

EC-1 Series

R01AN3780EJ0100 Rev.1.00

SPI Connection Library for the EtherCAT® Slave Controller

Apr 14, 2017

Outline

This application note describes a library for access to the EtherCAT slave controller ("ESC") of the EC-1 from an external MCU.

The features of this library are described below.

- The library enables access to the ESC from an external MCU by using the SPI in slave mode as a standard serial communications interface. This allows connection to various MCUs which support SPI master mode.
- By combining processing for initialization of the port and PHY module with the library, various boards on which the EC-1 is mounted can be turned into ESC boards which are accessible by an external MCU.
- The items required for porting the EtherCAT slave controller of the ET1100 from Beckhoff Automation GmbH to an EC-1 which incorporates the ESC SPI connection library are described as a sample application.

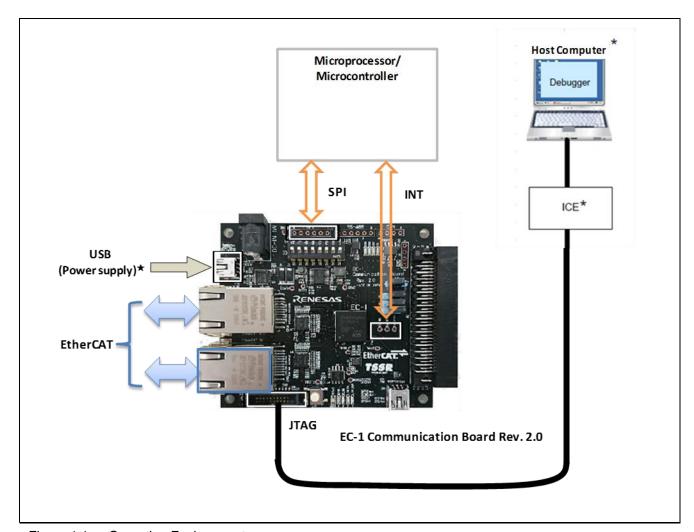
Target Devices

EC-1

Contents

1. S _l	pecifications	4
2. O	perating Environment	5
3. H	ardware	6
3.1	Example of the Hardware Configuration	6
3.2	Pins	7
4. SI	PI Interface	8
4.1	Example of the Software Configuration	
4.2	SPI Address Space	
4.3	Extended SPI Registers	10
4.3	-	
4.3	.2 Revision Number Register (REVNO)	11
4.3	.3 Status Register (STATUS)	11
4.3	.4 Control Register (CONTROL)	11
4.3	.5 Scratch Registers (SCRATCH0 to 9)	11
4.3	.6 Sequential Data Number Register (SQDATNUM)	11
4.3	.7 Sequential Data Registers (SQDATA0 to 63)	11
4.4	Format of SPI Packets	12
4.4	.1 Commands	12
4.4	.2 RD Command	12
4.4	.3 WR Command	13
4.4	.4 SQRD Command	14
4.4	.5 SQWR Command	15
4.4	.6 DTRD Command	16
4.4	.7 DTWR Command	17
5. So	oftware	19
5.1	Operation in Outline	19
5.2	Procedure for Designing Software	20
5.3	Interrupts	21
5.4	Fixed-Width Integers	21
5.5	Constants and Error Codes	21
5.6	Structures, Unions, and Enumerations	23
5.7	Global Variables	25
5.8	Functions	25
5.9	Functions	26
5.9	.1 Processing by Initial Settings for the SPI Pins	26
5.9	.2 Initialization Processing for SPI Control	26
5.9	.3 Starting SPI Communications	28
5.9	.4 Stopping SPI Communications	29
5.9	.5 Processing for SPI Transfer	30

6. Sam	ple Program	31
	/erview	
	ardware Configuration	
	oftware Configuration	
	onfiguration of Directories and Files	
6.4.1	Sample Program for the Remote I/O Board	
6.4.2	Sample Program for the Communications Evaluation Board	
6.5 Tu	torial	
6.5.1	Preparation	
6.5.2	Connection with TwinCAT	35
7. Appl	ication Example: Migration from ET1100	36
7.1 Ov	verview	36
7.2 Ha	ardware Related Items	37
7.3 Sc	ftware Related Items	38
7.3.1	Sequence for Reading the Registers	38
7.3.2	Sequence for Writing to the Registers	39
7.3.3	Sequence for Sequential Reading from the Process Data RAM	40
7.3.4	Sequence for Sequential Writing to the Process Data RAM	42
7.3.5	Extended Registers: Sequence for Confirming Startup	43
7.3.6	Extended Registers: Software Reset Sequence	44
7.4 Ite	ms Related to Slave Stack Code	44
7.4.1	Hardware Access Files	44
7.4.2	Changing the ESI File	46
7.4.3	Adding the Startup Confirmation Sequence	46
8. Docu	uments for Reference	47
8.1 Re	elated Documents	47
8.2 Re	elationship between This Document and Related Documents	47
Woheito	and Support	18



1. Specifications

Table 1.1 lists the peripheral modules used and their applications. Figure 1.1 shows the operating environment of the sample program which includes the library.

Table 1.1 Peripheral Modules and Their Applications

Peripheral Module	Application
EtherCAT slave controller	For use in EtherCAT communications
EtherCAT interrupt output signals	CATIRQ, CATSYNC0, and CATSYNC1 are output to an external MCU.
Ethernet MAC(ETHERC)	For use in EtherCAT communications
Serial peripheral interface (RSPI)	For use in transfer to and from an external MCU (CH0 or CH1 is selectable)
Interrupt controller	The reception buffer full, transmission buffer empty, and RSOI error interrupts are used as sources to generate interrupts for the RSPI.
Tightly coupled memory	The ATCM is used as the program and variable area for the library.

RENESAS

Figure 1.1 Operating Environment

Note: Use the EtherCAT IN port to connect an EtherCAT master.

2. Operating Environment

The library covered in this application note is for the environment below.

Table 2.1 Operating Environment

Item	Description
MCU used	EC-1 communications evaluation board
	EC-1 Communication Board Rev. 2.0
CPU	EC-1
	R9A06G043
Operating frequency	CPU clock (CPUCLK): 150 MHz
	System clock: 25 MHz
Operating voltage	3.3 V
Operating mode	SPI boot mode
Devices used	Serial flash memory
	W25Q32JVSFIM from Winbond
	• EEPROM
	R1EX24016ASAS0 from Renesas Electronics
	• Ethernet PHY
	TLK105 from Texas Instruments
Communications protocol	EtherCAT®
Integrated development environment	Embedded Workbench® for ARM, version 7.70.1, from IAR Systems
Emulator	I-jet from IAR Systems
SSC Tool	Slave Stack Code (SSC) Tool, version 5.11, from EtherCAT Technology Group (ETG)
Software PLC	TwinCAT® 3 from Beckhoff Automation GmbH

3. Hardware

3.1 Example of the Hardware Configuration

Figure 3.1 is an example of the hardware configuration where the EC-1 that incorporates the library is combined as an EtherCAT slave with an external MCU.

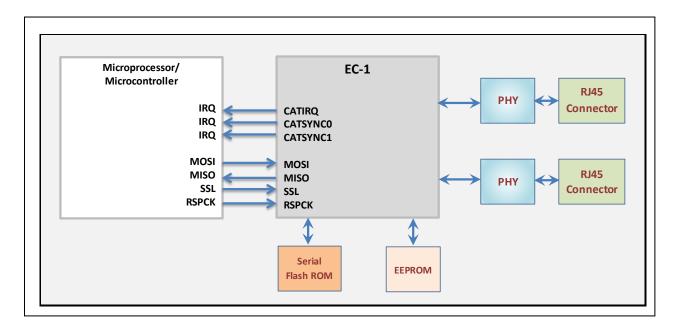


Figure 3.1 Example of the Hardware Configuration of an EtherCAT Slave

The EtherCAT slave transfers data to and from the external MCU by using the four-wire SPI. The four signals are MOSI (Master Out Slave In), MISO (Master In Slave Out), SSL (Slave Select), and RSPCK (RSPI Clock).

The external MCU is the SPI master and the EC-1 is the SPI slave.

The EC-1 outputs CATIRQ, CATSYNC0, and CATSYNC1 as synchronous interrupt signals for EtherCAT.

3.2 Pins

Table 3.1 lists the pins used and their functions.

