
 Application Note

R01AN6243EJ0101 Rev.1.01 Page 1 of 38

Nov.11.22

RA4W1 Group

Apple Media Service and Apple Notification Center Service Sample Application

Introduction

This document describes how to create a client role application of Apple Media Service (AMS) and provides
a sample application code. The sample application includes Apple Media Service (AMS) and Apple
Notification Center Service (ANCS) features. For details of ANCS features, please refer to RA4W1 Group
Apple Notification Center Service Sample Program (R01AN6071).

Target Device

• EK-RA4W1

Related Documents

• Bluetooth Core Specification (https://www.bluetooth.com)

• RA4W1 Group User's Manual: Hardware (R01UH0883)

• RA Flexible Software Package User's Manual (R11UM0155)

• Renesas e2 studio 2020-10 and V7.8 or higher Getting Started Guide (R20UT4891)

• Renesas Flash Programmer V3.08 Flash memory programming software User's Manual (R20UT4813)

• RA4W1 Group Bluetooth LE Profile API Document User's Manual (R11UM0154)

• Bluetooth Low Energy Profile Developer's Guide (R01AN5428)

• EK-RA4W1 Quick Start Guide (R20QS0015)

• RA4W1 Group BLE Sample Application (R01AN5402)

• QE for BLE[RA,RE] V1.2.0 Release Note (R20UT4951EJ)

• RA4W1 Group Apple Notification Center Service Sample Program (R01AN6071)

• Apple Notification Center Service (ANCS) Specification

(https://developer.apple.com/library/archive/documentation/CoreBluetooth/Reference/AppleNotification

CenterServiceSpecification/Introduction/Introduction.html#//apple_ref/doc/uid/TP40013460-CH2-SW1)

• Bundle IDs for native iOS and iPadOS apps in mobile device management

(https://support.apple.com/guide/deployment/bundle-ids-for-native-ios-and-ipados-apps-

depece748c41/web)

• Apple Media Service Reference

(https://developer.apple.com/library/archive/documentation/CoreBluetooth/Reference/AppleMediaServic

e_Reference/Specification/Specification.html)

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

https://www.bluetooth.com/
https://developer.apple.com/library/archive/documentation/CoreBluetooth/Reference/AppleNotificationCenterServiceSpecification/Introduction/Introduction.html#//apple_ref/doc/uid/TP40013460-CH2-SW1
https://developer.apple.com/library/archive/documentation/CoreBluetooth/Reference/AppleNotificationCenterServiceSpecification/Introduction/Introduction.html#//apple_ref/doc/uid/TP40013460-CH2-SW1
https://support.apple.com/guide/deployment/bundle-ids-for-native-ios-and-ipados-apps-depece748c41/web
https://support.apple.com/guide/deployment/bundle-ids-for-native-ios-and-ipados-apps-depece748c41/web
https://developer.apple.com/library/archive/documentation/CoreBluetooth/Reference/AppleMediaService_Reference/Specification/Specification.html
https://developer.apple.com/library/archive/documentation/CoreBluetooth/Reference/AppleMediaService_Reference/Specification/Specification.html

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 2 of 38

Nov.11.22

Contents

1. Overview ... 3

1.1 Operation Requirements ... 5

1.2 Import sample project .. 6

2. Operation of the sample application ... 7

2.1 Application Option ... 7

2.2 Operation Flow of sample application ... 7

2.2.1 Connection with iOS Device .. 7

2.2.2 Remote Command characteristic features .. 8

2.2.2.1 Receive supported remote command list from MS (iOS device) .. 8

2.2.2.2 Display supported remote command stored in MR (RA4W1) ... 9

2.2.2.3 Control media playback of MS (iOS device) by sending a remote command 9

2.2.3 Entity Update characteristic ... 10

2.3 Directory/File Structure .. 11

2.3.1 Entity Attribute characteristic ... 11

3. Program description ... 13

3.1 Services ... 13

3.2 API reference ... 14

3.2.1 AMS service APIs .. 14

3.2.2 Remote Command Characteristic APIs and event .. 16

3.2.3 Entity Update Characteristic .. 17

3.2.4 Entity Attribute Characteristic .. 19

3.3 Command reference .. 20

3.4 Implementation .. 22

3.4.1 Initialization .. 22

3.4.2 Enable Resolvable Private Address function .. 22

3.4.3 Start Advertising .. 22

3.4.4 Service Discovery .. 22

3.4.5 Pairing and enabling notification ... 23

3.4.6 Remote Command characteristic features .. 24

3.4.6.1 Receive supported remote command list from MS (iOS device) .. 24

3.4.6.2 Control media playback of MS (iOS device) by sending a remote command 25

3.4.7 Entity Update characteristic features... 27

3.4.7.1 Send entity update command to subscribe attribute(s) ... 27

3.4.7.2 Receive an attribute value from MS (iOS device) as GATT notification ... 29

3.4.8 Entity Attriute characteristic features ... 30

3.4.9 AMS Error handling ... 32

3.5 FreeRTOS program ... 33

3.6 Development using QE for BLE ... 33

Revision History .. 38

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 3 of 38

Nov.11.22

1. Overview

Apple Media Service (Hereafter referred to as AMS) is one of GATT based profile defined by Apple Inc.
Devices connected to iOS devices via Bluetooth Low Energy (Bluetooth LE) can use the AMS profile to,

⚫ Control the playback of media on the iOS device.

⚫ Obtain information about the media being played (song title, artist name, etc.)

For details of AMS, please refer to Apple Media Service Reference.

Figure 1. Operating environment

UART Bluetooth

iOS device

PC

EK-RA4W1

Send

ANCS / AMS cmd

iOS Notification
(ANCS)

Display Notification /
information

R / W characteristic

of AMS / ANCS

Media information
(AMS)

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 4 of 38

Nov.11.22

An overview of this sample application is shown in Figure 2. iOS device of AMS server is called Media
Source(MS), Bluetooth LE device of AMS client is called Media Remote(MR). To use MS from MR, it is
necessary to perform the following procedure. This sample application includes the procedures.

⚫ Pairing.

⚫ Change Client Characteristic Configuration Descriptor (CCCD) to enable notification for each
characteristic.

Figure 2. Operation flow for this application

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 5 of 38

Nov.11.22

1.1 Operation Requirements

Table 1 shows the hardware requirements for building and debugging this sample application.

Table 1. Hardware environment

Hardware Description

Host PC Windows® 10 PC with USB interface.

MCU Board The MCU used must support BLE functions.

EK-RA4W1 [RTK7EKA4W1S00000BJ]

On-chip debugging emulators The EK-RA4W1 has an on-board debugger (J-Link OB). Therefore it is not necessary to

prepare an emulator.

E2 lite emulator Needed if user wants to write device-specific data in the custom board by using Renesas

Flash Programmer.

USB cables Used to connect to the MCU board.

EK-RA4W1: 2 USB A-microB cable

Table 2 shows the software requirements for building and debugging BLE software.

Table 2. Software requirements

Software Version Description

GCC

environment

e² studio 2022-10 Integrated development environment (IDE) for Renesas

devices.

