
 APPLICATION NOTE

R20AN0088ES0100 Rev.1.00 Page 1 of 27
Mar 01, 2010

R8C Family
Implementing Interrupts in MR8C/4

Introduction
The ability to handle multi tasks simultaneously is important in embedded systems. Such capability is achieved by
having external hardware devices that perform device-specific operations in parallel to the core processor. This
concurrency is achieved using interrupts. RTOSs handle interrupts in different ways and require varying methods of
implementing interrupt handlings.

This document describes interrupts, Renesas R8C family interrupts architecture, and how they are implemented in
MR8C/4, their impact on scheduling and real-time, and some interrupt-management strategies.

Target Device
Applicable MCU: R8C Family

Contents

1. Guide in using this Document ... 2

2. Introduction to Interrupts in Embedded Systems .. 3

3. Overview of Renesas R8C Family Interrupts Architectures.. 5

4. Understanding RTOS Interrupt Architecture ... 10

5. Implementing Interrupts in MR8C/4 .. 13

6. Reference Documents... 26

R20AN0088ES0100
Rev.1.00

Mar 01, 2010

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 2 of 27
Mar 01, 2010

1. Guide in using this Document
This document aims to equip users with the confidence and capability of implementing interrupts in MR8C/4.

With sufficient coverage ranging from introduction of interrupts in embedded systems to an overview of Renesas R8C
Family interrupt architectures, users will be able to relate the explanation on the implementation of interrupts in
MR8C/4 for the R8C Family devices.

Table 1 Explanation of Document Topics

Topic Objective Pre-requisite

Introduction to Interrupts in
Embedded Systems A basic introduction to interrupts Fundamental knowledge in embedded

systems

Overview of Renesas R8C
Family Interrupts
Architectures

To reinforce users’ understanding on
the interrupt architectures of R8C
Family devices

Knowledge in Microcontroller

Understanding RTOS
Interrupt Architecture

Provide a brief overview of interrupts
implementation in RTOS and its
associated challenges and concerns

Knowledge in RTOS

Implementing Interrupts in
MR8C/4

Guide users in the implementation of
interrupts in MR8C/4

Knowledge in interrupts architecture of

R8C Family devices

Reference Documents
Listing of documents that equip users
with knowledge in the pre-requisite
requirements

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 3 of 27
Mar 01, 2010

2. Introduction to Interrupts in Embedded Systems

2.1 Why Interrupts?
To satisfy end-consumers’ increasingly demands, more functionality is consistently added to the embedded system. As
the functional requirements proliferate, size of the software grows. Thereby, it becomes more difficult to ensure that
time-critical items (e.g. capture data from external inputs) are performed properly.

“Interrupts” was introduced to handle this problem. Interrupt signals an event to the microprocessor to instruct it to stop
what it is doing, and handle the incoming task.

2.2 Types of Interrupts
There are two types of interrupts; Hardware and Software. Software interrupts are generated from software through the
issuance of a specified command. Hardware interrupts are triggered by peripherals and external devices connected to
the microprocessor.

2.3 Interrupts Components
2.3.1 Programmable Interrupt Controller (PIC)
PIC is a device that accept and prioritize multiple interrupt sources so that the highest priority interrupt is directed to
core CPU for processing at any point of time. In addition, PIC helps core CPU to determine an interrupt’s exact source.

2.3.2 Interrupts Service Routine (ISR)
ISRs are software routine that handle and process interrupt requests as specified by users. When an interrupt is
generated, processor breaks away its present task, switch to interrupt stack pointer and points to its ISR to process the
interrupt. Execution control is returned to the main program when the ISR completed.

2.3.3 Interrupt Vector Table
Interrupt vector table carries a list of all interrupt service routine and their corresponding properties (e.g. priority level,
address, descriptions, etc) that define the dynamic characteristics of the interrupt sources. Interrupt vector table provides
processor the means to jump into the ISR of the corresponding interrupt by extracting its ISR address listed in the table.
R8C family devices consist of two interrupt vector tables; fixed and relocatable interrupt tables shown in Figure 1.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 4 of 27
Mar 01, 2010

Figure 1 Interrupts Vector Tables of R8C/Lx Devices

2.3.4 Interrupt Priority Level
To facilitate nested interrupts, a “priority” level is generally provided for each interrupt. An interrupt priority level (IPL)
is assigned by users to individual interrupts to represents how critical the interrupt is. When two interrupts happen at the
same time, the higher priority interrupt will take precedence over the lower priority one.

