
 Application Note

R01AN6334EJ0100 Rev.1.00 Page 1 of 58

Apr.20.22

RL78/F24

RS-CANFD lite Module Software Integration System

Introduction

This application note describes the RS-CANFD lite Module.

Target Device

RL78/F24 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to comply with the alternate MCU.

Supported Compilers

 Renesas Electronics C/C++ Compiler Package for RL78 Family

 IAR C/C++ Compiler for Renesas RL78

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 2 of 58

Apr.20.22

Contents

1. Overview ... 4

2. API Information .. 4

2.1 Hardware Requirements ... 4

2.2 Hardware Resource Requirements ... 4

2.3 Software Requirements ... 4

2.4 Limitations ... 4

2.5 Supported Toolchains ... 4

2.6 Header Files .. 4

2.7 Integer Types ... 4

2.8 Configuration Overview ... 5

2.9 Code Size .. 13

2.10 API Data Types ... 14

2.10.1 Data Types .. 14

2.10.2 Structure, Union... 14

2.10.2.1 u_can_data_t ... 14

2.10.2.2 u_can_tx_head_t, u_can_rx_head_t ... 14

2.10.2.3 st_can_tx_frame_t, st_can_rx_frame_t ... 16

2.10.2.4 st_can_filter_t, st_can_filter_opt_t .. 17

2.10.2.5 st_can_txhist_t .. 18

2.10.3 Macro ... 20

2.10.3.1 Parameter Macro ... 20

2.10.3.2 Configuration Macro .. 20

2.11 Return Values .. 20

3. API Functions .. 22

3.1 Summary ... 22

3.2 R_CAN_Create .. 23

3.3 R_CAN_SetConfig... 24

3.4 R_CAN_AddRxRule .. 25

3.5 R_CAN_StartComm .. 27

3.6 R_CAN_StopComm .. 29

3.7 R_CAN_Sleep ... 30

3.8 R_CAN_SendByTXMB .. 31

3.9 R_CAN_AbortTXMB .. 33

3.10 R_CAN_GetTXMBResult .. 34

3.11 R_CAN_SendByCFIFO ... 35

3.12 R_CAN_AbortCFIFO ... 37

3.13 R_CAN_ReadTxHistory .. 38

3.14 R_CAN_ReadRXMB ... 40

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 3 of 58

Apr.20.22

3.15 R_CAN_ReadRXFIFO .. 42

3.16 R_CAN_ReadCFIFO ... 44

3.17 r_can_glb_xxxx_isr .. 46

3.18 r_can_ch0_xxxx_isr ... 48

3.19 CAN_CFG_CALLBACK_XXXX ... 50

3.20 R_CAN_GetChStatus .. 52

3.21 R_CAN_GetChBusErrFlag .. 53

3.22 R_CAN_GetTDCResult ... 54

3.23 R_CAN_GetTSCounter ... 55

3.24 R_CAN_GetVersion .. 56

4. Appendix ... 57

4.1 Confirmed Operating Environment .. 57

Revision History .. 58

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 4 of 58

Apr.20.22

1. Overview

This module uses the RS-CANFD lite to implement CAN frame transmission and reception.

2. API Information

 Operations of this module has been confirmed under the following conditions.

2.1 Hardware Requirements

 The MCU used in the development must support the following function.

 RS-CANFD lite

2.2 Hardware Resource Requirements

 In addition to the RS-CANFD lite, this module requires:

 Two pins allocated for the CAN channel

2.3 Software Requirements

 This module depends on the following module:

 Board support package (r_bsp) v1.20 and above

2.4 Limitations

 RS-CANFD lite functions that this module does not support are listed below.

 PNF (Pretended Network Filter List)

 Disable receive rule entries

 Global reset by GRSTC register

 One-shot transmission function

 Capture of Error Occurrence Counter

 Capture of Successful Occurrence Counter

 Transmit history function

 Test function (Listen-only mode, Loopback, RAM test, etc.)

 CAN RAM ECC

2.5 Supported Toolchains

 Module operations have been confirmed on the following toolchains:

 Renesas CS+ for CC V8.07.00

 IAR Embedded Workbench for Renesas RL78 4.21.3

2.6 Header Files

 All API calls and their supporting interface definitions are located in “r_rscanfd_rl78_if.h”. Build-time
configuration options are selected or defined in the file “r_rscanfd_rl78_config.h”.

 Both of these files should be included by the user's application.

2.7 Integer Types

 This module uses ANSI C99. These types are defined in “stdint.h”.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 5 of 58

Apr.20.22

2.8 Configuration Overview

 Configuration options for this module are set by the user via the file "r_rscanfd_rl78_config.h".

 The following table provides the names and setting values for the configuration option settings used this
module.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 6 of 58

Apr.20.22

Define Default

Value

Description Target Register

CAN_CFG_PARAM_C

HECKING_ENABLE

BSP_CFG_

PARAM_

CHECKING_

ENABLE

Setting to 1 includes parameter checking in

the code.

Setting to 0 removes parameter checking

from the code.

Setting to

“BSP_CFG_PARAM_CHECKING_ENABLE

” depends on BSP setting.

-

CAN_CFG_CLOE_AN

D_FDOE

0 Setting to 1 enables FD only mode. Setting

to 2 enables Classical only mode.

C0FDCFGH,

C0FDCFGL

CAN_CFG_REFE 0 Setting to 1 enables RX edge filter.

For details, refer to the User's Manual:

Hardware.

C0FDCFGH,

C0FDCFGL

CAN_CFG_TDCO 0x00 Set the offset of TDC (Transceiver Delay

Compensation).

For details, refer to the User's Manual:

Hardware.

C0FDCFGH,

C0FDCFGL

CAN_CFG_ESIC 0 Set the ESI.

For details, refer to the User's Manual:

Hardware.

C0FDCFGH,

C0FDCFGL

CAN_CFG_TDCE_AN

D_TDCOC

0 Setting to 1 or 2 enables TDC (Transceiver

Delay Compensation). (1: SSP offset =

Measured delay + CAN_CFG_TDCO 2:

SSP offset = CAN_CFG_TDCO)

For details, refer to the User's Manual:

Hardware.

C0FDCFGH,

C0FDCFGL

CAN_CFG_ITRCP 0 Set definition of a reference clock for the

FIFO interval timer source clock.

Setting to 0, timer is disabled.

GCFGH,

GCFGL

CAN_CFG_TSSS 0 Select the clock source for the Timestamp

counter.

Setting to 0, clock source for Timestamp

counter is peripheral clock.

Setting to 1, clock source for Timestamp

counter is bit time clock.

Do not set to 1, when CAN-FD

communication will be used.

GCFGH,

GCFGL

CAN_CFG_TSP 0 Set the period of the clock source used for

the Timestamp counter.

For details, refer to the User's Manual:

Hardware.

GCFGH,

GCFGL

CAN_CFG_CMPOC 0 Control the message payload acceptance

mechanism in the case when the received

payload is higher than the Message Buffer

payload size.

Setting to 0, message is rejected.

Setting to 1, message payload is cut to fit to

configured message size.

GCFGH,

GCFGL

CAN_CFG_DCS 0 Select the clock source for the CAN

communications.

Setting to 0, clock source is internal clock

Setting to 1, clock source is external clock

source (X1 clock direct).

GCFGH,

GCFGL

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 7 of 58

Apr.20.22

CAN_CFG_MME 0 Setting to 1 enables the Mirror Mode for all

CAN channels.

GCFGH,

GCFGL

CAN_CFG_DRE 0 If this setting is 1 and CAN_CFG_DCE is 1,

then RS-CANFD lite will store the

configured value

(CAN_CFG_RULEx_GAFLDLC) of DLC in

the destination RX Message Buffer or FIFO

buffer if the DLC check passes.

Otherwise the DLC value in the destination

RX Message Buffer or FIFO buffer is

unchanged.

GCFGH,

GCFGL

CAN_CFG_DCE 0 Setting to 1 enables the DLC check for all

CAN channels.

GCFGH,

GCFGL

CAN_CFG_TPRI 0 Select the transmission priority for all CAN

channels.

Setting to 0, transmission priority is ID

Priority.

Setting to 1, transmission priority is

Message Buffer Number Priority.

GCFGH,

GCFGL

CAN_CFG_NBRP 5 Set Nominal Baud Rate Prescaler division

ratio. (Prescaler division ratio =

CAN_CFG_NBRP + 1)

For details, refer to the User's Manual:

Hardware.

C0NCFGH,

C0NCFGL

CAN_CFG_NMNL_TS

EG1

63 Set Nominal Timing Segment 1.

For details, refer to the User's Manual:

Hardware.

C0NCFGH,

C0NCFGL

CAN_CFG_NMNL_TS

EG2

16 Set Nominal Timing Segment 2.

For details, refer to the User's Manual:

Hardware.

C0NCFGH,

C0NCFGL

CAN_CFG_NMNL_SJ

W

16 Set Nominal Synchronization Jump Width.

For details, refer to the User's Manual:

Hardware.

C0NCFGH,

C0NCFGL

CAN_CFG_DBRP 5 Set Data Baud Rate Prescaler division

ratio. (Prescaler division ratio =

CAN_CFG_DBRP + 1)

For details, refer to the User's Manual:

Hardware.

C0DCFGH,

C0DCFGL

CAN_CFG_DATA_TS

EG1

13 Set Data Timing Segment 1.

For details, refer to the User's Manual:

Hardware.

C0DCFGH,

C0DCFGL

CAN_CFG_DATA_TS

EG2

6 Set Data Timing Segment 2.

For details, refer to the User's Manual:

Hardware.

C0DCFGH,

C0DCFGL

CAN_CFG_DATA_SJ

W

6 Set Data Synchronization Jump Width.

For details, refer to the User's Manual:

Hardware.

C0DCFGH,

C0DCFGL

CAN_CFG_RMPLS 0 Set the RX message buffer payload data

size.

For details, refer to the User's Manual:

Hardware.