GCC ARM Embedded 10.3.1-2021.10 C/C++ Compiler. (download from e2 studio installer)

Renesas Flexible

Software Package

(FSP)

V4.1.0 Software package for making applications for the RA

microcontroller series.

QE for BLE[RA] V1.5.0 Generates the source codes (BLE base skeleton program)

as a base for the BLE Application and the BLE Profile.

QE utility [RA] V1.5.0

SEGGER J-Flash V7.80c Tool for programming the on-chip flash memory of

microcontrollers.

Header files All API calls and their supporting interface definitions are

located in r_ble_api.h and rm_ble_abs_api.h.

Integer types It uses ANSI C99 “Exact width integer types”. These types

are defined in stdint.h.

Endian Little endian

TeraTerm

(VT100 compatible console)

 UART Setting

Baud rate：115200bps

Data：8bit

Parity：None

Stop bits：None

Flow Control：None

Character encoding：UTF-8

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 6 of 38

Nov.11.22

1.2 Import sample project

This project is provided in the form of a zip file and can be imported into e2studio. For import procedures,
please refer to the [Renesas e2 studio 2020-10 and V7.8 or higher Getting Started Guide (R20UT4891)].
After importing sample projects, open FSP configurator, press “Generate Project Contents” button and re-
generate FSP module which uses the sample project. The zip file can be imported is as follows.

⚫ ble_baremetal_ek_ra4w1_ams_client

⚫ ble_freertos_ek_ra4w1_ams_client

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 7 of 38

Nov.11.22

2. Operation of the sample application

This chapter describes the operating procedure of this sample application.

2.1 Application Option

Please refer to RA4W1 Group Apple Notification Center Service Sample Program (R01AN6071).

2.2 Operation Flow of sample application

This section describes the procedure for connection with iOS device and AMS data communication after
running the sample application.

2.2.1 Connection with iOS Device

Please refer to RA4W1 Group Apple Notification Center Service Sample Program (R01AN6071). When you
run this sample application, it will be displayed with the name “REL_AMS” on iOS device Bluetooth Setting
screen.

Figure 3. Device name

When the connection with iOS device has established and data communication is possible, the following text
will be displayed in the console.

ANCS : Notification Enabled

receive BLE_AMSC_EVENT_RC_CLI_CNFG_WRITE_RSP

receive BLE_AMSC_EVENT_RC_HDL_VAL_NTF

Figure 4. Ready for ANCS and AMS communication

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 8 of 38

Nov.11.22

2.2.2 Remote Command characteristic features

2.2.2.1 Receive supported remote command list from MS (iOS device)

MS (iOS device) will send a supported remote command list from Remote Command characteristic as GATT
notification when the user launches or closes iOS application (e.g. Music App). Received the command list
will be shown in the console. Figure 5 shows an example of a command list from MS (iOS device) when the
user launches Music App.

Event: Received Notification from Remote Command characteristic

AMS: List of Currently Supported Commands

0x00 : Play

0x01 : Pause

0x02 : TogglePlayPause

0x03 : NextTrack

0x04 : PreviousTrack

0x05 : VolumeUp

0x06 : VolumeDown

0x07 : AdvanceRepeatMode

0x08 : IDAdvanceShuffleMyode

0x09 : SkipForward

0x0a : SkipBackward

0x0b : LikeTrack

0x0c : DislikeTrack

End Of List

Figure 5. Supported remote command list from MS(iOS device) when lunch the Music App

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 9 of 38

Nov.11.22

2.2.2.2 Display supported remote command stored in MR (RA4W1)

MR (RA4W1) will store a supported command list which received in section 2.2.2.1. User can display the
stored command list by using “amsc disp_rc” command as follows. Please refer to section 3.3 about usage of
“amsc disp_rc” command.

$amsc disp_rc

AMS: List of Currently Supported Commands

0x00 : Play

0x01 : Pause

0x02 : TogglePlayPause

0x03 : NextTrack

0x04 : PreviousTrack

0x05 : VolumeUp

0x06 : VolumeDown

0x07 : AdvanceRepeatMode

0x08 : IDAdvanceShuffleMyode

0x09 : SkipForward

0x0a : SkipBackward

0x0b : LikeTrack

0x0c : DislikeTrack

End Of List

Figure 6. Display the supported remote command list stored in MR (RA4W1)

2.2.2.3 Control media playback of MS (iOS device) by sending a remote command

The user can control media playback of MS(iOS device) such as play, pause, volume up / down by sending a
remote command to Remote Command characteristic of MS (iOS device). The remote command consists of
a RemoteCommandID which specified a media command to be executed. For details of
RemoteCommandID, please refer to Apple Media Service Reference. To send the remote command, use
“amsc send_rc” command from the console. When the user enters “amsc send_rc” command, the
RemoteCommandID to be sent will be displayed. Regardless of the remote command is successfully
executed or not, MS (iOS device) will not send a result. Please refer to section 3.3 about the usage of “amsc
send_rc” command,

$ amsc send_rc 0x20 0x01

Event: Sent Write to Remote Command characteristic

AMS: Following Command Sent

0x01: Pause

End Of List

Figure 7. send remote command

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 10 of 38

Nov.11.22

2.2.3 Entity Update characteristic

The user can receive media information such as a track title and artist name from MS (iOS device) by
subscribing to attribute(s). An attribute consists of EntityID and AttributeID. To subscribe to attribute(s), use
“amsc disp_eu” command and specify EntityID / AttributeID pair as argument of the command. Attributes that
have the same EntityID can subscribe simultaneously. The example shown in Figure 8 subscribes an artist
name (EntityID : 0x02 Track, AttributeID : Artist) and a track title (EntityID: 0x02 Track, AttributeID: Title).
After subscribing attribute(s), MS (iOS device) will send attribute(s) value as GATT notification when
attribute(s) has changed. Please refer to section 3.3 about usage of “amsc disp_eu” command.

$ amsc disp_eu 0x20 0x02 0x00 0x02

Event: Sent Write to Entity Update characteristic

AMS: Following Write Sent

Entity ID : 0x02 Track

Attribute ID : 0x00 Artist

Attribute ID : 0x02 Title

End Of List

$

$ receive BLE_AMSC_EVENT_EU_WRITE_RSP

receive BLE_AMSC_EVENT_EU_HDL_VAL_NTF

Entity ID : 0x02 Track

Attribute ID : 0x00 Artist

EntityUpdateFlag : 0x00 Not Truncated

Value : XXXXXXXX

receive BLE_AMSC_EVENT_EU_HDL_VAL_NTF

Entity ID : 0x02 Track

Attribute ID : 0x02 Title

EntityUpdateFlag : 0x00 Not Truncated

Value : XXXXXXXXXXXXXXX

Figure 8. Subscribing attributes

Enter “amsc disp_eu” command from the
console to subscribe attributes. then, the
pair of EntityID and AttributeID to be sent
will be displayed.

An attribute value sent from MS(iOS
device) will be displayed.

An attribute value sent from MS(iOS
device) will be displayed.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 11 of 38

Nov.11.22

2.3 Directory/File Structure

Table 3 shows the directory / file structure of this application.

