
 APPLICATION NOTE

R19AN0035ED0301 Rev. 3.01 Page 1 of 117

March 18, 2020

TPS-1

PROFINET Device Design Guideline for TPS-1

Introduction

The TPS-1 is a single-chip PROFINET interface component integrating a CPU, a 2-port switch supporting latest

PROFINET specifications, the Ethernet PHYs and peripheral modules to interface to the application layer of any

application building a PROFINET IO device.

This document describes the all aspects for developing a PROFINET field device with the TPS-1. It is intended to be

guideline through all steps of a PROFINET device development in order to avoid unpleasant surprises at the customer.

Target Device

TPS-1 (MC-10105F1-821-FNA-M1-A)

When using this application note with other Renesas products than TPS-1, careful evaluation is recommended after

making modifications to comply with the alternate product.

Contents

1. Introduction and Overview .. 6

1.1 Presumptions .. 6

2. Structure of TPS Development Toolkit ... 7

2.1 Overview of TPS Development Toolkit ... 8

2.2 TPS-1 Firmware ... 8

2.3 TPS-1 Documentation ... 9

2.4 TPS Driver (API Host Application) ... 9

2.4.1 Driver API Files (Source) .. 10

2.4.2 Sample Application ... 10

2.4.3 Extended Application ... 11

2.4.4 Modifications Made for the Renesas TPS-1 Solution Kits .. 11

2.4.5 Modifications for Different Application Processors .. 11

2.5 GSDML Directory .. 12

2.6 Test and Development Tools ... 13

2.6.1 TPS Configurator .. 13

2.6.2 TPS FWUpdater ... 14

2.6.3 PROFINET Smart Control Express .. 15

2.6.4 PROFINET Configurator Express .. 16

3. Operating Modes of TPS-1 ... 17

3.1 I/O Configuration (Local IO) ... 17

3.2 Host Interface Modus (Parallel or Serial) .. 17

R19AN0035ED0301
Rev. 3.01

March 18, 2020

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 2 of 117

March 18, 2020

4. Implementation of a Field Device .. 18

4.1 PROFINET Device Model .. 18

4.2 Device Configuration .. 19

4.2.1 Synchronisation TPS-1 / Application CPU ... 20

4.2.2 Initialisation of the NRT Area ... 20

4.2.3 Device Configuration .. 23

4.2.4 Registration of Callback Functions... 27

4.2.5 Setting the Device Software Function .. 27

4.2.6 Device Start (TPS_StartDevice())... 27

4.3 Communication TPS-1 and Host CPU (Event Communication) ... 28

5. Identification & Maintenance Functions (I&M) ... 29

5.1 Assignment of the I&M Data .. 29

5.2 Using I&M Filter Data (Index 0xF840) .. 31

5.3 Initialisation of I&M Data (Device Start-up) .. 32

6. Establishing a Connection Between IO Controller and IO Device 33

6.1 Searching the Device .. 33

6.2 Connection Set Up .. 34

7. Acyclic Data Exchange via Record Data ... 35

7.1 General Procedure for Record Data Exchange .. 35

7.2 Processing of Indices 0x8028 and 0x8029 ... 37

7.3 PROFINET IO Record overview (Selection) .. 38

8. Cyclic Data Exchange .. 40

8.1 Connect Request by the Controller ... 40

8.2 Data Access to Receive and Send Buffers ... 42

8.3 Provider and Consumer Status ... 43

8.4 Providing Initial Parameters for the Field Device .. 44

8.5 Query on new cyclic output data ... 44

9. IRT Communication and IRT Application ... 46

9.1 IRT Communication .. 46

9.2 Isochronous Application .. 47

9.3 IRT Applications With the TPS-1 ... 47

9.4 IRT Keywords in the GSDML File .. 49

10. ResetToFactory Settings ... 50

10.1 Factory Reset... 50

10.2 ResetToFactory Settings .. 50

11. Ethernet Communication – TCP/IP Channel ... 52

11.1 TCP/IP Channel.. 52

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 3 of 117

March 18, 2020

11.2 Commissioning of the TCP/IP Channel .. 53

11.3 Ethernet Mirror Application .. 53

11.4 Extension of the Host API for selective reception of Ethernet frames 53

11.5 List of Used Port Numbers ... 55

12. SNMP Server ... 56

12.1 SNMP MIB II for TPS-1 .. 57

13. Update of the TPS-1 Firmware ... 58

13.1 Hardware Configuration of the TPS-1 ... 58

13.2 Preparation of Flash Images .. 58

13.3 Firmware Update via Ethernet ... 58

14. Production Environment (Default Image) ... 59

15. Special TPS-1 Properties ... 60

15.1 Automatic Adaption to the Target Configuration .. 60

15.2 Transferring Initial Parameters .. 62

15.3 TPS-1 Hardware Configuration via DPRAM .. 64

15.3.1 Generating the Configuration Block ... 65

15.3.2 Transferring the Configuration Block via DPRAM ... 65

15.4 TPS-1 Stack Update via DPRAM .. 66

15.4.1 Starting the TPS Updater ... 67

15.4.2 Transferring the Requested Firmware Image .. 67

15.4.3 Starting the TPS-Stack ... 68

15.5 Using TPS-1 Flash for Host Application Data .. 69

15.6 Generation of Process and Diagnosis Alarms ... 70

15.6.1 General Diagnosis and Alarm Processing ... 70

15.6.2 DRIVER Functions for Diagnosis and Alarm Processing ... 71

15.6.3 Example of a Diagnosis Alarm .. 71

16. GSD (General Station Description) for the TPS-1 .. 73

16.1 What is a GSD?.. 73

16.2 What is the GSDML (GSD Markup Language)? .. 75

16.3 Which Information can be Found in the GSD File? ... 75

16.3.1 Profile Header .. 76

16.3.2 Profile Body ... 76

16.4 What are the Application Implications on the GSD? ... 77

16.4.1 Conformance Classes (CC) .. 77

16.4.2 Application Classes (Optional) .. 77

16.5 What are the Key Issues in „Life Cycle Management“ of GSD? .. 78

16.5.1 What are the Implications of Changing the GSDML?.. 78

16.5.2 Do Further Developments of the Field Device Influence the GSD File? 78

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 4 of 117

March 18, 2020

16.5.3 How do I Provide the GSD to my Customers? ... 78

16.6 PROFINET GSD Checker Tool ... 79

16.7 Good Practices .. 80

16.7.1 Creating the GSD .. 80

16.7.2 Testing the GSD .. 80

16.7.3 Adaptation to a new GSDML schema ... 81

17. Wireshark Recordings ... 82

17.1 Filters for PROFINET .. 84

17.2 Filter Proposals ... 85

17.3 Typical Problem Cases ... 86

17.3.1 Station Name is not Correct ... 86

17.3.2 A ModuleDiffBlock is Created During Connect Req.. 87

18. Mechanical Requirements ... 88

18.1 Are There any Special Requirements for Housing and Plug? .. 88

18.2 Which Cables Does PROFINET Use? .. 88

18.2.1 PROFINET-Copper Cabling .. 88

18.2.2 PROFINET Fibre Optic Cabling .. 88

18.3 Which Connectors are Available for PROFINET? .. 90

18.3.1 RJ45 Connectors for Copper Cables .. 90

18.3.2 M12 Connector for Copper Cables .. 91

18.3.3 Connectors for Fibre Optic Cables ... 91

18.3.4 Connector Types BFOC and SC for FOC ... 92

18.3.5 Signal Connector .. 92

18.4 What is Important While Integrating Plugs and Connectors into the Device? 93

18.4.1 Multiport Connector .. 94

18.5 What is Important for Shielding and Earthing? ... 95

18.6 Should the MAC Address be Visible on the Device? .. 96

18.7 Must LEDs be Mounted? .. 96

18.7.1 Status LEDs ... 96

18.7.2 Link/Activity LEDs .. 97

19. Certification of a PROFINET Field Device ... 98

19.1 Is it Mandatory to Certify for PROFINET? ... 98

19.2 General Procedure for Obtaining a Certificate ... 98

19.3 What Needs to be Clarified or Prepared for a Certification by the Manufacturer? 99

19.4 Can I Continue to use the Certificate of the Technology Provider? 100

19.5 Checklist for PROFINET Certification ... 100

19.6 Which Tests are Performed for Certification? ... 100

20. Checklist for Hardware Development (TPS-1) .. 102

20.1 Power Supply Concept ... 102

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 5 of 117

March 18, 2020

20.2 JTAG Interface Circuit .. 103

20.2.1 Unused JTAG Interface .. 103

20.2.2 Used JTAG Interface ... 103

20.3 Setting the Switching Regulator / POR ... 104

20.4 Power Supply and RESET .. 104

20.5 Other Individual Signals ... 105

20.6 LED Status Signals ... 106

20.7 Network Interface .. 106

20.8 Reset Concept ... 107

20.9 Watchdog Concept ... 107

20.10 Device Identification – MAC Addresses ... 108

21. Checklist for Software Implementation ... 109

A. Abbreviations and Terms... 110

B. List of Documents .. 113

Website and Support ... 114

Revision History .. 115

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit

Products .. 116

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 6 of 117

March 18, 2020

1. Introduction and Overview

The present document describes the necessary steps for developing a PROFINET field device with the TPS-1.

The TPS-1 is designed as communication controller, which by itself (for simple applications) or in combination with an

application CPU builds a field device.

PROFINET is an established, flexible and powerful industrial Ethernet network based on the IEEE 802 standard.

PROFINET has prevailed in recent years, not only because of its open architecture but also because of its strengths.

There is the powerful diagnostic model, the possibility of coexisting with Internet protocols on the same cable or the

scalability of the communication.

So much performance is not quite for nothing. PROFINET is no simple standard. A PROFINET development requires

the cooperation of all disciplines involved.

• Mechanics

• Hardware

• Software

• Product introduction

This document discusses TPS-1 specific topics so that an implementation can be tackled quickly.

The TPS-1 does not only consist of a silicon device as hardware but also of a larger number of software products and

tools that support the development decisively.

The TPS Development Toolkit belongs to the TPS-1 and can be downloaded (after registration) free of charge from the

Phoenix Contact Software website

https://www.phoenixcontact-software.com/en/downloads

1.1 Presumptions

This description presumes that the basic hard and software properties (e.g. IO Mode, Peripheral Mode, etc.) are known.

If required, the TPS-1 data sheet and user’s manual must be consulted. The “TPS-1 Reference Manual” (Driver

description) is contained in the TPS Development kit and describes the software interface to the host CPU. The

fundamentals of PROFINET protocols must be known. The PROFINET user organization PI (PROFIBUS and

PROFINET International) e.g. offers multiple 1-day training courses per year on this topic - see PNO website

http://www.profibus.com/nc/trainingevents/

A summary of PROFINET topics is available in the book “Industrial Communication using PROFINET” by Manfred

Popp; PI order no.: 4,182 (german version: “Industrielle Kommunikation mit PROFINET by Manfred Popp, PI order

no. 4181)

Document
Type

Description
Document
Title

Document No.

Data Sheet
Hardware overview
and electrical
characteristics

TPS-1
Datasheet

R19DS0069EJ0106
(or newer)

User’s manual
for Hardware

Hardware
specifications (pin
assignments, memory
maps, peripheral
function specifications,
electrical
characteristics, timing
charts) and operation
description.

TPS-1 User’s
Manual for
Hardware

R19UH0081ED0105
(or newer)

https://www.phoenixcontact-software.com/en/downloads
http://www.profibus.com/nc/trainingevents/

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 7 of 117

March 18, 2020

2. Structure of TPS Development Toolkit

For the development of a PROFINET field device, besides the ASIC, a software package is also needed. This software

packet contains all programs and tools for the implementation and test of a field device. One only requires the

development environment for the given host CPU which is typically available from the device manufacturer.

The TPS Development Toolkit can be downloaded after registration from the following address:

www.phoenixcontact-software.com/en/downloads

Since the TPS Development Toolkit is a commercial piece of software, registration by name is required.

A combination of different stack versions (e.g. 1.2 and 1.3) has not been tested, and the function cannot be guaranteed.

Users are explicitely discouraged to mix components from different toolkit versions.

Figure 2-1 shows the interaction of the different toolkit hardware and software components; this is explained in the

subsequent chapters in more detail.

TPS-1

PROFINET

Device (HW)

Serial

Flash (HW)

Driver Package

(SW)

Host CPU

(HW)

PROFINET Device Hardware

PROFINET

Smart Control

(PC-SW)

PROFINET

Configurator

(PC-SW)

IPPNIO.xml

(SW)

TPS-1

Configurator

(PC-SW)

TPS-1

Firmware Updater

(PC-SW)

PROFINET

Stack

(SW)

TPS_Starter.s

(SW)

Terminal

Emulation

(PC-SW)

UART

P
R

O
F

IN
E

T
-E

th
e

rn
e

t

Development PC

Figure 2-1: Interaction between HW and SW components

http://www.phoenixcontact-software.com/en/downloads
http://www.phoenixcontact-software.com/en/downloads

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 8 of 117

March 18, 2020

2.1 Overview of TPS Development Toolkit

The following figure shows the directory structure of the TPS Development Toolkit.

Figure 2-2: Overview TPS Development Toolkit

Note: The version number may vary when newer versions of the toolkit have been released.

2.2 TPS-1 Firmware

The TPS-1 firmware consists of:

• TPS Updater ETH

• TPS Stack

• Hardware configuration

Before loading the firmware, first the hardware configuration of TPS-1 must be loaded in the TPS Flash (using the TPS

Configurator). The hardware configuration is done via a graphical user interface and is then transferred into Flash.

The same also applies to the TPS Updater and the TPS Stack. For this, the firmware updater is used.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 9 of 117

March 18, 2020

2.3 TPS-1 Documentation

Figure 2-3: TPS Development Toolkit Documentation

In this directory, all the necessary documents for the TPS-1 and the Driver (z. B. TPS-1 Reference Manual) can be

found. The document “GSDML Getting_Started_EN.pdf” gives an introduction into the structure and use of a GSD file.

2.4 TPS Driver (API Host Application)

The TPS Driver is an API for use on a host CPU. The software is available in source code and is linked to the

application code. The Driver facilitates the user application to be easily connected to the TPS-1. The TPS Driver is

written in ANSI C and can be used in most cases as it is.

Caution: Alterations in the Driver should be avoided. Especially, depending upon the software version, the files in

the „Source” directory are subject to change and must be interchangeable.

{

Figure 2-4: Driver code overview

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 10 of 117

March 18, 2020

2.4.1 Driver API Files (Source)

The Driver API files are divided into three parts:

• Communication interface (SPI1_Master.*)

• Driver interface (TPS_1_API.*)

• Compile Information (TPS_1_user.h)

Figure 2-5: Driver application programming interface files

All accesses to the TPS-1 DPRAM are encapsulated by access functions (for example, TPS_SetValue8 ()) and with the

help of the pre-processor setting (e.g. SPI_INTERFACE from TPS_user.h), it is decided here via which interface the

TPS-1 is to be addressed. For the SPI interface, the TPS_SPIWriteData() and TPS_SPIReadData() functions still need

to be implemented. The elementary transfer parameters, which can be processor specific, must be provided here.

2.4.2 Sample Application

The sample application consists of the „main.c“ file. All functions that are necessary for the simple operation of a

PROFINET field device are pooled together in this file. In the example, a device is configured which consists only of a

DAP, a slot, and a subslot. Two data bytes are output, and two data bytes are read.

DAP

Slot 0

Subslot 1

Slot 1

Subslot 1

I&M0 Data

I&M0 Data

Carrier

Subslot 0x8000

Subslot 0x8002

Subslot 0x8001

2 Byte Input

2 Byte Otput

Figure 2-6: Device model for sample application

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 11 of 117

March 18, 2020

2.4.3 Extended Application

The extended application gives further examples to facilitate implementation of PROFINET device features. Here, e.g.

pull and plug operations, adaptation to the target configuration, TPS-1 configuration and firmware update via the

DPRAM are illustrated.

2.4.4 Modifications Made for the Renesas TPS-1 Solution Kits

Customers that use one of the Renesas TPS-1 solution kits (YCONNECT-IT-TPS-1 or YCONNECT-IT-TPS-1L) have

several versions of the API and the sample application. Additionally to what is described in chapters 2.4.1 and 2.4.2 the

TPS-1 solution kits contain CPU-specific adaptations of these software elements. The supported target CPUs are the

• the µPD70F3767 from the Renesas V850 MCU family (used as well on the solution kit hardware board)

• the R5F5630E from the Renesas RX63x MCU family

• the R5F52315ADFP from the Renesas RX23x MCU family (only YCONNECT-IT-TPS-1L)

• the R7FS7G27H3A01CFC from the Renesas Synergy MCU family (only YCONNECT-IT-TPS-1L)

Files from the Phoenix Contact Software original and the Renesas adaptations should not be mixed.

2.4.5 Modifications for Different Application Processors

Before compiling the Driver it is necessary to check the preprocessor option (TPS_1_user.h). Data structures inside the

file TPS_1_API.h must be packed.

This is necessary because the TPS-1 internal CPU uses packed structures and if an application CPU does not follow

these instructions you will not find the correct addresses inside the DPRAM.

Figure 2-7 shows a short code snip from TPS_1_user.h. If you use other tool chains than IAR EWV850, you have to

check, how your specific compiler handles data packing. Normally you will have to fill up the #else case in the code

snip with code needed to “emulate” the behavior or the IAR EWV850 compiler.

/*---*/

/* For IDE's other than IAR Workbench you have to define your own */

/* packing directive. Otherwise the structure alignment might be wrong! */

/*---*/

#if defined(__IAR_SYSTEMS_ICC__)

 #define PRE_PACKED _Pragma("pack(1)")

 #define POST_PACKED _Pragma("pack()")

#else

 #define PRE_PACKED

 #define POST_PACKED

#endif

Figure 2-7: Data packing instructions in TPS_1_user.h

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 12 of 117

March 18, 2020

2.5 GSDML Directory

The GSDML directory contains two examples of GSDML files that match to the „Sample Application“(GSDML-

V2.31-Phoenix_Contact-TPS1-Template-20150603.xml), and the „Extended Application“(GSDML-V2.31-

Phoenix_Contact-TPS1-Extended-20151026.xml) respectively. You should modify these files stepwise and after

successful commissioning only.

Note: The creation dates given here correspond to version V1.3.1.16 of the TPS-1 development toolkit. Newer

versions may have newer GSDML files.

GSDML-V2.31-Phoenix_Contact-TPS1-Template-20150603.xml

Version of the

GSDML schema
Manufacturer name Device Type Creation date

Figure 2-8: GSDML name convention

Figure 2-8 describes the structure of a name for a description file. The file name must be compliant to this convention

and will be verified during the certification.

This scheme version is not related to the PROFINET version.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 13 of 117

March 18, 2020

2.6 Test and Development Tools

For the test and subsequent commissioning, additional software tools are available in the TPS Development Toolkit.

