bytes
 64M bytes
128M bytes

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 23 of 50
May.29.23

DMACA_DES_ADDR_EXT_REP_AREA_32M
B
DMACA_DES_ADDR_EXT_REP_AREA_64M
B
DMACA_DES_ADDR_EXT_REP_AREA_128
MB

offset_value Offset value
for DMA
Offset
Register
(DMOFR)

32bit data
00000000h to 00FFFFFFh (0 bytes to (16M-1)
bytes)
FF000000h to FFFFFFFFh (-16M bytes to -1
byte)
Note:
Setting bits 31 to 25 is invalid. A value of bit 24
is extended to bits 31 to 25.
Offset addition can be specified only for
DMAC0.
With R_DMACA_Create() function, setting this
data is invalid except DMAC0.

Note:
Offset subtraction can
also be realized by
setting a negative value.
In this case, the negative
value must be 2’s
complement.

interrupt_sel Configurable
Options for
Interrupt
Select

DMACA_CLEAR_INTERRUPT_FLAG_BEGIN
NING_
TRANSFER

At the beginning of
transfer, clears the
interrupt flag of the
activation source to 0.

DMACA_ISSUES_INTERRUPT_TO_CPU_EN
D_OF_
TRANSFER

At the end of transfer, the
interrupt flag of the
activation source issues
an interrupt to the CPU.

*p_src_addr Start Address
of Source

32bit data
00000000h to 0FFFFFFFh (256M bytes)
F0000000h to FFFFFFFFh (256M bytes)
Note:
Setting bits 31 to 29 is invalid. A value of bit 28
is extended to bits 31 to 29.

Source address

*p_des_addr Start Address
of Destination

Destination address

transfer_count Transfer
Count

32bit data
[Normal Transfer Mode]
1 to 65535
When the setting is 0, no specific number of
transfer operations is set (free running mode)
[Repeat Transfer Mode or Block Transfer
Mode].
1 to 65536
Upper 16 bits are not used

[Normal Transfer Mode]
This data is set to
DMCRAL register.
[Repeat Transfer Mode
or Block Transfer Mode]
This data is set to
DMCRB register.

block_size Repeat Size
or Block Size

16bit data
[Normal Transfer Mode]
Invalid
[Repeat Transfer Mode or Block Transfer
Mode].
1 to 1024

[Normal Transfer Mode]
Invalid
[Repeat Transfer Mode
or Block Transfer Mode]
This data is set to
DMCRAL register and
DMCRAH register.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 24 of 50
May.29.23

Return Values
[DMACA_SUCCESS] /* Successful operation */
[DMACA_ERR_INVALID_CH] /* Channel is invalid. */
[DMACA_ERR_INVALID_ARG] /* Parameters are invalid. */
[DMACA_ERR_NULL_PTR] /* Argument pointers are NULL. */

Properties
Prototype declarations are contained in r_dmaca_rx_if.h.

Description
References the dmaca_transfer_data_cfg_t DMAC transfer information structure passed as an argument and
makes register settings for the specified DMAC channel. Also specifies the activation source for the DMAC
channel.

Example
Case 1: Activating the DMAC by Software
#include "r_dmaca_rx_if.h"

dmaca_return_t ret;
dmaca_transfer_data_cfg_t td_cfg;
uint32_t src = 1234;
uint32_t des[3];

/* Operation – No Extended Repeat Area Function and No Offset Subtraction */
/* Source address is fixed
 * Transfer data size is 32-bit (long word).
 * DMAC transfer mode is Repeat mode & Source side is repeat area
 * At the beginning of transfer, clear the interrupt flag of the activation
source to 0.
 * Transfer Request source is software. */

/* Set Transfer data configuration. */
 td_cfg.transfer_mode = DMACA_TRANSFER_MODE_REPEAT;
 td_cfg.repeat_block_side = DMACA_REPEAT_BLOCK_SOURCE;
 td_cfg.data_size = DMACA_DATA_SIZE_LWORD;
 td_cfg.act_source = (dmaca_activation_source_t)0;
 td_cfg.request_source = DMACA_TRANSFER_REQUEST_SOFTWARE;
 td_cfg.dtie_request =
DMACA_TRANSFER_END_INTERRUPT_DISABLE;
 td_cfg.esie_request = DMACA_TRANSFER_ESCAPE_END_INTERRUPT_DISABLE;
 td_cfg.rptie_request = DMACA_REPEAT_SIZE_END_INTERRUPT_DISABLE;
 td_cfg.sarie_request = DMACA_SRC_ADDR_EXT_REP_AREA_OVER_INTERRUPT_DISABLE;
 td_cfg.darie_request =
DMACA_DES_ADDR_EXT_REP_AREA_OVER_INTERRUPT_DISABLE;
 td_cfg.src_addr_mode = DMACA_SRC_ADDR_FIXED;
 td_cfg.src_addr_repeat_area = DMACA_SRC_ADDR_EXT_REP_AREA_NONE;
 td_cfg.des_addr_mode = DMACA_DES_ADDR_INCR;
 td_cfg.des_addr_repeat_area = DMACA_DES_ADDR_EXT_REP_AREA_NONE;
 td_cfg.offset_value = 0x00000000;
 td_cfg.interrupt_sel =
DMACA_CLEAR_INTERRUPT_FLAG_BEGINNING_TRANSFER;
 td_cfg.p_src_addr = (void *)&src;
 td_cfg.p_des_addr = (void *)des;
 td_cfg.transfer_count = 1;
 td_cfg.block_size = 3;

