

RL78/G14

Setting the D/A Converter's Normal Mode CC-RL

R01AN2672EJ0200 Rev. 2.00 Nov. 11, 2015

Abstract

This document describes a method to output analog voltage using the D/A converter in the RL78/G14 Group MCU.

Products

RL78/G14

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Spec	cifications	3
2.	Oper	ration Confirmation Conditions	4
3.	Hard	lware	5
3	3.1 H	Hardware Configuration	5
3	3.2 F	Pin Used	5
4.	Softv	vare	6
2	4.1 (Operation Overview	6
2	4.2 (Dption-Setting Memory	8
2	4.3 V	/ariables	8
2	4.4 F	Functions	8
2	4.5 F	Function Specifications	9
2	4.6 F	Flowcharts1	2
	4.6.	1 Overall Flowchart 1	2
	4.6.	2 Initial Setting 1	2
	4.6.	3 Initial Setting of Peripheral Functions 1	3
	4.6.	4 Initial Setting of the CPU Clock 1	3
	4.6.	0	
	4.6.		
	4.6.		
	4.6.	5	
	4.6.		
	4.6.		
	4.6.		
	4.6.	12 DAC0 Conversion Value Setting	:9
5.	Sam	ple Code	51
6.	Refe	rence Documents	51

1. Specifications

Output analog voltage from the ANO0 pin using the D/A converter. Output for the analog voltage starts at 0.0 V and the output level changes every millisecond in the following order: $0.0 \text{ V} \rightarrow 1.0 \text{ V} \rightarrow \cdots 4.0 \text{ V} \rightarrow 5.0 \text{ V} \rightarrow 0.0 \text{ V} \rightarrow 1.0 \text{ V} \cdots$

Table 1.1 lists the Peripheral Functions and Their Applications. Figure 1.1 shows the Analog Voltage Output Waveform.

Peripheral Function	Application
D/A converter 0 (hereinafter referred to as DAC0)	Output the analog voltage
Timer array unit 0 (hereinafter referred to as TAU0)	Generate a period to change the analog voltage

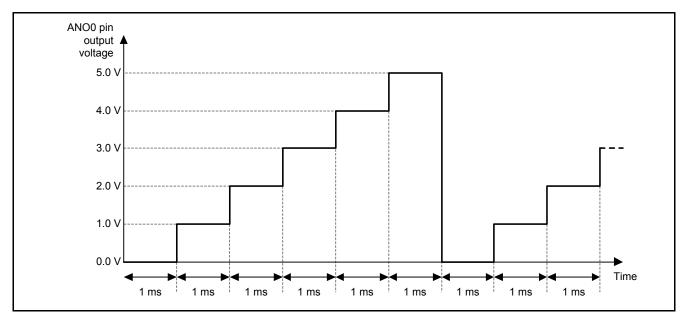


Figure 1.1 Analog Voltage Output Waveform

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1	Operation	Confirmation	Conditions
-----------	-----------	--------------	------------

Item	Contents
MCU used	RL78/G14 (R5F104PJA)
Operating frequencies	 Internal high-speed oscillator clock (fносо): 16 MHz (typical)
Operating frequencies	• CPU/peripheral hardware clock (fcLK): 16 MHz
Operating voltage	5.0 V (2.9 to 5.5 V)
Operating voltage	LVD operation (VLVD): Reset mode rising edge 2.81 V/falling edge 2.75 V
Integrated development	Renesas Electronics Corporation
environment (CS+)	CS+ V3.01.00
C compiler (CS+)	Renesas Electronics Corporation
	CC-RL V1.01.00
Integrated development	Renesas Electronics Corporation
environment (e ² studio)	e ² studio V4.0.0.26
C compiler (e ² studio)	Renesas Electronics Corporation
	CC-RL V1.01.00

3. Hardware

3.1 Hardware Configuration

Figure 3.1 shows the Hardware Configuration used in this document.

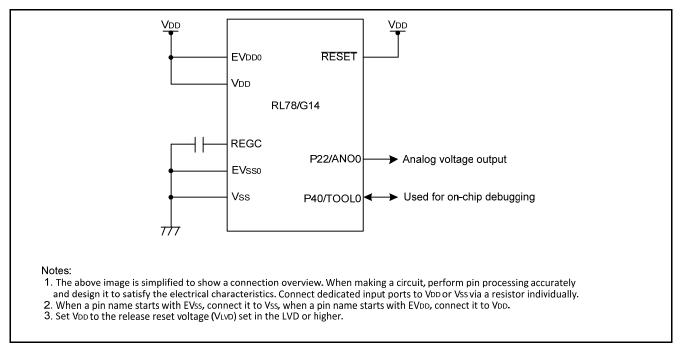


Figure 3.1 Hardware Configuration

3.2 Pin Used

Table 3.1 lists the Pin Used and Its Function.

