
www.renesas.com

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Technology Corp.
website (http://www.renesas.com).

EEPROM Emulation Library

EEL – T01

16 Bit Single-chip Microcontroller

RL78 Series

R01AN0707ED0100
June 17, 2011

16

A
pplication N

ote

R01AN0707ED0100 2

Application Note

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however,

is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed
herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas Electronics such as that
disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of
these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no
responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or
information.

5. When exporting the products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations. You should not use
Renesas Electronics products or the technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction.
Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High
Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product
before using it in a particular application. You may not use any Renesas Electronics product for any application
categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any
Renesas Electronics product for any application for which it is not intended without the prior written consent of
Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or
third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for
which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.
The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas
Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and
industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for
life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical
equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes
that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all

R01AN0707ED0100 3

Application Note

applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its
majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

R01AN0707ED0100 4

Application Note

Table of Contents

Chapter 1 Introduction ...6

1.1 Naming convention ... 7

1.2 Related documents ... 8

1.3 MF3 Data Flash... 8

1.3.1 Dual operation.. 8

1.4 Functional elements within the EEPROM Emulation system ... 9

1.5 Pool structure .. 10

1.6 Address virtualisation .. 11

Chapter 2 EEL architecture ...12

2.1 EEL pool structure... 12

2.2 EEL block structure... 14

2.2.1 EEL block header .. 15

2.2.2 Reference area .. 16

2.2.3 Data area ... 16

2.3 EEL Instance structure.. 17

2.3.1 Data Reference Pointer, DRP.. 17

2.3.2 Instance data ... 17

2.3.3 Data Checksum, DCS.. 18

2.4 Block management ... 18

2.4.1 EEL block circulation ... 18

2.4.2 EEL block status .. 19

2.4.3 Security aspects, block exclusion .. 19

2.5 Instance management .. 20

2.5.1 Write instance sequence ... 21

2.5.2 Security aspects, checksums .. 21

2.6 Processes ... 22

2.7 Space treatment.. 23

2.8 Request–Response oriented dialog.. 24

2.9 Handler oriented command execution .. 25

2.10 Execution modes of the EEL ... 26

2.10.1 Enforced execution mode .. 27

2.10.2 Timeout execution mode ... 30

2.10.3 Polling execution mode.. 33

2.11 Supported command spectrum ... 36

2.12 EEL execution planes.. 37

2.12.1 Foreground plane .. 37

2.12.2 Background plane.. 38

Chapter 3 Application Programming Interface...39

R01AN0707ED0100 5

Application Note

3.1 Data types ... 39

3.1.1 Library specific simple type definitions .. 39

3.1.2 Enumeration type “eel_command_t” ... 39

3.1.3 Enumeration type “eel_operation_status_t”... 40

3.1.4 Enumeration type “eel_access_status_t” .. 40

3.1.5 Enumeration type “eel_status_t”.. 41

3.1.6 Structured type “eel_request_t” ... 42

3.1.7 Structured type “eel_driver_status_t” .. 42

3.2 Functions... 43

3.2.1 EEL_Init ... 43

3.2.2 EEL_Open ... 44

3.2.3 EEL_Close ... 45

3.2.4 EEL_Execute ... 46

3.2.5 EEL_Handler.. 48

3.2.6 EEL_TimeOut_CountDown ... 50

3.2.7 EEL_GetDriverStatus .. 51

3.2.8 EEL_GetSpace .. 54

3.2.9 EEL_GetVersionString... 56

Chapter 4 Operation ..58

4.1 Installation ... 58

4.2 Basic workflow .. 60

4.3 Configuration... 61

4.3.1 Pool configuration .. 61

4.3.2 Variable configuration .. 62

4.3.3 Pool configuration hints and tipps.. 63

4.4 Initialisation ... 67

4.5 EEL activation and deactivation.. 67

4.6 Foreground and background process ... 68

4.6.1 Controlling background process .. 68

4.7 Commands.. 71

4.7.1 Pool oriented commands ... 71

4.7.2 Variable oriented commands ... 84

Chapter 5 Characteristics ..95

5.1 Resource consumption ... 95

EEPROM Emulation Library

R01AN0707ED0100 6

Application Note

Chapter 1 Introduction

This application note describes the internal structure, the functionality and the
software interface (API) of Renesas RL78 EEPROM Emulation Library (EEL)
Type 01, designed for RL78 flash devices with so called Data Flash based on
the MF3 flash technology.

The EEL is the highest layer of Renesas EEPROM Emulation System which
aspires to mime at least the functionality of an non-volatile memory (internal
EEPROM) under usage of the on-chip embedded flash memory. Beyond that
divers service and administrative functionality is provided by the EEL to
simplify the handling at application side.

Elements of the EEPROM Emulation System

User application

flash access layer

FAL-POOL (data flash macro)physical flash

EEPROM layer

application layer

FDL

EEL-API

EEL

FDL-API

Note:

This application note describes the functional block marked in yellow

Figure 1-1

EEPROM Emulation Library

R01AN0707ED0100 7

Application Note

1.1 Naming convention

Certain terms, required for the description of the Flash and EEPROM
emulation are long and too complicated for good readability of the document.
Therefore, special names and abbreviations will be used in the course of this
document to improve the readability.

Used abbreviations and acronyms

Abbreviations /
Acronyms Description

Block Smallest erasable unit of a flash macro

Code Flash

Embedded Flash where the application code is stored.
For devices without Data Flash EEPROM emulation
might be implemented on that flash in the so called data
area.

Data Flash
Embedded Flash where mainly the data of the EEPROM
emulation are stored. Beside that also code operation
might be possible.

Dual Operation

Dual operation is the capability to fetch code during
reprogramming of the flash memory. Current limitation is
that dual operation is only available between different
flash macros. Within the same flash macro it is not
possible!

EEL EEPROM Emulation Library

EEPROM
emulation

In distinction to a real EEPROM the EEPROM emulation
uses some portion of the flash memory to emulate the
EEPROM behavior. To gain a similar behavior some
side parameters have to be taken in account.

FAL Flash Access Library (Flash access layer)
FCL Code Flash Library (Code Flash access layer)
FDL Data Flash Library (Data Flash access layer)

Flash

“Flash EPROM” - Electrically erasable and
programmable nonvolatile memory. The difference to
ROM is, that this type of memory can be re-programmed
several times.

Flash Block
A flash block is the smallest erasable unit of the flash
memory.

Flash Macro
A flash comprises of the cell array, the sense amplifier
and the charge pump (CP). For address decoding and
access some additional logic is needed.

NVM
Non volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

RAM
“Random access memory” - volatile memory with
random access

ROM
“Read only memory” - nonvolatile memory. The content
of that memory can not be changed.

Serial programming
The onboard programming mode is used to program the
device with an external programmer tool.

Single Voltage

For the reprogramming of single voltage flashes the
voltage needed for erasing and programming are
generated onboard of the microcontroller. No external
voltage needed like for dual- voltage flash types.

Table 1

EEPROM Emulation Library

R01AN0707ED0100 8

Application Note

1.2 Related documents

List of related documents

Document Number Description
R01US0034EDxxxx Data Flash Access Library

1.3 MF3 Data Flash

Almost all devices of the RL78 microcontroller family are equipped with a
separate flash area called Data Flash.

1.3.1 Dual operation

Common for all Flash implementations is, that during Flash modification
operations (Erase/Write) a certain amount of Flash memory is not accessible
for any read operation (e.g. program execution or data read).

This does not only concern the modified Flash range, but a certain part of the
complete Flash system. The amount of not accessible Flash depends on the
device architecture.

A standard architectural approach is the separation of the Flash into Code
Flash and Data Flash. By that, it is possible to fetch instruction code from the
Code Flash (to execute program) while data are read or written into Data
Flash. This allows implementation of EEPROM emulation concepts running
quasi parallel to the application software without significant on its execution
timing.

If not mentioned otherwise in the device users manuals, RL78 device with
Data Flash are designed according to this standard approach.

Note:
It is not possible to modify Code Flash and Data Fl ash in parallel.

Table 2

EEPROM Emulation Library

R01AN0707ED0100 9

Application Note

1.4 Functional elements within the EEPROM Emulation system

Even though this user’s manual describes the functional block “EEPROM
Emulation Library” a short description of all concerned functional blocks and
their relationship could be beneficial for the general understanding of the
system. The following figure illustrates the basic idea behind and its involved
functional blocks but the shown dependencies are not complete.

Relationship between functional blocks inside the E EPROM emulation
systems

Application:
The functional block “Application” contains the instruction code of user's
software using the EEL.

Figure 1-2

EEPROM Emulation Library

R01AN0707ED0100 10

Application Note

EEPROM Emulation Library (EEL):
The functional block “EEPROM Emulation library” is the subject of this user’s
manual. It offers all functions and commands the “Application” can use in order
to handle its EEPROM data.

Data Flash Access Library (FAL):
The “Data Flash Access Library” offers an interface to access any user-defined
flash area, so called “FDL-pool” (described in next chapter). Beside the
initialization function the FDL allows the execution of access-commands like
write as well as a suspend-able erase command.

Note:
General requirement is to be able to deliver pre-compiled EEL libraries, which
can be linked to either Data Flash Access Libraries (FDL) or Code Flash
Access Libraries (FCL). To support this, a unique API towards the EEL must
be provided by these libraries. Following that, the standard API prefix FDL_...
which would usually be provided by the FDL library, will be replaced by a
standard Flash Access Layer prefix FAL_... All functions, type definitions,
enumerations etc. will be prefixed by FAL_ or fal_. Independent from the API,
the module names will be prefixed with FLD_ in order to distinguish the
source/object modules for Code and Data Flash.

1.5 Pool structure

The EEL-pool is a part of the FDL-pool defined by the user in the file
FAL_descriptor.h. in that file the user can divide the FDL-pool into two
independent parts: the EEL-pool (used exclusively by the EEL only) and the
USER-pool which can be freely used by the application to store any data.

To protect the content of the EEL-pool against unwanted user accesses the
EEL-driver is using only hidden subroutines reserved exclusively for the EEL.

Pool details:

• FDL-pool allocates the physical Data Flash memory that can be handled
by the FDL. It is a kind of container reserving room for the EEL-pool and
USER-pool. All characteristics (valid address information, partitioning
information, ...) of the FDL-pool are defined in the FDL-pool descriptor.
Based on that information the FDL protect all flash content against illegal
access.

• EEL-pool is a virtual pool inside the FDL-pool used exclusively by the
EEL for storing data and control information.

• User Pool is completely in the hands of the user application. It can be
used to build up an own user EEPROM emulation or to simply store
constants.

Note:

Please refer to the FDL user’s manual for further details.

EEPROM Emulation Library

R01AN0707ED0100 11

Application Note

Pool access scheme, general scheme

USER pool access

USER

EEL

EEL pool access

0-
(N
-1
)

0-(M
-1)

EEL pool

M flash words

USER pool

N flash words

0x0000

M-1

0x0000

N-1

FDL pool

FDL

1.6 Address virtualisation

To simplify the flash content handling as well the parameter passing between
the FAL and the EEL the physical addresses used by the flash hardware were
transformed into a linear 16-bit index addressing flash-words (32-bit units)
inside the corresponding pool. By this measure each owner of the pool can
use it as a simple array of words. To address the array elements (read/write
access) word-index starting at 0x0000 can be used. The max. range of the
word-index depends on the FAL-pool configuration and the number of flash
blocks reserved for the particularly pool. This kind of address virtualization
allows to access max 2 * 256kBytes Data Flash and offers an effective access
rights management.

Note:

The user of the EEL is not touched by the above address virtualization.

Figure 1-3

EEPROM Emulation Library

R01AN0707ED0100 12

Application Note

Chapter 2 EEL architecture

This chapter describes the internal architecture of the EEPROM Emulation
Library.

2.1 EEL pool structure

The EEL pool is the virtual storage medium used by the EEL driver for storing
data and block management information during its operation. From logical
point of view the EEL-pool is organized as a single-linked ring of blocks.

“Single-linked ring” means here:

a) the next block to block N is block (N+1)
b) the next block to the last one is the first one.