Table 3. Directory / File structure

Directory/File structure Description

qe_gen\ ble\

app_main.c BLE application main code

gatt_db.c

gatt_db.h

GATT database code

r_ble_ANCSc.c

r_ble_ANCSc.h

ANCS profile code

r_ble_AMSc.c

r_ble_AMSc.h

AMS profile code

discovery\ Discovery operation library

profile_cmn\ Profile operation library

src\

hal_entry.c project main code

app_lib Library for using command line function.

ble_core_task_entry.c *1 Bluetooth LE task code for FreeRTOS project

ams_client.json QE for BLE json file for AMS client role

ancs_client.json QE for BLE json file for ANCS client role

*1 This file is included only in FreeRTOS project

2.3.1 Entity Attribute characteristic

The maximum length of attribute value from MS (iOS device) depends on MTU size. When length of attribute
value is longer than MTU size, the attribute value will be truncated. The user can request the full value of the
attribute value by using “amsc get_ea” command. The example shown in Figure 9 when the user subscribes
a track title (EntityID: 0x02 Track, AttributeID: 0x02 Title) by using “amsc disp_eu” command, receives
truncated value and requests the full value of the attribute by using “amsc get_ea” command. Please refer to
section 3.3 about the usage of “amsc get_ea” command.

$amsc disp_eu 0x20 0x02 0x02

Event: Sent Write to Entity Update characteristic

AMS: Following Write Sent

Entity ID : 0x02 Track

Attribute ID : 0x02 Title

End Of List

$ receive BLE_AMSC_EVENT_EU_WRITE_RSP

receive BLE_AMSC_EVENT_EU_HDL_VAL_NTF

Entity ID : 0x02 Track

Attribute ID : 0x02 Title

EntityUpdateFlag : 0x01 Truncated

Value : XX

$amsc get_ea 0x20 0x02 0x02

Enter “amsc disp_eu” command from the
console to subscribe an attribute. Then, the
pair of EntityID and AttributeID to be sent
will be displayed.

An attribute value sent from MS(iOS
device) will be displayed. This value is
truncated due to its length is too long.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 12 of 38

Nov.11.22

Event: Sent Write to Entity Attribute characteristic

AMS: Following Write Sent

Entity ID : 0x02 Track

Attribute ID : 0x02 Title

End Of List

$ receive BLE_AMSC_EVENT_EA_WRITE_RSP

receive BLE_AMSC_EVENT_EA_READ_RSP

Event: Data Read from Entity Attribute characteristic

AMS: Following Read Received

Value : XX

Figure 9. Request full value of a truncated attribute

Enter “amsc get_ea” command from the
console to request the attribute. then, the
pair of EntityID and AttributeID to be sent
will be displayed.

The full value of the attribute sent from
MS(iOS device) will be displayed.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 13 of 38

Nov.11.22

3. Program description

This chapter describes the program and implementation of this application.

3.1 Services

Table 4 shows UUIDs and attribute properties of AMS and ANCS included with this sample application.

Table 4. Service information of AMS and ANCS

Service UUID Properties

Apple Media Service 89D3502B-0F36-433A-8EF4-C502AD55F8DC ---

Apple Notification Center
Service

7905F431-B5CE-4E99-A40F-4B1E122D00D0 ---

Characteristic UUID Properties

Remote Command (AMS) 9B3C81D8-57B1-4A8A-B8DF-0E56F7CA51C2 writeable, notifiable

Entity Update (AMS) 2F7CABCE-808D-411F-9A0C-BB92BA96C102 writeable with
response, notifiable

Entity Attribute (AMS) C6B2F38C-23AB-46D8-A6AB-A3A870BBD5D7 readable, writeable

Notification Source (ANCS) 9FBF120D-6301-42D9-8C58-25E699A21DBD notifiable

Control Point (ANCS) 69D1D8F3-45E1-49A8-9821-9BBDFDAAD9D9 writeable

Data Source (ANCS) 22EAC6E9-24D6-4BB5-BE44-B36ACE7C7BFB notifiable

For more details of each service and characteristic of AMS and ANCS, please refer to Apple Media Service
Reference and Apple Notification Center Service (ANCS) Specification.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 14 of 38

Nov.11.22

3.2 API reference

3.2.1 AMS service APIs

This section describes the APIs, a list of errors, the data structure of AMS services.

Initialize function

Definition： ble_status_t R_BLE_AMSC_Init(ble_servc_app_cb_t cb)

Description： Initialize AMS and register a callback function.

AMS characteristic related events will be notified to the registered callback function.

Argument： cb Callback function to be registered

Service discovery call function

Definition： R_BLE_AMSC_ServDiscCb(uint16_t conn_hdl,

uint8_t serv_idx,

uint16_t type,

void *p_param)

Description： AMS callback function for service discovery procedure.

This function is used as one of argument of R_BLE_DISC_Start API.

Argument： conn_hdl Connection handle

serv_idx Service index

type Event type

p_param Pointer to event parameter

Get attribute handle function

Definition： R_BLE_AMSC_GetServAttrHdl(const st_ble_dev_addr_t *p_addr,
st_ble_gatt_hdl_range_t *p_hdl)

Description： Gets attribute handle of AMS.

Argument： p_addr Pointer to BD address of target device to get attribute handle

p_hdl Pointer to store attribute handle

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 15 of 38

Nov.11.22

When an error occurs in GATT communication, BLE_GATTC_EVENT_ERROR_RSP event is notified to the
GATT client callback function with the error code as event data. The error codes related to the AMS service
are shown in Table 5.

Table 5. AMS error code

Error code Description

BLE_AMSC_INVALID_STATE_ERROR

Value: 0xA0

MR is not set up AMS properly.

For example, writing to Entity Update or Entity
Attribute performed without subscribing to the
GATT notification of Entity Update characteristic.

BLE_AMSC_INVALID_COMMAND_ERROR

Value: 0xA1

The format of the written command is invalid.

BLE_AMSC_ABSENT_ATTRIBUTE_ERROR

Value: 0xA2

The corresponding Attribute is empty.

For example, this error happens when you play a
track that has no artist information and request
artist information in the Entity Attribute.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 16 of 38

Nov.11.22

3.2.2 Remote Command Characteristic APIs and event

This section describes APIs, a list of events, a data structure of the Remote Command characteristic.

Get attribute handle function

Definition： R_BLE_AMSC_GetRcAttrHdl(const st_ble_dev_addr_t *p_addr,
st_ble_AMSc_rc_attr_hdl_t *p_hdl)

Description： Gets attribute handle of Remote Command characteristic on MS (iOS device).

Argument： p_addr Pointer to BD address of target device to get attribute handle

p_hdl Pointer to store attribute handle

Read function for Client Characteristic Configuration Descriptor

Definition： R_BLE_AMSC_ReadRcCliCnfg(uint16_t conn_hdl)

Description： Send Read Request to CCCD of Remote Command characteristic on MS (iOS device).
BLE_AMSC_EVENT_RC_CLI_CNFG_READ_RS event will be notified when Read
Response is received from MS (iOS device).

