

R8C/25 Group Timer RD in Output Compare Function

R01AN1283EJ0110 Rev. 1.10 June 1, 2012

1. Abstract

This document describes how to set up and use timer RD in the output compare function in the R8C/25 Group.

2. Introduction

The application example described in this document is applied to the following MCU and parameter(s):

• MCU: R8C/25 Group

This program can be used with other R8C/Tiny Series which have the same special function registers (SFRs) as the R8C/25 Group. Check the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.

Note on oscillation stabilization wait time

In chapter 4.2.1, select the high-speed on-chip oscillator after starting the high-speed on-chip oscillator and waiting until oscillation stabilizes.

3. Application Description

3.1 Timer RD

Timer RD has two 16-bit timers (channels 0 and 1). Each channel has four I/O pins. The operation clock of timer RD is f1 or fOCO40M. Table 3.1 lists the Timer RD Operation Clocks.

Table 3.1 Timer RD Operation Clocks

Conditions	Operation Clock of Timer RD
The count source is f1, f2, f4, f8, f32, or TRDCLK input (bits TCK2 to TCK0 in registers TRDCR0 and TRDCR1 are set to a value from 000b to 101b).	f1
The count source is fOCO40M (bits TCK2 to TCK0 in registers TRDCR0 and TRDCR1 are set to 110b).	fOCO40M

Figure 3.1 shows a Block Diagram of Timer RD. Timer RD has five modes:

• Timer mode

- Input capture function	Transfer the counter value to a register with an external signal as the
	trigger
- Output compare function	Detect register value matches with a counter
	(Pin output can be changed at detection)

The following four modes use the output compare function:

• PWM mode	Output pulse of any width continuously
• Reset synchronous PWM mode and dead time	Output three-phase waveforms (six) without sawtooth wave modulation
Complementary PWM mode dead time	Output three-phase waveforms (six) with triangular wave modulation and
• PWM3 mode	Output PWM waveform (two) with a fixed period

In the input capture function, output compare function, and PWM mode, channels 0 and 1 have the equivalent functions, and functions or modes can be selected individually for each pin. Also, a combination of these functions and modes can be used in one channel.

In reset synchronous PWM mode, complementary PWM mode, and PWM3 mode, a waveform is output with a combination of counters and registers in channels 0 and 1.

Tables 3.2 to 3.10 list the Pin Functions of timer RD.

Register	TRDOER1	TRDFCR			TRDIORA0		Function
Bit	EA0	PWM3	STCLK	CMD1, CMD0	IOA3	IOA2_IOA0	
	0	0	0	00b	Х	XXXb	PWM3 mode waveform output
	0	1	0	00b	1	001b, 01Xb	Timer mode waveform output (output compare function)
Setting value	х	1	0	00b	Х	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
	^	1	1	XXb	Х	000b	External clock input (TRDCLK) ⁽¹⁾
			Othe	than above		I/O port	

Table 3.2 Pin Functions TRDIOA0/TRDCLK(P2_0)

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_0 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function) and external clock input (TRDCLK).

Register	TRDOER1	TRDFCR		TRDPMR	TRDIORA0	Function
Bit	EB0	PWM3	CMD1, CMD0	PWMB0	IOB2_IOB0	Fullcuoli
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
	0	0	00b	Х	XXXb	PWM3 mode waveform output
Setting value	0	1	00b	1	XXXb	PWM mode waveform output
Value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	Х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than ab	ove	I/O port	

Table 3.3 Pin Functions TRDIOB0(P2_1)

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_1 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Table 3.4 Pin Functions TRDIOC0(P2_2)

Register	TRDOER1	TF	RDFCR	TRDPMR	TRDIORC0	Function
Bit	EC0	PWM3	CMD1, CMD0	PWMC0	IOC2_IOC0	Function
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_2 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Register	TRDOER1	TF	RDFCR	TRDPMR	TRDIORC0	Function
Bit	ED0	PWM3	CMD1, CMD0	PWMD0	IOD2_IOD0	Function
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

Table 3.5Pin Functions TRDIOD0(P2_3)

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_3 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Register	TRDOER1	TRDFCR		TRDIORA1	Function
Bit	EA1	PWM3	CMD1, CMD0	IOA2_IOA0	Function
	0	Х	1Xb	XXXb	Complementary PWM mode waveform output
	0	х	01b	XXXb	Reset synchronous PWM mode waveform output
Setting value	0	1	00b	001b, 01Xb	Timer mode waveform output (output compare function)
Value	Х	X 1 00b		1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
		Oth	er than above		I/O port

Table 3.6 Pin Functions TRDIOA1(P2_4)

X: can be 0 or 1, no change in outcome NOTE:

1. Set the PD2_4 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Table 3.7 Pin Functions TRDIOB1(P2_5)

Register	TRDOER1	TRDFCR		TRDPMR	TRDIORA1	Function
Bit	EB1	PWM3	CMD1, CMD0	PWMB1	IOB2_IOB0	T unction
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	Х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	Х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_5 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Register	TRDOER1	TF	RDFCR	TRDPMR TRDIORC1		Function
Bit	EC1	PWM3	CMD1, CMD0	PWMC1	IOC2_IOC0	Function
	0	х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

Table 3.8Pin Functions TRDIOC1(P2_6)

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_6 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Table 3.9 Pin Functions TRDIOD1(P2_7)

Register	TRDOER1	TF	RDFCR	TRDPMR	TRDIORC1	Function
Bit	ED1	PWM3	CMD1, CMD0	PWMD1	IOD2_IOD0	Function
	0	Х	1Xb	Х	XXXb	Complementary PWM mode waveform output
	0	х	01b	Х	XXXb	Reset synchronous PWM mode waveform output
Setting	0	1	00b	1	XXXb	PWM mode waveform output
value	0	1	00b	0	001b, 01Xb	Timer mode waveform output (output compare function)
	Х	1	00b	0	1XXb	Timer mode trigger input (input capture function) ⁽¹⁾
			Other than a	bove		I/O port

X: can be 0 or 1, no change in outcome

NOTE:

1. Set the PD2_7 bit in the PD2 register to 0 (input mode) at timer mode trigger input (input capture function).

Table 3.10 Pin Functions INT0(P4_5)

Register	TRDOER2	INTEN		PD4	Function
Bit	PTO	INT0PL	INT0EN	PD4_5	Fulction
Setting	1	0 1		0	Pulse output forced cutoff signal input
value		Other that	an above		I/O port or INTO interrupt input

X: can be 0 or 1, no change in outcome

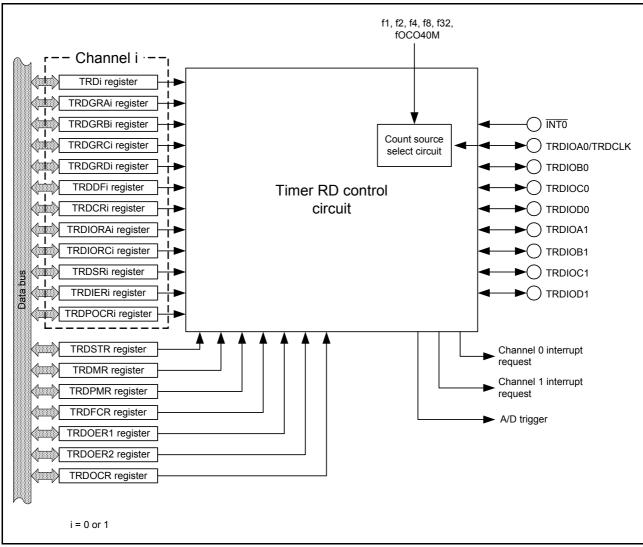


Figure 3.1 Block Diagram of Timer RD

3.2 Count Sources

The count source selection method is the same in all modes. However, in PWM3 mode, the external clock cannot be selected.