Table 3.1	Pin Used and Its Function	n
-----------	---------------------------	---

Pin Name	I/O	Function
P22/ANO0	Output	Output the analog voltage

4. Software

4.1 **Operation Overview**

Output the analog voltage from the ANO0 pin using DAC0. The analog output voltage immediately after DAC0 conversion operation is enabled is 0.0 V.

Use TAU0 channel 0 (hereinafter referred to as TAU00) in interval timer mode and generate interrupts every millisecond. Rewrite the DACS0 register value in the count completion interrupt service routine of TAU00 to change the analog output voltage. Use the value stored in the D/A conversion value table for the DACS0 register and output the analog output voltage repeatedly in the following order: $0.0 V \rightarrow 1.0 V \rightarrow 0.0 V \rightarrow 0.0 V \rightarrow 1.0 V$ m

 $0.0 \text{ V} \rightarrow 1.0 \text{ V} \rightarrow \cdots 4.0 \text{ V} \rightarrow 5.0 \text{ V} \rightarrow 0.0 \text{ V} \rightarrow 1.0 \text{ V} \cdots$

The D/A conversion value table lists D/A conversion values to output 0.0 V, 1.0 V, 2.0 V, 3.0 V, 4.0 V, and 5.0 V as the analog output voltage when VDD is 5.0 V. Use the value calculated based on the following calculating formula for the D/A conversion value.

Analog output voltage of the D/A converter (VANO0) = reference voltage for the D/A converter (VDD) \times (DACS0) \div 256

Settings of DAC0 and TAU00 are shown below.

DAC0 settings:

• Use normal mode for the operation mode.

• Use the ANO0 pin.

TAU00 settings:

- Use interval timer mode for the operation mode.
- Set 1 ms for the interrupt period.
- Use the TAU00 count completion interrupt.
- Use fclk (16 MHz) for the count source.

RL78/G14

(1) Initial settings

Perform initial settings of DAC0 and TAU00. Set the D/A conversion value to the DACS0 register to output 0.0 V from the ANO0 pin.

- (2) Enable the D/A conversion operation.The analog voltage which was D/A converted for the DACS0 register value is output from the ANO0 pin.
- (3) Start the TAU00 count. Start counting 1 ms.
- (4) TAU00 count completion interrupt Set the D/A conversion value to the DACS0 register.

Figure 4.1 shows the Timing Diagram.

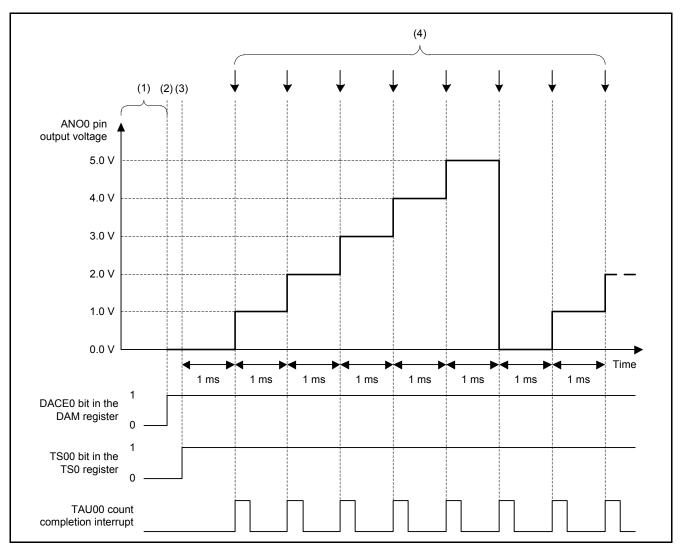


Figure 4.1 Timing Diagram

4.2 Option-Setting Memory

Table 4.1 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value suited to the user system.

Address	Setting Value	Contents
000C0H/010C0H	11101111B	Watchdog timer operation is stopped (count is stopped after reset)
000C1H/010C1H	01111111B	LVD reset mode
		Detection voltage: Rising edge 2.81 V/falling edge 2.75 V
000C2H/010C2H	11101001B	Internal high-speed oscillation HS mode: 16 MHz
000C3H/010C3H	10000100B	On-chip debugging enabled

 Table 4.1 Option-Setting Memory Configured in the Sample Code

4.3 Variables

Table 4.2 lists the Global Variables.

Table 4.2 Global Variables

Туре	Variable Name	Contents	Functions Used
uint8_t	g_da_data[]	D/A conversion value table	da_out_change
uint8_t	g_da_cnt	D/A conversion value counter	da_out_change

4.4 Functions

Table 4.3 lists the Functions.