2.3.5 Masked/ Unmasked Interrupts
A processor can mask or block interrupts requests to perform a task. Hardware interrupts can be further categorized into
maskable interrupts (IRQ) and non-maskable interrupt (NMI).

IRQs are interrupts that can be disabled to let higher priority ISRs be executed uninterruptedly. Interrupt masking is
usually done by clearing the Interrupt Enable Flag.

NMI is a special type of interrupt that cannot be disabled by standard masking technique and is typically used to signal
attention for reporting of non-recoverable hardware errors, methods for system debugging, and special case handling
such as system resets.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 5 of 27
Mar 01, 2010

3. Overview of Renesas R8C Family Interrupts Architectures
In the µITRON4.0 specification, implementation of an interrupt handler is generally dependent on the processor
interrupt architecture and the Programmable Interrupt Controller (PIC). As MR8C/4 conforms to µITRON4.0
specification and specifically designed for R8C family devices, users are required to understand the interrupt
architectures of the R8C family devices in the setup of interrupt handlers and interrupt service routine.

For R8C family devices, there are two main types of interrupts (Software and Hardware). For hardware interrupt, it is
further categorized into Special and Peripheral I/O interrupts as shown in Figure 2.

Notes: 1. Peripheral function interrupts are generated by the peripheral functions built into the
 microcomputer system.
 2. This is a dedicated interrupt for development support tools. Do not use this interrupt.

Figure 2 Classifications of Interrupts

For R8C family devices, there are two vector tables, namely, “Fixed Vector Table” and “Relocatable Vector Table”.

As the names imply, “Fixed Vector Table” resides in allocated addresses (e.g. 0FFDCh to 0FFFFh). Whereas
“Relocatable Vector Table” can be allocated at any desired location within the devices’ entire memory space by INTB
register relative addressing.

 Figure 3 and Figure 4 provide the “Fixed Vector Table” and “Relocatable Vector Table” of R8C/Lx devices
respectively.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 6 of 27
Mar 01, 2010

Figure 3 Fixed Vector Tables of R8C/Lx Devices

Figure 4 Relocatable Vector Tables of R8C/Lx Devices

Figure 5 illustrates an example of defining the starting address locations of “Fixed Vector Table” and “Relocatable
Vector Table” for a R8C23 device.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 7 of 27
Mar 01, 2010

Figure 5 Vector Tables Definition for R8C23 Device

3.1 Software Interrupts
Software interrupts refers to interrupt requests that are put up by instructions in the R8C instruction set. Figure 6
provides a list of software interrupts for R8C22/23 devices.

Figure 6 Types of Software Interrupts

The maskable property of INT instruction interrupt differs for R8C/Lx devices. In R8C/Lx devices, software interrupt
numbers 0 to 31 and 42 to 55 are maskable, whereas software interrupt numbers 32 to 41 and 56 to 63 are non-maskable.

3.1.1 Writing Software Interrupts
With reference to the software interrupts listing in Figure 6, only INT instruction interrupt (that resides in relocatable
vector table) may be defined by users. Therefore, software interrupts are written by defining the INT number as
illustrated in Figure 7.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 8 of 27
Mar 01, 2010

Figure 7 Writing Software Interrupts

3.2 Hardware Interrupts
Hardware interrupts comprise of Special and Peripheral I/O interrupts.

3.2.1 Special Interrupts
Special interrupts are used to handle non-recoverable errors pertaining to the processor, which need immediate attention.
They are therefore non-maskable. Listings of special interrupts vary from one device to another in the R8C family.
Figure 8 shows classification of special interrupts for R8C22/23 and R8C/Lx devices respectively.

 Figure 8 Comparing Special Interrupts of R8C22/23 and R8C/Lx Devices

With reference to Figure 8, R8C/Lx devices consist of one additional special interrupts “Voltage monitor 1/ comparator
A1” as compared to R8C22/23 devices even though they belonged to the same R8C family. Thus, it is crucial for users
to find out the Special interrupts available to the specific device prior to using it.