/* Call R_DMACA_Create(). */
 ret = R_DMACA_Create(DMACA_CH0, &td_cfg);

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 25 of 50
May.29.23

Note: When the td_cfg.request_source is DMACA_TRANSFER_REQUEST_SOFTWARE (DMAC transfer
request source is software), the R_DMACA_Create() function ignores the td_cfg.act_source setting.

Case 2: Using a Peripheral Module as the DMAC Activation Source (Example of Using CMI1 Interrupt)
#include "r_dmaca_rx_if.h"

dmaca_return_t ret;
dmaca_transfer_data_cfg_t td_cfg;
uint32_t src = 1234;
uint32_t des[3];

/* Operation – No Extended Repeat Area Function and No Offset Subtraction */
/* Source address is fixed.
 * Transfer data size is 32-bit (long word).
 * DMAC transfer mode is Repeat mode & Source side is repeat area
 * At the beginning of transfer, clear the interrupt flag of the activation
source to 0.
 * Transfer Request source is CMI1. */

/* Set Transfer data configuration. */
 td_cfg.transfer_mode = DMACA_TRANSFER_MODE_REPEAT;
 td_cfg.repeat_block_side = DMACA_REPEAT_BLOCK_SOURCE;
 td_cfg.data_size = DMACA_DATA_SIZE_LWORD;
 td_cfg.act_source = IR_CMT1_CMI1;
 td_cfg.request_source = DMACA_TRANSFER_REQUEST_PERIPHERAL;
 td_cfg.dtie_request = DMACA_TRANSFER_END_INTERRUPT_DISABLE;
 td_cfg.esie_request = DMACA_TRANSFER_ESCAPE_END_INTERRUPT_DISABLE;
 td_cfg.rptie_request = DMACA_REPEAT_SIZE_END_INTERRUPT_DISABLE;
 td_cfg.sarie_request = DMACA_SRC_ADDR_EXT_REP_AREA_OVER_INTERRUPT_DISABLE;
 td_cfg.darie_request = DMACA_DES_ADDR_EXT_REP_AREA_OVER_INTERRUPT_DISABLE;
 td_cfg.src_addr_mode = DMACA_SRC_ADDR_FIXED;
 td_cfg.src_addr_repeat_area = DMACA_SRC_ADDR_EXT_REP_AREA_NONE;
 td_cfg.des_addr_mode = DMACA_DES_ADDR_INCR;
 td_cfg.des_addr_repeat_area = DMACA_DES_ADDR_EXT_REP_AREA_NONE;
 td_cfg.offset_value = 0;
 td_cfg.interrupt_sel = DMACA_CLEAR_INTERRUPT_FLAG_BEGINNING_TRANSFER;
 td_cfg.p_src_addr = (void *)&src;
 td_cfg.p_des_addr = (void *)des;
 td_cfg.transfer_count = 1;
 td_cfg.block_size = 3;

/* Disable CMI1 interrupt request before calling R_DTC_Create(). */
IR(CMT1,CMI1) = 0;
IEN(CMT1,CMI1) = 0;

/* Call R_DMACA_Create(). */
 ret = R_DMACA_Create(DMACA_CH0, &td_cfg);

Special Notes:
None.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 26 of 50
May.29.23

R_DMACA_Control()
This function is used to control the operation of the DMAC. This function is run after calling
R_DMACA_Open().

Format
dmaca_return_t R_DMACA_Control (

 uint8_t channel,

 dmaca_command_t command,

 dmaca_stat_t * p_stat

)

Parameters
uint8_t channel

DMAC channel number.

dmaca_command_t command

DMAC control command.