Table 4.3 Functions

Function Name	Outline
hdwinit	Initial setting
R_Systeminit	Initial setting of peripheral functions
R_CGC_Create	Initial setting of the CPU clock
R_TAU0_Create	Initial setting of TAU0
R_DAC_Create	Initial setting of the D/A converter
main	Main processing
R_DAC0_Start	DAC0 conversion start setting
R_TAU0_Channel0_Start	TAU00 operation enable setting
r_tau0_channel0_interrupt	TAU00 interrupt
da_out_change	D/A conversion value switch processing
R_DAC0_Set_ConversionValue	DAC0 conversion value setting

4.5 Function Specifications

The following tables list the sample code function specifications.

hdwinit			
Outline	Initial setting		
Header	None		
Declaration void hdwinit(void)			
Description Perform the initial setting of peripheral functions.			
Argument None			
Return Value	None		
R_Systeminit			
Outline	Initial setting of peripheral functions		
Header	None		
Declaration	void R_Systeminit(void)		
Description	Perform the initial setting of peripheral functions used in this document.		
Argument	None		
Return Value	None		
R_CGC_Create			
	Initial actions of the CDU clock		
Outline	Initial setting of the CPU clock		
Header	r_cg_cgc.h		
Declaration	void R_CGC_Create(void)		
Description	Perform the initial setting of the CPU clock.		
Argument	None		
Return Value	None		
D TALIO Create			
R_TAU0_Create	Initial actions of TALIO		
Outline	Initial setting of TAU0		
Header	r_cg_timer.h		
Declaration	void R_TAU0_Create(void)		
Description	Perform the initial setting to use TAU00 as an interval timer.		
Argument	None		
Return Value	None		
D DAC Create			
R_DAC_Create	Initial actions of the D/A convertor		
Outline	Initial setting of the D/A converter		
Header	r_cg_dac.h		
Declaration	void R_DAC_Create(void)		
Description Perform the initial setting to use DAC0 in normal mode.			
Argument	None		
Return Value	None		

RL78/G14

main

Outline	Main processing
Header	None
Declaration	void main(void)
Description	Perform main processing.
Argument	None
Return Value	None

R_DAC0_Start

Outline	DAC0 conversion start setting
Header	r_cg_dac.h
Declaration	<pre>void R_DAC0_Start(void)</pre>
Description	Start D/A conversion.
Argument	None
Return Value	None

R_TAU0_Channel0_Start										
Outline	TAU00 operation enable setting									
Header	r_cg_timer.h									
Declaration	void R_TAU0_Channel0_Start(void)									
Description	Start TAU00 count.									
Argument	None									
Return Value	None									

Outline a	
Outline	TAU00 interrupt
Header	None
Declaration	static voidnear r_tau0_channel0_interrupt(void)
Description	Perform TAU00 interrupt service routine.
Argument	None
Return Value	None

A conversion value switch processing
toonversion value switch processing
cg_userdefine.h
id da_out_change(void)
ange the output analog voltage value.
ne
ne
j

RL78/G14

RI	DAC0	Set	ConversionValue

Outline	DAC0 conversion value se	tting						
Header	r_cg_dac.h							
Declaration	<pre>void R_DAC0_Set_ConversionValue(uint8_t reg_value)</pre>							
Description	Set the D/A conversion val	ue to the DACS0 register.						
Argument	reg_value	D/A conversion value						
Return Value	None							

4.6 Flowcharts

4.6.1 Overall Flowchart

Figure 4.2 shows the Overall Flowchart.

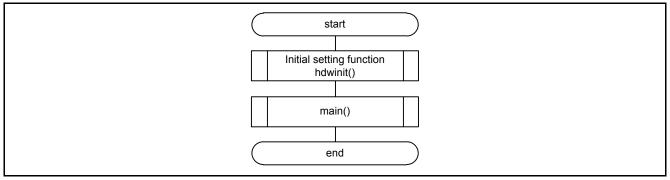


Figure 4.2 Overall Flowchart

4.6.2 Initial Setting

Figure 4.3 shows the Initial Setting.

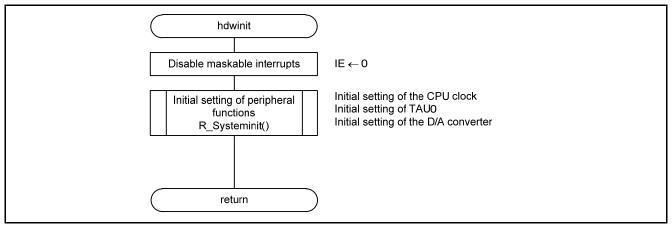


Figure 4.3 Initial Setting

4.6.3 Initial Setting of Peripheral Functions

Figure 4.4 shows the Initial Setting of Peripheral Functions.