Structure of an empty EEL pool (no data inside)

Each block of the EEL-pool contains a block-header for storing block
management information. Because the block indexing within the EEL-pool is
based on the homogenous and fixed virtual block numbers 0x0000....
(EEL_POOL_SIZE - 1) it is not necessary to store the neighbors inside the
block header.

All flash-blocks of the EEL pool are grouped in three consecutive “regions”
indicated by the “block status” in the block header.

“active region” - consists of blocks containing active data
“invalid region” - consists of blocks without active data
“prepared region” - consists only of blocks ready to receive new data

Figure 2-1

EEPROM Emulation Library

R01AN0707ED0100 13

Application Note

When contemplate EEL-pool blocks clockwise the regions are always in the
same fixed chronological order:

“prepared region” is before “active region”
“active region” is before “invalid region”
“invalid region” is before “prepared region”

EEL pool regions during normal operation

Block organization scheme based illustrated above offers following
advantages:

a) two symmetrical sections (where always 50% of Data Flash does not
contain valid data) are not needed anymore

b) the “active region” can grow and be adapted to the momentary need

c) the reference area is separated from the data inside the same EEL block

d) copy-processes are mostly much faster because reduced to the only last
active block has to be released from valid instances.

e) exclude functionality does not reduce performance of the driver

Figure 2-2

EEPROM Emulation Library

R01AN0707ED0100 14

Application Note

2.2 EEL block structure

Each EEL block belonging to the EEL-pool is basically divided into three
areas: the block header, reference area and the data area. The block-header
contains information about the actual status of the block which is needed for
the block-management within the pool. The reference area contains reference
entities off all instances written into this block during its live-cycle. It is
necessary for actual data localization after power-on. The data area contains
the pure data belonging to the corresponding references in reference area.

EEL block, general structure

 Figure 2-3

EEPROM Emulation Library

R01AN0707ED0100 15

Application Note

2.2.1 EEL block header

The block header is a small area on the top of each flash block belonging to
the EEL pool. It contains all information necessary for block management
during EEL operation. The structure of the block header is the same in all
blocks of the EEL-pool.

EEL block header structure

2.2.1.1 EEL block status flags

Each flag within the block header consists of one flash word (4 bytes).

There are two types of block status flags:

- “constructive status flag” used in processes like “activation” and “preparation”

- “destructive status flags” used in processes like “invalidation” and “exclusion”

When reading the exact pattern 0x55555555 a “constructive” flag is TRUE

When reading a pattern other than 0xFFFFFFFF a “destructive” flag is TRUE

When setting “constructive” flag: 0x55555555 is written into the flag-word.

When setting “destructive” flag: 0x00000000 is written into the flag-word.

P_flag: = 0x55555555 marks a “prepared” block that waits for data.

A_flag: = 0x55555555 marks an “active” block that may contain data

I_flag: ≠ 0xFFFFFFFF marks an “invalid” block (without valid data)

X_flag: ≠ 0xFFFFFFFF marks a block “excluded” from block management.

 Figure 2-4

EEPROM Emulation Library

R01AN0707ED0100 16

Application Note

2.2.1.2 EEL block erase counter

The block header word four contains the block erase counter. Its consistency
is protected by an 8 bit checksum which is used by the EEL internally only.

2.2.1.3 EEL previous reference write pointer

Its points the last RWP position of the previous block within the EEL pool.

It is used by the EEL internally only.

2.2.1.4 EEL exclusion erase counter

Stores the EC value at exclusion time.

It is used by the EEL internally only.

2.2.1.5 EEL Format In Progress (FIP) indicator

FIP<>0xFFFFFFFF indicates an FORMAT command discontinued by RESET.
It marks the completely EEL pool as inconsistent and enforces the user to re-
start the FORMAT command.

2.2.2 Reference area

The “reference area” is located in each EEL block directly behind the block
header. It consists of so called reference entries that are used for instance
identification, localization and for safeguarding during the read/write process.
When writing new data into the EEL a corresponding reference entry is
stacked in the reference area.

The reference area is growing upstairs from lower widx to higher.

2.2.3 Data area

The “data area” consists of data-records and is located on the bottom of each
EEL pool block. Each data record within the data-area consists of pure data
information without any data- frame. The data-frame information exists
completely in the corresponding reference-entry in the reference-area.

When writing new data into the EEL the data area is growing downstairs from
higher widx to lower.

EEPROM Emulation Library

R01AN0707ED0100 17

Application Note

2.3 EEL Instance structure

EEL instance is a complete data-set consisting of three components:

- 32-bit data reference pointer DRP in the reference area

- the data in the data are

- 32-bit checksum in reference area (directly behind the corresponding DRP)

Whenever the application writes a new value into the EEL pool a new EEL
instance is generated.

2.3.1 Data Reference Pointer, DRP

The main purpose of the DRP is referencing the data belonging to the given
instance inside the data-area. The consistency of the DRP is safeguarded by
an own 8-bit checksum. A DRP is always written to an even flash word index
inside the reference area.

The structure of each DRP consists of:

ID: 8-bit EEL-variable identifier registered in the EEL descriptor.

widx: 16-bit virtual index inside EEL pool pointing to the data

RCS: Reference Check Sum, 8-bit checksum across the DRP.

Structure of the DRP

2.3.2 Instance data

The pure instance data without any frame-information stored directly in the
data area at the bottom of the corresponding block.

Example of 6-byte data entry

Note:

Not used bytes remain 0xFF.

Figure 2-5

Figure 2-6

EEPROM Emulation Library

R01AN0707ED0100 18

Application Note

2.3.3 Data Checksum, DCS

The DCS is written behind the DRP in the reference area behind the
corresponding DRP after the instance data were written correctly. It ensures
the plausibility of the data and the corresponding DRP.

Data Checksum of an instance

2.4 Block management

This chapter describes how the block management organizes the blocks inside
the EEL pool during its operation.

2.4.1 EEL block circulation

The block management is leaned on the concept of single linked ring. It is
build based on the unique virtual block numbers inside the EEL pool. It is an
easy scheme for “creation” and “consumption” of writeable space inside the
EEL-pool. As already mentioned the whole EEL pool is divided into three
regions organized in a fixed order.

Active region: always in front of the invalid region

Prepared region: always in front of the active region

Invalid region : always in front of the prepared region

From the operation point of view the block management works like a
caterpillar. The following figure should illustrate the idea behind the block
management:

Figure 2-7

EEPROM Emulation Library

R01AN0707ED0100 19

Application Note

Circulatory block management inside the EEL pool

2.4.2 EEL block status

During the operation of the EEPROM driver the participating flash blocks
change their internal status cyclically. To mark and to recognize the status
of each block 32-bit block-status flags are used. The block status-flags are
read and analyzed after power-on RESET to reconstruct the current EEL
pool configuration. The block management based on that information is
fundamental for correct operation of the EEL driver.

2.4.3 Security aspects, block exclusion

When erasing a flash block in the “preparation” process an erase-error
could happen theoretically. The probability is very low but if happens, it is
not allowed to write data into such a block. To fulfill this condition the
“exclusion” mechanism was added to the block management

Basically during block preparation write-error can be generated when
writing block header information. In that case the effected block will be
excluded from block management too.

An asynchronous device RESET during operation of the EEL may cause
various problems like inconsistent pool or inconsistent data. The
STARTUP command detects such problems and performs fitting
countermeasure to recover pool and data consistency

Figure 2-8

EEPROM Emulation Library

R01AN0707ED0100 20

Application Note

As already mentioned, there are two different types of block status flags:

1) Constructive block status flags are the P-Flag and the A-Flag.

 Coding: writing pattern 0x55555555 into the flag flash-word.

 Decoding: TRUE when read pattern is 0x55555555 otherwise FALSE.

2) Destructive block status flags are the I-Flag and the X-Flag.

 Coding: writing pattern 0x00000000 into the flag flash-word.

 Decoding: FALSE when pattern inside is 0xFFFFFFFF otherwise TRUE.

Analyzing the block header flags the EEL is in the position to recognize the
status of each block of the EEL pool. Following scenarios are possible:

Block status code

Note:
Invalid block status can be produced by RESET during block activation (red
marked here) is repaired in the STARTUP command sequence.

2.5 Instance management

Whenever a new instance of an EEL variable is written into the EEL-pool, the
following sequence is executed by the EEL-driver internally:

Step 1)

Data-Reference-Pointer (DRP) is calculated and written into the flash word
referenced by RWP. After that the space for instance data is allocated in the
data area of the active region.

Step 2)

Write the complete instance data word by word into the reserved in step 1)

Step 3)

Calculate and write the checksum DCS into the word next to DRP from step 1)

Figure 2-9

EEPROM Emulation Library

R01AN0707ED0100 21

Application Note

2.5.1 Write instance sequence

Whenever a new instance of an EEL variable is written into the EEPROM the
following sequence is executed by the EEL-driver:

Writing a new instance of an EEPROM variable consists of three successive
phases.

Write instance sequence

The structure and the handling of the instance references should manage
possible destructive effects caused by asynchronous power-on RESET as well
as by potential flash problems.

2.5.2 Security aspects, checksums

When writing a new value of EEPROM variable into EEL the reference and the
data are written flash-word wise into the EEL-pool. During this process an
asynchronous RESET may happen at any time and produce rubbish data. To
ensure a reliable detection of any data inconsistency within a written instance
two stage checksum protection has been implemented. The first checksum (8
bit) ensures the consistency of the DRP written in phase 1). This checksum is
a part of the 32-bit DRP. The second checksum is calculated and written in
phase 3. It is a 32-bit checksum calculated across all data written in phase 1)
and 2) (over DRP and all data words).

The consistency of the instance is checked in the STARTUP and in the READ
command.

- when STARTUP command detects checksum error during instance
searching (RAM reference fill process) the corresponding instance will be
ignored.

- when READ command detects a checksum error the instance search will be
restarted (same criteria as for STARTUP), the RAM reference table refilled
and the newest instance with correct checksum will be read finally.

Figure 2-10

EEPROM Emulation Library

R01AN0707ED0100 22

Application Note

2.6 Processes

All things happening in the EEL (data access, CPU processing, administrative
activities….) take time. Sequences of actions, measures and countermeasures
to achieve any targeted effect/result are called processes here.

There are two groups of EEL processes:

Foreground process :

Initiated by the user, when requesting commands at the EEL.

Background process:
Initiated by the EEL themselves, when it recognizes the necessity internally.

In exceptional cases foreground processes can initiate background processes.

From block management point of view each block is sorted into one of the
three regions within the EEL pool (active, prepared, invalid) or it can be
excluded. A block can change from one region to another one when being
treated by dedicated “processes”.

Also the instance management influences the position of the instances within
the EEL pool using background and/or foreground processes.

Overview of the main processes inside the EEL drive r

Figure 2-11

EEPROM Emulation Library

R01AN0707ED0100 23

Application Note

2.7 Space treatment

Space within the EEL pool is the sum of all flash words prepared for the
accommodation of data and references (exclusive block header area).

Internally the EEL driver differentiates between pool-space and active-space.

Pool-space is the space available in all prepared blocks plus the remaining
space available in the active heading block.

Active-space is the space available in active heading block only.

Both can be effected by background and foreground processes as follows:

Pool-space is produced in the background PREPARATION process only.

Pool-space is consumed by foreground WRITE command or background
REFRESH process.

Active-space is consumed by foreground WRITE command or background
REFRESH process.

Active-space is enlarged by foreground or background ACTIVATION process.

The user does not need to take care for the space management during EEL
operation. Depending on the configuration and used operation mode the EEL
takes care internally for adequate space conditions.

EEPROM Emulation Library

R01AN0707ED0100 24

Application Note

2.8 Request–Response oriented dialog

Like the FAL, the EEL is also using the Request-Response architecture to
place and process the commands. This means the “requester” (normally users
Application) has to fill-up a kind of “request form sheet” (the request variable)
and pass it to the EEL using the reference (pointer) of the request variable for
further processing. The EEL is interpreting the request variable, check its
plausibility and process it for the time slice defined in the request variable.
After time-out period or after finishing the execution with positive/negative
command execution the EEL is updating the status code in the request
variable.