Command Description
DMACA_CMD_ENABLE Enables DMAC transfer (DMA transfer enable bit

control by channel unit).
DMACA_CMD_ALL_ENABLE Enables DMAC activation (DMAC operation enable

bit control).
DMACA_CMD_RESUME Restarts DMAC transfer (DMA transfer enable bit

control by channel unit).
DMACA_CMD_DISABLE Disables DMAC transfer (DMA transfer enable bit

control by channel unit).
DMACA_CMD_ALL_DISABLE Disables DMAC activation (DMAC operation

enable bit control).
DMACA_CMD_SOFT_REQ_WITH_AUTO_CLR_REQ Activates the DMAC by software, and automatically

clears the software activation bit.
DMACA_CMD_SOFT_REQ_NOT_CLR_REQ Activates the DMAC by software, but does not

automatically clear the software activation bit.
DMACA_CMD_SOFT_REQ_CLR Clears the software activation bit.
DMACA_CMD_STATUS_GET Gets the DMAC status information.
DMACA_CMD_ESIF_STATUS_CLR Clears the transfer escape interrupt flag (ESIF).
DMACA_CMD_DTIF_STATUS_CLR Clears the transfer end interrupt flag (DTIF).

dmaca_stat_t *p_stat

Pointer to dmaca_stat_t DMAC status information structure

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 27 of 50
May.29.23

Members of dmaca_stat_t Structure

Structure
Member Short Description

Setting
Value Setting Details

soft_req_stat Software Request
Status

false A software transfer is not requested.
true A software transfer is requested.

esif_stat Transfer Escape End
Interrupt Status

false A transfer escape end interrupt has not been
generated.

true A transfer escape end interrupt has been
generated.

dtif_stat Transfer End
Interrupt Status

false A transfer end interrupt has not been generated.
true A transfer end interrupt has been generated.

act_stat Active Flag of DMAC false DMAC operation is suspended.
true DMAC is operating.

transfer_count Transfer Count 0000h -
FFFFh

The number of normal transfer operations, block
transfer operations or repeat transfer operations

Return Values
[DMACA_SUCCESS] /* Successful operation */
[DMACA_ERR_INVALID_CH] /* Channel is invalid. */*/
[DMACA_ERR_INVALID_COMMAND] /* Command is invalid.*/
[DMACA_ERR_NULL_PTR] /* Argument pointers are NULL. */
[DMACA_ERR_SOFTWARE_REQUESTED*1] /* DMA transfer request by software has

been generated already. */
[DMACA_ERR_SOFTWARE_REQUEST_DISABLED*2] /* Transfer Request Source is not Software. */

Note: 1. When automatic clearing of the DMA software activation bit (SWREQ bit) is specified,
DMACA_ERR_SOFTWARE_REQUESTED is returned when the SWREQ bit is already set to 1.
This value may be returned if, for example, the preceding software activation request was executed
while automatic clearing of the DMA software activation bit was specified, but the request had not
yet been accepted.

 2. If issuing of transfer requests by a peripheral module is specified,
DMACA_ERR_SOFTWARE_REQUEST_DISABLED is returned when a DMA transfer activation by
software is executed.

Properties
Prototype declarations are contained in r_dmaca_rx_if.h.

Description
DMACA_CMD_ENABLE command processing

Sets the DMA transfer enable (DTE) bit to enable transfer operation on the specified DMAC channel.

DMACA_CMD_ALL_ENABLE command processing

Sets the DMAC operation enable (DMST) bit to enable activation of the DMAC.

DMACA_CMD_RESUME command processing

Sets the DMA transfer enable (DTE) bit to enable a restart of transfer operation on the specified
DMAC channel.

DMACA_CMD_DISABLE command processing

Clears the DMA transfer enable (DTE) bit to disable transfer operation on the specified DMAC
channel.

Used to stop DMAC transfer operation or when changing the DMAC register settings.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 28 of 50
May.29.23

DMACA_CMD_ALL_DISABLE command processing

Clears the DMAC operation enable (DMST) bit to disable activation of the DMAC.

Used to stop DMAC transfer operation or when changing the DMAC register settings.

DMACA_CMD_SOFT_REQ_WITH_AUTO_CLR_REQ command processing

Enables automatic clearing of the SWREQ bit (CLRS bit = 0) and issues a DMA transfer request by
software.

DMACA_CMD_SOFT_REQ_NOT_CLR_REQ command processing

Disables automatic clearing of the SWREQ bit (CLRS bit = 1) and issues a DMA transfer request by
software.

DMACA_CMD_SOFT_REQ_CLR command processing

Clears the SWREQ bit of the specified DMAC channel.

DMACA_CMD_STATUS_GET command processing

Writes the status information of the specified DMAC channel to the address specified by the
argument p_stat.

DMACA_CMD_ESIF_STATUS_CLR command processing

Clears the transfer escape interrupt flag (ESIF) of the specified DMAC channel.

DMACA_CMD_DTIF_STATUS_CLR command processing

Clears the transfer end interrupt flag (DTIF) of the specified DMAC channel.

