

RX140 Group, RX231 Group

Differences Between the RX140 Group and the RX231 Group

Introduction

This application note is intended as a reference to points of difference between the peripheral functions, I/O registers, and pin functions of the RX140 Group and RX231 Group, as well as a guide to key points to consider when migrating between the two groups.

Unless specifically otherwise noted, the information in this application note applies to the 80-pin package version of the RX140 Group and the 100-pin package version of the RX231 Group as the maximum specifications. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the User's Manual: Hardware of the products in question.

Target Devices

RX140 Group and RX231 Group

Contents

1.	Comparison of Built-In Functions of RX140 Group and RX231 Group	4
2.	Comparative Overview of Specifications	6
2.1	CPU	6
2.2	Operating Modes	7
2.3	Address Space	
2.4	Resets	9
2.5	Option-Setting Memory	10
2.6	Voltage Detection Circuit	11
2.7	Clock Generation Circuit	
2.8	Low Power Consumption	
2.9	Register Write Protection Function	
2.10	Interrupt Controller	
2.11	Buses	
2.12	Data Transfer Controller	
2.13	Event Link Controller	
2.14	I/O Ports	
2.15	Multi-Function Pin Controller	
2.16	Port Output Enable 2	
2.17	Compare Match Timer	59
2.18	Realtime Clock	60
2.19	Low-Power Timer	
2.20	Independent Watchdog Timer	64
2.21	Serial Communications Interface	66
2.22	Serial Peripheral Interface	71
2.23	Capacitive Touch Sensing Unit	74
2.24	12-Bit A/D Converter	
2.25	D/A Converter	89
2.26	Temperature Sensor	
2.27	Comparator B	
2.28	RAM	
2.29	Flash Memory	
2.30	Packages	
3.	Comparison of Pin Functions	
3.1	64-Pin Package	
3.2	48-Pin Package	101
4.	Important Information when Migrating Between MCUs	
4.1	Notes on Functional Design	103
4.1.1	Mode Setting Pins	103

4.1.2	PLL Circuit	103
4.1.3	Port Direction Register (PDR) Initialization	103
5.	Reference Documents	104
Revi	sion History	106

1. Comparison of Built-In Functions of RX140 Group and RX231 Group

A comparison of the built-in functions of the RX140 Group and RX231 Group is provided below. For details of the functions, see section 2, Comparative Overview of Specifications and section 5, Reference Documents.

Table 1.1 is a comparison of built-in functions of RX140 Group and RX231 Group.

Table 1.1 Comparison of Built-In Functions of RX140 Group and RX231 Group

Function	RX231	RX140
CPU		Ó
Operating modes		•
Address space		
Resets		
Option-setting memory (OFSM)		
Voltage detection circuit (LVDAb)		
Clock generation circuit		
Clock frequency accuracy measurement circuit (CAC)		0
Low power consumption		
Battery backup function	0	×
Register write protection function		
Exception handling		0
Interrupt controller (ICUb)	1	
Buses		
Memory-protection unit	0	×
DMA controller	0	X
Data transfer controller (DTCa): RX231, (DTCb): RX140		
Event link controller (ELC)		Ŏ
I/O ports		
Multi-function pin controller (MPC)		
Multi-function timer pulse unit 2 (MTU2a)		0
Port output enable 2 (POE2a)		-
16-bit timer pulse unit	0	×
8-bit timer (TMR): RX231, (TMRa): RX140	-	$\overline{0}$
Compare match timer (CMT)		-
Realtime clock (RTCe): RX231, (RTCc): RX140	-	
Low-power timer (LPT): RX231, (LPTa): RX140	_	
Watchdog timer (WDTA)	0	×
Independent watchdog timer (IWDTa)	-	$\overline{0}$
USB 2.0 Host/Function module	0	×
Serial communications interface (SCIg, SCIh): RX231, (SCIg* ¹ , SCIk, SCIh): RX140		
IrDA interface	0	×
I ² C bus interface (RIICa)		$\overline{)}$
CAN module (RSCAN)	+ ()* ¹
Serial sound interface (SSI)		×
Serial peripheral interface (RSPIa): RX231, (RSPIc): RX140		
CRC calculator (CRC)		0
SD host interface (SDHIa)	0	×
Trusted Secure IP (TSIP-Lite)	0	×
Capacitive touch sensing unit (CTSU): RX231, (CTSU2SL ^{*1} , CTSU2L): RX140	+	
AESA	×	
RNGA	X	
	<u> </u>	

Function	RX231	RX140
12-bit A/D converter (S12ADE4)		•
<u>12-bit D/A converter (S12DAA): RX231, D/A converter (DAa): RX140</u>		
Temperature sensor (TEMPSA)		
Comparator B (CMPBa)		0
Data operation circuit (DOC)		0
RAM		
Flash memory (FLASH)		
Packages		

 \bigcirc : Available, \times : Unavailable, \bigcirc : Differs due to added functionality,

▲: Differs due to change in functionality, ■: Differs due to removed functionality.

Note: 1. Not implemented on RX140 Group products with ROM capacity of 64 KB.

2. Comparative Overview of Specifications

This section presents a comparative overview of specifications, including registers.

In the comparative overview, red text indicates functions which are included only in one of the MCU groups and also functions for which the specifications differ between the two groups.

In the register comparison, red text indicates differences in specifications for registers that are included in both groups and **black text** indicates registers which are included only in one of the MCU groups. Differences in register specifications are not listed.

2.1 CPU

Table 2.1 is a comparative overview of CPU.

ltem	RX231	RX140
CPU	 Maximum operating frequency: 54 MHz 32-bit RX CPU Minimum instruction execution time: 	 Maximum operating frequency: 48 MHz 32-bit RX CPU (RXv2) Minimum instruction execution time:
	One instruction per clock cycle	One instruction per clock cycle
	Address space: 4 GB, linear	Address space: 4 GB, linear
	Register set of the CPU	Register set of the CPU
	— General purpose:	— General purpose:
	Sixteen 32-bit registers	Sixteen 32-bit registers
	— Control: Ten 32-bit registers	— Control: Ten 32-bit registers
	— Accumulator: Two 72-bit register	— Accumulator: Two 72-bit registers
	Basic instructions: 75, variable-length instruction format	Basic instructions: 75, variable-length instruction format
	Floating point instructions: 11	 Floating point instructions: 11
	DSP instructions: 23	DSP instructions: 23
	Addressing modes: 10	Addressing modes: 11
	Data arrangement	Data arrangement
	 Instructions: Little endian 	 Instructions: Little endian
	 Data: Selectable between little endian or big endian 	 Data: Selectable between little endian or big endian
	On-chip 32-bit multiplier:	On-chip 32-bit multiplier:
	$32 \times 32 \rightarrow 64$ bits	$32 \times 32 \rightarrow 64$ bits
	• On-chip divider: $32 / 32 \rightarrow 32$ bits	• On-chip divider: $32/32 \rightarrow 32$ bits
	Barrel shifter: 32 bits	Barrel shifter: 32 bits
	Memory-protection unit (MPU)	
FPU	Single-precision floating-point (32 bits)	Single-precision floating-point (32 bits)
	Data types and floating-point	Data types and floating-point
	exceptions conform to IEEE 754	exceptions conform to IEEE 754
	standard	standard

Table 2.1 Comparative Overview of CPU

2.2 Operating Modes

Table 2.2 is a comparative overview of operating modes, and Table 2.3 is a comparison of operating mode registers.

Table 2.2	Comparative Overview of Operating Modes
-----------	---

Item	RX231	RX140
Operating modes specified by	Single-chip mode	Single-chip mode
mode setting pins	Boot mode (SCI interface)	Boot mode (SCI interface)
	Boot mode (USB interface)	—
	Boot mode (FINE interface)	Boot mode (FINE interface)
Operating modes selected by	Single-chip mode	—
register settings	On-chip ROM disabled extended mode	—
	On-chip ROM enabled extended mode	—

Table 2.3 Comparison of Operating Mode Registers

Register	Register Bit RX231		RX140	
SYSCR0	_	System control register 0		

2.3 Address Space

Figure 2.1 is a comparative memory map of single-chip mode.

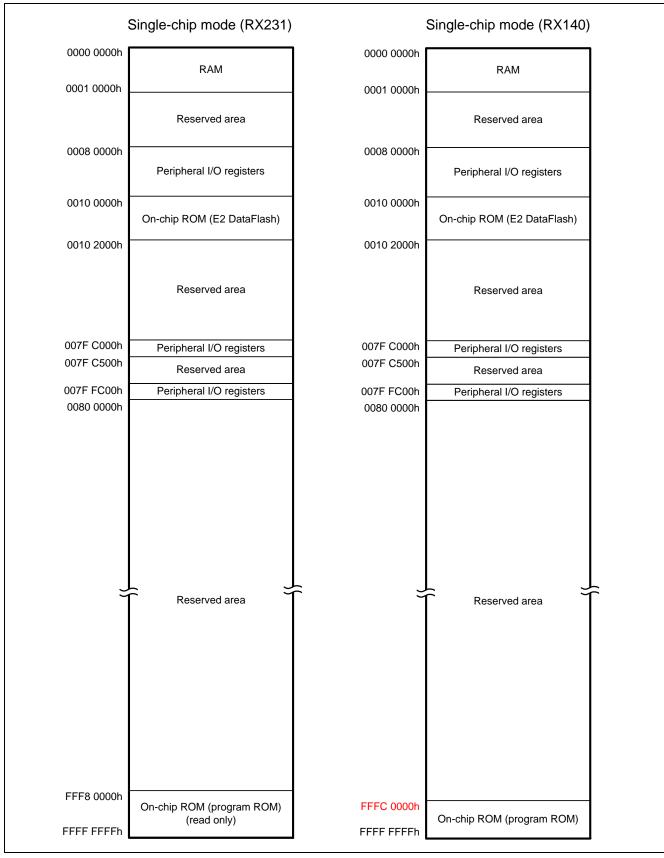


Figure 2.1 Comparative Memory Map of Single-Chip Mode

2.4 Resets

Table 2.4 is a comparative overview of resets, and Table 2.5 is a comparison of reset-related registers.

Item	RX231	RX140
RES# pin reset	Voltage input to the RES# pin is	Voltage input to the RES# pin is
	driven low.	driven low.
Power-on reset	VCC rises	VCC rises
	(voltage detection: VPOR).	(voltage detection: VPOR).
Voltage monitoring 0 reset	VCC falls (voltage detection: Vdet0).	VCC falls (voltage detection: Vdet0).
Voltage monitoring 1 reset	VCC falls (voltage detection: Vdet1).	VCC falls (voltage detection: Vdet1).
Voltage monitoring 2 reset	VCC falls (voltage detection: Vdet2).	VCC falls (voltage detection: Vdet2).
Independent watchdog	The independent watchdog timer	The independent watchdog timer
timer reset	underflows or a refresh error occurs.	underflows or a refresh error occurs.
Watchdog timer reset	Watchdog timer underflow, or	—
	refresh error	
Software reset	Register setting	Register setting

Table 2.4 Comparative Overview of Resets

Table 2.5 Comparison of Reset-Related Registers

Register	Bit	RX231	RX140
RSTSR2	WDTRF	Watchdog timer reset detect flag	—

RX140 Group, RX231 Group

2.5 Option-Setting Memory

Table 2.6 is a comparison of option-setting memory registers.