Table 3.11 Cou	nt Source Selection
----------------	---------------------

Count Source	Selection
f1, f2, f4, f8, f32	The count source is selected by bits TCK2 to TCK0 in the TRDCRi register.
fOCO40M ⁽¹⁾	The FRA00 bit in the FRA0 register is set to 1 (high-speed on-chip oscillator
	frequency).
	Bits TCK2 to TCK0 in the TRDCRi register are set to 110b (fOCO40M).
External signal input to	The STCLK bit in the TRDFCR register is set to 1 (external clock input enabled).
TRDCLK pin	Bits TCK2 to TCK0 in the TRDCRi register are set to 101b
	(count source: external clock).
	The valid edge is selected by bits CKEG1 to CKEG0 in the TRDCRi register.
	The PD2_0 bit in the PD2 register is set to 0 (input mode).
0 1	

i = 0 or 1 NOTE:

1. The count source fOCO40M can be used with VCC = 3.0 to 5.5 V.

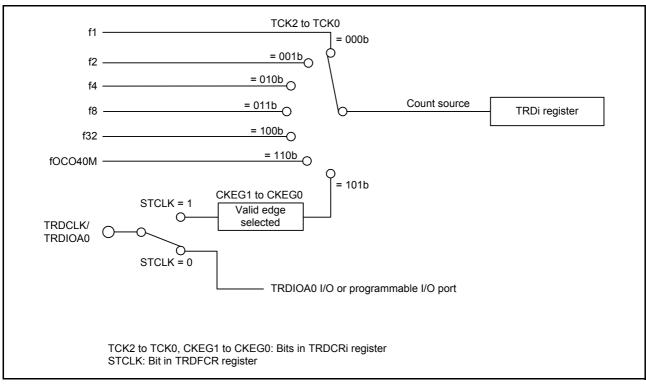


Figure 3.2 Block Diagram of Count Source

Set the pulse width of the external clock which inputs to the TRDCLK pin to three or more cycles of the operation clock of timer RD (refer to **Table 3.1 Timer RD Operation Clocks**). When selecting fOCO40M for the count source, set the FRA00 bit in the FRA0 register to 1 (high-speed on-chip oscillator on) before setting bits TCK2 to TCK0 in the TRDCRi register (i = 0 or 1) to 110b (fOCO40M).

R8C/25 Group

3.3 Buffer Operation

The TRDGRCi (i = 0 to 1) register can be used as the buffer register of the TRDGRAi register, and the TRDGRDi register can be used as the buffer register of the TRDGRBi register by means of bits BFCi (i = 0 to1) and BFDi in the TRDMR register.

• TRDGRAi buffer register: TRDGRCi register

• TRDGRBi buffer register: TRDGRDi register

Buffer operation depends on the mode. Table 3.12 lists the Buffer Operation in Each Mode.

Table 3.12	Buffer Operation in Each Mode	

Function and Mode	Transfer Timing	Transfer Register
Input capture function	Input capture signal input	Transfer content in TRDGRAi (TRDGRBi)
		register to buffer register
Output compare function	Compare match with TRDi register	Transfer content in buffer register to
PWM mode	and TRDGRAi (TRDGRBi) register	TRDGRAi (TRDGRBi) register
Reset synchronous PWM	Compare match withTRD0 register	Transfer content in buffer register to
mode	and TRDGRA0 register	TRDGRAi (TRDGRBi) register
Complementary PWM	Compare match with TRD0 register	Transfer content in buffer register to
mode	and TRDGRA0 register	registers TRDGRB0, TRDGRA1, and
	TRD1 register underflow	TRDGRB1
PWM3 mode	Compare match with TRD0 register	Transfer content in buffer register to
	and TRDGRA0 register	registers TRDGRA0, TRDGRB0,
		TRDGRA1, and TRDGRB1

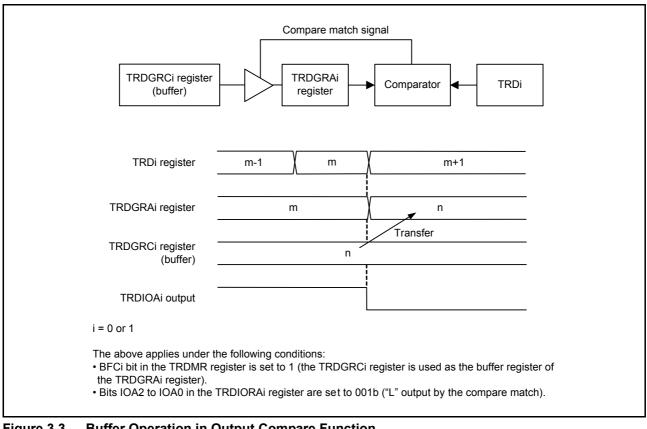


Figure 3.3 **Buffer Operation in Output Compare Function**

Perform the following for the timer mode (input capture and output compare functions).

- When using the TRDGRCi (i = 0 or 1) register as the buffer register of the TRDGRAi register:
 - Set the IOC3 bit in the TRDIORCi register to 1 (general register or buffer register).
 - Set the IOC2 bit in the TRDIORCi register to the same value as the IOA2 bit in the TRDIORAi register.

When using the TRDGRDi register as the buffer register of the TRDGRBi register:

- Set the IOD3 bit in the TRDIORDi register to 1 (general register or buffer register).
- Set the IOD2 bit in the TRDIORCi register to the same value as the IOB2 bit in the TRDIORAi register.

When also using registers TRDGRCi and TRDGRDi as buffer registers for the output compare function, reset synchronous PWM mode, complementary PWM mode, and PWM3 mode, bits IMFC and IMFD in the TRDSRi register are set to 1 by a compare match with the TRDi register.

3.4 Synchronous Operation

The TRD1 register is synchronized with the TRD0 register.

• Synchronous preset

When the SYNC bit in the TRDMR register is set to 1 (synchronous operation), the data is written to both the TRD0 and TRD1 registers after writing to the TRDi register.

Synchronous clear

When the SYNC bit in the TRDMR register is set to 1 and bits CCLR2 to CCLR0 in the TRDCRi register are set to 011b (synchronous clear), the TRD0 register is set to 0000h at the same time the TRD1 register is set to 0000h.

Also, when the SYNC bit in the TRDMR register is set to 1 and bits CCLR2 to CCLR0 in the TRDCRi register are set to 011b (synchronous clear), the TRD1 register is set to 0000h at the same time the TRD0 register is set to 0000h.

3.5 Pulse Output Forced Cutoff

In the output compare function, PWM mode, reset synchronous PWM mode, complementary PWM mode, and PWM3 mode, the TRDIOji (i = 0 or 1, j = either A, B, C, or D) output pin can be forcibly set to a programmable I/O port by the $\overline{INT0}$ pin input, and pulse output can be cut off.

The pins used for output in these functions or modes can function as the output pin of timer RD when the applicable bit in the TRDOER1 register is set to 0 (enable timer RD output). When the PTO bit in the TRDOER2 register is set to 1 ($\overline{INT0}$ of pulse output forced cutoff signal input enabled), all bits in the TRDOER1 register are set to 1 (disable timer RD output, the TRDIOji output pin is used as the programmable I/O port) after "L" is applied to the $\overline{INT0}$ pin. The TRDIOji output pin is set to the programmable I/O port after "L" is applied to the $\overline{INT0}$ pin and waiting for one to two cycles of the timer RD operation clock (refer to **Table 3.1 Timer RD Operation Clocks**).