Argument： conn_hdl Connection handle

Write function for Client Characteristic Configuration Descriptor

Definition： R_BLE_AMSC_WriteRcCliCnfg(uint16_t conn_hdl,
const uint16_t *p_value)

Description： Send Write Request to CCCD of Remote Command characteristic on MS (iOS device).
To receive Notification from Remote Command characteristic, it is necessary to write “1”
to the CCCD by using this API. BLE_AMSC_EVENT_RC_CLI_CNFG_WRITE_RSP
event will be notified when write response received from MS (iOS device) when write
response received.

Argument： conn_hdl Connection handle

p_value Pointer to data sending with Write Request

The following events occur when using the above APIs.

Table 6. Remote Command events

Event Description

BLE_AMSC_EVENT_RC_WRITE_RSP Receive Write Response of Remote Command
characteristic.

Data: None

BLE_AMSC_EVENT_RC_HDL_VAL_NTF Receive notification from Remote Command
characteristic.

Data: st_ble_seq_data_t

BLE_AMSC_EVENT_RC_CLI_CNFG_READ_RSP Receive Read Response of CCCD included in
Remote Command characteristic.

Data: uint16_t

The length of the supported command list from an MS (iOS device) is variable. Therefore, the data structure
of Remote Command has variable length as st_ble_seq_data_t type. It is necessary to decode in the
application.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 17 of 38

Nov.11.22

3.2.3 Entity Update Characteristic

This section describes APIs, a list of events, a data structure of the Entity Update characteristic.

Get attribute handle function

Definition: void R_BLE_AMSC_GetEuAttrHdl(const st_ble_dev_addr_t *p_addr,
st_ble_AMSc_eu_attr_hdl_t *p_hdl)

Description Get the attribute handle of Entity Update characteristic on MS (iOS device).

Argument: p_addr Pointer to BD address of target device to get attribute handle

p_hdl Pointer to store attribute handle

Read function of Client Characteristic Configuration Descriptor

Definition: ble_status_t R_BLE_AMSC_ReadEuCliCnfg(uint16_t conn_hdl)

Description Send Read Request to the CCCD of Entity Update characteristic on MS (iOS device).
BLE_AMSC_EVENT_EU_CLI_CNFG_READ_RSP event will be notified when Read
Response is received from MS (iOS device).

Argument: conn_hdl Connection handle

Write function of Client Characteristic Configuration Descriptor

Definition: ble_status_t R_BLE_AMSC_WriteEuCliCnfg(uint16_t conn_hdl,
const uint16_t *p_value)

Description Send Write Request to CCCD of Entity Update characteristic on MS (iOS device). To
receive Notification from Entity Update characteristic, it is necessary to write “1” to the
CCCD by using this API. BLE_AMSC_EVENT_EU_CLI_CNFG_WRITE_RSP event will
be notified when write response received.

Argument: conn_hdl Connection handle

p_value Pointer to data sending with Write Request

Write function

Definition: ble_status_t R_BLE_AMSC_WriteEu(uint16_t conn_hdl,
const st_ble_seq_data_t *p_value);

Description Send a Write Request to Entity Update characteristic on MS (iOS device).
BLE_AMSC_EVENT_EU_WRITE_RSP event will be notified when write response
received.

Argument: conn_hdl Connection handle

p_value Pointer to data sending with Write Request

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 18 of 38

Nov.11.22

The following events will be notified when entity update characteristic related APIs called.

Table 7. Entity Update Event

Event Description

BLE_AMSC_EVENT_EU_WRITE_RSP Receive Write Response of Entity Update
characteristic.

Data: None

BLE_AMSC_EVENT_EU_HDL_VAL_NTF Receive Notification of Entity Update
characteristic.

Data: st_ble_seq_data_t

BLE_AMSC_EVENT_EU_CLI_CNFG_READ_RSP Receive Read Response of CCCD included Entity
Update characteristic.

Data: uint16_t

BLE_AMSC_EVENT_EU_CLI_CNFG_WRITE_RSP Receive Write Response of CCCD included in
Entity Update characteristic.

Data: none

The argument of R_BLE_AMSC_WriteEu API has variable length and its type is st_ble_seq_data_t structure.
And BLE_AMSC_EVENT_EU_HDL_VAL_NTF event data also has variable length and the type is
st_ble_seq_data_t structure as well. Therefore, these kinds of variables should be decoded by the
application when used it.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 19 of 38

Nov.11.22

3.2.4 Entity Attribute Characteristic

This section describes APIs, a list of events, a data structure of Entity Attribute characteristic.

Get attribute handle function

Definition： R_BLE_AMSC_GetEaAttrHdl(const st_ble_dev_addr_t *p_addr,
st_ble_AMSc_ea_attr_hdl_t *p_hdl)

Description： Gets attribute handle of Entity Attribute characteristic on MS (iOS device).

Argument： p_addr Pointer to BD address of target device to get attribute handle

p_hdl Pointer to store attribute handle

Read function

Definition： ble_status_t R_BLE_AMSC_ReadEa(uint16_t conn_hdl)

Description： Send a Read Request to Entity Attribute characteristic on MS (iOS device).
BLE_AMSC_EVENT_EA_READ_RSP event will be notified when read response
received.

Argument： conn_hdl Connection handle

Write function

Definition： ble_status_t R_BLE_AMSC_WriteEa(uint16_t conn_hdl,
const st_ble_seq_data_t *p_value);

Description： Send a Write Request to Entity Attribute characteristic on MS (iOS device).
BLE_AMSC_EVENT_EA_WRITE_RSP event will be notified when write response
received.

Argument： conn_hdl Connection handle

p_value Pointer to data sending with Write Request

The following events will be notified when entity attribute characteristic related APIs called.

Table 8. Entity Attribute Event

Event Description

BLE_AMSC_EVENT_EA_READ_RESP Receive Read Response of Entity Attribute
characteristic.

Data: st_ble_seq_data_t

BLE_AMSC_EVENT_EA_WRITE_RESP Receive Write Response for Entity Attribute
characteristic.

Data: None

BLE_AMSC_EVENT_EA_READ_RESP event data has a variable length and the type is st_ble_seq_data_t.
Therefore, these kinds of variables should be decoded by the application when used it.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 20 of 38

Nov.11.22

3.3 Command reference

This section describes the command defined in this application. These commands can be used by typing
them into the console after connecting with iOS device.

disp_rc command

Format： amsc disp_rc

Description： Print to console the list of supported Remote Commands that MR (RA4W1) last
received from MS (iOS device).

Parameter： None

Example： $ amsc disp_rc

send_rc command

Format： amsc send_rc [conn_hdl] [RemoteCommandID]

Description： Write Remote Command to MS (iOS device). The MS will change a media playback
state according to received command.

Parameter： [conn_hdl] Specifies the connection handle of the MS (iOS device) to
which the Write Request will be sent.

[RemoteCommandID] Specify the RemoteCommandID that you want MS (iOS
device) to execute. For a list of RemoteCommandID, please
refer to Apple Media Service Reference.