RMNB

CAN_CFG_NRXMB 0 Set the number of RX Message Buffers.

Setting to 0 makes RX Message Buffers

unavailable.

RMNB

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 8 of 58

Apr.20.22

CAN_CFG_RFx_RFIG

CV

(x=0, 1)

0 Select the counter value of the RX FIFO for

generation of RX FIFO Interrupt. This value

represent fractions of the RX FIFO depth

for which Interrupt is generated.

For details, refer to the User's Manual:

Hardware.

RFCCk

CAN_CFG_RFx_RFIM

(x=0, 1)

0 Select the Interrupt generation condition for

the RX FIFO.

Setting to 0, Interrupt generated when RX

FIFO counter reaches

CAN_CFG_RFx_RFIGCV value from

values smaller than

CAN_CFG_RFx_RFIGCV.

Setting to 1, Interrupt generated at the end

of every received message storage.

RFCCk

CAN_CFG_RFx_RFD

C

(x=0, 1)

0 Select the depth of the RX FIFO in terms of

number of Messages. If the RX FIFO depth

is configured to 0 Messages then the RX

FIFO cannot be used.

For details, refer to the User's Manual:

Hardware.

RFCCk

CAN_CFG_RFx_RFP

LS

(x=0, 1)

0 Set the max number of Bytes which can be

received by RX FIFO.

For details, refer to the User's Manual:

Hardware.

RFCCk

CAN_CFG_RFx_RFIE

(x=0, 1)

0 Setting to 1 enables generation of the RX

FIFO Interrupt.

RFCCk

CAN_CFG_CFITT 0 Select the delay in the start of transmission

for all messages transmitted from Common

FIFO when configured in TX mode.

For details, refer to the User's Manual:

Hardware.

CFCC

CAN_CFG_CFDC 0 Select the depth of the Common FIFO in

terms of number of Messages. If the

Common FIFO depth is configured to 0

Messages then the Common FIFO cannot

be used.

For details, refer to the User's Manual:

Hardware.

CFCC

CAN_CFG_CFTML 0 Select the normal transmit Message Buffer

position where the TX FIFO is linked to, for

transmission scanning.

CFCC

CAN_CFG_CFIGCV 0 Select the message counter value for the

generation of the Common FIFO Interrupt.

This value represent fractions of the

Common FIFO depth at which Interrupt is to

be generated.

For details, refer to the User's Manual:

Hardware.

CFCC

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 9 of 58

Apr.20.22

CAN_CFG_CFIM 0 Select the Interrupt generation condition for

the Common FIFO.

 Setting to 0

 RX FIFO Mode: RX Interrupt

generated when Common FIFO

counter reaches CAN_CFG_CFIGCV

value from a lower value.

 TX FIFO Mode: TX Interrupt

generated when Common FIFO

transmits the last message

successfully.

 Setting to 1

 RX FIFO Mode: RX Interrupt

generated at the end of every

received message storage.

 TX FIFO Mode: TX Interrupt

generated for every successfully

transmitted message.

CFCC

CAN_CFG_CFITR 0 Select the resolution of the Reference

Clock for the Interval Transmission Timer

(Peripheral Clock is the source for the

Reference Clock).

Setting to 0, Reference Clock Period x1.

Setting to 1, Reference Clock Period x10.

CFCC

CAN_CFG_CFITSS 0 Select the basic clock source for the

Interval Transmission Timer.

Setting to 0, Reference Clock (x1 / x10

period).

Setting to 1, Bit Time Clock of related

channel (FIFO is linked to fixed channel).

Do not set to 1, when CAN-FD

communication will be used.

CFCC

CAN_CFG_CFM 0 Select the Mode of the Common FIFO.

Setting to 0, RX FIFO Mode.

Setting to 1, TX FIFO Mode.

CFCC

CAN_CFG_CFPLS 0 Set the max number of Bytes which can be

received or transmitted by Common FIFO.

For details, refer to the User's Manual:

Hardware.

CFCC

CAN_CFG_CFTXIE 0 Setting to 1 enables generation of the

Common FIFO Interrupt when the Interrupt

flag is set after transmission of a frame from

the corresponding FIFO.

CFCC

CAN_CFG_CFRXIE 0 Setting to 1 enables generation of the

Common FIFO Interrupt when the Interrupt

flag is set after reception of a frame in the

corresponding FIFO.

CFCC

CAN_CFG_THLDTE 0 Select the conditions for storing an entry in

the TX History list after successful

transmission.

Setting to 0, TX FIFO.

Setting to 1, Flat TX MB + TX FIFO.

THLCC

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 10 of 58

Apr.20.22

CAN_CFG_THLIM 0 Select the Interrupt generation condition for

the FIFO.

Setting to 0, Interrupt generated if TX

History List level reaches 3/4 of the TX

History List depth.

Setting to 1, Interrupt generated for every

successfully stored entry.

THLCC

CAN_CFG_THLIE 0 Setting to 1, TX history list generated. THLCC

CAN_CFG_THLE 0 Setting to 1, TX history list enabled. THLCC

CAN_CFG_CMPOFIE 0 Setting to 1, an Interrupt will be generated

when a CAN-FD message payload overflow

condition occurs.

GCTRH,

GCTRL

CAN_CFG_THLEIE 0 Setting to 1, an Interrupt will be generated

when a TX History List Entry Lost condition

occurs.

GCTRH,

GCTRL

CAN_CFG_MEIE 0 Setting to 1, an Interrupt will be generated

when a Message Lost condition occurs.

GCTRH,

GCTRL

CAN_CFG_DEIE 0 Setting to 1, an interrupt will be generated

when a DLC error is detected in received

frames.

GCTRH,

GCTRL

CAN_CFG_ERRD 0 Set the display mode of the error flag bits

(bits 14 to 8) in the Channel Error Flag

Register (C0ERFL).

Setting to 0, Only the 1st set of error codes

displayed.

Setting to 1, Accumulated error codes

displayed.

C0CTRH,

C0CTRL

CAN_CFG_BOM 0 Set the timing of the recovery from Bus-Off

mode of the RS-CANFD lite Channel.

For details, refer to the User's Manual:

Hardware.

C0CTRH,

C0CTRL

CAN_CFG_TDCVFIE 0 Setting to 1 enables Transceiver Delay

Compensation Violation Interrupt.

Do not set to 1 when Classical only mode.

C0CTRH,

C0CTRL

CAN_CFG_TAIE 0 Setting to 1 enables Transmission Abort

Interrupt.

C0CTRH,

C0CTRL

CAN_CFG_ALIE 0 Setting to 1 enables Arbitration Lost

Interrupt.

C0CTRH,

C0CTRL

CAN_CFG_BLIE 0 Setting to 1 enables Bus Lock Interrupt. C0CTRH,

C0CTRL

CAN_CFG_OLIE 0 Setting to 1 enables Overload Interrupt. C0CTRH,

C0CTRL

CAN_CFG_BORIE 0 Setting to 1 enables Bus-Off Recovery

Interrupt.

C0CTRH,

C0CTRL

CAN_CFG_BOEIE 0 Setting to 1 enables Bus-Off Entry Interrupt. C0CTRH,

C0CTRL

CAN_CFG_EPIE 0 Setting to 1 enables Error Passive Interrupt. C0CTRH,

C0CTRL

CAN_CFG_EWIE 0 Setting to 1 enables Error Warning

Interrupt.

C0CTRH,

C0CTRL

CAN_CFG_BEIE 0 Setting to 1 enables Bus Error Interrupt. C0CTRH,

C0CTRL

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 11 of 58

Apr.20.22

CAN_CFG_TMIEx

(x=0 to 3)

0 Setting to 1, an interrupt will be generated

at the end of a successful transmission

from the corresponding Message Buffer.

Do not set to 1 if the corresponding TX

Message Buffer is linked to a Common

FIFO via CAN_CFG_CFTML.

TMIEC

CAN_CFG_TSCCFG 0 These bits configure the different capture

points of the timestamp.

For details, refer to the User's Manual:

Hardware.

GFDCFG

CAN_CFG_RPED 0 Setting to 1 disables the protocol exception

event detection.

GFDCFG

CAN_CFG_RMIE_ALL 0 Setting to 1, interrupts will be generated at

the end of a successful reception from the

all Receive Message Buffer.

Setting to 2 for enable each buffer.

(Enables CAN_CFG_RMIE_VALUE)

RMIEC

CAN_CFG_RMIE_VA

LUE

0x0000 Setting bit n to 1, an interrupt will be

generated at the end of a successful

reception from the corresponding Receive

Message Buffer n.

RMIEC

CAN_CFG_INTRCAN

GRFR_USE

0 Select use / no use of CAN global receive

FIFO interrupt.

Setting to 0, no use.

Setting to 1, use.

RCANGRFRMK

CAN_CFG_INTRCAN

GRFR_LEVEL

2 Set the priority level for CAN global receive

FIFO interrupt.

RCANGRFRPR

1,

RCANGRFRPR

0

CAN_CFG_INTRCAN

GRVC_USE

0 Select use / no use of CAN global receive

message buffer interrupt.

Setting to 0, no use.

Setting to 1, use.

RCANGRVCMK

CAN_CFG_INTRCAN

GRVC_LEVEL

2 Set the priority level for CAN global receive

message buffer interrupt.

RCANGRVCPR

1,

RCANGRVCPR

0

CAN_CFG_INTRCAN

GERR_USE

0 Select use/no use of CAN global error

interrupt.

Setting to 0, no use.

Setting to 1, use.

RCANGERRMK

CAN_CFG_INTRCAN

GERR_LEVEL

2 Set the priority level for CAN global error

interrupt

RCANGERRPR

1,

RCANGERRPR

0

CAN_CFG_INTRCAN

0TRM_USE

0 Select use / no use of CAN0 channel

transmit interrupt.

Setting to 0, no use.

Setting to 1, use.

RCAN0TRMMK

CAN_CFG_INTRCAN

0TRM_LEVEL

2 Set the priority level for CAN0 channel

transmit interrupt.