Set as below when using this function:

- Set the pin status (high impedance, "L" or "H" output) to pulse output forced cutoff by registers P2 and PD2.
- Set the INT0EN bit in the INTEN register to 1 (enable $\overline{INT0}$ input) and the INT0PL bit to 0 (one edge).
- Set the PD4_5 bit in the PD4 register to 0 (input mode).
- Set the INTO digital filter by bits INTOF1 to INTOF0 in the INTF register.
- Set the PTO bit in the TRDOER2 register to 1 (enable pulse output forced cutoff signal input INTO).

According to the selection of the POL bit in the INT0IC register and change of the INT0 pin input, the IR bit in the INT0IC register is set to 1 (interrupt request). Refer to the **R8C/25 Group Hardware Manual** for details of interrupts.

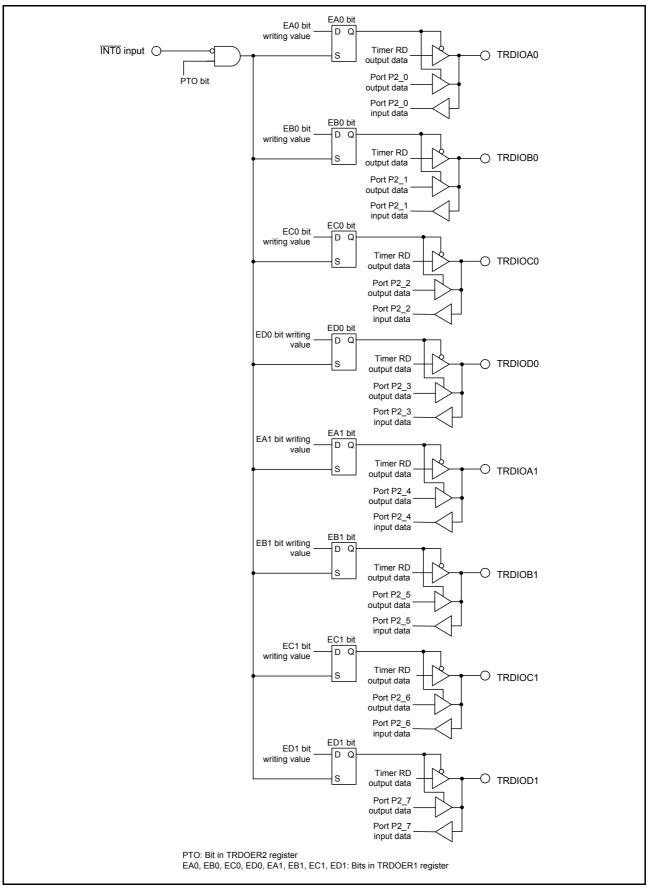


Figure 3.4 Pulse Output Forced Cutoff

RENESAS

3.6 Output Compare Function

This function detects matches (compare match) between the content of the TRDGRji (j = either A, B, C, or D) register and the content of the TRDi (i = 0 or 1) register. When the content matches, a user-set level is output from the TRDIOji pin. Since this function is enabled with a combination of the TRDIOji pin and TRDGRji register, the output compare function, or any other mode or function, can be selected for each individual pin. Figure 3.5 shows a Block Diagram of Output Compare Function, Table 3.13 lists the Output Compare Function Specifications, Figures 3.6 to 3.17 list the Registers Associated with Output Compare Function, and Figure 3.18 shows an Operating Example of Output Compare Function.

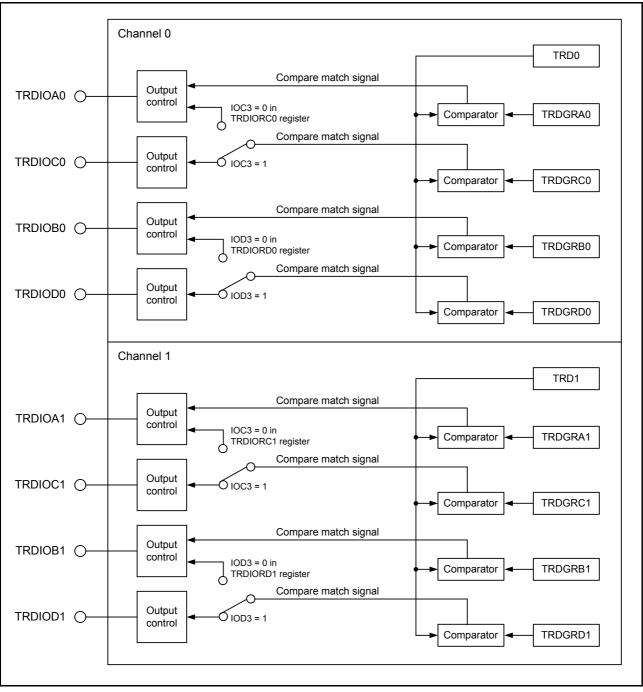


Figure 3.5 Block Diagram of Output Compare Function

Item	Specification
Count sources	f1, f2, f4, f8, f32, fOCO40M External signal input to the TRDCLK pin (valid edge selected by a program)
Count operations	Increment
Count period	 When bits CCLR2 to CCLR0 in the TRDCRi register are set to 000b (free-running operation). 1/fk × 65536 fk: Frequency of count source Bits CCLR1 to CCLR0 in the TRDCRi register are set to 01b or 10b (set the TRDi register to 0000h at the compare match in the TRDGRji register). Frequency of count source x (n+1) n: Setting value in the TRDGRji register
Waveform output timing	Compare match
Count start condition	1 (count starts) is written to the TSTARTi bit in the TRDSTR register.
Count stop conditions	 0 (count stops) is written to the TSTARTi bit in the TRDSTR register when the CSELi bit in the TRDSTR register is set to 1. The output compare output pin holds output level before the count stops. When the CSELi bit in the TRDSTR register is set to 0, the count stops at the same time as the TRDi register is set to 0000h at the compare match in the TRDGRAi register. The output compare output pin holds the level after output change by the compare match.
Interrupt request generation timing	 Compare match (content of the TRDi register matches content of the TRDGRji register.) TRDi register overflows
TRDIOA0 pin function	Programmable I/O port, output-compare output, or TRDCLK (external clock) input
TRDIOB0, TRDIOC0, TRDIOD0, TRDIOA1 to TRDIOD1 pin functions	Programmable I/O port or output-compare output (selectable by pin)
INT0 pin function	Programmable I/O port, pulse output forced cutoff signal input, or INTO interrupt input
Read from timer	The count value can be read by reading the TRDi register.
Write to timer	 When the SYNC bit in the TRDMR register is set to 0 (channels 0 and 1 operate independently). Data can be written to the TRDi register. When the SYNC bit in the TRDMR register is set to 1 (channels 0 and 1 operate synchronously). Data can be written to both the TRD0 and TRD1 registers by writing to the TRDi register.
Select functions	 Output-compare output pin selected Either one pin or multiple pins among TRDIOAi, TRDIOBi, TRDIOCi, or TRDIODi. Output level at the compare match selected "L" output, "H" output, or output level inverted Initial output level selected Set the level at period from the count start to the compare match. Timing to set the TRDi register to 0000h Overflow or compare match in the TRDGRAi register Buffer operation (refer to 3.3 Buffer Operation) Synchronous operation (refer to 3.4 Synchronous Operation) Output pin in registers TRDGRCi and TRDGRDi changed The TRDGRCi register can be used as output control of the TRCIOAi pin and the TRDGRDi register can be used as output control of the TRCIOAi pin. Pulse output forced cutoff signal input (refer to 3.5 Pulse Output Forced Cutoff) Timer RD can be used as the internal timer without output.