Example： $ amsc send_rc 0x0020 0x01

Sends Pause = 0x01 as Remote Command to MS (iOS device). MS (iOS device) will
stop playing the media.

amsc disp_eu command

Format: amsc disp_eu [conn_hdl] [EntityID] {AttributeIDs}

Description: Send the Entity Update command to MS(iOS device) to subscribe attribute(s).

Parameter: [conn_hdl] Specifies the connection handle of the MS (iOS device) to be
sent the command.

[EntityID] Specifies the EntityID of attribute(s) to be subscribed.

[AttributeIDs] Specify AttributeID(s) to be subscribed. Attributes that have
the same Entity ID can subscribe simultaneously.

Example: $ amsc disp_eu 0x0020 0x02 0x00 0x02

Sends EntityIDTrack = 0x02, TrackAttributeIDArtist = 0x00 as Entity update command to
MS (iOS device). MS(iOS device) will notify Artist and Title attributes.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 21 of 38

Nov.11.22

amsc get_ea command

Format: amsc get_ea [conn_hd] [EntityID] {AttributeID}

Description: Send the Entity Attribute command to request the full value of the attribute.

Parameter [conn_hdl] Specifies the connection handle of the MS (iOS device) to be
sent the command.

[EntityID] Specifies the EntityID of the attribute to be requested.

[AttributeID] Specify the AttributeID of the attribute to be requested.

Example $ amsc get_ea 0x0020 0x02 0x02

Sends EntityIDTrack = 0x02, TrackAttributeIDArtist = 0x20 as Entity attribute command
to MS (iOS device). MS(iOS device) will notify full value of Artist and title attributes.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 22 of 38

Nov.11.22

3.4 Implementation

The sample application provides an example to connect with iOS device using RA4W1 and perform data
communication of AMS client role over Bluetooth LE communication. This section describes the behavior
and implementation of this sample application program. This sample application also includes the ANCS
part. For the ANCS part, please refer to RA4W1 Group Apple Notification Center Service Sample Program
(R01AN6071).

3.4.1 Initialization

Initialization of AMS is executed by R_BLE_AMSC_Init API. This API is called in ble_init() function defined in
app_main.c. The user does not need additional processing.

static ble_status_t ble_init(void)

{

 ble_status_t status;

………

 /* Initialize Apple Media Service client API */

 status = R_BLE_AMSC_Init(AMSc_cb);

 if (BLE_SUCCESS != status)

 {

 return BLE_ERR_INVALID_OPERATION;

 }

 return status;

}

Code 1. Initialization

3.4.2 Enable Resolvable Private Address function

Implementation is same as RA4W1 Group Apple Notification Center Service Sample Program (R01AN6071).
Please refer to it.

3.4.3 Start Advertising

Implementation is same as RA4W1 Group Apple Notification Center Service Sample Program (R01AN6071).
Please refer to it.

3.4.4 Service Discovery

Implementation is same as RA4W1 Group Apple Notification Center Service Sample Program (R01AN6071).
Please refer to it.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 23 of 38

Nov.11.22

3.4.5 Pairing and enabling notification

(1) Pairing

Please refer to the RA4W1 Group Apple Notification Center Service Sample Program(R01AN6071) for the
pairing method.

(2) Enabling notification

Enable notification for characteristics which have notification property in the following order.

static void ANCSc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{
 switch(type)
 {
………
 case BLE_ANCSC_EVENT_NS_CLI_CNFG_WRITE_RSP:
 {
 if (BLE_SUCCESS == result)
 {
 /* Enable Notification of Data Source */
 uint16_t cccd_value = BLE_GATTS_CLI_CNFG_NOTIFICATION;
 R_BLE_ANCSC_WriteDsCliCnfg(p_data->conn_hdl, &cccd_value);
 }
 } break;

 case BLE_ANCSC_EVENT_DS_CLI_CNFG_WRITE_RSP:
 {
 if (BLE_SUCCESS == result)
 {
 /* ANCS Notification is Enabled */
 R_BLE_CLI_Printf("ANCS : Notification Enabled \n");
 uint16_t cccd_value = BLE_GATTS_CLI_CNFG_NOTIFICATION;
 R_BLE_AMSC_WriteRcCliCnfg(p_data->conn_hdl, &cccd_value);
 }
 } break;
………
 }
}

static void AMSc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_AMSC_EVENT_RC_CLI_CNFG_WRITE_RSP:
 {
 R_BLE_CLI_Printf("receive BLE_AMSC_EVENT_RC_CLI_CNFG_WRITE_RSP\n");

 /* Enable Notification of Entity Update */
 uint16_t cccd_value = BLE_GATTS_CLI_CNFG_NOTIFICATION;
 R_BLE_AMSC_WriteEuCliCnfg(p_data->conn_hdl, &cccd_value);
 break;
 }
……
 case BLE_AMSC_EVENT_EU_CLI_CNFG_WRITE_RSP:
 {
 R_BLE_CLI_Printf("receive BLE_AMSC_EVENT_EU_CLI_CNFG_WRITE_RSP\n");
 break;
 }
……
 }
}

Code 2. Enable Notification

1. When writing to CCCD of Notification
Source(ANCS) is completed, start
writing to CCCD of Data
Source(ANCS).

2. When writing to CCCD of Data
Source(ANCS) is completed, start
writing to CCCD of Remote
Command(AMS).

3.

3. When writing to CCCD of Remote
Command(AMS) is completed, start
writing to CCCD of Entity Update(AMS).

4. Writing to CCCD of Entity Update(AMS) is
completed.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 24 of 38

Nov.11.22

3.4.6 Remote Command characteristic features

3.4.6.1 Receive supported remote command list from MS (iOS device)

When MR (RA4W1) receives a GATT notification containing a supported remote command list from Remote
Command characteristic in MS (iOS device). BLE_AMSC_EVENT_RC_HDL_VAL_NTF event will be notified
to AMSc_cb function. Following procedures will perform in the event handler.

1. Decode the supported command list from the GATT notification.

2. Store the supported command list.

3. Print received command list on the console.

static void AMSc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)

{

 switch(type)

 {

……

 case BLE_AMSC_EVENT_RC_HDL_VAL_NTF:

 {

 R_BLE_CLI_Printf("receive BLE_AMSC_EVENT_RC_HDL_VAL_NTF\n");

 R_BLE_CLI_Printf("\nEvent: Received Notification ………");

 st_ble_seq_data_t *rc_ntf_data = (st_ble_seq_data_t *)p_data->p_param;

 /* Clear supported command list in MR(RA4W1) */

 memset(gs_rc_supported_cmd_list, 0, sizeof(gs_rc_supported_cmd_list));

 /* Updates supported command list in MR(RA4W1) based on the received data */

 for(int i=0; i<rc_ntf_data->len; i++)

 {

 gs_rc_supported_cmd_list[rc_ntf_data->data[i]] = true;

 }

 /* Display the list in the console */

 AMSc_print_rc_supported_cmd_list();

 break;

 }

……

}

Code 3. Decode, store, and display supported command list

1. Decode the received notification as
[st_ble_seq_data_t](variable length
data).

2. Store the supported command list.

3. Print received command list on the
console .

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 25 of 38

Nov.11.22

3.4.6.2 Control media playback of MS (iOS device) by sending a remote command

To control the media playback of MS (iOS device), send a remote command to the Remote Command
characteristic of MS (iOS device) by using “amsc send_rc” command on the console. The command will call
R_BLE_AMSC_WriteRc API to send a Write Request to the Remote Command characteristic of MS (iOS
device).