3.2.2 Peripheral I/O Interrupts
These maskable interrupts are used to response to events triggered by peripherals built into the microcomputer (MCU)
system. With the types of peripheral features vary with each R8C model, so do the types of Peripheral I/O interrupts.
For R8C family, software interrupt numbers are appended to the peripheral I/O interrupts. This implies MCU will
execute the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt is
generated. Figure 9 shows few of peripheral I/O interrupts available for R8C/Lx devices.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 9 of 27
Mar 01, 2010

Figure 9 Comparing Peripheral I/O Interrupts of R8C22/23 and R8C/Lx Devices

3.2.3 Writing Hardware Interrupts
For hardware interrupts, only peripheral interrupts (that resides in relocatable vector table) may be defined by users.

There are two steps involved in writing a hardware interrupt in R8C family (refer to Figure 10). They are

1. Define interrupt service routine for the hardware interrupt (To be executed by user)
2. Register interrupt service routine in interrupt vector table (Automatically generated by compiler)

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 10 of 27
Mar 01, 2010

Figure 10 Writing Hardware Interrupts

4. Understanding RTOS Interrupt Architecture
Interrupts are part of a mechanism provided by embedded processor architectures to allow for disruption of processor’s
normal execution path and attend to external events. Generally, handling of interrupts in an embedded application with
RTOS is implemented in two layers, namely RTOS layer (first layer) and application layer (second layer).

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 11 of 27
Mar 01, 2010

The RTOS layer, being the first layer, functions as an interrupt handler in accepting the control of an interrupt when it
occurred. Upon receiving the control, the RTOS interrupts handler calls the application layer interrupt service routine
corresponding to the interrupt for processing.

4.1 RTOS Interrupt Architecture Design Challenges
Generally, there are two fundamental challenges in the designing of RTOS interrupt architecture. The first challenge is
to ensure the integrity of internal RTOS data when servicing interrupt/s. The second challenge is to achieve a
deterministic and low interrupt latency that will not affect the real-time performance of the system.

4.1.1 Challenge 1: Ensure Integrity of Internal RTOS Data
A major challenge in RTOS design involves supporting asynchronous access by interrupt routines and RTOS service
calls to internal RTOS data structures. An ISR or RTOS service call while modifying a data structure should not be
allowed to be interrupted that allows a different ISR or RTOS service call to make unrelated modifications to the same
data structure as shown in Figure 11.

Figure 11 Race Condition of Interrupts

Unified and segmented interrupt architectures are two common approaches to prevent corruption to internal RTOS data
structures by interrupt service routines (ISRs) and RTOS service calls.

In unified interrupt architecture (refer to Figure 12), interrupts are temporarily disabled when ISR or RTOS service calls
is accessing the critical sections of code/data. This prevents other interrupts from making uncoordinated changes to the
same critical sections.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 12 of 27
Mar 01, 2010

Figure 12 Unified Interrupt Architecture

In segmented interrupt architecture, interrupts are not disabled during ISR. To prevent interrupts occurring during ISR
from accessing the same RTOS data structure and thereby corrupting it, segmented architecture disable the application
scheduler, and divide the ISR into two or more pieces as shown in Figure 13.

Figure 13 Segmented Interrupt Architecture

In unified interrupt architecture approach, interrupt latency is introduced while the interrupts are temporary disabled.
Additional system resources are also required for the allocation of separate system stack used to process all interrupts
and nested interrupts. However, unified interrupt architecture is easier to implement, introduce less system overhead,
less likely to result in stack resource problems and shorter interrupt completion time as compared with segmented
interrupt architecture.

MR8C/4 employs unified interrupt architecture, and thus enjoys its benefits.

4.1.2 Challenge 2: Achieve Deterministic and Low Interrupt Latency
The deterministic characteristic of an embedded system and its corresponding worse case interrupt latency can be
computed by examining all of the sources of interrupt response delays to ascertain which particular source causes the
longest delay to the servicing and completion of the highest priority interrupt. Areas of examination encompass:

• Worse case hardware-induced delay
• Worse case software-induced (e.g. by RTOS kernel) delay
• Longest interrupt disabling region by a lower priority interrupt

To achieve a deterministic and low interrupt latency system, quality-programming techniques coupled with proper
RTOS interrupt architecture are required.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 13 of 27
Mar 01, 2010

Quality programming techniques generally involves:

1. Keeping ISRs as simple and short as possible
2. Avoid using instructions that take many cycles to execute
3. Avoid improper usage of RTOS service calls in ISRs
4. Prioritize interrupts appropriately with relative to tasks
5. Keep interrupt disabling regions as short as possible

R8C family devices leverage on an efficient and versatile instruction set and register architecture. Equipped with fast
instruction execution time which has 20 (out of total 89) instructions that execute in a single cycle, powerful
mathematical instructions and frequently used instructions (MOV, ADD, SUB, JMP) that are just 1-byte long, interrupt
latency incurred by R8C MCUs is minimal.