Register	Bit Name	RX231 (OFSM)	RX140 (OFSM)
OFS0 WDTSTRT WDT stat		WDT start mode select bit	—
	WDTTOPS[1:0]	WDT timeout period select bits	—
WDTCKS[3:0] WDT clock frequency division ratio — select bits		—	
	WDTRPES[1:0]	WDT window end position select bits	—
	WDTRPSS[1:0]	WDT window start position select bits	—
	WDTRSTIRQS	WDT reset interrupt request select bit	—
OFS1	HOCOFQ[1:0]	—	HOCO frequency selection bits

Table 2.6 Comparison of Option-Setting Memory Registers

2.6 Voltage Detection Circuit

Table 2.7 is a comparative overview of the voltage detection circuits, and Table 2.8 is a comparison of voltage detection circuit registers.

		RX231 (LVDAb)			RX140 (LVDAb)			
ltem		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	
VCC Monitored		Vdet0	Vdet1	Z Vdet2	Vdet0	-	Z Vdet2	
monitoring	voltage	Vdelo	vdeti	VUELZ	Vdelu	Vdet1	Vdetz	
	Detection target	When voltage drops below Vdet0	When voltage rises above or drops past	When voltage rises above or drops past Vdet2	When voltage drops below Vdet0	When voltage rises above or drops past	When voltage rises above or drops past Vdet2	
			Vdet1	Switching between VCC and the voltage input on the CMPA2 pin can be accomplished using the LVCMPCR.E XVCCINP2 bit.		Vdet1	Switching between VCC and the voltage input on the CMPA2 pin can be accomplished using the LVCMPCR.E XVCCINP2 bit.	
	Detection voltage	Selectable from four levels using the OFS1 register	Selectable from 14 levels using LVDLVLR.L VD1LVL[3:0] bits	Selectable from four levels using LVDLVLR.LV D2LVL[1:0] bits	Selectable from four levels using the OFS1 register	Selectable from 14 levels using LVDLVLR.L VD1LVL[3:0] bits	Selectable from four levels using LVDLVLR.LV D2LVL[1:0] bits	
	Monitoring flags		LVD1SR.LV D1MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LV D1DET flag: Vdet1 passage detection	LVD2SR.LVD 2MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR.LVD 2DET flag: Vdet2 passage detection		LVD1SR.LV D1MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LV D1DET flag: Vdet1 passage detection	LVD2SR.LVD 2MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR.LVD 2DET flag: Vdet2 passage detection	

Table 2.7 Comparative Overview of Voltage Detection Circuits

RX140 Group, RX231 Group

Differences Between the RX140 Group and the RX231 Group

		RX231 (LVDA	(h)		RX140 (LVDA	\b)	
Item		Voltage Monitoring	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring	Voltage Monitoring 1	Voltage Monitoring 2
Voltage detection processing	Reset	Voltage monitoring 0 reset Reset when Vdet0 > VCC: CPU restart timing after specified time with VCC > Vdet0	Voltage monitoring 1 reset Reset when Vdet1 > VCC: CPU restart timing selectable between after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage monitoring 2 reset Reset when Vdet2 > VCC or CMPA2 pin: CPU restart timing selectable among after specified time with VCC or CMPA2 pin > Vdet2 or after specified time with Vdet2 > VCC or	Voltage monitoring 0 reset Reset when Vdet0 > VCC: CPU restart timing after specified time with VCC > Vdet0	Voltage monitoring 1 reset Reset when Vdet1 > VCC: CPU restart timing selectable between after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage monitoring 2 reset Reset when Vdet2 > VCC or CMPA2 pin: CPU restart timing selectable among after specified time with VCC or CMPA2 pin > Vdet2 or after specified time with Vdet2 > VCC or CMPA2 pin
	Interrupts		Voltage monitoring 1 interrupt Selectable between non- maskable or maskable interrupt	CMPA2 pin Voltage monitoring 2 interrupt Selectable between non- maskable or maskable interrupt		Voltage monitoring 1 interrupt Selectable between non- maskable or maskable interrupt	CMPA2 pin Voltage monitoring 2 interrupt Selectable between non- maskable or maskable interrupt
			Interrupt request issued when Vdet1 > VCC, VCC > Vdet1, or both	Interrupt request issued when Vdet2 > VCC or CMPA2 pin, VCC or CMPA2 pin > Vdet2, or both		Interrupt request issued when Vdet1 > VCC, VCC > Vdet1, or both	Interrupt request issued when Vdet2 > VCC or CMPA2 pin, VCC or CMPA2 pin > Vdet2, or both
Event link function			Available: Event output at Vdet1 passage detection	Available: Event output at Vdet1 passage detection		Available: Event output at Vdet1 passage detection	

 Table 2.8
 Comparison of Voltage Detection Circuit Registers

Register	Bit	RX231 (LVDAb)	RX140 (LVDAb)
LVDLVLR	LVD1LVL[3:0]	Voltage detection 1 level select bits (Standard voltage during drop in voltage)	Voltage detection 1 level select bits (Standard voltage during drop in voltage)
		b3 b0 0 0 0 0: 4.29 V 0 0 0 1: 4.14 V 0 0 1 0: 4.02 V 0 0 1 1: 3.84 V 0 1 0 0: 3.10 V 0 1 0 1: 3.00 V 0 1 1 0: 2.90 V 0 1 1 1: 2.79 V 1 0 0 0: 2.68 V 1 0 0 1: 2.58 V 1 0 1 0: 2.48 V 1 0 1 1: 2.20 V 1 1 0 0: 1.96 V 1 1 0 1: 1.86 V	b3 b0 0 0 0 0: 4.29 V 0 0 0 1: 4.16 V 0 0 1 0: 4.03 V 0 0 1 1: 3.86 V 0 1 0 0: 3.10 V 0 1 0 1: 3.00 V 0 1 1 0: 2.90 V 0 1 1 1: 2.80 V 1 0 0 0: 2.68 V 1 0 0 1: 2.59 V 1 0 1 0: 2.48 V 1 0 1 1: 2.20 V 1 1 0 0: 1.96 V 1 1 0 1: 1.86 V
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
	LVD2LVL[1:0]	Voltage detection 2 level select bits (Standard voltage during drop in voltage)	Voltage detection 2 level select bits (Standard voltage during drop in voltage)
		b5 b4 0 0: 4.29 V 0 1: 4.14 V 1 0: 4.02 V 1 1: 3.84 V	b5 b4 0 0: 4.32 V 0 1: 4.17 V 1 0: 4.03 V 1 1: 3.84 V

2.7 Clock Generation Circuit

Table 2.9 is a comparative overview of the clock generation circuits, and Table 2.10 is a comparison of clock generation circuit registers.

Table 2.9	Comparative Overview of Clock Generation Circuits
-----------	--

ltem	RX231	RX140
Use	 Generates the system clock (ICLK) to be supplied to the CPU, DTC, DMAC, ROM, and RAM. 	 Generates the system clock (ICLK) to be supplied to the CPU, DTC, ROM, and RAM.
	 Of the peripheral module clocks (PCLKA, PCLKB, and PCLKD) supplied to the peripheral modules, PCLKA is the operating clock for the MTU2, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than MTU2 and S12AD. 	 Of the peripheral module clocks (PCLKB and PCLKD) supplied to the peripheral modules, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than S12AD.
	 Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. Generates the external bus clock 	Generates the FlashIF clock (FCLK) to be supplied to the FlashIF.
	(BCLK) to be supplied to the external bus.Generates the USB clock (UCLK) to be	
	supplied to the USB.	
	 Generates the CAC clock (CACCLK) to be supplied to the CAC. 	• Generates the CAC clock (CACCLK) to be supplied to the CAC.
	 Generates the CAN clock (CANMCLK) to be supplied to the RSCAN. 	• Generates the CAN clock (CANMCLK) to be supplied to the CAN.
	 Generates the RTC-dedicated sub- clock (RTCSCLK) to be supplied to the RTC. 	Generates the RTC-dedicated sub- clock (RTCSCLK) to be supplied to the RTC.
	 Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT. Generates the SSI clock (SSISCK) to be supplied to the SSI. 	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT
	 Generates the LPT clock (LPTCLK) to be supplied to the LPT. 	• Generates the LPT clock (LPTCLK) to be supplied to the LPT.

Item	RX231	RX140		
Operating	• ICLK: 54 MHz (max.)	ICLK: 48 MHz (max.)		
frequency	PCLKA: 54 MHz (max.)			
	• PCLKB: 32 MHz (max.)	PCLKB: 32 MHz (max.)		
	 PCLKD: 54 MHz (max.) 	 PCLKD: 48 MHz (max.) 		
	 FCLK: 	 FCLK: 		
	— 1 MHz to 32 MHz (for programming	— 1 MHz to 48 MHz (for programming		
	and erasing the ROM and E2	and erasing the ROM and E2		
	DataFlash)	DataFlash)		
	— 32 MHz (max.) (for reading from the	— 48 MHz (max.) (for reading from the		
	E2 DataFlash)	E2 DataFlash)		
	• BCLK: 32 MHz (max.)			
	BCLK pin output: 16 MHz (max.)			
	UCLK: 48 MHz			
	CACCLK: Same as clock from	CACCLK: Same as clock from		
	respective oscillators	respective oscillators		
	CANMCLK: 20 MHz (max.)	CANMCLK: 20 MHz (max.)		
	 RTCSCLK: 32.768 kHz 	 RTCSCLK: 32.768 kHz 		
	IWDTCLK: 15 kHz	IWDTCLK: 15 kHz		
	SSISCK: 20 MHz (max.)			
	 LPTCLK: Same frequency as that of 	LPTCLK: Same as clock from selected		
	the selected oscillator	oscillator		
Main clock	Resonator frequency:	Resonator frequency:		
oscillator	1 MHz to 20 MHz (VCC \geq 2.4 V),	1 MHz to 20 MHz		
osomator	1 MHz to 8 MHz (VCC < 2.4 V)			
	External clock input frequency:	External clock input frequency:		
	20 MHz (max.)	20 MHz (max.)		
	 Connectable resonator or additional 	Connectable resonator or additional		
	circuit: ceramic resonator, crystal	circuit: ceramic resonator, crystal		
	Connection pins: EXTAL, XTAL	Connection pins: EXTAL, XTAL		
	Oscillation stop detection function:	Oscillation stop detection function:		
	When a main clock oscillation stop is	When a main clock oscillation stop is		
	detected, the system clock source is	detected, the system clock source is		
	switched to LOCO and MTU pin can be	switched to LOCO and MTU pin can be		
	forcedly driven to high-impedance.	forcedly driven to high-impedance.		
	Drive capacity switching function	Drive capacity switching function		
Sub-clock	Resonator frequency: 32.768 kHz	Resonator frequency: 32.768 kHz		
oscillator	Connectable resonator or additional	Connectable resonator or additional		
	circuit: crystal	circuit: crystal		
	Connection pin: XCIN, XCOUT	Connection pins: XCIN and XCOUT		
	Drive capacity switching function	Drive capacity switching function		
PLL circuit	Input clock source: Main clock	Input clock source: Main clock		
	Input pulse frequency division ratio:	Input pulse frequency division ratio:		
	Selectable from 1, 2, and 4	Selectable from 1, 2, and 4		
	Input frequency: 4 MHz to 12.5 MHz	Input frequency: 4 MHz to 12 MHz		
	Frequency multiplication ratio:	Frequency multiplication ratio:		
	Selectable from 4 to 13.5	Selectable from 4 to 12		
	(increments of 0.5)	(increments of 0.5)		
	Oscillation frequency:	Oscillation frequency:		
	24 MHz to 54 MHz (VCC \geq 2.4 V)	24 MHz to 48 MHz		