The biggest advantage of the request-response architecture is the constant
and narrow parameter interface. It allows constant parameter passing
independent used compiler and its memory models.

Another advantage is the possibility to isolate the dialog in multi-tasking
systems.

Schematic usage of the request variable

Figure 2-12

EEPROM Emulation Library

R01AN0707ED0100 25

Application Note

2.9 Handler oriented command execution

To satisfy operation in concurrent or distributed systems the command
execution is divided generally into two phases:

1) Initiation of command execution using EEL_Execute(&my_eel_request)

2) processing of the command that is performed piece-wise (state-wise or
time-slice-wise depending on the used execution mode)

The main advantage of such architecture is that maintenance and command
processing can be done centrally on one place in the target system (normally
the idle-loop or the scheduler loop).

The other advantage is that commands can be requested in several places in
the system. Using separate request variables the EEL feedback can be
directed correctly in spite of the fact, that the processing is done centrally.

The EEL is using the function EEL_Execute(&my_eel_request) for command
initiation and EEL_Handler(my_eel_timeslice) for command processing.

EEPROM Emulation Library

R01AN0707ED0100 26

Application Note

2.10 Execution modes of the EEL

One claim of this EEPROM driver is to satisfy all the various systems and SW
architectures exit in the market. Some target systems does not care about
execution time and use EEL-commands like function call. Some other systems
use complex operating systems to manage task execution quasi
simultaneously (time sharing). Another use even driven asynchronous
mechanisms only.

To fulfill the above requirements, the EEL offers several operation modes that
can deal with the parameter “time” in different way.

There are two places where the “time” parameter can be treated :

a) in the request-variable passed by the EEL_Execute(&my_eel_request)

 This timeout value determines the operation mode of the EEL command.

 my_eel_request.timeout_u08 = 0x00 -> execution in polling mode
0x00 < my_eel_request.timeout_u08 < 0xFF -> execution in timeout mode
 my_eel_request.timeout_u08 = 0xFF -> execution in enforced mode

b) by the timeout parameter of the EEL_Handler(my_eel_timeslice_u08)

 my_eel_timeslice_u08 = 0x00 -> execute the actual EEL state only
 my_eel_timeslice_u08 > 0x00 -> execute the time-slice EEL

Table 3 Overview of time parameter meaning

Depending on the target system architecture one of the operation modes can
be used for command execution and background maintenance purpose.

Note:

The timeout used in the request variable is completely independent on the
timeout used in the EEL_Handler(t) mixing of the operation modes in one
target system is possible.

EEPROM Emulation Library

R01AN0707ED0100 27

Application Note

Overview over the EEL operation modes

command

execution

EEL_Execute(request)

status

ENFORCED mode

FDL_Execute

FDL_Handler

FDL_Handler

FDL_Execute

FDL_Handler

FDL_Handler

FDLEEL

ISR

ISR

User

request.timeout=0xFF

TIMEOUT mode

command

execution

EEL_Execute(request)

busy

command

execution

EEL_Handler(timeout)

OK

maintenance

EEL_Handler(timeout)

idle

Timeout

Counter

FDL_Execute

FDL_Handler

FDL_Handler

FDL_Execute

FDL_Handler

FDL_Handler

FDLEEL

ISR

ISR

ISR

User

request.timeout=N

POLLING mode

one state

EEL_Execute(request)

busy

FDL_Execute

FDL_Handler

FDL_Handler

SEQ

one state

EEL_Handler(0)

busy

one state

EEL_Handler(0)

busy

one state

EEL_Handler(0)

busy

one state

EEL_Handler(0)

busy

one state

EEL_Handler(0)

OK

FDLEEL

ISR

ISR

ISR

User

request.timeout=0

2.10.1 Enforced execution mode

This mode can be used in simple systems in that EEPROM access have to be
processed like a simple function CALL. The requested command is directly
and completely executed with positive or negative result. The handling is very
easy, the background process that takes care for maintenance is not visible to
the user.

Command execution in enforced mode is determined by timeout =0xFF in the
request variable. When using enforced mode for command execution, the
target system can use the EEL_Handler(t) for background maintenance (space
generation) but it is not mandatory.

Figure 2-14 Schematic illustration of the enforced operation mode

TO
=s
to
pp
ed

status=O
K

Figure 2-13

EEPROM Emulation Library

R01AN0707ED0100 28

Application Note

2.10.1.1 Enforced operation mode without usage of EEL_Handler(t)

The available space (inside the active and prepared regions) for
accommodation of variable instances is limited. When executing commands in
enforced mode without EEL_Handler(t) the available space decreases
continuously during writing as long as the space becomes consumed. In that
case new space must be generated internally inside the EEL before starting
the command execution. This means that the execution time of “space
consuming” commands (the WRITE command) cannot be constant. On the
other hand the user does not need to take care for background maintenance.

When pure enforced mode is used in the target system the
EEL_TimeOut_CountDown() function as well the EEL_Handler(t) are
mandatory.

Timing example of enforced command execution withou t EEL_Handler(t)

enforcing

write

user

enforcing

write

user user

background space expansion

t
user

enforcing

write

enforcing

write

no space for the

instance detected

application

EEL foreground

EEL background

EEL_Execute(&rq)

EEL_Execute(&rq)

EEL_Execute(&rq)

EEL_Execute(&rq)

Example conditions:

rq.address_pu08 - no meaning for the timing
rq.identifier_u08 - always same identifier used
rq.timeout_u08 - always 0xFF used
rq.command_enu - always EEL_CMD_WRITE command used

2.10.1.2 Enforced mode with background maintenance

To enjoy the simplicity of the enforced execution mode without the
disadvantage of not pre-determinable execution time the application can use
EEL_Handler(t) to prepare space in advance in convenient phases.

Calling EEL_Handler(t) cyclically at idle time (no EEL command under
execution) the application activates the EEL background supervision and
maintenance process. The background supervision checks if the momentary
EEL-pool status does still correspond with the EEL-pool configuration. If not
enough space detected by the background supervision, the background
maintenance starts space production process autonomous. This is the
instrument the application can use to produce enough space in advance and
to guaranty fast and constant write execution time at any time.

Note:
The foreground writing and background maintenance are dynamical processes
that influence each other. To ensure constant execution time of the WRITE
command the application must provide enough CPU time to the background
process. The relationship between “production of space” in the background
and “consumption of space” by foreground writing must match.

Figure 2-15

EEPROM Emulation Library

R01AN0707ED0100 29

Application Note

The degree of “space production” is only determined by the CPU time offered
to the background process via EEL_Handler(t).

The degree of “space consumption” is determined by the frequency and size of
variables written into the EEL-pool, as well by the space needed for refreshing
variables in background maintenance.

Timing example of enforced command execution withou t EEL_Handler(t)

Example conditions:

rq.address_pu08 - no meaning for the timing
rq.identifier_u08 - always same identifier used
rq.timeout_u08 - always 0xFF used
rq.command_enu - always EEL_CMD_WRITE command used
time - used by EEL_Handler(t) for time-slice definition

Figure 2-16

EEPROM Emulation Library

R01AN0707ED0100 30

Application Note

2.10.2 Timeout execution mode

In the timeout execution mode the requester can determine the CPU time for
the command execution in advance. The resolution of the time period is
defined freely by the user when choosing the counting interrupt source. The
timeout period is defined in counting ticks. If the timeout period is longer than
the real command execution time, the command is executed in the same wise
as in enforced mode. If the timeout period is shorter than the command
execution time the EEL_Execute(&my_eel_request) function will return with
request-status “busy”. The remaining command will be continued time-slice-
wise by the EEL_Handler(t). The timeout mode is intended to be used in
synchronous time-slice based systems where each task allocates a fix interval
of CPU time for its activity.

Schematic illustration of the timeout operation mod e

status = busy

Figure 2-17

EEPROM Emulation Library

R01AN0707ED0100 31

Application Note

2.10.2.1 Command execution finished before timeout

When the timeout period specified in the request variable is longer than the
real time needed by the EEL for command execution, the
EEL_Execute(&my_eel_request) is left immediately after command
completion. The EEL does not consume the remaining time during command
execution. The reason is, that application normally writes variables
asynchronously and wants to write as fast as possible.

Example conditions:

rq.address_pu08 - no meaning for the timing
rq.identifier_u08 - small EEL variable (i.e. 5 bytes)
rq.timeout_u08 - long timeout (16 timer ticks)
rq.command_enu - always EEL_CMD_WRITE command used
timeslice - 0x02 used here by EEL_Handler(t) for time-slice

Command execution completed before timeout

Note:
Black arrows symbolizes non-counting timer ticks (timeout counter is counted
down to 0x00).

Figure 2-18

EEPROM Emulation Library

R01AN0707ED0100 32

Application Note

2.10.2.2 Timeout before command execution finished

When the timeout period specified in the request variable is shorter than the
real time needed by the EEL for command execution, the
EEL_Execute(&my_eel_request) is suspended with status=BUSY. The
uncompleted command must be continued by using the EEL_Handler(t)
function. When the remaining command is completed before time-slice is
passed, the EEL_Handler(t) will be terminated immediately. The status inside
the request variable changes from busy to finished. EEL does not consume
the remaining time of the time-slice when command is finished. The reason is,
that application normally writes asynchronously and want to write as fast as
possible.

Example conditions:

rq.address_pu08 - no meaning for the timing
rq.identifier_u08 - larger EEL variable (i.e. 125 bytes)
rq.timeout_u08 - execution timeout (5 timer ticks)
rq.command_enu - always EEL_CMD_WRITE command used
timeslice - 6 ticks, used here by EEL_Handler(t) for time-slice

Command execution completed in EEL_Handler(t)

Note:
The 1’st EEL_Handler(t) call continues the command execution. If the
command is finished in that time-slice, the EEL_Handler(t) will return
immediately before timeout is elapsed.

The next EEL_Handler(t) calls are managing the BG processes according to
the internal status of the EEL-pool:

- when no maintenance *) is necessary, supervision is running for full 6 ticks
- when any background process (REFRESH/PREPARATION) was interrupted
 by a write command, it will be continued in EEL_Handler(t) after write
 completion

*) maintenance means refresh or space expansion

Figure 2-19

EEPROM Emulation Library

R01AN0707ED0100 33

Application Note

2.10.3 Polling execution mode

In the polling execution mode the function EEL_Execute(&my_eel_request) is
just initiating the command execution and returns with the request-status
“busy” after execution of the first internal state. The further command
execution is performed in the EEL_Handler(t) that can operate with its own
timeout period. If calling of EEL_Handler(0), the command execution or
background maintenance will be executed state by state. In this operation
mode the interaction frequency between the application and the EEL is the
highest (fastest reaction). It is intended to be used in asynchronous systems
where blocking of the CPU by any process must be minimized.

Note:

When pure polling mode is used in the system EEL_TimeOut_CountDown()
function becomes mandatory.

Schematic illustration of the polling operation mod e

rq.address = my_addr;

rq.timeout = 0x00;

rq.identifier = „a“;

rq.command = write;

EEL_Execute(&rq) State 0

EEL_Handler(0x00)

status=busy

State 1status=busy

EEL_Handler(0x00) State 2status=busy

EEL_Handler(0x00) Idle statestatus = OK

User application

EEL

FDL

FDL command

check

status

status

Figure 2-20

EEPROM Emulation Library

R01AN0707ED0100 34

Application Note

2.10.3.1 Full polling execution mode

The timeout parameter in the request variable as well the handler time-slice
value are 0x00. The EEL commands, the supervision and maintenance
process are executed very smooth, state by state.

Example conditions:

rq.address_pu08 - no meaning for the timing
rq.identifier_u08 - EEL variable
rq.timeout_u08 - 0x00, polling mode
rq.command_enu - always EEL_CMD_WRITE command used
time-slice - 0x00, no time-slice for the handler

Timing example of pure polling operation

2.10.3.2 Mixed execution mode (timeout execution and polling maintenance)

The timeout parameter in the request variable as well the handler time-slice
value are 0x00. The EEL commands, the supervision and maintenance
process are executed very smooth, state by state.