 Table 3.13
 Output Compare Function Specifications

i = 0 or 1, j = either A, B, C, or D

b7 b6 b5 b4 b3 b	2 b1 b0	.			
<u> </u>	┍┵┯┵┛	Symbol	Address 0137h	After Reset 11111100b	
	r	TRDSTR	013711	11111000	
		Bit Symbol	Bit Name	Function	RW
		TSTART0	TRD0 count start flag ⁽⁴⁾	0: Count stops ⁽²⁾ 1: Count starts	RW
		TSTART1	TRD1 count start flag ⁽⁵⁾	0: Count stops ⁽³⁾ 1: Count starts	RW
		CSEL0	TRD0 count operation select bit	0: Count stops at the compare match with the TRDGRA0 register after the count is cleared1: Count continues at the compare match with the TRDGRA0 register after the count is cleared	RW
		CSEL1	TRD1 count operation select bit	0: Count stops at the compare match with the TRDGRA1 register after the count is cleared1: Count continues at the compare match with the TRDGRA1 register after the count is cleared	RW
		 (b7 - b4)	Nothing is assigned. If neces When read, the content is 1.	sary, set to 0.	-

NOTES :

1. Set the TRDSTR register using the MOV instruction (do not use the bit handling instruction). Refer to **3.8.1 TRDSTR Register** for **Notes on Timer RD**.

- 2. When the CSEL0 bit is set to 1, write 0 to the TSTART0 bit.
- 3. When the CSEL1 bit is set to 1, write 0 to the TSTART1 bit.
- 4. When the CSEL0 bit is set to 0 and the compare match signal (TRDIOA0) is generated, this bit is set to 0 (count stops).
- 5. When the CSEL1 bit is set to 0 and the compare match signal (TRDIOA1) is generated, this bit is set to 0 (count stops).

Timer RD Mode Register

Symbol TRDMR	Address 0138h	After Reset 00001110b	
Bit Symbol	Bit Name	Function	RW
SYNC	Timer RD synchronous bit	0: Registers TRD0 and TRD1 operate independently 1: Registers TRD0 and TRD1 operate synchronously	RW
 (b3 - b1)	Nothing is assigned. If necessary, When read, the content is 1.	set to 0.	-
BFC0	TRDGRC0 register function select bit ⁽¹⁾	0: General register 1: Buffer register of TRDGRA0 register	RW
BFD0	TRDGRD0 register function select bit ⁽¹⁾	0: General register 1: Buffer register of TRDGRB0 register	RV
BFC1	TRDGRC1 register function select bit ⁽¹⁾	0: General register 1: Buffer register of TRDGRA1 register	RV
 BFD1	TRDGRD1 register function select bit ⁽¹⁾	0: General register 1: Buffer register of TRDGRB1 register	RV

1. When selecting 0 (change the TRDGRji register output pin) by the IOj3 (j = C or D) bit in the TRDIORCi (i = 0 or 1) register, set the BFji bit in the TRDMR register to 0.

Figure 3.6 Registers TRDSTR and TRDMR in Output Compare Function

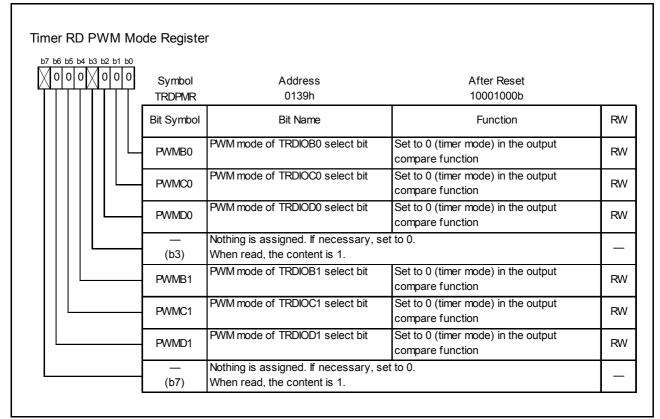


Figure 3.7 TRDPMR Register in Output Compare Function

b7 b6 b5 b4	4 b3 b2 b1 b0				
1	00	Symbol	Address	After Reset	
		TRDFCR	013Ah	1000000b	
		Bit Symbol	Bit Name	Function	RW
		CMD0	Combination mode select bits ⁽¹⁾	Set to 00b (timer mode, PWM mode, or PWM3 mode) in the output compare	RW
		CMD1		function.	RW
		OLS0	Normal-phase output level select bit (in reset synchronous PWM mode or complementary PWM mode)	This bit is disabled in the output compare function.	RW
		OLS1	Counter-phase output level select bit (in reset synchronous PWM mode or complementary PWM mode)	This bit is disabled in the output compare function.	RW
		ADTRG	A/D trigger enable bit (in complementary PWM mode)	This bit is disabled in the output compare function.	RW
		ADEG	A/D trigger edge select bit (in complementary PWM mode)	This bit is disabled in the output compare function.	RW
		STCLK	External clock input select bit	0: External clock input disabled 1: External clock input enabled	RW
		PWM3	PWM3 mode select bit ⁽²⁾	Set this bit to 1 (other than PWM3 mode) in the output compare function.	RW

1. Set bits CMD1 to CMD0 w hen both the TSTART0 and TSTART1 bits are set to 0 (count stops).

2. When bits CMD1 to CMD0 are set to 00 (timer mode, PWM mode, or PWM3 mode), the PWM3 bit setting is enabled.

Figure 3.8 TRDFCR Register in Output Compare Function

	b5 b4 b3	3 b2 b1	ыо 1	Symbol TRDOER1	Address 013Bh	After Reset FFh	
				Bit Symbol	Bit Name	Function	RW
				EA0	TRDIOA0 output disable bit	Set this bit to 1 (the TRDIOA0 pin is used as a programmable I/O port) in PWM mode.	RW
				EB0	TRDIOB0 output disable bit	0: Enable output1: Disable output (The TRDIOB0 pin is used as a programmable I/O port.)	RW
				EC0	TRDIOC0 output disable bit	0: Enable output 1: Disable output (The TRDIOC0 pin is used as a programmable I/O port.)	RW
				ED0	TRDIOD0 output disable bit	0: Enable output 1: Disable output (The TRDIOD0 pin is used as a programmable I/O port.)	RW
				EA1	TRDIOA1 output disable bit	Set this bit to 1 (the TRDIOA1 pin is used as a programmable I/O port) in PWM mode.	RW
				EB1	TRDIOB1 output disable bit	0: Enable output 1: Disable output (The TRDIOB1 pin is used as a programmable I/O port.)	RW
				EC1	TRDIOC1 output disable bit	0: Enable output1: Disable output (The TRDIOC1 pin is used as a programmable I/O port.)	RW
				ED1	TRDIOD1 output disable bit	0: Enable output1: Disable output (The TRDIOD1 pin is used as a programmable I/O port.)	RW
b7 b6		3 b2 b1		Symbol	le Register 2 Address	After Reset	
				TRDOER2 Bit Symbol	013Ch Bit Name	0111111b Function	RW
					Nothing is assigned. If necess		
╎└		11		(b6 - b0)	When read, the content is 1.		
				PTO	INTO of pulse output forced cutoff signal input enabled bit ⁽¹⁾	 0: Pulse output forced cutoff input disabled 1: Pulse output forced cutoff input enabled (All bits in the TRDOER1 register are set to 1 (disable output) w hen "L" is applied to the INTO pin.) 	RW