RCAN0TRMPR

1,

RCAN0TRMPR

0

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 12 of 58

Apr.20.22

CAN_CFG_INTRCAN

0CFR_USE

0 Select use / no use of CAN0 Common FIFO

receive interrupt.

Setting to 0, no use.

Setting to 1, use.

RCAN0CFRMK

CAN_CFG_INTRCAN

0CFR_LEVEL

2 Set the priority level for CAN0 Common

FIFO receive interrupt.

RCAN0CFRPR1

,

RCAN0CFRPR0

CAN_CFG_INTRCAN

0ERR_USE

0 Select use / no use of CAN0 channel error

interrupt.

Setting to 0, no use.

Setting to 1, use.

RCAN0ERRMK

CAN_CFG_INTRCAN

0ERR_LEVEL

2 Set the priority level for CAN0 channel error

interrupt.

RCAN0ERRPR

1,

RCAN0ERRPR

0

CAN_CFG_INTRCAN

0WUP_USE

0 Select use / no use of CAN0 wakeup

interrupt.

Setting to 0, no use.

Setting to 1, use.

RCAN0WUPMK

CAN_CFG_INTRCAN

0WUP_LEVEL

2 Set the priority level for CAN0 wakeup

interrupt.

RCAN0WUPPR

1,

RCAN0WUPPR

0

CAN_CFG_CALLBAC

K_XXX

my_can_xxx_c

allback

Set the user callback function names -

CAN_CFG_CRXD0_P

U

0 Set the CRXD0 pin on-chip pull-up resistor. PUxx

CAN_CFG_CRXD0_PI

THL

0 Set the input buffer threshold for CRXD0

pin. (0: Schmitt1, 1: Schmitt 3)

PITHLx

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 13 of 58

Apr.20.22

2.9 Code Size

 The code size is shown below.

 Condition: - Parameter check enabled

- RXMB and RX FIFO used

- Common FIFO used in TX mode

- All interrupt handlers are valid

[CC-RL]

Tools used

Renesas Electronics CS+ for CC V8.07.00

Renesas Electronics C/C++ compiler for R78 Family V.1.11.0

 (Optimization level: Perform the default optimization (None))

ROM size: 3409 bytes

RAM size: 0 byte

Stack: 22 bytes

[IAR]

Tools used

IAR Systems IAR Embedded Workbench for Renesas RL78 4.21.3

IAR Systems IAR C/C++ Compiler for Renesas RL78 4.21.3.2447

 (Optimization level: Medium)

ROM size: 3722 bytes

RAM size: 0 byte

Stack: 20 bytes

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 14 of 58

Apr.20.22

2.10 API Data Types

 The data types, structures, etc. used by this module are shown below.

2.10.1 Data Types

 The data types used by this module are shown below.

 Data types are defined in "r_rscanfd_rl78_if.h".

Data Type Actual Data Type Description

int8_t signed char BSP calls stdint.h.

int16_t signed short Same as above.

uint8_t unsigned char Same as above.

uint16_t unsigned short Same as above.

e_can_err_t

e_can_txb_result_t

unsigned int Error code, return value.

can_rxfifo_t unsigned char RX FIFO buffer number.

can_txbuf_t unsigned char TX Message Buffer number.

can_rxbuf_t unsigned char RX Message Buffer number.

can_length_t unsigned char CAN data length.

can_storage_t unsigned short Receive frame storage buffer type

st_can_tx_frame_t

st_can_rx_frame_t

union CAN send/receive data.

Refer 2.10.2 Structure, Union for detail.

2.10.2 Structure, Union

 The structure, union used by this module are shown below.

 Structure, union are defined in "r_rscanfd_rl78_if.h".

2.10.2.1 u_can_data_t

Data type name

 u_can_data_t

Description

 A union for storing data bytes for sending and receiving at CAN.

 Defines the area for storing 64 bytes (32 word) of CAN frame data.

 Use DW for word access and DB for byte access.

Definitions

typedef union

{

 uint16_t DW[32u]; /* Data Word */

 uint8_t DB[64u]; /* Data Byte */

} u_can_data_t;

2.10.2.2 u_can_tx_head_t, u_can_rx_head_t

Data type name

 u_can_tx_head_t

u_can_rx_head_t

Description

 A union for storing ID for sending and receiving at CAN.

 Defines the area for storing CAN ID, IDE, RTR, etc. of the CAN frame.

Definitions

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 15 of 58

Apr.20.22

typedef union

{

 uint16_t Word[CAN_TX_HEAD_WORD_NUM]; /* Word access */

 struct

 {

 /* ---- ID, THLEN, RTR and IDE (2 words) ---- */

 uint32_t ID :29; /* CAN ID */

 uint32_t THLEN:1; /* THLEN if 1 then store in THL */

 uint32_t RTR :1; /* RTR 0:Data 1:Remote(Classical) */

 uint32_t IDE :1; /* IDE 0:Standard 1:Extended */

 /* ---- Classical/FD, DLC (0.5 word) ---- */

 uint8_t FDCTR:3; /* FDF/BRS/ESI */

 uint8_t :1;

 uint8_t DLC :4; /* DLC 0-15 */

 /* ---- Label and Time Stamp (1.5 words) ---- */

 uint8_t IFL:2; /* Information label */

 uint8_t :6;

 uint16_t LBL; /* TX label */

 } Bits; /* Bit access */

} u_can_tx_head_t;

typedef union

{

 uint16_t Word[CAN_RX_HEAD_WORD_NUM]; /* Word access */

 struct

 {

 /* ---- ID, RTR and IDE (2 words) ---- */

 uint32_t ID :29; /* CAN ID */

 uint32_t :1;

 uint32_t RTR:1; /* RTR 0:Data 1:Remote(Classical) */

 uint32_t IDE:1; /* IDE 0:Standard 1:Extended */

 /* ---- Classical/FD, DLC (0.5 words) ---- */

 uint8_t ESI:1; /* ESI 0:Error Active 1:Error Passive */

 uint8_t BRS:1; /* BRS 0:Only Nominal 1:Use Data Baud Rate */

 uint8_t FDF:1; /* FDF 0:Classical 1:CAN-FD */

 uint8_t :1;

 uint8_t DLC:4; /* DLC 0-15 */

 /* ---- Label and Time Stamp (2.5 words) ---- */

 uint8_t IFL:2; /* Information label */

 uint8_t :6;

 uint16_t LBL; /* RX label */

 uint16_t TS; /* Time Stamp */

 } Bits; /* Bit access */

} u_can_rx_head_t;

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 16 of 58

Apr.20.22

 When sending u_can_tx_head_t When receiving u_can_rx_head_t

IDL The 29 bits of the ID.

For the standard ID, specify 0 for the upper 18

bits.

The 29 bits of the ID.

For the standard ID, the value read from the

upper 18 bits is 0.

THLEN Whether TX history is stored

0: Not store

1: Store

Macro CAN_THL_XXX are available at the

specified time.

Nothing

RTR Message frame format (RTR bit).

0: Data Frame, 1: Remote Frame.

Remote frame is used only for the classical CAN frame.

IDE Message ID format (IDE bit).

0: Standard ID, 1: Extended ID.

DLC DLC value of sending message.

The data length corresponding to the DLC

value depends on the value of the FDF bit.

You can use the following macros to set the

values:

FDF=0：CAN_DLC_LEN0 to

CAN_DLC_LEN8

FDF=1：CAN_DLC_LEN0 to

CAN_DLC_LEN8, CAN_FD_DLC_LEN12 to

CAN_FD_DLC_LEN64

DLC value of receiving message.

FDCTR FDF/BRS/ESI Bit

000b: Classical CAN Frame

100b to 111b: CAN FD frame

100b: No data bitrate and ESI

101b: Do not use data bitrate

110b: Do not use ESI

111b: Using data bitrate and ESI

Macro CAN_FDCTR_XXX are available at the

specified time.

Nothing

ESI Nothing ESI bit

0: Error Active Node, 1: Error Passive Node.

When FDF = 0, it is fixed to 0 when receiving

and Specify 0 when sending.

BRS Nothing BRS bit

0: no bit rate switch, 1: bit rate switch.

When FDF = 0, it is fixed to 0 when receiving

and Specify 0 when sending.

FDF Nothing FDF bit

0: Classical CAN frame, 1: CAN-FD frame.

IFL Label information of TX history. (2bits) Label information of receiving message. (2bits)

LBL Label information of TX history. (16bits) Label information of receiving message.

(16bits)

TS Nothing. Timestamp value of receiving message.

2.10.2.3 st_can_tx_frame_t, st_can_rx_frame_t

Data type name

 st_can_tx_frame_t

st_can_rx_frame_t

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 17 of 58

Apr.20.22

Description

 A union for storing data for sending and receiving at CAN.

 Defines the area for storing CAN frame information for one frame.

Definitions

typedef struct

{

 u_can_tx_head_t Head;

 u_can_data_t Data;

} st_can_tx_frame_t;

typedef struct

{

 u_can_rx_head_t Head;

 u_can_data_t Data;

} st_can_rx_frame_t;

2.10.2.4 st_can_filter_t, st_can_filter_opt_t

Data type name

 st_can_filter_t

 st_can_filter_opt_t

Description

 A structure for storing CAN receive rules.

 Receive filter: st_can_filter_t

 Receive filter options: st_can_filter_opt_t

 Defines the area where one frame of CAN frame information is stored.

Definitions

typedef struct

{

 uint32_t ID :29; /* CAN ID */

 uint32_t :3;

 uint32_t ID_MASK:29; /* CAN ID Mask */

 uint32_t :3;

 uint8_t RTR_TYPE; /* RTR_TYPE 0:Data 1:Remote (classical) 2:Any */

 uint8_t IDE_TYPE; /* IDE_TYPE 0:Standard 1:Extend 2:Any */

} st_can_filter_t;

/* RX rule filter option */

typedef struct

{

 uint16_t LBL; /* RX label */

 uint16_t IFL :2; /* Information label */

 uint16_t DLC :4; /* DLC (Effective if DCE=1) */

 uint16_t LB :1; /* LB 0:RX frames 1:TX frames (Effective if

MME=1) */

 uint16_t :9;

} st_can_filter_opt_t;

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 18 of 58

Apr.20.22

 Description remarks

st_can_filter_t ID For id 29-bit standard IDs, the top

18 bits must be 0.