Table 3.1 Pins Used and Their Functions

Pin Name	I/O	Description
ETH_MDIO	I/O	Input and output of the management data signal
ETH_MDC	Output	Output of the management interface clock
ETH0_RXC	I/O	Input and output of the reception clock
ETH1_RXC		
ETH0_RXER	Input	Input of the received data error signal
ETH1_RXER		
ETH0_RXDV	Input	Input of the received data enable signal
ETH1_RXDV		
ETH0_RXD0~3	Input	Input of the received data signal
ETH1_RXD0~3		
ETH0_TXC	Input	Input of the 10 M/100 M transmission clock (2.5 MHz/25 MHz)
ETH1_TXC		
ETH0_TXER	Output	Output of the transmission error signal
ETH1_TXER		
ETH0_TXEN	Output	Output of the transmission enable signal
ETH1_TXEN		
ETH0_TXD0~3	Output	Output of the transmission data signal
ETH1_TXD0~3		
ETH0_COL	Input	Input of the collision detection signal
ETH1_COL		
ETH0_CRS	Input	Input of the carrier sense signal
ETH1_CRS		
CLKOUT25M0	Output	Output of the Ethernet PHY external clock
CLKOUT25M1		
PHYLINK0	Input	Input of the PHY Link signal (for Ethernet Switch)
PHYLINK1		
ETH0_INT	Input	Input of the Ethernet PHY interrupt request signal
ETH1_INT		
CATI2CCLK	Output	Output of the EtherCAT EEPROM I2C clock signal
CATI2CDATA	I/O	Input and output of the EtherCAT EEPROM I2C data signal
CATLINKACT1	Output	Output of the EtherCAT Link/Activity LED signal
CATLINKACT0		
CATLEDRUN	Output	Output of the EtherCAT RUN LED signal
CATLEDSTER	Output	Output of the EtherCAT dual-color state LED signal
CATLEDERR	Output	Output of the EtherCAT error LED signal
CATIRQ	Output	Output of EtherCAT IRQ
CATSYNC0	Output	Output of EtherCAT SYNC0
CATSYNC1	Output	Output of EtherCAT SYNC1
RSPCK0	Input	Input of the RSPI clock
MISO0	Output	Output of RSPI slave send data
MOSI0	Input	Input of RSPI master send data
SSL00	Input	Input of the RSPI slave select signal

4. SPI Interface

The EC-1 has two serial peripheral interfaces (RSPI).

The library allows the selection of channel 0 or 1 through parameters at the time of initialization.

Table 4.1 lists the specifications of the SPI and Figure 4.1 is a timing chart of the SPI.

Table 4.1 SPI Specifications

Item	Description
Method of communications	Four-wire SPI
Transfer mode	Slave mode
Method of communications	Full duplex
Signal sense	SSL: Active low
	RSPCK: Low in the idle state
Transfer frame	16 bits x 3 words
Format	MSB first
Data sampling timing	Falling edges of RSPCK
Maximum transfer rate	18.75 Mbps

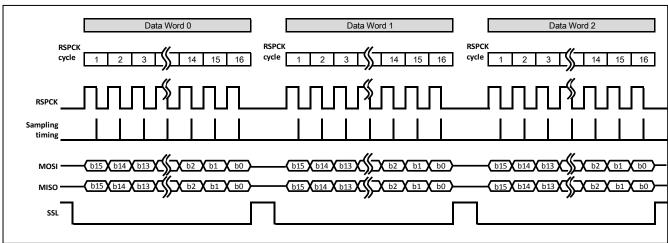


Figure 4.1 Timing Chart of the SPI

RENESAS

4.1 Example of the Software Configuration

Figure 4.2 is an example of the software configuration where the EC-1 is combined as an EtherCAT slave with an external MCU.

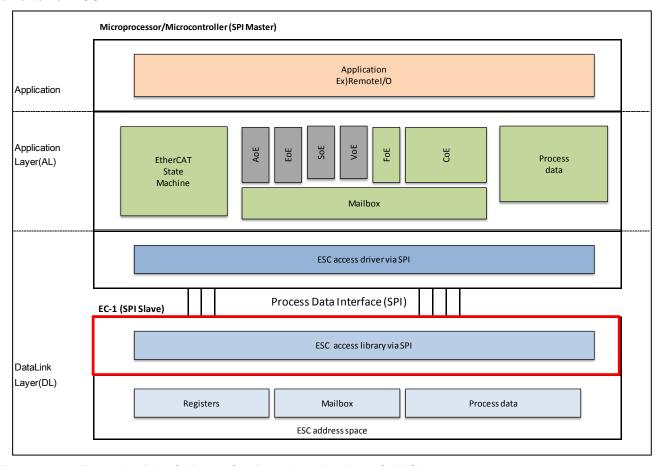


Figure 4.2 Example of the Software Configuration of an EtherCAT Slave

SSCTool: Program generation tool for EtherCAT control from Beckhoff Automation GmbH

The external MCU operates as an SPI master and has drivers for access to the application, EtherCAT protocol stack, and the ESC through the SPI interface.

The EC-1 operates as an SPI slave and returns the result of access to the ESC in response to instructions from the external MCU. The section in the red frame of the figure is the library.

The next and subsequent sections describe the library.

Note that the procedure for access by the external MCU to the ESC through the SPI interface is described in section 7.3.

4.2 SPI Address Space

Figure 4.3 shows the address space for access by the external MCU to the EC-1 through the SPI interface. Of the total space of 16 Kbytes, the ESC of the EC1 is allocated to the 12 Kbytes from 0x0000 to 0x2FFF. The 512 bytes from 0x3000 to 0x31FF are allocated to the extended registers for SPI communications.

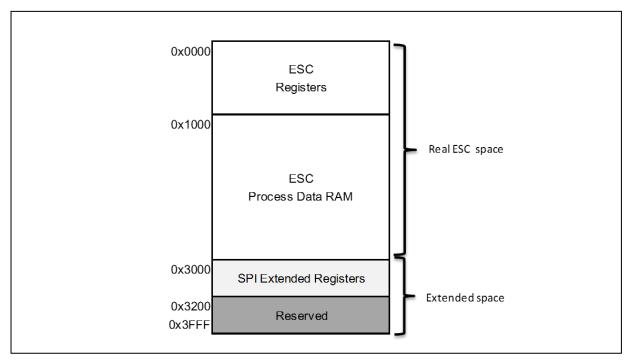


Figure 4.3 SPI Address Space

4.3 Extended SPI Registers

The Extended SPI registers are accessible in 16- or 32-bit units.

Table 4.2 lists the Extended SPI registers.

Note that R and W indicate the directions of access as seen from the external MCU.

Table 4.2 Extended SPI Registers

Address	Register Name	Bit	R/W
0x3000	Device ID Register (DEVICEID)	32	R
0x3004	Revision number register (REVNO)	16	R
0x3006	Status register (STATUS)	16	R
0x3008	Control register (CONTROL)	16	W
0x300A +2n (*1)	Scratch registers (SCRATCH0 to 9)	16	R/W
0x301E	Sequential data number register (SQDATNUM)	16	R
0x3020+4n (*2)	Sequential data registers (SQDATA0 to 63)	32	R
0x3120-0x31FE	Reserved		

Note 1. n = 0 to 9 Note 2. n = 0 to 63

4.3.1 Device ID Register (DEVICEID)

Address	Bit	R/W	Description
0x3000	31:0	R	The device ID can be read here.
			"EC-1" (0x45435E31) is stored in ASCII code.

4.3.2 Revision Number Register (REVNO)

Α	ddress	Bit	R/W	Description
0:	x3004	15:0	R	The version number of the library can be read here.
				"EC-1" (0x45435E31) is stored in ASCII code.

4.3.3 Status Register (STATUS)

Address	Bit	R/W	Description
0x3006	15:0	R	The error code which has occurred during operation of the library can be read here.
			0x0000: No error
			0x0001: The previously received command is invalid.
			0x0002: The word length specified in the previously received command is invalid.
			0x0003: The address specified in the previously received command is invalid.
			0x0004: The consecutive values that were previously received are invalid.
			0x0005: The control register settings that were previously received are invalid.
			0x0011: An overrun error occurred.
			0x0014: A mode fault error occurred.
			0x0018: A parity error occurred (not used this time).

4.3.4 Control Register (CONTROL)

Address	Bit	R/W	Description
0x3008	15:0	W	When a control code is set in this register, operation proceeds according to the control code.
			0x0001: The error code of the status register is cleared and set to "no error" (0x0000).
			0x0080: The EC-1 is rebooted by the application of a software reset.

4.3.5 Scratch Registers (SCRATCH0 to 9)

Address	Bit	R/W	Description
0x300A	15:0	R/W	This is a 16-bit register for general use. It is also available for use in transferring data and
+2n			state information to and from the external MCU.

Note: n = 0 to 9

4.3.6 Sequential Data Number Register (SQDATNUM)

Address	Bit	R/W	Description
0x301E	15:0	R	The number of transfers in the last R/W sequence to have been received can be read here.

4.3.7 Sequential Data Registers (SQDATA0 to 63)

Address	Bit	R/W	Description
0x3020	31:0	R	In the case of the SQRD command, this holds the data read from the DATAR register.
+4n			In the case of the SQWR command, this holds the data for writing to the DATAWR register.

Note: n = 0 to 63

4.4 Format of SPI Packets

4.4.1 Commands

Table 4.3 lists the commands for access by the external MCU to the SPI address space in the EC-1.

For the sequence for access by using the command, see section 7.3.1, Sequence for Reading the Registers to section 7.3.4, Sequence for Sequential Writing to the Process Data RAM.