Figure 3.9 Registers TRDOER1 to TRDOER2 in Output Compare Function

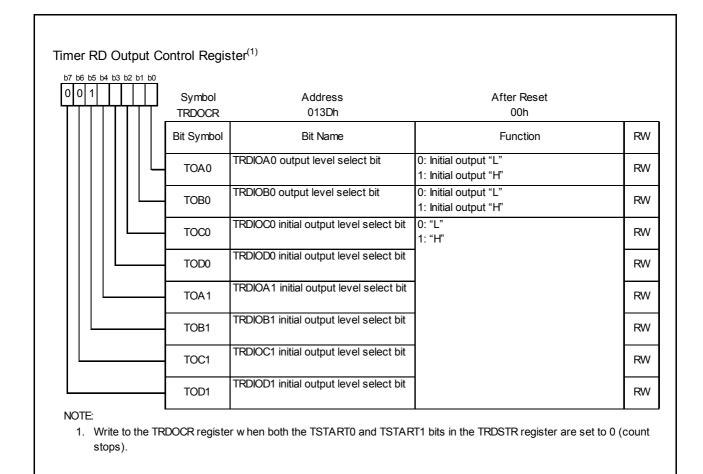


Figure 3.10 TRDOCR Register in Output Compare Function

	Symbol	Address	After Reset	
┕┰┸┯┿┯┿┯┹┲┹┲┿┯┿┯	TRDCR0	0140h	00h	
	TRDCR1	0150h	00h	
	Bit Symbol	Bit Name	Function	RW
	ТСК0	Count source select bits	b2 b1 b0 0 0 0: f1 0 0 1: f2	RW
	TCK1		0 1 0: f4 0 1 1: f8 1 0 0: f32 1 0 1: TRDCLK input ⁽¹⁾	RW
	TCK2		1 1 0: fOCO40M 1 1 1: Do not set.	RW
	CKEG0	External clock edge select bits ⁽²⁾	 b4 b3 0 0: Count at the rising edge 0 1: Count at the falling edge 1 0: Count at both edges 	RW
	CKEG1		1 1: Do not set.	RW
	- CCLR0	TRDi counter clear select bits	 b7 b6 b5 0 0 0: Disable clear (free-running operation) 0 1: Clear by compare match with the TRDGRAi register 0 1 0: Clear by compare match with the TRDODD: register 	RW
	CCLR1		 TRDGRBi register 0 1 1: Synchronous clear (clear simultaneously with other channel counter)⁽³⁾ 1 0 0: Do not set. 1 0 1: Clear by compare match with the TRDGRCi register 	RW
	CCLR2		 1 0: Clear by compare match with the TRDGRDi register 1 1: Do not set. 	RW

Figure 3.11 Registers TRDCR0 to TRDCR1 in Output Compare Function

3. This setting is enabled when the SYNC bit in the TRDMR register is set to 1 (TRD0 and TRD1 operate

synchronously).

b7 b6 b	5 b4	_	_				
X 0		10		Symbol	Address	After Reset	
				TRDIORA0	0141h	10001000b	
				TRDIORA1	0151h	10001000b	
				Bit Symbol	Bit Name	Function	RW
				IOA 0	TRDGRA control bits	 b1 b0 0 0: Disable pin output by the compare match (TRDIOAi pin functions as programmable VO port) 0 1: "L" output at compare match w ith the TRDGRAi register 	RW
				IOA1		 1 0: "H" output at compare match with the TRDGRAi register 1 1: Toggle output by compare match with the TRDGRAi register 	RW
				IOA2	TRDGRA mode select bit ⁽¹⁾	Set to 0 (output compare) in the output compare function.	RW
				IOA3	Input capture input switch bit	Set to 1.	RW
				IOB0	TRDGRB control bits	 b5 b4 0 0: Disable pin output by the compare match (TRDIOBi pin functions as programmable VO port) 0 1: "L" output at compare match with the TDPCPD register 	RW
				IOB1		 w ith the TRDGRBi register 1 0: "H" output at compare match w ith the TRDGRBi 1 1: Toggle output by compare match w ith the TRDGRBi register 	RW
				IOB2	TRDGRB mode select bit ⁽²⁾	Set to 0 (output compare) in the output compare function.	RW
				Nothing is assigned. If nece When read, the content is 1	-		

 To select 1 (the TRDGRCi register is used as a buffer register of the TRDGRAi register) for this bit by the BFCi bit in the TRDMR register, set the IOC2 bit in the TRDIORCi register to the same value as the IOA2 bit in the TRDIORAi register.

2. To select 1 (the TRDGRDi register is used as a buffer register of the TRDGRBi register) for this bit by the BFDi bit in the TRDMR register, set the IOD2 bit in the TRDIORCi register to the same value as the IOB2 bit in the TRDIORAi register.

b7 b6 b5	b4 b3	3 b2 b	1 b0				
0		0		Symbol	Address	After Reset	
┕╹		Τ		TRDIORC0	0142h	10001000b	
				TRDIORC1	0152h	10001000b	
				Bit Symbol	Bit Name	Function	RV
				IOC0	TRDGRC control bits	 b1 b0 0 0: Disable pin output by compare match 0 1: "L" output at compare match with the TRDGRCi register 	RV
				IOC1		 1 0: "H" output at compare match w ith the TRDGRCi register 1 1: Toggle output by compare match w ith the TRDGRCi register 	RV
				IOC2	TRDGRC mode select bit ⁽¹⁾	Set to 0 (output compare) in the output compare function.	RV
				IOC3	TRDGRC register function select bit	0: TRDIOA output register (Refer to 3.6.1 Changing Output Pins in Registers TRDGRCi (i = 0 or 1) and TRDGRDi.) 1: General register or buffer register	RV
				IOD0	TRDGRD control bits	 b5 b4 0 0: Disable pin output by compare match 0 1: "L" output at compare match w ith the TRDGRDi register 1 0: "H" output at compare match w ith 	RV
				IOD1		 1 1: Toggle output by compare match with the TRDGRDi register 	RV
				IOD2	TRDGRD mode select bit ⁽²⁾	Set to 0 (output compare) in the output compare function.	RV
				IOD3	TRDGRD register function select bit	0: TRDIOB output register (Refer to 3.6.1 Changing Output Pins in Registers TRDGRCi (i = 0 or 1) and TRDGRDi.) 1: General register or buffer register	RV

the TRDMR register, set the IOC2 bit in the TRDIORCi register to the same value as the IOA2 bit in the TRDIORAi register.To select 1 (the TRDGRDi register is used as a buffer register of the TRDGRBi register) for this bit by the BFDi bit in the TRDMR register, set the IOD2 bit in the TRDIORCi register to the same value as the IOB2 bit in the TRDIORAi

Figure 3.13 Registers TRDIORC0 to TRDIORC1 in Output Compare Function

register.

b7 b6 b5	b4 b3 b2 b1 b	00			
		Symbol	Address	After Reset	
TTT		TRDSR0	0143h	11100000b	
		TRDSR1	0153h	1100000b	
		Bit Symbol	Bit Name	Function	RW
		IMFA	Input capture/compare match flag A	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the value in the TRDi register matches with the value in the TRDGRAi register.	RW
		IMFB	Input capture/compare match flag B	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the value in the TRDi register matches with the value in the TRDGRBi register.	RW
		IMFC	Input capture/compare match flag C	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the value in the TRDi register matches with the value in the TRDGRCi register ⁽³⁾ .	RW
		IMFD	Input capture/compare match flag D	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the value in the TRDi register matches with the value in the TRDGRDi register ⁽³⁾ .	RW
		OVF	Overflow flag	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ . [Source for setting this bit to 1] When the TRDi register overflow s.	RW
		UDF	Underflow flag ⁽¹⁾	This bit is disabled in the output compare function.	RW
		 (b7 - b6)	Nothing is assigned. If necess When read, the content is 1.	ary, set to 0.	