ID_MASK ID comparison bit

Bits specified with 1 are

compared.

ID_MASK=0 stores frames that

correspond to the RTR_TYPE and

IDE_TYPE, regardless of the

value specified for the ID.

If you do not want to compare or

compare all id bits, you can use

the following macros:

CAN_MATCH_NO_ID_BIT

CAN_MATCH_ALL_ID_BIT

RTR_TYPE Data format of stored messages

(RTR bit)

 0: Data frame

 1: Remote frame

 2: Optional

* Remote frame is classical CAN

frame only

The following macros are

available when specified:

CAN_RTR_DATA_FRAME

CAN_RTR_RMT_RTR1_FRAME

CAN_RTR_ANY_FRAME

IDE_TYPE Stored message ID format (IDE

bit)

 0: Standard ID

 1: Extended ID

 2: Optional

The following macros are

available when specified:

CAN_IDE_STD_FORMAT

CAN_IDE_EXT_FORMAT

CAN_IDE_ANY_FORMAT

st_can_filter_opt_t LBL Label information (16bit)

IFL Label information (2bit)

DLC DLC value

When CAN_CFG_DCE =1, rs-

CANFD refers to DLC checking.

When CAN_CFG_DCE = 0,

setting anything other than 0 has

no effect.

The following macros are

available when specified:

CAN_DLC_LEN0 , ...,

CAN_FD_DLC_LEN64

LB Loopback

When CAN_CFG_MME=1, lb=1

stores the sending frame

according to the receive rules

instead of the receive frame.

When CAN_CFG_MME = 0, if 1 is

set, both the transmission frame

and the reception frame are not

stored.

The following macros are

available when specified:

CAN_AFL_LB_NOT_LOOPBACK

CAN_AFL_LB_LOOPBACK

2.10.2.5 st_can_txhist_t

Data type name

 st_can_txhist_t

Description

 A structure for storing TX history list entry.

 Defines the area where one entry of TX history information is stored.

Definitions

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 19 of 58

Apr.20.22

typedef struct

{

 can_txbuf_t txbuf_idx; /* TX buffer index */

 uint16_t TS; /* Time Stamp */

 uint16_t LBL; /* TX label */

 uint16_t IFL :2; /* Information label */

 uint16_t :14;

} st_can_txhist_t;

 Description remarks

st_can_txhist_t txbuf_idx 0-3: TX messege buffer

0xFF: Not TX message buffer

(Common FIFO)

TS Timestamp value of TX history

LBL Label information (16bit) of TX

history

IFL Label information (2bit) of TX

history

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 20 of 58

Apr.20.22

2.10.3 Macro

 The macro used by this module are shown below.

2.10.3.1 Parameter Macro

 The macro used as arguments of the API function of this module is shown below.

 Macros are defined in "r_rscanfd_rl78_if.h".

Macro Name Value Description Functions that use

macros

CAN_WUP_UNUSE to

CAN_WUP_USE

0 to 1 Use / No use of CAN Wakeup. R_CAN_Sleep

CAN_RXFIFO0 to

CAN_RXFIFO1

0 to 1 RX FIFO buffer number.

(Example: RX FIFO buffer 0 ->

CAN_RXFIFO0)

R_CAN_ReadRXFIFO

CAN_TXBUF0 to

CAN_TXBUF3

0 to3 TX Message Buffer number. R_CAN_SendByTXMB

others

CAN_TXBUF_NOT 0xFF Not TX message buffer (Common

FIFO)

R_CAN_TxHistory

CAN_RXBUF0 to

CAN_RXBUF15

0 to 15 RX Message Buffer number. R_CAN_ReadRXMB

CAN_DLC_LEN0 to

CAN_DLC_LEN8

0 to 8 DLC value (Classical CAN frame)

CAN_DLC_LEN0 to

CAN_DLC_LEN8,

CAN_FD_DLC_LEN12 to

CAN_FD_DLC_LEN64

0 to 8,

9 to 15

DLC value (CAN-FD frame)

CAN_FD_DLC_LENx

 x=12,16,20,24,32,48,64

CAN_STORE_XX 0x8000

0x0001

0x0002

0x0100

See R_CAN_AddRxRule R_CAN_AddRxRule

CAN_STORE_XX_AND_YY 0x8001

0x8002

0x8100

0x0003

0x0101

0x0102

See R_CAN_AddRxRule R_CAN_AddRxRule

CAN_MAX_WORD_NUM 32 Maximum number of words in CAN

frame data.

2.10.3.2 Configuration Macro

 Refer 2.8 Configuration Overview.

2.11 Return Values

 The API function returns a return value of type e_can_err_t except for some functions. The e_can_err_t type
is found in “r_rscanfd_rl78_if.h” along with the API function declarations.

 The following is a list of return values of API functions.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 21 of 58

Apr.20.22

Type Macro Name Description

e_can_err_t CAN_SUCCESS Completed successfully.

CAN_SUCCESS_WITH_LOST Complete successfully, but message was

lost.

CAN_ERR_WAITING Waiting for transition to complete

CAN_ERR_INVALID_ARG Argument error.

CAN_ERR_INVALID_MODE Invalid CAN mode

CAN_ERR_ILLEGAL_STS Status error.

Some error occurred in the CAN module.

CAN_ERR_BUF_BUSY Buffer is busy.

CAN_ERR_BUF_FULL Buffer is full.

CAN_ERR_BUF_EMPTY No unread message. (Buffer is empty.)

CAN_ERR_OVERWRITE Overwrite has occurred.

e_can_txb_result CAN_TXB_TRANSMITTING Transmitting, or no transmit request. Note.

CAN_TXB_ABORT_OVER Transmit abort completed. Note.

CAN_TXB_END Transmit completed, no transmit abort

request. Note.

CAN_TXB_END_WITH_ABORT Transmit ended, with transmit abort

request. Note.

CAN_TXB_ARG_ERROR Argument error. Note.

Note: R_CAN_GetTXMBResult only.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 22 of 58

Apr.20.22

3. API Functions

3.1 Summary

 This module has the following API functions.

Function name Description

R_CAN_Create Initializes CAN peripheral.

R_CAN_SetConfig Initializes the CAN module according to the configuration.

R_CAN_AddRxRule Adds a receive rule of the CAN module.

R_CAN_StartComm Operates the CAN module and transition channel 0 to

communicable mode.

R_CAN_StopComm Transitions channel 0 to reset mode and stops the CAN module.

R_CAN_Sleep Transitions the CAN module to global sleep mode.

R_CAN_SendByTXMB Sends data from the TX Message Buffer on channel 0.

R_CAN_AbortTXMB Aborts sending from the TX Message Buffer on channel 0.

R_CAN_GetTXMBResult Gets the transmission result from the transmission buffer on

channel 0.

R_CAN_SendByCFIFO Sends data from the Common FIFO on channel 0.

R_CAN_AbortCFIFO Aborts sending from the Common FIFO on channel 0.

R_CAN_ReadTxHistory Reads entry from TX history list.

R_CAN_ReadRXMB Reads received data from the RX Message Buffer.

R_CAN_ReadRXMBInHandler Reads received data from the RX Message Buffer. (In interrupt

handler)

R_CAN_ReadRXFIFO Reads received data from the receive FIFO.

R_CAN_ReadCFIFO Reads received data from the Common FIFO on channel 0.

r_can_glb_rxfifo_isr CAN global receive FIFO interrupt handler.

r_can_glb_rxmb_isr CAN global receive message buffer interrupt handler.

r_can_glb_error_isr CAN global error interrupt handler.

r_can_ch0_transmit_isr CAN0 channel transmit interrupt handler.

r_can_ch0_cfifo_rx_isr CAN0 common FIFO receive interrupt handler.

r_can_ch0_error_isr CAN0 channel error interrupt handler.

r_can_ch0_wakeup_isr CAN0 wakeup interrupt handler.

CAN_CFG_CALLBACK_XXXX Callback from the interrupt handler.

R_CAN_ReadChStatus Gets the status of channel 0.

R_CAN_ReadChBusErrFlag Gets the bus error flag of channel 0.

R_CAN_GetTDCResult Gets the Transceiver Delay Compensation (TDC) result of channel

0.

R_CAN_GetTSCounter Gets timestamp counter value

R_CAN_GetVersion Gets the version of this module

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 23 of 58

Apr.20.22

3.2 R_CAN_Create

 Initializes CAN peripheral.

Format

 void R_CAN_Create(void);

Parameters

 None.

Return Values

 None.

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Initialize peripheral functions to use the CAN module.

 Supply input clock to CAN. CAN0EN=1

 Disable the interrupt mask flag related to CAN.

RCANGRVCMK, RCAN0ERMK, RCAN0WUPMK, RCAN0CFRMK, RCAN0TRMMK, RCANGRFRMK,

RCANGERRMK

 Clear the interrupt request flag related to CAN

RCANGRVCIF, RCAN0ERIF, RCAN0WUPIF, RCAN0CFRIF, RCAN0TRMIF, RCANGRFRIF,

RCANGERRIF

Reentrant

Non-reentrant.

Example

 R_CAN_Create();

Special Notes:

1. The interrupt priority flag is set with the function R_CAN_SetConfig.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 24 of 58

Apr.20.22

3.3 R_CAN_SetConfig

Initializes the CAN module according to the configuration.

Format

 e_can_err_t R_CAN_SetConfig(void);

Parameters

 None.

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_ERR_INVALID_MODE Global reset mode has been released.

CAN_ERR_ ILLEGAL_STS Failure global mode or channel mode transition.