Table 4.3 SPI Commands

CMD [7:0]	Command Name	Function
0x01	RD	This command is for reading the ESC or extended registers.
0x02	WR	This command is for writing to the ESC or extended registers.
0x03	SQRD	This command initiates sequential reading from the ESC.
0x04	SQWR	This command initiates sequential writing to the ESC.
0x05	DTRD	This command is for reading data form the sequential data register.
0x06	DTWR	This command is for writing data to the sequential data register.

4.4.2 RD Command

This command is for reading of the ESC or extended registers by the external MCU.

The length of the data and the address from which to read are specified.

1, 2, or 4 bytes are specifiable as lengths.

On receiving the RD command, the EC-1 reads the specified register and sends the results.

		Data V	Vord 0	Data Word 1	Data Word 2
	15 14	13 12 11 10 9 8	7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MOSI		RD	LEN	REGADR	
MISO	Sts	RI	EGADR	D0	D1

Figure 4.4 Format of RD Command Packets

Table 4.4 RD Command Packets for MOSI (external MCU \rightarrow EC-1)

Word No.	Bit	Name	Description
0	15:8	RD	RD command (0x01)
	7:0	LEN	These bits set the number of bytes to be read.
			Allowable settings are 1, 2, and 4 bytes.
1	15:0	REGADR	These bits specify the addresses of the ESC or extended registers from which to read.
			The specifiable address range is from 0x0000 to 0x3FFF.
2	15:0		These bits cannot be used with the RD command. The value is "don't care".

Table 4.5 RD Command Packets for MISO (EC-1 → external MCU)

Word No.	Bit	Name	Description
0	15:14	Sts	Bit 15: ERROR
			Indicates the error state of the RD command.
			1: An error has occurred.
			0: No error has occurred.
			Bit 14: BUSY
			Indicates the state of execution of the RD command.
			1: The command is being executed.
			0: End of the command
	13:0	REGADR	These bits indicate the address of a register specified by the RD command.
1	15:0	D0	These bits indicate the results of reading the register specified by the RD command
2	15:0	D1	while BUSY = 0.
			The data are flush left when the length of data is 1 or 2 bytes.

4.4.3 WR Command

This command is for writing of the ESC or extended registers by the external MCU.

The length of the data and the address to which to write are specified.

1, 2, or 4 bytes are specifiable as lengths.

On receiving the WR command, the EC-1 writes to the specified register.

		Data V	Vord 0	Data Word 1	Data Word 2
	15 14	13 12 11 10 9 8	7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MOSI		WR	LEN	REGADR	D0
MISO	Sts REGADR				

Figure 4.5 Format of SPI Packets for the WR Command

Table 4.6 WR Command Packets for MOSI (external MCU → EC-1)

Word No.	Bit	Name	Description
0	15:8	WR	WR command (0x02)
	7:0	LEN	These bits set the number of bytes for writing.
			Allowable settings are 1 and 2 bytes.
1	15:0	REGADR	These bits specify the addresses of the ESC or extended registers to which to write.
			The specifiable address range is from 0x0000 to 0x3FFF.
2	15:0	D0	These bits set a value for writing to the register.
			The data are flush left when the length of data is 1 byte.

Table 4.7 WR Command Packets for MISO (EC-1 → external MCU)

Word No.	Bit	Name	Description
0	15:14	Sts	Bit 15: ERROR
			Indicates the error state of the WR command.
			1: An error has occurred.
			0: No error has occurred.
			Bit 14: BUSY
			Indicates the state of execution of the WR command.
			1: The command is being executed.
			0: End of the command
	13:0	REGADR	These bits indicate the address of the register specified by the WR command.
1	15:0		These bits cannot be used with the WR command. The value is "don't care".
2	15:0		

4.4.4 SQRD Command

This command is for the sequential reading of the process data RAM of the ESC in the EC-1 by the external MCU.

The length of data and the address where reading of the register is to start are specified.

Up to 255 bytes are specifiable as lengths.

On receiving an SQRD command, the EC-1 reads the specified registers and stores the results in the sequential data register.

The external MCU can read the results of reading from the sequential data register by issuing a DTRD command.

		Data \	Vord 0	Data Word 1	Data Word 2
	15 14	13 12 11 10 9 8	7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (
MOSI		SQRD	LEN	REGADR	
MISO	Sts	Sts REGADR			

Figure 4.6 Format of SPI Packets for the SQRD Command

Table 4.8 SQRD Command Packets for MOSI (external MCU \rightarrow EC-1)

Word No.	Bit	Name	Description
0	15:8	SQRD	SQRD command (0x03)
	7:0	LEN	These bits set the number of bytes for sequential reading.
			Allowable settings are up to 255 bytes.
1	15:0	REGADR	These bits specify the addresses of the ESC from which to read.
			The specifiable address range is from 0x0000 to 0x2FFF.
2	15:0		These bits cannot be used with the SQRD command. The value is "don't care".

Table 4.9 SQRD Command Packets for MISO (EC-1 → external MCU)

Word No.	Bit	Name	Description
0	15:14	Sts	Bit 15: ERROR
			Indicates the error state of the SQRD command.
			1: An error has occurred.
			0: No error has occurred.
			Bit 14: BUSY
			Indicates the state of execution of the SQRD command.
			1: The command is being executed.
			0: End of the command
	13:0	REGADR	These bits indicate the address of the register specified by the SQRD command.
1	15:0	D0	These bits cannot be used with the SQRD command. The value is "don't care".
2	15:0	D1	

4.4.5 SQWR Command

This command is for the sequential writing of the process data RAM of the ESC in the EC-1 by the external MCU.

The length of data and the address where writing of the register is to start are specified.

Up to 255 bytes are specifiable as lengths.

The data for writing must have been stored in the sequential data register beforehand by issuing a DTWR command.

On receiving an SQWR command, The EC-1 writes data stored in the sequential data register to the ESC.

	Data Word 0			Data Word 1	Data Word 2
	15 14	13 12 11 10 9 8	7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MOSI		SQWR	LEN	REGADR	
MISO	Sts	Sts REGADR			

Figure 4.7 Format of SPI Packets for the SQWR Command

Table 4.10 SQWR Command Packets for MOSI (external MCU \rightarrow EC-1)

Word No.	Bit	Name	Description	
0	15:8	SQWR	SQWR command (0x04)	
	7:0	LEN	These bits set the number of bytes for sequential writing.	
			Allowable settings are up to 255 bytes.	
1	15:0	REGADR	These bits specify the addresses of the ESC to which to write.	
			The specifiable address range is from 0x0000 to 0x2FFF.	
2	15:0		These bits cannot be used with the SQWR command. The value is "don't care".	

Table 4.11 SQWR Command Packets for MISO (EC-1 → external MCU)

Word No.	Bit	Name	Description		
0	15:14	Sts	Bit 15: ERROR		
			ndicates the error state of the SQWR command.		
			1: An error has occurred.		
			0: No error has occurred.		
			Bit 14: BUSY		
			ndicates the state of execution of the SQWR command.		
			The command is being executed.		
			0: End of the command		
	13:0	REGADR	These bits indicate the address of the register specified by the SQWR command.		
1	15:0	D0	These bits cannot be used with the SQWR command. The value is "don't care".		
2	15:0	D1			

4.4.6 DTRD Command

This command is for reading the sequential data register by the external MCU.

Specify the length of data to be read. Specify four bytes for reading data other than the last of it. For example, to read 10 bytes, specify four bytes for the first and second DTRD commands and specify the remaining two bytes for the third DTRD command.

The EC-1 reads and transmits data from sequential data register 0 in order on receiving the DTRD command.

In the case above, it reads and transmits: four bytes from sequential data register 0 in response to the first DTRD command, four bytes from sequential data register 1 in response to the second DTRD command, and two bytes from sequential data register 2 in response to the third DTRD command.

	Data Word 0			Data Word 1	Data Word 2
	15 14 13 12 11 10 9 8		7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (
MOSI	DTRD		LEN		
MISO	Sts	Sts REGADR		D0	D1

Figure 4.8 Format of SPI Packets for the DTRD Command

Table 4.12 DTRD Command Packets for MOSI (external MCU \rightarrow EC-1)

Word No.	Bit	Name	Description
0	15:8	DTRD	DTRD command (0x05)
	7:0	LEN	These bits set the number of bytes to be read in response to the DTRD command.
			Allowable settings are 1 to 4 bytes.
1	15:0		These bits cannot be used with the DTRD command. The value is "don't care".
2	15:0		

Table 4.13 DTRD Command Packets for MISO (EC-1 → external MCU)

Word No.	Bit	Name	Description		
0	15:14	Sts	Bit 15: ERROR		
			ndicates the error state of the DTRD command.		
			1: An error has occurred.		
			0: No error has occurred.		
			Bit 14: BUSY		
			ndicates the state of execution of the DTRD command.		
			The command is being executed.		
			End of the command		
	13:0	REGADR	These bits indicate the base address of the ESC register read.		
1	15:0	D0	These bits indicate the results of reading the register.		
2	15:0	D1	The data are flush left when the length of data is less than 4 bytes.		

4.4.7 DTWR Command

This command is for writing data to the sequential data register by the external MCU.

Specify the length of data and the data for writing. Specify four bytes for writing data other than the last of it. For example, to write 10 bytes, specify four bytes for the first and second DTWR commands and specify the remaining two bytes for the third DTWR command.