2. The writing results are as follow s: • This bit is set to 0 w hen the read result is 1 and 0 is w ritten to the same bit.

• This bit remains unchanged even if the read result is 0 and 0 is written to the same bit. (This bit remains 1 even if it is set to 1 from 0 after reading, and writing 0.)

• This bit remains unchanged if 1 is written to it.

3. Including when the BFji bit in the TRDMR register is set to 1 (TRDGRiji is used as the buffer register).

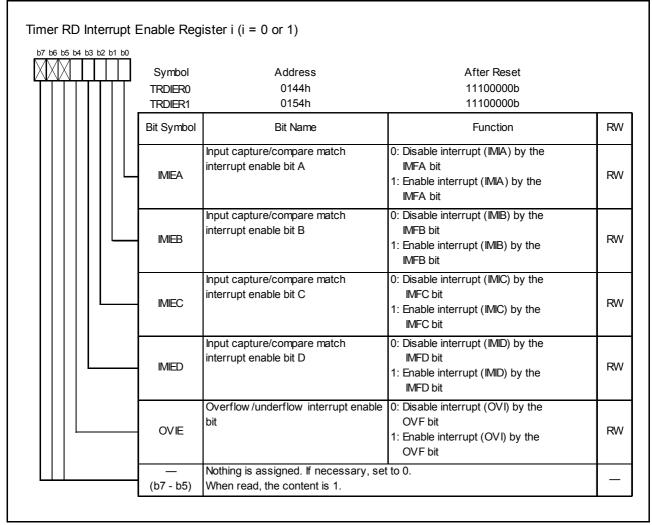
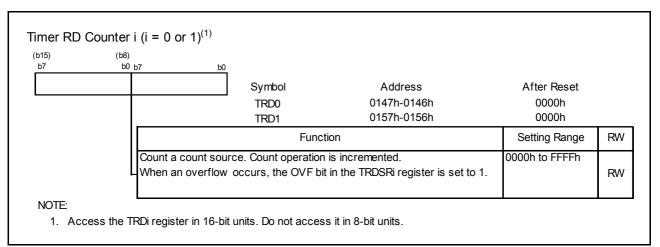
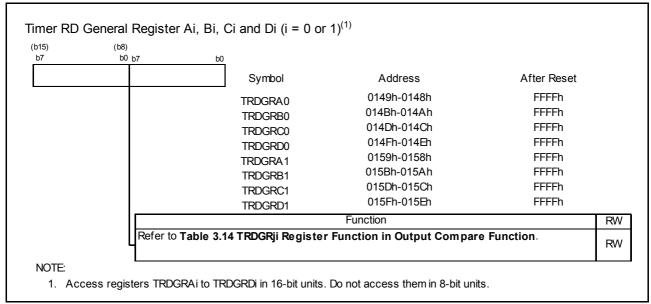




Figure 3.15 Registers TRDIER0 to TRDIER1 in Output Compare Function

Figure 3.16 Registers TRD0 to TRD1 in Output Compare Function

Figure 3.17 Registers TRDGRAi, TRDGRBi, TRDGRCi, and TRDGRDi in Output Compare Function

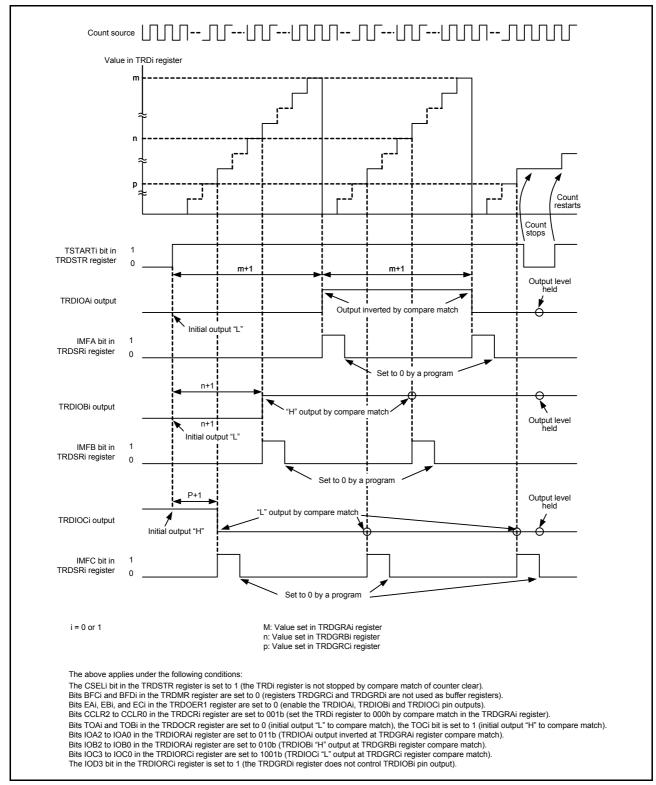
The following registers are disabled in output compare function: TRDDF0, TRDDF1, TRDPOCR0, and TRDPOCR1.

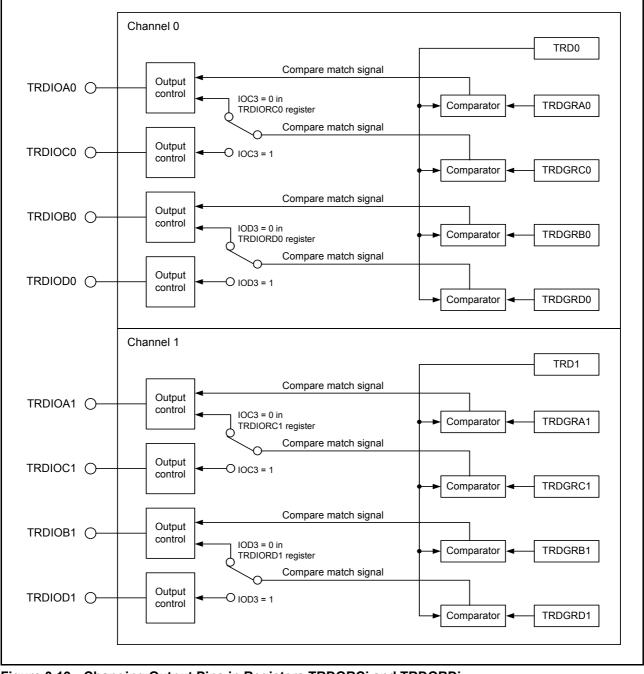
Table 3.14 TRDGRji Register Functions in Output Com

Register	Set	ting	Register Function	Output-Compare
rtegister	BFji loj3		Register Function	Output Pin
TRDGRAi	-	-	General register. Write the compare value.	TRDIOAi
TRDGRBi				TRDIOBi
TRDGRCi	0	1	General register. Write the compare value.	TRDIOCi
TRDGRDi	0			TRDIODi
TRDGRCi	1	1	Buffer register. Write the next compare	TRDIOAi
TRDGRDi		1	value (refer to 3.3 Buffer Operation).	TRDIOBi
TRDGRCi			TRDIOAi output control (refer to 3.6.1	TRDIOAi
TRDGRDi	0 0	0	Changing Output Pins in Registers TRDGRCi (i = 0 or 1) and TRDGRDi).	TRDIOBi

i = 0 or 1, j = either A, B, C, or D BFji: Bit in TRDMR register

IOj3: Bit in TRDIORCi register




Figure 3.18 Operating Example of Output Compare Function

3.6.1 Changing Output Pins in Registers TRDGRCi (i = 0 or 1) and TRDGRDi

The TRDGRCi register can be used for output control of the TRDIOAi pin, and the TRDGRDi register can be used for output control of the TRDIOBi pin. Therefore, each pin output can be controlled as follows:

- TRDIOAi output is controlled by the values in registers TRDGRAi and TRDGRCi.
- TRDIOBi output is controlled by the values in registers TRDGRBi and TRDGRDi.