Example
Case 1: Activating the DMAC by Software
#include "r_dmaca_rx_if.h"

dmaca_return_t ret;
dmaca_stat_t dmac_status;

/* Call R_DMACA_Control().
Enable DMAC transfer. */
ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_ENABLE, &dmac_status);

/* Call R_DMACA_Control().
DMAC Software request flag set & request flag is cleared automatically. */
ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_SOFT_REQ_NOT_CLR_REQ, &dmac_status);
if (DMACA_SUCCESS != ret)
{
 /* do something */
}

/* DMAC transfer end check */
do
{
 ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_STATUS_GET, &dmac_status);
 if (DMACA_SUCCESS != ret)
 {
 /* do something */
 }
}while(false == (dmac_status.dtif_stat));

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 29 of 50
May.29.23

Case 2: Using a Peripheral Module as the DMAC Activation Source (Example of Using CMI1 Interrupt)
#include "r_dmaca_rx_if.h"

dmaca_return_t ret;
dmaca_stat_t dmac_status;

/* Disable CMI1 interrupt request before calling R_DTC_Control(). */
IR(CMT1,CMI1) = 0;
IEN(CMT1,CMI1) = 0;

/* Call R_DMACA_Control().
Enable DMAC transfer. */
ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_ENABLE, &dmac_status);

/* Enable CMI1 interrupt request before calling R_DTC_Create(). */
IEN(CMT1,CMI1) = 1;

/* DMAC transfer end check */
do
{
 ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_STATUS_GET, &dmac_status);
 if (DMACA_SUCCESS != ret)
 {
 /* do something */
 }
}while(false == (dmac_status.dtif_stat));

Case 3: Continuing or Restarting DMAC Transfer Operation following Case 1 or Case 2 Processing
/* Update register settings if necessary (see R_DMACA_Create() function). */
ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_RESUME, &dmac_status);

Case 4: Ending DMAC Transfer Operation after Case 1 or Case 2 Processing
/* Clear transfer end interrupt flag */
ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_DTIF_STATUS_CLR, &dmac_status);
/* Also use DMACA_CMD_ESIF_STATUS_CLR command to clear transfer escape
endinterrupt flag if transfer escape end interrupt is enabled. */
/* ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_ESIF_STATUS_CLR, &dmac_status); */

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 30 of 50
May.29.23

Interrupt request from DMAC

Get status information
R_DMACA_Control()

Command: DMACA_CMD_STATUS_GET
Checks the interrupt source. Gerts transfer count.

Transfer escape end
interrupt occurred?

Yes

No
(Pause transfer) Transfer end

interrupt occurred?

No
(Continue transfer)

Command:
DMACA_CMD_RESUME

Restart DMAC transfer
R_DMACA_Control()

Yes
(Pause transfer)

Restart transfer

Clear transfer end interrupt flag
R_DMACA_Control()

Clear transfer escape end interrupt
flag

R_DMACA_Control()
Command:
DMACA_CMD_DTIF_STATUS_CLR

Command:
DMACA_CMD_ESIF_STATUS_CLR

Clear transfer end interrupt flag
R_DMACA_Control()

Command:
DMACA_CMD_DTIF_STATUS_CLR

Perform new transfer
End

Perform new transfer
Transfer end

Update register settings

Enable DMAC transfer
R_DMACA_Control()

Command:
DMACA_CMD_ENABLE

Start new transfer

Note: The DMAC is in the paused state during the
interval between the dotted lines above, so new
DMAC start requests are not accepted.

Figure 3.1 Example of Processing when DMAC Transfer Ends or Continues

Special Notes:
In the case of waiting for the transfer end by using DMAC channel 4-7 and an interrupt, please clear a
transfer escape interrupt flag (ESIF) or a transfer end interrupt flag (DTIF) using a callback function for
transfer end interrupts/transfer escape end interrupts.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 31 of 50
May.29.23

R_DMACA_Int_Callback()
This function is used to register the callback function for the DMAC transfer end interrupt/transfer escape end
interrupt.

Format
dmaca_return_t R_DMACA_Int_Callback (

 uint8_t channel,

 void * p_callback

)

Parameters
uint8_t channel

DMAC channel number.

void *p_callback

Pointer to function that is called when a DMAC transfer end interrupt/transfer escape end interrupt
occurs.

Return Values
[DMACA_SUCCESS] /* Successful operation */
[DMACA_ERR_INVALID_CH] /* Channel is invalid. */
[DMACA_ERR_INVALID_HANDLER_ADDR] /* Invalid function address is set.*/

Properties
Prototype declarations are contained in r_dmaca_rx_if.h.

Description
Registers the callback function for the DMAC transfer end interrupt/transfer escape end interrupt of the
specified channel. The registration of an already-registered callback function is canceled if FIT_NO_FUNC or
NULL is passed as the callback argument. Also, the registration of an already-registered callback function is
canceled if DMACA_ERR_INVALID_HANDLER_ADDR is returned.

Note: The callback function arguments and return values should be of void type.