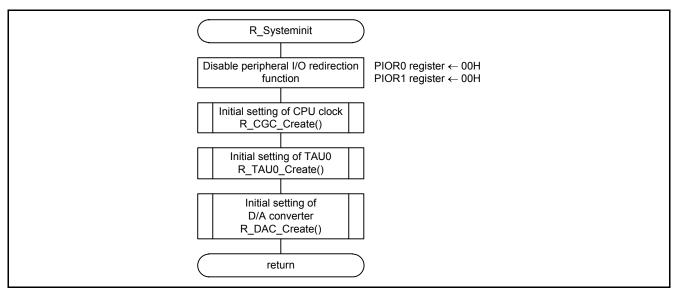
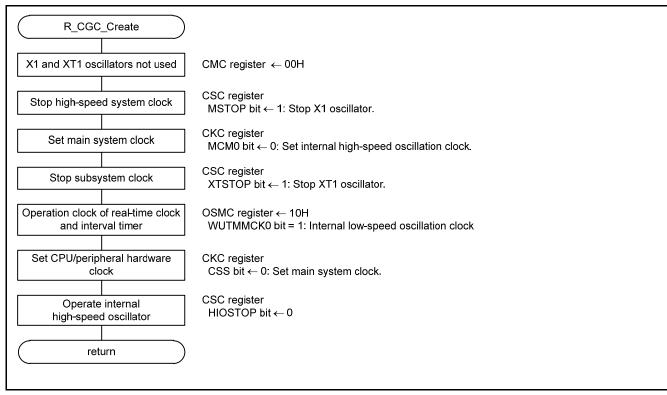



Figure 4.4 Initial Setting of Peripheral Functions

4.6.4 Initial Setting of the CPU Clock

Figure 4.5 shows the Initial Setting of the CPU Clock.

4.6.5 Initial Setting of TAU0

Figure 4.6 shows the Initial Setting of TAU0.

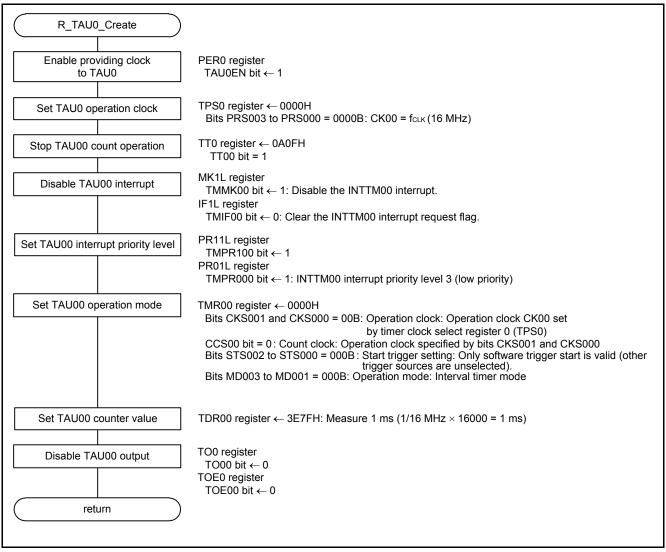


Figure 4.6 Initial Setting of TAU0

Enable providing a clock to TAU0. • Peripheral Enable Register 0 (PER0)

• Peripheral Ena Symbol	7	6	5	4	3	2	1	0
PER0	RTCEN	IICA1EN	ADCEN	IICA0EN	SAU1EN	SAU0EN	TAU1EN	TAU0EN
Setting Value	Х	Х	Х	Х	Х	х	х	1

Bit 0

TAU0EN	Control of timer array unit 0 input clock supply
0	Stops input clock supply.SFR used by timer array unit 0 cannot be written.Timer array unit 0 is in the reset status.
1	Enables input clock supply.SFR used by timer array unit 0 can be read and written.

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set an operation clock of TAU0.

• Timer Clock Select Register 0 (TPS0)

Set 16 MHz for the operation clock.

TPS0	
Setting	

Symbol

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	PRS	PRS	0	0	PRS									
0 0	0	031	030		0	021	020	013	012	011	010	003	002	001	000
_	_	×	×	_		×	×	×	×	×	×	0	0	0	0