Example conditions:

rq.address_pu08 - no meaning for the timing
rq.identifier_u08 - EEL variable
rq.timeout_u08 - 0x04, timeout execution
rq.command_enu - always EEL_CMD_WRITE command used
time-slice - 0x00, no time-slice for the handler (maintenance)

Figure 2-21

EEPROM Emulation Library

R01AN0707ED0100 35

Application Note

Timing in mixed operation mode (timeout and polling)

Figure 2-22

EEPROM Emulation Library

R01AN0707ED0100 36

Application Note

2.11 Supported command spectrum

There are two groups of commands supported by the EEL:

a) pool related commands influencing the whole pool status and structure.

b) variable related commands that control the access to the EEL data

Command groups of the EEL

Note:

Refer to chapter “Operation” for command execution details

Table 4

EEPROM Emulation Library

R01AN0707ED0100 37

Application Note

2.12 EEL execution planes

The EEL operates in so called two planes: background plane and foreground
plane that dedicated to different purposes. The background plane is intended
to perform maintenance and supervision work. The foreground plane is used
exclusively to perform asynchronous commands requested by the user. Some
of the commands require processes already implemented in the background
plane. In such cases the foreground is able to activate background processes
by swapping the activity focus into the background to perform necessary
maintenance measures.

2.12.1 Foreground plane

The foreground plane is receiving and executing user commands only. Any
foreground command can always suspend the maintenance process running
in the background. On the other hand a foreground command has to be
finished before next command can be executed.

Variable oriented commands (read and write) are executed directly and
completely in the foreground and are normally isolated from the maintenance
running in background. Only when space-alert or checksum-error happens in
the foreground the process focus is swapped temporary to the background.

Pool oriented commands (startup, shutdown, cleanup and format) are just
passing the command-request to the background and waits for its completion.
This allows re-usage of common FSM’s used for background maintenance and
foreground command execution.

In exceptional cases it can happen that due to very heavy write traffic the
maintenance process running in background gets no chance to prepare
enough space in time. In such a case the foreground write process can
request “space expansion” at the background process before being able to
continue writing. For that purpose the activity focus is swapped.

Swap mechanism scheme

Figure 2-23

EEPROM Emulation Library

R01AN0707ED0100 38

Application Note

This approach allows collision-free operation even the user do not use the
EEL_Handler(t) and all commands are executed in “enforced” mode. It
simplifies the handling at user side without loosing any flexibility in the
operability. Swapping of execution focus plane does not change the command
handling at user side. It is not visible at user side, just the command execution
time increases for the time needed for the background processing.

As mentioned above, pool-oriented commands use the background processes
for its execution. That means that all error-codes generated in the background
must be transferred to the foreground (request variable). There could be errors
like FAL_ERR_PROTECTION that never happens during normal operation. To
simplify the error handling at user side unexpected error codes are
transformed to one common error code EEL_ERR_INTERNAL. The original
error code remains stored in the background and can be read by the function
EEL_GetDriverStatus(&my_eel_driver_status).

2.12.2 Background plane

The background plane is dealing with background processes, normally
executed when calling the function EEL_Handler(t) periodically. After EEL
initialization the background process is passive (EEL-Handler does not have
any effect and consumes, just few CPU cycles). After successful STARTUP
the handler becomes active and starts the execution of the background
process. There are several task the background process does manage, like:

a) background execution of pool related commands initiated by the foreground
plane

b) background execution of exceptional handling initiated by the foreground:

 - when less than 2 prepared blocks detected
 - when checksum error during READ command

c) supervision of the refresh threshold and size of the invalid region

d) maintenance to eliminate problems detected by c)

EEPROM Emulation Library

R01AN0707ED0100 39

Application Note

Chapter 3 Application Programming Interface

The following chapters describe formally the user interface of the EEPROM
Emulation Library.

3.1 Data types

This chapter describes all data definitions used and offered by the EEL.

3.1.1 Library specific simple type definitions

Simple numerical type used by the library:

typedef unsigned char eel_u08 ;
typedef unsigned int eel_u16 ;
typedef unsigned long int eel_u32 ;

Note: types are defined in EEL_types.h

3.1.2 Enumeration type “eel_command_t”

This type defines all codes of available commands:

/* EEL command set */
typedef enum {
 EEL_CMD_UNDEFINED = (0x00),
 EEL_CMD_STARTUP = (0x00 | 0x01),
 EEL_CMD_WRITE = (0x00 | 0x02),
 EEL_CMD_READ = (0x00 | 0x03),
 EEL_CMD_CLEANUP = (0x00 | 0x04),
 EEL_CMD_FORMAT = (0x00 | 0x05),
 EEL_CMD_SHUTDOWN = (0x00 | 0x06)
 } eel_command_t;

Note: type is defined in EEL_types.h

Code value description:

EEL_CMD_UNDEFINED - undefined command (initial value)

EEL_CMD_STARTUP - plausibility check of the EEL data and driver

EEL_CMD_WRITE - creates new instance of specified EEL variable

EEL_CMD_READ - reads last instance of the specified EEL variable

EEL_CMD_CLEANUP - refresh of all variables (minimize active region)

EEL_CMD_FORMAT - format the EEL pool, all instances (data) are lost

EEL_CMD_SHUTDOWN - deactivates the EEL

EEPROM Emulation Library

R01AN0707ED0100 40

Application Note

3.1.3 Enumeration type “eel_operation_status_t”

This type defines all codes of available driver operation status:

/* type of the EEL driver operation status */
typedef enum {
 EEL_OPERATION_PASSIVE = (0x00),
 EEL_OPERATION_IDLE = (0x30 | 0x01),
 EEL_OPERATION_BUSY = (0x30 | 0x02)
 } eel_operation_status_t;

Note: type is defined in EEL_types.h

Code value description:

EEL_OPERATION_PASSIVE - when library is not yet started

EEL_OPERATION_IDLE - only background supervision process is active

EEL_OPERATION_BUSY - fore- or background process is active

3.1.4 Enumeration type “eel_access_status_t”

This type defines all codes of available driver access status:

/* type of the access status */
typedef enum {
 EEL_ACCESS_LOCKED = (0x00),
 EEL_ACCESS_UNLOCKED = (0x40 | 0x01)
 } eel_access_status_t;

Note: type is defined in EEL_types.h

Code value description:

EEL_ACCESS_LOCKED - neither read nor write access possible

EEL_ACCESS_UNLOCKED - full access to the EEL is possible

EEPROM Emulation Library

R01AN0707ED0100 41

Application Note

3.1.5 Enumeration type “eel_status_t”

This type defines all codes of available request status and errors:

/* EEL status set */
typedef enum {
 EEL_OK = (0x00),
 EEL_BUSY = (0x00 | 0x01),
 EEL_ERR_CONFIGURATION = (0x80 | 0x02),
 EEL_ERR_INITIALIZATION = (0x80 | 0x03),
 EEL_ERR_ACCESS_LOCKED = (0x80 | 0x04),
 EEL_ERR_COMMAND = (0x80 | 0x05),
 EEL_ERR_PARAMETER = (0x80 | 0x06),
 EEL_ERR_REJECTED = (0x80 | 0x07),
 EEL_ERR_NO_INSTANCE = (0x80 | 0x08),
 EEL_ERR_POOL_FULL = (0x80 | 0x09),
 EEL_ERR_POOL_INCONSISTENT = (0x80 | 0x0A),
 EEL_ERR_POOL_EXHAUSTED = (0x80 | 0x0B),
 EEL_ERR_INTERNAL = (0x80 | 0x0C)
 } eel_status_t;

Note: type is defined in EEL_types.h

Code value description:

EEL_OK - no error occurred

EEL_BUSY - request is under processing

EEL_ERR_CONFIGURATION - bad FAL or EEL configuration

EEL_ERR_INITIALIZATION - EEL_Init(), EEL_Open missed

EEL_ERR_ACCESS_LOCKED - STARTUP missing or fatal operation error

EEL_ERR_COMMAND - wrong command code

EEL_ERR_PARAMETER - wrong parameter

EEL_ERR_REJECTED - another request under processing

EEL_ERR_NO_INSTANCE - no instance found (variable never written)

EEL_ERR_POOL_FULL - no space for writing data

EEL_ERR_POOL_INCONSISTENT - no active block found within EEL-pool

EEL_ERR_POOL_EXHAUSTED - EEL pool to small for correct operation

EEL_ERR_INTERNAL - internal error

EEPROM Emulation Library

R01AN0707ED0100 42

Application Note

3.1.6 Structured type “eel_request_t”

This type defines structure of the EEL request variables:

/* EEL request type */
typedef __near struct {
 __near eel_u08* address_pu0 8;
 __near eel_u08 identifier_ u08;
 __near eel_u08 timeout_u08 ;
 __near eel_command_t command_enu ;
 __near eel_status_t status_enu;
 } eel_request_t;

Note: type is defined in EEL_types.h

Structure member description:

address_pu08 - source/destination RAM-address

identifier_u08 - variable identifier

timeout_u08; - number of timeout ticks for execution

command_enu; - command has to be processed

status_enu; - error code after command execution

3.1.7 Structured type “eel_driver_status_t”

This type defines structure of the EEL request variables:

/* type of the internal EEL driver status */
typedef struct {
 eel_operation_status_t operationSt atus_enu;
 eel_access_status_t accessStatu s_enu;
 eel_status_t backgroundS tatus_enu;
 } eel_driver_status_t;

Note: type defined in EEL_types.h

Structure member description:

operationStatus_enu - operation status of the foreground process

accessStatus_enu - access rights indicator

backgroundStatus_enu - error status of the background process

EEPROM Emulation Library

R01AN0707ED0100 43

Application Note

3.2 Functions

Due to the request (data) oriented interface of the EEL the functional interface
is very narrow. Beside the initialization function and some administrative
function the whole EEPROM access is concentrated to two functions only:
EEL_Execute(&my_eel_request) and EEL_Handler(t).

The interface functions create the functional software interface of the library.
They are prototyped in the header file eel.h

3.2.1 EEL_Init

Initialization of all internal data and variables.

C Language Interface (Renesas version)

eel_status_t __far EEL_Init(void);

C Language Interface (IAR version)

__far_func eel_status_t EEL_Init(void);

Pre-condition

The FDL must be initialized already

Post-condition

None

Argument

Argument Type Description
none

Return types/values

Argument Type Description

EEL_OK eel_status_t
when EEL pool and
descriptor OK

EEL_ERR_CONFIGURATION eel_status_t
when EEL pool or EEL
descriptor wrong

Code example:

eel_status_t my_eel_status;

my_eel_status = EEL_Init();
if(my_eel_status != EEL_OK) MyErrorHandler();

EEPROM Emulation Library

R01AN0707ED0100 44

Application Note

3.2.2 EEL_Open

This function can be used by the application to open the access to the EEL
pool.

C Language Interface (Renesas version)

void __far EEL_Open(void);

C Language Interface (IAR version)

__far_func void EEL_Open(void);

Pre-condition

The FDL must be initialized already

Post-condition

none

Argument

Argument Type Description
none

Return types/values

Argument Type Description
none

Code example:

EEL_Open();

EEPROM Emulation Library

R01AN0707ED0100 45

Application Note

3.2.3 EEL_Close

This function can be used by the application to close the access to the EEL
pool.

C Language Interface (Renesas version)

void __far EEL_Close(void);

C Language Interface (IAR version)

__far_func void EEL_Close(void);

Pre-condition

None

Post-condition

In case that the USER part of the FDL-pool also “opened” too at that time, the
Data Flash hardware remains active. To switch the Data Flash passive, both
parts of the FAL-pool (EEL-part and USER-part) has to be closed.

Argument

Argument Type Description
none

Return types/values

Argument Type Description
none

Code example:

EEL_Close();

EEPROM Emulation Library

R01AN0707ED0100 46

Application Note

3.2.4 EEL_Execute

This is one of the main function of the EEL the application can use to initiate
execution of any command. Depending on the defined operation mode (time
out value) this function returns:

a) immediately after execution of the first command state (timeout = 0)

b) after execution of the defined time-slice (0<timeout<255)

c) after execution of the complete command (timeout = 255)

C Language Interface (Renesas version)

void __far EEL_Execute(eel_request_t* request_pst r);

C Language Interface (IAR version)

__far_func void EEL_Execute(__near eel_request_t __near*
request_pstr);

Pre-condition

EEL_Init() executed successfully

EEL_Open() must be executed before.