Example
#include "r_dmaca_rx_if.h"

dmaca_return_t ret;

/* When using the DMACA driver, run the R_DMACA_Init() function once first. */
R_DMACA_Init();

/* Register the callback function for the DMAC0I interrupt (example: using a
function with the name dmac0i_callback). */
ret = R_DMACA_Int_Callback(DMACA_CH0,(void *)dmac0i_callback);
if (DMACA_SUCCESS != ret)
{
 /* do something */
}

Special Notes:
None.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 32 of 50
May.29.23

R_DMACA_Int_Enable()
This function is used to enable DMAC transfer end interrupts/transfer escape end interrupts.

Format
dmaca_return_t R_DMACA_Int_Enable (

 uint8_t channel,

 uint8_t priority

)

Parameters
uint8_t channel

DMAC channel number.

uint8_t priority

DMAC transfer end interrupt/transfer escape end interrupt priority level.

Return Values
[DMACA_SUCCESS] /* Successful operation */
[DMACA_ERR_INVALID_CH] /* Channel is invalid. */

Properties
Prototype declarations are contained in r_dmaca_rx_if.h

Description
Enables the DMAC transfer end interrupt/transfer escape end interrupt for the specified channel.

Example
#include "r_dmaca_rx_if.h"

dmaca_return_t ret;

/* Enable DMAC transfer end interrupt/transfer escape end interrupt (DMAC0I) on
channel 0 with a priority level of 10. */
ret = R_DMACA_Int_Enable(DMACA_CH0,10);
if (DMAC_SUCCESS != ret)
{
 /* do something */
}

Special Notes:
None.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 33 of 50
May.29.23

R_DMACA_Init_Disable()
This function is used to disable the DMAC transfer end interrupt/transfer escape end interrupt.

Format
dmaca_return_t R_DMACA_Int_Disable (

 uint8_t channel,

)

Parameters
uint8_t channel

DMAC channel number.

Return Values
[DMACA_SUCCESS] /* Successful operation */
[DMACA_ERR_INVALID_CH] /* Channel is invalid. */

Properties
Prototype declarations are contained in r_dmaca_rx_if.h.

Description
Disables the DMAC transfer end interrupt/transfer escape end interrupt for the specified channel.

Example
#include "r_dmaca_rx_if.h"

dmaca_return_t ret;

/* Disable DMAC transfer end interrupt/transfer escape end interrupt (DMAC0I) on
channel 0. */
ret = R_DMACA_Int_Disable(DMACA_CH0);
if (DMACA_SUCCESS != ret)
{
 /* do something */
}

Special Notes:
None.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 34 of 50
May.29.23

R_DMACA_GetVersion()
This function is used to fetch the driver version information.

Format
uint32_t R_DMACA_GetVersion (void)

Parameters
None.

Return Values
Version number.

Upper 2 bytes: major version, lower 2 bytes: minor version.

Properties
Prototype declarations are contained in r_dmaca_rx_if.h.

Description
Returns the version information.

Example
uint32_t version;
version = R_DMACA_GetVersion();

Special Notes:
None.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 35 of 50
May.29.23

4. Pin Setting
DMACA FIT module don’t use pin setting.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 36 of 50
May.29.23

5. Demo Projects
Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo projects.

5.1 dma_demo_rskrx231, dma_demo_rskrx231_gcc
The dma_demo_rskrx231, dma_demo_rskrx231_gcc program demonstrates how to set up a DMAC in
repeat transfer mode to handle ADC conversion result. As the program runs, the DMAC save ADC
conversion result to a buffer of 32 bytes in sequence.

5.2 dma_demo_rskrx65n_2m, dma_demo_rskrx65n_2m_gcc
The dma_demo_rskrx65n_2m, dma_demo_rskrx65n_2m_gcc program are identical to dma_demo_rskrx231.

5.3 dma_demo_rskrx72m, dma_demo_rskrx72m_gcc
The dma_demo_rskrx72m, dma_demo_rskrx72m_gcc program are identical to dma_demo_rskrx231.

5.4 dma_demo_rskrx671, dma_demo_rskrx671_gcc
The dma_demo_rskrx671, dma_demo_rskrx671_gcc program are identical to dma_demo_rskrx231.

5.5 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then
click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.6 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Browser >> Application Notes tab.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 37 of 50
May.29.23

6. Appendices
6.1 Confirmed Operation Environment
This section describes confirmed operation environment for the DMAC FIT module.