The following chapters provide a brief overview of the use of these tools; they do not replace studying the manuals and

other related documents.

2.6.1 TPS Configurator

The TPS Configurator is a tool for configuring the TPS-1 hardware. The desired characteristics for specific device

development are determined by a graphical user interface and then transferred to the TPS Flash using the Ethernet

interface.

Figure 2-9: Start screen TPS Configurator

With the TPS Configurator, the operating mode and the interfaces used (e.g. Ethernet copper, Ethernet fiber optic, SPI

interface, parallel interface) can be selected.

Note: Since TPS Development Toolkit V1.7.0 in TPS Configurator, fiber optic interface support is no longer available

and a new tab “Special Setting” has been introduced to customize BER setting. Attention!! changing the default BER

setting can have a negative effect on the functionality of the system.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 14 of 117

March 18, 2020

2.6.2 TPS FWUpdater

The TPS FWUpdater tool is used to initialize the firmware (TPS Updater and TPS Stack). In the finished PROFINET

field device, this tool can be used for an update of the TPS Firmware.

Figure 2-10: Power-up-screen TPS FWUpdater

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 15 of 117

March 18, 2020

2.6.3 PROFINET Smart Control Express

The PROFINET Smart Control Express application is a software IO controller (PLC) in reduced form, useful for

making initial steps towards the development of a module. It is possible to establish a connection to a device. It is

possible to exchange cyclic and acyclic data so that individual development steps can be tested easily. PROFINET

Smart Control Express is installed on a PC (see Figure 2-1).

Figure 2-11: PROFINET Smart Control Express

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 16 of 117

March 18, 2020

2.6.4 PROFINET Configurator Express

Configuration of a PROFINET network is a must. A PROFINET Configurator Express is included in the Toolkit for

this task. The IPPNIO.xml file created here is loaded by the PROFINET Smart Control and defines the network (see

Figure 2-1).

Figure 2-12: PROFINET Configurator Express

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 17 of 117

March 18, 2020

3. Operating Modes of TPS-1

The TPS-1 can be operated in two different modes. For simple IO applications (maximum 48 GPIOs) the chip can use

an internal application. For complex and demanding applications, an application processor can be connected, which

processes the PROFINET device specific firmware.

3.1 I/O Configuration (Local IO)

In this operating mode, the PROFINET interface cannot be programmed by the user. The use of the 48 GPIOs is set-up

with the TPS Configurator. It is possible to set-up Inputs and outputs, as well as diagnostic inputs. If the number of IOs

proves to be insufficient, then it is possible to use external IO devices via an SPI master and to drive up to 340 bytes

with it.

3.2 Host Interface Modus (Parallel or Serial)

In the Host Interface mode, another processor is connected to the TPS-1 (Peripheral Interface) which operates either via

parallel (8 or 16-bit data bus width) or an SPI interface. Also, here the hardware configuration is done using the TPS

Configurator.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 18 of 117

March 18, 2020

4. Implementation of a Field Device

For the configuration of a TPS based PROFINET device, a few software program steps must be executed which are

described below. The description given here is no substitute for reading the DRIVER program code.

4.1 PROFINET Device Model

The process data addressing is derived from the structure of a PROFINET field device. PROFINET has a uniform

addressing model and one can differentiate between compact and modular field devices. In case of modular devices, a

different device function can be selected through add-on hardware.

Figure 4-1: PROFINET device model

The following parts are to be differentiated:

• the device with Slot 0, Subslot 1 as DAP (Device Access Point)

• individual peripheral modules by slots

• individual I/O channels of a peripheral module within subslots

• program parts/functions within a peripheral module by indices (only in acyclic data transaction)

• assignment of alarms based on the corresponding message

Device expansion and its possibilities are described in the GSD file. Only combinations which are described here can be

configured using the engineering tool of the PROFINET controller

For device configurations, precisely these settings are made by the device manufacturer’s (application CPU) firmware.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 19 of 117

March 18, 2020

4.2 Device Configuration

Figure 4-2 describes the sequence of necessary steps that a device must have executed in host mode up to the start of

connection (Connect.Req). The names of the related functions in the API are shown in red.

Synchronisation TPS-1 / Application CPU

TPS_CheckStackStart()

Initialisation NRT Area

TPS_InitApplicationInterface()

PROFINET Device Configuration

App_ConfigDevice()

Register Callback Functions

App_RegisterCallbackFunctions()

Start Device

TPS_StartDevice()

Figure 4-2: Device configuration sequence

The necessary operations are carried out in the DPRAM of the TPS-1. The NRT area starts from address 0x8000 and

contains the configurations for the device, the Slot / Subslot configuration and the mailboxes for acyclic data exchange

(Record Data).

The steps illustrated in Figure 4-2 will be explained in more detail in the next chapters.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 20 of 117

March 18, 2020

4.2.1 Synchronisation TPS-1 / Application CPU

After turning on the power supply or after a reset, the TPS-1 begins to load the stack from the TPS Flash to start. After

the TPS-1 has completed its initialisation, it writes the so-called magic number at address 0x8000 and the size of the

NRT area at address 0x8004. These values are always accessible here and can be used for test purposes (these values

apply to stack version V1.4.0.14 and may be subject to change in the newer versions):

• Magic number 0x0400 0009

• NRT area size 0x0000 8000

TPS-1

0x8000

0x8004

0x0000

0xFFFF

Magic number

NRT area size

ARM CPU

Application CPU

The application CPU

reads the magic number

to recognize the start up

of the TPS-1
NRT area

DPRAM

Figure 4-3: Start-synchronisation

This status can be checked by calling the TPS_CheckStackStart() function. This function always provides the DRIVER

in the latest version.

Note: The TPS-1 Flash can also be programmed without a functional host connection via the Ethernet interface.

4.2.2 Initialisation of the NRT Area

By calling the TPS InitApplication Interface () function, the basic settings for the memory areas (DPRAM) and global

variables are made. No alterations should be made here. You will find a complete picture of the NRT area in the TPS-1

Reference Manual.chm

Address Name Description

0x8000 USIGN32 dwMagicNumber Show the correct start of the TPS-1;
actual value 0x0400 0009

0x8004 USIGN32 dwNrtMemSize Show the NRT Area Size (0x8000)

0x8008 USIGN16 wVendorID PROFINET ID of the vendor

0x800A USIGN16 wDeviceID Device ID (chosen by the vendor)

0x800C USIGN8 byStationName
[STATION_NAME_LEN]

Max. 240 character - length of
"Name of Station" without
terminating

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 21 of 117

March 18, 2020

Address Name Description

0x80FC USIGN16 wReserved

0x80FE USIGN16 wDeviceVendorTypeLength Length of the Device Vendor Type

0x8100 USIGN8 byDeviceVendorType
[TYPE_OF_STATION_STRING_LEN]

Max. 25 character - length of "Type
of Station"

0x8119 USIGN8 bySerialnumber
[IM0_SERIALNUMBER_LEN]

Max. 16 character - length of serial
number

0x8129 USIGN8 byOrderId[IM0_ORDERID_LEN] Max 20 character - length of order ID

0x813D USIGN8 byPadding
[TYPE_OF_STATION_PADDING]

Padding (92 byte)

0x8199 USIGN8 dwFastStarupParam
[SIZE_FSU_PARAMETER]

Fast start up parameter - max. 20
bytes

0x81AD USIGN32 dwIOBufferLenAr
[MAX_ARS_SUPPORTED]

CR dependent length of the IO data

0x81B9 USIGN32 dwApduAddrForCr
[MAX_ARS_SUPPORTED]

Offset of the APDU for the output
data of an AR

0x81C5 USIGN32 dwHostProtoSelector Protocol selector (see example)

0x81C9 USIGN16 wLEDState Bit(1:on/0:Off)

0:BF, 1:SF, 2:MD, 3:MR, 4:LinkP1,
5:LinkP2, 6-31:Reserved;

0x81CB USIGN16 wResetOption FactroryToReset option

0x81CD USIGN32 dwTPSFWVersion

0x81D1 USIGN32 dwAPIVersion Contain the driver version (e.g. 0x14
-> 1.4)

0x81D5 USIGN32 dwReservedValue

0x81D9 USIGN8 byAppConfMode Access Mode for name of station

0x81DA USIGN8 byInterfaceMac
[MAC_ADDRESS_SIZE]

MAC address device (6 byte)

0x81E0 USIGN8 byPort1Mac [MAC_ADDRESS_SIZE] MAC address port 1 (6 byte)

0x81E6 USIGN8 byPort2Mac [MAC_ADDRESS_SIZE] MAX address port 2 (6 byte)

0x81EC USIGN8 byRevisionPrefix Element of the firmware version

0x81ED USIGN8 byRevisionFunctionalEnhancement Element of the firmware version

0x81EE USIGN8 byBugFix Element of the firmware version

0x81EF USIGN8 byInternalChange Element of the firmware version

0x81F0 USIGN32 dwIPAddress Device IP Address (4 byte)

0x81F4 USIGN32 dwSubnetMask Device Subnet Mask (4 byte)

0x81F8 USIGN32 dwGateway Device Gateway Address (4 byte)

0x8200 USIGN16 Max Number of IOAR Possible number of active
Application Relations (2 byte)

0x8202 USIGN16 First Record Mailbox

Table 4-1: NRT memory address

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 22 of 117

March 18, 2020

The table above shows the addresses and parameters at the beginning of the NRT area. The structure is valid in version

1.5.1.2 of the TPS-1 stack. Please refer to the structure NRT_APP_CONFIG_HEAD from the file TPS_1_API.h for

more information.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 23 of 117

March 18, 2020

4.2.3 Device Configuration

The device configuration determines the structure and addressing of the field device.

The first step is to call the function TPS_AddAPI(). This function sets up the API (Application Process Identifier) in the

NRT area (the function should not be altered). The typical value for the API (Application Process Interface) is the

0x0000. Other applications may require other values (e.g. PROFIdrive)

The DRIVER is configured by the App_ConfigDevice() function.

TPS_AddDevice()

Set Software

Revision

Function App_ConfigDevice()

Add

 Device Access Point

(Slot 0, Subslot 1)

TPS_PlugModule()

TPS_PlugSubmodule()

Another

Submodule

Another Slot

End of Slot

Configuration

Yes

Yes

Figure 4-4: Device configuration with the App_ConfigDevice() function

Within the App_ConfigDevice() function, the DAP (Slot 0 / Subslot 1) is set first. In a further step the software revision

is set. The software revision is required at various places (e.g. for I&M data). The TPS_Add Device () function creates

several entries in the NRT area and mailboxes, which serve to manage the device.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 24 of 117

March 18, 2020

1) Adding a Module (Slot)

In the device GSD, each module (slot) must be described in the ModuleList. The GSD data are used by the engineering

tool for PROFINET controller setting. A typical module entry is shown in

Figure 4-5.

<ModuleList>

 <ModuleItem ID="ID_Mod_01" ModuleIdentNumber="0x00000002">

 <ModuleInfo CategoryRef="ID_Out">

 <Name TextId="TOK_TextId_Module_1IO" />

 <InfoText TextId="TOK_InfoTextId_Module_1IO" />

 <HardwareRelease Value="1.0" />

 <SoftwareRelease Value="1.0" />

 </ModuleInfo>

 <VirtualSubmoduleList>

 .

 .

 </VirtualSubmoduleList>

 </ModuleItem>

</ModuleList>

Figure 4-5: Module entry in the GSDML

All further modules are added by the TPS_PlugModule() function. It is important to note at this point that the

„ModuleIdentNumber“ must as well be available in the GSD file. Deviating values prevent later a connection of the

PROFINET controller to the field device

SLOT* TPS_PlugModule (API_LIST* pzApi,

 USIGN16 wSlotNumber,

 USIGN32 dwModuleIdentNumber)

Figure 4-6: Function call TPS_PlugModule()

A detailed description of the function can be found in [2]. The function returns a handle on the slot to which one or

more subslots can be connected.

2) Adding Submodules to the Device

With the TPS_PlugSubmodule() function, a submodule is added to the configuration. A submodule is a structure for

data exchange. A VirtualSubmoduleItem describes a submodule (always in conjunction with a module).

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 25 of 117

March 18, 2020

<VirtualSubmoduleList>

 <VirtualSubmoduleItem ID="1" SubmoduleIdentNumber="0x0002" API="0">

 <IOData IOPS_Length="1" IOCS_Length="1">

 <Input Consistency="Item consistency">

 <DataItem TextId="T_ID_IN_2BYTE" DataType="OctetString" Length="2"

 UseAsBits="true" />

 </Input>

 <Output Consistency="Item consistency">

 <DataItem TextId="T_ID_OUT_2BYTE" DataType="OctetString"

 Length="2" UseAsBits="true" />

 </Output>

 </IOData>

 .

 .

 <ModuleInfo>

 <Name TextId="TOK_TextId_Module_1IO" />

 <InfoText TextId="TOK_InfoTextId_Module_1IO" />

 </ModuleInfo>

 </VirtualSubmoduleItem>

</VirtualSubmoduleList>

Figure 4-7: VirtualSubmoduleItem entry in the GSD

The number of parameters passed gets larger because the data exchange structures are created here. Within the NRT

area an administrative structure for a module and submodule is created, which contains all information about the data to

be exchanged.

 SUBSLOT* TPS_PlugSubmodule(SLOT* pzSlotHandle,

 USIGN16 wSubslotNumber,

 USIGN32 dwSubmoduleIdentNumber,

 USIGN16 wInitParameterSize,

 USIGN16 wNumberOfChannelDiag,

 USIGN16 wSizeOfInputData,

 USIGN16 wSizeOfOutputData,

 T_IM0_DATA* pzIM0Data,

 BOOL bIM0Carrier)

Figure 4-8: Calling parameter of the TPS_PlugSubmodule

Among the parameters passed, the "wInitParameterSize" is important; it sets the size of initial parameters to be passed

following the Connect.Req. The initial parameters are loaded from the GSDML file. An adequately sized memory space

must be kept free within the NRT area.

wInitParameterSize = HeaderSize + InitParameterSize; (HeaderSize 6 Byte)

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 26 of 117

March 18, 2020

If substitute values have been defined for the field device, then these are stored behind the initial parameters in the NRT

area. A header (6 bytes) is available also for the substitute values.

wInitParameterSize = HeaderSize + InitParameterSize +HeaderSize + SUBSTITUTE_CONFIG_SIZE);

The pointer „pzIM0Data" passes the address of a memory area containing the data. The Boolean value of

„bIM0Carrier" indicates whether I&M0 data belong directly to the submodule or whether the pointer references to a

different submodule (Carrier). This process is discussed in Chapter 5.1 in more detail.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 27 of 117

March 18, 2020

4.2.4 Registration of Callback Functions

The communication between the TPS-1 and a connected host CPU is done via an event register. The event register

query is organized via the TPS_CheckEvents() function. For each event, a callback function is invoked, which carries

out the necessary actions as required. The list of events is given in the TPS-1 user manual [1].

The Callback functions are registered with the „App_RegisterCallbackFunctions()“function.

4.2.5 Setting the Device Software Function

For many queries, the TPS-1 must deliver the application software (e.g. I&MO) version. For setting this version,

constants are defined in the TPS_1_user.h file.

Name of the constant Definition

SOFTWARE_REVISION_PREFIX V

SOFTWARE_REVISION_FUNCTIONAL_ENHANCEMENT 10

SOFTWARE_REVISION_BUGFIX 1

SOFTWARE_REVISION_INTERNAL_CHANGE 20

Table 4-2: Constants for the software version

Note: This is not the TPS-1 Stack version. For the certification, „V“ must be entered as SOFTWARE REVISION

PREFIX. These constants are used in the App_ConfigDevice() and App_InitIMData() functions. Both points

must match for successful certification.

4.2.6 Device Start (TPS_StartDevice())

The „TPS_StartDevice()“ function signals to the TPS-1 that all configurations have been carried out and the data can be

checked. The TPS-1 checks the data in the NRT area and then goes into operation. From this point onwards one can

communicate with the field device via the PROFINET interface.

Note: If configuration problems occur, the debug information from the TPS-1 UART interface must be evaluated.

For this, the debug version of the TPS-1 stack must be transferred into the TPS-1 Flash.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 28 of 117

March 18, 2020

4.3 Communication TPS-1 and Host CPU (Event Communication)

Following the device start, the event registers of the TPS-1 are polled in a cyclic loop (TPS_CheckEvents ()). There

are registers in the host CPU direction and back to the TPS-1 for confirmation and additional calls.

Event Register

TPS-1

(32-Bit)

Event Register

Application CPU

(32 Bit)

Host

Application

CPU

TPS-1

PROFINET IO

Device

Write Read

Read Write

Figure 4-9: Event Communication TPS-1 - Host Application

The list of occurring events is available in the TPS-1 User Manual [1]. Events must always be reset after the processing

so that then a new event can be displayed here.

An incoming Connect.Req would, for example, trigger the AR0 event „EVENT_ONCONNECT_REQ_REC_0“.

In the sample application, the function TPS_CheckEvents() is called cyclically (polling). It is also possible to configure

certain events in such a way that their occurrence triggers an interrupt (INT_OUT, Pin K11). One or more events can be

selected as interrupt triggers.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 29 of 117

March 18, 2020

5. Identification & Maintenance Functions (I&M)

The functions I&M serve to read the basic information from a field device. The information is defined in the data

structures in the specification and is divided into I&M0 to I&M4. The data is read via Record-Data-Read and written

with Record-Data-Write.

I&M Parameter Status Index Access

I&M0 mandatory 1 0xAFF0 R

I&M1 optional 2 0xAFF1 R/W

I&M2 optional 2 0xAFF2 R/W

I&M3 optional 2 0xAFF3 R/W

I&M4 optional 2 0xAFF4 R/W

I&M0FilterData mandatory 1 0xF840 R

Note 1: Each PROFINET device must provide at least one submodule as device representative

which supports I&MO functions.

Note 2: Mandatory, read- and writeable, for at least one subslot, e.g. interface submodule

Table 5-1: I&M data

The individual parameters can be found in the corresponding PROFINET specification.

Note: It must be possible to write data into IM1 to IM3 on a carrier, if this IM is available. The application must

retain the data.

5.1 Assignment of the I&M Data

I&M data are assigned to each submodule. It is not necessary to set-up individual I&M data for every submodule. For

example, a data set may exist for the DAP. All other modules then possess a pointer pointing to these data (carrier) as

illustrated in Figure 5-1.

Figure 5-1: I&M data in a compact field device

DAP

Slot 0

Subslot 1

Slot 1

Subslot 1

Subslot 2

I&M0 Data

I&M0 Data

I&M0 Data
Carrier

Subslot 0x8000

Subslot 0x8002

Subslot 0x8001

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 30 of 117

March 18, 2020

The TPS driver provides the TPS_PlugSubmodule function for plugging-in a submodule.