Setting Value

PRS	PRS	PRS	PRS			Selection of op	eration clock (Cl	K00)	
003	002	001	000		fclk =	fclk =	fclк =	fclk =	fclk =
					2 MHz	5 MHz	10 MHz	20 MHz	32 MHz
0	0	0	0	fс∟к	2 MHz	5 MHz	10 MHz	20 MHz	32 MHz
0	0	0	1	fclк/2	1 MHz	2.5 MHz	5 MHz	10 MHz	16 MHz
0	0	1	0	fclk/2 ²	500 kHz	1.25 MHz	2.5 MHz	5 MHz	8 MHz
0	0	1	1	fclк/2 ³	250 kHz	625 kHz	1.25 MHz	2.5 MHz	4 MHz
0	1	0	0	fclk/2 ⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz	2 MHz
0	1	0	1	fclk/2 ⁵	62.5 kHz	156.2 kHz	312.5 kHz	625 kHz	1 MHz
0	1	1	0	fclк/2 ⁶	31.25 kHz	78.1 kHz	156.2 kHz	312.5 kHz	500 kHz
0	1	1	1	fclк/2 ⁷	15.62 kHz	39.1 kHz	78.1 kHz	156.2 kHz	250 kHz
1	0	0	0	fclк/2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	125 kHz
1	0	0	1	fclк/2 ⁹	3.91 kHz	9.76 kHz	19.5 kHz	39.1 kHz	62.5 kHz
1	0	1	0	fclк/2 ¹⁰	1.95 kHz	4.88 kHz	9.76 kHz	19.5 kHz	31.25 kHz
1	0	1	1	fськ/2 ¹¹	976 Hz	2.44 kHz	4.88 kHz	9.76 kHz	15.63 kHz
1	1	0	0	fclк/2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	7.81 kHz
1	1	0	1	fclк/2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	3.91 kHz
1	1	1	0	fclk/2 ¹⁴	122 Hz	305 Hz	610 Hz	1.22 kHz	1.95 kHz
1	1	1	1	fclк/2 ¹⁵	61 Hz	153 Hz	305 Hz	610 Hz	976 Hz

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Stop the TAU00 count operation.

• Timer Channel Stop Register 0 (TT0)

Set 16 MHz for the operation clock.

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
тто	0	0	0	0	TTH 03	0	TTH 01	0	0	0	0	0	TT03	TT02	TT01	ттоо
Setting Value					×		×	_			_	_	×	×	×	1

Bit 0

TT00	Operation stop trigger of channel 0
0	No trigger operation
1	Operation is stopped (stop trigger is generated). This bit is the trigger to stop operation of the lower 8-bit timer for TT01 and TT03 when channel 1 or 3 is in the 8-bit timer mode.

Disable the TAU00 interrupt.

• Interrupt Mask Flag Register (MK1L)

Symbol	7	6	5	4	3	2	1	0
MK1L	ТММК03	TMMK02	TMMK01	ТММК00	IICAMK0	SREMK1 TMMK03H	SRMK1 CSIMK11 IICMK11	STMK1 CSIMK10 IICMK10
Setting Value	Х	Х	Х	1	Х	Х	Х	Х

Bit 4

ТММК00	Interrupt servicing control
0	Interrupt servicing enabled
1	Interrupt servicing disabled

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

x: Bits not used in this application; blank spaces: bits that do not change; —: reserved bits or bits that have nothing assigned.

•

Interrupt Reques Symbol	st Flag Registe 7	er (IF1L) 6	5	4	3	2	1	0
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	IICAIF0	SREIF1 TMIF03H	SRIF1 CSIIF11 IICIF11	STIF1 CSIIF10 IICIF10
Setting Value	Х	Х	х	0	х	х	х	Х

Bit 4

TMIF00	Interrupt request flag					
0	No interrupt request signal is generated					
1	Interrupt request is generated, interrupt request status					

Set the TAU00 interrupt priority level.

• Priority Specification Flag Register (PR11L, PR01L)

Symbol	7	6	5	4	3	2	1	0
PR11L	TMPR103	TMPR102	TMPR101	TMPR100	IICAPR10	SREPR11 TMPR103H	SRPR11 CSIPR111 IICPR111	STPR11 CSIPR110 IICPR110
Setting Value	Х	Х	Х	1	Х	Х	Х	х
Symbol	7	6	5	4	3	2	1	0
PR01L	TMPR003	TMPR002	TMPR001	TMPR000	IICAPR00	SREPR01 TMPR003H	SRPR01 CSIPR011 IICPR011	STPR01 CSIPR010 IICPR010
Setting Value	х	х	х	1	х	х	х	Х

Bit 4

TMPR100	TMPR000	Priority level selection
0	0	Specify level 0 (high priority level)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority level)

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set TAU00 operation mode.

• Timer Mode Register (TMR00)

Operation clock (fмск): CK00

Count clock (ftclk): fmck

Start trigger: Only software trigger start is valid.

Operation mode: Interval timer mode (A timer interrupt is not generated when counting is started.)

TMR00 001 000 0 000 0 000 <	Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
001 000 000 002 001 000 003 002 001 Setting 0 <td></td> <td>CKS</td> <td>CKS</td> <td>0</td> <td>CCS</td> <td>0</td> <td>STS</td> <td>STS</td> <td>STS</td> <td>CIS</td> <td>CIS</td> <td>0</td> <td>0</td> <td>MD</td> <td>MD</td> <td>MD</td> <td>MD</td>		CKS	CKS	0	CCS	0	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
	TMR00	001	000	0	00	0	002	001	000	001	000	0	0	003	002	001	000
Value 0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Setting Value	0	0		0		0	0	0	×	×	_		0	0	0	0

Bits 15 and 14

CKS	CKS	Selection of operation clock (fмск) of channel 0
001	000	
0	0	Operation clock CK00 set by timer clock select register 0 (TPS0)
0	1	Operation clock CK02 set by timer clock select register 0 (TPS0)
1	0	Operation clock CK01 set by timer clock select register 0 (TPS0)
1	1	Operation clock CK03 set by timer clock select register 0 (TPS0)
		s used by the edge detector. A count clock (fTCLK) and a sampling clock are generated depending on the The operation clocks CK02 and CK03 can only be selected for channels 1 and 3.