Table 6.1 Confirmed Operation Environment (Rev.3.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.20
Board used Renesas Solution Starter Kit for RX23E-B (product No.:

RTK0ES1001C00001BJ)

Table 6.2 Confirmed Operation Environment (Rev.3.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.10
Board used Renesas Flexible Motor Control Kit for RX26T(product

No.:RTK0EMXE70S00020BJ)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 38 of 50
May.29.23

Table 6.3 Confirmed Operation Environment (Rev.3.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.00
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)

Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDCxxxxxBJ)

Table 6.4 Confirmed Operation Environment (Rev.2.90)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.90
Board used Renesas Starter Kit for RX660 (product No.: RTK556609HCxxxxxBJ)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 39 of 50
May.29.23

Table 6.5 Confirmed Operation Environment (Rev.2.80)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.80
Board used Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE)

Table 6.6 Confirmed Operation Environment (Rev.2.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.70
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 40 of 50
May.29.23

Table 6.7 Confirmed Operation Environment (Rev.2.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.60
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 6.8 Confirmed Operation Environment (Rev.2.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

Endian Big endian/little endian
Revision of the module Rev.2.50
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX231 (product No.: RTK505231xxxxxxxx)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 41 of 50
May.29.23

Table 6.9 Confirmed Operation Environment (Rev.2.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.40
Board used Renesas Solution Starter Kit+ for RX23E-A

(product No.: RTK0ESXBxxxxxxxxxx)

Table 6.10 Confirmed Operation Environment (Rev.2.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.30
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 42 of 50
May.29.23

Table 6.11 Confirmed Operation Environment (Rev.2.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.20
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.12 Confirmed Operation Environment (Rev.2.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.10
Board used Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 43 of 50
May.29.23

Table 6.13 Confirmed Operation Environment (Rev.2.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.00
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxx)

Table 6.14 Confirmed Operation Environment (Rev.1.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0

C compiler Renesas Electronics C/C++ compiler Package for RX Family V3.01.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian Big endian/Little endian
Revision of the module Rev.1.20
Board used Renesas Starter Kit for RX72T (product No.: RTK5572Txxxxxxxxxx)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 44 of 50
May.29.23

Table 6.15 Confirmed Operation Environment (Rev.1.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.0.0

C compiler Renesas Electronics C/C++ compiler Package for RX Family V3.00.00
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian Big endian/Little endian
Revision of the module Rev.1.10
Board used Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)

Renesas Starter Kit for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit for RX65N (product No.: RTK500565NSxxxxxBE)
Renesas Starter Kit for RX65N-2MB (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE)
Renesas Starter Kit for RX71M (product No.: R0K50571MSxxxBE)

Table 6.16Confirmed Operation Environment (Rev.1.05)

Item Contents
Integrated development
environment

Renesas Electronics
e2 studio V6.0.0

C compiler Renesas Electronics
C/C++ compiler for RX Family V.2.07.00 (Pre-released version)
Compiler options: The integrated development environment default settings
are used, with the following option added.
-lang = c99

Endian order Big endian/Little endian
Module version Ver.1.05
Board used Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)

Renesas Starter Kit for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit for RX65N (product No.: RTK500565NSxxxxxBE)
Renesas Starter Kit for RX65N-2MB (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit for RX71M (product No.: R0K50571MSxxxBE)

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 45 of 50
May.29.23

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_dmaca_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 46 of 50
May.29.23

7. Reference Documents
User’s Manual: Hardware
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family Compiler CC-RX User’s Manual (R20UT3248)
The latest versions can be downloaded from the Renesas Electronics website.

Related Technical Updates
Not applicable technical update for this module.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 47 of 50
May.29.23

Revision History

Rev. Date
Description
Page Summary

1.00 Jul 31, 2014 — First edition issued
1.01 Aug 29, 2014 5 Added 1.3 Related Application Note.
 12 3.2 R_DMACA_Close()

in Case 2: Control Other Than the Above,
Changed ‘dmaca_chk_looking_sw_type’ to
‘dmaca_chk_locking_sw_type’.

1.02 Dec 26, 2014 1 Added RX71M Group in Target Devices.
 1 Added an application note (R01AN1826EJ) in Related Documents.
 3 Moved R_DMACA_Init() to top in Table 1-1, 1.2.1 Overview of

APIs.
 3 Changed ‘transfer end interrupt’ to ‘transfer end interrupt/transfer

escape end interrupt’ in
R_DAMCA_Int_Callback(),R_DAMCA_Int_Enable() and
R_DMACA_Int_Disable() of Table 1-1, 1.2.1 Overview of APIs.

 4 Changed type name of ‘Board used’ in (1)RX64M, 1.2.2 Operating
Environment and Memory Sizes.

 5 Added (2)RX71M, 1.2.2 Operating Environment and Memory
Sizes.

 6 Added an application note (R01AN2280EJ) in 1.3 Related
Application.

 10 Changed from r_dmaca_config.h to r_dmaca_rx_config.h in 9,
2.9.1 Adding the DMACA FIT module (when not using the plug-in).