SUBSLOT* TPS_PlugSubmodule(SLOT* pzSlotHandle,

USIGN16 wSubslotNumber,

USIGN32 dwSubmoduleIdentNumber,

USIGN16 wInitParameterSize,

USIGN16 wNumberOfChannelDiag,

USIGN16 wSizeOfInputData,

USIGN16 wSizeOfOutputData,

T_IM0_DATA* pzIM0Data,

BOOL bIM0Carrier)

Figure 5-2: TPS_Plug_Submodule function

The parameter „BOOL bIMOCarrier“ specifies whether the pointer „pzIM0Data“ is a carrier module (TPS_TRUE)

or is it a reference to the carrier (TPS_FALSE).

Each submodule can receive its own I&M data. Especially in modular field devices, module-specific I&M data exists.

Figure 21 describes the relationship in detail.

Individual modules possess e.g. an order number and a dedicated description. If required, the operator can identify these

easily.

Figure 5-3: I&M-Data for modular field devices

Care must be taken during implementation that all submodules deliver the corresponding data.

Carrier

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 31 of 117

March 18, 2020

5.2 Using I&M Filter Data (Index 0xF840)

The TPS-1 stack answers the index 0xF840. If you are requesting this information, the TPS-1 provides all submodules

that are carrier for I&M data.

Figure 5-4: I&M0FilterDataSubmodul

In a second step the controller asks for I&M0 data (index 0xAFF0). Inside I&M0 data you get the information

IM_Supported. This variable decode the available I&M Data as shown in Figure 5-5.

It is necessary to register the supported I&M data for each carrier. For registration the function

TPS_RegisterIMDataForSubslots() (please refer the reference manual) must be called.

Figure 5-5: I&M0 data with IM_Supported structure

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 32 of 117

March 18, 2020

5.3 Initialisation of I&M Data (Device Start-up)

In the application example, I&M data is created with the „App_InitIMData()“ function. This function creates a

complete data set (IM0 – IM4) in the example. Depending upon the field device, the manufacturer must then specify

which data he wishes to deliver (this must match the GSDML tag “Writeable_IM_Records”).

The function „TPS_RegisterIMDataForSubslot()“ assigns a created data set to a submodule. This function is called

by the function “TPS_PlugSubmodule()”, e.g. during the start up.

While writing I&M data (I&M1…4), the application must ensure that the necessary data are retained. I&M Write data

are received in the "AppWriteIMData ()" function. If necessary, a routine must be built-in to ensure the data retention.

The function “onImDataChanged()” (registered callback function) must store new I&M data to your permanent

memory (e.g. Flash memory).

Note: If I&M1-4 are supported it is necessary to store and restore data during start up out of your permanent

memory. The structures g_pIM1_Data, g_pIM2_Data, g_pIM3_Data, g_pIM4_Data must be filled. In the

extended example you find a solution for restoring I&M data (restoreImFromFlash()).

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 33 of 117

March 18, 2020

6. Establishing a Connection Between IO Controller and IO Device

The first step for establishing a connection between an IO Controller and an IO Device is to search for an IO Device. In

PROFINET networks, specific devices are not searched by the IP address; rather each device is assigned a

„NameOfStation“ which serves as a unique device reference.

6.1 Searching the Device

The search for a specific device name is done with the DCP protocol. The search is triggered by sending the PNO

multicast address (01:0E:CF:00:00:00), to which only PROFINET devices react.

IO-Controller IO-Device

DCPIdentify.req

(Identify.Req (Name))

DCPIdentify.res

(Ident Ok (Name))

ARP-REQ

ARP-RES

Check NameOfStation

Check IP Address

Set IP Address

DCPSet.req

(Set Req)

DCPSet.res

(Set OK)

Figure 6-1: Identify Request

If required, the DCPSet.req assigns a new IP address to the IO Device. This address is derived from the configured data.

Figure 6-1 illustrates the process.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 34 of 117

March 18, 2020

6.2 Connection Set Up

After addressing the IO Device, the IO Controller can establish a connection. In general, an IO Controller builds a

separate connection with each participating IO Device. A description of the individual steps can e.g. be found in [9].

IO-Controller IO-Device

Connect.req

Connect.res

AR build up for the

 IO Device

Write.req

Write.res

DControl.req

(EndOfParameterization)

DControl.res

(End of Par.rsp)

CControl.req

(Application Ready)
CControl.res

Application Ready Res

AR build up for the

controller

Inputs Outputs

Figure 6-2: Connection set up

As soon as the IO Controller has finished writing all initialisation parameters (red in Figure 6-2), a Control.req

(ParameterEnd) is sent (blue). This event is forwarded to the application. The parameters sent previously are associated

with the data supporting subslots. The customer implementation must now process this data before the Control.req

sends a Ready to the IO Controller (green), and a connection is established (before sending the Application Ready the

consumer and the provider status must be set-up correctly).

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 35 of 117

March 18, 2020

7. Acyclic Data Exchange via Record Data

PROFINET offers certain options so that besides the cyclic data traffic for transferring the process data, it is also

possible to exchange data (e.g. read and write parameter) non-cyclically between the initiator and the responder via the

„Record Data Communication Relation."

Acyclic data do not have high priority and are only sent if required, using the RPC-Protocol. The acyclic services can be

executed by the controller as well as by the supervisor.

Write.Requests are allowed only within an established CR. Read.Requests can also be executed without establishing a

connection in advance as it does not affect the process.

Chapter 7.2 provides an overview of frequently used PROFINET records. Some of these records must be processed

with a host application.

Note: The record data exchange described here refers only to the TPS-1 with an attached host CPU. In the local IO

mode, the TPS-1 responds to all record queries.

7.1 General Procedure for Record Data Exchange

RPC

Timeout

(300 sec)

Start Service

Service

Processing

Read / Write REQ

Read / Write RES

PN Controller PN Device

Figure 7-1: Record-Data Request / Response

A controller sends e.g. a RecordRead.Request, and after processing, receives a RecordRead.Response back - either from

the TPS-1 firmware or from the device application.

The corresponding event is then set in the event register via the event interface. After that, the corresponding processing

routine is called via the TPS_CheckEvents() function. Table 7-1 shows some typical events for the handling of acyclic

data.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 36 of 117

March 18, 2020

Event Meaning:

TPS_EVENT_ONREADRECORD A RecordRead.REQ has arrived. This event is only set for
requests which cannot be answered by the TPS firmware.

TPS_EVENT_ONWRITERECORD A RecordWrite.REQ has arrived. This event is only set for
requests which cannot be answered by the TPS firmware.

APP_EVENT_RECORD_DONE The application has processed a Record.Request; the answer
is available in the mailbox and can be returned by the TPS-1.

Table 7-1: Acyclic events

The incoming requests are processed in two steps. Some requests are already implemented in the DRIVER (e.g. Write-

IM1-0xAFF1, etc.). These will be answered by the DRIVER without own implementation in the application. A

Callback function is registered in the default branch of a Switch statement; in the case of another request, this function

will be executed.

Call

TPS_CheckEvents()

Event

TPS_EVENT_ONREADRECORD

Call

AppOnReadRecord()

Index

implemented

Yes

Call

Callback function for

ONREADRECORD_CB

Additional implementation

by the HOST CPU

Programmer

Reset Event

App_EVENT_RECORD_DONE

and send record

(driver function)

No

Figure 7-2: Acyclic data exchange flow for “Read.Request”

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 37 of 117

March 18, 2020

In this Callback function, the index to be processed must be added to the customer implementation, and the

implementation must then be saved.

The same applies to the Write-Request. The flow is identical. Taking the indices 0x8028 and 0x8029 as an example,

chapter 7.2 describes the process in detail.

7.2 Processing of Indices 0x8028 and 0x8029

By polling the indices "Record Input Data Object Element" (0x8028) and "Record Output Data Object Element"

(0x8029), a controller or a supervisor can check the current input and output data without affecting the cyclic messages.

The event „TPS_EVENT_ONREADRECORD“ indicates that a „ReadRecordRequest“ has occurred. Then, within the

TPS_CheckEvent() function, the AppOnReadRecord() function (in file TPS_1_API.c) is called.

AppOnReadRecord()

{

 switch(mailBoxInfo.wIndex)

 case RECORD_INDEX_RECORD_INPUT_DATA_OBJECT:

 AppReadRecordDataObject(..);

 break;

 case RECORD_INDEX_RECORD_OUTPUT_DATA_OBJECT:

 AppReadRecordDataObject(..);

 break;

 default:

 break;

}

Figure 7-3: Function body AppOnReadRecord()

The AppOnReadRecordDataObject() function must be adapted for the planned application. The function then provides

the subslot data.

Note: This adaptation is mandatory for each field device.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 38 of 117

March 18, 2020

7.3 PROFINET IO Record overview (Selection)

PROFINET
Index

Description Information
Used by:
1) TPS-1 Stack
2) Application

Suitable
submodules

0x0000 -
0x7FFF

user specific definded by user 2)

0x2000 -
0x20FF

reserved by TPS-1 Do not use! 1), 2)

0x8000 ExpectedIdentification
Data

This returns the current
expected configuration for
the specified connection.

1) All

0x8001 RealIdentificationData for
one Subslot

This returns the currend
expected configuration for
the current device.

1) All

0x800C Diagnosis, Maintenance,
Qualified and Status for
one Subslot

 1) All

0x8020 PDIRSubframeData for
one Subslot

0x8027 PDPortDataRealExtended
for one Subslot.

Mandatory for port
submodule in version 2.32
(2.31 optional)

1)

0x8028 RecordInputDataObject
Element

This record returns the
input data object for one
subslot.

2) All

0x8029 RecordOutputDataObject
Element

This record returns the
output data for one
subslot.

2) All

0x802A PDPortDataReal for one
Subslot

Reading the LLDP
information of one
physical subslot via
record data.

1) Port

0x802B PDPortDataCheck for one
subslot

Reading Port Data, e.g.
Mau Type, Link State, etc.

1) Port

0x802C PDIRData for one subslot Forwarding information for
IRT data.

0x802D PDSyncData for one
subslot with SyncID value
0

0x802E Reserved (legacy)

0x802F PDPortDataAdjust Adjustment of port
parameter (e.g. MAU-
type)

1) Port

0x8030 IsochronousModeData for
one Subslot

 1), 2) Slot

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 39 of 117

March 18, 2020

PROFINET
Index

Description Information
Used by:
1) TPS-1 Stack
2) Application

Suitable
submodules

0xAFF0 I&M0 (mandatory) read
only

Return of information - the
structure is defined in the
specification.

2) All

0xAFF1 I&M1 (optional) read/write Return of information - the
structure is defined in the
specification.

2) All

0xAFF2 I&M2 (optional) read/write Return of information - the
structure is defined in the
specification.

2) All

0xAFF3 I&M3 (optional) Return of information - the
structure is defined in the
specification.

2) All

0xAFF4 I&M4 (optional) Return of information - the
structure is defined in the
specification.

2) All

0xE040 WriteMultiple In the start-up phase,
several blocks of initial
parameters are
transferred in a Write-
Record to a device.

0xF840 I&M0FilterData This query provides the
carrier containing I&M0
data. To determine the
supported I&M, a query
about the I&M0 data of
the carrier must be made.

1), 2) All

0xF841 PDRealData Information data of all
PDV submodules

1)

0xFBFF Trigger Index Trigger index for the RPC
connection inside the
CMSM

Table 7-2: Table PROFINET IO Records

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 40 of 117

March 18, 2020

8. Cyclic Data Exchange

With the help of the GSDML file, the controller determines the structure of the cyclic data output (Output) and data

input (Input). Using the Connect.Req, the controller informs the device how this structure looks like. The device must

adapt itself to these requirements.

If a device is not in possession of the expected module or submodule, then the „TPS-1“ generates a ModuleDiffBlock,

which is attached to the Connect.Req. If needed, the controller can operate the connection partially with it.

Figure 8-1 illustrates the basic sequence of data exchange. Messages are sent in each direction and stored in the

corresponding data buffers. The respective devices then fetch the data from or write into the data buffer. By default,

data exchange follows the Consumer-Provider model.

IO - Controller IO - Device

Buffer

Buffer Buffer

Buffer

Cyclic-Update

Cyclic-Update

Provider

Provider

Consumer

Consumer

Figure 8-1: Cyclic data exchange Controller - Device

8.1 Connect Request by the Controller

The Connect.Req represents the central entry point in the cyclic data exchange. As soon as the device has completed its

ramp-up, the controller can connect to it. The Connect.Req provides the expected configuration to the device

(ExpectedSubmoduleBlockReq). The device compares it with its slot, subslot configuration and sends back a

Connect.Res to the controller (see chapter 6.2).

After the Connect.Req, the initial parameters (Write.Request) are sent, and at the end the device reports

„ApplicationReady“ and starts with cyclic data exchange.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 41 of 117

March 18, 2020

Figure 8-2 shows a part of a Connect.Req, where the expected configuration is described. The module provides only

one slot and one subslot each for the data exchange.

Figure 8-2: Expected Configuration block in a Connect.Req

Within the Connect.Req, the controller also specifies where the subslots, as well as the provider and consumer status

related data, are located. The order may differ for each controller. For accessing these data, pointers within the subslot

data must be used. These pointers are managed by the TPS-1 and provide the correct position for the output and input

data (the offset is calculated from the beginning of the IO RAM - 0x2000).

(Start Payload)

(IOCS)
(IOCS)

(IOCS)

(IOCS)
(IOCS)

Figure 8-3: Position of the cyclic data in IO RAM

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 42 of 117

March 18, 2020

The data position shown in Figure 8-3 is illustrated in Figure 8-4 the message form as one would find it in the memory.

Startaddress IORAM (0x2000)

Frame offeset 0

TransferstatusDatastatusCycleCounter

Payload

start at Frame offset 5

IOPS: Slot 1, Subslot 1IOCS: Slot 1, Subslot 0x1

IOCS: Slot 0, Subslot 0x8002

IOCS: Slot 0, Subslot 0x8001

IOCS: Slot 0, Subslot 0x8000

IOCS: Slot 0, Subslot 1

Figure 8-4: Output data representation in IO RAM

The TPS-1 memorizes the order of the data and places it as per controller instruction e.g. in the receive buffer. The host

CPU can now access this data.

8.2 Data Access to Receive and Send Buffers

For cyclic data exchange (IO data), the TPS-1 provides a triple buffer mechanism in receive and send direction. This

ensures that a new buffer is always available for data processing.

The processing cycle begins with fetching the current data buffer (TPS_UpdateOutputData(bActiveIOAR)). By calling

this function, the current output buffer becomes available. The data are displayed in the IO RAM and the output data

can be processed.

The application compiles the input data and places it in the input buffer using the TPS_WriteInputData(pzSubmodule,

g_byIOData, wSizeInputData, IOXS_GOOD) function. At the same time, the provider status for the submodule

(pzSubmodule) processed here is set. If needed, this process must be executed for each of the plugged-in submodules.

After the input data have been placed in the IORAM, the TPS_SetOutputIocs() function is called to set the consumer

status.

With this, all data are available in the IORAM (Input), and the buffer can be submitted to TPS-1 for sending with

(TPS_UpdateInputData(bActiveIOAR)).

This completes the transfer of cyclic data.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 43 of 117

March 18, 2020

8.3 Provider and Consumer Status

Each submodule receives (if configured in the GSDML) and sends cyclic data. For received data, the provider status

(IOXS) is checked and for the input data, the consumer status is set.

While sending the Application Ready event, it must be ensured that the provider and consumer status are set correctly.

In the Callback function App_OnPrmEndCallback(), the output buffer is updated three times at the end of the function.

The result is that all the buffers contain the correct data and controller status.

Also, for all subslots with data, a provider status initialisation must be carried out (App_InitIoxs()).In the sample code it

is necessary to do this for slot 0, subslot 1 and slot 1, subslot 1.

This completes the start-up initialisation of the IORAM. The last step is to send the cyclic frame to the controller.

Figure 8-5: Initialization out of function App_OnPrmEndCallback()

Inside the function App_On ConnectCallback() the module and submodule state must be set to MODULE_OK

(function TPS SetModuleState() and TPS SetSubmoduleState()).

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 44 of 117

March 18, 2020

8.4 Providing Initial Parameters for the Field Device

After the controller has received the Connect.Res from the field device, it starts to send initial parameters to the field

device (Write.Req). The initial parameters are based on what is specified in the GSDML file.

<ParameterRecordDataItem Index="1234" Length="2">

<Name TextId="TOK_ExampleParameter" />

<Const Data="0xAB,0xCD" />

</ParameterRecordDataItem>

Figure 8-6: Initial parameter set for two bytes

The length of the initial parameters (wInitParameterSize) must be specified when the subslot is plugged-in. It is a

Header (six bytes) plus the actual number of bytes. With the parameter length entry, space within the subslot data is

reserved. During parameter transfer, the TPS-1 automatically enters these into the free space. This structure can be

accessed with the pointer „pt_init_records“.

8.5 Query on new cyclic output data

The GSD file specifies the period in which the cyclic data sent to a device. The function

TPS_UpdateOutputData(bActiveIOAR) enables the current buffer of the Three-Buffer-Unit of IO-RAM. However, this

is not an indication that the data is new. The register PN_EVENT_LOW (0x003C) includes two bits (bit 7 and bit 8)

that indicate that new data have come from the controller.

Name PN_EVENT_LOW

Address 0x003C

Bits Name Description

31:0 Event bits

 Bit 7 Receive new data on AR1 (set to „1“)

 Bit 8 Receive new data on AR0 (set to „1“)

Table 8-1: TPS-1 PN_EVENT_LOW register

After receiving and processing the particular bit, it must be set back again by setting a correlated acknowledge bit in the

register HOST_IRQ_ACK_LOW.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 45 of 117

March 18, 2020

Name HOST_IRQ_ACK_LOW

Address 0x0020

Bits Name Description

31:0 Acknowledge bits

 Bit 7 „0“ event bit is not set back
„1“ event bit is set back

 Bit 8

Table 8-2: TPS-1HOST_IRQ_ACK_LOW register

The sample code below shows the query for AR0 and reset of the event bit by writing the register

HOST_IRQ_ACK_LOW.

/* Read PN_EVENT_LOW */

/*---*/

TPS_GetValue32((USIGN8*)PN_EVENT_LOW, &dwEventLow);

/* Mask bit 7 (AR1) and bit 8 (AR0) */

/*---*/

dwEventLow &= 0x0180;

/* Bit 8 show a message for AR0 */

/*---*/

if (dwEventLow == 0x0100)

{ printf("DEBUG_API > API: PN_EVENT_LOW %x\n",dwEventLow);

 /* Acknowledge AR0 */

 /*---*/

 TPS_SetValue32((USIGN8*)HOST_IRQ_ACK_LOW, dwEventLow);

}

Figure 8-7: Program code for requesting new cyclic data

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 46 of 117

March 18, 2020

9. IRT Communication and IRT Application

9.1 IRT Communication

The term isochronous (Greek: isokhronos, from isos = 'equal' + khronos = 'time') is used when an operation repeats in

precisely equal time intervals. In PROFINET, the isochronous behaviour of cycles is produced by the highly accurate

(deviations less than 1 µs) synchronisation between the devices. This allows reading the input signals and activating the

output signals at the same time within a system.