Bit 12

CCS	Selection of count clock (ftcLk) of channel 0							
00	Selection of count clock (frcLk) of channel 0							
0	Dperation clock (fмск) specified by the CKS000 and CKS001 bits							
1	Valid edge of input signal input from the TI00 pin							
Count clo	ock (fTCLK) is used for the timer/counter, output controller, and interrupt controller.							

Bits 10 to 8

STS	STS	STS	Setting of start trigger or capture trigger of channel 0
002	001	000	Setting of start trigger of captore trigger of channel o
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of the TI00 pin input is used as both the start trigger and capture trigger.
0	1	0	Both the edges of the TI00 pin input are used as a start trigger and a capture trigger.
1	1 0 0		Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function).
Other th	an above		Setting prohibited

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

MD 003	MD 002	MD 001	MD 000	Operation mode of channel 0	Count operation of TCR			
0	0	0	1/0	Interval timer mode	Interval timer / Square wave output / Divider function / PWM output (master)	Counting down		
0	1	1	1/0	Capture mode	Input pulse interval measurement	Counting up		
0	1	1	0	Event counter mode	Counting down			
1 0 0 1/0				One-count mode	Delay counter / One-shot pulse output / PWM output (slave)	Counting down		
1	1	0	0	Capture & one-count mode	Counting up			
	Other that	an above		Setting prohibited				

Bit 0 Operation mode (Value set by the MD003 to MD001 bits (see table above))	MD 000	Setting of starting counting and interrupt
 Interval timer mode (0, 0, 0) 	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
One-count mode	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.
(1, 0, 0)	1	Start trigger is valid during counting operation. At that time, interrupt is also generated.
• Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time interrupt is not generated, either.
Other than above		Setting prohibited

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set the T • Timer D Set 3E7H	ata Reg	gister (ГDR00)	re 1 m	s.										
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR00	0	0	1	1	1	1	1	0	0	1	1	1	1	1	1	1

Disable the TAU00 output.

• Timer Output Register (TO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TO0	0	0	0	0	0	0	0	0	0	0	0	0	TO03	TO02	TO01	TO00
Setting			_		_		_						×	×	×	0
Value													^	^	^	U

Bit 0

ТО00	Timer output of channel 0					
0	Timer output value is "0".					
1	Timer output value is "1".					

• Timer Output Enable Register (TOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	0	0	0	0	0	0	0	0	TOE 03	TOE 02	TOE 01	ТОЕ 00
Setting Value	_	_	_		_		_	_					×	×	×	0

Bit 0

TOE00	Timer output enable/disable of channel 0
0	Timer output is disabled. Timer operation is not applied to the TO00 bit and the output is fixed. Writing to the TO00 bit is enabled.
1	Timer output is enabled. Timer operation is applied to the TO00 bit and an output waveform is generated. Writing to the TO00 bit is ignored.

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

4.6.6 Initial Setting of the D/A Converter

Figure 4.7 shows the Initial Setting of the D/A Converter.

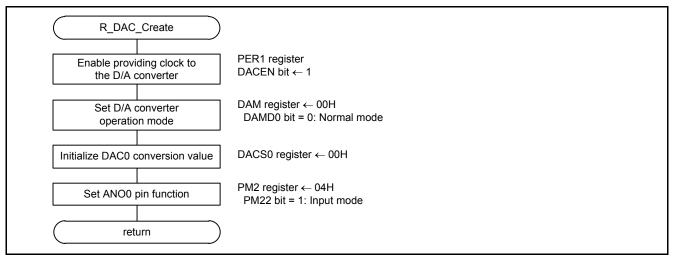


Figure 4.7 Initial Setting of the D/A Converter

Enable providing a clock to the D/A converter. • Peripheral Enable Register 1 (PER1)

• Peripheral Ena	• Peripheral Enable Register I (PERI)											
Symbol	7	6	5	4	3	2	1	0				
PER1	DACEN	TRGEN	CMPEN	TRD0EN	DTCEN	0	0	TRJ0EN				
Setting Value	1	Х	Х	Х	Х			Х				

Bit 7

DACEN	Control of D/A converter input clock
0	Stops input clock supply.SFR used by the D/A converter cannot be written.The D/A converter is in the reset status.
1	Supplies input clock. SFR used by the D/A converter can be read/written.

Set the D/A converter to normal mode.