BLE_AMSC_EVENT_RC_WRITE_RSP event will be notified to AMSc_cb function when the write request is
successfully accepted to MS (iOS device). The event handler does not implement since there is no specific
procedure.

static void cmd_amsc_send_rc(int argc, char *argv[])

{

 uint16_t conn_hdl;

 uint8_t rc_data = 0;

 const st_ble_seq_data_t seq_rc_data =

 {

 .len = AMS_CMD_SEND_RC_LEN,

 .data = &rc_data,

 };

………

 conn_hdl = (uint16_t)strtol(argv[1], &str_check, 0);

 if(*str_check != '\0')

 {

 R_BLE_CLI_Printf("amsc %s: wrong parameter\n", argv[0]);

 return;

 }

 rc_data = (uint8_t)strtol(argv[2], &str_check, 0);

 if(*str_check != '\0')

 {

 R_BLE_CLI_Printf("amsc %s: wrong parameter\n", argv[0]);

 return;

 }

 if(BLE_AMSC_RC_REMOTECOMMANDID_BOOKMARKTRACK < rc_data)

 {

 R_BLE_CLI_Printf("amsc %s: undefined remote command\n", argv[0]);

 return;

 }

………

 result = R_BLE_AMSC_WriteRc(conn_hdl, &seq_rc_data);

………

}

Convert command argument to number.

Convert command argument to number.

Send Write Request of Remote Command
characteristic.

Check argument.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 26 of 38

Nov.11.22

Code 4. Decode, store, and display supported command list

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 27 of 38

Nov.11.22

3.4.7 Entity Update characteristic features

3.4.7.1 Send entity update command to subscribe attribute(s)

To send entity update command to MS (iOS device), the user can use “amsc disp_eu” command on the
console. The command will call R_BLE_AMSC_WriteEu API to send a Write Request to Entity Update
characteristic of MS (iOS device). BLE_AMSC_EVENT_EU_WRITE_RSP event will be notified to AMSc_cb
function when the Write Request is successfully accepted to MS (iOS device). The event handler does not
implement since there is no specific procedure.

static void cmd_amsc_disp_eu(int argc, char *argv[])

{

………

 for(int i=0; i+2<argc; i++)

 {

 eu_data[i] = (uint8_t)strtol(argv[i+2], &str_check, 0);

 if(*str_check != '\0')

 {

 R_BLE_CLI_Printf("amsc %s: wrong parameter\n", argv[0]);

 return;

 }

 if((0 != i) && (ams_attributes_num[eu_data[0]] <= eu_data[i]))

 {

 R_BLE_CLI_Printf("amsc %s: undefined AttributeID\n", argv[0]);

 return;

 }

 }

 if(BLE_AMSC_EUEA_ENTITYID_TRACK < eu_data[0])

 {

 R_BLE_CLI_Printf("amsc %s: undefined EntityID\n", argv[0]);

 return;

 }

 if(ams_attributes_num[eu_data[0]] < argc-3)

 {

 R_BLE_CLI_Printf("amsc %s: too many attributes\n", argv[0]);

 return;

 }

 ………

<Continue next page>

Code 5. Send Write Request to Entity Update characteristic (1/2)

Check argument

Check argument

Check argument.

Convert argument as long value
and store it.

Check argument

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 28 of 38

Nov.11.22

<From previous page>

………

 for(int i = 1; i<seq_eu_data.len;i++)

 {

 R_BLE_CLI_Printf("Attribute ID : 0x%02x %s\n", eu_data[i], ………);

 }

 R_BLE_CLI_Printf("\nEnd Of List\n\n");

 result = R_BLE_AMSC_WriteEu(conn_hdl, &seq_eu_data);

 if(BLE_SUCCESS != result)

 {

 R_BLE_CLI_Printf("amsc %s: Write failed.\n Result: 0x%2X\n", argv[0], result);

 }

}

Code 6. Send Write Request to Entity Update characteristic (2/2)

Display the data to
be sent.

Send write request to MS.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 29 of 38

Nov.11.22

3.4.7.2 Receive an attribute value from MS (iOS device) as GATT notification

When a subscribed attribute has changed, MS (iOS device) will send the attribute value as GATT notification
from the Entity Update characteristic. BLE_AMCS_EVENT_EU_HDL_VAL_NTF event will be notified to
AMS_cb function when MR (RA4W1) has received the notification from MR (iOS device). Implementation of
the event handler is shown following.

static void AMSc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)

{

……

 case BLE_AMSC_EVENT_EU_HDL_VAL_NTF:

 {

 R_BLE_CLI_Printf("receive BLE_AMSC_EVENT_EU_HDL_VAL_NTF\n");

 st_ble_seq_data_t *eu_data = (st_ble_seq_data_t*) p_data->p_param;

 R_BLE_CLI_Printf("Entity ID : 0x%02x %s\n", eu_data->data[0],………);

 R_BLE_CLI_Printf("Attribute ID : 0x%02x %s\n", eu_data->data[1],………);

 R_BLE_CLI_Printf("EntityUpdateFlag : 0x%02x %s\n", eu_data->data[2],………);

 R_BLE_CLI_Printf("Value : ");

 for(int i=3; i<eu_data->len; i++)

 {

 R_BLE_CLI_Printf("%c", eu_data->data[i]);

 }

 R_BLE_CLI_Printf("\n\n");

 break;

 }

……

}

Code 7. Displaying received attribute from Entity Update characteristic

Print received attribute

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 30 of 38

Nov.11.22

3.4.8 Entity Attribute characteristic features

The maximum length of attribute value from MS (iOS device) depends on MTU size. When the length of the
attribute value is longer than MTU size, the attribute value will be truncated. In such a case, the user can get
the full value of the attribute by using “amsc get_ea” command. The command will call
R_BLE_AMSC_WriteEa API to send a Write Request to the Entity Attribute characteristic of MS (iOS
device). BLE_AMSC_EVENT_EA_WRITE_RSP event will be notified to AMSc_cb function when the write
request is successfully accepted to MS (iOS device). The write response event indicates that MS (iOS
device) is ready to reply the full value of the truncated attribute. In this sample application, MR (RA4W1) will
send a Read Request to MS (iOS device) in BLE_AMSC_EVENT_EA_WRITE_RSP event handler to get the
full value. Implementation of these procedures is shown following.

static void cmd_amsc_get_ea(int argc, char *argv[])

{

………

 if (argc != 4)

 {

 R_BLE_CLI_Printf("amsc %s: unrecognized operands\n", argv[0]);

 return;

 }

 conn_hdl = (uint16_t)strtol(argv[1], &str_check, 0);

 for(int i =0; i+2<argc; i++)

 {

 ea_data[i] = (uint8_t)strtol(argv[i+2], &str_check, 0);

 if(*str_check != '\0')

 {

 R_BLE_CLI_Printf("amsc %s: wrong parameter\n", argv[0]);

 return;

 }

 if((0 != i) && (ams_attributes_num[ea_data[0]] <= ea_data[i]))

 {

 R_BLE_CLI_Printf("amsc %s: undefined AttributeID\n", argv[0]);

 return;

 }

 }

 if(BLE_AMSC_EUEA_ENTITYID_TRACK < ea_data[0])

 {

 R_BLE_CLI_Printf("amsc %s: undefined EntityID\n", argv[0]);

 return;

 }

………

 result = R_BLE_AMSC_WriteEa(conn_hdl, &seq_ea_data);

}

Code 8. Send the Entity Attribute command

Check argument(s).