In the PROFINET context, the isochronous behaviour may refer to both the communication itself as well as the

application. Thereby, the communication can be isochronous without the application being isochronous, but not vice

versa. Isochronous applications always require isochronous communication.

For the isochronous communication, the bandwidth of the Ethernet communication is divided into two time slices (see

Figure 9-1). One, the so-called RED-phase in which only IRT data packets (PROFINET RTC3 telegrams) on the

network are allowed; and the second, the GREEN phase in which the normal Ethernet communication, as well as

normal, not isochronous PROFINET communication are allowed. By dividing the bandwidth, a deterministic

communication is achieved, i.e. the time of arrival of the IRT telegrams (RTC 3 data packets) is always exactly

predictable. This is a prerequisite for high-precision isochronous drive control systems, as e.g. required by the

newspaper printing machines.

Here, the isochronous cycle and the beginning of the RED-phase are synchronized with high precision in under less

than 1 microsecond. Furthermore, in the RED phase, the individual packets are matched exactly with each other. The

beginning of the RED-phase may also trigger local events (interrupts).

PROFINET

RTC3
PROFINET RT, IP, TCP,HTTP,..

RED phase

Isochronous cycle (e. g. 1 ms)

To Ti

To, last cycle

Ti, next cycle

Figure 9-1: IRT cycle display

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 47 of 117

March 18, 2020

9.2 Isochronous Application

In an isochronous application, two signals relative to beginning of the RED phase are provided:

• Ti: At this time, all devices involved in the isochronous operation must back up their inputs and provide these

for the transfer

• To: At this time, all devices involved in the isochronous operation must write their output data.

Since the timings are defined relative to the start of the RED-phase, the isochronous communication can be used to

exchange the input data secured at time Ti and the output data required at time To in time between the PROFINET field

device and the central control (SPS, PC, PAC, ..) with very low fluctuation (jitter). Also, the processing of the data in

the controller is synchronous to this cycle.

As a result, a closed control loop can be built in a single cycle (e.g. 250 µs).

9.3 IRT Applications With the TPS-1

The TPS-1 provides various signals for operation in an IRT domain which allow an easy realisation of an isochronous

application.

PTCP Input data Output data

PROFINET switch

PLL

T_IO_Output

T_IO_OutputValid

T_IO_Input

T_IO_InputValid

Application

e.g. PROFIdrive

TPS-1
PROFINET Device

Host application

PROFINET (Ethernet)

Figure 9-2: IRT-signals of TPS-1

For a typical IRT application, the T_IO_Output (To, T2) and T_IO_Input (Ti, T1) signals are required. The internal

PLL of the TPS-1 synchronises itself to the TEST_SYNC (Tsync) signal which is used to indicate the beginning of a

new isochronous cycle.

The outputs T1 and T2 are connected to the interrupt inputs of the host CPU and trigger the processing of input and

output data.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 48 of 117

March 18, 2020

TPS-1 Pin Application/Use

T1 (J11) Ti (T_IO_Input)

T2 (H11) To (T_IO_Output)

T3 (G11) T_IO_InputValid

T4 (F11) T_IO_OutputValid

TEST_SYNC (N12) Start of bus cycle

Table 9-1: IRT Communication Signals

Figure 9-3 shows the location of the Ti and To signals relative to the frame synchronizing signal Tsync.

TEST_SYNC

T1 (Ti)

T2 (To)

T_IO_Input

T_IO_Output

Figure 9-3: Ti and To signals display

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 49 of 117

March 18, 2020

9.4 IRT Keywords in the GSDML File

The „Isochronous mode“ is optional; a field device supporting this mode must have the following entry in the GSDML

for a module:

<IsochroneMode T_DC_Base="4"

T_DC_Min="1"

T_DC_Max="8"

T_IO_Base="1000"

T_IO_InputMin="40"

T_IO_OutputMin="40"

IsochroneModeRequired="true" />

Figure 9-4: Isochronous mode entry for a GSDML

The following table describes the GSDML attributes which must be set-up in the GSDML of a module. The individual

attributes must be determined by the device manufacturer.

GSDML Keywordt Description

T_DC_Base T_DC time Base (Data exchange cycle time) in 31.25 µs units.

T_DC_Min Minimum T_DC time in T_DC _Base units.

T_DC_Max Minimum T_DC time in T_DC _Base units.

T_IO_Base Time base of T_IO_Input, T_IO_Output, T_IO_InputMin,
T_IO_OutputMin in Nanoseconds.

T_IO_InputMin Minimum time necessary to fetch the input and to update the input buffer
(in T_IO_Base units).

T_IO_OutputMin Minimum time necessary to fetch the output and to update the
submodule (in T_IO_Base units).

IsochroneModeRequired This attribute shows whether a field device or a submodule demands an
IRT mode for the operation.

RT_CLASS_3 must be used for this communication.

Table 9-2: Keywords for isochronous mode in the GSDML

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 50 of 117

March 18, 2020

10. ResetToFactory Settings

In PROFINET, two methods are provided for the reset of a device to the delivery state. These methods are determined

by Suboption 5 (“FactoryReset”) and Suboption 6 (“ResetToFactory”).

You can filter reset messages with the wireshark filter:

Wireshark Filter: pn_dcp.block_qualifier_reset

10.1 Factory Reset

A “Factory Reset” shall set the following data:

• the NameOfStation to “”

• the IP Address, the subnet mask and the standard gateway to 0.0.0.0

• all other parameters to the manufacturer’s default value.

10.2 ResetToFactory Settings

Every PROFINET device must be capable of being set to conditions as supplied to customer (“Reset to factory

settings”). This must be possible even during cyclic data exchange. This is necessary if you want to put a device into

another factory automation machinery.

Typically, a DCP.Set service activates the “ResetToFactory settings”.

The TPS-1 example software supports the reset modes 2 and 8 (please refer the PROFINET standard regarding this

topic). The TPS-1 Stack handles mode 2. An event informs the application about the ResetToFactory and its mode.

Reset option Meaning

2 Mandatory – Reset Interface
Reset communication parameters – this is done by the TPS-1 stack

8 Optional – Reset Device
Reset all stored data in the IO-Device to its factory values. The I&M1 to I&M4
data must be handled by the application and the customer has to implement the
desired functionality.

Figure 10-1: Reset options for ResetToFactory settings

You register the callback function „onDCPResetToFactory()“ (TPS_RegisterDCPCallbackPara()). The function

AppOnResetFactorySettings() checks „wResetOption“. Option 2 is fulfilled by the TPS Stack itself. The TPS-1

example software supports only options 2 and 8. Function „AppFactoryResetIM1_4()” deletes the I&M data inside the

application program (volatile). In a second step I&M data must be deleted inside the „nonvolatile memory”. The

application developer must do this.

Our example uses a part of the TPS-1 flash (see function “TPS_WriteUserDataToFlash()”). The registered function

“onDCPResetToFactory()” deletes I&M data in this flash array.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 51 of 117

March 18, 2020

The supported ResetToFactory modes are listed in the GSDML file as “DeviceAccessPointItem” as shown in Figure

10-2.

<DeviceAccessPointItem

 ID="TPS-1 Template"

 ………

 ResetToFactoryModes="2"

 ………

 ParameterizationSpeedupSupported="true">

Figure 10-2: Snip from GSDML file

The following Figure 10-3 shows a DCP request that calls Reset Option 2 (Reset all communication parameter).

Figure 10-3: DCP Request Reset To Factory

(4) → option 2

(16) → option 8

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 52 of 117

March 18, 2020

11. Ethernet Communication – TCP/IP Channel

The Ethernet communication refers today primarily to TCP/IP and UDP/IP data transfer. Of course, still many other

protocols which are not so visible also belong to the Ethernet communication.

Typically, multiple applications run on a target device using e.g. TCP/IP. To ease distinguishing between such different

processes, a port number is assigned to each application. For various application programs and services, fixed port

numbers are assigned.

For TPS-1, a communication channel is implemented which passes the data traffic coming over the PROFINET lines to

the field device, onto the host CPU. A TCP/IP stack implemented on the host CPU can then e.g. operate a Web-server

independent of the PROFINET communication.

11.1 TCP/IP Channel

The TPS-1 provides the option of supplying a TCP/IP stack on a host CPU with Ethernet frames. This property can e.g.

be used to implement a Web-server on a field device as shown in Figure 11-1.

PROFINET switch

Application

CPU

TPS-1
PROFINET IO

device chip

DPRAM

Ethernet

mailbox
Webserver

Figure 11-1: Block diagram TCP/IP communication

The internal PROFINET switch evaluates all incoming messages. Messages not belonging to the PROFINET or its

protocols are diverted into the Ethernet mailbox in the DPRAM.

At the same time an event is set (TPS_EVENT_ETH_FRAME_REC), which then calls an earlier registered Callback

function (App_OnEthernetReceive() – TPS_CheckEvents()). The same applies in the send direction. If a frame is

placed in the send mailbox, then the APP_EVENT_ETH_FRAME_SEND event is set, the (TPS_SendEthernet

Frame() function is called, and the TPS-1 sends the frame to its destination.

A complete frame is placed in the TPS-1 mailbox. No pre-processing takes place. A queue is built in TPS-1 so that

more messages can be cached. However, it must be ensured that messages are picked-up in time, otherwise, they may

be discarded and have to be resent.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 53 of 117

March 18, 2020

11.2 Commissioning of the TCP/IP Channel

For commissioning the channel, a compiler switch must be set (TPS_1_user.h).

• #define USE_ETHERNET_INTERFACE

This switch performs the registration of the Callback function and the initialisation of the Ethernet mailbox. Further

settings are not required.

The following port numbers (sender port - physical) are allowed:

• PORT_NR_1 0x1

• PORT_NR_2 0x2

• PORT_NR_1_2 0x3

• PORT_INTERN 0x4 (Special case: only internal messages)

The mailbox in the function _onEthPacketReceive () is set again to „empty“ at the end of processing.

11.3 Ethernet Mirror Application

If desired, a mirror application can be activated for testing (TPS_1_user.h):

• #define USE_ETHERNET_MIRROR_APPLICATION

The mirror application sends back the received frame at once. The mirror application is implemented in the

onEthPacketReceive() function.

11.4 Extension of the Host API for selective reception of Ethernet frames

To enable the host application to receive or send special protocol frames from the PN stack, a new parameter

(USIGN32 dwHostProtoSelector) is added to the Host API. This parameter can be changed by the host application at

runtime. The parameter dwHostProtoSelector is a bit field, where individual bits represent a specific protocol and can

be activated independently of each other. The exact bit assignment is shown in the following Table 11-1.

Bit number Description

0 ARP

1 PTCP (without Frame-IDs: 0x0080, 0x0020, 0xFF20)

2 PN-alarm (high / low)

3 DCP

4 RT/IRT (only those that are not received by PN consumers)

5 SNMP

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 54 of 117

March 18, 2020

Bit number Description

6 RPC

7 UDO (all UDP frames with the appropriate IP address. So far only factory settings from
TPS-Configurator / By default in the release versions of the FW from V1.2. x on)

8 ICMP (only ping request / ping responses are always forwarded to the host application)

9 LLDP

10 IP_ALL (all IP frames, also those with an unknown IP address, including all UDP,
SNMP, RPC...)

11-15 Reserved

16-31 Mirroring of the bits 0 -15 (redundancy)

Table 11-1: Bit assignment for frame transfer

To set the filter, the following new function is created in the Host API:

USIGN32 TPS_ForwardProtocolsToHost (USIGN32 dwProtoSelector)

The input parameter dwProtoSelector is copied into the variable dwHostProtoSelector in NRT-Area. The content of the

parameter dwHostProtoSelector is read and returned as return value.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 55 of 117

March 18, 2020

11.5 List of Used Port Numbers

The following list of port numbers contains protocols with the higher occurrence.

Port number
(decimal)

Name Transport Description

15 NETSTAT Network status

19 CHARGEN Character generator

25 SMTP TCP Sending e-mails via Simple Mail Transfer Protocol

67 BOOTP (Server) UDP Bootstrap Protocol

68 BOOTP (Client) UDP Bootstrap Protocol

69 TFTP TCP Trivial File Transfer Protocol

80 HTTP TCP Accessing webserver with Hyper Text Transfer
Protocol

110 POP3 TCO Fetching e-mail via Post Office Protocol

111 RPC Remote Procedure Calls

143 IMAP TCP Processing e-mail via Internet Mail Access Protocol

161 SNMP UDP Simple Network Management Protocol

162 SNMP-Trap UDP SNMP-Traps/Events

443 HTTPS TCP Encrypting http via SSL/TLS

34962 PROFINET RT
Unicast

UDP PROFINET IO

34963 PROFINET RT
Multicast

UDP PROFINET IO

34964 PROFINET Context
Manager

UDP PROFINET IO

Table 11-2: Important port numbers

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 56 of 117

March 18, 2020

12. SNMP Server

For the conformance Class B and Class C, an SNMP server must be present on a PROFINET device that meets the MIB

II requirements.

SNMP is primarily responsible for the transport of control data to allow the flow of management information as well as

status and statistic data between network components and a management system. This protocol is typically used in the

administration of computer networks.

The parameters that are required for the SNMP server can be set with the TPS Configurator as shown in Figure 12-1.

Since version 1.5 the parameter System Description is built by the stack firmware and must not be configured. The

TPS-1 Stack processes the SNMP parameter. The application has no access to these parameters.

Figure 12-1: TPS Configurator - Ident Settings

The SNMP parameters are stored in the TPS-1 Flash memory. Every change (e.g. System Name) is saved in the TPS-1

Flash memory. After a voltage failure, the changed data are available again.

Parameter Name Parameter Description

System Description A textual description of the entity. This value should include the full name and
version identification of the system's hardware type, software operating
system, and networking software. It is mandatory that this only contain
printable ASCII characters (build by the stack firmware).

System Name An administratively assigned name for this managed node. By convention,
this is the node's fully-qualified domain name.

System Contact The textual identification of the contact person for this managed node,
together with information on how to contact this person.

System Location The physical location of this node (e.g., “telephone closet, 3rd floor”).

System Services A value, which indicates the set of services that this entity primarily offers.

Table 12-1: SNMP parameter description

Many SNMP parameters are supplied by the TPS Stack and cannot be influenced by the application. Figure 12-2 below

shows all available parameters.

The SNMP-server can be accessed via Port 161 on the PROFINET device.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 57 of 117

March 18, 2020

Figure 12-2: Overview SNMP Parameter

12.1 SNMP MIB II for TPS-1

For reading the SNMP data e.g. the „iReasoning MIB Browser“ can be used. The searched entries are found through the

device IP address in combination with the OID as shown in Figure 12-3.

Figure 12-3: SNMP MIB tree representation

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 58 of 117

March 18, 2020

13. Update of the TPS-1 Firmware

The TPS-1 firmware consists of the TPS Updater and the TPS Stack. The TPS Updater takes care of the reception of

new software and for copying it into the TPS-1 external Flash. The TPS Stack constitutes the entire PROFINET

communication functionality.

A firmware update can be done via one of the Ethernet interfaces (alternatively POF) or the DPRAM by the application

processor (Chapter xyz).

The process of initialisation and update of the hardware configuration as well as the firmware is described in the TPS-1

Firmware Update Manual [7] in detail. In the following only a summary of the steps is given

.

13.1 Hardware Configuration of the TPS-1

The hardware configuration is carried out with the TPS Configurator. The selected configuration is downloaded into

TPS Flash after loading and starting the TPS Starter.s program via UART interface. The TPS-1 now expects hardware

configuration. Before the transfer of the TPS Starter.s program, the flash must be erased.

After successful transfer, the TPS-1 is reset. This completes the hardware configuration.

Note: If the TPS-1 hardware configuration is to be written, then no other programs should operate on the Ethernet

interface at that time. The TPS-1 receives all frames in this state.

13.2 Preparation of Flash Images

After transferring the image files, a header at the beginning of the file is checked to ensure that the right file has been

transferred. The VendorID, the DeviceID and the Hardware-Revision of the module are used for this test. This

process is necessary to prevent update of other modules. Each image must be prepared in this way for the transfer. See

[7].

13.3 Firmware Update via Ethernet

Using the FWUpdater, now, the TPS Updater and the TPS Stack are loaded and programmed. See also [7].

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 59 of 117

March 18, 2020

14. Production Environment (Default Image)

In a production environment, it is not acceptable to go through the steps hardware configuration, programming the TPS

Updater and finally to program the TPS Stack. A default image file is provided to simplify and accelerate the process in

a production environment.

The default image file is delivered in two versions. One for the use with RJ45 interface and the other for use with POF

interfaces.

The image can be found in TPS_Stack directory:

• TPS_Default_Image_ETH.hex

• TPS_Default_Image_FO.hex

These images include a hardware configuration, the TPS Updater, and the TPS Stack. The configuration block is

artificially corrupted.

The serial flash device, that is connected to the TPS-1, is programmed with the default image before soldering and then

assembled with other components of the module. It is also possible to program the image with the boundary-scan

functions into the flash (in-system programming)

The deliberately corrupted configuration block causes the TPS-1 to request a configuration block when the power is

switched on for the first time. This operation must always be carried out because the configuration block also contains

the MAC addresses and the serial numbers which are of course unique for each module.

The configuration block can be written with the TPS Configurator. But also a batch file can call the FS_PROG.exe

program that writes the data via the Ethernet connection in the TPS Flash.

A detailed description of the FS_PROG.exe, its invocation and error codes can be found in the TPS Configurator help

functions.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 60 of 117

March 18, 2020

15. Special TPS-1 Properties

15.1 Automatic Adaption to the Target Configuration

Complex devices such as IO-Link gateways or modular devices require greater flexibility with respect to configuration.

For the TPS-1, adaptation to the target configuration has been implemented. Here, while connecting to a controller

(Connect.Req), the decision is made how the field device should be configured.

During the ramp-up, the maximum possible expansion level is entered in the configuration. The ModuleIdentNumber

and the SubmoduleIdentNumber are set to „0“. The compiler switch „USE_AUTOCONF_MODULE“ must be set.

Permanently plugged (fixed) modules are entered with their ModuleIdentNumber or SubmoduleIdentNumber.

In the case of a Connect.Req, the TPS-1 enters the configuration (Module ID Number and

SubmoduleIdentNumber) requested by the controller. In a next step (App_OnConnectCallback()) the application

must then check, whether it is possible to meet the request.