 11 Moved R_DMACA_Init() from 3.5 to 3.1 in 3. API Functions.
 11 Changed ‘transfer end interrupt’ to ‘transfer end interrupt/transfer

escape end interrupt’ in Description, 3.1 R_DMACA_Init().
 11 Added contents in Special Notes, 3.1 R_DMACA_Init().
 12 Changed from ‘first’ to ‘after calling R_DMACA_Init()’ in 3.2

R_DMACA_Open().
 21 Added ‘(ESIF)’ to Description of

DMACA_CMD_ESIF_STATUS_CLR in Command table, 3.5
R_DMACA_Control().

 21 Added ‘(DTIF)’ to Description of
DMACA_CMD_DTIF_STATUS_CLR in Command table, 3.5
R_DMACA_Control().

 22 Added ‘(ESIF)’ to DMACA_CMD_ESIF_STATUS_CLR command
processing in Description, 3.5 R_DMACA_Control().

 22 Added ‘(DTIF)’ to DMACA_CMD_DTIF_STATUS_CLR command
processing in Description, 3.5 R_DMACA_Control().

 24 Changed ‘transfer escape interrupt’ to ‘transfer escape end
interrupt’ in Example, 3.5 R_DMACA_Control().

 25 Changed ‘transfer escape interrupt’ to ‘transfer escape end
interrupt’ in Figure 3.1 of Example, 3.5 R_DMACA_Control().

 25 Added content in Special Notes, 3.5 R_DMACA_Control().
 26 Changed ‘transfer escape interrupt’ to ‘transfer escape end

interrupt’ in 3.6 R_DMACA_Int_Callback().
 26 Changed ‘transfer escape interrupt’ to ‘transfer escape end

interrupt’ in Parameters and Descriptions, 3.6
R_DMACA_Int_Callback().

 28 Changed ‘transfer escape interrupt’ to ‘transfer escape end
interrupt’ in 3.7 R_DMACA_Int_Enable().

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 48 of 50
May.29.23

1.02 Dec 26, 2014 29 Changed ‘transfer escape interrupt’ to ‘transfer escape end
interrupt’ in 3.8 R_DMACA_Int_Disable().

 29 Changed ‘transfer escape interrupt’ to ‘transfer escape end
interrupt’ in Descriptions and Example, 3.8
R_DMACA_Int_Disable().

1.03 Jun 15, 2015 1 Added RX230 and RX231 Group in Target Devices.
 6 Added (3)RX231, 1.2.2 Operating Environment and Memory

Sizes.
1.04 Sep 30, 2016 － Changed Title “DMA Controller DMACA Control Module Using

Firmware Integration Technology” to “DMA Controller DMACA
Control Module Firmware Integration Technology”.

 1 Added RX65N Group in Target Devices
 7 Added (4)RX65N, 1.2.2 Operating Environment and Memory

Sizes.
 8 1.3 Related Application Note

Changed title of application notes “ ---Using Firmware Integration
Technology” to “ --- Firmware Integration Technology”.

 10 Added “uint8_t rsv[2]” in 2.7 Arguments.
 12 Updated explanation in 2.9 Adding Driver to Your Project.
 23 Added transfer_count of table of Members of dmaca_stat_t

Structure.
 27 Added “Gets transfer count” of Figure 3.1.
1.05 Jul 07, 2017 - Moved the following chapter contents.

- Moved from 1. Overview to 1.2 Overview of APIs
Changed the following chapter number.
- Changed form 1.2.2 Operating Environment and Memory Size to
5.1 Operating Confirmation environment
- Changed form 4. Appendices to 5.Appendices.
- Changed form 5. Reference Documents to 6. Reference
Documents
Added the following chapter.
- Added 2.4 Interrupt vector
- Added 2.8 Code Size
- Added 2.12 Adding FIT Module to your Project.
- Added 4 Pin Setting.
- Added 5.2 Troubleshooting

 1 Added RX651 Group in Target Devices.
 5 Deleted “r_cgc_rx” of 2.2 Software Requirements.
1.10 Sep 28, 2018 1 Added support for RX66T.
 6 Added Interrupt vector number for RX66T
 8 Added code size corresponding to RX66T
 33 5.1 Confirmed Operation Environment:

Added Table for Rev.1.10
1.20 Feb 01, 2019 1 Added support for RX72T
 6 Added Interrupt vector number for RX72T
 8 Added code size corresponding to RX72T
 13-32 Removed ‘Reentrant’ description in each API function.
 34 Added 5. Demo Projects.
 35 Changed Renesas Starter Kit for RX66T Product No
 35 6.1 Confirmed Operation Environment:

Added Table for Rev.1.20

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 49 of 50
May.29.23

2.00 May.20.19 —

Supported the following compilers:
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

1 Added the section of Target compilers.

5

Deleted related documents.
2.2 Software Requirements
Requires r_bsp v5.20 or higher

9 Updated the section of 2.8 Code Size
34 Table 5.1 Confirmed Operation Environment:

Added table for Rev.2.00
 37 Deleted the section of Website and Support.
 Program Changed below for support GCC and IAR compiler:

Replaced evenaccess with the macro definition of BSP.
Replaced the declaration of interrupt functions with the macro
definition of BSP.