ltem	RX231	RX140
USB-dedicated PLL circuit	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz, 6 MHz, 8 MHz, and 12 MHz Frequency multiplication ratio: Selectable from 4, 6, 8, and 12 Oscillation frequency: 48 MHz (VCC ≥ 2.4 V) 	
High-speed on- chip oscillator (HOCO)	Oscillation frequency: 32 MHz and <mark>54 MHz</mark>	Oscillation frequency: 24 MHz, 32 MHz, 48 MHz
Low-speed on- chip oscillator (LOCO)	Oscillation frequency: 4 MHz	Oscillation frequency: 4 MHz
IWDT-dedicated on-chip oscillator	Oscillation frequency: 15 kHz	Oscillation frequency: 15 kHz

Table 2.10 Comparison of Clock Generation Circuit Registers

Register	Bit	RX231	RX140
SCKCR	PCKA[3:0]	Peripheral module clock A (PCLKA)	—
		select bits	
	BCK[3:0]	External bus clock (BCLK) select	—
		bits	
	PSTOP1	BCLK pin output control bit	—
PLLCR	STC[5:0]	Frequency multiplication factor	Frequency multiplication factor
		select bits	select bits
		b13 b8	b13 b8
		0 0 0 1 1 1: ×4	0 0 0 1 1 1: ×4
		0 0 1 0 0 0: ×4.5	0 0 1 0 0 0: ×4.5
		0 0 1 0 0 1: ×5	0 0 1 0 0 1: ×5
		0 0 1 0 1 0: ×5.5	0 0 1 0 1 0: ×5.5
		0 0 1 0 1 1: ×6	0 0 1 0 1 1: ×6
		0 0 1 1 0 0: ×6.5	0 0 1 1 0 0: ×6.5
		0 0 1 1 0 1: ×7	0 0 1 1 0 1: ×7
		0 0 1 1 1 0: ×7.5	0 0 1 1 1 0: ×7.5
		0 0 1 1 1 1: ×8	0 0 1 1 1 1: ×8
		0 1 0 0 0 0: ×8.5	0 1 0 0 0 0: ×8.5
		0 1 0 0 0 1: ×9	0 1 0 0 0 1: ×9
		0 1 0 0 1 0: ×9.5	0 1 0 0 1 0: ×9.5
		0 1 0 0 1 1: ×10	0 1 0 0 1 1: ×10
		0 1 0 1 0 0: ×10.5	0 1 0 1 0 0: ×10.5
		0 1 0 1 0 1: ×11	0 1 0 1 0 1: ×11
		0 1 0 1 1 0: ×11.5	0 1 0 1 1 0: ×11.5
		0 1 0 1 1 1: ×12	0 1 0 1 1 1: ×12
		0 1 1 0 0 0: ×12.5	
		0 1 1 0 0 1: ×13	
		0 1 1 0 1 0: ×13.5	
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
UPLLCR		USB-dedicated PLL control register	—

Register	Bit	RX231	RX140
UPLLCR2		USB-dedicated PLL control register	—
DOKOD		2 Eutomoli huo ele ele control register	
BCKCR		External bus clock control register	
SOSCCR	SOSTP	Sub-clock oscillator stop bit	Sub-clock oscillator stop bit
			This bit is not initialized by reset sources other than a power-on
			reset.
		Initial value after a reset differs.	
HOCOCR2	—	High-speed on-chip oscillator control	_
		register 2	
OSCOVFSR	UPLOVF	USB-dedicated PLL clock oscillation stabilization flag	—
MOSCWTCR	MSTS[4:0]	Main clock oscillator wait time bits	Main clock oscillator wait time bits
		b4 b0	b4 b0
		0 0 0 0 0: Wait time	0 0 0 0 0: Wait time
		= 2 cycles (0.5 μ s)	$= 0 \text{ cycles } (0 \mu\text{s})$
		0 0 0 0 1: Wait time	0 0 0 0 1: Wait time
		= 1,024 cycles (256 µs)	= 1,024 cycles (256 µs)
		0 0 0 1 0: Wait time	0 0 0 1 0: Wait time
		= 2,048 cycles (512 μs)	= 2,048 cycles (512 μs)
		0 0 0 1 1: Wait time	0 0 0 1 1: Wait time
		= 4,096 cycles	= 4,096 cycles
		(1.024 ms)	(1.024 ms)
		0 0 1 0 0: Wait time	0 0 1 0 0: Wait time
		= 8,192 cycles	= 8,192 cycles
		(2.048 ms)	(2.048 ms)
		0 0 1 0 1: Wait time = 16,384 cycles	0 0 1 0 1: Wait time = 16,384 cycles
		(4.096 ms)	(4.096 ms)
		0 0 1 1 0: Wait time	0 0 1 1 0: Wait time
		= 32,768 cycles	= 32,768 cycles
		(8.192ms)	(8.192 ms)
		0 0 1 1 1: Wait time	0 0 1 1 1: Wait time
		= 65,536 cycles	= 65,536 cycles
		(16.384 ms)	(16.384 ms)
			0 1 0 0 0: Wait time
			= 131,072 cycles
			(32.768 ms)
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
		Wait time when LOCO = 4.0 MHz	Wait time when LOCO = 4.0 MHz
		(0.25 μs, typ.)	(0.25 µs, typ.)
LOFCR		-	Low-speed on-chip oscillator forced oscillation control register

Register	Bit	RX231	RX140
CKOCR	CKOSEL	CLKOUT output source select bit	CLKOUT output source select bit
	[3:0]		
		b11 b8	b11 b8
		0 0 0 0: LOCO clock	0 0 0 0: LOCO clock
		0 0 0 1: HOCO clock	0 0 0 1: HOCO clock
		0 0 1 0: Main clock	0 0 1 0: Main clock
		0 0 1 1: Sub-clock	0 0 1 1: Sub-clock
		0 1 0 0: PLL	0 1 0 0: PLL
			1 0 0 0: CTSU internal clock
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
	CKODIV	CLKOUT output division ratio select	CLKOUT output division ratio select
	[2:0]	bits	bits
		b14 b12 0 0 0: No division	b14 b12
			0 0 0: No division
		0 0 1: ×1/2 0 1 0: ×1/4	0 0 1: ×1/2 0 1 0: ×1/4
		0 1 0. ×1/4 0 1 1: ×1/8	0 1 0. ×1/4 0 1 1: ×1/ 8
		1 0 0: ×1/16	1 0 0: ×1/16
		Settings other than the above are	1 0 1: ×1/32
		prohibited.	1 1 0: ×1/ 64
		promoted.	1 1 1: ×1/128
MOFCR	MODRV21	Main clock oscillator drive capability	Main clock oscillator drive capability
	WODITV21	switch bit	switch bit
		$VCC \ge 2.4 V$	0.4 MUE to less than 40 MUE
		0: 1 MHz to 10 MHz	0: 1 MHz to less than 10 MHz
		1: 10 MHz to 20 MHz	1: 10 MHz to 20 MHz
		VCC < 2.4 V	
		0: 1 MHz to 8 MHz	
		1: Setting prohibited.	
MEMWAIT		Memory wait cycle setting register	
LOCOTRR	LOCOTRD	Low-speed on-chip oscillator	Low-speed on-chip oscillator
(RX231)	[4:0](RX231)	frequency adjustment bits	frequency adjustment bits 2
LOCOTRR2	LOCOTRD2		
(RX140)	[7:0](RX140)	b4 b0	b7 b0
(1()(140)	[7.0](10,140)		0 0 0 0 0 0 0 0: 0 (Frequency: Low)
			0000001:1
		1 0 0 0 0: –16 (Frequency: Low)	
		10001: -15	
		0 1 1 1 0: 14	
		0 1 1 1 1: 15 (Frequency: High)	
			1 1 1 1 1 1 0: 254
			1 1 1 1 1 1 1 1: 255
			(Frequency: High)
HOCOTRRn	—	High-speed on-chip oscillator	High-speed on-chip oscillator
		trimming register n (n = 0, 3)	trimming register n (n = 0)
SOMCR	—	—	Sub-clock oscillator mode control
			register

2.8 Low Power Consumption

Table 2.11 is a comparative overview of the low power consumption functions, Table 2.12 is a comparison of procedures for entering and exiting low power consumption modes and operating states in each mode, and Table 2.13 is a comparison of low power consumption registers.