Application Driver TPS / PN

1. Plug of modules and submodules

Connect.Req

3. Reading the configuration TPS_GetModuleConfiguration()

TPS_GetSubmoduleConfiguration()

Connect.Res

TPS_PlugModule()

TPS_PlugSubmodule()

(Connect.Req occur)
2. App_OnConnectCallback

5. Initiate ConnectRes

4. Response to the TPS-1

OK / Wrong

ModuleID /

SubmoduleID

SizeOfInputData

SizeOfOutputData

After processing

App_OnConnectCallback

initiation of Connect.Res

ID <> 0x00 fixed module

ID = 0x00 variable configuration

Set Module / Submodule State:
TPS_SetModuleState()
TPS_SetSubmoduleState()

Figure 15-1: Adaption to the target configuration

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 61 of 117

March 18, 2020

Among others, the following functions are available for processing the modules.

The following functions listed in are required in this context.

Function name Description

TPS_GetModuleConfiguration() Delivers the current ModuleNumber for the given slot

TPS_GetSubmoduleConfiguration() Delivers the current SubmoduleIdentNumber and the size of the
IO-Data in the IO-RAM

TPS_SetModuleState() Sets the status of a given module. This function must be called for
each slot in the function OnConnectCallback() so that if required,
a ModuleDiffBlock can be created in Connect.Res.

TPS_SetSubmoduleState() Sets the status of a given submodule. This function must be
invoked for each configured submodule in the function
OnConnectCallback() so that if required, a ModuleDiffBlock can
be created

Table 15-1: Function involved in adaptation to expected configuration

An example is available in the extended example application in the TPS-1 Development Kit.

Note: A status must be assigned to each module and submodule so that if required, a ModuleDiffBlock can be

created properly.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 62 of 117

March 18, 2020

15.2 Transferring Initial Parameters

After the successful Connect.Req, the controller starts to send the initial parameters for each configured subslot. The

transfer is done with Write.Req and is received by the device. It is also possible to send data for multiple subslots in one

frame (in the GSDML, the attribute must have „MultipleWriteSupported=true“).

If all parameters are loaded into the device, the controller marks the end of parametrization with a „DControl.req“-

frame („EndOFParametrization“).

The application software then checks the data of all configured subslots and sends an "Application Ready" message to

the controller. This completes the AR build-up and the sending of cyclic data begins.

IO-Controller IO-Device

Connect.req

Connect.res

AR build up for the

 IO Device

Write.req

Write.res

DControl.req

(EndOfParameterization)

DControl.res

(End of Par.rsp)

CControl.req

(Application Ready)
CControl.res

Application Ready Res

AR build up for the

controller

Inputs Outputs

Figure 15-2: Device ramp up (Connect.Req)

The TPS-1 firmware assigns the initialisation data to the corresponding subslots. The TPS-1 puts data in DPRAM (NRT

area). The application can access this data after completion of the parameter transfer. The end of the transfer is signalled

by the event „TPS_EVENT_ON_PRM_END_DONE_IOARx“. For this event, the previously registered Callback

function App_OnPrmEndCallback() is called.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 63 of 117

March 18, 2020

All necessary device settings should be made in this function. In a next step, the device would send „DeviceReady“ to

the controller and the cyclic operation starts.

typedef struct subslot

{

..

USIGN32* pt_size_init_records;

USIGN32* pt_size_init_records_used;

USIGN8* pt_init_records;

..

} SUBSLOT;

Figure 15-3: Initial Parameter Pointer of the subslot data

Initial parameters can be accessed via the corresponding pointer. During the subslot configuration, it should be ensured

that sufficient space is reserved in the subslot data (see TPS_PlugSubmodule ()).

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 64 of 117

March 18, 2020

15.3 TPS-1 Hardware Configuration via DPRAM

Typically, the TPS-1 hardware configuration is done with the TPS Configurator or with the FS_PROG.exe program.

However, for certain applications it is also possible to transfer the configuration block from the host CPU via DPRAM.

In this case, however, a default configuration must be present in the TPS-1 Flash and the TPS Updater and TPS-1 Stack

must already be programmed in TPS-1 Flash.

For using this transfer channel the compiler switch „USE_TPS_COMMUNICATION_CHANNEL“ must be set in

the TPS_1_user.h file. Additionally, the compiler switch „USE_ETHERNET_INTERFACE“ must be set. This

initializes the Ethernet mailbox.

TPS-1

DPRAM

FW-Flash

HOST - CPU

P
R

O
F

IN
E

T
 I
n

te
rf

a
c
e

s

TPS-1

Config-

Block

TPS-1 Config-Block

Communication Channel

(buffer inside the DPRAM)

Figure 15-4: TPS-1 configuration via DPRAM

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 65 of 117

March 18, 2020

15.3.1 Generating the Configuration Block

During the transfer of a configuration to a TPS-1 module, the TPS Configurator generates besides an * .xml file also a

file with the extension * .xml.c.

Typical examples for these files would be:

• host_interface_parallel.xml

• host_interface_parallel.xml.c

The leading name is freely selectable by the user.

The C-file consists of a C-array containing all data of the configuration block (pbyConfigurationsData[]) as it had

already been transferred once.

A list of constants representing the offsets follows the array. These offsets, allow direct addressing and changing of

parameters if necessary. Here, for example, it would be possible to enter another MAC addresses.

15.3.2 Transferring the Configuration Block via DPRAM

The „TPS_WRITEConfigBlockToFlash()“ (Driver) function call transfers the configuration block via the DPRAM to

TPS-1 and enters it in the TPS-1 Flash.

After the transfer, the TPS-1 must be reset. After that, the data are also available in the NRT area.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 66 of 117

March 18, 2020

15.4 TPS-1 Stack Update via DPRAM

For certain applications, it is necessary to update the firmware of the TPS-1 (TPS Updater and TPS Stack) from the host

CPU. For that, the Driver provides functions with which the firmware can be rewritten via the DPRAM.

For the activation of the communication channel, the following compiler switches must be set (File TPS_1_user.h).

• #define USE_ETHERNET_INTERFACE

• #define USE_TPS_COMMUNICATION_CHANNEL

• #define FW_UPDATE_OVER_HOST

By activating the transfer channel, for example, a TPS Stack update by the application CPU can be started. On a device

specific path, the image is transferred to the application CPU and passed on from there to the TPS-1.

The image to be transferred must be prepared as done during programming via the Ethernet interface (VendorID,

DeviceID, etc. must be entered - see the Update Manual).

With the TPS_StartFWUpdater() function call, the implementation of TPS Stack is stopped, and the TPS Updater

present in the TPS Flash is loaded and started.

Then, with the TPS_WriteFWImageToFlash() function, the image is transferred to the TPS-1 and programmed in the

flash device.

After the transfer is complete, the TPS Updater is stopped and the TPS Stack is restarted with the TPS_StartFWStack()

function.

Depending upon the performance of the application CPU, it may be necessary to change the transfer time. The function

TPS_SetUpdaterTimeout() sets a time which determines the timeout. With the function TPS_GetUpdaterTimeout(),

the set time can be read.

Note: A block-by-block transfer of the stack has already been tested successfully at a customer, but is not part of the

standard API delivery. The driver function “TPS_WriteFWImageFragmentToFlash()” sends only one

fragment of the complete image. The customer must implement the remaining functionality by himself. The

advantage would the usability of an application processor with smaller memory footprint.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 67 of 117

March 18, 2020

15.4.1 Starting the TPS Updater

The TPS-1 must be switched into update mode for this. By calling the TPS_StartFWUpdater() function, the TPS Stack

program execution is stopped and the TPS starts with the execution of the TPS Updater.

The TPS_StartFWUpdater() function writes a command structure in the DPRAM (NRT area) out of which the TPS-

CPU derives the further steps.

typedef struct _dpr_header

{

 USIGN32 dwHostSign;

 USIGN32 dwHostEvent;

 USIGN32 dwUpdaterEvent;

 USIGN32 dwErrorCode;

 FW_UPD_MAILBOX pbFwStartAddr;

} DPR_HOST_HEADER;

Figure 15-5: Update command structure

The constant „HOST_LIFE_SIGN“ is entered in the variable „dwHostSign“, and a TPS CPU software RESET is

triggered via the Event Unit. During the new ramp-up, this memory cell is evaluated, and the TPS-1 starts the TPS

Updater. In response, the host application expects the constant „UPDATER_LIFE_SIGN” in the memory cell, as soon

as this is detected, the application CPU enters the „UPDATER_LIFE_SIGN” again and can start with data transfer.

15.4.2 Transferring the Requested Firmware Image

After the TPS-1 has been switched into update mode, data transfer can start. For this purpose the function

• TPS_WriteFWImageToFlash(USIGN8* pbyImage,USIGN32dwLengthOfImage)

is called. The image start address and length are passed to the function.

The data transport control is done via the „FW_UPD_MAILBOX“ structure which is a constituent part of the

„DPR_HOST_HEADER“ structure.

typedef struct _dpr_fragment_mbx

{

 USIGN32 dwFlag;

 USIGN32 dwFragLen;

 USIGN8 bData[FW_FRAG_LEN];

} FW_UPD_MAILBOX;

Figure 15-6: Send control structure image

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 68 of 117

March 18, 2020

The variable „dwFlag“ can have the following states:

• #define MAILBOX_EMPTY 0x00

• #define MAILBOX_BUSY 0x01

• #define MAILBOX_LAST_BLOCK 0x02

As soon as a transfer block is written in the mailbox, the flag is set to „MAILBOX_BUSY“ and the TPS-1 recognizes

that a new block has arrived. As soon as the mailbox has been emptied by TPS-1, the flag is set again to

„MAILBOX_EMPTY“. If the last block is written, the flag is set to „MAILBOX_LAST_BLOCK“ and the TPS-1 starts

to check the transferred image. After checking, the image is stored in the flash memory.

15.4.3 Starting the TPS-Stack

After the TPS Updater has transferred the requested image in the TPS-1 Flash, the TPS Stack must be restarted. The

function „TPS_StartFWStack()“ ensures a new start of the TPS-1 Stack. The function is called at the end of

TPS_WriteFWImageToFlash().

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 69 of 117

March 18, 2020

TPS-1

NRT Area

Application CPU

PROFINET

Stack

TPS Driver

Software

Host

Application
parallel

 or serial

access

DPRAM

TPS-1 Flash

Mailbox TPS_WriteUserDataToFlash()

TPS_ReadUserDataFromFlash()

g_bReadReqPending

15.5 Using TPS-1 Flash for Host Application Data

Since TPS-1 stack version V1.4 a developer can use a memory block of 4k byte data inside the TPS-1 flash memory.

This flash memory can used for any data the developer want, but he is also completely responsible for this block.

Figure 15-7: Transfer of private Flash data

To reach the TPS-1 Flash the TPS firmware must be in operation and the internal Ethernet Channel must be activated

(#define USE_ETHERNET_INTERFACE).

For managing this data block the DRIVER provides two functions:

• TPS_WriteUserDataToFlash(wAddr, pbyUserData, wLength)

• TPS_ReadUserDataFromFlash(wAddr, wLength)

The function “TPS_WriteUserDataToFlash()” stores data to the flash memory of the TPS-1. The developer must take

care for the structure and addresses of the data blocks. For a safe execution of a command the variable

“g_bReadReqPending” must be referred; a TPS_TRUE indicates a running command.

Reading data from the TPS-1 flash is performed by the function “TPS_ReadUserDataFromFlash()”. You can find the

detailed parameters in the TPS Reference Manual [2].

The transfer of the payload data is organized via the internal Ethernet Channel as illustrated in Figure 15-7. The related

record index is RECORD_INDEX_USER_DATA_IN_TPS_FLASH (0x2012). One single message can contain a

maximum of 1342-byte data (max. payload). If you want to transfer more data, please manage the write address by your

own.

You can find an example of a read operation in the extended example code. If you want to realize a write request you

must at first transfer the response out of the mailbox into the receive buffer. The function “onTpsMessageReceive()”

delivers the response (e.g. data by a read request).

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 70 of 117

March 18, 2020

15.6 Generation of Process and Diagnosis Alarms

15.6.1 General Diagnosis and Alarm Processing

PROFINET offers specific mechanisms to illustrate diagnoses. PROFINET differentiates between alarms from the

process attached to an IO Device (Process alarms) and alarms generated by the IO Devices themselves (Diagnosis

alarm). A diagnosis must be entered in the "Diagnosis database" of a device; if necessary, a diagnostics alarm is also

sent to the IO Controller. All available diagnosis messages from an IO Device can be read via a standard path. Standard

errors are described in the specification. The texts are stored in the engineering tool. Private messages must be stored in

the GSD file.

 Alarm processing

IO Controller IO Device

RTA_Data(Alarm)

RTA_ACK

Acyclic Service-
Timeout

 Invoke alarm

RTA_Data(Alarm_Ack)

Acyclic Service-
Timeout

RTA_ACK

Alarm CR

Figure 15-8: Sending diagnostic alarms

If an IO Device detects a diagnosis, it sends a Diagnosis Appear alarm to the IO Controller. Additionally, the IO Device

generates a corresponding entry in its diagnosis buffer (in the case of TPS-1, the diagnosis buffer is managed by the

TPS Stack). Entries in the diagnosis buffer can also be made without corresponding alarm. Examples for this are the

preventive diagnosis messages that indicate a state of wear, or messages that indicate when the next maintenance is due.

If an entry is generated in the diagnosis buffer, then the „DataStatus“ automatically shows in bit

„StationProblemIndicator“ (APDU_Status.DataStatus.StationProblemIndicator) of the cyclic data sent by the device,

that at least one diagnosis entry is present.

The IO Controller can read the diagnosis information on the NRT channel using ReadRecord.Request and take

appropriate action.

Process alarms do not result in the setting of the APDU-Status. They are analysed directly in the control system.

Process alarms do not result in an entry in a diagnosis memory.

Detailed use of alarms and diagnoses can be found in the Guideline „Diagnosis for PROFINET IO.“ [8].

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 71 of 117

March 18, 2020

15.6.2 DRIVER Functions for Diagnosis and Alarm Processing

The Driver provides the following functions for processing alarms and diagnosis:

Name of function Description

TPS_SendDiagAlarm() This function sends a diagnosis alarm notification to an IO
Controller. Before transfer, the diagnosis must be entered in the
diagnosis ASE (TPS_DiagChannelAdd()).

TPS_DiagSetChannelProperties() This function builds a „channel properties block“ that is used for
the TPS_DiagChannelAdd() function.

TPS_DiagChannelAdd() This function makes the diagnosis entry in the diagnosis
database.

TPS_DiagChannelRemove() This function removes a diagnosis entry from the diagnosis
database.

TPS_DiagSetChangeState() With this function the „Maintenance Status“ and the „Specifier“ of
an already existing diagnosis entry can be changed.

Table 15-2: DRIVER functions for handling of diagnostics

The parametrisation of the diagnostic functions can be found in the TPS-1 Reference Manual.

15.6.3 Example of a Diagnosis Alarm

During the configuration of a subslot (TPS_PlugSubmodule()), a parameter (wNumberOfChannelDiag) is passed

which specifies the number of possible diagnoses for this subslot. In the sub-slot data, a corresponding storage area is

created.

pt_size_chan_diag; /*Pointer to maximum number of diagnosis*/

pt_chan_diag; /*Pointer to the first diagnosis entry of this subslot */

Figure 15-9: Diagnoses information of the subslot data

If e.g. a plugged submodule detects a short circuit in a connected cable, then this is reported to the IO Controller using a

diagnosis alarm.

The following steps must be taken to enter a diagnostic alarm:

• TPS_DiagSetChannelProperties(&wChannelProperties,,,)

/* Preparing the channel properties for diagnostics */

• TPS_DiagChannelAdd(,,..)

/* Enter diagnostics */

• TPS_SendDiagAlarm(,,..)

/* Send appear alarm */

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 72 of 117

March 18, 2020

By invoking the TPS_DiagChannelAdd() function, a diagnosis is entered in the subslot diagnosis buffer. The diagnosis

entry structure can be found in the file TPS_1_API.h (DPR_DIAG_ENTRY).

The diagnosis alarm is triggered by the TPS_SendDiagAlarm() function and is passed to the IO Controller. If e.g. the

error status does not exist anymore, then the diagnosis is deleted from the diagnosis queue and a diagnosis alarm (off) is

sent.

The following steps must be taken to delete a diagnostic alarm:

• TPS_DiagSetChangeState(,,,)

/* Change of the diagnosis entry from appear to disappear, etc. */

• TPS_SendDiagAlarm(,,,)

/* Send disappear alarm */

• TPS_DiagChannelRemove()

/* After acknowledge, delete diagnosis entry */

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 73 of 117

March 18, 2020

16. GSD (General Station Description) for the TPS-1

16.1 What is a GSD?

The GSD is a formalized technical description of the PROFINET field device which contains all the information for the

data transport and engineering.

These are:

• Communication parameters, communication capabilities

• Device structure (as far as relevant for the communication: modules, submodules)

• Catalogue information (device description,...)

• Structure of cyclic data and ramp-up parameters

• Definition of diagnosis information (only alarms)

• Engineering information (icons, pictures, texts, values)

• Order numbers (for selection and order processing)

The GSD does not describe:

• Complex user interface (graphics, charts, wizards)

• Dependencies (e.g. of variables among each other)

• Complex slot rules

• Applicative diagnostics

• Device specific business logic

• Mechanical data, connection diagrams

The GSD is indispensable for a PROFINET field device because this is the only gateway to engineering. Every

manufacturer of a PROFINET field device must create a corresponding GSD file whose verification is part of the

certification test.

GSD data is the sole source for the engineering tool to gain knowledge about the device as shown in Figure 16-1. For

this purpose, the GSD file is read once in the engineering tool (e.g. the programming device). After that, the field device

can e.g. be configured from the product catalogue of the engineering tools

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 74 of 117

March 18, 2020

GSD

Engineering Tool

Figure 16-1: GSD and engineering tool

During the device development, the GSD, and its properties must be taken into consideration at an early stage so that

the device functions can also be properly mapped to the GSD file. If it is done too late, it may lead to unnecessary

modification efforts. You can find further general information about GSD in chapter 2 of „PROFINET System

Description, Technology and Application“(german version: „PROFINET Systembeschreibung, Technologie und

Anwendung“), which can be downloaded free of charge under:

http://www.profibus.com/download/technical-descriptions-books

http://www.profibus.com/download/technical-descriptions-books

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 75 of 117

March 18, 2020

16.2 What is the GSDML (GSD Markup Language)?

The GSD file is an XML file, which can be created and processed with standard tools. GSDML is the descriptive

language of GSD file, which defines the device properties over multiple layers and is thus well suited for hierarchical

illustration of PROFINET field devices. The following figure shows e.g. the general part of the identification of field

device of a simple GSD file.

Figure 16-2: General part of a GSD file in XML illustration

16.3 Which Information can be Found in the GSD File?

The interaction between GSD file and engineering is illustrated in Figure 16-3. It shows e.g. how, based on the

information from GSD file (see also XML illustrations in the previous figure) the engineering classifies the field device

in its product catalogue.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 76 of 117

March 18, 2020

Figure 16-3: Interaction GSD and engineering

The basic structure of the GSD file can be seen from the block diagram in Figure 16-3.

16.3.1 Profile Header

General profile information like e.g. profile name, profile version, the publisher of the profile are stored in the profile

header.