• D/A Converter Mode Register (DAM)

Symbol	7	6	5	4	3	2	1	0
DAM	_	—	DACE1	DACE0		_	DAMD1	DAMD0
Setting Value			Х				х	0

Bit 0

DAMD0	D/A converter operation mode selection
0	Normal mode
1	Real-time output mode

Initialize the DAC0 conversion value.

• D/A Conversion Value Setting Register 0 (DACS0)

Set 000H to the D/A conversion value.

Symbol	7	6	5	4	3	2	1	0
DACS0	DACS07	DACS06	DACS05	DACS04	DACS03	DACS02	DACS01	DACS00
Setting Value	0	0	0	0	0	0	0	0

	Function
Bits	The relation between the resolution and analog output voltage (VANO0) of the D/A converter are as follows.
7 to 0	VANO0 = Reference voltage for D/A converter × (DACS0) / 256

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set the ANO0 pin function.

 Port Mode Reg 	gister 2 (PM2)							
Symbol	7	6	5	4	3	2	1	0
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20
Setting Value	Х	Х	Х	Х	Х	1	Х	Х
Bit 2								

PM22	P22 pin I/O mode selection Output mode (output buffer on)
1	Input mode (output buffer off)

Refer to the RL78/G14 user's manual (hardware) for details on individual registers. Initial values of individual bits x: Bits not used in this application; blank spaces: bits that do not change; —: reserved bits or bits that have nothing assigned.

4.6.7 Main Processing

Figure 4.8 shows the Main Processing.

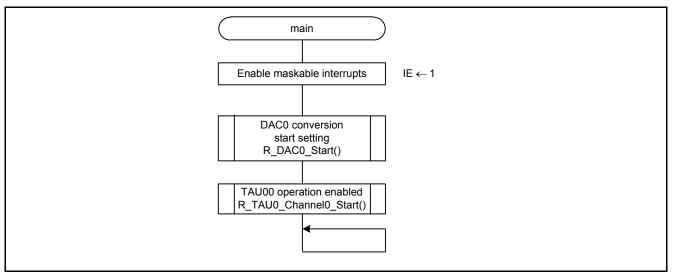


Figure 4.8 Main Processing

4.6.8 DAC0 Conversion Start Setting

Figure 4.9 shows the DAC0 Conversion Start Setting.

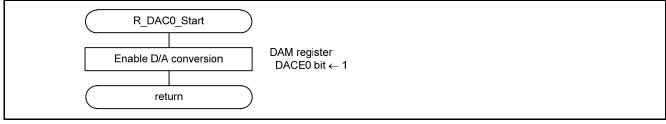


Figure 4.9 DAC0 Conversion Start Setting

Enable D/A conversion.

Symbol 7 6 5 4 3 2 1 DAM DACE1 DACE0 DAMD	0
DAM — — DACE1 DACE0 — — DAMD	
	1 DAMD0
Setting Value X 1 X	
Bit 4	

DACE0	D/A conversion operation control					
0	Stops D/A conversion operation					
1	Enables D/A conversion operation					

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

4.6.9 TAU00 Operation Enable Setting

Figure 4.10 shows the TAU00 Operation Enable Setting.

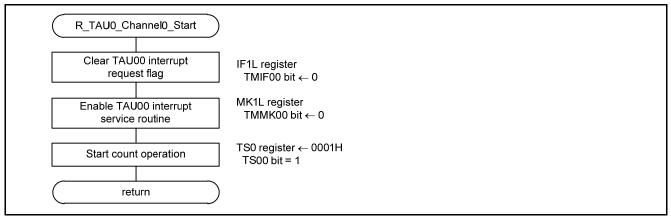


Figure 4.10 TAU00 Operation Enable Setting

Clear the TAU00 interrupt request flag.

• Interrupt Reque	est Flag Regist	ter (IF1L)							
Symbol	nbol 7 6		5	4	3	2	1	0	
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	IICAIF0	SREIF1 TMIF03H	SRIF1 CSIIF11 IICIF11	STIF1 CSIIF10 IICIF10	
Setting Value	Х	Х	Х	0	Х	Х	Х	Х	

Bit 4

TMIF00	Interrupt request flag						
0	No interrupt request signal is generated						
1	Interrupt request is generated, interrupt request status						

Enable the TAU00 interrupt service routine.

• Interrupt Mask Flag Register (MK1L)

Symbol	7	6	5	4	3	2	1	0
MK1L	ТММК03	TMMK02	TMMK01	ТММК00	IICAMK0	SREMK1 TMMK03H	SRMK1 CSIMK11 IICMK11	STMK1 CSIMK10 IICMK10
Setting Value	Х	х	х	0	х	Х	х	Х

Bit 4

TMMK00	Interrupt servicing control						
0	Interrupt servicing enabled						
1	Interrupt servicing disabled						

Start count operation.