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Make initial settings for the CAN module.

 With this function, the global mode transitions to the global reset mode, and the channel mode of the
channel to be used transitions to the channel reset mode.

 After the transition is completed, set the register of the CAN module.

 Channel mode selection: CAN-FD mode / FD only mode / Classical CAN only mode

 Baud rate setting

 Acceptance Filter setting

 Settings for each buffer (Depth, Data length, Interrupt enable / disable, etc.)

 etc.

 After setting the CAN register, makes initial setting of the interrupt register.

 Set the interrupt priority flag related to CAN.

RCANGRVCPRx, RCAN0ERPRx, RCAN0WUPPRx, RCAN0CFRPRx, RCAN0TRMPRx,

RCANGRFRPRx, RCANGERRPRx

(x=0, 1)

Reentrant

Non-reentrant.

Example

 e_can_err rtn;

rtn = R_CAN_SetConfig ();

Special Notes:

 Call this function after calling the function R_CAN_Create.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 25 of 58

Apr.20.22

3.4 R_CAN_AddRxRule

Adds a receive rule of the CAN module.

Format

 e_can_err_t R_CAN_AddRxRule(const st_can_filter_t * p_filter,

 const can_storage_t storage,

 const can_rxbuf_t rxbuf_idx,

 const st_can_filter_opt_t * p_opt);

Parameters

p_filter

 Address of the structure that stores the receive rule. For details, refer to "2.10.2 Structure, Union".

 storage

 Specifies the storage (a maximum of two) of the frame that matched with a receive rule.

 CAN_STORE_RM RX buffer

 CAN_STORE_RF0 RXFIFO0

 CAN_STORE_RF1 RXFIFO1

 CAN_STORE_CF Common FIFO

 CAN_STORE_RM_AND_RF0 RX buffer and RXFIFO0

 CAN_STORE_RM_AND_RF1 RX buffer and RXFIFO1

 CAN_STORE_RM_AND_CF RX buffer and Common FIFO

 CAN_STORE_RF0_AND_RF1 RXFIFO0 and RXFIFO1

 CAN_STORE_RF0_AND_CF RXFIFO0 and Common FIFO

 CAN_STORE_RF1_AND_CF RXFIFO1 and Common FIFO

 rxbuf_idx

 Specifies the receive buffer number when stored in the receive buffer.

 This is useful when storage is set to store in the receive buffer, such as CAN_STORE_RM..

 p_opt

 Address of the structure that stores the receive rule options.

For details, refer to "2.10.2 Structure, Union".

 Set Null if option is not required

Return Values

 CAN_SUCCESS Completed successfully.

CAN_ERR_INVALID_ARG Argument error

 CAN_ERR_INVALID_MODE Not in channel reset mode

 CAN_ERR_BUF_FULL The number of rules has reached the upper limit

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 26 of 58

Apr.20.22

Description

Add a receive rule for the CAN module.

 The number of receiving rules after calling R_CAN_SetConfig function is 0, and the receive rules are

added one by one by a normal call to this function. Up to 16 rules can be set.

Reentrant

Non-reentrant.

Example

e_can_err rtn;

 st_can_filter_t filter;

 st_can_filter_opt_t opt;

 filter.IDE_TYPE = CAN_IDE_STD_FORMAT;

 filter.RTR_TYPE = CAN_RTR_ANY_FRAME;

 filter.ID = 0x700u;

 filter.ID_MASK = 0x700u;

 opt.DLC = 0u;

 opt.LB = 0u;

 opt.LBL = 0xA5A5u;

 opt.IFL = 2u;

rtn = R_CAN_AddRxRule(&filter, CAN_STORE_RM, rxbuf_idx, &opt);

Special Notes:

 Call this function after calling the function R_CAN_SetConfig.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 27 of 58

Apr.20.22

3.5 R_CAN_StartComm

Operates the CAN module and transition channel 0 to communicable mode.

Format

 e_can_err_t R_CAN_StartComm(void);

Parameters

 None.

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_ERR_INVALID_MODE Invalid global mode or channel mode

 CAN_ERR_ILLEGAL_STS Failure global mode or channel mode transition.

 CAN_ERR_WAITING Wait to change global mode or channel mode

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Transitions the global mode to the global operation mode, and if successful, transitions the channel mode of
channel 0 to the channel operation mode.

 After confirming that the mode transition was successful, setting the following permission.

 RX FIFO buffer to use

 Common FIFO buffer to use

 Setting the interrupt register enable before transitioning to the global operation mode. (Excluding
INTRCAN0WUP.)

 Clear the interrupt request flag related to CAN.

RCANGRVCIF, RCAN0ERIF, RCAN0CFRIF, RCAN0TRMIF, RCANGRFRIF, RCANGERRIF

 Enable the interrupt mask flag related to CAN.

RCANGRVCMK, RCAN0ERMK, RCAN0CFRMK, RCAN0TRMMK, RCANGRFRMK, RCANGERRMK

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 28 of 58

Apr.20.22

Reentrant

Non-reentrant.

Example

e_can_err rtn;

rtn = CAN_ERR_WAITING;

while (CAN_ERR_WAITING == rtn)

{

 rtn = R_CAN_StartComm();

}

if (CAN_SUCCESS == rtn)

{

 while (0x0080u != R_CAN_GetChStatus()); /* Wait until communication is ready */

}

else

{

 /* error process */

}

Special Notes:

1. Call this function after calling the function R_CAN_SetConfig.

2. Setting to use of the RX FIFO buffer and Common FIFO buffer is performed only when the use is set in

the configuration.

3. After the successful completion, make sure that the function R_CAN_GetChStatus is ready to

communicate.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 29 of 58

Apr.20.22

3.6 R_CAN_StopComm

Transitions channel 0 to reset mode and stops the CAN module.

Format

 e_can_err_t R_CAN_StopComm(void);

Parameters

 None.

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_ERR_WAITING Wait to change global mode or channel mode

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Transitions the channel mode of channel 0 to the channel reset mode, and if successful, transitions the
global mode to global reset mode.

 By transitioning to the channel reset mode, CAN communication of the channel is stopped.

 Before transitioning to channel reset mode, transition to channel halt mode and wait for the end of
transmission / reception.

 All interrupt registers related to CAN are disabled before channel mode transition.

 Disable the interrupt mask flag related to CAN.

RCANGRVCMK, RCAN0ERMK, RCAN0WUPMK, RCAN0CFRMK, RCAN0TRMMK, RCANGRFRMK,

RCANGERRMK

 Clear the interrupt request flag related to CAN.

RCANGRVCIF, RCAN0ERIF, RCAN0WUPIF, RCAN0CFRIF, RCAN0TRMIF, RCANGRFRIF,

RCANGERRIF

Reentrant

Non-reentrant.

Example

 e_can_err rtn;

rtn = R_CAN_StopComm ();

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 30 of 58

Apr.20.22

3.7 R_CAN_Sleep

Transitions the CAN module to global sleep mode.

Format

 e_can_err_t R_CAN_Sleep(const unsigned char wup);

Parameters

 wup

 Use / No use of CAN Wakeup. (Specify CAN_WUP_UNUSE to CAN_WUP_USE (0 to 1).)

Return Values

 CAN_SUCCESS Completed successfully.

CAN_ERR_INVALID_MODE Invalid global mode or channel mode

CAN_ERR_ ILLEGAL_STS Failure global mode or channel mode transition.

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Transition the CAN module to global sleep mode.

 This mode stops the clock of the entire module and achieves low power consumption.

 After transitioning to global sleep mode, the clock to the CAN module is stopped.

 Stop supplying the input clock to the CAN. CAN0EN = 0 (for CAN_WUP_UNUSE)

 Stop supplying the X1 clock to the CAN. CAN0MCKE = 0

 Clock needs to supply to the CRXD0 pin by CAN0EN to detect CAN wakeup, the argument wup specifies
whether to stop CAN0EN. If CAN_WUP_USE is specified, CAN0EN = 0 will not be set.

 If INTRCAN0WUP is set to enable in the configuration, enable the interrupt register.

 Clear the interrupt request flag of INTRCAN0WUP. (RCAN0WUPIF)

 Enable the interrupt mask flag of INTRCAN0WUP. (RCAN0WUPMK)

Reentrant

Non-reentrant.

Example

e_can_err rtn;

rtn = R_CAN_Sleep(CAN_WUP_UNUSE);

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 31 of 58

Apr.20.22

3.8 R_CAN_SendByTXMB

Sends data from the TX Message Buffer on channel 0.

Format

 e_can_err_t R_CAN_SendByTXMB(const can_txbuf_t txbuf_idx, const st_can_tx_frame_t * p_frame);

Parameters

 txbuf_idx

 TX Message Buffer number. (Specify CAN_TXBUF0 to CAN_TXBUF3 (0 to 3).)

 p_frame

 Address of the structure that stores the sending message. For details, refer to "2.10.2 Structure, Union".

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_ERR_BUF_BUSY Status busy of TX Message Buffer.

 CAN_ERR_INVALID_ARG Argument error. (TX Message Buffer number is not 0 to 3.)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Stores message data in the specified TX Message Buffer and issues a transmit request.

 Before storing the data, the TX Message Buffer transmission result flag is cleared.

 If the status of the TX Message Buffer is not 0, such as when there is already a transmit request or the TX
Message Buffer transmission result flag fails to be cleared, CAN_ERR_BUF_BUSY is returned without
performing transmitting.