Change the output pins in registers TRDGRCi and TRDGRDi as follows:

- Select 0 (change TRDGR ji register output pin) by the IOj3 (j = C or D) bit in the TRDIORCi register.
- Set the BFji bit in the TRDMR register to 0 (general register).
- Set different values in registers TRDGRCi and TRDGRAi. Also, set different values in registers TRDGRDi and TRDGRBi.

Figure 3.20 shows an Operating Example When TRDGRCi Register is Used for Output Control of TRDIOAi Pin and TRDGRDi Register is Used for Output Control of TRDIOBi Pin.

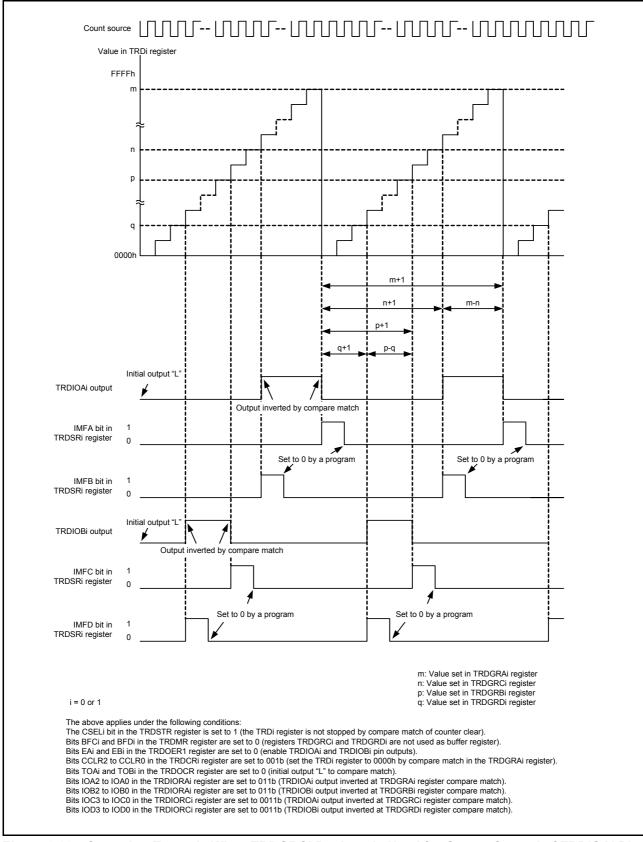


Figure 3.20 Operating Example When TRDGRCi Register is Used for Output Control of TRDIOAi Pin and TRDGRDi Register is Used for Output Control of TRDIOBi Pin

RENESAS

3.7 Timer RD Interrupt

Timer RD generates the timer RD interrupt request based on six sources for each channel. The timer RD interrupt has one TRDiIC register (bits IR, and ILVL0 to ILVL2), and one vector for each channel. Table 3.15 lists the Registers Associated with Timer RD Interrupt, and Figure 3.21 shows a Block Diagram of Timer RD Interrupt.

	Timer RD	Timer RD	Timer RD
	Status Register	Interrupt Enable Register	Interrupt Control Register
Channel 0	TRDSR0	TRDIER0	TRD0IC
Channel 1	TRDSR1	TRDIER1	TRD1IC

Table 3.15 Registers Associated with Timer RD Interrupt

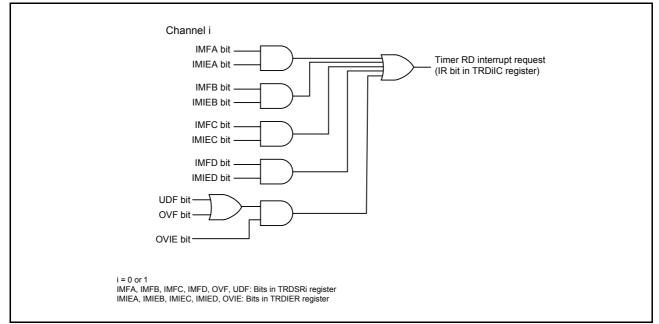


Figure 3.21 Block Diagram of Timer RD Interrupt

As with other maskable interrupts, the timer RD interrupt is controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, since the interrupt source (timer RD interrupt) is generated by a combination of multiple interrupt request sources, the following differences from other maskable interrupts apply:

- When bits in the TRDSRi register corresponding to bits set to 1 in the TRDIERi register are set to 1 (enable interrupt), the IR bit in the TRDIIC register is set to 1 (interrupt requested).
- When either bits in the TRDSRi register or bits in the TRDIERi register corresponding to bits in the TRDSRi register, or both, are set to 0, the IR bit is set to 0 (interrupt not requested). Therefore, even though the interrupt is not acknowledged after the IR bit is set to 1, the interrupt request will not be maintained.
- When the conditions of other request sources are met, the IR bit remains 1.
- When multiple bits in the TRDIERi register are set to 1, which request source causes an interrupt is determined by the TRDSRi register.
- Since each bit in the TRDSRi register is not automatically set to 0 even if the interrupt is acknowledged, set each bit to 0 in the interrupt routine. For information on how to set these bits to 0, refer to the descriptions of the registers used in the different modes (**Figure 3.14**).

Refer to **Registers TRDSR0 to TRDSR1 in each mode (Figure 3.14)** for the TRDSRi register. Refer to **Registers TRDIER0 to TRDIER1 in each mode (Figure 3.15)** for the TRDIERi register.

Refer to the **R8C/25 Group Hardware Manual** for information on the TRDiIC register and the interrupt vectors.

3.8 Notes on Timer RD

3.8.1 TRDSTR Register

• Set the TRDSTR register using the MOV instruction.

- When the CSELi (i = 0 to 1) is set to 0 (the count stops after the count is cleared at compare match of registers TRDi and TRDGRAi), the count does not stop and the TSTARTi bit remains unchanged even if 0 (count stops) is written to the TSTARTi bit.
- Therefore, set the TSTARTi bit to 0 to change other bits without changing the TSTARTi bit when the CSELi bit is set to 0.
- To stop counting by a program, set the TSTARTi bit after setting the CSELi bit to 1. Although the CSELi bit is set to 1 and the TSTARTi bit is set to 0 at the same time (with one instruction), the count cannot be stopped.
- Table 3.16 lists the TRDIOji (j = A, B, C, or D) Pin Output Level when Count Stops to use the TRDIOji (j = A, B, C, or D) pin with the timer RD output.

Table 3.16 TRDIOji (j = A, B, C, or D) Pin Output Level when Count Stops

Count Stop	TRDIOji Pin Output when Count Stops
When the CSELi bit is set to 1, set the TSTARTi bit to 0 and the count	Hold the output level immediately before the
stops.	count stops.
When the CSELi bit is set to 0, the count stops after the count is cleared	Hold the output level after output changes by
at compare match of registers TRDi and TRDGRAi.	compare match.