The EC-1 writes the data which have been received from sequential data register 0 in order on receiving the DTWR command.

In the case above, it writes: four bytes to sequential data register 0 in response to the first DTWR command, four bytes to sequential data register 1 in response to the second DTWR command, and two bytes to sequential data register 2 in response to the third DTWR command.

	Data Word 0			Data Word 1	Data Word 2
	15 14 13 12 11 10 9 8		7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MOSI		DTWR	LEN	D0	D1
MISO	Sts	REGADR			

Figure 4.9 Format of SPI Packets for the DTWR Command

Table 4.14 DTWR Command Packets for MOSI (external MCU → EC-1)

Word No.	Bit	Name	Description
0	15:8	DTWR	DTWR command (0x06)
	7:0	LEN	These bits set the number of bytes for writing in response to the DTWR command.
			Allowable settings are 1 to 4 bytes.
1	15:0	D0	These bits set the data for writing to the register.
2	15:0	D1	The data are flush left when the length of data is less than 4 bytes.

Table 4.15 DTWR Command Packets for MISO (EC-1 \rightarrow external MCU)

Word No.	Bit	Name	Description
0	15:14	Sts	Bit 15: ERROR
			Indicates the error state of the DTWR command.
			1: An error has occurred.
			0: No error has occurred.
			Bit 14: BUSY
			Indicates the state of execution of the DTWR command.
			1: The command is being executed.
			0: End of the command
	13:0	REGADR	These bits indicate the base address of the sequential data register where data are to
			be stored in response to the DTWR command.
1	15:0	D0	These bits cannot be used with the DTWR command. The value is "don't care".
2	15:0	D1	

Software

5.1 Operation in Outline

Table 5.1 gives an outline of the operation of the ESC SPI connection library. Figure 5.1 is a block diagram of the system.

Table 5.1 Operation in Outline

Function	Outline
Outline of processing	Handles transfer to and from an external MCU as the SPI master and reads from and writes to the ESC and Extended SPI registers.
RSPI settings	Channel: CH0 or CH1 is selectable.
	SPI operation: Four-wire connection
	Transfer mode: Slave mode (transmission and reception)
	Data length: 16 bits x 3 words
	Bit rate: Up to 18.75 Mbps
Interrupt sources	Interrupt sources
	RSPI reception buffer full interrupt
	RSPI transmission buffer empty interrupt
	RSPI error interrupt

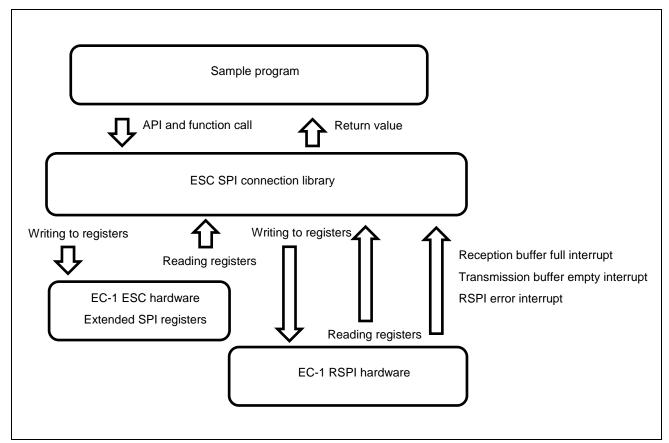


Figure 5.1 Block Diagram of the System

5.2 Procedure for Designing Software

Figure 5.2 is a schematic view of the configuration of the files.

In the sample program, the initial settings file for the board is for the EC-1 communications evaluation board. Modify the file according to the hardware environment you will actually be using.

You can add user applications as required.

However, adding user applications with long occupancy times may lead to the loss of received data.

Take care to make sure that additions do not lead to errors in SPI communications.

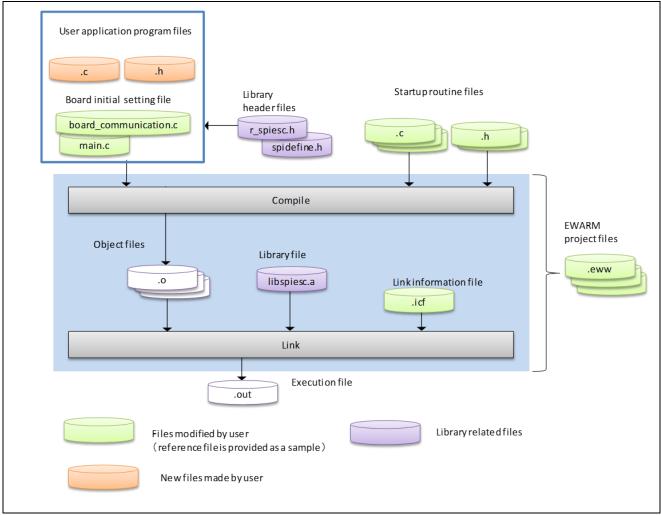


Figure 5.2 Schematic View of the Configuration of the Files

5.3 Interrupts

Table 5.2 lists the interrupts used in the library.

Table 5.2 Interrupts Used in the Library

Interrupt Source (Source ID)	Priority	Processing in Outline
RSPI reception buffer full interrupt (RSPI)	0	Processing for completion of reception
RSPI transmission buffer empty interrupt (SPTI)	0	Processing for completion of transmission
RSPI error interrupt (SPEI)	0	Overrun, parity, and mode fault error processing

5.4 Fixed-Width Integers

Table 5.3 lists the fixed-width integers used in the library.

Table 5.3 Fixed-Width Integers Used in the Library

Symbol	Description
int8_t	8-bit signed integer (defined in the standard library)
int16_t	16-bit signed integer (defined in the standard library)
int32_t	32-bit signed integer (defined in the standard library)
int64_t	64-bit signed integer (defined in the standard library)
uint8_t	8-bit unsigned integer (defined in the standard library)
uint16_t	16-bit unsigned integer (defined in the standard library)
uint32_t	32-bit unsigned integer (defined in the standard library)
uint64_t	64-bit unsigned integer (defined in the standard library)

5.5 Constants and Error Codes

Table 5.4 to Table 5.8 list the constants and Table 5.9 lists the error codes used in the library.

Table 5.4 Constants Used in the Library (Initial Settings)

Constant	Setting	Description
SPIESC_CH0	0	RSPI CH0 is selected.
SPIESC_CH1	1	RSPI CH1 is selected.
SPIESC_LOG_NONE	0	Log output specification (no output)
SPIESC_LOG_DATA	1	Log output specification (output of transferred data)
SPIESC_LOG_MSG	2	Log output specification (output of error code)

Table 5.5 Constants Used in the Library (Packet Settings)

Constant	Setting	Description	
SPI_PACKET	3	Number of words of SPI communications packets	
SPI_SQDATA_BYTE	4	Maximum number of bytes which can be transferred at a time by using the DTRD and DTWR commands.	
SPI_SQDATA_BUFNUM	64	Number of the sequential data registers	

Table 5.6 Constants Used in the Library (Commands)

Constant	Setting	Description
SPI_CMD_RD	0x0001	RD command
SPI_CMD_WR	0x0002	WR command
SPI_CMD_SQRD	0x0003	SQRD command
SPI_CMD_SQWR	0x0004	SQWR command
SPI_CMD_DTRD	0x0005	DTRD command
SPI_CMD_DTWR	0x0006	DTWR command

Table 5.7 Constants Used in the Library (Extended SPI Registers)

Constant	Setting	Description	
SPIREG_MISC_BASE	0x3000	Extended SPI register base address	
SPIREG_DEVICEID1	0x3000	Device ID register address (higher-order word)	
SPIREG_DEVICEID2	0x3002	Device ID register address (lower-order word)	
SPIREG_REVNO	0x3004	Revision number register address	
SPIREG_STATUS	0x3006	Status register address	
SPIREG_CTRL	0x3008	Control register address	
SPIREG_SCRATCH0	0x300A	Scratch 0 register address	
SPIREG_SQDATANUM	0x301E	Sequential data number register address	
SPIREG_SQDATA0	0x3020	Sequential data register address	
SPIREG_MISC_MAX16	0x311E	Upper-limit on the address when access to an extended SPI	
		register is in 16-bit units	
SPIREG_MISC_MAX32	0x311C	Upper-limit on the address when access to an extended SPI	
		register is in 32-bit units	

Table 5.8 Constants Used in the Library (Control Code)

Constant	Setting	Description
SPICTRLCODE_STSCLR	0x0001	The error code is cleared.
SPICTRLCODE_RST	0x0080	The EC-1 software is reset.