Item	RX231	RX140
Reducing power consumption by switching clock signals	The frequency division ratio can be set independently for the system clock (ICLK), high speed peripheral module clock (PCLKA), peripheral module clock (PCLKB), S12AD clock (PCLKD), external bus clock (BCLK), and FlashIF clock (FCLK).	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).
Module stop function	Each peripheral module can be stopped independently by the module stop control register.	Each peripheral module can be stopped independently by the module stop control register.
Function for transition to low power consumption mode	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.
Low power consumption modes	Sleep modeDeep sleep modeSoftware standby mode	 Sleep mode Deep sleep mode Software standby mode Snooze mode
Function for lower operating power consumption	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. 	 Power consumption can be reduced in normal operation, sleep mode, deep sleep mode, and snooze mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage.
	 Three operating power control modes are available High-speed operating mode Middle-speed operating mode Low-speed operating mode 	 Four operating power control modes are available High-speed operating mode Middle-speed operating mode Middle-speed operating mode 2 Low-speed operating mode

	Entering and Exiting Low Power Consumption Modes and		
Mode	Operating States	RX231	RX140
Sleep mode	Transition method	Control register	Control register
		+ instruction	+ instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution	Program execution
		state (interrupt	state (interrupt
		processing)	processing)
	Main clock oscillator	Operation possible	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	USB-dedicated PLL	Operation possible	—
	CPU	Stopped (retained)	Stopped (retained)
	RAM0	Operation possible	Operation possible
	(0000 0000h to 0000 FFFFh)	(retained)	(retained)
	DMAC	Operation possible	
	DTC	Operation possible	Operation possible
	Flash memory	Operation	Operation
	Watchdog timer (WDT)	Stopped (retained)	—
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible
Deep sleep	Transition method	Control register	Control register
mode		+ instruction	+ instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution	Program execution
		state (interrupt	state (interrupt
		processing)	processing)
	Main clock oscillator	Operation possible	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	USB-dedicated PLL	Operation possible	
	CPU	Stopped (retained)	Stopped (retained)
	RAMO	Stopped (retained)	Stopped (retained)
	(0000 0000h to 0000 FFFFh)		
	DMAC	Stopped (retained)	

Table 2.12 Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

	Entering and Exiting Low Power Consumption Modes and		
Mode	Operating States	RX231	RX140
Deep sleep	DTC	Stopped (retained)	Stopped (retained)
mode	Flash memory	Stopped (retained)	Stopped (retained)
	Watchdog timer (WDT)	Stopped (retained)	—
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible
Software	Transition method	Control register	Control register
standby mode		+ instruction	+ instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution	Program execution
		state (interrupt	state (interrupt
		processing)	processing)
	Main clock oscillator	Stopped	Stopped
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Stopped	Operation possible
	Low-speed on-chip oscillator	Stopped	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Stopped	Stopped
	USB-dedicated PLL	Stopped	
	CPU	Stopped (retained)	Stopped (retained)
	RAMO	Stopped (retained)	Stopped (retained)
	(0000 0000h to 0000 FFFFh)		
	DMAC	Stopped (retained)	_
	DTC	Stopped (retained)	Stopped (retained)
	Flash memory	Stopped (retained)	Stopped (retained)
	Watchdog timer (WDT)	Stopped (retained)	_
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Stopped (retained)	Stopped (retained)
	I/O ports	Retained	Retained
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible

Mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX231	RX140
Snooze mode	Transition method	_	When snooze transition conditions are met while in software standby mode
	Method of cancellation other than reset	_	Interrupt or occurrence of snooze end condition
	State after cancellation		Program execution state (interrupt processing) or software standby mode
	Main clock oscillator		Operation possible
	Sub-clock oscillator		Operation possible
	High-speed on-chip oscillator	—	Operation possible
	Low-speed on-chip oscillator		Operation possible
	IWDT-dedicated on-chip oscillator		Operation possible
	PLL	—	Operation possible
	CPU		Stopped (retained)
	RAM0 (0000 0000h to 0000 FFFFh)	—	Operation possible (retained)
	DTC	—	Operation possible
	Flash memory		Stopped (retained)
	Independent watchdog timer (IWDT)	—	Operation possible
	Realtime clock (RTC)		Operation possible
	Low-power timer (LPT)	—	Operation possible
	Voltage detection circuit (LVD)	—	Operation possible
	Power-on reset circuit	—	Operation
	Peripheral modules	—	Operation possible
	I/O ports	—	Operation
	RTCOUT output	—	Operation possible
	CLKOUT output	—	Operation possible
	Comparator B		Operation possible

Note: "Operation possible" means that whether the state is operating or stopped is controlled by the control register setting.

"Stopped (retained)" means that internal register values are retained and internal operations are suspended.

"Stopped (undefined)" means that internal register values are undefined and power is not supplied to the internal circuit.

Register	Bit	RX231	RX140
SBYCR		Standby control register	Standby control register
		Initial value after a reset differs.	
	OPE	Output port enable bit	—
MSTPCRA	MSTPA13	16-bit timer pulse unit 0 (unit 0) module stop bit	—
	MSTPA14	Compare match timer 1 (unit 1) module stop bit	—
	MSTPA28	DMA controller / data transfer controller module stop bit	Data transfer controller module stop bit
		Target module: DMAC/DTC	Target module: DTC
MSTPCRB	MSTPB19	USB0 module stop bit	_
	MSTPB31	Serial communication interface 0 module stop bit	—
MSTPCRC	MSTPC20	IrDA module stop bit	_
MSTPCRD	MSTPD15	Serial sound interface module stop bit	
	MSTPD19	SD host interface (SDHI) module stop bit	—
	MSTPD29		True random number generator module stop bit
	MSTPD30		ASE hardware accelerator module stop bit
	MSTPD31	Trusted secure IP function module stop bit	—
OPCCR	OPCM [2:0]	Operating power control mode select bits	Operating power control mode select bits
		b2 b0	b2 b0
		0 0 0: High-speed operating mode	0 0 0: High-speed operating mode
		0 1 0: Middle-speed operating mode	0 1 0: Middle-speed operating mode
			1 0 0: Middle-speed operating mode 2
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
SNZCR			Snooze control register
SNZCR2			Snooze control register 2

Table 2.13 Comparison of Low Power Consumption Registers

2.9 Register Write Protection Function

Table 2.14 is a comparative overview of the register write protection functions.

Table 2.14 Comparative Overview of Register Write Protection Functions
--

Item	RX231	RX140
PRC0 bit	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, CKOCR, UPLLCR, UPLLCR2, BCKCR, HOCOCR2, MEMWAIT, LOCOTRR, ILOCOTRR, HOCOTRR0, HOCOTRR3	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, LOFCR, OSTDCR, OSTDSR, CKOCR, LOCOTRR2, ILOCOTRR, HOCOTRR0, SOMCR
PRC1 bit	 Register related to the operating modes: SYSCR0, SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR 	 Register related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR, SNZCR, SNZCR2 Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR
PRC2 bit	Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR	Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPCMR1, LPWUCR
PRC3 bit	 Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR Registers related to the battery backup function: VBATTCR, VBATTSR, VBTLVDICR 	 Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

2.10 Interrupt Controller

Table 2.15 is a comparative overview of the interrupt controllers, and Table 2.16 is a comparison of interrupt controller registers.

ltem		RX231 (ICUb)	RX140 (ICUb)
Interrupts	Peripheral function interrupts	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source. 	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source.
	External pin interrupts	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Ability to set as source detection of low level, falling edge, rising edge, or rising and falling edges Digital filter function: Supported 	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Ability to set as source detection of low level, falling edge, rising edge, or rising and falling edges Digital filter function: Supported
	Software interrupts	 Interrupt generated by writing to a register Number of sources: 1 	 Interrupt generated by writing to a register Number of sources: 1
	Event link interrupts	An ELSR8I, ELSR18I or ELSR19I interrupt can be generated by an ELC event.	An ELSR8I or ELSR18I interrupt can be generated by an ELC event.
	Interrupt priority	Specified by registers.	Specified by registers.
	Fast interrupt function	Faster interrupt handling by the CPU can be specified for a single interrupt source only.	Faster interrupt handling by the CPU can be specified for a single interrupt source only.
	DTC and DMAC control (RX231) DTC control (RX140)	The DTC and DMAC can be activated by an interrupt source.	The DTC can be activated by an interrupt source.

Table 2.15 (Comparative Overview of Interrupt Controllers
--------------	---

Item		RX231 (ICUb)	RX140 (ICUb)
Non- maskable interrupts	NMI pin interrupt	 Interrupt from the NMI pin Interrupt detection: Falling edge or rising edge Digital filter function: Supported 	 Interrupt from the NMI pin Interrupt detection: Falling edge or rising edge Digital filter function: Supported
	Oscillation stop detection interrupt	Interrupt on detection of oscillation having stopped	Interrupt on detection of oscillation having stopped
	WDT underflow/ refresh error interrupt	Interrupt on an underflow of the down counter or occurrence of a refresh error	
	IWDT underflow/ refresh error interrupt	Interrupt on an underflow of the down counter or occurrence of a refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error
	Voltage monitoring 1 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)
	Voltage monitoring 2 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)	Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)
	BVATT voltage monitoring interrupt	Voltage monitoring interrupt of the BVATT	
Return from low power consumption state		 Sleep mode and deep sleep mode: Return is initiated by a non- maskable interrupt or any other interrupt source. Software standby mode: Return is initiated by a non- maskable interrupt, interrupt IRQ0 to IRQ7, or an RTC alarm or periodic interrupt. 	 Sleep mode and deep sleep mode: Return is initiated by a non- maskable interrupt or any other interrupt source. Software standby mode: Return is initiated by a non- maskable interrupt, interrupt IRQ0 to IRQ7, or an RTC alarm or periodic interrupt.

Table 2.16 Comparison of Interrupt Controller Registers

Register	Bit	RX231 (ICUb)	RX140 (ICUb)
DMRSRm	—	DMAC trigger select register m	—
		(m = 0 to 3)	
NMISR	WDTST	WDT underflow/refresh error status	—
		flag	
	VBATST	VBATT voltage monitoring interrupt	—
		status flag	
NMIER	WDTEN	WDT underflow/refresh error enable	—
		bit	
	VBATEN	VBATT voltage monitoring interrupt	—
		enable bit	
NMICLR	WDTCLR	WDT clear bit	—
	VBATCLR	VBAT clear bit	—

2.11 Buses

Table 2.17 is a comparative overview of the buses, and Table 2.18 is a comparison of bus registers.

Bus Type		RX231	RX140
CPU buses	Instruction bus	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Memory buses	Operand bus Memory bus	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) Connected to RAM 	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) Connected to RAM
	Memory bus 2	Connected to ROM	Connected to ROM
Internal main buses	Internal main bus 1	 Connected to the CPU Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	 Connected to the DTC and DMAC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Internal peripheral buses	Internal peripheral bus 1	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) 	 Connected to peripheral modules (DTC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK)
	Internal peripheral bus 2	 Connected to peripheral modules (modules other than those connected to internal peripheral buses 1, 3, and 4) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules Operates in synchronization with the peripheral-module clock (PCLKB, PCLKD)
	Internal peripheral bus 3	 Connected to peripheral modules (USB0, RSCAN, and CTSU) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (CTSU, RSCAN) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 4	 Connected to peripheral modules (MTU2) Operates in synchronization with the peripheral-module clock (PCLKA) 	

Bus Type		RX231	RX140	
Internal peripheral buses	Internal peripheral bus 6	 Connected to the flash control module and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK) 	 Connected to ROM (P/E) and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK) 	
External bus	CS area	 Connected to the external devices Operates in synchronization with the external-bus clock (BCLK) 		