Post-condition

none

Argument

Argument Type Description

request_pstr eel_request_t*

This argument defines user’s
request should be processed
by the EEL. It is passing the
request variable to the driver
that is used for bi-directional
information exchange before
and during command
execution between EEL and
the application.

EEPROM Emulation Library

R01AN0707ED0100 47

Application Note

Return types/values

Argument Type Description
none

Code example:

eel_request_t my_eel_request_str;
eel_status_t my_eel_status;

my_eel_status = EEL_Init();
EEL_Open();

/* enfoced mode ---------------------------------- --------- */
my_eel_request_str.timeout_u08 = 0xFF;
my_eel_request_str.command_enu = EEL_CMD_START UP;

EEL_Execute(&my_eel_request_str);
if(my_eel_request_str.status_enu != EEL_OK) MyError Handler();

/* timeout mode ----------------------------------- -------- */
my_eel_request_str.timeout_u08 = 5;
my_eel_request_str.command_enu = EEL_CMD_FORMA T;

do {
 EEL_Execute(&my_eel_request_str);
 EEL_Handler(0);
}while(my_eel_request_str.status_enu == EEL_ERR_REJ ECTED);

do {
 EEL_Handler(5);
while(my_eel_request_str.status_enu == EEL_ERR_BUSY);

if(my_eel_request_str.status_enu != EEL_OK) MyError Handler();

/* STARTUP after FORMAT mandatory (enfoced mode)--- -------- */
my_eel_request_str.timeout_u08 = 0xFF;
my_eel_request_str.command_enu = EEL_CMD_START UP;

EEL_Execute(&my_eel_request_str);
if(my_eel_request_str.status_enu != EEL_OK) MyError Handler();

/* polling mode ----------------------------------- -------- */
my_eel_request_str.address_pu08 = (eel_u08)&A[0];
my_eel_request_str.identifier_u08 = 'A';
my_eel_request_str.timeout_u08 = 0;
my_eel_request_str.command_enu = EEL_CMD_WRITE ;

do {
 EEL_Execute(&my_eel_request_str);
 EEL_Handler(0);
}while(my_eel_request_str.status_enu == EEL_ERR_REJ ECTED);

do {
 EEL_Handler(0);
while(my_eel_request_str.status_enu == EEL_ERR_BUSY);

if(my_eel_status != EEL_OK) MyErrorHandler();

EEPROM Emulation Library

R01AN0707ED0100 48

Application Note

3.2.5 EEL_Handler

Depending on internal status of the EEL this function is managing different
processes as follows:

a)
When no user command is processed in the foreground, the EEL_Handler(t) is
executing the internal maintenance process. It is monitoring permanently the
size of the “active region” to trigger the “refresh process” when exceeded the
defined EEL_REFRESH_BLOCK_THRESHOLD. On the other side
“preparation process” is triggered in the background whenever an invalid block
is found in the EEL pool. Finally it checks if any requests from the foreground
are pending in the meantime.

b)
If a foreground command is not finished in “timeout” or “polling” mode the
EEL_Handler(t) takes care for continuation of the execution of not-finished
commands in the next time-slices.

C Language Interface (Renesas version)

void __far EEL_Handler(eel_u08 timeout_u08);

C Language Interface (IAR version)

__far_func void EEL_Handler(eel_u08 timeout_u08);

Pre-condition

EEL initialized and opened

Post-condition

None

EEPROM Emulation Library

R01AN0707ED0100 49

Application Note

Argument

Argument Type Description

timeout_u08 eel_u08

Timeout value expressed in
ticks.

If timeout_u08=0 only one
state of the internal FSM will
be executed.

If timeout_u08<>0 internal
states are executed as long
the timeout counter>0.

Return types/values

Argument Type Description
none

Code example:

/* The best place for EEL_Handler is the scheduler loop */

eel_u08 my_time_slice;

my_time_slice = 0x00;
do {
 EEL_Handler(my_time_slice);
 User_Task_A();
 User_Task_B();
 User_Task_C();
 User_Task_D();
} while(true);

EEPROM Emulation Library

R01AN0707ED0100 50

Application Note

3.2.6 EEL_TimeOut_CountDown

This function counts the internal 8-bit timeout counter down to zero. When
executing a command, the program counter remains inside the
EEL_Execute(&my_eel_request) or EEL_Handler(t) as long this counter>0.
The EEL_TimeOut_CountDown() function can be called at any place in the
application. The preferable place is any periodical interrupt service routine, for
example the timer ISR of the operating system. When the internal 8-bit timer
achieve the value 0x00 the EEL_TimeOut_CountDown() function stops the
counting. The counter starts counting again when a new “timeout” request was
placed via EEL_Execute(&my_eel_request) or when EEL_Handler(t) was
called with t>0.

C Language Interface (Renesas version)

void __far EEL_TimeOut_CountDown(void);

C Language Interface (IAR version)

__far_func void EEL_TimeOut_CountDown(void);

Pre-condition

none

Post-condition

Timeout counter decremented in case it was running.

Argument

Argument Type Description
none

Return types/values

Argument Type Description
none

Code example:

#pragma interrupt INTTM00 isr_OS_timer

void isr_OS_timer(void)
{
 EEL_TimeOut_CountDown();
}

EEPROM Emulation Library

R01AN0707ED0100 51

Application Note

3.2.7 EEL_GetDriverStatus

This function opens a way to check the internal status of the EEL driver in
advance, before placing a request.

C Language Interface (Renesas version)

void __far EEL_GetDriverStatus(__near eel_driver_ status_t*
driverStatus_pstr);

C Language Interface (IAR version)

__far_func void EEL_GetDriverStatus(__near eel_dr iver_status_t
__near* driverStatus_pstr);

Pre-condition

EEL initialized and opened

Post-condition

none

EEPROM Emulation Library

R01AN0707ED0100 52

Application Note

Argument

Argument Type Description

driverStatus_pstr eel_driver_status_t*

This argument is a
placeholder for capturing the
internal status of the driver. It
indicates the operation status,
the access status and the
status of the background
process of the EEL.

EEL_OPERATION
_PASSIVE

EEL not initialized or not
opened or not started-up
successfully. Operation and
access to the data is not
possible.

EEL_OPERATION
_IDLE

After successful STARTUP
when neither foreground
command nor background
maintenance is active.

EEL_OPERATION
_BUSY

driverStatus_pstr->
operationStatus_enu

EEL is processing an user
command or when main-
tenance process is active in
background. Other commands
are not possible at that time.

EEL_ACCESS_LO
CKED

STARTUP not
executed/successful or access
to data-flash was locked by
the EEL due to any internal
problems.

EEL_ACCESS_U
NLOCKED

driverStatus_pstr->
accessStatus_enu

STARTUP executed
successfully, read/write
access to the EEL-pool is
possible

any
driverStatus_pstr->
backgroundStatus_enu

Any value of the eel_status_t
related to background
processes are possible. It will
be actualized/overwritten by
the background process only.
The usage of it is quite limited.

Return types/values

Argument Type Description
none

EEPROM Emulation Library

R01AN0707ED0100 53

Application Note

Code example:

eel_request_t my_eel_request_str;
eel_status_t my_eel_status_enu;
eel_driver_status_t my_eel_driver_status_str;

my_eel_status_enu = EEL_Init();
EEL_Open();

/* execute STARTUP if not already done */
EEL_GetDriverStatus(&my_eel_driver_status_str);
if(my_eel_driver_status_str.operationStatus_enu==EE L_OPERATION_P
ASSIVE)
{
 my_eel_request_str.timeout_u08 = 0xFF;
 my_eel_request_str.command_enu = EEL_CMD_STA RTUP;

 EEL_Execute(&my_eel_request_str);
 if(my_eel_request_str.status_enu != EEL_OK) MyErr orHandler();
}

/* write data when access already possible */
EEL_GetDriverStatus(&my_eel_driver_status_str);
if(my_eel_driver_status_str.accessStatus_enu==EEL_A CCESS_UNLOCKE
D)
{
 my_eel_request_str.address_pu08 = (eel_u08)&A [0];
 my_eel_request_str.identifier_u08 = 'A';
 my_eel_request_str.timeout_u08 = 0;
 my_eel_request_str.command_enu = EEL_CMD_WRI TE;

 do {
 EEL_Execute(&my_eel_request_str);
 EEL_Handler(0);
 }while(my_eel_request_str.status_enu==EEL_ERR_REJ ECTED);

 do {
 EEL_Handler(0);
 while(my_eel_request_str.status_enu==EEL_ERR_BUSY);

 if(my_eel_request_str.status_enu != EEL_OK) MyErr orHandler();
}

EEPROM Emulation Library

R01AN0707ED0100 54

Application Note

3.2.8 EEL_GetSpace

This function provides the number of flash words inside the active-head and
the prepared region that can still absorb new references and data.

C Language Interface (Renesas version)

eel_status_t __far EEL_GetSpace(__near eel_u16* s pace_pu16);

C Language Interface (IAR version)

__far_func eel_status_t EEL_GetSpace(__near eel_u 16 __near*
space_pu16);

Pre-condition

EEL must be initialized, opened and STARTUP must be executed before
space can be calculated

Post-condition

none

Argument

Argument Type Description

space_pu16 eel_u16*
Address of the space
information variable

Return types/values

Argument Type Description

EEL_OK eel_status_t
When space value is
correct

EEL_ERR_INITIALIZATION eel_status_t
When EEL_Init() or
EEL_Open() is missing

EEL_ERR_ACCESS_LOCKED eel_status_t
when STARTUP
command missing

EEL_ERR_REJECTED eel_status_t
when space not stable,
just being modified.

EEPROM Emulation Library

R01AN0707ED0100 55

Application Note

Code example:

eel_request_t my_eel_request_str;
eel_status_t my_eel_status_enu;
eel_u16 my_eel_space_u16;

my_eel_status = EEL_Init();
EEL_Open();

/* execute STARTUP if not already done */
EEL_GetDriverStatus(&my_eel_driver_status_str);
if(my_eel_driver_status_str.operationStatus_enu==EE L_OPERATION_P
ASSIVE)
{
 my_eel_request_str.timeout_u08 = 0xFF;
 my_eel_request_str.command_enu = EEL_CMD_STA RTUP;

 EEL_Execute(&my_eel_request_str);
 if(my_eel_request_str.status_enu != EEL_OK) MyErr orHandler();
}

/* read current space value */
my_eel_status_enu = EEL_GetSpace(&my_eel_space_u16) ;

if(my_eel_status_enu==EEL_OK)
{
 if(my_eel_space_u16<MY_SPACE_ALERT_THRESHOLD)
 {
 my_eel_request_str.timeout_u08 = 0xFF;
 my_eel_request_str.command_enu = EEL_CMD_C LEANUP;

 EEL_Execute(&my_eel_request_str);
 if(my_eel_request_str.status_enu!=EEL_OK) MyErr orHandler();
 }
}
else
{
 MyErrorHandler();
}

EEPROM Emulation Library

R01AN0707ED0100 56

Application Note

3.2.9 EEL_GetVersionString

This function can be used by the application to check and control the library
version information at runtime. I provides the pointer to the zero-terminated
library version-string in ASCII format.

Format information of the library version string

 Examples:

Version string of Renesas version 1.10 of the EEL is: ERL78T01R110GV110

Version string of the IAR version 1.10 of the EEL is: ERL78T01I100GV110

C Language Interface (Renesas version)

__far eel_u08* __far EEL_GetVersionString(void);

C Language Interface (IAR version)

__far_func eel_u08 __far* EEL_GetVersionString(vo id);

Pre-condition

none

Post-condition

none

Table 5

EEPROM Emulation Library

R01AN0707ED0100 57

Application Note

Argument

Argument Type Description
none

Return types/values

Argument Type Description

 __far eel_u08*
pointer to the first character of
the zero-terminated library
version string.

Code example:

__far eel_u08* my_version_string_pu08;

my_version_string_pu08 = EEL_GetVersionString();

PrintMyVersion(&my_version_string_pu08);

EEPROM Emulation Library

R01AN0707ED0100 58

Application Note

Chapter 4 Operation

This chapter describes the installation, integration, configuration and of the
EEPROM Emulation library.