• Timer Channel Start Register (TS0)

			-													
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TS0	0	0	0	0	TSH 03	0	TSH 01	0	0	0	0	0	TS 03	TS 02	TS 01	TS 00
Setting Value					×		×					_	×	×	×	1

Bit 0

TS00	Operation enable (start) trigger of channel 0
0	No trigger operation
1	The TE00 bit is set to 1 and the count operation becomes enabled. The TCR00 register count operation start in the count operation enabled state varies depending on each operation mode

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

4.6.10 TAU00 Interrupt

Figure 4.11 shows the TAU00 Interrupt.

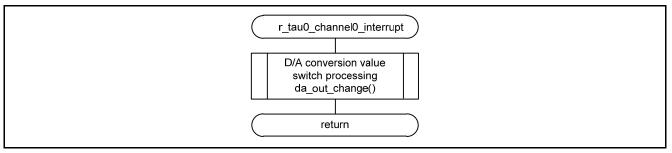


Figure 4.11 TAU00 Interrupt

4.6.11 D/A Conversion Value Switch Processing

Figure 4.12 shows the D/A Conversion Value Switch Processing.

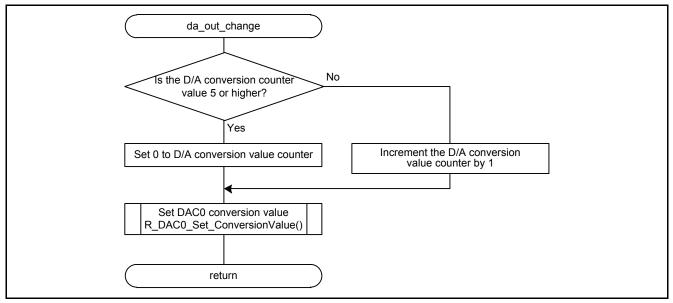


Figure 4.12 D/A Conversion Value Switch Processing

4.6.12 DAC0 Conversion Value Setting

Figure 4.13 shows the DAC0 Conversion Value Setting.

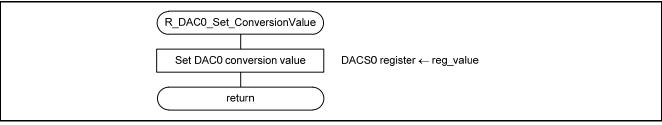


Figure 4.13 DAC0 Conversion Value Setting

Set the DAC0 conversion value.

- D/A Conversion Value Setting Register (DACS0)
- Set an analog output value output to the ANO0 pin.

Symbol	7	6	5	4	3	2	1	0
DACS0	DACS07	DACS06	DACS05	DACS04	DACS03	DACS02	DACS01	DACS00
Setting Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Refer to the RL78/G14 user's manual (hardware) for details on individual registers. Initial values of individual bits x: Bits not used in this application; blank spaces: bits that do not change; —: reserved bits or bits that have nothing assigned.

5. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

6. Reference Documents

User's Manual: Hardware

RL78/G14 Group User's Manual: Hardware (R01UH0146E) RL78 Family User's Manual: Software (R01US0015E) The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

REVISION HISTORY

RL78/G14 Setting the D/A Converter's Normal Mode CC-RL

Rev.	Date	Description	
		Page	Summary
1.00	Mar. 31, 2015	_	First edition issued
2.00	Nov. 11, 2015	4	Table2.1: Added e ² studio

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- *Standard*: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electror equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended by Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for enduct is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevant Santa Clara, CA 93050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite B309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Curope Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-11628-585-100, Fax: +14-1628-585-900 Renesas Electronics Europe CimbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-21-16503.0, Fax: +49-211-6503.1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +49-21-155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Room 5709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Shanghai, P. R. China 200333 Tel: +48-21-2226-0888, Fax: +86-19-2226-0999 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +48-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Taiwan Co., Ltd. Unit 301, Tower A, Central Towers, 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-245-6688, Fax: +865-2175-9670 Renesas Electronics Singapore PL: Ltd. 00 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +650-213-0200, Fax: +865-28175-9670 Renesas Electronics Singapore PL: Ltd. 00 Stroth Road, Taipei 10543, Taiwan Tel: +863-295-9390, Fax: +865-29510 Renesas Electronics India Pvt. Ltd. 00 TryCr, 100 Fert Road, Hulti Stage, Indirangar, Bangalore, India Tel: +803-795-9390, Fax: +805-6213-0200 Renesas Electronics India Pvt. Ltd. No 777C, 710 Fert Road, Hulti Stage, Indirangar, Bangalore, India Tel: +980-67208700, Fax: +81-80-67208777 Renesas Electronics Korae Co., Ltd. Tz, 234 Teheran-ro, Gangam-Gu, Secul, 135-080, Korea Tel: +92-2568-3737, Fax: +82-2568-5141