Table 2.18 Comparison of Bus Registers

Register	Bit	RX231	RX140
CSnCR	—	CSn control register (n = 0 to 3)	—
CSnREC	—	CSn recovery cycle register —	
		(n = 0 to 3)	
CSRECEN	—	CS recovery cycle insertion enable	—
		register	
CSnMOD	—	CSn mode register	—
		(n = 0 to 3)	
CSnWCR1	—	CSn wait control register 1	—
		(n = 0 to 3)	
CSnWCR2	—	CSn wait control register 2	—
		(n = 0 to 3)	
BERSR1	MST[2:0]	Bus master code bits	Bus master code bits
		b6 b4	b6 b4
		0 0 0: CPU	0 0 0: CPU
		0 0 1: Reserved	0 0 1: Reserved
		0 1 0: Reserved	0 1 0: Reserved
		0 1 1: DTC/DMAC	0 1 1: DTC
		1 0 0: Reserved	1 0 0: Reserved
		1 0 1: Reserved	1 0 1: Reserved
		1 1 0: Reserved	1 1 0: Reserved
		1 1 1: Reserved	1 1 1: Reserved
BUSPRI	BPHB[1:0]	Internal peripheral bus 4 priority	—
		control bits	
	BPEB[1:0]	External bus priority control bits	

2.12 Data Transfer Controller

Table 2.19 is a comparative overview of the data transfer controllers, and Table 2.20 is a comparison of data transfer controller registers.

ltem	RX231 (DTCa)	RX140 (DTCb)
Number of	Equal to number of all interrupt sources	Equal to number of all interrupt sources
transfer channels	that can start a DTC transfer.	that can start a DTC transfer.
Transfer modes	Normal transfer mode	Normal transfer mode
	 A single activation leads to a single 	 A single activation leads to a single
	data transfer.	data transfer.
	Repeat transfer mode	Repeat transfer mode
	 A single activation leads to a single data transfer. 	 A single activation leads to a single data transfer.
	 The transfer address returns to the transfer start address when the number of data transfers equals the repeat size. 	 The transfer address returns to the transfer start address when the number of data transfers equals the repeat size.
	 The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, or 1,024 bytes. 	 The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, or 1,024 bytes.
	Block transfer mode	Block transfer mode
	 A single activation leads to the 	 A single activation leads to the
	transfer of a single block of data.	transfer of a single block of data.
	 — The maximum block size is 	— The maximum block size is
	256×32 bits = 1,024 bytes.	256×32 bits = 1,024 bytes.
Chain transfer function	 Multiple data transfer types can be executed sequentially in response to a single transfer request. 	Multiple data transfer types can be executed sequentially in response to a single transfer request.
	 Either "performed only when the 	 Either "performed only when the
	transfer counter reaches 0" or "every	transfer counter reaches 0" or "every
	time" can be selected.	time" can be selected.
Sequence transfer		A complex series of transfers can be
·		registered as a sequence. Any sequence can be selected by the transfer data and executed.
		• Only one sequence transfer trigger source can be selected at a time.
		• Up to 256 sequences can correspond to a single trigger source.
		The data that is initially transferred in response to a transfer request determined the appuance.
		determines the sequence.
		• The entire sequence can be executed on a single request, or the sequence can be suspended in the middle and resumed on the next transfer request
		(sequence division).

Table 2.19	Comparative Overview of Data Transfer Controllers
------------	---

Item	RX231 (DTCa)	RX140 (DTCb)
Transfer space	 16 MB in short-address mode (within 0000 0000h to 007F FFFFh or FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas) 	 16 MB in short-address mode (within 0000 0000h to 007F FFFFh or FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas)
Data transfer units	 Single data unit: 1 byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: 1 to 256 data units 	 Single data unit: 1 byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: 1 to 256 data units
CPU interrupt requests	 An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units. 	 An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units.
Event link function	An event link request is generated after one data transfer (for block transfers, after one block).	An event link request is generated after one data transfer (for block transfers, after one block).
Read skip	Reading of the transfer information can be skipped when the same transfer is repeated.	Reading of the transfer information can be skipped when the same transfer is repeated.
Write-back skip	Write-back of transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.	Write-back of transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.
Write-back disable	—	Ability to disable write-back of transfer information
Displacement addition		Ability to add displacement to the transfer source address (selectable by each transfer information)
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state

Table 2.20 Comparison of Data Transfer Controller Registers

Register	Bit	RX231 (DTCa)	RX140 (DTCb)
MRA	WBDIS	—	Write-back disable bit*1
MRB	SQEND	—	Sequence transfer end bit
	INDX	—	Index table reference bit
MRC		—	DTC mode register C
DTCIBR	—	—	DTC index table base register
DTCOR		—	DTC operation register
DTCSQE		-	DTC sequence transfer enable register
DTCDISP	—		DTC address displacement register

Note: 1. Transfer information is usually allocated to a RAM area, but it can be allocated to a ROM area by setting the MRA.WBDIS bit to 1 (no write-back).

2.13 Event Link Controller

Table 2.21 is a comparative overview of the event link controllers, Table 2.22 is a comparison of event link controller registers, Table 2.23 lists correspondences between values set in ELSRn.ELS[7:0] and event signal names and numbers.

Item	RX231 (ELC)	RX140 (ELC)
Event link function	 63 types of event signals can be directly connected to peripheral modules. The operation of peripheral timer modules at event signal input is selectable. Event link operation is possible for port B and port E. — Single port: Event link operation can be enabled for a single specified port. — Port group: Event link operation can be enabled for multiple specified ports within a group of up to eight ports. 	 48 types of event signals can be directly connected to peripheral modules. The operation of peripheral timer modules at event signal input is selectable. Event link operation on port B is supported. — Single port: Event link operation can be enabled for a single specified port. — Port group: Event link operation can be enabled for multiple specified ports within a group of up to eight ports.
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state

Table 2.21	Comparative Overview of Event Link Controllers
------------	--

Table 2.22 Comparison of Event Link Controller Registers

Register	Bit	RX231 (ELC)	RX140 (ELC)
ELSRn	—	Event link setting register n	Event link setting register n
		(n = 1 to 4, 7, 8, 10, 12, 14 to 16, 18	(n = 1 to 4, 7, 8, 10, 12, 14 to 16, 18,
		to 29)	20, 22, 24, 25)
ELOPC	LPTMD[1:0]	LPT operation select bits	LPT operation select bits
		b5 b4	b5 b4
		0 0: Output the compare match event to ICU as an interrupt request.	0 0: Output the LPT compare match 0 event to ICU as an interrupt request.
		1 1: Event output is disabled.	1 1: Event output is disabled.
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
PGRn		Port group setting register n	Port group setting register 1
(RX231)		(n = 1, 2)	
PGR1			
(RX140)			
PGCn		Port group control register n	Port group control register 1
(RX231)		(n = 1, 2)	
PGC1			
(RX140)			
PDBFn	—	Port buffer register n	Port buffer register 1
(RX231)		(n = 1, 2)	
PDBF1			
(RX140)			
PELm		Event link port setting register n (m = 0 to 3)	Event link port setting register n (m = 0, 1)

Register	Bit	RX231 (ELC)	RX140 (ELC)
PELm	PSP[1:0]	Port number specification bits	Port number specification bits
		b4 b3	b4 b3
		0 0: Setting disabled	0 0: Setting disabled
		0 1: Port B (corresponding to PGR1)	0 1: Port B (corresponding to PGR1)
		1 0: Port E (corresponding to PGR2)	1 0: Setting prohibited.
		1 1: Setting prohibited.	1 1: Setting prohibited.

Table 2.23 Correspondences between Values Set in ELSRn.ELS[7:0] and Event Signal Names and Numbers

Value of			
ELS[7:0] Bits	Peripheral Module	RX231 (ELC)	RX140 (ELC)
08h	Multi-function timer pulse	MTU1 compare match 1A	MTU1 compare match 1A
09h	unit 2	MTU1 compare match 1B	MTU1 compare match 1B
0Ah		MTU1 overflow	MTU1 overflow
0Bh		MTU1 underflow	MTU1 underflow
0Ch		MTU2 compare match 2A	MTU2 compare match 2A
0Dh		MTU2 compare match 2B	MTU2 compare match 2B
0Eh		MTU2 overflow	MTU2 overflow
0Fh		MTU2 underflow	MTU2 underflow
10h		MTU3 compare match 3A	MTU3 compare match 3A
11h		MTU3 compare match 3B	MTU3 compare match 3B
12h		MTU3 compare match 3C	MTU3 compare match 3C
13h		MTU3 compare match 3D	MTU3 compare match 3D
14h		MTU3 overflow	MTU3 overflow
15h		MTU4 compare match 4A	MTU4 compare match 4A
16h		MTU4 compare match 4B	MTU4 compare match 4B
17h		MTU4 compare match 4C	MTU4 compare match 4C
18h		MTU4 compare match 4D	MTU4 compare match 4D
19h	7	MTU4 overflow	MTU4 overflow
1Ah		MTU4 underflow	MTU4 underflow
1Fh	Compare match timer	CMT1 compare match 1	CMT1 compare match 1
22h	8-bit timer	TMR0 compare match A0	TMR0 compare match A0
23h		TMR0 compare match B0	TMR0 compare match B0
24h		TMR0 overflow	TMR0 overflow
28h		TMR2 compare match A2	TMR2 compare match A2
29h		TMR2 compare match B2	TMR2 compare match B2
2Ah		TMR2 overflow	TMR2 overflow
2Eh	Realtime clock	RTC periodic event (selectable	—
		among 1/256, 1/128, 1/64,	
		1/32, 1/16, 1/8, 1/4, 1/2, 1, or 2 seconds)	
31h	Independent watchdog	IWDT underflow or refresh	
	timer	error	
32h	Low-power timer	LPT compare match	LPT compare match 0
33h	7	—	LPT compare match 1
34h	12-bit A/D converter	S12AD comparison conditions met	S12AD comparison conditions met
35h		S12AD comparison conditions not met	S12AD comparison conditions not met

Value of ELS[7:0]			
Bits	Peripheral Module	RX231 (ELC)	RX140 (ELC)
3Ah	Serial communications	SCI5 error (receive error or	SCI5 error (receive error or
	interface	error signal detection)	error signal detection)
3Bh		SCI5 receive data full	SCI5 receive data full
3Ch		SCI5 transmit data empty	SCI5 transmit data empty
3Dh		SCI5 transmit end	SCI5 transmit end
4Eh	I ² C bus interface	RIIC0 communication error or	RIIC0 communication error or
		event generation	event generation
4Fh		RIIC0 receive data full	RIIC0 receive data full
50h		RIIC0 transmit data empty	RIIC0 transmit data empty
51h		RIIC0 transmit end	RIIC0 transmit end
52h	Serial peripheral interface	RSPI0 error (mode fault,	
		overrun, or parity error)	
53h		RSPI0 idle	—
54h		RSPI0 receive data full	—
55h		RSPI0 transmit data empty	
56h		RSPI0 transmit end	—
58h	12-bit A/D converter	S12AD A/D conversion end	S12AD A/D conversion end
59h	Comparator B0	Comparator B0 comparison result change	Comparator B0 comparison result change
5Ah	Comparator B0 and B1	Comparator B0/B1 common comparison result change	Comparator B0/B1 common comparison result change
5Bh	Voltage detection circuit	LVD1 voltage detection	LVD1 voltage detection
5Ch		LVD2 voltage detection	5
5Dh	DMA controller	DMAC0 transfer end	
5Eh	-	DMAC1 transfer end	
5Fh	-	DMAC2 transfer end	
60h	-	DMAC3 transfer end	
61h	Data transfer controller	DTC transfer end	DTC transfer end
62h	Clock generation circuit	Clock generation circuit oscillation stop detection	
63h	I/O ports	Input port group 1 input edge detection	Input port group 1 input edge detection
64h		Input port group 2 input edge detection	
65h		Single input port 0 input edge detection	Single input port 0 input edge detection
66h	1	Single input port 1 input edge detection	Single input port 1 input edge detection
67h	1	Single input port 2 input edge detection	_
68h	1	Single input port 3 input edge detection	_
69h	Event link controller	Software event	Software event
6Ah	Data operation circuit	DOC data operation condition met	DOC data operation condition met

2.14 I/O Ports

Table 2.24 and Table 2.25 are comparative overviews of the I/O ports, Table 2.26 is a comparison of I/O port functions, and Table 2.27 is a comparison of I/O port registers.