MR8C/4 provides an adequate set of absolutely necessary and deterministic RTOS service calls that can be executed
from ISRs. This gives users the convenience and ensures improper RTOS service calls are not used in ISRs.

By employing unified interrupt architecture, MR8C/4 ensures interrupt disabling regions are kept sufficiently short.

5. Implementing Interrupts in MR8C/4
MR8C/4 RTOS provides a flexible interrupt control mechanism that is fast and deterministic with the following
characteristics:

• Options to create interrupt handlers in C or Assembly.
• Selection for OS-dependent (kernel) or OS-independent (non-kernel) interrupts
• Support for nested interrupts
• Support up to 7 priority levels (Highest priority at 7)
• Execute at higher precedence than dispatcher
• Execute in own independent contexts (non-task)
• Dedicated interrupt stack

5.1 Understanding Interrupt Processing in MR8C/4
There are basically three different kind of scenarios of interrupt processing in MR8C/4:

1. Interrupt occurs when processing task (refer Figure 14)
2. Interrupt occurs when processing service call (refer Figure 15)
3. Interrupt occurs within interrupt handler (refer Figure 16)

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 14 of 27
Mar 01, 2010

Figure 14 Interrupt Occurring when Processing Task

Figure 15 Interrupt Occurring when Processing Service Call

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 15 of 27
Mar 01, 2010

Figure 16 Interrupt Occurring within Interrupt Handler

5.2 Defining Kernel/ Non-Kernel Interrupts
In MR8C/4, interrupts are classified into kernel and non-kernel types.

A kernel interrupt allows kernel service calls to be issued within its ISR. Longer interrupt processing time will be
incurred for kernel interrupts as their ISRs can only be completed after the service calls within the ISRs are being
processed (refer to Figure 17). Therefore, non-maskable interrupts and Watchdog Timer interrupt must not be defined
as kernel interrupts.

A non-kernel interrupt does not allow kernel service calls to be issued within its ISR. Since service call is not allowed
within the non-kernel interrupt service routine, no extra delay will be incurred due to the service call processing. Non-
kernel interrupts are therefore generally reserved for the NMI and critical interrupts.

Figure 17 Kernel Interrupt Service Routine with Service Call

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 16 of 27
Mar 01, 2010

The interrupt priority level and kernel interrupt mask level dictates whether it is a kernel or non-kernel interrupts. To
define an interrupt as a kernel interrupt, assign its priority level to be lower or equal to the kernel interrupt mask level.
Conversely, assign an interrupt priority level to be higher than the kernel interrupt mask level if it is designated to be a
non-kernel interrupt (refer to Figure 18).

Figure 18 Defining Kernel and Non-Kernel Interrupts Handler

Figure 19 provides an example of defining INT1 as a kernel interrupt handler.

Figure 19 Defining INT1 as Kernel Interrupt Handler

5.3 Enabling/Disabling Interrupts
Although it is possible to control (enable/disable) interrupts by manipulating the IPL value, it is not recommended as
the manipulation can only be done by resetting the interrupt flag to zero. However, there are two other methods that are
more appropriate to fulfill this requirement:

1. Modify corresponding interrupt control register (SRF) of the interrupt
2. Utilitize service calls “loc_cpu” and “unl_cpu”
3. Setting ‘I’ flag to enable/disable maskable interrupts

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 17 of 27
Mar 01, 2010

Method 3 uses the least overhead among the three methods mentioned above. Inaddition, it is the easier to execute.
However, it is important to take note that no service call is allowed to be invoked in the setting of the ‘I’ flag. Figure 20
illustrates this concern.

Figure 20 Setting ‘I’ Flag for Controlling Interrupts

5.3.1 Enable/Disable Non-Kernel Interrupts
Method 1 (as mentioned above) is used to control non-kernel interrupts. Figure 21 illustrates the process of
disabling/enabling a non-kernel interrupt in R8C/Lx devices by modifying its SRF register.