Reentrant

Reentrant, for different TX Message Buffer numbers.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 32 of 58

Apr.20.22

Example

s_tx_frame.Head.Bits.IDE = CAN_IDE_STD_FORMAT;

 s_tx_frame.Head.Bits.ID = 0x7FEuL;

 s_tx_frame.Head.Bits.RTR = CAN_RTR_DATA_FRAME;

 s_tx_frame.Head.Bits.FDCTR = CAN_FDCTR_CLASSICAL;

 s_tx_frame.Head.Bits.DLC = CAN_DLC_LEN8;

 s_tx_frame.Head.Bits.THLEN = CAN_THL_DISABLE;

 s_tx_frame.Head.Bits.LBL = 0u;

 s_tx_frame.Head.Bits.IFL = 0u;

 for (i = 0u; i < CAN_DLC_LEN8; i++) s_tx_frame.Data.DB[i] = 0x11u * (i + 1);

 rtn = R_CAN_SendByTXMB(CAN_TXBUF0, &s_tx_frame);

Special Notes:

1. Call this function after the successful completion of calling the function R_CAN_StartComm.

2. Do not specify the TX Message Buffer number linked to the Common FIFO buffer.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 33 of 58

Apr.20.22

3.9 R_CAN_AbortTXMB

Aborts sending from the TX Message Buffer on channel 0.

Format

 e_can_err_t R_CAN_AbortTXMB(const can_txbuf_t txbuf_idx);

Parameters

 txbuf_idx

 TX Message Buffer number. (Specify CAN_TXBUF0 to CAN_TXBUF3 (0 to 3).)

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_ERR_INVALID_ARG Argument error. (TX Message Buffer number is not 0 to 3.)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Issue a transmit abort request to the specified TX Message Buffer.

Reentrant

Reentrant, for different TX Message Buffer numbers.

Example

 e_can_err rtn;

rtn = R_CAN_AbortTXMB(CAN_TXBUF0);

Special Notes:

 Do not specify the TX Message Buffer number linked to the Common FIFO buffer.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 34 of 58

Apr.20.22

3.10 R_CAN_GetTXMBResult

Gets the transmission result from the transmission buffer on channel 0.

Format

 e_can_txb_result_t R_CAN_GetTXMBResult(const can_txbuf_t txbuf_idx);

Parameters

 txbuf_idx

 TX Message Buffer number. (Specify CAN_TXBUF0 to CAN_TXBUF3 (0 to 3).)

Return Values

 CAN_TXB_TRANSMITTING Transmitting, or no transmit request.

 CAN_TXB_ABORT_OVER Transmit abort completed.

 CAN_TXB_END Transmit completed, no transmit abort request.

 CAN_TXB_END_WITH_ABORT_REQ Transmit ended, with transmit abort request.

 CAN_ERR_ ARG_ERROR Argument error. (TX Message Buffer number is not 0 to 3.)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the status register of the specified TX Message Buffer and returns the transmission result.

 After reading the transmission result, the status register is cleared to clear the transmission result.

Reentrant

Reentrant, for different TX Message Buffer numbers.

Example

 e_can_txb_result_t rtn;

rtn = R_CAN_GetTXMBResult(CAN_TXBUF0);

Special Notes:

 By calling this function, the interrupt request flag (TMTRF [1:0] in TMSTSm) of CANi transmission
completion / CANi transmission abort is cleared.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 35 of 58

Apr.20.22

3.11 R_CAN_SendByCFIFO

Sends data from the Common FIFO on channel 0.

Format

 e_can_err_t R_CAN_SendByCFIFO(const st_can_tx_frame_t * p_frame);

Parameters

 p_frame

 Address of the structure that stores the sending message. For details, refer to "2.10.2 Structure, Union".

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_ERR_BUF_FULL Common FIFO buffer is full.

 CAN_ERR_INVALID_ARG Argument error. (Common FIFO buffer is not in TX mode.)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Stores message data in the Common FIFO buffer.

 Before storing the message data, check the status of the Common FIFO buffer, and if the Common FIFO
buffer is full, return CAN_ERR_BUF_FULL without storing.

Reentrant

Non-reentrant.

Example

s_tx_frame.Head.Bits.IDE = CAN_IDE_STD_FORMAT;

 s_tx_frame.Head.Bits.ID = 0x7FEuL;

 s_tx_frame.Head.Bits.RTR = CAN_RTR_DATA_FRAME;

 s_tx_frame.Head.Bits.FDCTR = CAN_FDCTR_CLASSICAL;

 s_tx_frame.Head.Bits.DLC = CAN_DLC_LEN8;

 s_tx_frame.Head.Bits.THLEN = CAN_THL_DISABLE;

 s_tx_frame.Head.Bits.LBL = 0u;

 s_tx_frame.Head.Bits.IFL = 0u;

 for (i = 0u; i < CAN_DLC_LEN8; i++) s_tx_frame.Data.DB[i] = 0x11u * (i + 1);

 rtn = R_CAN_SendByCFIFO(&s_tx_frame);

Special Notes:

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 36 of 58

Apr.20.22

1. Call this function after the successful completion of calling the function R_CAN_StartComm.

2. This function does not clear the interrupt request flag (CFTXIF in CFSTS) of RS-CANFD lite for the

transmission completion interrupt of the Common FIFO buffer.

3. If the Common FIFO buffer is not set to be used in TX mode in the configuration, only argument error

return processing is enabled when this function is compiled.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 37 of 58

Apr.20.22

3.12 R_CAN_AbortCFIFO

Aborts sending from the Common FIFO on channel 0.

Format

 e_can_err_t R_CAN_ AbortCFIFO(void);

Parameters

 None.

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_ERR_BUF_BUSY Common FIFO was not emptied.

CAN_ERR_INVALID_ARG Argument error. (Common FIFO buffer is unused.)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 By disabling the Common FIFO once, the messages in the Common FIFO will be aborted.

 After disabling the Common FIFO, make sure that the Common FIFO is empty, and then enable the
Common FIFO.

Reentrant

Non-reentrant.

Example

 e_can_err_t rtn;

rtn = R_CAN_AbortCFIFO();

Special Notes:

1. This function waits until the Common FIFO buffer is empty. If the message in the Common FIFO buffer
is being transmitted or is determined to be the next transmission, it is emptied after transmission
completion, CAN bus error detection, or arbitration lost. Therefore, waits may time out and
CAN_ERR_BUF_BUSY may return before one frame's transmission is complete.

2. If there is no Common FIFO buffer set for use in the configuration, only argument error return processing

is enabled when this function is compiled.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 38 of 58

Apr.20.22

3.13 R_CAN_ReadTxHistory

Reads entry from the TX history list on channel 0.

Format

 e_can_err_t R_CAN_ReadTxHistory(st_can_txhist_t *p_entry);

Parameters

 p_entry

 Address of the structure that stores the TX history entry. For details, refer to "2.10.2 Structure, Union".

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_SUCCESS_WITH_LOST Complete successfully, but entry was lost.

 CAN_ERR_BUF_EMPTY No unread message. (Buffer is empty.)

 CAN_ERR_INVALID_ARG Argument error. (p_entryr is NULL.)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the received data stored in the specified TX history list for one entry.

 Check the status of the TX history list and clear the overflow flag if overflow has occurred. At this time, the
entry is read and CAN_SUCCESS_WITH_LOST is returned.

 CAN_ERR_BUF_EMPTY is returned if the RX FIFO buffer is empty.

Reentrant

Non-reentrant.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 39 of 58

Apr.20.22

Example

 e_can_err_t rtn;

st_can_txhist_t entry;

rtn = R_CAN_ReadTxHistory(&entry);

if (rtn == CAN_SUCCESS)

{

 if (entry.txbuf_idx == CAN_TXBUF_NOT)

 {

 /* process for TX history of CFIFO */

 }

 else

 {

 /* process for TX history of TXMB */

 }

}

Special Notes:

1. This function does not clear the interrupt request flag (THLIF in THLSTS) of RS-CANFD lite.

2. Calling this function clears the THLIF in THLSTS.

3. If the TX history list is not set to be used in the configuration, CAN_ERR_BUF_EMPTY is always

returned.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 40 of 58

Apr.20.22

3.14 R_CAN_ReadRXMB

R_CAN_ReadRXMB Reads received data from the RX Message Buffer.

R_CAN_ReadRXMBInHandler Reads received data from the RX Message Buffer. (In interrupt handler)

Format

e_can_err_t R_CAN_ReadRXMB(const can_rxbuf_t rxbuf_idx,

st_can_rx_frame_t * p_frame,

can_length_t * p_length);

e_can_err_t R_CAN_ReadRXMBInHandler(const can_rxbuf_t rxbuf_idx,

st_can_rx_frame_t * p_frame,

can_length_t * p_length);

Parameters

 rxbuf_idx

 RX Message Buffer number. (Specify CAN_RXBUF0 to CAN_RXBUF15 (0 to 15).)

 p_frame

 Address of the structure that stores the receiving message. For details, refer to "2.10.2 Structure, Union".

 p_length

 Receiving data length.

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_ERR_BUF_EMPTY No unread message. (Buffer is empty.)

 CAN_ERR_BUF_BUSY Status error. (Failed to clear the reception completion flag.)

 CAN_ERR_OVERWRITE Overwrite has occurred during reading.

 CAN_ERR_INVALID_ARG Argument error. (RX Message Buffer number is not 0 to [Number of
use - 1].)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the received message data stored in the specified RX Message Buffer.

 The function R_CAN_ReadRXMBInHandler checks the reception completion flag before reading the
message, and if the flag is 1, clears it. If the clearing of reception completion flag has failed, returns
CAN_ERR_BUF_BUSY. If the buffer is overwritten by the next received message in the middle of message
reading, returns CAN_ERR_OVERWRITE. If the flag is 0, returns CAN_ERR_BUF_EMPTY.

 The function R_CAN_ReadRXMBInHandler assumes that the reception completion flag has been cleared
before the call, and does not check or clear the reception completion flag before reading the message.
Because reading on the assumption that message is received and stored, CAN_ERR_BUF_EMPTY is not
returned.

Reentrant

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 41 of 58

Apr.20.22

Non-reentrant.

Example

e_can_err_t rtn;

st_can_rx_frame_t rx_frame;

can_length_t length;

rtn = R_CAN_ReadRXMB(CAN_RXBUF0, &rx_frame, &length);

if (rtn == CAN_SUCCESS)

{

 /* process for receive message */

}

Special Notes:

 If the number of RX Message Buffers used is set to 0 in the configuration, only argument error return
processing is enabled when this function is compiled.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 42 of 58

Apr.20.22

3.15 R_CAN_ReadRXFIFO

Reads received data from the receive FIFO.