16.3.2 Profile Body

The actual field device data is located in the profile body. It contains the information for unambiguous identification,

indicates to which product family the device belongs and describes all the communication properties of the field device.

Depending upon the functions and structure of the device, this main part of the GSD file can be very extensive, because

information

• about communication capabilities

• about configuration

• of parametrisation

• of illustration

• of diagnosis

• about references to graphics and texts

is necessary. What needs to be considered for the Vendor ID and Device ID in the GSD?

The PROFINET field device of a manufacturer must be unambiguously identifiable in the engineering tool and the

subsequent real automation system. This is achieved by the combination of the company ID (Vendor ID) and a specific

device identifier (DeviceID).

Catalog in engineering tool

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 77 of 117

March 18, 2020

The DeviceID which must be unambiguous in the manufacturing company is specified by the manufacturer himself. To

avoid multiple assignments, it is recommended to coordinate the assignment with the marketing or product management

within the company. Block wise assignment to departments or maintaining a central list has proven to be a pragmatic

approach.

Besides the VendorID and DeviceID approach, which is essential for the engineering and production data traffic, there

is also the possibility to identify a field device in the engineering through its order number. This option is convenient for

simplifying the ordering process.

Note: In real life, it may happen that device manufacturers, who realise their PROFINET connection with a

communication module, leave the VendorID of the communication module or its manufacturer unchanged in

the GSD file. This leads in subsequent system diagnostics to misinterpretation, because not the manufacturer of

the device is displayed, but rather the module supplier. It is, therefore, important to ensure that the VendorID

of the device supplier is used.

16.4 What are the Application Implications on the GSD?

The application requirements demand certain device functions which in turn are mirrored in the GSD file. The

philosophy of the GSD is that every technical feature is described by a separate element or attribute. In case there are

technical dependencies to other features, then it is described in the GSDML specifications and will also be verified by

the GSD Checker (see chapter xyz).

Moreover, there are marketing rules that are non-technical in nature. Thus, if “x” and “y” are supported, then “z” must

also be supported. This serves to reduce the number of variants. To this end, in particular, both the „Conformance

Classes" as well as the „Application Classes" play a role.

16.4.1 Conformance Classes (CC)

The conformance classes provide a convenient summary of various minimum requirements. Through the certification of

a field device to a conformance class it is ensured that the selected field devices support unambiguously defined

minimum requirements on functionality and interoperability. The conformance classes are geared to the needs of

specific fields, such as e.g. factory automation and motion control.

16.4.2 Application Classes (Optional)

Application Classes define device characteristics so that the application function can be provided and it is interoperable

with the system properties. In an application class, the minimum scope for the relevant application in an automation

system is defined.

The following application classes are defined:

• Isochronous Application

• Process automation

• High performance

• Controller to Controller

• Functional safety

If the manufacturer specifies an application class in the GSD file, the corresponding minimum scope is also tested in the

certification test.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 78 of 117

March 18, 2020

16.5 What are the Key Issues in „Life Cycle Management“ of GSD?

The life cycle management of the GSD can be influenced by newer versions of the GSDML or newer versions of the

PROFINET field device, see also chapter 10.

16.5.1 What are the Implications of Changing the GSDML?

Further developments of the PROFINET technology may affect the GSDML. In the context of further development of

the GSDML, it is ensured that the current GSD files are always compatible with a newer GSDML version. That means,

an engineering tool with a newer GSDML version can also handle GSDs based on older GSDML versions (upwards

compatibility).

A workaround in the other direction is also available. If a GSD based on a new GSDML Version is to be handled by an

engineering tool which only supports an older GSDML version, then it can be specified as to which GSD objects should

be over read by the (older) tool, without this leading to a fault behaviour. For this purpose, the attribute

„RequiredSchemaVersion“(current version or later) for the objects DAP, module and submodule was introduced.

16.5.2 Do Further Developments of the Field Device Influence the GSD File?

In case the PROFINET field device is developed further and its functions are enhanced, then for the same PROFINET

level or the same GSDML version, only a newer edition of the GSD file is required that includes the new functions.

If modules are added to a modular field device, renewed certification is not required, although the GSD file needs to be

expanded indeed. Only if new functions are also added with new models, which were not testable before, then, a re-

certification is required. Example: If a device did not support PROFIsafe earlier, and if now a PROFIsafe module is

added, then the PROFIsafe part must be re-certified. This applies then to the DAP as well as to the actual PROFIsafe

module.

If, from a newer PNIO level onwards new features are added and can thus only be described as a newer GSDML

version, then the entire GSD must be upgraded to the newer GSDML version.

16.5.3 How do I Provide the GSD to my Customers?

For the use of PROFINET field devices, the GSD file must be available and therefore is usually delivered with the field

device. Many manufacturers also offer the GSD file along with the device presentation for download via Internet. Thus,

the manufacturer can always provide the latest version. Such examples can be found in the Internet product catalogue of

the field device vendors.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 79 of 117

March 18, 2020

16.6 PROFINET GSD Checker Tool

The PROFINET GSD Checker is a piece of software for checking the GSD file. For PI members, this tool is available

free of charge on the PI website http://www.profibus.com/nc/download/software-and-tools/downloads/profinet-xml-

viewer- v22/display/ and it essentially offers two functions:

• Displaying the contents of GSD in a concise HTML representation (see Figure 16-4).

• Validation of a GSD against the schema files and reviewing the rules, which go beyond the schema and are

documented in the GSDML specification (see Figure 16-5).

Above that, the checker also provides the schema documentation (a more user-friendly, better readable form of the

schema) for GSD. A simple XML editor is already included in the PROFINET GSD Checker. However, the GSD

Checker also allows the integration of another XML editor.

Figure 16-4: HTML representation in the GSD checker

http://www.profibus.com/nc/download/software-and-tools/downloads/profinet-xml-viewer-v22/display/
http://www.profibus.com/nc/download/software-and-tools/downloads/profinet-xml-viewer-v22/display/
http://www.profibus.com/nc/download/software-and-tools/downloads/profinet-xml-viewer-v22/display/

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 80 of 117

March 18, 2020

Figure 16-5: XML representation in the GSD checker

16.7 Good Practices

16.7.1 Creating the GSD

A pragmatic approach for creating GSD is via the XML checker and the supplied examples (in the TPS Development

Toolkit). Using the examples, the correct structure can easily be identified, and it can serve as the basis for the new

product.

If built on the technology components (e.g. ASIC, Development Kit) as a platform, you get a functioning device

software with sample application and sample GSD files. Also here, it must be ensured that the sample GSD is adapted

to the individual field device.

16.7.2 Testing the GSD

The structure of an XML document can be tested with the help of a schema file. In this context, one speaks of the

“validation” of a document. In this process, among other things, it is checked whether the element structure and the

attributes used in the XML document comply with the schema definition. The schema file e.g. defines whether an

attribute must be present and which values are allowed for the attribute.

For using the GSD Checker to check the GSD, no know-how about the function and use of schema files is required

because these are automatically installed and used for validation by the PROFINET GSD Checker.

Also, one or two frequently used integrated engineering tools are also very useful to ensure that the GSD is processed as

desired, that the graphics are displayed accordingly, and finally, whether the result then also meets the expectations.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 81 of 117

March 18, 2020

16.7.3 Adaptation to a new GSDML schema

The required schema files e.g. for the GSDML 2:31 are:

• GSDML-CommNetworkProfile-v2.31.xsd

• GSDML-DeviceProfile-v2.31.xsd

• GSDML-Primitives-v2.31.xsd

To use the new schema files , they must be copied in the following directory:

\program files(x86)\PhoenixContactSoftware\PROFINET Configurator\Schemas\GSDML\.

After new start, the new schema is available, and the GSDML can be imported.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 82 of 117

March 18, 2020

17. Wireshark Recordings

Note: The settings and the masks described in this chapter correspond to Wireshark Version 2.0.2. These may differ

in other versions. Wireshark can be downloaded free of charge from the Internet.

Since a PROFINET network is established via switches, recording of data traffic is not possible without additional

measures. If you connect a computer with Wireshark running via a normal switch port, then you do not see the frames

exchanged because the switch forwards only to the port through which the device identified with the MAC address is

accessible. So-called managed switches offer the possibility to operate a port as “mirror port” and to specify which port

should be monitored on the mirror port.

The Wireshark tool provides data in the form of individual packets either during or after the recording of data traffic of

a network interface (Ethernet connection). The data are clearly arranged and can be analysed.

In such data transaction, a large number of packets can be sent. To process these efficiently, the Wireshark provides

filtering functions that can reduce the data flood.

Note: For the processing of communication problems in PROFINET, a comprehensive data traffic recording is a pre-

condition for analysis.

1

2 3

Filter settings

Figure 17-1: Wireshark start screen

Figure 17-1 shows a typical start screen for Wireshark. The important fields are the packet list (1), the field packet

details (2) and the field packet bytes (3).

To begin with recording, an Ethernet interface must be selected. Under the Tab Capture -> Option, an interface for the

recording can be selected. With a push of the Start button the recording begins.

In the field Apply a display filter, a filter can be edited (e.g. dcerpc || pn_dcp) only to see the messages which are

related to a connection set-up (Connect.Req). All other messages are hidden, but not deleted.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 83 of 117

March 18, 2020

For meaningful PROFINET analysis, it is important to record the outgoing as well as the incoming data traffic. To

achieve this, a managed switch or a TAP (Test Access Port) is required; Figure 17-2 illustrates its usage.

Recording at a PROFINET

controller

Recording at a PROFINET

device

Important: You must choose the

right port for mirroring.

Managed switch

PROFINET device

PROFINET device

PROFINET controller

Figure 17-2: Measurements in a network

A network TAP however is inserted into the transfer path and provides all receive and send messages to the interface.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 84 of 117

March 18, 2020

17.1 Filters for PROFINET

The following tables show some filters which are of significance for PROFINET data traffic analysis.

Protocol Filter
Wireshark display
(protocol column)

Description

DCP pn_dcp PN-DCP

Discovery and Basic Configuration Protocol - a data
protocol as per IEC 61158, which is used in
PROFINET to recognize and to configure the
devices.

DCE/RPC dcerpc PNIO-CM

Distributed Computing Environment/Remote
Procedure Call (DEC/RPC) – technology for the
realisation of inter-process communication. It
facilitates function calls in other address spaces
(other computers).

RT pn_io PNIO
PROFINET IO (PN_IO); PROFINET/RT: cyclic

exchange of data

ARP arp ARP
Address Resolution Protocol – the physical address
(MAC) of a device is determined.

IP ip
Internet Protocol – network protocol above the
network access.

PN_PTCP Pn_ptcp PN_PTCP
This protocol is used for synchronization of the
device clocks (e.g.. measurement of the line delay)

UDP udp
User Datagram Protocol – connectionless protocol
belonging to the transport layer of the Internet
protocol suite.

ICMP imcp ICMP
Internet Control Message Protocol – protocol for
information exchange and error messages via the
Internet protocol.

Table 17-1: Wireshark filter values

A filter can be set to analyse the data after recording is finished. But it is also possible to activate a filter during the

recording so that only dedicated messages are shown.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 85 of 117

March 18, 2020

17.2 Filter Proposals

For the analysis of a connection set-up e.g. the following filter combination may be useful:

pn_dcp || dcerpc

With the following filter, all PROFINET related messages except for the cyclic data (pn_io), can be filtered:

(dcerpc || pn_io.send_seq_num || udp.port == 0x0202) && !icmp

The following filter shows PROFINET messages including the cyclic data:

pn_io e.g.: pn_io.index==0xF841

The search for a particular IP address:

ip.addr==192.168.16.210

If you want to see all PROFINET alarms, you should choose this filter:

(pn_rt.frame_id>=0xFC00 && pn_rt.frame_id<=0xFCFF) ||

(pn_rt.frame_id>=0xFE00 && pn_rt.frame_id<=0xFEFC)

A reference to the possible filters and protocols can be found under the web address given below:

https://www.wireshark.org/docs/dfref/

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 86 of 117

March 18, 2020

17.3 Typical Problem Cases

17.3.1 Station Name is not Correct

The PROFINET Controller searches for the station „tps-1“. There is no response to the Ident Req in the 2nd message in

Figure 17-3. The Ident Req is repeated several times. Here, the name assignment must be checked. The station could

also not be accessed via the network (Check IP parameter).

Figure 17-3: Searched station does not respond

Figure 17-3 shows correct identification of a station and the subsequent Connect.Req. After this the connection to the

IO controller ramps up.

Figure 17-4: Station is identified correctly

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 87 of 117

March 18, 2020

17.3.2 A ModuleDiffBlock is Created During Connect Req

A PROFINET device generates a ModuleDiffBlock if the expected IO controller configuration does not match with the

actual device configuration. You can detect in the ModuleDiffBlock, which problem has occurred. In the example

shown in Figure 17-5, a submodule with wrong submodule number is plugged in the Slot 1, Subslot1 (here 0x82,

expected 0x02).

Figure 17-5: Connect Res with ModuleDiffBlock

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 88 of 117

March 18, 2020

18. Mechanical Requirements

18.1 Are There any Special Requirements for Housing and Plug?

Some PROFINET field devices must meet requirements for higher protection classes which provide protection against

contact, water and dirt penetration. A commonly used protection class for this is e.g. IP65. IP stands for International

Protection, and the number 65 means sealed against dust and water jets. Further protection classes are specified in the

International Standard ISO 20653. If such requirements exist for a PROFINET field device then housing, plugs and

sockets must comply with the respective IP protection class.

18.2 Which Cables Does PROFINET Use?

18.2.1 PROFINET-Copper Cabling

A PROFINET copper cable is typically a 4-wire, shielded copper cable (star quad).

The various cable types differ

• by the structure of wires (fixed / flexible)

• and/or the sheath.

The wires are colour coded.

In 4-wire cables, the cores of the pair 1 have a yellow and an orange insulation, whereas the wires of the pair 2 have a

blue and a white insulation. The cores of the pairs are arranged crossed opposite to one another.

8-wire PROFINET copper cables consist of 4 pairs of lines with green, blue, orange and brown colours, and the

associated white wire. Like in standard Ethernet applications, the maximum distance between the communication end-

points for copper cables is limited to 100 m. This transfer path is defined as PROFINET end-to-end link.

18.2.2 PROFINET Fibre Optic Cabling

In areas where there is a likelihood of electromagnetic interference or high potential differences, you should use fibre

optic cables for connecting automation islands and systems.

The use of fibre-optic cables eliminates the electromagnetic interference and earthing related equalizing currents

through the shields of PROFINET copper cables.

The advantages of fibre optic transmission technology over copper cables are:

• FOCs bridge in general greater distances than copper cable

• FOCs provide electrical isolation between the coupled system components

• FOCs are insensitive to electromagnetic interference (EMI)

In PROFINET, four different types of fibres for fibre optic cables are used. The selection of a fibre type must be made

by taking into account the demands made on the automation projects.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 89 of 117

March 18, 2020

The following fibre types are available for selection:

• Plastic fibres with plastic optical fibre (POF)

• Glass fibre (multimode, single mode or hard cladded silica fibre (HCF))

Depending on the wavelength used and the respective attenuation, each fibre type is suitable only for a limited

transmission distance. Table 18-1 lists the typical data for the beforementioned fibre types.

Fibre Type Core

Diameter

Sheath

Diameter

Transmission Distance
(Typical values)

POF 980µm 1000 µm up to 50 m

HCF 200µm 230 µm up to 100 m

Multimode 50 or 62.5 µm 125 mµ up to 2000 m

Single mode 9 - 10 µm 125 µm up to 14000 m

Table 18-1: Achievable transmission distances of FOC fibre types

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 90 of 117

March 18, 2020

18.3 Which Connectors are Available for PROFINET?

PROFINET cables are equipped with connectors on both sides. The combination of a connector on cable and socket is

seen as a pair.

18.3.1 RJ45 Connectors for Copper Cables

The RJ45 connector is suitable for connecting a terminal device and network components. An important criterion for

use of connectors is the controllability on-site. In the switch cabinet area, the RJ45 connector is used in its IP20 version.

Outside the switch cabinet, the harsh environment must be taken into consideration. Here, the RJ45 push-pull in IP65 or

IP67 version is used.

Also, the standard RJ45 has the advantage that it can be used to connect to laptops or engineering tools quickly and

easily for servicing. The RJ45 connector in IP20 version is standardised in the IEC 60603-7. The RJ45 push-pull

connector in IP67 is standardized in the IEC 61076-3-117 and is mainly used in the German automotive industry as a

standard connector for PROFINET. Both versions are illustrated in Figure 18-1.

RJ45-connector in IP20 RJ45-push-pull-connector in IP67

Figure 18-1: RJ45 connector for copper cable (from [10])

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 91 of 117

March 18, 2020

18.3.2 M12 Connector for Copper Cables

For use in harsh industrial environments with IP67 protection, PI has specified the M12, a connector which provides a

secure connection for sensors/actuators. The M12 is standardized in the IEC 61076-2-101.

Encoding the connector face

Connector Socket

M12-D encoded connector in IP67

Figure 18-2: M12 connector for copper cable (from [10])

18.3.3 Connectors for Fibre Optic Cables

For PROFINET data transmission via fibre optic, the SCRJ and the LC duplex connectors are provided. The basic

versions of these connectors are designed for use in switch cabinets (IP20 protection class). For harsh environments or

IP65 / IP67 requirements, the SCRJ push-pull version is used. An IP65 / IP67 connector with LC-Duplex connector is

currently in the planning phase for the next revision of the PROFINET guideline.

SCRJ-connector in IP20 LC duplex connector in

IP 20

SCRJ-Push-Pull-connector in IP67

Figure 18-3: Connector for FO cable (from [10])

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 92 of 117

March 18, 2020

18.3.4 Connector Types BFOC and SC for FOC

The use of BFOC / 2.5 (IEC 60874-10) class connectors and the SC-plug system (IEC 60874-14) are not recommended

for new automation systems.

18.3.5 Signal Connector

The standard 10-pin push-pull variant 14 connectors are used for PROFINET signal applications. These are

characterized by the fact that up to 10 signal inputs can be plugged into a single push-pull connector. The connector is

standardised in IEC / PAS 61076-3- 119 internationally.

Signal connector push-pull connector, IP65

Figure 18-4: Signal connector (from [10])

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 93 of 117

March 18, 2020

18.4 What is Important While Integrating Plugs and Connectors into the Device?

The integration of copper or FOC interfaces follows the tolerance position on the printed circuit board and the wall

thicknesses of the device as well as the tolerances of the employed interface. The device manufacturer must design the

interface position optimally to ensure a secure connection of the device with the interface. Drawings for PROFINET

copper and FOC connections, that allow easy integration of the interface, are available in the Guideline „Cabling and

Interconnection Technology“. This guideline is available free of charge on the PI website for downloading.

http://www.profibus.com/download/installation-guide

Figure 18-5 andFigure 18-6 show examples from the guideline.