3.8.2 TRDi Register (i = 0 or 1)

• When writing the value to the TRDi register by a program while the TSTARTi bit in the TRDSTR register is set to 1 (count starts), avoid overlapping with the timing for setting the TRDi register to 0000h, and then write. If the timing for setting the TRDi register to 0000h overlaps with the timing for writing the value to the TRDi register, the value is not written and the TRDi register is set to 0000h.

These precautions are applicable when selecting the following by bits CCLR2 to CCLR0 in the TRDCRi register.

- 001b (Clear by the TRDi register at compare match with the TRDGRAi register.)
- 010b (Clear by the TRDi register at compare match with the TRDGRBi register.)
- 011b (Synchronous clear)

Program example

- 101b (Clear by the TRDi register at compare match with the TRDGRCi register.)
- 110b (Clear by the TRDi register at compare match with the TRDGRDi register.)

• When writing the value to the TRDi register and continuously reading the same register, the value before writing may be read. In this case, execute the JMP.B instruction between writing and reading.

;	MOV.W	#XXXXh, TRD0	;Writing
	JMP.B	L1	;JMP.B
L1:	MOV.W	TRD0,DATA	;Reading

3.8.3 TRDSRi Register (i = 0 or 1)

When writing the value to the TRDSRi register and continuously reading the same register, the value before writing may be read. In this case, execute the JMP.B instruction between writing and reading. Program example MOV.B #XXh, TRDSR0 ;Writing

e	MOV.B	#XXh, TRDSR0	;Writing
	JMP.B	L1	;JMP.B
L1:	MOV.B	TRDSR0,DATA	;Reading

3.8.4 Count Source Switch (i = 0 or 1)

• Switch the count source after the count stops.

Change procedure:

- (1) Set the TSTARTi (i = 0 or 1) bit in the TRDSTR register to 0 (count stops).
- (2) Change bits TCK2 to TCK0 in the TRDCRi register.

• When changing the count source from fOCO40M to another source and stopping fOCO40M, wait two or more cycles of f1 after setting the clock switch, and then stop fOCO40M.

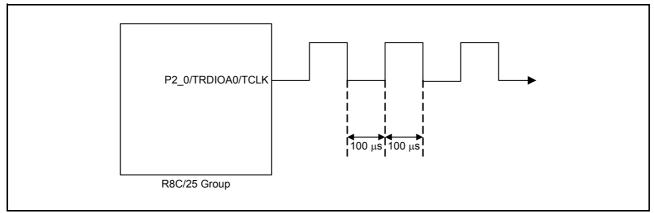
Change procedure:

- (1) Set the TSTARTi (i = 0 or 1) bit in the TRDSTR register to 0 (count stops).
- (2) Change bits TCK2 to TCK0 in the TRDCRi register.
- (3) Wait two or more cycles of f1.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator stops).

3.8.5 Count Source fOCO40M

• The count source fOCO40M can be a supply voltage VCC = 3.0 to 5.5 V. For the supply voltage other than that, do not set bits TCK to TCK0 in registers TRDCR0 and TRDCR to 110b (select fOCO40M as the count source).

4. Program Overview

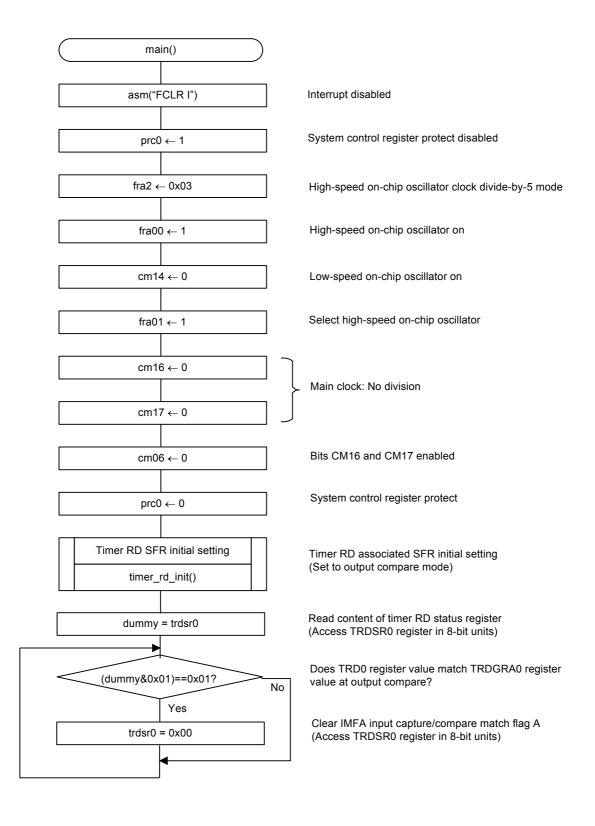

Toggle output is performed from the TRDIOA0 output pin at the compare match between the timer RD counter 0 (TRD0) and the general register (TRDGRA0). Registers TRD0 and TRDGRA0 are compare matched at 100 μ s.

- 100 μ s = 40 MHz x (TRDGRA0 + 1)
 - = 25 ns x 4000

Setting conditions of this program are as follows:

- The high-speed on-chip oscillator (fOCO40M) is used as the count source.
- The timer RD counter 0 (TRD0) is cleared at a compare match with the TRDGRA0 register.
- Toggle output is performed from the TRDIOA0 output pin at a compare match between registers TRD0 and TRDGRA0.

Figure 4.1 shows the Assigned Pin.


4.1 Function Table

Declaration	void timer_rd_init (void)			
Overview	SFR initial setting associated Timer RD			
Argument	Argument name		Meaning	
	None			
Variable used	Variable name		Usage	
(global)	None			
Returned value	Туре	Value	Meaning	
	None			
Functions	Initialize the SFR registers associated with timer RD			

4.2 Flow Chart

4.2.1 Main Function

4.2.2 Timer RD SFR Initial Setting

5. Sample Programming Code

A sample program can be downloaded from the Renesas Electronics website.

6. Reference Documents

User's Manual: Hardware R8C/25 Group Hardware Manual The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com

Inquiries http://www.renesas.com/contact/

REVISION HISTORY

R8C/25 Group Timer RD in Output Compare Function

Rev.	Date	Description		
	Date	Page	Summary	
1.00	Dec. 01, 2006	_	First Edition issued	
1.10	0 June 1, 2012	1	Note on oscillation stabilization wait time added	
1.10			Previous document number: REJ05B0805	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics and way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 101 Nicholson Road, Newmarkst, Ontario L3Y 9C3, Canada

 Tel: +1-905-989-5441, Fax: +1-905-988-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +492-215-85100, Fax: +44-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrase 10, 40472 Dusseldorf, Germany

 Tel: +92-21-65030, Fax: +44-1628-585-900

 Renesas Electronics Ching) Co., Ltd.

 The Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +92-21-65030, Fax: +48-21-0523 Lijiazui Ring Rd, Pudong District, Shanghai 200120, China

 Tel: +962-757-1818, Fax: +862-108235-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai 200120, China

 Tel: +962-7589

 Renesas Electronics Taivan Co., Ltd.

 Nuit 1601-1613, 16/F., Towre 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +952-2886-9318, Fax: +852 2886-9022/9044

 Renesas Electronics Taiwan Co., Ltd.

 137, No. 363, Fu Shing Month Road, Taipei, Taiwan
 </t