Table 5.9 Error Codes Used in the Library

Constant	Setting	Description	
SPISTATUSCODE_NOERROR	0x0000	No error has occurred.	
SPISTATUSCODE_INVALID_CMD	0x0001	Error in the received command	
SPISTATUSCODE_INVALID_LENGTH	0x0002	Erroneous word length in the received command	
SPISTATUSCODE_INVALID_ADDR	0x0003	Erroneous address specified in the received command	
SPISTATUSCODE_INVALID_SQDATA	0x0004	Error in the sequence of the DTRD and DTWR commands	
SPISTATUSCODE_INVALID_CTRLCODE	0x0005	Error in the control code	
SPISTATUSCODE_COMERROR	0x0010	Error in overall SPI communications	
SPISTATUSCODE_OVRERROR	0x0011	Overrun error	
SPISTATUSCODE_MODERROR	0x0012	Mode fault error	
SPISTATUSCODE_PERERROR	0x0014	Parity error	

5.6 Structures, Unions, and Enumerations

Table 5.10 to Table 5.13 list the structures, unions, and enumerations used in the library.

Table 5.10 Structures and Unions Used in the Library (1)

Definitions of Structures and Unions	Outline	Definition File
spi_t	Definition of the structure for setting SPI packets • MOSI member The external MCU (master) sets data for transmission. The EC-1 (slave) acquires data as received data. • MISO member The EC-1 (slave) sets data for transmission. The external MCU (master) acquires data as received data.	spidefine.h
T_SPIREG_STD16	Definition of the union for the 16-bit extended SPI registers	spidefine.h
T_SPIREG_STD32	Definition of the union for the 32-bit extended SPI registers	spidefine.h
T_SPIREG_STATUS	Definition of the union for the status register	spidefine.h
spi_misc_t	Definition of the structure for the extended SPI registers as a whole	spidefine.h

Table 5.11 Structures and Unions Used in the Library (2)

Definitions of		Member		Description
Structures and Unions				
spi_t	union CMDRD	BIT	uint32_t REGADR:14	MISO REGADR setting
			uint32_t BUSY:1	MISO Sts BUSY bit
				1: The command is being executed.
				0: End of the command
			uint32_t EEOR:1	MISO Sts ERROR bit
				1: An error has occurred.
				0: No error has occurred.
			uintt32_t: 16	
		BYTE	uint8_t B0	MISO D1 higher-order byte
			uint8_t B1	MISO D1 lower-order byte
			uint8_t B2	MISO D0 higher-order byte
			uint8_t B3	MISO D0 lower-order byte
		WORD	uint16_t W0	MISO D0
			uint16_t W1	MISO D1
		uint32_t DWO	RD	MISO D1/D0
	CMDWR	uint8_t CMD		MOSI CMD setting
		uint8_t LEN		MOSI LEN setting
		uint16_t REG/	ADR	MOSI REGADR setting
	T_SPIREG_STD	32 DATARD		Read data setting for the RD and
				DTRD commands for MISO
	T_SPIREG_STD	32 DATAWR		Write data setting for the WR and
				DTWR commands for MOSI

Table 5.12 Structures and Unions Used in the Library (3)

Definitions of	Member		Description	
Structures and Unions union T_SPIREG_STD16	BYTE	uint8_t B0	Generic definition of 16-bit registers	
1_31 11(23_31)10		uint8_t B1	Higher-order byte Lower-order byte	
	uint16_t WORD		Word	
union T_SPIREG_STD32	BYTE	uint8_t B0	Generic definition of 32-bit registers Most significant byte	
		uint8_t B1	Higher-order byte	
		uint8_t B2	Lower-order byte	
		uint8_t B3	Least-significant byte	
	WORD	uint16_t W0	Higher-order word	
		uint16_t W1	Lower-order word	
	uint32_t DWORD		Double word	
union	BIT	uint16_t ERROR:1	Definition of the status register	
T_SPIREG_STATUS			ERROR bit	
			1: An error has occurred.	
			0: No error has occurred.	
		uint16_t BUSY:1	BUSY bit	
			1: The command is being executed.	
			0: End of the command	
		uint16_t :14		
	BYTE	uint8_t B0	Higher-order byte	
		uint8_t B1	Lower-order byte	
	uint16_t WORD		Word	

Table 5.13 Structures and Unions Used in the Library (4)

Definitions of	Member	Description
Structures and Unions		
spi_misc_t	T_SPIREG_STD16 DEVICEID1	Device ID register
		Higher-order word
	T_SPIREG_STD16 DEVICEID2	Device ID register
		Lower-order word
	T_SPIREG_STD16 REVNO	Revision number register
	T_SPIREG_STD16 STATUS	Status register
	T_SPIREG_STD16 CTRL	Control register
	T_SPIREG_STD16 SCRATCH [10]	Scratch registers (0 to 9)
	T_SPIREG_STD16 SQDATANUM	Sequential data number register
	T_SPIREG_STD16 SQDATA [64]	Sequential data registers (0 to 63)

5.7 Global Variables

Table 5.14 lists the global variables used in the library.

Table 5.14 Global Variables Used in the Library

Туре	Variable	Description	Function Used
spi_t	SPI	Information of SPI packet data settings	R_SPIEsc_Create()
			R_SPIEsc_Send_Receive()
spi_,misc_t	SPIMISC	Information of extended SPI registers	R_SPIEsc_Create()
			R_SPIEsc_Send_Receive()

5.8 Functions

Table 5.15 lists the functions in the library.

Table 5.15 Library Functions

Function	Page Number
R_SPIEsc_Pin_Init	26
R_SPIEsc_Create	26
R_SPIEsc_Start	28
R_SPIEsc_Stop	29
R_SPIEsc_Send_Receive	30

5.9 Functions

The following describes the specifications of the library functions.

5.9.1 Processing by Initial Settings for the SPI Pins

R_SPIESC_PinInit

(1) Outline

Processing by initial settings for the pins for SPI communications

(2) C-Language Format

void R_SPIESC_PinInt (uint_16t ch);

(3) Parameter

I/O	Parameter	Description	
- 1	uint16_t ch	RSPI channels to be used in SPI communications	
		SPIESC_CH0: Channel 0	
		RSPCK0, MISO0, MOSI0, and SSL00 are used.	
		SPIESC_CH1: Channel 1	
		RSPCK1, MISO1, MOSI1, and SSL10 are used.	

(4) Function

This function makes initial settings for the pins to be used in SPI communications.

(5) Return Value

None

Remark 1. When executing this API function, make sure that writing to the PFS register is enabled by using the write protection register (PWPR).

5.9.2 Initialization Processing for SPI Control

R_SPIESC_Create(uint16_t log)

(1) Outline

Initialization processing for RSPI control

(2) C-Language Format

void R_SPIESC_Create(uint16_t log);

(3) Parameter

I/O		Parameter	Description
ı	uint16_t log		Specifies the log output for SPI communications.
			SPIESC_LOG_NONE: A log is not output.
			SPIESC_LOG_DATA: A log of the transfer data is output.
			SPIESC_LOG_MSG: A log of the error codes set in the status register
			in response to errors is output.

The logical OR of SPIESC_LOG_DATA and SPIESC_LOG_MSG can be set.

(4) Function

This function handles initialization which is required for control of SPI communications.

When the log output is specified, the log is output by using the printf function. Note that the destination for output depends on the implementation of the printf function.

The log output should only be used for debugging. If a log is output in normal operation, this may lead to received data being lost, constituting a communications error.

(5) Return Value

None

5.9.3 Starting SPI Communications

R_SPESC_Start

(1) Outline

Starting SPI communications

(2) C-Language Format

void R_SPIESC_Start (void);

(3) Parameter

None

(4) Function

This function starts SPI communications for the channel specified for processing by the initial settings for the SPI pins.

(5) Return Value

None

5.9.4 Stopping SPI Communications

R_SPIESC_Stop

(1) Outline

Stopping SPI communications

(2) C-Language Format

void R_SPIESC_Stop (void);

(3) Parameter

None

(4) Function

This function stops SPI communications for the channel specified for processing by the initial settings for the SPI pins.

(5) Return Value

None

5.9.5 Processing for SPI Transfer

R_SPIESC_Send_Receive

(1) Outline

Processing for SPI transfer

(2) C-Language Format

MD_STATUS R_SPIESC_Send_Receive (uint32_t * Count);

(3) Parameter

I/	/O	Parameter	Description
		uint32_t Count	Value counted based on the execution of transmission or reception

(4) Function

This function handles SPI transfer to and from the external MCU (master) through the channel specified for processing by the initial settings for the SPI pins.

It reads from and writes to the ESC or extended SPI register in response to commands issued by the external MCU.

The timeout to wait for transfer is judged by using the value counted based on the execution of transmission or reception.

If data have been transferred, the function ends immediately.

(5) Return Value

Return Value	Meaning	
MD_OK Normal completion		
MD_ERROR1	A timeout occurred.	
MD_ERROR2	An SPI communications error occurred.	
	The error code is stored in SPIMISC.STATUS.	

6. Sample Program

6.1 Overview

This section describes a sample program which configures an EtherCAT slave with the EC-1 remote I/O board and the EC-1 communications evaluation board connected through an SPI interface.

- The EC-1 remote I/O board operates as an SPI master which runs the remote I/O application and EtherCAT protocol stack.
- The EC-1 communications evaluation board operates as an SPI slave which handles hardware access to the ESC.

6.2 Hardware Configuration

Figure 6.1 shows the hardware configuration for the sample program.