Format

 e_can_err_t R_CAN_ReadRXFIFO(const can_rxfifo_t rxfifo_idx,

st_can_rx_frame_t * p_frame,

can_length_t * p_length);

Parameters

 rxfifo_idx

 RX FIFO buffer number. (Specify CAN_RXFIFO0 to CAN_RXFIFO1 (0 to 1).)

 p_frame

 Address of the structure that stores the receiving message. For details, refer to "2.10.2 Structure, Union".

 p_length

 Receiving data length.

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_SUCCESS_WITH_LOST Complete successfully, but message was lost.

 CAN_ERR_BUF_EMPTY No unread message. (Buffer is empty.)

 CAN_ERR_INVALID_ARG Argument error.

(RX FIFO buffer number is out of range, or specified RX FIFO buffer is unused.)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the received data stored in the specified RX FIFO buffer for one message.

 Check the status of the RX FIFO buffer and clear the message lost flag if message lost has occurred. At this
time, the message is read and CAN_SUCCESS_WITH_LOST is returned.

 CAN_ERR_BUF_EMPTY is returned if the RX FIFO buffer is empty.

Reentrant

Reentrant, for different RX FIFO buffer numbers.

Example

e_can_err_t rtn;

st_can_rx_frame_t rx_frame;

can_length_t length;

rtn = R_CAN_ReadRXMB(CAN_RXFIFO0, &rx_frame, &length);

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 43 of 58

Apr.20.22

if (rtn == CAN_SUCCESS)

{

 /* process for receive message */

}

Special Notes:

1. This function does not clear the interrupt request flag (RFIF in RFSTSk) of RS-CANFD lite for the

receiption completion interrupt of the RX FIFO buffer.

2. Calling this function clears the RFMLT in RFSTSk. If there is no other RX FIFO buffer or Common FIFO

buffer in which the FIFO message is lost, the interrupt request flag of the FIFO message lost interrupt

(MES in GERFLL) becomes 0.

3. If there is no RX FIFO buffer set for use in the configuration, only argument error return processing is

enabled when this function is compiled.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 44 of 58

Apr.20.22

3.16 R_CAN_ReadCFIFO

Reads received data from the Common FIFO on channel 0.

Format

 e_can_err_t R_CAN_ReadCFIFO(st_can_rx_frame_t * p_frame, can_length_t * p_length);

Parameters

 p_frame

 Address of the structure that stores the receiving message. For details, refer to "2.10.2 Structure, Union".

 p_length

 Receiving data length.

Return Values

 CAN_SUCCESS Completed successfully.

 CAN_SUCCESS_WITH_LOST Complete successfully, but message was lost.

 CAN_ERR_BUF_EMPTY No unread message. (Buffer is empty.)

 CAN_ERR_INVALID_ARG Argument error. (Common FIFO buffer is not in RX mode.)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 When the Common FIFO buffer is in RX mode, reads the received data stored in the specified Common
FIFO buffer for one message.

 Check the status of the Common FIFO buffer and clear the message lost flag if message lost has occurred.
At this time, the message is read and CAN_SUCCESS_WITH_LOST is returned.

 CAN_ERR_BUF_EMPTY is returned if the RX FIFO buffer is empty.

Reentrant

Non-reentrant.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 45 of 58

Apr.20.22

Example

 e_can_err_t rtn;

st_can_rx_frame_t rx_frame;

can_length_t length;

rtn = R_CAN_ReadCFIFO(&rx_frame, &length);

if (rtn == CAN_SUCCESS)

{

 /* process for receive message */

}

Special Notes:

4. This function does not clear the interrupt request flag (CFIF in CFSTSm) of RS-CANFD lite for the

receiption completion interrupt of the Common FIFO buffer.

5. Calling this function clears the CFMLT in CFSTSm. If there is no other RX FIFO buffer or Common FIFO

buffer in which the FIFO message is lost, the interrupt request flag of the FIFO message lost interrupt

(MES in GERFLL) becomes 0.

6. If the Common FIFO buffer is not set to be used in RX mode in the configuration, only argument error

return processing is enabled when this function is compiled.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 46 of 58

Apr.20.22

3.17 r_can_glb_xxxx_isr

r_can_glb_rxfifo_isr CAN global receive FIFO interrupt handler.

r_can_glb_rxmb_isr CAN global receive message buffer interrupt handler.

r_can_glb_error_isr CAN global error interrupt handler.

Format

 R_BSP_PRAGMA_STATIC_INTERRUPT(r_can_glb_rxfifo_isr, CAN_INTRCANGRFR_VECT);

 R_BSP_PRAGMA_STATIC_INTERRUPT(r_can_glb_rxmb_isr, CAN_INTRCANGRVC_VECT);

 R_BSP_PRAGMA_STATIC_INTERRUPT(r_can_glb_error_isr, CAN_INTRCANGERR_VECT);

Parameters

 None.

Return Values

 None.

Properties

 The prototype is declared in "r_rscanfd_rl78.c".

Description

 Interrupt handler for CAN global interrupts.

 Clears the interrupt request flag of the CAN module that causes the interrupt, and calls the user callback
function. At this time, those for which interrupt enable is not set in the configuration are excluded from
clearing.

 Example: RMIEC configuration value is 1, RMND=3 -> Clears the interrupt request flag -> RMND=2

 Clear only bit0. Bit1 is not cleared because interrupt enable is not set.

 The RL78/F2x CAN global interrupt does not generate the next interrupt until the interrupt request is cleared.
Also, the OR values of multiple interrupt sources are assigned to one interrupt source. Therefore, this
function repeatedly clears until it can be confirmed that all interrupt sources have become 0.

 The interrupt request flag to be cleared and the interrupt enable (configuration value) to be referenced are
as follows.

 r_can_glb_rxfifo_isr

 Interrupt request flag: RFIF in RFSTSk. (The target of reading is RFISTS.)

 Interrupt enable: RFIE in RFCCk.

 r_can_glb_rxmb_isr

 Interrupt request flag: RMND.

 Interrupt enable: RMIEC.

 r_can_glb_error_isr

 Of the following, the bit that is the interrupt enable setting in the GCTRL.

 Interrupt request flag:

 DEF in GERFL.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 47 of 58

Apr.20.22

 Bit that sets the MSE in GERFL to 1. (RFMLT in RFSTSk, CFMLT in CFSTS)

 CMPOF in GERFL.

 Note: Because transmission history is not supported, THLES is not supported.

 Interrupt enable: DEIE, MEIE, CMPOFIE in GCTR

Reentrant

Non-reentrant.

Example

 This function is not called by the user.

Special Notes:

1. All that is done in the interrupt handler is to clear the flag.

2. To read the RX FIFO and RX Message Buffer, it is necessary to call the functions R_CAN_ReadRXFIFO

and R_CAN_ReadRXMBInHandler in the user callback.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 48 of 58

Apr.20.22

3.18 r_can_ch0_xxxx_isr

r_can_ch0_transmit_isr CAN0 channel transmit interrupt handler.

r_can_ch0_cfifo_rx_isr CAN0 common FIFO receive interrupt handler.

r_can_ch0_error_isr CAN0 channel error interrupt handler.

r_can_ch0_wakeup_isr CAN0 wakeup interrupt handler.

Format

 R_BSP_PRAGMA_STATIC_INTERRUPT(r_can_ch0_transmit_isr, CAN_INTRCAN0TRM_VECT);

 R_BSP_PRAGMA_STATIC_INTERRUPT(r_can_ch0_cfifo_rx_isr, CAN_INTRCAN0CFR_VECT);

 R_BSP_PRAGMA_STATIC_INTERRUPT(r_can_ch0_error_isr, CAN_INTRCAN0ERR_VECT);

 R_BSP_PRAGMA_STATIC_INTERRUPT(r_can_ch0_wakeup_isr, CAN_INTRCAN0WUP_VECT);

Parameters

 None.

Return Values

 None.

Properties

 The prototype is declared in "r_rscanfd_rl78.c".

Description

 Interrupt handler for CAN channel interrupts.

 Clears the interrupt request flag of the CAN module that causes the interrupt, and calls the user callback
function. At this time, those for which interrupt enable is not set in the configuration are excluded from
clearing. (INTRCAN0WUP is not have a target interrupt request flag, so there is no clearing.)

 The RL78/F2x CAN channel interrupt does not generate the next interrupt until the interrupt request is
cleared. Also, INTRCAN0TRM and INTRCAN0ERR are assigned OR values of multiple interrupt sources to
one interrupt source. Therefore, the INTRCAN0TRM and INTRCAN0ERR interrupt handlers repeatedly
clears until it can be confirmed that all interrupt sources have become 0.

 The interrupt request flag to be cleared and the interrupt enable (configuration value) to be referenced are
as follows.

 r_can_ch0_transmit_isr

 Interrupt request flag:

 TMTRF in TMSTS. (The target of reading is TMTCSTS, TMTASTS.)

 CFTXIF in CFSTS. (When TFIE = 1.)

 Note: Because transmission history is not supported, THLIF is not supported.

 Interrupt enable:

 TMIEC, TAIE in C0CTRH.

 CFTXIE in CFCC.

 r_can_ch0_cfifo_rx_isr

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 49 of 58

Apr.20.22

 Interrupt request flag: CFRFIF in CFSTS.

 Interrupt enable: Does not refer. (Because the target request flag is CFRFIF only.)

 r_can_ch0_error_isr

 Interrupt request flag: Lower 8 bits of C0ERFL, TDCVF in C0FDSTS

(Does not support EOCO and SOCO bits in C0FDSTS.)

 Interrupt enable: Upper 8 bits of C0CTRL, TDCVFIE in C0CTRH.

 r_can_ch0_wakeup_isr

 None.

Reentrant

Non-reentrant.

Example

 This function is not called by the user.