Figure 18-5: Design rules for RJ45 push-pull type connector (from [10])

Figure 18-6: Design rules for SCRJ push-pull type connector (from [10])

http://www.profibus.com/download/installation-guide

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 94 of 117

March 18, 2020

18.4.1 Multiport Connector

When using RJ 45 Multiport Jacks, attention must be paid to the compatibility with industrial-grade IP20 RJ 45. Due to

the industry-grade design, the field-installable connectors are built a bit larger than patch cable connectors in the office

environment. Therefore, while using very compact Multiport Jacks, one may encounter incompatibilities with

industrial-grade RJ 45 connectors. Figure 18-7 illustrates the problem.

Standard Multiport Jack Distance between individual ports

Figure 18-7: Multiport device (from [10])

Due to the non-standardised clearance in case of Multiport RJ45 Jacks, attention must be paid to the clearance between

A and B while selecting the multiport jack. This should be dimensioned so that common, industry-grade RJ 45

connectors can be used.

Further information on the copper cabling or FO cabling can also be found in the Cabling and Interconnection

Technology Guideline for PROFINET.

Note: More information for installation and earthing of copper cabling can be found in the PROFINET Installation

Guideline (PROFINET Montagerichtlinie Order No.: 8.071). It is available free of charge for download.

http://www.profibus.com/download/specifications-standards/

A

B

http://www.profibus.com/download/specifications-standards/

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 95 of 117

March 18, 2020

18.5 What is Important for Shielding and Earthing?

PROFINET operates with shielded copper cables. Shielded cables are earthed at both ends of the cable connection. The

earthing is mostly done to the shield of the RJ45 connector. This shield potential is connected directly to functional

earth (FE) or protective earth (PE). For this earth potential a low impedance connection should be provided on the

device (e.g., for 2.5-4 mm² Cu). The shield of the Ethernet cable is not a viable substitute for the local FE/PE

connection on the unit - the cross-currents interfere with the Ethernet data transfer!

Figure 18-8: Equipotential bonding and earthing (from [10])

Figure 18-9: 8-wire PROFINET cable (from [10])

In a DIN-compliant installation, a consistent earthing (equipotential bonding) is provided; cross-currents on the shield

are therefore not to be expected. If the cross currents cannot be excluded or eliminated, the implementation of a fibre

optic path is an effective measure.

Note: Additional information is available in the "PROFINET Design Guideline" (Version 1.14, December 2014;

Order number 8.062; PROFIBUS User Organisation (PROFIBUS Nutzerorganisation e.V.)). It is available free

of charge for download.

http://www.profibus.com/download/specifications-standards/

http://www.profibus.com/download/specifications-standards/

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 96 of 117

March 18, 2020

18.6 Should the MAC Address be Visible on the Device?

In the delivery state, no name is set for a PROFINET IO Device but rather it can only be accessed over a MAC address.

This is permanently stored in the device, globally unique and, in general, it cannot be changed. The cyclic useful data

exchange takes place only through addressing via MAC address when the controller (IO Controller) and the IO Device

are on the same sub-network. Many PROFINET field devices have the MAC address printed on the housing or the

nameplate. This eases commissioning and any subsequent search for the MAC address locally. For this reason, printing

or laser-etching the MAC address is recommended on the device in such a way that it is readable even after installation.

18.7 Must LEDs be Mounted?

18.7.1 Status LEDs

Each PROFINET device must be supplied with at least one (1) Status LED - this LED displays the service „DCP

Signal“. In TPS-1, the Link-LED of the Ethernet interface is used for this service. Basically, this service can also be

provided through other methods - e.g. with a display. If an implementation different from an LED is considered, it is

advisable to come to an agreement with the envisaged testing laboratory for certification about the different type of

display before the development or design of the device.

Further requirements are not included in the PROFINET standard. TPS-1 has four status LEDs which are directly

controlled by the ASIC (the circuit diagram is shown in the TPS-1 User’s Manual [1]). Table 18-2 summarizes the

function of these LEDs.

LED Color Pin State Description

LED_BF_OUT red B13 Bus Communication:

ON No link status available.

Flashing Link status ok; no communication link to a
PROFINET-Controller.

OFF The PROFINET-Controller has an active
communication link to this PROFINET-Device.

LED_SF_OUT red B11 System Fail:

ON PROFINET diagnostic exists.

OFF No PROFINET diagnostic.

LED_MT_OUT yellow B10 Maintenance Required:

Manufacturer specific – depends on the ability of
the device.

LED_READY_OUT green C10 Device Ready:

OFF TPS-1 has not started correctly.

Flashing TPS-1 is waiting for the synchronization of the Host
CPU (firmware start is complete).

ON TPS-1 has started correctly.

Table 18-2: TPS-1 Status LEDs for PROFINET

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 97 of 117

March 18, 2020

18.7.2 Link/Activity LEDs

Link/Activity LEDs indicate the status of the physical Ethernet connection and should be available for each port. They

should be arranged so that the correlation between port and LED can be seen easily. Particularly during commissioning

these indicators provide important information.

Note: As described above, the Link-LED is used for the „DCP Signal“ service. In a switch cabinet, the visibility of

this LED must be ensured.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 98 of 117

March 18, 2020

19. Certification of a PROFINET Field Device

19.1 Is it Mandatory to Certify for PROFINET?

Yes, a PROFINET field device must be certified. If you market your field device with PROFINET connection, it must

be proven with a PROFINET certificate. Equipment manufacturers and end customers thus have the guarantee that the

field device in a PROFINET system shows a standard-compliant behavior from the perspective of communication and

therefore the interoperability between the PROFINET field devices from different manufacturers is guaranteed. Please

keep in mind that the later a problem is detected, the higher the debugging costs usually are. The follow-up costs of a

communication problem, which occurs in an automation system, are usually many times higher than the cost of

certification.

19.2 General Procedure for Obtaining a Certificate

1. Make an appointment with a PI accredited test laboratory (PITL's) of your choice in good time during the

development phase. Keep in mind that depending on the workload of the PITL's, a lead time of some weeks to

months may be necessary to obtain a test date. Contact the PITLs well in time and ask for time constraints.

PITLs also answer the questions related to the cost of certification. You can find a list of accredited PITL e.g.

under the following link:

http://www.profibus.com/pi-organization/institutions-support/test-labs/.

2. Each PROFINET device has a VendorID and a DeviceID, which are stored both in the GSD file and on the

device itself. You can apply for a VendorID with the PI; it is valid worldwide.

3. Create a GSD file during the implementation phase. Note: Consider early, how you would describe your

PROFINET device model in the GSD file. In case of questions, the PROFINET Competence Centre (PICC)

would be glad to help you

4. On the certification date, deliver a production device and the corresponding GSD file to the PITL. Additional

equipment and documentation, as far as needed for the commissioning of the unit during the certification test,

must also be provided. After completion of the test, the certification laboratory generates a test report and

hands it over to the device manufacturer.

5. After passing the test, on the basis of the test protocol, the device manufacturer can apply for a certificate at the

PROFINET PNO office.

http://www.profibus.com/pi-organization/institutions-support/test-labs/

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 99 of 117

March 18, 2020

19.3 What Needs to be Clarified or Prepared for a Certification by the
Manufacturer?

• A PROFINET device must always be submitted with the corresponding GSD file for certification.

• Each PROFINET device has a VendorID and a DeviceID both of which are stored in the GSD file and on the

device itself, A VendorID is applied for only once and is valid worldwide. A DeviceID is assigned by the

device manufacturer himself, whereby it must be ensured that the combination of Vendor and DeviceID must

be unique worldwide so that there is exactly one PROFINET device which is described by its GSD file.

• The device manufacturer specifies in the test application, which DAP (Device Access Point) in the GSD file

(in case it contains several DAPs) is to be tested. A DAP is the part of a field device, which includes the bus

connection and the user program. In general only one DAP out of the GSD file is tested and is noted in the test

protocol. You can find a short description of the DAP in the PROFINET System description (PROFINET

Systembeschreibung), chapter 2.2. „Device model of a device.“

• Specify the conformance class (A, B or C) targeted for the device. Depending upon the conformance class

entered in the GSD, additional certifications tests are carried out (e.g. testing the isochronous operation for

conformance class C). For a short description of conformance classes, please refer to PROFINET system

description (PROFINET Systembeschreibung), chapter 1.1 „Conformance Classes.“

• Optionally, an application class can be specified in the GSD file. Certain minimum functionalities for the

application are assigned per definition to an application class. The certification lab then checks by the entered

application class, whether the device complies with all the assigned functions of this application class properly

(see chapter 16.4.2).

• Within the framework of certification test, a network load test (Security Level 1 test) is also prescribed. The

device manufacturer specifies according to which network load class (1, 2 or 3) the device is to be tested.

Network load class 1 thereby has the lowest, class 3, the highest requirements. For more information about the

network load test, refer to the document „Guideline PN IO Netload“; this is a constituent part of the

PROFINET test bundle which can be downloaded free of charge by PI members from the PNO website. The

link to this is: http://www.profibus.com/nc/download/software-and-tools/downloads/profinet-io-test-

bundle/display/

• Compliance with the respective national and international regulations must be ensured by the manufacturer.

• For a certification test according to conformance class C, a synchronization pin to allow testing of the

isochronous operation of the device with an oscilloscope must be accessible. This pin must be taken into

account already during the design phase of the device. As it is required only for the certification, this pin is not

necessary for the later production later for the production devices

http://www.profibus.com/nc/download/software-and-tools/downloads/profinet-io-test-bundle/display/
http://www.profibus.com/nc/download/software-and-tools/downloads/profinet-io-test-bundle/display/
http://www.profibus.com/nc/download/software-and-tools/downloads/profinet-io-test-bundle/display/

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 100 of 117

March 18, 2020

19.4 Can I Continue to use the Certificate of the Technology Provider?

No, this is not possible. When using pre-certified technologies, you as a device manufacturer, however, do not have to

be familiar with all the details of the PROFINET standard indeed, and the risk that errors occur during the tests is

reduced significantly.

A PROFINET certification test is always the test of a complete device comprising PROFINET protocol unit (e.g. HW +

Protocol stack + GSD) and the application. This is necessary because the interaction between the application and

PROFINET protocol unit (operating the PROFINET user interface through the application) can affect the execution of

the PROFINET protocol. The certification, therefore, is intended to rule out that an application malfunction or the

protocol unit may lead to malfunctions of the PROFINET communication.

19.5 Checklist for PROFINET Certification

Before PROFINET certification, the following items must be checked:

• The I&M0 data must be correctly filled with your own values.

• If I&M1, I&M2 and I&M3 parameters are present, they must be stored remanently. With a ResetToFactory,

these must then be deleted. If necessary you can use the 4 kByte Flash Area inside the TPS-1 flash (see

reference guide) for this purpose.

• Connect Tsync signal to a pad that is accessible during the conformance testing (only required for

conformance class C)

• Acyclic record data index 0x8028 and 0x8029 must be processed by the application. Please check each subslot.

• Fill in your own software version (in function configDevice(void)). The numbering must be the same as in the

GSDML.

• For each subslot used the consumer status (IOCS) and the provider status (IOPS) must be set correctly. First

set must be done in the function onPrmEndReq() (event TPS_EVENT_ON_PRM_END_DONE_IOARx).

This is necessary to send a correct status before “Application Ready” is sent to the controller.

• Check the available NumberOfARs. In some cases you need two - but normally only one (IOC-AR).

• The settings of the slots and subslots (ID’s) must be identical in the GSDML and in the program when

configuring (configDevice(void)).

• Initial parameters must be checked (requires the subslot initial parameter?). The GSDML file must not contain

any parameters that are not supported by the application.

19.6 Which Tests are Performed for Certification?

A number of test systems covering certain aspects are used for certification. This chapter briefly describes the test

systems used including the test objectives.

The test systems are largely automated. The general test procedure and especially the given test setup is described in the

test specification (e.g. for PROFINET version V2.34.1 -> Testspec-PN_2572_V234_Feb17.pdf). It is mandatory to

configure the test setup and the devices described there. In most test cases you need additional hardware. Neighborhood

information from these test setups is used in many places to test interoperability. Table 19-1 summarizes the available

tester packages and their scope.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 101 of 117

March 18, 2020

Test name Purpose

Automated RT-Tester Real Time and Interoperability Test

SPIRTA Test Bundle IRT Test (dedicated IRT hardware required)

TED-Check Topology test

Net Load Test Security Level 1 test (there are three Netload

classes defined)

GSD-Checker Checking GSDML for formal correctness

Table 19-1: Used test systems for certification

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 102 of 117

March 18, 2020

20. Checklist for Hardware Development (TPS-1)

The items listed here are to be seen as notes supplementing the TPS-1 user’s manual [1]. Detailed information can be

found there. Before starting with the board layout; these items must be reviewed again.

20.1 Power Supply Concept

In the TPS-1 data sheet, a power supply proposal is made. Besides the supply to the digital sections (1.0V, 1.5V, and

3.3V), also analogue circuits exist that need to be decoupled. Based on the overview in Figure 20-1 these power

supplies should be checked once again before starting layout. It is important at this point that the DGND and AGND are

separate from each other connected at a suitable point via e.g. an inductor.

3.3V

filter circuit

1.5V

1.0V

filter circuit

0V

filter circuit

filter circuit

Switching Regulator (1.5V)

BVDD - J1

AVDD_REG - F2

BGND - G1

AGND_REG - G2

PHY Supply Voltages

PLL Voltage

(main clock generation)

PLL_AVDD - L10

PLL_AGND - L9

VDD33ESD – E12

VDDACB – H14

VDDQ_PECL_B1 – C8

VDDQ_PECL_B2 – M8

P1VDDARXTX – D14

P2VDDARXTX – L14

VDDAPLL – G14

VSSAPLLCB -G13

AGND – D12

AGND – D13

AGND – L12

AGND – L12

Figure 20-1: Power supply concept for TPS-1

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 103 of 117

March 18, 2020

20.2 JTAG Interface Circuit

The JTAG circuitry should be rechecked once again especially under the aspect of wiring the TRSTN signal; if you do

not follow this recommendation, sporadic ramp-up problems may pop up.

20.2.1 Unused JTAG Interface

TPS-1
TCK
TMS

TDI

VDD

TDO

TRSTN

open

All resistors 4.7kΩ

Figure 20-2: Unused JTAG interface

20.2.2 Used JTAG Interface

TPS-1

TCK

TMS

TDI

VDD

TDO

TRSTN

open

All resistors 4.7kΩ

1
2
3

Connect 1-2 for boundary scan

Connect 2-3 for normal operation

Figure 20-3: Used JTAG interface (for boundary scan)

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 104 of 117

March 18, 2020

20.3 Setting the Switching Regulator / POR

These input signals are used to control on-chip functions. These signals should be rechecked.

• TEST1 (H3)

• TEST2 (G3)

• TEST3 (E1)

The pins mentioned above control the regulator and POR and must be connected correctly as shown in Table 20-1.

T
E

S
T

3

(P
in

 E
1
)

T
E

S
T

2

(P
in

 G
3
)

T
E

S
T

1

(P
in

 H
3
)

Function

0 0 0 Normal mode: regulator and POR on.

0 0 1 Only POR mode: regulator off, POR on.

0 1 0 Regulator and POR circuitry switched off 1

 All other options reserved for test

Note 1: This setting keeps the TPS-1 permanently in reset and cannot be used for normal device

operation.

Table 20-1: Switching regulator and POR settings

20.4 Power Supply and RESET

The TPS-1 provides a POR, which releases the TPS-1 RESET only after the required supply voltage (3.3 V) has ramped

up. The TPS-1 does not monitor any other required voltage. Such monitoring and the necessary triggering of a RESET

in the case of too low voltage must be done by the power supply module.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 105 of 117

March 18, 2020

20.5 Other Individual Signals

Signal group Signal name Description

Production test TMC1 (E10) Pull down (10k)

TMC2 (K10) Pull down (10k)

TESTDOUT5 (D8) Can be left open (Test PHY)

TESTDOUT6 (D9) Can be left open (Test PHY)

TESTDOUT7 (L8) Can be left open (Test PHY)

TEST_1_IN (D6) Pull down (10k)

TEST_2_IN (D7) Pull down (10k)

PHY EXTRES (H13) Resistor (12k4) to AGND

Boundary scan TM0 (L4) Pull down (1k)

TM1 (J10) Pull down (1k)

IRT signals TEST_SYNC (N12) Clock signal for certification – should be connected to
a pad

T1 (J11) If IRT is used connect to interrupt input of the host
CPU (if not used, leave open).

T2 (H12) If IRT is used connect to interrupt input of the host
CPU (if not used, leave open).

T3 (G11) If IRT is used connect to interrupt input of the host
CPU (if not used, leave open).

T4 (F11) If IRT is used connect to interrupt input of the host
CPU (if not used, leave open).

Boot loader BOOT_1 (P12) Pull Down (10k), signal should be configurable (if set to
high, the internal boot loader is started after RESET).

Table 20-2: Individual signals

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 106 of 117

March 18, 2020

20.6 LED Status Signals

The status LEDs must be connected to Vdd (via a resistor). When active, the TPS-1 output is set to logical 0.

LED Pin Colour Function

LED_BF B13 red Bus fail occur

LED_SF B11 red System fail occur

LED_READY C10 green Device ready

LED_MT B10 yellow Maintenance demanded / required

Table 20-3: Overview status LEDs

The functional meaning of the LEDs is described in the TPS-1 device hardware documentation [1].

20.7 Network Interface

To make best use of the capabilities of the PHYs, that are included in the TPS-1, the network interface should be

designed carefully. Careless network interface designs will not necessarily result in immediate device failures, but in

reduced usable cable length and more frequent transmission errors.

Figure 20-4: Recommended circuit for network interface

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 107 of 117

March 18, 2020

Figure 20-4 shows the recommended circuit for a typical copper-based network interface. Your design considerations

should touch the following points:

• RJ45 connectors with integrated transformers or usage of discrete transformers

Integrated transformers will save cost and board space, while discrete transformers are regarded as higher

quality and allow easier implementation of additional ESD protection circuitry. Recommendations for

connectors and transformers are described in the TPS-1 user manual [1].

• selection of proper analogue supply voltages and GND

Analogue supply voltage should as well be used for the external pull-up resistor in Figure 20-4.

• Signal lines between TPS-1 and the RJ45 connector

The signal lines should not only be short, but must be also routed as impedance controlled lines. Furthermore

you should avoid crossings between the Ethernet signal lines and other “noisy” signals like clock or

address/data buses.

TPS-1 based systems that works in a electrically very noisy environment may need additional HW countermeasures

against ESD. Figure 20-5 illustrates a typical circuit for this purpose.

Figure 20-5: Typical ESD protection circuit

20.8 Reset Concept

In case of a reset, it should be noted that the TPS-1 can also always be reset by the host CPU. Situations may arise

which can only be overcome by a reset. A detailed description is available in the TPS-1 device hardware

documentation.