Port Symbol	RX231 (64-Pin)	RX140 (64-Pin)
PORT0	P03, P05	P03, P05
PORT1	P14 to P17	P14 to P17
PORT2	P26, P27	P26, P27
PORT3	P30, P31, P35 to P37	P30 to P32, P35 to P37
PORT4	P40 to P44, P46	P40 to P47
PORT5	P54, P55	P54, P55
PORTA	PA0, PA1, PA3, PA4, PA6	PA0, PA1, PA3, PA4, PA6
PORTB	PB0, PB1, PB3, PB5 to PB7	PB0, PB1, PB3, PB5 to PB7
PORTC	PC2 to PC7	PC0 to PC7
PORTE	PE0 to PE5	PE0 to PE5
PORTG	—	PG7
PORTH	PH0 to PH3	PH0 to PH3, PH6*1, PH7*1
PORTJ	—	PJ6, PJ7

Table 2.24 Comparative Overview of I/O Ports (64-Pin)

Note: 1. A product with a ROM capacity of 64 KB is not equipped with this pin.

Table 2.25 Comparative Overview of I/O Ports (48-Pin)

Port Symbol	RX231 (48-Pin)	RX140 (48-Pin)
PORT1	P14 to P17	P14 to P17
PORT2	P26, P27	P26, P27
PORT3	P30, P31, P35 to P37	P30, P31, P35 to P37
PORT4	P40 to P42, P46	P40 to P42, P45 to P47
PORTA	PA1, PA3, PA4, PA6	PA1, PA3, PA4, PA6
PORTB	PB0, PB1, PB3, PB5	PB0, PB1, PB3, PB5
PORTC	PC4 to PC7	PC0 to PC7
PORTE	PE1 to PE4 PE1 to PE4	
PORTG	—	PG7
PORTH	PH0 to PH3 PH0 to PH3	
PORTJ	— PJ6, PJ7	

Table 2.26	Comparison of I/O Port Functions
------------	---

Item	Port Symbol	RX231	RX140
Input pull-up function	PORT0	P03, P05, P07	P03 to P07
	PORT1	P12 to P17	P12 to P17
	PORT2	P20 to P27	P20, P21, P26, P27
	PORT3	P30 to P32, P33, P34, P36, P37	P30 to P32, P34, P36, P37
	PORT4	P40 to P47	P40 to P47
	PORT5	P50 to P55	P54, P55
	PORTA	PA0 to PA7	PA0 to PA6
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	PC0 to PC7	PC2 to PC7
	PORTD	PD0 to PD7	PD0 to PD2
	PORTE	PE0 to PE7	PE0 to PE3, PE4, PE5
	PORTG		PG7
	PORTH	PH0 to PH3	PH0 to PH3
	PORTJ	PJ3	PJ1, PJ6, PJ7
Open drain output	PORT1	P12 to P17	P12 to P17
function	PORT2	P20 to P27	P20, P21, P26, P27
	PORT3	P30 to P32, P33, P34, P36, P37	P30 to P32, P34, P36, P37
	PORT5	P50 to P52, P54	
	PORTA	PA0 to PA7	PA0 to PA6
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	PC0 to PC7	PC2 to PC7
	PORTD		PD0 to PD2
	PORTE	PE0 to PE7	PE0 to PE3
	PORTG		PG7
	PORTJ	PJ3	
Drive capacity switching	PORT0	P03, P05, P07	
function	PORT1	P12 to P17	
	PORT2	P20 to P27	
	PORT3	P30 to P34, P36, P37	—
	PORT4	P40 to P47	
	PORT5	P50 to P55	—
	PORTA	PA0 to PA7	—
	PORTB	PB0 to PB7	—
	PORTC	PC0 to PC7	—
	PORTD	PD0 to PD7	
	PORTE	PE0 to PE7	—
	PORTH	PH0 to PH3	—
	PORTJ	PJ3	
5 V tolerant	PORT1	P12, P13, P16, P17	P12, P13, P16, P17
	PORT3	P30 to P32	—
	PORTB	PB5	

Register	Bit	RX231	RX140
PDR	B0 to B7	Pm0 to Pm7 I/O select bits	Pm0 to Pm7 I/O select bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, <mark>G</mark> , H, J)
PODR	B0 to B7	Pm0 to Pm7 output data store bits	Pm0 to Pm7 output data store bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, G, H, J)
PIDR	B0 to B7	Pm0 to Pm7 bits	Pm0 to Pm7 bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, <mark>G</mark> , H, J)
PMR	B0 to B7	Pm0 pin mode control bits	Pm0 to Pm7 pin mode control bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, <mark>G</mark> , H, J)
		0: Use pin as general I/O port. 1: Use pin as I/O port for peripheral function.	0: Use pin as general I/O port.1: Use pin as I/O port for peripheral function.
			PG7 only
			0: Use pin as general I/O port.
			1: Use pin as I/O port for MD function (initial value).
ODR0	B2, B3	Pm1 output type select bits	Pm1 output type select bits
		(m = 1 to 3, 5, A to C, E, J)	(m = 1 to 3, A to E, J)
		• P21, P31, P51, PA1, PB1, and PC1	• P21, P31, PA1, PB1, and PD1
		b2	b2
		0: CMOS output	0: CMOS output
		1: N-channel open-drain	1: N-channel open-drain
		b3	b3
		This bit is read as 0. The write	This bit is read as 0. The write
		value should be 0.	value should be 0.
		• PE1	• PE1
		b3 b2	b3 b2
		0 0: CMOS output	0 0: CMOS output
		0 1: N-channel open-drain	0 1: N-channel open-drain
		1 0: P-channel open-drain	1 0: P-channel open-drain
		1 1: Hi-Z	1 1: Hi-Z
ODR1	B0, B2, B4, B6	Pm4, Pm5, Pm6, and Pm7 output	Pm4, Pm5, Pm6, and Pm7 output
		type select bits	type select bits
		(m = 1 to 3, 5, A to C, E)	(m =1 to 3, A to C, G)
PCR	B0 to B7	Pm0 to Pm7 input pull-up resistor	Pm0 to Pm7 input pull-up resistor
		control bits	control bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, G, H, J)
DSCR	—	Drive capacity control register	—
PRWCNTR	—	—	Port read wait control register

Table 2.27 Comparison of I/O Port Registers

2.15 Multi-Function Pin Controller

Table 2.28 is a comparison of the assignments of multiplexed pins, and Table 2.29 to Table 2.40 are comparisons of multi-function pin controller registers.

In the following comparison of the assignments of multiplexed pins, blue text designates pins that exist on the RX140 Group only and orange text pins that exist on the RX231 Group only. A circle (\bigcirc) indicates that a function is assigned, a cross (\times) that the pin does not exist or that no function is assigned, and grayed out items mean that the function is not implemented.

Module/		Port	RX231		RX140	
Function	Pin Function	Allocation	64-Pin	48-Pin	B-Pin 64-Pin	
Interrupt	NMI (input)	P35	0	0	0	0
	IRQ0 (input)	P30	0	0	0	0
		PH1* ³	0	0	0	0
	IRQ1 (input)	P31	0	0	0	0
		PH2* ³	0	0	0	0
	IRQ2 (input)	P32	X	X	0	X
		P36	X	X	0	0
	IRQ4 (input)	P14	0	0	0	0
		P37	X	X	0	0
		PB1	0	0	0	0
	IRQ5 (input)	P15	0	0	0	0
		PA4	0	0	0	0
		PE5	0	X	0	X
	IRQ6 (input)	P16	0	0	0	0
		PA3	0	0	0	0
	IRQ7 (input)	P17	0	0	0	0
		PE2	0	0	0	0
Clock generation	CLKOUT (output)	PE3	0	0	0	0
circuit		PE4	0	0	0	0
Multi-function	MTIOC0A (input/output)	PB3	0	0	0	0
timer unit 2		PC4	Х	X	0	0
	MTIOC0B (input/output)	P15	0	0	0	0
		PA1	0	0	0	0
	MTIOC0C (input/output)	P32	X	X	0	X
		PB1	0	0	0	0
		PC5	Х	X	0	0
	MTIOC0D (input/output)	PA3	0	0	0	0
	MTIOC1A (input/output)	PE4	0	0	0	0
	MTIOC1B (input/output)	PB5	0	0	0	0
		PE3	Х	Х	0	0
	MTIOC2A (input/output)	P26	0	0	0	0
		PB5	0	0	0	0
	MTIOC2B (input/output)	P27	0	0	0	0
		PE5	0	X	0	X
	MTIOC3A (input/output)	P14	0	0	0	0
		P17	0	0	0	0
		PC7	0	0	0	0

Table 2.28 Comparison of Multiplexed Pin Assignments

Module/		Port	RX231		RX140	
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Multi-function	MTIOC3B (input/output)	P17	04-1 111	0	04-1 11	0
timer unit 2		PA1	X	X	0	0
		PB7	Ô	X	0	X
		PC5	0	$\hat{0}$	0	Ô
		PH0	X	X	0	0
	MTIOC3C (input/output)	P16	Ô	$\hat{0}$	0	0
		PC6	0	0	0	0
	MTIOC3D (input/output)	P16	0	0	0	0
		PA6	X	X	0	0
		PB0	X	X	0	0
		PB6	Ô	X	0	X
		PC4	0	$\hat{0}$	0	0
		PH1	X	X	0	0
	MTIOC4A (input/output)	P55	X	X	0	X
		PA0	Ô	×	0	X
		PB3	0	$\hat{\mathbf{o}}$	0	Ô
		PE2	0	0	0	0
		PE2 PE4	X	X	0	0
	MTIOC4B (input/output)	P30	0	$\hat{0}$	0	0
		P30 P54	0	-	0	
		P04 PC2	0	X	0	X
		PC2 PE3	0	X 0	0	X 0
			-	_		-
	MTIOC4C (input/output)	PA4	X	X	0	0
		PB1	0	0	0	0
		PE1	0	-	0	
		PE5	-	X		X
		PH2	X	X	0	0
	MTIOC4D (input/output)	P31	0	0	0	0
		P55	0	X	0	X
		PA3	X	X	0	0
		PC3	0	X O	0	X
		PE4	-	-	0	-
	MTIOSIL(insut)	PH3	X 0	X 0	0	0
	MTIC5U (input)	PA4	-	-		0
	MTIC5V (input)	PA3	X	X	0	0
		PA6	0	0	0	0
	MTIC5W (input)	PB0	0	0	0	0
	MTCLKA (input)	P14	0	0	0	0
		PA4	0	0	0	0
		PC6	0	0	0	0
	MTCLKB (input)	P15	0	0	0	0
		PA6	0	0	0	0
		PC7	0	0	0	0
	MTCLKC (input)	PA1	0	0	0	0
		PC4	0	0	0	0
	MTCLKD (input)	PA3	0	0	0	0
		PC5	0	0	0	0