To run the sample program, connect pins of the EC-1 remote I/O board and EC-1 communications evaluation board as listed in Table 6.1. Note that the wiring runs should be as short as is possible.

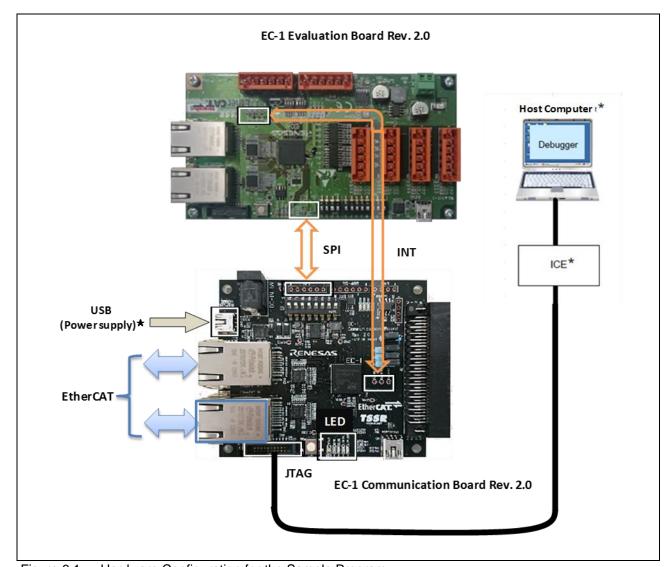


Figure 6.1 Hardware Configuration for the Sample Program

Table 6.1 Connecting Pins of the Boards

EC-1 Remote I/O Board		EC-1 Communications Evaluation Board		
(S	SPI Master)	(SPI Slave)		
Signal	Connector Pin Number	Connector Pin Number	Signal	
	Test Pin	Test Pin		
PG5/SSL10	J1 #7	J7 #4	P75/SSL00	
PG4/MOSI1	J1 #5	J7 #3	PA1/MOSI0	
PG3/MISO1	J1 #3	J7 #2	PA0/MISO0	
PG2/RSPCK1	J1 #1	J7 #1	P77/SPCK0	
IRQ4/P94	P94	CATIRQ	CATIRQ	
IRQ13/95	P95	CATSYNC0	CATSYNC0	
IRQ7/P97	P97	CATSYNC1	CATSYNC1	

6.3 Software Configuration

Figure 6.2 shows the software configuration for the sample program.

- The sample program for the remote I/O board is for operation as an SPI master, which consists of the application itself, the EtherCAT protocol stack, and drivers for access to the ESC through the SPI interface.
- The communications evaluation board sample program causes the board to operate as an SPI slave, which returns the results of access to the ESC in response to instructions from the remote I/O board.

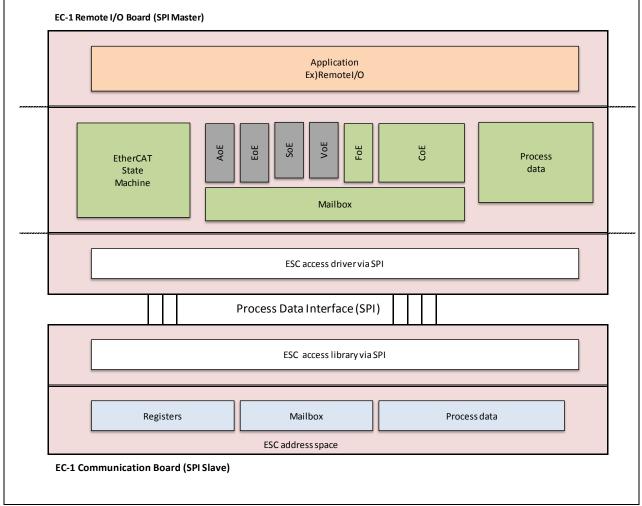


Figure 6.2 Software Configuration for the Sample Program

6.4 Configuration of Directories and Files

6.4.1 Sample Program for the Remote I/O Board

This sample program is based on the regular version of the sample program, which runs on a single remote I/O board by using the internal ESC module of the EC-1.

Table 6.2 lists the files which have been added or changed in this sample program from the regular version of the program. The other files have the same configuration as in the regular version.

The RSPI driver is set to operate at a transfer rate of 12.5 Mbps in SPI master mode based on the SPI communications specification.

The hardware access files rensashw.c and renesashw.h for access to the ESC have been changed so they now handle access through the SPI.

Table 6.2 Configuration of the Files of the Remote I/O Board Sample Program

Directory	File	Description	Classification
rspi/src/	r_rspi.c	RSPI CH1 SPI master mode driver	Addition
	r_rspi_user.c	RSPI user definition	Addition
rspi/inc/	r_rspi.h	Prototype declaration of the RSPI driver	Addition
	spidefine.h	Definitions of structures and unions for access to the SPI and its extended registers	Addition
SSC/	renesashw.h	Hardware access file prototype declaration	Change
	renesashw.c	Hardware access file	Change
SSC/Src/	main.c	Remote I/O sample main processing source file	Change

6.4.2 Sample Program for the Communications Evaluation Board

This sample program is built on the EC-1 peripheral driver package.

Table 6.3 to Table 6.5 list the files which have been added for the communications evaluation board sample program.

(1) ./Include: Include Files

Table 6.3 Configuration of Files for the Communications Evaluation Board Sample Program (1)

Directory	File	Description	Classification
spi/ r_spi.h		SPI driver prototype declaration	Addition
	r_spiesc.h	SPI ESC driver prototype declaration	Addition
spiesc.h		Definitions of structures and unions for access to the SPI and its extended registers	Addition

(2) ./Library: Library

Table 6.4 Configuration of Files for the Communications Evaluation Board Sample Program (2)

Directory	File	Description	Classification
/	libspiesc.a	SPI ESC access library	Addition

(3) ./Source/Project/spiesc_sample: Sample Application

Table 6.5 Configuration of Files for the Communications Evaluation Board Sample Program (3)

Directory	File	Description	Classification
/	main.c	ESC slave sample main processing source file	Addition
	board_communication.c	EC-1 communications evaluation board configuration source file	Addition
IAR/	EC_1_spiesc_serial_boot.eww	IAR project file	Addition
	EC_1_spiesc_serial_boot.ewd	IAR project related file	Addition
	EC_1_spiesc_serial_boot.ewp	IAR project related file	Addition
	EC_1_spiesc_ram_debug.eww	IAR project file	Addition
	EC_1_spiesc_ ram_debug.ewd	IAR project related file	Addition
	EC_1_spiesc_ ram_debug.ewp	IAR project related file	Addition

6.5 Tutorial

The following describes the procedures for checking the operation of the sample program.

6.5.1 Preparation

(1) Connecting the boards

Connect the SPI signals and interrupt signals of the EC-1 remote I/O board and the EC-1 communications evaluation board.

For the wiring for connection, see section 3.1, Example of the Hardware Configuration in this application note.

(2) Starting the communications evaluation board sample program

Start the ESC SPI connection library sample program for the EC-1 communications evaluation board.

For the IAR project files of the sample program, see section 6.4.2, Sample Program for the Communications Evaluation Board in this application note.

For the overall sample program, refer to EC-1 Application Note: Peripheral Drivers.

(3) Starting the remote I/O board sample program

Start the sample program for the EC-1 remote I/O board. For instructions on the sample program from generation to startup, refer to EC-1 Application Note: Remote I/O.

Remark 1. The program must be started with the EC-1 communications evaluation board (SPI slave) first, then the EC-1 remote I/O board (SPI master), in that order.

(4) Preparation for EtherCAT communications

For the preparation for EtherCAT communications, refer to EC-1 Application Note: Remote I/O.

6.5.2 Connection with TwinCAT

For reading and writing data from and to the remote I/O board from startup of TwinCAT, refer to *EC-1* Application Note: Remote I/O.

Remark 2. If the communications status LED on the communications evaluation board lights up in red and the device cannot be found with I/O device scanning by TwinCAT, SPI communications may not be operating properly.

In such cases, re-check the writing between the EC-1 communications evaluation board and the EC-1 remote I/O board for correctness.

If there is no problem with the wiring but this still does not solve the problem, try to solve it by retarding the SPI transfer rate of the EC-1 remote I/O board (SPI master).

7. Application Example: Migration from ET1100

7.1 Overview

This section describes the items which are required for porting the EtherCAT slave controller from an ET1100 from Beckhoff Automation GmbH to an EC-1 incorporating the ESC SPI connection library.

Figure 7.1 shows an example of the configuration of the ET1100 and EC-1 as EtherCAT slaves.

Table 7.1 gives a comparison of the ESC specifications for the ET1100 and EC-1.