Check argument(s).

Check argument(s).

Check argument(s).

Convert argument string to long value.

Send write request to MS.

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 31 of 38

Nov.11.22

static void AMSc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)

{

…….

 case BLE_AMSC_EVENT_EA_WRITE_RSP :

 {

 R_BLE_CLI_Printf("receive BLE_AMSC_EVENT_EA_WRITE_RSP\n");

 if(BLE_SUCCESS == result)

 {

 /*Read Entity Attribute*/

 R_BLE_AMSC_ReadEa(p_data->conn_hdl);

 }

 break;

 }

 case BLE_AMSC_EVENT_EA_READ_RSP :

 {

 R_BLE_CLI_Printf("receive BLE_AMSC_EVENT_EA_READ_RSP\n");

 if(BLE_SUCCESS == result)

 {

 /*Display Entity Attribute*/

 st_ble_seq_data_t *ea_read_data = (st_ble_seq_data_t *)p_data->p_param;

 R_BLE_CLI_Printf("\nEvent: Data Read from Entity Attribute characteristic
\n\n");

 R_BLE_CLI_Printf("AMS: Following Read Received \n\n");

 R_BLE_CLI_Printf("Value: \"");

 for(int i =0;i<ea_read_data->len; i++)

 {

 R_BLE_CLI_Printf("%c",ea_read_data->data[i]);

 }

 R_BLE_CLI_Printf("\"\n\nEnd Of List\n");

 }

 break;

 }

……

}

Code 9. Entity Attribute event handing

Send read request to MS.

Display received attribute value

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 32 of 38

Nov.11.22

3.4.9 AMS Error handling

BLE_GATTC_EVENT_ERROR_RSP event will be notified to gattc_cb when a GATT communication error
has happened. This sample application prints which characteristic notifies the error response and its error
code. Please refer to Apple Media Service Reference for detail of the error code.

void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)

{

 case BLE_GATTC_EVENT_ERROR_RSP:

 {

………

 /* Error response for Remote Command */

 st_ble_AMSc_rc_attr_hdl_t rc_hdl;

 R_BLE_AMSC_GetRcAttrHdl(&g_conn_bd_addr, &rc_hdl);

 if(err_rsp_data->attr_hdl == rc_hdl.range.start_hdl+1)

 {

 R_BLE_CLI_Printf("AMS : %s Error in RC 0x%04X \n",

ams_error_code_name[err_rsp_data->rsp_code & 0x0FU],

err_rsp_data->rsp_code);

 }

 /* Error response for Entity Update */

 st_ble_AMSc_eu_attr_hdl_t eu_hdl;

 R_BLE_AMSC_GetEuAttrHdl(&g_conn_bd_addr, &eu_hdl);

 if(err_rsp_data->attr_hdl == eu_hdl.range.start_hdl+1)

 {

 R_BLE_CLI_Printf("AMS : %s Error in EU 0x%04X \n",

ams_error_code_name[err_rsp_data->rsp_code & 0x0FU],

err_rsp_data->rsp_code);

 }

 /* Error response for Entity Attribute */

 st_ble_AMSc_ea_attr_hdl_t ea_hdl;

 R_BLE_AMSC_GetEaAttrHdl(&g_conn_bd_addr, &ea_hdl);

 if(err_rsp_data->attr_hdl == ea_hdl.range.start_hdl+1)

 {

 R_BLE_CLI_Printf("AMS : %s Error in EA 0x%04X \n",

ams_error_code_name[err_rsp_data->rsp_code & 0x0FU],

err_rsp_data->rsp_code);

 }

 } break;

/* End user code. Do not edit comment generated here */

 }

}

Code 10. Error handing

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 33 of 38

Nov.11.22

3.5 FreeRTOS program

Implementation is same as RA4W1 Group Apple Notification Center Service Sample Program (R01AN6071).
Please refer to it.

3.6 Development using QE for BLE

The project of this application is developed based on programs generated using QE for BLE's custom
service generation feature. When adding other services to the project, QE for BLE makes development
easier. For instructions about usage of QE for BLE, please refer [Bluetooth Low Energy Profile Developer's
Guide (R01AN5428)]. To create AMS client role, user can import ./src/ams_client.json using import function
of QE for BLE. This sample application also attached ./src/ancs_client.json for your convenience. To import
these json file to your own project, it is necessary to click import and select json files in QE for BLE.

Figure 10. QE for BLE import button

Figure 11. QE for BLE after import json file

Click “import” and select json file

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 34 of 38

Nov.11.22

After code generation, please add following enumeration declaration to r_ble_ANCSc.h and r_ble_AMSc.h.
For more information about data format or value, please refer to Apple Notification Center Service (ANCS)
Specification and Apple Media Service Reference.

/***//**

* @brief Control Point/Data Source Command ID enumeration.

***/

typedef enum {

BLE_ANCSC_CPDS_COMMANDID_GETNOTIFICATIONATTRIBUTE = 0, /**< Get notification attribute Command */

BLE_ANCSC_CPDS_COMMANDID_GETAPPATTRIBUTE = 1, /**< Get app attribute Command */

BLE_ANCSC_CPDS_COMMANDID_PERFORMNOTIFICATIONACTION = 2, /**< Perform notification action Command */

} e_ble_ancsc_cpds_commandid_t;

/***//**

* @brief Control Point/Data Source Notification Attribute ID enumeration.

***/

typedef enum {

BLE_ANCSC_CPDS_NOTIFICATIONATTRIBUTEID_APPIDENTIFIER = 0, /**< Notification Attribute ID: App Identifier */

BLE_ANCSC_CPDS_NOTIFICATIONATTRIBUTEID_TITLE = 1, /**< Notification Attribute ID: Title */

BLE_ANCSC_CPDS_NOTIFICATIONATTRIBUTEID_SUBTITLE = 2, /**< Notification Attribute ID: Sub title */

BLE_ANCSC_CPDS_NOTIFICATIONATTRIBUTEID_MESSAGE = 3, /**< Notification Attribute ID: Message */

BLE_ANCSC_CPDS_NOTIFICATIONATTRIBUTEID_MESSAGESIZE = 4, /**< Notification Attribute ID: Message size */

BLE_ANCSC_CPDS_NOTIFICATIONATTRIBUTEID_DATE = 5, /**< Notification Attribute ID: Date */

BLE_ANCSC_CPDS_NOTIFICATIONATTRIBUTEID_POSITIVEACTIONLABEL = 6, /**< Notification Attribute ID: Positive action label */

BLE_ANCSC_CPDS_NOTIFICATIONATTRIBUTEID_NEGATIVEACTIONLABEL = 7, /**< Notification Attribute ID: Negative action label
*/

} e_ble_ancsc_cpds_notificationattributeid_t;

/***//**

* @brief Control Point/Data Source App Attribute ID enumeration.