Module/		Port	RX231		RX140	
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Port output enable	POE0# (input)	PC4	0	0	0	0
2	POE1# (input)	PB5	0	0	0	0
-	POE2# (input)	PA6	0	0	0	0
	POE3# (input)	PB3	0	0	0	0
	POE8# (input)	P17	0	0	0	0
		P30	0	0	0	0
		PE3	0	0	0	0
16-bit timer pulse	TIOCA0 (input/output)	PA0	0	×		
unit	TIOCB0 (input/output)	P17	0	Ô		
unit		PA1	0	0		
	TIOCD0 (input/output)	PA3	0	0		
	TIOCA1 (input/output)	PA3 PA4	0	0		
	TIOCB1 (input/output)	P16	0	0		
	TIOCA2 (input/output)	PA6	0	0		
	TIOCA2 (input/output)	PA0 P15	0	0		
				-		
	TIOCA3 (input/output)	PB0	0	0		
	TIOCB3 (input/output)	PB1	0	0		
	TIOCD3 (input/output)	PB3	0	0		
	TIOCB4 (input/output)	PB5	0	0		
	TIOCA5 (input/output)	PB6	0	×		_
	TIOCB5 (input/output)	P14	0	0		
		PB7	0	×		
	TCLKA (input)	P14	0	0		
		PC2	0	×		
	TCLKB (input)	P15	0	0		
		PA3	0	0		
		PC3	0	×		
	TCLKC (input)	P16	0	0		
	TCLKD (input)	P17	0	0		
		PB3	0	0		
8-bit timer	TMO0 (output)	PB3	0	0	0	0
		PH1* ³	0	0	0	0
	TMCI0 (input)	PB1	0	0	0	0
		PH3* ³	0	0	0	0
	TMRI0 (input)	PA4	0	0	0	0
		PH2* ³	0	0	0	0
	TMO1 (output)	P17	0	0	0	0
		P26	0	0	0	0
	TMCI1 (input)	P54	0	X	0	X
		PC4	0	0	0	0
	TMRI1 (input)	PB5	0	0	0	0
	TMO2 (output)	P16	0	0	0	0
		PC7	0	0	0	0
	TMCI2 (input)	P15	0	0	0	0
		P31	0	0	0	0
		PC6	0	0	0	0
	TMRI2 (input)	P14	0	0	0	0
		PC5	0	0	0	0
	TMO3 (output)	P32	X	Х	0	Х
		P55	0	X	0	Х

Module/		Port	RX231		RX140	
Function	Pin Function	Pin Function Allocation	64-Pin 48-Pin		64-Pin 48-Pin	
8-bit timer	TMCI3 (input)	P27	0	0	0	0
• • • • • • • • • • • • • • • • • • • •	TMCI3 (input)	PA6	Ō	0	0	Ō
	TMRI3 (input)	P30	0	0	0	0
Sorial	RXD1 (input) /	P15	0	0	0	0
Serial communications			0	0	0	0
interface	SMISO1 (input/output) /	P30	0	0		0
IIIIenace	SSCL1 (input/output)		_			
	TXD1 (output) /	P16	0	0	0	0
	SMOSI1 (input/output) / SSDA1 (input/output)	P26	0	0	0	0
	SCK1 (input/output)	P17	0	0	0	0
		P27	0	0	0	0
	CTS1# (input) /	P14	Ō	0	0	0
	RTS1# (output) /	P31	0	0	0	0
	SS1# (input)	FJI				
	RXD5 (input) /	PA3	0	0	0	0
			0		0	
	SMISO5 (input/output) / SSCL5 (input/output)	PC2	0	×	0	×
	TXD5 (output) /	PA4	0	0	0	0
	SMOSI5 (input/output) /	PC3	0	X	0	X
	SSDA5 (input/output)					
	SCK5 (input/output)	PA1	0	0	0	0
		PC4	Ō	Ō	Ō	Ō
	CTS5# (input) /	PA6	0	0	0	0
	RTS5# (output) /	FAU				
	SS5# (input)					
	RXD6 (input) /	PB0	0	0	0	0
	SMISO6 (input/output) /					
	SSCL6 (input/output)				-	
	TXD6 (output) /	P32	X	X	0	Х
	SMOSI6 (input/output) /	PB1	0	0	0	0
	SSDA6 (input/output)					
	SCK6 (input/output)	PB3	0	0	0	0
	RXD8 (input) /	PC6	0	0	0	0
	SMISO8 (input/output) /					
	SSCL8 (input/output)					
	TXD8 (output) /	PC7	0	0	0	0
	SMOSI8 (input/output) /		Ŭ	Ŭ	Ŭ	Ŭ
	SSDA8 (input/output)					
	· · · · · · · · · · · · · · · · · · ·	PC5	0	0	0	0
	SCK8 (input/output)				0	
	CTS8# (input) /	PC4	0	0		0
	RTS8# (output) /					
	SS8# (input)					
	RXD9 (input) /	PB6	0	×	0	×
	SMISO9 (input/output) /					
	SSCL9 (input/output)					
	TXD9 (output) /	PB7	0	X	0	X
	SMOSI9 (input/output) /					
	SSDA9 (input/output)					
	SCK9 (input/output)	PB5	0	X	0	X

Module/		Port	RX231		RX140		
Function	Pin Function	Allocation	64-Pin 48-Pin		64-Pin	48-Pin	
Serial	CTS9# (input) /	PB4	X	X	0	×	
communications	RTS9# (output) /						
interface	SS9# (input)						
	RXD12 (input) /	PE2	0	O*1	0	O*1	
	SMISO12 (input/output) /						
	SSCL12 (input/output) /						
	RXDX12 (input)						
	TXD12 (output) /	PE1	0	O*1	0	O*1	
	SMOSI12 (input/output) /						
	SSDA12 (input/output) /						
	TXDX12 (output) /						
	SIOX12 (input/output)		-				
	SCK12 (input/output)	PE0	0	X	0	Х	
	CTS12# (input) /	PE3	0	O*2	0	O *2	
	RTS12# (output) /						
•	SS12# (input)			-	_		
I ² C bus interface	SCL (input/output)	P16	0	0	0	0	
	SDA (input/output)	P17	0	0	0	0	
Serial peripheral	RSPCKA (input/output)	PB0	0	0	0	0	
interface		PC5	0	0	0	0	
	MOSIA (input/output)	P16	0	0	0	0	
		PA6	0	0	0	0	
		PC6	0	0	0	0	
	MISOA (input/output)	P17	0	0	0	0	
		PC7	0	0	0	0	
	SSLA0 (input/output)	PA4	0	0	0	0	
		PC4	0	0	0	0	
	SSLA1 (output)	PA0	0	X	0	X	
	SSLA2 (output)	PA1	0	0	0	0	
	SSLA3 (output)	PC2	0	X	0	X	
Realtime clock	RTCOUT (output)	P16	0	X	0	0	
		P32	X	Х	0	×	
	RTCIC0 (input)	P30	0	X			
	RTCIC1 (input)	P31	0	×			
IrDA interface	IRTXD5 (output)	PA4	0	0			
		PC3	0	×			
	IRRXD5 (input)	PA3	0	0			
		PC2	0	X	-		
CAN module	CRXD0 (input)	P15	0	0	0	0	
		P55	0	X	0	X	
	CTXD0 (output)	P14	0	0	0	0	
		P54	0	X	0	X	
Serial sound	SSISCK0 (input/output)	P31	0	0			
interface		PA1	0	0			
	SSIWS0 (input/output)	P27	0	0			
		PA6	0	0			
	SSITXD0 (output)	P17	0	0			
		PA4	0	0			

Module/		Port	RX231		RX140	
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Serial sound	SSIRXD0 (input)	P26	0	0		
interface		PA3	0	0		
	AUDIO_MCLK (input)	P30	0	0		
	_ (, , ,	PE3	Ō	Ō		
SD host interface	SDHI CLK (output)	PB1	Ō	X		
	SDHI_CMD (input/output)	PB0	Ō	X		
	SDHI D0 (input/output)	PC3	Ō	×	_	
	SDHI D1 (input/output)	PB6	Ō	X	_	
		PC4	Ō	×	_	
	SDHI D2 (input/output)	PB7	Ō	X	_	
	SDHI D3 (input/output)	PC2	Ō	X	_	
	SDHI_CD (input)	PB5	Ō	X		
	SDHI WP (input)	PB3	Ō	X		
USB 2.0	USB0 VBUS (input)	P16	0	0		
Host/Function		PB5	0	0		
module	USB0 EXICEN (output)	PC6	0	0		
	USB0_VBUSEN (output)	P16	0	0		
		P26	0	0		
	USB0 OVRCURA (input)	P14	0	0		
	USB0_OVRCURB (input)	P16	0	0		
	USB0 ID (input)	PC5	0	0		
12-bit A/D	AN000 (input)	P40	0	0	0	0
converter	AN000 (input)	P41	0	0	0	0
	AN001 (input)	P41	0	0	0	0
	AN002 (input)	P42	0	X	0	X
	AN003 (input)	P44	0	×	0	×
		P44	X	X	0	Ô
	AN005 (input) AN006 (input)	P45 P46	$\overline{0}$	$\overline{0}$	0	0
		P40 P47		_		0
	AN007 (input) AN016 (input)	P47 PE0	X 0	X	0	
				X 0		X 0
	AN017 (input)	PE1	0	0	0	0
	AN018 (input)	PE2	_	-		-
	AN019 (input)	PE3	0	0	0	0
	AN020 (input)	PE4	0	0	0	0
	AN021 (input)	PE5	0	X	0	X
	ADTRG0# (input)	P16	0	0	0	0
D/A converter	DA0 (output)	P03	0	X	0	X
<u></u>	DA1 (output)	P05	0	X	0	X
Clock frequency	CACREF (input)	PA0	0	X	0	X
accuracy		PC7	0	0	0	0
measurement circuit		PH0* ³	0	0	0	0
LVD voltage detection input	CMPA2 (input)	PE4	0	0	0	0