2.10 Jun.28.19 1, 6 Added support for RX23W
 9

36
Added code size corresponding to RX23W
Added 5. Demo Projects

 37 6.1 Confirmed Operation Environment:
Added Table for Rev.2.10

 Program Added support for RX23W.
Added demo projects

2.20 Aug.15.19 1, 6 Added support for RX72M
 9-10 Added code size corresponding to RX72M
 37

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.20
Table 6.2: Corrected board name for RX23W
Added support for RX72M.

2.30 Dec.30.19 1, 6 Added support for RX66N, RX72N
 5 2.3 Limitations

Added limitations.
 10

22

24, 27,
28

Added code size corresponding to RX66N, RX72N
Change the range of transfer_count from hexadecimal to decimal
Change the range of block_size from hexadecimal to decimal
Made some corrections in sample code

 36

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.30
Added support for RX66N, RX72N.

2.40 Mar.31.20 1, 7 Added support for RX23E-A
 10 Added code size corresponding to RX23E-A
 37

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.40
Added support for RX23E-A.

2.50 Jun.30.20 36

37

Program

Updated and added new demo project
Added RSKRX72M to “5. Demo Projects”.
6.1 Confirmed Operation Environment:
Added Table for Rev.2.50
Updated and added new demo project

2.60 Mar.31.21 1, 7
4

11

Added support for RX671
Added 1.3 Using the FIT DMACA module.
Added 1.3.1 Using FIT DMACA module in C++ project.
Added code size corresponding to RX671.

RX Family DMAC Module Using Firmware Integration Technology

R01AN2063EJ0320 Rev.3.20 Page 50 of 50
May.29.23

37

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.60
Added support for RX671.

2.70 Sep.13.21 36
37

Program

Added RSKRX671 to “5. Demo Projects”.
Table 6.1: Confirm Operation Environment:
Added Table for Rev. 2.70.
Updated and added new demo projects
Added CS+ support for demo project.

2.80 Mar.14.22 37

Program

Table 6.1: Confirm Operation Environment:
Added Table for Rev. 2.80.
Added support for RX66T-48pin.

2.90 Mar.31.22 1, 7
13
39

Program

Added support for RX660.
Added code size corresponding to RX660.
Table 6.1: Confirm Operation Environment:
Added Table for Rev. 2.90.
Added support for RX660

3.00 Jun.28.22 39

Program

Table 6.1: Confirm Operation Environment:
Added Table for Rev. 3.00.
Updated demo projects

3.10 Aug.15.22 1, 7
11
37

Program

Added support for RX26T.
Added code size corresponding to RX26T.
Table 6.1: Confirm Operation Environment:
Added Table for Rev. 3.10.
Added support for RX26T

3.20 May.29.23 1, 7
11
14

37

Program

Added support for RX23E-B.
Added code size corresponding to RX23E-B.
Deleted the description of FIT configurator from "2.13 Adding the
FIT Module to Your Project"
Table 6.1: Confirm Operation Environment:
Added Table for Rev. 3.20.
Added support for RX23E-B
Deleted the description of FIT configurator.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the
level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 DMACA FIT Module
	1.2 Overview of the DMACA FIT Module
	1.3 Using the FIT DMACA module
	1.3.1 Using FIT DMACA module in C++ project

	1.4 API Overview

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Limitations
	2.3.1 RAM Location Limitations

	2.4 Supported Toolchain
	2.5 Interrupt vector
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 Parameters
	2.11 Return Values
	2.12 Callback function
	2.13 Adding the FIT Module to Your Project
	2.14 “for”, “while” and “do while” statements

	3. API Functions
	R_DMACA_Init()
	R_DMACA_Open()
	R_DMACA_Close()
	R_DMACA_Create()
	R_DMACA_Control()
	R_DMACA_Int_Callback()
	R_DMACA_Int_Enable()
	R_DMACA_Init_Disable()
	R_DMACA_GetVersion()

	4. Pin Setting
	5. Demo Projects
	5.1 dma_demo_rskrx231, dma_demo_rskrx231_gcc
	5.2 dma_demo_rskrx65n_2m, dma_demo_rskrx65n_2m_gcc
	5.3 dma_demo_rskrx72m, dma_demo_rskrx72m_gcc
	5.4 dma_demo_rskrx671, dma_demo_rskrx671_gcc
	5.5 Adding a Demo to a Workspace
	5.6 Downloading Demo Projects

	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Troubleshooting

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