5.3.2 Enable/Disable Kernel Interrupts
To control kernel interrupts, user is only required to use the “loc_cpu” and “unl_cpu” service calls. “loc_cpu” disable
kernel interrupts by placing system in CPU locked state. “unl_cpu” release system from CPU locked state. Figure 22
illustrates the process of disabling/enabling a kernel interrupt in R8C/Lx devices by using service calls “loc_cpu” and
“unl_cpu”.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 18 of 27
Mar 01, 2010

Figure 21 Enable/Disable Non-Kernel Interrupts

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 19 of 27
Mar 01, 2010

Figure 22 Enable/Disable Kernel Interrupts

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 20 of 27
Mar 01, 2010

5.4 Coding Interrupts in C Language
5.4.1 Defining Interrupt Vector Tables
Figure 23 illustrates the definition of vector tables in “c_sec.inc” file for R8C/Lx devices.

Figure 23 Defining Vector Tables in “c_sec.inc” in C Language

5.4.2 Writing Kernel Interrupt Handler
Step 1: Define kernel mask level

The kernel mask level is defined in configurator file (e.g. template.cfg) under the system definition.

Figure 24 Defining Kernel Mask Level in C Language

Step 2: Define interrupt vector

The interrupt vector is defined in the configurator file (e.g. template.cfg). Figure 25 illustrates an example of defining
INT1 vector as a kernel interrupt.

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 21 of 27
Mar 01, 2010

Figure 25 Defining Interrupt Vector

Step 3: Define interrupt handler

The final step is to define the interrupt handler in the “.c” file. The function name for the interrupt handler is the same as
being defined in step 2. Figure 26 illustrates an example of this step.

Figure 26 Defining Interrupt Handler

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 22 of 27
Mar 01, 2010

5.4.3 Writing Non-Kernel Interrupt Handler
Step 1: Define kernel mask level

The kernel mask level is defined in configurator file (e.g. template.cfg) under the system definition.

Figure 27 Defining Kernel Mask Level

Step 2: Define interrupt vector

Figure 28 Defining Interrupt Vector

Step 3: Define interrupt handler

Figure 29 illustrates an example of defining non-kernel interrupt handler in C language.

Figure 29 Defining Interrupt Handler

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 23 of 27
Mar 01, 2010

5.5 Coding Interrupts in Assembly Language
5.5.1 Defining Interrupt Vector Tables
Figure 30 illustrates the definition of vector tables in “asm_sec.inc” file for R8C/Lx devices.

Figure 30 Defining Vector Tables in “asm_sec.inc”

5.5.2 Writing Kernel Interrupt Handler
Step 1: Define kernel mask level

The kernel mask level is defined in configurator file (e.g. template.cfg) under the system definition. This step is
identical to step 1 of coding interrupts in C language.

Figure 31 Defining Kernel Mask Level

Step 2: Define interrupt vector

Figure 32 Defining Interrupt Vector

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 24 of 27
Mar 01, 2010

Step 3: Define interrupt handler

Figure 33 Defining Interrupt Handler

5.5.3 Writing Non-Kernel Interrupt Handler
Step 1: Define kernel mask level

Figure 34 Defining Kernel Mask Level

Step 2: Define interrupt vector

Figure 35 Defining Interrupt Vector

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 25 of 27
Mar 01, 2010

Step 3: Define interrupt handler

Figure 36 Defining Interrupt Handler

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 26 of 27
Mar 01, 2010

6. Reference Documents
User’s Manual

• MR8C/4 V1.00 User’s Manual
• R8C Family Hardware Manual
The latest version can be downloaded from the Renesas Technology website

Document

• Pardon the Interruption: Two Approaches to RTOS Interrupt Architectures (William E.Lamie)

R8C Family Implementing Interrupts in MR8C/4

R20AN0088ES0100 Rev.1.00 Page 27 of 27
Mar 01, 2010

Website and Support
Renesas Technology Website

• http://www.renesas.com/

Inquiries

• http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 March.01.10 — First edition issued

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
• Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
• The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
• In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
• In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
• Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

• After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
• Before changing from one product to another, i.e. to one with a different type number, confirm
that the change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
d t f diff t t b i l t t l ti t t f h f th d t

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