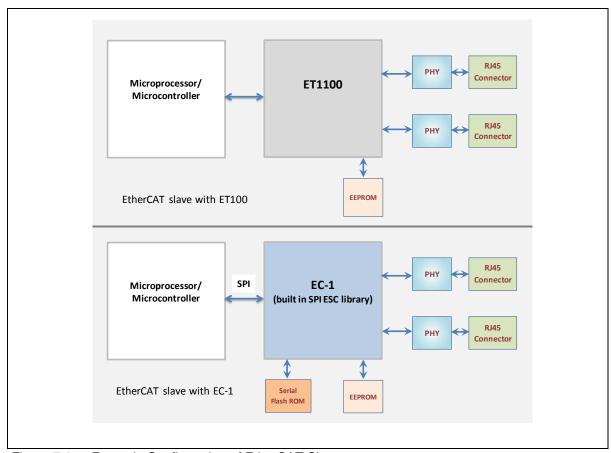


Figure 7.1 Example Configuration of EtherCAT Slaves

Table 7.1 Comparison of the ESC Specifications

Features		ET1100	EC-1
Number of boards		2 to 4	2
FMMU		8	8
Sync Manager		8	8
Process data RAM (Kbyte)		8	8
Distributed clock		64 bits	64 bits
EBUS		Yes (0 to 4)	No
Process data interface	Digital IO	Yes	No
(PDI)	SPI I/F	Yes	Supported in this library.
	Host I/F	Yes	No

7.2 Hardware Related Items

Connecting an external MCU with the EC-1 requires a total of seven signals, consisting of the four signals for SPI communications and three external interrupt input signals.

Table 7.2 lists the signals required for the connection and the pin names on the EC-1 for connection of these signals. It also lists the connector pins for connection with the EC-1 communications evaluation board.

For the external interrupt input pins, select the detection by the pins of interrupts as rising edges of the signals.

Table 7.3 lists the SPI specifications to make on the external MCU for connection with the EC-1. Check this table for reference in setting the SPI module of the external MCU.

Table 7.2 Signals for Connection with the EC-1

No.	External MCU	J	Destination to which the EC-1 is Connected		connection with the EC-1 ions Evaluation Board
	Signal Name	Active	Pin Name	Pin Name	Connector Pin Number
					Test Pin Name
1	SPI slave selection	Н	SSL00, SSL10	P75/SSL00	J7 #4
	output				
2	MOSI output		MOSI0, MOSI1	PA1/MOSI0	J7 #3
3	MISO input		MISO0, MISO1	PA0/MISO0	J7 #2
4	SCK output		RSPCK0, RSPCK1	P77/SPCK0	J7 #1
5	External interrupt input 1	Н	CATIRQ	CATIRQ	CATIRQ
6	External interrupt input 2	Н	CATSYNC0	CATSYNC0	CATSYNC0
7	External interrupt input 3	Н	CATSYNC1	CATSYNC1	CATSYNC1

Table 7.3 SPI Specifications for Connection with the EC-1

Item	Description
Method of communications	Four-wire SPI
Transfer mode	Master mode
Method of communications	Full duplex
Signal sense	Slave select signal: Active low
	Serial clock signal: Low in the idle state
Transfer frame	16 bits × 3 words
Format	MSB first
Data sampling timing	Falling edges of the serial clock signal
Maximum transfer rate	18.75 Mbps
CPHA and CPOL settings	CPHA = 1, CPOL = 0

7.3 Software Related Items

The following describes the procedures for access to the ESC and extended SPI registers by the external MCU through the SPI interface.

For the specifications of the SPI interface, see section 4, SPI Interface in this application note.

7.3.1 Sequence for Reading the Registers

Figure 7.2 shows the sequence for reading the ESC and extended registers of the SPI by using the RD command.

The results of reading can be acquired immediately in response to issuing each RD command.

1, 2, or 4 bytes of data can be read at a time.

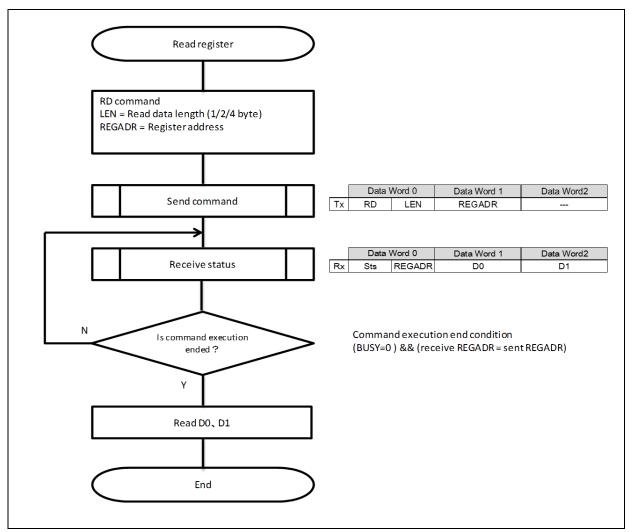


Figure 7.2 Sequence for Reading the Registers

7.3.2 Sequence for Writing to the Registers

Figure 7.3 shows the sequence for writing to the ESC and extended registers of the SPI by using the WR command.

Data to be written can be reflected immediately in response to issuing each WR command.

1 or 2 bytes of data can be written at a time. Note that 4-byte writing is not allowed.

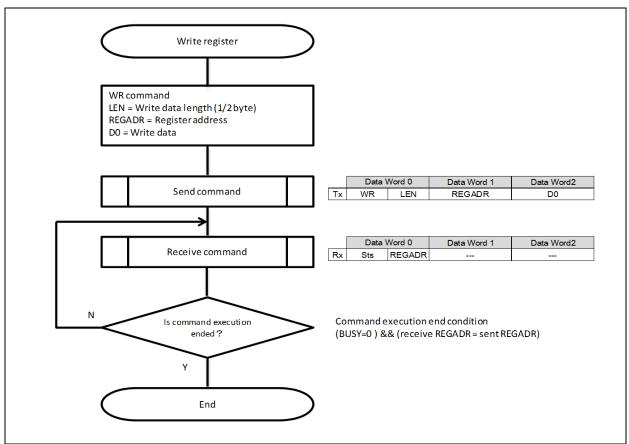


Figure 7.3 Sequence of Writing to the Registers

7.3.3 Sequence for Sequential Reading from the Process Data RAM

Figure 7.4 shows the sequence for sequential reading of data from the process data RAM of the ESC.

The SQRD and DTRD commands are used.

First, the address where the process data RAM starts and the data length (up to 255 bytes) to be read by using the SQRD command are specified.

Upon receiving the SQRD command, the EC-1 stores data in a sequential data register of the extended registers by reading the specified area of the process data RAM.

After that, issue a single DTRD command to dummy read the sequential data register. The data in the sequential data register are then acquired. In receiving data by using the DTRD command, confirming the completion of execution of the command is not required, so the continuous reception of data is possible.

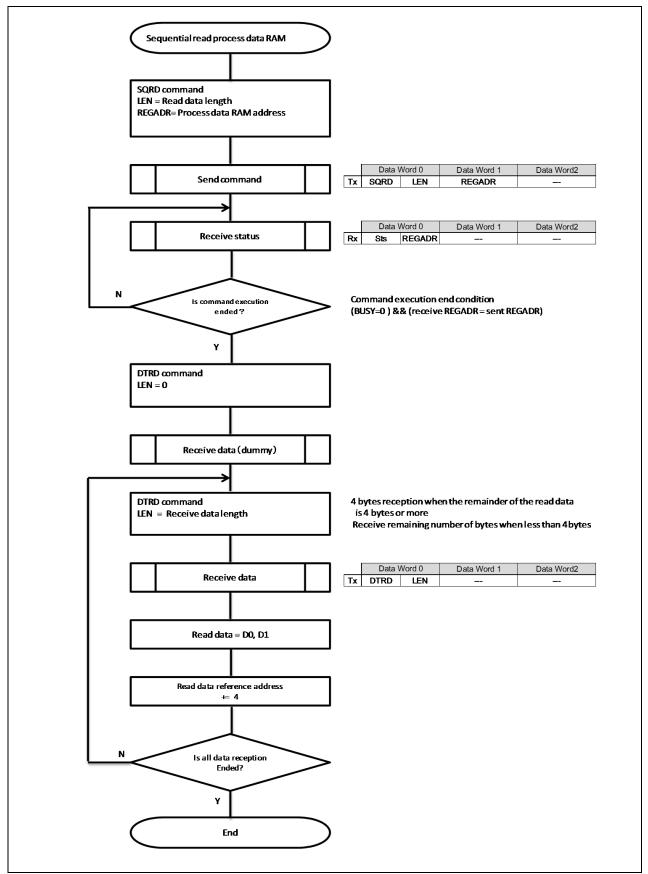


Figure 7.4 Sequence for Sequential Reading from the Process Data RAM

7.3.4 Sequence for Sequential Writing to the Process Data RAM

Figure 7.5 shows the sequence for sequential writing of data to the process data RAM of the ESC.

The DTWR and SQWR commands are used.

First, all data to be written by using the DTWR command are stored in a sequential data register. In transmitting data by using the DTWR command, confirming the completion of execution of the command is not required, so the continuous transmission of data is possible.

After that, the address where the process data RAM starts and the data length (up to 255 bytes) are specified by using the SQWR command.

Upon receiving the SQWR command, the EC-1 writes data to the specified area of the process data RAM in a sequential data register of the extended registers.