4.1 Installation

All components of the EEPROM Library package are extracted by the self
extracting installer file RENESAS_EEL_RL78_T01E_ version.exe

After acceptation of the license the library for the required device and compiler
environment can be selected.

EEL installer mask

After successful installation all EEL related files are copied to the chosen root-
directory

Figure 4-1

EEPROM Emulation Library

R01AN0707ED0100 59

Application Note

Subdirectory tree of the EEL after installation

The main file of the installed library package is the pre-compiled EEL. The
header and include files defining the API as well the descriptor files are
available in source form.

File structure of the EEL delivery package

Note:

Assembler files (*.INC, *.ASM) are available for Renesas compiler
environment only.

Figure 4-2

Figure 4-3

EEPROM Emulation Library

R01AN0707ED0100 60

Application Note

4.2 Basic workflow

To be able to use the EEL (execute commands) in a proper way the user has
to follow a specific startup and shutdown procedure.

Basic workflow of the EEL

Notes:

1 - The FORMAT command can be executed without successful STARTUP

2 - After execution of the FORMAT command the EEL goes into state

 “opened”, so STARTUP command must be executed again .

Figure 4-4

EEPROM Emulation Library

R01AN0707ED0100 61

Application Note

4.3 Configuration

The EEL configuration can be divided into two stages:

- configuration of the EEL pool in the FAL-descriptor

- configuration of the EEL library in EEL-descriptor

4.3.1 Pool configuration

The size of the EEL pool is configured in the FAL_descriptor files. The
minimum size of the EEL-pool is 4 blocks (1 active, 1 prepared, 1 being erased
and one potentially excluded). This is the virgin condition. At runtime the EEL
must be able to work with at least 1 excluded block.

File FDL_descriptor.h

EEL_POOL_SIZE 6 /* specify number of EEL blocks, mi n 4 */

Note:
EEL_POOL_SIZE should not exceed the FDL_POOL_SIZE

File EEL_descriptor.h

EEL_STORAGE_TYPE ‘D’ /* determines flash medium */

‘D’ - Data Flash and FDL in use

other values - invalid

EEL_REFRESH_BLOCK_THRESHOLD 3 /* determines refres h threshold */

Note:
It is not easy to develop a precise and certain formula for the refresh-threshold
because the order of written/refreshed instances in the active-region is a
random process decided at runtime. Good results can be achieved when
defining the threshold to (N + 1) where N is the number of blocks needed for
coverage of all initial instances of all variables declared in EEL descriptor.
Generally the bigger the prepared region the smoother is the run-time
operation of the EEL Therefore the threshold should be minimized in
relationship to the amount of data.

It is strongly recommend to check the runtime behav ior of the EEL at a
given configuration in the target system under wor st case conditions
(variable size, variable number, threshold, pool-si ze, block exclusion,
writing speed...) before establishing and releasing the configuration.

EEPROM Emulation Library

R01AN0707ED0100 62

Application Note

4.3.2 Variable configuration

The number and size of variable managed by the EEL are configured in the
EEL_descriptor files. The EEL driver/library can only read/write variable-ID’s
registered in the EEL-descriptor.

 File EEL_descriptor.h

EEL_VAR_NO 8 /* number of variables handled by EEL, min 1 */

File EEL_descriptor.c

/* EEL variable size expressed in bytes */
#define bsize_A (sizeof(type_A))
#define bsize_B (sizeof(type_B))
#define bsize_C (sizeof(type_C))
#define bsize_D (sizeof(type_D))
#define bsize_E (sizeof(type_E))
#define bsize_F (sizeof(type_F))
#define bsize_X (sizeof(type_X))
#define bsize_Z (sizeof(type_Z))

/* EEL variable size expressed in words */
#define wsize_A (bsize_A+3)/4)
#define wsize_B (bsize_B+3)/4)
#define wsize_C (bsize_C+3)/4)
#define wsize_D (bsize_D+3)/4)
#define wsize_E (bsize_E+3)/4)
#define wsize_F (bsize_F+3)/4)
#define wsize_X (bsize_X+3)/4)
#define wsize_Z (bsize_Z+3)/4)

__far const eel_u08 eel_descriptor[EEL_VAR_NO+1][4] =
{
/*identifier word-size (1...64) byte-size (1.. 255) RAM-Ref. */
/*--- -----------------*/
 (eel_u08)'a', (eel_u08)(wsize_A), (eel_u08)(bsiz e_A), 0x01, \
 (eel_u08)'b', (eel_u08)(wsize_B), (eel_u08)(bsiz e_B), 0x01, \
 (eel_u08)'c', (eel_u08)(wsize_C), (eel_u08)(bsiz e_C), 0x01, \
 (eel_u08)'d', (eel_u08)(wsize_D), (eel_u08)(bsiz e_D), 0x01, \
 (eel_u08)'e', (eel_u08)(wsize_E), (eel_u08)(bsiz e_E), 0x01, \
 (eel_u08)'f', (eel_u08)(wsize_F), (eel_u08)(bsiz e_F), 0x01, \
 (eel_u08)'x', (eel_u08)(wsize_X), (eel_u08)(bsiz e_X), 0x01, \
 (eel_u08)'z', (eel_u08)(wsize_Z), (eel_u08)(bsiz e_Z), 0x01, \
 0x00, 0x00, 0x00, 0x00, \
};

The EEL descriptor is a [N+1] vector containing descriptor information of each
EEL variable (N is the total number of EEL variables registered).

Each variable descriptor is an array of 4 bytes.
The EEL descriptor must be terminated by a descriptor terminator (4 bytes
0x00). This pattern is used internally by the EEL as descriptor-end-criteria in
the variable searching process.

Identifier:
The 1’st byte of the variable descriptor is the “identifier” field that must be
unique within the whole EEL-descriptor. Variables can be identified, read and
written by using this identifier.

EEPROM Emulation Library

R01AN0707ED0100 63

Application Note

Word-size:
The 2’nd byte of the variable descriptor specifies the size of the variable
expressed in words.

Byte-size:
The 3’rd byte of the variable descriptor specifies the size of the variable
expressed in bytes.

RAM-ref:
The 4’th byte of the variable descriptor is the “RAM-reference” which should
indicate EEL variables referenced by RAM-reference. This field is only relevant
when EEL is using the FCL for flash access. When FDL is accessing the flash,
the “RAM-reference” files doesn’t have any meaning (in that case each
variable is referenced by RAM automatically).

4.3.3 Pool configuration hints and tipps

During operation the situation in the EEL-pool changes whenever data are
written into it. This is a high dynamic, unpredictable random process. On the
other hand each application has different timing requirements when writing
data. Some application need so called burst write (writing many data in
relatively short time e.g. crash data in airbag applications). Other applications
have to write data permanently in equidistant intervals like odometer in
automotive applications. Moreover the size of variables and its individual write
cycles and writing frequency may influence the real write-time.

When writing data into the EEL-pool three different cases are possible:

1) enough space for the instance and its reference exists in active head
2) not enough space in active head but more than 2 prepared blocks exist.
3) not enough space in active head but less than 3 prepared blocks exist.

In case 1) the execution time of the WRITE command consists of the pure
writing-time only:
T1(WRITE) = t(write).

In case 2) the execution time of the WRITE command consists of two
components: the activation-time and writing-time:
T2(WRITE) = t(activation) + t(write).

In case 3) the execution time of the WRITE command consists of three
components: the expansion-time, activation-time and writing-time:
T3(WRITE) = t(expand) + t(activation) + t(write).

Where: T1(WRITE) < T2(WRITE) <<< T3(WRITE)

The difference between T1(WRITE) and T2(WRITE) is very small and
cannot/mustn’t be avoided by the user (system architecture related behavior).

The T3(WRITE) is much longer than T1/T2 (WRITE) because it incorporates
block erase time. Consequently to keep writing-time constant during EEL
operation the user should avoid situation described in case 3) by keeping the
background maintenance alive. When calling the EEL_Handler(t) permanently
in the application idle loop the EEL will automatically remove conditions
described in case 3) according to the EEL-pool configuration.

EEPROM Emulation Library

R01AN0707ED0100 64

Application Note

There are some general dependencies that should be taken into account when
configuring the EEL and its pool.

1) the bigger the prepared area S(P) the better the real time performance

2) the bigger the S(F) the better (more efficient) the usage of erase cycles

3) the refresh threshold should be max. 1 block bigger than S(D)

In below examples following abbreviations were used:

B(P) – number of prepared blocks in initially programmed EEL-pool
B(D) – number of blocks containing initial data
S(H) – size of block header expressed in flash words
S(R) – size of the initial reference area in the active heading block in words
S(F) – size of the free space in active heading block in words (active space)
S(D) – size of the initial data area in the active head expressed in word
S(B) – size of the block expressed in words
SEP – size of the min. separator between reference and data area in words
N – number of variables registered in the EEL_descriptor.
wsize - size of the given variable expressed in words (see EEL_descriptor).

TH - refresh threshold defined in eel_descriptor.h

Where:

S(B) = 512, S(H) = 8, SEP = 3, S(R) = 2*N + SEP

S(D) = ∑
=

N

i
idatawsize

1

)(

After initial programming following situation in EEL pool is assumed:

1) the active region of the EEL-pool contains only one instance (the initial one)
of each variable registered in EEL descriptor.

2) the remaining EEL (none-exluded and data-less) blocks are prepared.

In such situation the remaining active space S(F) in the active heading block
and the number of prepared blocks S(P) could be one criteria for proper
configuration of the refresh threshold.

S(F) = S(B) – S(H) – S(R) – S(D)

CAUTION:
Before releasing the EEL configuration have to be e nsured by tests
under worst case conditions (write frequency, write duration, block
exclusion and so on) required by the application.

The following practical examples of EEL pool configuration should illustrate the
dependancies.

EEPROM Emulation Library

R01AN0707ED0100 65

Application Note

Figure 4-5 Configuration for small data amount whe re S(F) is sufficient

free free free

S(H)

S(R)

S(D)

S(F) S(B)

B(D) = 1

Block

Header

prepared

Block

Header

prepared

1

2

Data

Block

Header

active

free

Block

Header

prepared

free

Block

Header

prepared

N

free

Block

Header

prepared

References

SEP

TH = 1

active space S(F)

quite big in

relationship to

the data amount

B(P) = 5

In the above scenario the active space S(F) is quite big, so that many
instances of relatively small variables can be written into it before activation of
the next block becomes necessary. When setting TH=1 the B(P) will be
maximized automatically by the background process (EEL_Handler(t)). The
relatively big buffer of prepared blocks allows intensive, continuous writing
process for a long time before “space expansion” will be enforced by a pool-full
situation.

Figure 4-6 Configuration for larger data amount wh ere S(F) is sufficient

1

2

Block

Header

active

References

Data

free

free

free free

S(H)

S(R)

S(D)

S(F)
S(B)

B(D) = 2

Block

Header

prepared

Block

Header

prepared

N-2

Data

Block

Header

active

free

Block

Header

prepared

free

Block

Header

prepared

N-1

N

SEP

SEP

TH = 2

active space S(F)

quite big in

relationship to

the data amount

B(P) = 4

This example is similar to the previous one, but the total amount of initial data
excides the space in one block. The active space is big enough, consequently
the refresh threshold TH can be set to 2 to keep B(P) at maximal possible
level.

EEPROM Emulation Library

R01AN0707ED0100 66

Application Note

Figure 4-7 Configuration for larger data amount wh ere S(F) is not sufficient

1

2

Block

Header

active

N-6

References

Data

free
free

free free

S(H)

S(R)

S(D)

S(F)
S(B)

TH = 3

Block

Header

prepared

Block

Header

prepared

N-5

N-4

N-3

Data

Block

Header

active

free

Block

Header

prepared

free

Block

Header

prepared

N-2

N-1

N

SEP

SEP

active space S(F)

quite small in

relationship to

the data amount

B(D) = 2 B(P) = 4

In that example like in the previous one, the initial data occupies 2 blocks
(B(D)=2), but in that case the remaining space S(F) in the active head is very
small. To avoid that each write access would immediately cause a refresh and
afterwards an erase cycle, the refresh threshold TH must be set to TH = B(D)
+ 1 = 3 in that case.