***/

typedef enum {

BLE_ANCSC_CPDS_APPATTRIBUTEID_DISPLAYNAME = 0, /**< App Attribute ID: Display name */

} e_ble_ancsc_cpds_appattributeid_t;

/***//**

* @brief Control Point/Data Source Action ID enumeration.

***/

typedef enum {

BLE_ANCSC_CPDS_ACTIONID_POSITIVE = 0, /**< Positive action */

BLE_ANCSC_CPDS_ACTIONID_NEGATIVE = 1, /**< Negative action */

} e_ble_ancsc_cpds_actionid_t;

Code 11. r_ble_ANCSc.h

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 35 of 38

Nov.11.22

/***//**

 * @brief Remote Command ID enumeration.

***/

typedef enum {

 BLE_AMSC_RC_REMOTECOMMANDID_PLAY = 0, /**< RemoteCommand ID: Play */

 BLE_AMSC_RC_REMOTECOMMANDID_PAUSE = 1, /**< RemoteCommand ID: Pause */

 BLE_AMSC_RC_REMOTECOMMANDID_TOGGLEPLAYPAUSE = 2, /**< RemoteCommand ID: Toggle Play Pause */

 BLE_AMSC_RC_REMOTECOMMANDID_NEXTTRACK = 3, /**< RemoteCommand ID: Next Track */

 BLE_AMSC_RC_REMOTECOMMANDID_PREVIOUSTRACK = 4, /**< RemoteCommand ID: Previous Track */

 BLE_AMSC_RC_REMOTECOMMANDID_VOLUMEUP = 5, /**< RemoteCommand ID: Volume Up */

 BLE_AMSC_RC_REMOTECOMMANDID_VOLUMEDOWN = 6, /**< RemoteCommand ID: Volume Down */

 BLE_AMSC_RC_REMOTECOMMANDID_ADVANCEREPEATMODE = 7, /**< RemoteCommand ID: Advance Repeat Mode */

 BLE_AMSC_RC_REMOTECOMMANDID_ADVANCESHUFFLEMODE = 8, /**< RemoteCommand ID: Advance Shuffle Mode */

 BLE_AMSC_RC_REMOTECOMMANDID_SKIPFORWARD = 9, /**< RemoteCommand ID: Skip Forward */

 BLE_AMSC_RC_REMOTECOMMANDID_SKIPBACKWARD = 10, /**< RemoteCommand ID: Skip Backward */

 BLE_AMSC_RC_REMOTECOMMANDID_LIKETRACK = 11, /**< RemoteCommand ID: Like Track */

 BLE_AMSC_RC_REMOTECOMMANDID_DISLIKETRACK = 12, /**< RemoteCommand ID: Dislike Track */

 BLE_AMSC_RC_REMOTECOMMANDID_BOOKMARKTRACK = 13, /**< RemoteCommand ID: Bookmark Track */

} e_ble_AMSc_rc_remotecommandid_t;

/***//**

 * @brief Entity Update/Entity Attribute Entity ID enumeration.

***/

typedef enum {

 BLE_AMSC_EUEA_ENTITYID_PLAYER = 0,

 BLE_AMSC_EUEA_ENTITYID_QUEUE = 1,

 BLE_AMSC_EUEA_ENTITYID_TRACK = 2,

} e_ble_amsc_euea_entityid_t;

<Continue to next page>

Code 12. r_ble_AMSc.h (1/3)

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 36 of 38

Nov.11.22

<From previous page>

/***//**

 * @brief Entity Update/Entity Attribute Player Attribute ID enumeration.

***/

typedef enum {

 BLE_AMSC_EUEA_PLAYERATTRIBUTEID_NAME = 0,

 BLE_AMSC_EUEA_PLAYERATTRIBUTEID_PLAYBACKINFO = 1,

 BLE_AMSC_EUEA_PLAYERATTRIBUTEID_VOLUME = 2,

} e_ble_AMSc_euea_playerattributeid_t;

/***//**

 * @brief Entity Update/Entity Attribute Queue Attribute ID enumeration.

***/

typedef enum {

 BLE_AMSC_EUEA_QUEUEATTRIBUTEID_INDEX = 0,

 BLE_AMSC_EUEA_QUEUEATTRIBUTEID_COUNT = 1,

 BLE_AMSC_EUEA_QUEUEATTRIBUTEID_SHUFFLEMODE = 2,

 BLE_AMSC_EUEA_QUEUEATTRIBUTEID_REPEATMODE = 3,

} e_ble_AMSc_euea_queueattributeid_t;

/***//**

 * @brief Entity Update/Entity Attribute Track Attribute ID enumeration.

***/

typedef enum {

 BLE_AMSC_EUEA_TRACKATTRIBUTEID_AIRTIST = 0,

 BLE_AMSC_EUEA_TRACKATTRIBUTEID_ALBUM = 1,

 BLE_AMSC_EUEA_TRACKATTRIBUTEID_TITLE = 2,

 BLE_AMSC_EUEA_TRACKATTRIBUTEID_DURATION = 3,

} e_ble_AMSc_euea_trackattributeid_t;

Code 13. r_ble_AMSc.h (2/3)

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 37 of 38

Nov.11.22

<From previous page>

/***//**

 * @brief Entity Update/Entity Attribute Shuffle Mode enumeration.

***/

typedef enum {

 BLE_AMSC_EUEA_SHUFFLEMODE_OFF = 0,

 BLE_AMSC_EUEA_SHUFFLEMODE_ONE = 1,

 BLE_AMSC_EUEA_SHUFFLEMODE_ALL = 2,

} e_ble_AMSc_euea_shufflemode_t;

/***//**

 * @brief Entity Update/Entity Attribute Repeat Mode enumeration.

***/

typedef enum {

 BLE_AMSC_EUEA_REPEATMODE_OFF = 0,

 BLE_AMSC_EUEA_REPEATMODE_ONE = 1,

 BLE_AMSC_EUEA_REPEATMODE_ALL = 2,

} e_ble_AMSc_euea_repeatmode_t;

/***//**

 * @brief Entity Update Flag enumeration.

***/

typedef enum {

 BLE_AMSC_EU_ENTITYUPDATEFLAG_TRUNCATED = 0,

} e_ble_AMSc_eu_entityupdateflag_t;

Code 14. r_ble_AMSc.h (3/3)

RA4W1 Group Apple Media Service and Apple Notification Center Service Sample Application

R01AN6243EJ0101 Rev.1.01 Page 38 of 38

Nov.11.22

Revision History

Rev. Date

Description

Page Summary

1.00 Dec.20.21 - First edition issued.

1.01 Nov.11.22 5 Updated for FSP v4.1.0

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for

each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for

Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) "Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