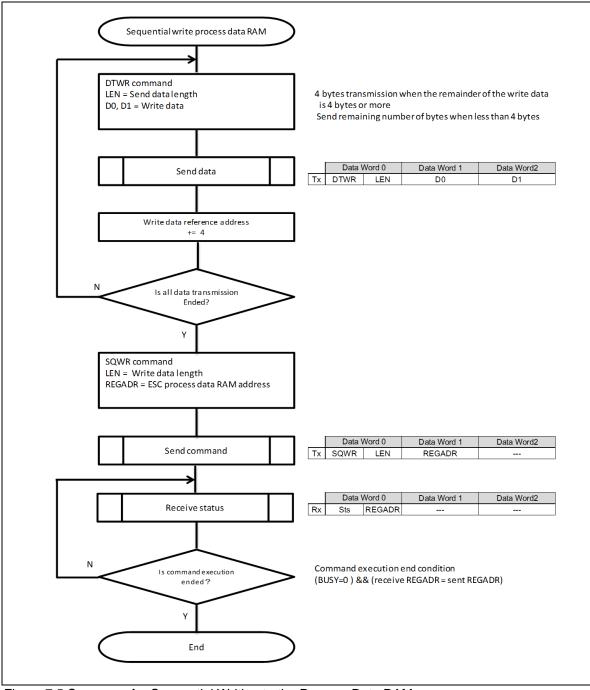


Figure 7.5 Sequence for Sequential Writing to the Process Data RAM

7.3.5 Extended Registers: Sequence for Confirming Startup

Before running the EtherCAT protocol, confirm that SPI communications with the EC-1 are trouble-free.

Figure 7.6 shows the sequence for confirming startup.

4 bytes of the device ID register (0x3000) among the extended registers are read by using the RD command. If 'EC-1' (0x45435E31) is read, communications are proceeding normally.

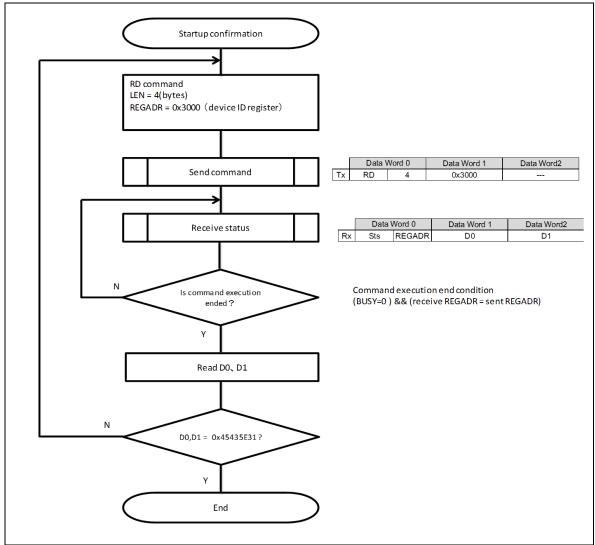


Figure 7.6 Sequence for Confirming Startup

7.3.6 Extended Registers: Software Reset Sequence

Figure 7.7 shows the sequence for a software reset by the EC-1.

The WR command is used to write 2 bytes of code (0x0080) to apply a software reset through the control register (0x3008) among the extended registers.

The EC-1 executes a software reset immediately upon reception of the command.

SPI communications do not proceed while the EC-1 is being restarted. Wait and then execute the startup confirmation sequence.

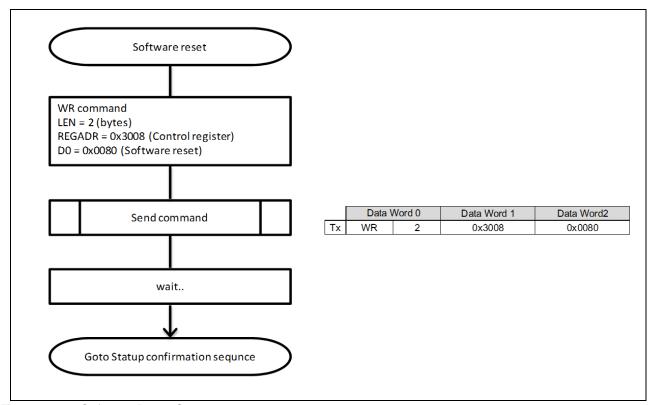


Figure 7.7 Software Reset Sequence

7.4 Items Related to Slave Stack Code

7.4.1 Hardware Access Files

The remote I/O board sample program includes the hardware access files for access to the ESC through the SPI.

Table 7.4 lists the hardware access files for the EC-1.

The hardware access files for the ET1100 can be replaced by the files in the table.

Table 7.4 Hardware Access Files for the EC-1

Directory	File	Description
SSC/	renesashw.h	SPI interface ESC access driver prototype declaration
	renesashw.c	SPI interface ESC access driver

The hardware access files for the EC-1 are designed to run on the hardware of the EC-1, so you need to change them to suit the hardware of the external MCU you will be using.

Table 7.5 lists the functions which require changes and the hardware modules used.

Table 7.5 Functions Requiring Changes

Function Name	Outline of the Role	Modules Used
HW_Init	Hardware initialization	Timer module
HW_GetTimer	Acquiring the timer value	Timer module
HW_ClearTimer	Clearing the timer value	Timer module
DISABLE_ESC_INT	Enabling interrupts	Interrupt controller
ENABLE_ESC_INT	Disabling interrupts	Interrupt controller
rspi_xfer	SPI transfer	SPI module

In the hardware access files for the EC-1, the details of processing by the read and write functions for the ESC registers are the same whether execution is from the interrupt handler or the main function.

Table 7.6 lists the read and write functions to be executed from the interrupt handler.

Change them as required if interrupts must be taken into account.

Table 7.6 Functions Requiring Consideration

Function Name	Outline of the Functions
HW_GetALEventRegister_Isr	Reading the AL event register
HW_EscReadIsr	Sequential reading of bytes from the ESC
HW_EscReadDWordIsr	Reading of 32 bits from the ESC
HW_EscReadWordIsr	Reading of 16 bits from the ESC
HW_EscReadBytelsr	Reading of 8 bits from the ESC
HW_EscWriteIsr	Sequential writing of bytes to the ESC
HW_EscWriteDWordIsr	Writing of 32 bits to the ESC
HW_EscWriteWordIsr	Writing of 16 bits to the ESC
HW_EscWriteByteIsr	Writing of 8 bits to the ESC

Table 7.7 lists the definitions of the hardware configuration included in ecat_def.h. The hardware access files for the EC-1 presuppose these definitions.

Change the stack code as required.

Table 7.7 Definitions of the Hardware Configuration

Definition Name	Value
CONTROLLER_16BIT	0
CONTROLLER_32BIT	0
ESC_16BIT_ACCESS	0
ESC_32BIT_ACCESS	0
MBX_16BIT_ACCESS	0
MEM_ADDR	UINT8
GET_MEM_SIZE (ByteSize)	(ByteSize)

7.4.2 Changing the ESI File

The statements dependent on the hardware configuration of the ESC must be changed for the EC-1.

Table 7.8 lists the point to be changed and its value in the ESI file.

Table 7.8 Point to be Changed in the ESI File

Type	Element	Data	Description
Eeprom	ConfigData	800E42EE10270000	Value of the configuration area of the EEPROM

7.4.3 Adding the Startup Confirmation Sequence

Check that SPI communications with the EC-1 can proceed before operating the slave stack.

For the startup confirmation sequence, see section 7.3.5, Extended Registers: Sequence for Confirming Startup.

8. Documents for Reference

8.1 Related Documents

The documents related to descriptions in this manual are listed below.

Download the latest version from the Renesas Electronics website.

EC-1 User's Manual: Hardware

EC-1 Application Note: Communications Board

EC-1 Application Note: Remote I/O

EC-1 Application Note: Peripheral Drivers

8.2 Relationship between This Document and Related Documents

The following are supplementary notes on the relationship between this document and related documents.

• EC-1 User's Manual: Hardware

This manual describes the hardware specifications of the EC-1.

EC-1 Application Note: Communications Board

This manual describes the specifications of the communications board on which the sample program runs.

• EC-1 Application Note: Remote I/O

This manual describes how to use the remote I/O sample program.

EC-1 Application Note: Peripheral Drivers

This manual describes the drivers and sample program which can be used with the EC-1.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Description

1.00 Apr 14, 2017 — First edition issued.	Rev.	Date	Page	Summary
	1.00	Apr 14, 2017		First edition issued.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

- ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
- Ethernet is a registered trademark of Fuji Xerox Co., Ltd.
- IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc
- TRON is an acronym for "The Real-time Operation system Nucleus.
- ITRON is an acronym for "Industrial TRON.
- μITRON is an acronym for "Micro Industrial TRON.
- TRON, ITRON, and µITRON do not refer to any specific product or products.
- EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- Additionally all product names and service names in this document are a trademark or a registered trademark which belongs to the respective owners.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics ssumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.
 - Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to quard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K
Tel: +444-1628-585-100, Fax: +444-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +56-5213-0200, Fax:+65-5213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amco Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141