EEPROM Emulation Library

R01AN0707ED0100 67

Application Note

4.4 Initialisation

After power-on RESET the EEL has to be initialized by using the EEL_Init
function. After this the plausibility of the configuration is checked and all
internal variables are initialized. The driver remains passive and access to the
flash medium is disabled.

 my_eel_status_u08 = EEL_Init();

 if (my_eel_status_u08 == EEL_OK)
 {
 /* EEL is initialized */
 }

else My_ErrorHandler();

4.5 EEL activation and deactivation

After power-ON reset the Data Flash hardware is passive. Before using the
EEL commands the access to the Data Flash has to be opened and the clock
of the Data Flash hardware has to be switched on.

The physical resource data-flash is divided in the FAL into two virtual parts: the
EEL-pool and the USER-pool. Both of them can be opened and closed
independently. To open access to the EEL-pool the EEL_Open() function has
to be called. To avoid unexpected side-effects the FAL is managing the Data
Flash clock status (ON/OFF) internally.

The sequencer clock:

• is OFF after FAL_Init(...)

• goes ON when any part of the FAL-pool is beeing opened.

• remains ON when any part of the FAL-pool is still open

• goes OFF when both parts of the FAL-pool were closed.

The EEL-pool can be opened and clocsed by using the interface function
EEL_Open()/EEL_Close().

EEPROM Emulation Library

R01AN0707ED0100 68

Application Note

 <POWER-ON RESET> /* sequencer clock is OFF */

 my_fal_status = FAL_Init(&my_fal_descriptor);
 if (my_fal_status <> FAL_OK) My_ErrorHandler();

 my_eel_status = EEL_Init();
 if (my_eel_status <> EEL_OK) My_ErrorHandler();

 EEL_Open(); /* data flash clock starts here contr olled */

 EEL-commands can be executed here

 FAL_Open(); /* data flash clock remains ON here */

 FAL commands can be used for access to the USER-p ool

 EEL_Close(); /* data flash clock remains ON be cause */
 /* FAL is still accessing the USE R-pool */

 EEL-commands cannot be executed anymore
 FAL-commands can be used for access to the USER-p ool

 FAL_Close(); /* data flash clock is switched O FF here */

4.6 Foreground and background process

The backgound process is not visible directly to the user. It should take care
for keeping conditions defined by the user in the configuration. Especially
minimation of the invalide region and maximation of the space (according to
the predefined refresh threshold).

4.6.1 Controlling background process

When automatical maintenance is required, the EEL_Handler(t) has to be
called periodically in any loop (for example in the idle-loop or in the scheduler-
loop).

When the application want to know if background maintenance is surelly
finished the operation status provided by EEL_GetDriverStatus(...) must be
stable EEL_OPERATION_IDLE for at least 4 EEL_Handler(0) calls.

In other words, min. 4 internal states of the EEL must be executed in
EEL_OPERATION_IDLE operation-status to be sure that the background
maintenance is definitively finished.

EEPROM Emulation Library

R01AN0707ED0100 69

Application Note

Example flow to ensure background passivity (enforc ed mode only)

Figure 4-8

EEPROM Emulation Library

R01AN0707ED0100 70

Application Note

Example flow to ensure background passivity (cont.)

Figure 4-9

EEPROM Emulation Library

R01AN0707ED0100 71

Application Note

4.7 Commands

EEL commands has to be initiated by passing completed EEL-request using
the function EEL_Execute(&my_eel_request). To simplify the handling of the
EEL the command spectrum was reduced to the esential only. Depending on
the affected object there are two groups of commands supported by the EEL.
Some of them influences the operation and status of the wohle EEL-pool and
some other the instance data only.

All EEL commands are executed/handled in the same wise and can be
executed in individual execution mode.

General command execution flow

4.7.1 Pool oriented commands

EEL pool oriented command influences the blocks or data in the wohl EEL
pool.

4.7.1.1 Command STARTUP

The startup command interpretes the actual status of the EEL-pool, especially
the region parameters, block status flags and instance references. Successful
STARTUP command opens the access to the EEL data for the variable
oriented commands.

Figure 4-10

EEPROM Emulation Library

R01AN0707ED0100 72

Application Note

Status of EEL_CMD_STARTUP command

Status Class Background and Handling

meaning EEL not initialized or
not opened

reason wrong handling on
user side

EEL_ERR_INITIALIZATION heavy

remedy Initialize and open
EEL before using it

meaning invalid command
code

reason unknown code used
in request

EEL_ERR_COMMAND light

remedy use eel_command_t
type only

meaning pool structure not
usable

reason
inconsistent EEL
pool detected *) EEL_ERR_POOL_INCONSISTENT heavy

remedy FORMAT the EEL
pool

meaning EEL pool size smaller
< 3 blocks

reason to much blocks
excluded

EEL_ERR_POOL_EXHAUSTED fatal

remedy no remedy, EEL dead

meaning EEL cannot accept
the request

reason EEL busy with any
other request EEL_ERR_REJECTED normal

remedy

wait until status
changes or call
EEL_Handler() until
request accepted.

meaning request is being
processed

reason request checked and
accepted EEL_BUSY normal

remedy

wait until status
changes call
EEL_Handler() until
request accepted.

meaning request was finished
regular

reason no problems during
command execution

EEL_OK normal

remedy nothing

Supported execution modes:
enforcing, timeout, polling

Note 1):
EEL pool inconsistency can be caused by various reasons, for example:
- FIP flag is <> 0xFFFFFFFF
- RWP or DWP not found
- no active region detected or active-head missing
- active region not homogenous (discontinued by invalid block)
- all blocks excluded

Table 6

EEPROM Emulation Library

R01AN0707ED0100 73

Application Note

Code example (enforced mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited STARTUP request */
my_eel_request.command_enu = EEL_CMD_STARTUP;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

Code example (timeout mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited STARTUP request */
my_eel_request.command_enu = EEL_CMD_STARTUP;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long not finished */
do{
 EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

/* periodical counting timeout tick */
void isr_tm01(void)
{
 EEL_TimeOut_CountDown();
}

EEPROM Emulation Library

R01AN0707ED0100 74

Application Note

Code example (polling mode):

/* declaration of the request variable */
eel_request_t my_eel_request;

.........
.........
.........

/* specification of a time limited STARTUP request */
my_eel_request.command_enu = EEL_CMD_STARTUP;
my_eel_request.timeout_u08 = 0;
EEL_Execute(&my_eel_request);

.........
.........
.........

/* execute a state as long not finished */
do{
 EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

.

EEPROM Emulation Library

R01AN0707ED0100 75

Application Note

4.7.1.2 Command SHUTDOWN

There is no real functionality behind the SHUTDOWN command. It is just used
for synchronization between the background processes and the application.
Practically it is just waiting until all running background processes (REFRESH,
EXPANSION,...) are finished correctly. The access to the EEL pool is closed
and the access status provided by EEL_GetDriverStatus(&my_driver_status)
is EEL_ERR_ACCESS_LOCKED. Also the EEL_Handler(t) becomes passive
and does not consume CPU time anymore (just few clocks).

Status of EEL_CMD_SHUTDOWN command

Status Class Background and Handling

meaning EEL not initialized

reason
wrong handling on user
side EEL_ERR_INITIALIZATION heavy

remedy
Initialize EEL before
using it

meaning invalid command code

reason
unknown code used in
request EEL_ERR_COMMAND light

remedy
use eel_command_t
type only

meaning
unexpected/unknown
error code generated in
background

reason
SW bug, EMI,
unexpected problems EEL_ERR_INTERNAL heavy

remedy

no standard remedy
possible. Next
STARTUP should
manage the problem

meaning
EEL cannot accept the
request

reason
EEL busy with other
request

EEL_ERR_REJECTED normal

remedy
Call EEL_Handler() and
retry later

meaning
request is being
processed

reason
request checked and
accepted

EEL_BUSY normal

remedy
Call EEL_Handler() until
status have changed.

meaning
request was finished
regular

reason
no problems did happen
during command
execution

EEL_OK normal

remedy nothing

Supported execution modes:
enforcing, timeout, polling

Table 7

EEPROM Emulation Library

R01AN0707ED0100 76

Application Note

Code example (enforced mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
/* specification of a time limited SHUTDOWN request */
my_eel_request.command_enu = EEL_CMD_SHUTDOWN;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();
.........
.........

Code example (timeout mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
/* specification of a time limited SHUTDOWN request */
my_eel_request.command_enu = EEL_CMD_SHUTDOWN;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);
.........
.........
/* execute a state as long not finished */
do{
 EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();
.........
.........
.........
/* periodical timeout count tick */
void isr_tm01(void)
{
 EEL_TimeOut_CountDown();
}

Code example (polling mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
/* specification of a time limited SHUTDOWN request */
my_eel_request.command_enu = EEL_CMD_SHUTDOWN;
my_eel_request.timeout_u08 = 0;
EEL_Execute(&my_eel_request);
.........
.........
/* execute a state as long not finished */
do{
 EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();
.........
.........

EEPROM Emulation Library

R01AN0707ED0100 77

Application Note

4.7.1.3 Command FORMAT

The format command destroys all data and creates an “empty” EEL pool
consists of one active block. All remaining “not excluded” blocks are
“prepared” by this command. After format the STARTUP command must be
executed after FORMAT to identify the new EEL-pool status.

Status of EEL_CMD_FORMAT command

Status Class Background and Handling

meaning EEL not initialized

reason
wrong handling on
user side EEL_ERR_INITIALIZATION heavy

remedy
Initialize EEL before
using it

meaning invalid command code

reason
unknown code used in
request EEL_ERR_COMMAND light

remedy
use eel_command_t
type only

meaning
EEL pool size smaller
< 3 blocks

reason
to much blocks
excluded

EEL_ERR_POOL_EXHAUSTED fatal

remedy no remedy, EEL dead

meaning
unexpected/unknown
error code generated
in background

reason
SW bug, EMI,
unexpected problems EEL_ERR_INTERNAL heavy

remedy

No standard remedy
possible, analyze
background status for
details.

meaning
EEL cannot accept
the request

reason
EEL busy with other
request

EEL_ERR_REJECTED normal

remedy
Call EEL_Handler or
retry later

meaning
request is being
processed

reason
request checked and
accepted

EEL_BUSY normal

remedy Call EEL_Handler

meaning
request was finished
regular

reason
no problems during
command execution
happens

EEL_OK normal

remedy nothing

Supported execution modes:
enforcing, timeout, polling

Table 8

EEPROM Emulation Library

R01AN0707ED0100 78

Application Note

CAUTION:
Once started, the FORMAT command must be completed successfully.
When RESET discontinues a running FORMAT, the follo wing STARTUP
command will fail with status EEL_ERR_POOL_INCONSIS TENT. This
should enforce the user to re-start the broken FORM AT just to create a
consistent and empty EEL-pool in any case.

Code example (enforced mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited FORMAT request * /
my_eel_request.command_enu = EEL_CMD_FORMAT;
my_eel_request.timeout_u08 = 0xFF;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

Code example (timeout mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited FORMAT request * /
my_eel_request.command_enu = EEL_CMD_FORMAT;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long not finished */
do{
 EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

/* periodical timeout count tick */
void isr_tm01(void)
{
 EEL_TimeOut_CountDown();
}

EEPROM Emulation Library

R01AN0707ED0100 79

Application Note

Code example (polling mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited FORMAT request * /
my_eel_request.command_enu = EEL_CMD_FORMAT;
my_eel_request.timeout_u08 = 0;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long command not finished */
do{
 EEL_Handler(0);
 CheckCommunicationInterface();
 DoSomethingElse();
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

Figure 4-11 EEL pool after FORMAT (pool complete)

P=55555555

A=55555555

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

active

FFFFFFFF

prepared

FFFFFFFF

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

prepared

FFFFFFFF

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

prepared

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

EEPROM Emulation Library

R01AN0707ED0100 80

Application Note

Figure 4-12 4-13 EEL pool after FORMAT (1 block ex cluded)

P=55555555

A=55555555

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

active

FFFFFFFF

excluded

????????