20.9 Watchdog Concept

The TPS-1 provides a signal (WD_OUT, pin B12) that indicates to the connected host CPU that a watchdog is triggered

in the TPS-1. If necessary, after the TPS-1 reset, the NRT areas must be reconfigured (like in the case of reset).

For monitoring the connected host CPU, TPS-1 provides the input WD_IN (pin A11). This pin must be triggered by the

host CPU (can also be switched off completely). If there is no trigger, then the TPS-1 switches off its peripheral

interface and can no longer be addressed by the host CPU. This situation can only be resolved by TPS-1 reset. Here, the

monitoring concept must be checked again.

Note: The WD_OUT and WD_IN signals should be monitored under all circumstances in order to avoid undefined

system states.

TransformerDiode arrayTPS Connector

RX_P

RX_N

TX_P

TX_N

RX_P

RX_N

TX_P

TX_N

Protection

(not disclosed)

Shield

7,8

4, 5

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 108 of 117

March 18, 2020

20.10 Device Identification – MAC Addresses

For the TPS-1 operation, three MAC addresses are needed:

• Device interface

• Ethernet port 1

• Ethernet port 2

Each Ethernet port requires a MAC address to identify it uniquely.

The MAC addresses - in addition to the serial numbers - are assigned during the manufacturing process and are

permanently written in the TPS-1 configuration. The MAC address of the device should also be readable on the device

housing in installed state (e.g. in a switch cabinet).

The MAC addresses are entered with the TPS Configurator and stored in the TPS-1 external Flash.

MAC addresses can be purchased from the Profibus User Organisation (smaller quantities) or the IEEE.

Profibus User Organisation: www.profibus.com or www.profinet.com

IEEE: http://standards.ieee.org/develop/regauth/oui/index.html

http://www.profibus.com/
http://www.profinet.com/
http://standards.ieee.org/develop/regauth/oui/index.html

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 109 of 117

March 18, 2020

21. Checklist for Software Implementation

The subsequent Table 21-1 lists a couple of check items to verify the status of the software implementation.

Test item Result:

VendorID changed to own identifier

DeviceID entered (own administration)

Serial number - clarified creation and administration issues

I&M0 data creation (initImData(void) (mandatory for each device)

I&M1 -3 data retention must be ensured by the device firmware (for certification)

Correct software version must be implemented (configDevice() ->
SoftwareVersion)

Implementation Record Request for index 0x8028
(RecordInputDataObjectElement for one Subslot – enhance AppOnReadRecord())

Implementation Record Request for index 0x8029
RecordOutputDataObjectElement for one Subslot - enhance
AppOnReadRecord())

Implemented diagnostic alarm (if requested)

Implemented process alarms (if requested)

Tested Reset to Factory Settings (reset option 2 and 8 or more if necessary)

GSD file – change VendorID, DeviceID and manufacturer

Set IOPS for input data and set the IOCS (cyclic data IO-RAM)
(TPS_WriteInputData())

Table 21-1: Software checklist

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 110 of 117

March 18, 2020

A. Abbreviations and Terms

AGND Analogue Ground Plane

AIDA Automation Initiative of German Automobile Manufacturers

(Automatisierungsinitiative Deutscher Automobilhersteller)

ANSI C C Programming Language development as per ANSI X3.159-1989

APDU-Status Application Protocol Data Unit Status – contains status information

related to the cyclic transfer of user data (Cycle Count, Data Status,

and Transfer Status)

API Application Programming Interface

API Application Process Identifier (PROFINET)

AR Application Relation - Application relation between a provider and a

consumer (PROFINET).

ASE Application Service Entity

ASIC Application specific integrated circuit

CC Conformance Class

CDT C/C++ Development Toolkit

Connect.Req Connect.Request: Message, with which a controller attempts to

establish a connection to a field device

Connect.Res Connect.Response: Response of a field device to a controller

attempting to establish a connection

Controller-AR (IOS) The IOC AR (AR Controller) serves to exchange cyclic input and

output data within a unicast or multicast connection, acyclic data via

Read/Write services and bidirectional alarms

CR Communication Relation

DAP Device Access Point

DCP Discovery and Configuration Protocol; this protocol is used e.g. to set

the „Name Of Station“, to transfer and set the IP address and other

parameters

Device Access AR (DA) Device Access refers to the build-up of an AR between a higher level

controller and a device. The device access allows cyclic reading and

writing of data.

DeviceID Device identification assigned by the device manufacturer

DGND Digital Ground Plane

DPRAM Dual-Port-RAM, a RAM, in which it is possible to have simultaneous

read or write accesses from two sides

Driver Collective term for the functions and structures of the Driver

interface, which can be used by a host application

EMC Electromagnetic Compatibility

FPGA Field Programmable Gate Array

GCC GNU Compiler Collection

GDB GNU Project Debugger

GNU A UNIX-based operating system (GNU-Project)

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 111 of 117

March 18, 2020

GPIO General Purpose Input / Output – Signal pin of an integrated circuit,

which, depending upon programming can be configured as an input or

an output pin

GSD General Station Description

GSDML GSD Markup Language

Hardware-Revision Specifies the hardware version of the field device is queried in I&M0

data as well.

IP20 protected against solid foreign bodies having diameter above 12.5 mm

IP65 sealed against dirt and water jets

IP67 sealed against dust and temporary immersion

I&M-Functions Identification and Maintenance; services that provide support during

commissioning and maintenance to read informative data from a field

device (e.g. version identifications).

ICMP Internet Control Message Protocol; Internet protocol for reporting

faults in a network environment

Implicit AR (IMP) The implicit AR (ARUUID = 0) defines an application relationship

between controller/supervisor and device for acyclic reading of data

from a device. The controller must not establish a separate AR for this

purpose. It is always existent and can be used by the higher level

controller.

IOCS Input Output Consumer Status

IOPS Input Output Provider Status

IP Internet Protocol; the protocol that ensures the transfer of data on the

Internet from the end node to end node

IRT Isochronous Real-time

LLDP Link Discovery Protocol Data (IEEE 802.1 AB); the LLDP is a

vendor independent Layer-2 protocol that provides the ability to

exchange information between neighbouring devices

M12 Circular connector with metric thread

MAC-Address Media Access Control Address; this is also referred to as an Ethernet

address and serves to identify an Ethernet node. The Ethernet address

is 6 bytes long (IPv4) and is assigned by the IEEE

MAU Medium Attachment Unit (physical interface of a port)

ModuleIdentNumber Unambiguous description of a module that must be uniform across a

field device

NameOfStation Individual device name, by which a controller can find a device

NRT-Area Non-Real Time-Area; storage area in the DPRAM of the TPS-1

starting at address 0x8000, which contains the device configuration

and mailboxes

Outline View An Outline View is a summary of the contents of a structured file

(variables, structures, functions, classes, etc.).

PDEV Physical Device

Peer-to-Peer Peer-to-Peer (P2P) connection (English: peer = „equals", „Coequal”)

and computer to computer connection are synonymous designations

for communication among equals; here, referring to a computer

network (see Client-Server System)

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 112 of 117

March 18, 2020

PNO PROFIBUS User Organisation (PROFIBUS Nutzerorganisation e.V.)

(http://www.profibus.com/)

POF Polymeric optical fibre

POR Power On Reset

Project Explorer The Project Explorer provides an overview of packages and their

contents are belonging to a project.

RJ45 standard Ethernet connector

RTA Real Time Acyclic

RTC Real Time Cyclic

Slot A PROFINET addressing level found in automobiles

SCRJ Connector for FOC transmission

SubmoduleIdentNumber This identification must be unique within the submodules of a specific

module.

Subslot Insertion slot in a real device within a slot; the subslot is that part of

the device over which data are exchanged.

Supervisor AR (IOS) The Supervisor AR is provided for data exchange of a supervisor with

a device and has the same features as an IOC-AR.

TAP Test Access Port; passive access point of a network connection over

which data can be read for analysis purposes

TCP Transmission Control Protocol; superimposed protocol of IP, to

ensure secure data exchange and flow control

TED Topology Engineering and Discovery (part of test package for

certification)

TFTP Trivial File Transfer Protocol; service to access files on a remote

computer over a network

TLV Type Length Value; format that is used in network protocols and file

formats to transfer a variable number of attributes e.g. in a message

TPS Stack TPS-1 Firmware for operating the PROFINET communication system

TPS Updater Separate part of the firmware with which the firmware can be updated

VendorID Manufacturer identification assigned by the PROFIBUS user

organisation

UDP User Datagram Protocol; insecure Multicast- / Broadcast telegram

UUID Universal Unique Identifier; regulates the unique identification of a

certain functionality or data in PROFINET

XML Extensible Markup Language

http://www.profibus.com/)

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 113 of 117

March 18, 2020

B. List of Documents

[1] TPS-1 User Manual, document number R19UH0081ED0105 or newer, Renesas Electronics

[2] TPS-1 Reference Manual, included in TPS-1 Development Toolkit version V1.3.1.16 or newer

[3] TPS-1 Document Change Notification, document number R19TU0002ED0200 or newer, Renesas

Electronics

[4] Jäger, Edgar: Industrial Ethernet, Heidelberg, Verlagsgruppe Hüthig, ISBN 978-3-7785-4031-2

[5] Renesas Semiconductor Package Mount Manual, (Rev.1.01, Mar 2011) (R50ZZ0003EJ010)

[6] GSDML Getting Started included in TPS-1 Development Toolkit version V1.3.1.16 or newer

Simple Instructions for Creating a Device Description Data (GSD) file for PROFINET Version February 2015,

Phoenix Contact Software GmbH

[7] TPS-1 Firmware Update Manual, version V1.4 included in TPS-1 Development Toolkit version V1.3.1.16

or newer

[8] Diagnosis for PROFINET IO; Guideline for PROFINET Version 1.1, March 2015; Order number 7.142;

PROFIBUS Nutzerorganisation e.V.

[9] Popp, Manfred: Industrial communication with PROFINET (Industrielle Kommunikation mit

PROFINET) PROFIBUS Nutzerorganisation e. V., 2014

[10] PROFINET Design Guideline;

Version 1.14, December 2014; Order number 8.062; PROFIBUS Nutzerorganisation e.V.

TPS-1

R19AN0035ED0301 Rev. 3.01 Page 114 of 117

March 18, 2020

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date

Description

Page Summary

1.0 Nov. 3, 2016 1st edition

2.0 Jan. 12, 2018 Major update

- added information related to YCONNECT-IT-TPS-1L

- added chapter 2.4.5

- added chapter 5.2

- extended chapter 10

- extension in Table 11-1

- added chapter 15.5

- extension in Table 17-1

- various minor corrections, typos etc.

3.0 April 11, 2019 Major update

- added Table 4-1

- extension and modification in Table 7-2

- added new Figure 10-3 in chapter 10.2

- extended chapter 15.6.3

- added Table 12-1

- extension and modification in Table 21-1

- added new chapter 11.4 Extension of the Host API for

selective reception of Ethernet frames

- various minor corrections, typos etc.

3.1 March 18, 2020 Minor update

- updated Table 20-2 , TEST_1_IN and TEST_2_IN -

pull down (10k)

- new photo in Figure 2-9 and a note available

- adjust text in chapter 15.4.1 , 15.4.3 and 17.2

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as

well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

LSI, an associated shoot-through current flows internally, and malfunctions occur due to the

false recognition of the pin state as an input signal become possible. Unused pins should be

handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of

pins are not guaranteed from the moment when power is supplied until the reset process is

completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset

function are not guaranteed from the moment when power is supplied until the power reaches

the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become

stable. When switching the clock signal during program execution, wait until the target clock signal

has stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock

signal. Moreover, when switching to a clock signal produced with an external resonator (or by

an external oscillator) while program execution is in progress, wait until the target clock signal is

stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

⎯ The characteristics of Microprocessing unit or Microcontroller unit products in the same group

but having a different part number may differ in terms of the internal memory capacity, layout

pattern, and other factors, which can affect the ranges of electrical characteristics, such as

characteristic values, operating margins, immunity to noise, and amount of radiated noise.

When changing to a product with a different part number, implement a system-evaluation test

for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Introduction and Overview
	1.1 Presumptions

	2. Structure of TPS Development Toolkit
	2.1 Overview of TPS Development Toolkit
	2.2 TPS-1 Firmware
	2.3 TPS-1 Documentation
	2.4 TPS Driver (API Host Application)
	2.4.1 Driver API Files (Source)
	2.4.2 Sample Application
	2.4.3 Extended Application
	2.4.4 Modifications Made for the Renesas TPS-1 Solution Kits
	2.4.5 Modifications for Different Application Processors

	2.5 GSDML Directory
	2.6 Test and Development Tools
	2.6.1 TPS Configurator
	2.6.2 TPS FWUpdater
	2.6.3 PROFINET Smart Control Express
	2.6.4 PROFINET Configurator Express

	3. Operating Modes of TPS-1
	3.1 I/O Configuration (Local IO)
	3.2 Host Interface Modus (Parallel or Serial)

	4. Implementation of a Field Device
	4.1 PROFINET Device Model
	4.2 Device Configuration
	4.2.1 Synchronisation TPS-1 / Application CPU
	4.2.2 Initialisation of the NRT Area
	4.2.3 Device Configuration
	1) Adding a Module (Slot)
	2) Adding Submodules to the Device

	4.2.4 Registration of Callback Functions
	4.2.5 Setting the Device Software Function
	4.2.6 Device Start (TPS_StartDevice())

	4.3 Communication TPS-1 and Host CPU (Event Communication)

	5. Identification & Maintenance Functions (I&M)
	5.1 Assignment of the I&M Data
	5.2 Using I&M Filter Data (Index 0xF840)
	5.3 Initialisation of I&M Data (Device Start-up)

	6. Establishing a Connection Between IO Controller and IO Device
	6.1 Searching the Device
	6.2 Connection Set Up

	7. Acyclic Data Exchange via Record Data
	7.1 General Procedure for Record Data Exchange
	7.2 Processing of Indices 0x8028 and 0x8029
	7.3 PROFINET IO Record overview (Selection)

	8. Cyclic Data Exchange
	8.1 Connect Request by the Controller
	8.2 Data Access to Receive and Send Buffers
	8.3 Provider and Consumer Status
	8.4 Providing Initial Parameters for the Field Device
	8.5 Query on new cyclic output data

	9. IRT Communication and IRT Application
	9.1 IRT Communication
	9.2 Isochronous Application
	9.3 IRT Applications With the TPS-1
	9.4 IRT Keywords in the GSDML File

	10. ResetToFactory Settings
	10.1 Factory Reset
	10.2 ResetToFactory Settings

	11. Ethernet Communication – TCP/IP Channel
	11.1 TCP/IP Channel
	11.2 Commissioning of the TCP/IP Channel
	11.3 Ethernet Mirror Application
	11.4 Extension of the Host API for selective reception of Ethernet frames
	11.5 List of Used Port Numbers

	12. SNMP Server
	12.1 SNMP MIB II for TPS-1

	13. Update of the TPS-1 Firmware
	13.1 Hardware Configuration of the TPS-1
	13.2 Preparation of Flash Images
	13.3 Firmware Update via Ethernet

	14. Production Environment (Default Image)
	15. Special TPS-1 Properties
	15.1 Automatic Adaption to the Target Configuration
	15.2 Transferring Initial Parameters
	15.3 TPS-1 Hardware Configuration via DPRAM
	15.3.1 Generating the Configuration Block
	15.3.2 Transferring the Configuration Block via DPRAM

	15.4 TPS-1 Stack Update via DPRAM
	15.4.1 Starting the TPS Updater
	15.4.2 Transferring the Requested Firmware Image
	15.4.3 Starting the TPS-Stack

	15.5 Using TPS-1 Flash for Host Application Data
	15.6 Generation of Process and Diagnosis Alarms
	15.6.1 General Diagnosis and Alarm Processing
	15.6.2 DRIVER Functions for Diagnosis and Alarm Processing
	15.6.3 Example of a Diagnosis Alarm

	16. GSD (General Station Description) for the TPS-1
	16.1 What is a GSD?
	16.2 What is the GSDML (GSD Markup Language)?
	16.3 Which Information can be Found in the GSD File?
	16.3.1 Profile Header
	16.3.2 Profile Body

	16.4 What are the Application Implications on the GSD?
	16.4.1 Conformance Classes (CC)
	16.4.2 Application Classes (Optional)

	16.5 What are the Key Issues in „Life Cycle Management“ of GSD?
	16.5.1 What are the Implications of Changing the GSDML?
	16.5.2 Do Further Developments of the Field Device Influence the GSD File?
	16.5.3 How do I Provide the GSD to my Customers?

	16.6 PROFINET GSD Checker Tool
	16.7 Good Practices
	16.7.1 Creating the GSD
	16.7.2 Testing the GSD
	16.7.3 Adaptation to a new GSDML schema

	17. Wireshark Recordings
	17.1 Filters for PROFINET
	17.2 Filter Proposals
	17.3 Typical Problem Cases
	17.3.1 Station Name is not Correct
	17.3.2 A ModuleDiffBlock is Created During Connect Req

	18. Mechanical Requirements
	18.1 Are There any Special Requirements for Housing and Plug?
	18.2 Which Cables Does PROFINET Use?
	18.2.1 PROFINET-Copper Cabling
	18.2.2 PROFINET Fibre Optic Cabling

	18.3 Which Connectors are Available for PROFINET?
	18.3.1 RJ45 Connectors for Copper Cables
	18.3.2 M12 Connector for Copper Cables
	18.3.3 Connectors for Fibre Optic Cables
	18.3.4 Connector Types BFOC and SC for FOC
	18.3.5 Signal Connector

	18.4 What is Important While Integrating Plugs and Connectors into the Device?
	18.4.1 Multiport Connector

	18.5 What is Important for Shielding and Earthing?
	18.6 Should the MAC Address be Visible on the Device?
	18.7 Must LEDs be Mounted?
	18.7.1 Status LEDs
	18.7.2 Link/Activity LEDs

	19. Certification of a PROFINET Field Device
	19.1 Is it Mandatory to Certify for PROFINET?
	19.2 General Procedure for Obtaining a Certificate
	19.3 What Needs to be Clarified or Prepared for a Certification by the Manufacturer?
	19.4 Can I Continue to use the Certificate of the Technology Provider?
	19.5 Checklist for PROFINET Certification
	19.6 Which Tests are Performed for Certification?

	20. Checklist for Hardware Development (TPS-1)
	20.1 Power Supply Concept
	20.2 JTAG Interface Circuit
	20.2.1 Unused JTAG Interface
	20.2.2 Used JTAG Interface

	20.3 Setting the Switching Regulator / POR
	20.4 Power Supply and RESET
	20.5 Other Individual Signals
	20.6 LED Status Signals
	20.7 Network Interface
	20.8 Reset Concept
	20.9 Watchdog Concept
	20.10 Device Identification – MAC Addresses

	21. Checklist for Software Implementation
	A. Abbreviations and Terms
	B. List of Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