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 50 of 58

Apr.20.22

3.19 CAN_CFG_CALLBACK_XXXX

Callback from the interrupt handler. The user_callback function name is arbitrary.

Format

 #define CAN_CFG_CALLBACK_GLB_RXFIFO user_callback

 #define CAN_CFG_CALLBACK_GLB_RXMB user_callback

 #define CAN_CFG_CALLBACK_GLB_ERROR user_callback

 #define CAN_CFG_CALLBACK_CH0_TRANSMIT user_callback

 #define CAN_CFG_CALLBACK_CH0_CFIFO_RX user_callback

 #define CAN_CFG_CALLBACK_CH0_ERROR user_callback

 #define CAN_CFG_CALLBACK_CH0_WAKEUP user_callback

 void CAN_CFG_CALLBACK_XXXX(uint16_t arg);

Parameters

 arg

 Interrupt sources flag.

Return Values

 None.

Properties

 The prototype is declared in "r_rscanfd_rl78_config.h".

Description

 These are user callback functions called from the interrupt handler of CAN global interrupt and CAN channel
interrupt. Specify any function name in the configuration.

 The caller of each callback and the interrupt source flag passed are as follows.

 CAN_CFG_CALLBACK_GLB_RXFIFO

 Called from r_can_glb_rxfifo_isr.

 Argument - Bit0: Received with RX FIFO 0, Bit1: Received with RX FIFO 1, Bit2 to 15: Fixed to 0.

 CAN_CFG_CALLBACK_GLB_RXMB

 Called from r_can_glb_rxmb_isr.

 Argument - Bit0: Received with RX Buffer 0, Bit1: Received with RX Buffer 1, to

Bit15: Received with RX Buffer 15.

 CAN_CFG_CALLBACK_GLB_ERROR

 Called from r_can_glb_error_isr.

 Argument - Bit0: DLC error, Bit1: Message lost, Bit2: TX history overflow,

 Bit3: Payload overflow,

 Bit4 to 5, 8: Details of message lost,

 Bit4: Message lost with RX FIFO 0, Bit5: Message lost with RX FIFO 1,

 Bit8: Message lost with Common FIFO.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 51 of 58

Apr.20.22

 Others: Fixed to 0.

 CAN_CFG_CALLBACK_CH0_TRANSMIT

 Called from r_can_ch0_transmit_isr.

 Argument - Bit0 to 3: Transmission completed with TX Message Buffer 0 to 3,

 (Example: If bit0 = 1, transmission completed with TX Message Buffer 0)

 Bit4 to 7: Transmission abort completed with TX Message Buffer 0 to 3,

 (Example: If bit4 = 1, transmission abort completed with TX Message Buffer 0)

 Bit8: Transmission interrupt with Common FIFO,

 Bit12: TX history list interrupt,

 Bit9 to 11, Bit13 to 15: Fixed to 0.

 CAN_CFG_CALLBACK_CH0_CFIFO_RX

 Called from r_can_ch0_cfifo_rx_isr.

 Argument - Bit0: Received with Common FIFO, Bit1 to 15: Fixed to 0.

 CAN_CFG_CALLBACK_CH0_ERROR

 Called from r_can_ch0_error_isr.

 Argument - Bit0: Bus Error detected, Bit1: Error Warning detected, Bit2: Error Passive detected,

 Bit3: Bus-Off Entry detected, Bit4: Bus-Off Recovery detected, Bit5: Overload detected,

 Bit6: Bus Lock detected, Bit7: Arbitration Lost detected,

 Bit8: TDC violation detected, Bit9 to 15: Fixed to 0.

 CAN_CFG_CALLBACK_CH0_WAKEUP

 Called from r_can_ch0_wakeup_isr.

 Argument - Bit0: Wakeup, Bit1 to 15: Fixed to 0.

Reentrant

Non-reentrant.

Example

This function is not called by the user.

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 52 of 58

Apr.20.22

3.20 R_CAN_GetChStatus

Gets the status of channel 0.

Format

 uint16_t R_CAN_GetChStatus(void);

Parameters

 None.

Return Values

 Channel status (lower 9 bits).

 Bit8: The bit is 1 if the ESI bit was sampled recessive for a reception CAN message

 Bit7: The bit is 1 if communication is ready.

 Bit6: The bit is 1 in reception, and 0 in bus idle, transmission or bus off state.

 Bit5: The bit is 1 in transmission or bus off state, and 0 in bus idle or reception.

 Bit4: The bit is 1 if in bus off state.

 Bit3: The bit is 1 if in error passive state.

 Bit2: The bit is 1 if in channel sleep mode.

 Bit1: The bit is 1 if in channel halt mode.

 Bit0: The bit is 1 if in channel reset mode.

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the status of the channel and returns it.

Clears the bit8 of the status with register clearing after reading if bit8 is 1.

.

Reentrant

Non-reentrant.

Example

uint16_t sts;

sts = R_CAN_ReadChStatus();

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 53 of 58

Apr.20.22

3.21 R_CAN_GetChBusErrFlag

Gets the bus error flags of channel 0.

Format

 uint16_t R_CAN_GetChStatus(void);

Parameters

 None.

Return Values

 Channel bus error flags (lower 7 bits).

 Bit6: The bit is 1 if the acknowledge delimiter error detected.

 Bit5: The bit is 1 if the bit 0 error delimiter error detected.

 Bit4: The bit is 1 if the bit 1 error detected.

 Bit3: The bit is 1 if the CRC error detected.

 Bit2: The bit is 1 if the acknowledge error detected.

 Bit1: The bit is 1 if the form error detected.

 Bit0: The bit is 1 if the stuff error detected.

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the bus error flags of the channel and returns it.

Clears the bits of the bus error flags after reading if bits are 1.

.

Reentrant

Non-reentrant.

Example

 uint8_t errflag;

errflag = R_CAN_ReadChBusErrFlag();

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 54 of 58

Apr.20.22

3.22 R_CAN_GetTDCResult

Gets the Transceiver Delay Compensation (TDC) result of channel 0.

Format

 uint8_t R_CAN_GetTDCResult(void);

Parameters

 None.

Return Values

 Transceiver Delay Compensation result

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the Transceiver Delay Compensation result of the channel and returns it.

.

Reentrant

Non-reentrant.

Example

uint8_t result;

result = R_CAN_GetTDCResult();

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 55 of 58

Apr.20.22

3.23 R_CAN_GetTSCounter

Gets the timestamp counter value.

Format

 uint16_t R_CAN_GetTSCounter(void);

Parameters

 None.

Return Values

 Timestamp counter value

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the current value of the timestamp counter and returns it.

.

Reentrant

Non-reentrant.

Example

uint8_t value;

value = R_CAN_ GetTSCounter();

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 56 of 58

Apr.20.22

3.24 R_CAN_GetVersion

Gets the version of this module.

Format

 uint16_t R_CAN_GetVersion(void);

Parameters

 None.

Return Values

 Version number (upper 8bits: Major version, lower 8bits: Minor version)

Properties

 The prototype is declared in "r_rscanfd_rl78_if.h".

Description

 Reads the version of this module and returns it.

.

Reentrant

Non-reentrant.

Example

uint16_t result;

result = R_CAN_GetVersion();

Special Notes:

 None.

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 57 of 58

Apr.20.22

4. Appendix

4.1 Confirmed Operating Environment

The environment in which the operation of the module has been confirmed is shown below.

Table 4.1 Confirmed Operating Environment (Rev. 1.00)

Item Description

Integrated development

environment

Renesas Electronics CS+ for CC V8.07.00

IAR Systems IAR Embedded Workbench for Renesas RL78 4.21.3

C compiler Renesas Electronics C/C++ compiler for R78 Family V.1.11.0

IAR Systems IAR C/C++ Compiler for Renesas RL78 4.21.3.2447

Module revision Rev.1.00

Board used RL78/F24 Target Board

(Product type: RTK7F124FPC01000BJ)

RL78/F24 RS-CANFD lite Module Software Integration System

R01AN6334EJ0100 Rev.1.00 Page 58 of 58

Apr.20.22

Revision History

Rev. Date

Description

Page Summary

1.00 Apr.20.22 - 1st edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.3 Software Requirements
	2.4 Limitations
	2.5 Supported Toolchains
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 API Data Types
	2.10.1 Data Types
	2.10.2 Structure, Union
	2.10.2.1 u_can_data_t
	2.10.2.2 u_can_tx_head_t, u_can_rx_head_t
	2.10.2.3 st_can_tx_frame_t, st_can_rx_frame_t
	2.10.2.4 st_can_filter_t, st_can_filter_opt_t
	2.10.2.5 st_can_txhist_t

	2.10.3 Macro
	2.10.3.1 Parameter Macro
	2.10.3.2 Configuration Macro

	2.11 Return Values

	3. API Functions
	3.1 Summary
	3.2 R_CAN_Create
	3.3 R_CAN_SetConfig
	3.4 R_CAN_AddRxRule
	3.5 R_CAN_StartComm
	3.6 R_CAN_StopComm
	3.7 R_CAN_Sleep
	3.8 R_CAN_SendByTXMB
	3.9 R_CAN_AbortTXMB
	3.10 R_CAN_GetTXMBResult
	3.11 R_CAN_SendByCFIFO
	3.12 R_CAN_AbortCFIFO
	3.13 R_CAN_ReadTxHistory
	3.14 R_CAN_ReadRXMB
	3.15 R_CAN_ReadRXFIFO
	3.16 R_CAN_ReadCFIFO
	3.17 r_can_glb_xxxx_isr
	3.18 r_can_ch0_xxxx_isr
	3.19 CAN_CFG_CALLBACK_XXXX
	3.20 R_CAN_GetChStatus
	3.21 R_CAN_GetChBusErrFlag
	3.22 R_CAN_GetTDCResult
	3.23 R_CAN_GetTSCounter
	3.24 R_CAN_GetVersion

	4. Appendix
	4.1 Confirmed Operating Environment

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