P=????????

A=????????

I=????????

X=00000000

????????

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

prepared

FFFFFFFF

P=55555555

A=FFFFFFFF

I=FFFFFFFF

X=FFFFFFFF

EC=abcdefgh

prepared

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

????????

XEC=abcdefgh

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

FFFFFFFF

Note:

If the third block was already excluded before starting formatting its status
remains untouched by the FORMAT command.

EEPROM Emulation Library

R01AN0707ED0100 81

Application Note

4.7.1.4 Command CLEANUP

The cleanup command compresses the acive reqion occupied by data to
minimum. The “prepared” region is maximized. Data are not lost in that case.
STARTUP is not necessary after CLEANUP for further operation.

Status of EEL_CMD_CLEANUP command

Status Class Background and Handling
meaning EEL not initialized

reason
wrong handling on
user side EEL_ERR_INITIALIZATION heavy

remedy
Initialize EEL before
using it

meaning invalid command code

reason
unknown code used in
request EEL_ERR_COMMAND light

remedy
use eel_command_t
type only

meaning no access to EEL pool
reason STARTUP missing EEL_ERR_ACCESS_LOCKED light
remedy Execute STARTUP

meaning
EEL pool size smaller
< 3 blocks

reason
to much blocks
excluded

EEL_ERR_POOL_EXHAUSTED fatal

remedy no remedy, EEL dead

meaning
unexpected/unknown
error code generated
in background

reason
SW bug, EMI,
unexpected problems EEL_ERR_INTERNAL heavy

remedy

Execute STARTUP.
Background status
can be analyzed for
details.

meaning
EEL cannot accept
the request

reason
EEL busy with other
request

EEL_ERR_REJECTED normal

remedy
Call EEL_Handler or
retry later

meaning
request is being
processed

reason
request checked and
accepted

EEL_BUSY normal

remedy Call EEL_Handler

meaning
request was finished
regular

reason
no problems during
command execution
happens

EEL_OK normal

remedy nothing

Supported execution modes:
enforcing, timeout, polling

Table 9

EEPROM Emulation Library

R01AN0707ED0100 82

Application Note

Code example (enforced mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
/* specification of a time limited CLEANUP request */
my_eel_request.command_enu = EEL_CMD_ CLEANUP;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();
.........
.........

Code example (timeout mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited CLEANUP request */
my_eel_request.command_enu = EEL_CMD_ CLEANUP;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long not finished */
do{
 EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu! = EEL_OK) My_Error_ Handler();

.........
.........
.........

/* periodical timeout count tick */
void isr_tm01(void)
{
 EEL_TimeOut_CountDown();
}

EEPROM Emulation Library

R01AN0707ED0100 83

Application Note

Code example (polling mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited CLEANUP request */
my_eel_request.command_enu = EEL_CMD_CLEANUP;
my_eel_request.timeout_u08 = 0;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long not finished */
do{
 EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

Figure 4-14 EEL pool before CLEANUP command (exampl e)

EEPROM Emulation Library

R01AN0707ED0100 84

Application Note

Figure 4-15 EEL pool after CLEANUP command (example)

Note:

Header word marked as XXXXXXXX contain EC, RWPprev, XEC...

4.7.2 Variable oriented commands

EEL variable oriented command can be used by the application to read/write
new instnces (values) of the variables registered in the EEL-descriptor.

4.7.2.1 Command WRITE

The write command writes new value of the EEL-variable specified by the
identifier.

EEPROM Emulation Library

R01AN0707ED0100 85

Application Note

Status of EEL_CMD_WRITE command

Status Class Background and Handling

meaning EEL not initialized

reason
wrong handling on
user side EEL_ERR_INITIALIZATION heavy

remedy
Initialize EEL before
using it

meaning no access to EEL pool
reason STARTUP missing EEL_ERR_ACCESS_LOCKED light
remedy Execute STARTUP

meaning
Unknown variable
identifier

reason
Not registered
variable ID used EEL_ERR_PARAMETER heavy

remedy
Correct or register the
variable in the EEL
descriptor

meaning
EEL pool size smaller
< 3 blocks

reason
to much blocks
excluded

EEL_ERR_POOL_EXHAUSTED fatal

remedy no remedy, EEL dead
meaning no space in pool

reason

Due to block
exclusion not enough
space is to cover all
variables

EEL_ERR_POOL_FULL heavy

remedy Execute CLEANUP

meaning
EEL cannot accept
the request

reason
EEL busy with other
request

EEL_ERR_REJECTED normal

remedy
Call EEL_Handler or
retry later

meaning
request is being
processed

reason
request checked and
accepted

EEL_BUSY normal

remedy Call EEL_Handler

meaning
request was finished
regular

reason
no problems during
command execution
happens

EEL_OK normal

remedy none

Supported execution modes:
enforcing, timeout, polling

Table 10

EEPROM Emulation Library

R01AN0707ED0100 86

Application Note

Code example (enforced mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited WRITE request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu = EEL_CMD_WRITE;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

Code example (timeout mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited WRITE request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu = EEL_CMD_WRITE;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long not finished */
do{
 EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

/* periodical timeout count tick */
void isr_tm01(void)
{
 EEL_TimeOut_CountDown();
}

EEPROM Emulation Library

R01AN0707ED0100 87

Application Note

Code example (polling mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited WRITE request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu = EEL_CMD_WRITE;
my_eel_request.timeout_u08 = 0;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long not finished */
do {
 EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_H andler();

.........
.........
.........

Note:

Whenever the application writes data into the EEL-pool the space available in
active head may not be sufficient to cover the reference and data of the new
instance. To guaranty proper operation in any situation the EEL takes care for
sufficient space conditions before writing the instance. This may cause
different execution time for writing same portion of data. The user can avoid
that situation by offering enough CPU time for the background process that
can prepare space in advance.

Depending on space precondition in different behavior is possible when writing
new instance into the EEL pool. Please have a look to the below examples.

EEPROM Emulation Library

R01AN0707ED0100 88

Application Note

Example 1:
Best case conditions.

Conditions:
a) Enough space available in heading active block to cover the complete
 instance (reference and data)

b) EEL_REFRESH_BLOCK_THRESHOLD > 1

Sequence:
1) DRP_A(6) is written into flash word addressed by RWP

 (allocates space for the new instance in reference- and data-area)

2) Data_A(6) are written word by word into the allocated space in data area.

3) DCS_A(6) is written into the flash word addressed by (RWP+1)

4) RWP, DWP, RAM-reference, and region parameter are updated

EEL pool after WRITE command (normal example).

O
K

Note:
Data_A(6) means 6’ts instance of the variable “A”

Figure 4-16

EEPROM Emulation Library

R01AN0707ED0100 89

Application Note

Example 2:
Best case conditions.

Conditions:
a) Not enough space available in heading active block to cover the complete
 instance (reference and data).

b) more than two blocks are prepared and ready for activation

c) EEL_REFRESH_BLOCK_THRESHOLD > 2

Sequence:
1) After negative space check next block will be activated before write

2) DRP_D(4) is written into flash word addressed by RWP

 (allocates space for the new instance in reference- and data-area)

3) Data_D(4) are written word by word into the allocated space in data area.

4) DCS_D(4) is written into the flash word addressed by (RWP+1)

5) RWP, DWP, RAM-reference, and region parameter are updated

Figure 4-17 EEL pool after WRITE command (activatio n example)

EEPROM Emulation Library

R01AN0707ED0100 90

Application Note

Example 3:
Best case conditions.

Conditions:
a) Not enough space available in heading active block to cover the complete
 instance (reference and data).

b) Not enough prepared for activation

c) EEL_REFRESH_BLOCK_THRESHOLD > 2

Sequence:
1) After negative space check next block should be activated before write

2) Activation not possible (prepared region to small)

3) Execution focus swapped to background for space expansion

4) The background refreshes the last active block C(2) -> C(3)

5) After refresh completion of block 0 will be invalidated and prepared

6) Completed space expansion swaps the execution focus back to foreground

7) DRP_D(5) is written into flash word addressed by RWP

 (allocates space for the new instance in reference- and data-area)

8) Data_D(5) are written word by word into the allocated space in data-area.

9) DCS_D(5) is written into the flash word addressed by (RWP+1)

10) RWP, DWP, RAM-reference, and region parameter are updated

Figure 4-18 EEL pool before WRITE command (expansio n example)

EEPROM Emulation Library

R01AN0707ED0100 91

Application Note

Figure 4-19 EEL pool after WRITE command (expansion example)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

55555555

55555555

FFFFFFFF

FFFFFFFF

XXXXXXXX

active

FFFFFFFF

Ref_D(4)

Data_D(4)

Ref_B(6)

Data_B(7)

Data_B(6)

Ref_B(7)

Ref_A(7)

Data_A(7)

Ref_C(3)

Data_C(3)

prepared

FFFFFFFF

55555555

FFFFFFFF

FFFFFFFF

FFFFFFFF

YYYYYYYY

DRP_D(5)

Data_D(5)

DCS_D(5)
Ref_D(5)

The final scenario after completion WRITE(D) is:

- block 0 is prepared after refreshing instance C(2) -> C(3)

- the newest (5’th) instance of D is written into block 2

EEPROM Emulation Library

R01AN0707ED0100 92

Application Note

4.7.2.2 Command READ

The read command copies the actual value of the EEL-variable specified by
the identifier into its RAM mirror variable.

When checksum error (DCS) is detected internally during READ execution, the
EEL will enforce re-filling the reference table and before reading the next older
instance of the specified variable automatically. When no older instance exists,
the READ command signalizes EEL_ERR_NO_INSTANCE.

Status of EEL_CMD_READ command

Status Class Background and Handling
meaning EEL not initialized

reason
wrong handling on
user side EEL_ERR_INITIALIZATION heavy

remedy
Initialize EEL before
using it

meaning no access to EEL pool
reason STARTUP missing EEL_ERR_ACCESS_LOCKED light
remedy Execute STARTUP

meaning
Unknown variable
identifier

reason
Not registered
variable ID used EEL_ERR_PARAMETER heavy

remedy
Correct or register the
variable in the EEL
descriptor

meaning
no instance of the
identifier found

reason no initial value written EEL_ERR_NO_INSTANCE light

remedy
write initial value of
the variable

meaning
EEL cannot accept
the request

reason
EEL busy with other
request

EEL_ERR_REJECTED normal

remedy
Call EEL_Handler or
retry later

meaning
request is being
processed

reason
request checked and
accepted

EEL_BUSY normal

remedy Call EEL_Handler

meaning
request was finished
regular

reason
no problems during
command execution
happens

EEL_OK normal

remedy none

Supported execution modes:
enforcing, timeout, polling

Table 11

EEPROM Emulation Library

R01AN0707ED0100 93

Application Note

Code example (enforced mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited READ request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu = EEL_CMD_READ;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

Code example (timeout mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* specification of a time limited READ request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu = EEL_CMD_READ;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long not finished */
do{
 EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

/* periodical timeout count tick */
void isr_tm01(void)
{
 EEL_TimeOut_CountDown();
}

EEPROM Emulation Library

R01AN0707ED0100 94

Application Note

Code example (polling mode):

/* declaration of the request variable */
eel_request_t my_eel_request;
.........
.........
.........
/* initiation of a READ request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu = EEL_CMD_READ;
my_eel_request.timeout_u08 = 0;
EEL_Execute(&my_eel_request);
.........
.........
.........

/* execute a state as long not finished */
do{
 EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

.........
.........
.........

EEPROM Emulation Library

R01AN0707ED0100 95

Application Note

Chapter 5 Characteristics

5.1 Resource consumption

RAM consumption at user side:
High speed RAM: 1 byte
Short address RAM: 9 bytes

ROM consumption:
EEL code size: 6,6 kByte
EEL constant size: 4+(N+1)*4, N = number of EEL variables

Final stack consumption:
FDL and EEL stack: <120 bytes

EEPROM Emulation Library

R01AN0707ED0100 96

Application Note

EEPROM Emulation Library