Module/		Port	RX231		RX140	
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Comparator B	CMPB0 (input)	PE1	0	0	0	0
•	CVREFB0 (input)	PE2	0	0	0	0
	CMPB1 (input)	PA3	0	0	0	0
	CVREFB1 (input)	PA4	0	Ō	0	0
	CMPB2 (input)	P15	0	Ō		-
	CVREFB2 (input)	P14	Ō	Ō		
	CMPB3 (input)	P26	Ō	Ō		
	CVREFB3 (input)	P27	Ō	Ō		
	CMPOB0 (output)	PE5	0	X	0	X
	CMPOB1 (output)	PB1	0	0	0	0
	CMPOB2 (output)	P17	0	0		-
	CMPOB3 (output)	P30	Ō	Ō		
Capacitive touch	TSCAP (output)	PC4	0	0	0	0
sensing unit	TS0 (output)	P32	X	X	O * ³	X
(CTSU)	TS1 (output)	P31	X	X	○ * ³	O * ³
	TS2 (output)	P27	0	0	X	X
		P30	X	X	O * ³	O*3
	TS3 (output)	P26	0	0	X	×
		P27	×	X	0	0
	TS4 (output)	P26	X	X	Ō	Ō
	TS5 (output)	P15	X	X	O*3	O*3
	TS6 (output)	P14	X	X	O*3	O * ³
	TS7 (output)	PH3	X	X		O ∗ ³
	TS8 (output)	PH2	X	X		O*3
	TS9 (output)	PH1	X	X	O ∗3	O *3
	TS10 (output)	PH0			O*3	O ∗ ³
	TS11 (output)	P55				×
	TS12 (output)	P15	0	0	X	X
		P54	X	X		X
	TS13 (output)	P14	0	0	×	X
		PC7	×	×	0	0
	TS14 (output)	PC6			0	0
	TS15 (output)	P55	0	×	×	×
		PC5	×	X	0	0
	TS16 (output)	P54	0	X	×	×
		PC3	×	X		X
	TS17 (output)	PC2	X	X	 	×
	TS18 (output)	PB7	X	X	O*3	X
	TS19 (output)	PB6	X	X	O*3	X
	TS20 (output)	PB5	X	X	O*3	0
	TS22 (output)	PC6	0	$\hat{0}$	X	×
		PB3	X	×		∧
	TS23 (output)	PC5	Ô	$\overline{0}$	X	X
	TS24 (output)	PB1				
	TS25 (output)	PB0			0	0
	TS26 (output)	PA6				
	TS27 (output)	PA0 PC3	0	×	X	X
		PC3 PA4		<u>^</u>		
	TS28 (output)					0
	TS29 (output)	PA3			0	

Module/		Port F		RX231		
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Capacitive touch	TS30 (output)	PC2	0	X	Х	Х
sensing unit	TS31 (output)	PA1			0	0
(CTSU)	TS32 (output)	PA0			0	Х
	TS33 (output)	PE4	X	X	○ * ³	0
	TS34 (output)	PE3			0	0
	TS35 (output)	PE2	X	X	0	0
Low-power timer	LPTO (output)	P26			0	0
		PB3			0	0
		PC7			0	0

Notes: 1. SMOSI12 function not implemented.

2. SS12# function not implemented.

3. This pin exists on the RX230 only.

Register	Bit	RX231 (n = 2 to 7)	RX140 (n = 2 to 7)
P13PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0B	00001b: MTIOC0B
		00011b: TIOCA5	
		00101b: TMO3	00101b: TMO3
		01111b: SDA	01111b: SDA
P14PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3A	00001b: MTIOC3A
		00010b: MTCLKA	00010b: MTCLKA
		00011b: TIOCB5	
		00100b: TCLKA	
		00101b: TMRI2	00101b: TMRI2
		01011b: CTS1#/RTS1#/SS1#	01011b: CTS1#/RTS1#/SS1#
		10000b: CTXD0	
		10001b: USB0_OVRCURA	
		11001b: TS13	11001b: TS6
D45DE0			11100b: CTXD0
P15PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00000b: MI-2 00001b: MTIOC0B	00000b: MTIOC0B
		00010b: MTCLKB	00010b: MTCLKB
		00011b: TIOCB2	UUUTUD. MITCLKB
		00100b: TCLKB	
		00101b: TMCI2	00101b: TMCI2
		01010b: RXD1/SMISO1/SSCL1	01010b: RXD1/SMISO1/SSCL1
		10000b: CTXD0	OTOTOD. IXAD I/SIMISO I/SSCET
		11001b: TS5	11001b: TS5
			11100b: CRXD0
P16PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
1 101 10			
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3C	00001b: MTIOC3C
		00010b: MTIOC3D	00010b: MTIOC3D
		00011b: TIOCB1	
		00100b: TCLKC	
		00101b: TMO2	00101b: TMO2
		00111b: RTCOUT	00111b: RTCOUT
		01001b: ADTRG0#	01001b: ADTRG0#
		01010b: TXD1/SMOSI1/SSDA1	01010b: TXD1/SMOSI1/SSDA1
		01101b: MOSIA	01101b: MOSIA
		01111b: SCL	01111b: SCL
		10001b: USB0_VBUS	
		10010b: USB0_VBUSEN	
		10011b: USB0_OVRCURB	

Table 2.29 Comparison of P1n Pin Function Control Register (P1nPFS)

Register	Bit	RX231 (n = 2 to 7)	RX140 (n = 2 to 7)
P17PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3A	00001b: MTIOC3A
		00010b: MTIOC3B	00010b: MTIOC3B
		00011b: TIOCB0	
		00100b: TCLKD	
		00101b: TMO1	00101b: TMO1
		00111b: POE8#	00111b: POE8#
		01010b: SCK1	01010b: SCK1
		01101b: MISOA	01101b: MISOA
		01111b: SDA	01111b: SDA
		10000b: CMPOB2	
		10111b: SSITXD0	
P1nPFS	ASEL	P1n analog function select bit	

Table 2.30 Comparison of P2n Pin Function Control Register (P2nPFS)

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0, 1, 6, 7)
P20PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC1A	00001b: MTIOC1A
		00011b: TIOCB3	
		00101b: TMRI0	00101b: TMRI0
		01010b: TXD0/SMOSI0/SSDA0	
		10001b: USB0_ID	
		10111b: SSIRXD0	
		11001b: TS9	
P21PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC1B	00001b: MTIOC1B
		00011b: TIOCA3	
		00101b: TMCI0	00101b: TMCI0
		01010b: RXD0/SMISO0/SSCL0	
		10001b: USB0_EXICEN	
		10111b: SSIWS0	
		11001b: TS8	
P22PFS	—	P22 pin function control register	
P23PFS	—	P23 pin function control register	—
P24PFS	—	P24 pin function control register	
P25PFS	—	P25 pin function control register	
P26PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC2A	00001b: MTIOC2A
		00101b: TMO1	00101b: TMO1
		01010b: TXD1/SMOSI1/SSDA1	01010b: TXD1/SMOSI1/SSDA
		10111b: SSIRXD0	
		11001b: TS3	11001b: <mark>TS4</mark>
			11011b: LPTO

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0, 1, 6, 7)
P27PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z 00001b: MTIOC2B	00000b: Hi-Z 00001b: MTIOC2B
		00101b: TMCI3 01010b: SCK1	00101b: TMCI3 01010b: SCK1
		10111b: SSIWS0	
		11001b: TS2	11001b: TS3
P2nPFS	ASEL	P2n analog function select bit	—

Table 2.31 Comparison of P3n Pin Function Control Register (P3nPFS)

Register	Bit	RX231 (n = 0 to 4)	RX140 (n = 0 to 2, 4, 6, 7)
P30PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4B	00001b: MTIOC4B
		00101b: TMRI3	00101b: TMRI3
		00111b: POE8#	00111b: POE8#
		01010b: RXD1/SMISO1/SSCL1	01010b: RXD1/SMISO1/SSCL1
		10000b: CMPOB3	
		10111b: AUDIO_MCLK	
			11001b: TS2
P31PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4D	00001b: MTIOC4D
		00101b: TMCI2	00101b: TMCI2
		00111b: CTS1#/RTS1#/SS1#	01010b: CTS#/RTS1#/SS1#
		10111b: SSISCK0	
			11001b: TS1
P32PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0C	00001b: MTIOC0C
		00101b: TMO3	00101b: TMO3
		00111b: RTCOUT	00111b: RTCOUT
		01011b: TXD6/SMOSI6/SSDA6	01011b: TXD6/SMOSI6/SSDA6
		10001b: USB0_VBUSEN	440041 700
DOODEO			11001b: TS0
P33PFS		P33 pin function control register	
P34PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOCOA	00001b: MTIOCOA
		00101b: TMCI3	00101b: TMCI3
		00111b: POE2#	00111b: POE2#
		01011b: SCK6	01011b: SCK6
		11001b: TS0	
P36PFS		<u> </u>	P36 pin function control register
P37PFS	—	—	P37 pin function control register

Register	Bit	RX231 (n = 0 to 4)	RX140 (n = 0 to 2, 4, 6, 7)
P3nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		P30: IRQ0 (100/64/48-pin)	P30: IRQ0 (80/64/48/32-pin)
		P31: IRQ1 (100/64/48-pin)	P31: IRQ1 (80/64/48/32-pin)
		P32: IRQ2 (100-pin)	P32: IRQ2 (80/64-pin)
		P33: IRQ3 (100-pin)	
		P34: IRQ4 (100-pin)	P34: IRQ4 (80-pin)
			P36: IRQ2 (80/64/48/32-pin)
			P37: IRQ4 (80/64/48-pin)

Table 2.32 Comparison of P5n Pin Function Control Register (P5nPFS)

Register	Bit	RX231 (n = <mark>0 to</mark> 5)	RX140 (n = 4, 5)
P50PFS	—	P50 pin function control register	—
P51PFS	—	P51 pin function control register	—
P52PFS	—	P52 pin function control register	—
P53PFS	—	P53 pin function control register	—
P54PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4B	00001b: MTIOC4B
		00101b: TMCI1	00101b: TMCI1
		10000b: CTXD0	
		11001b: TS16	11001b: <mark>TS12</mark>
			11100b: CTXD0
P55PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4D	00001b: MTIOC4D
		00010b: MTIOC4A	
		00101b: TMO3	00101b: TMO3
		10000b: CRXD0	
		11001b: TS15	11001b: <mark>TS11</mark>
			11100b: CRXT0

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0 to 6)
PAOPFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4A	00001b: MTIOC4A
		00011b: TIOCA0	
		00111b: CACREF	00111b: CACREF
		01101b: SSLA1	01101b: SSLA1
			11001b: TS32
PA1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0B	00001b: MTIOC0B
		00010b: MTCLKC	00010b: MTCLKC
		00011b: TIOCB0	00011b: MTIOC3B
		01010b: SCK5	01010b: SCK5
		01101b: SSLA2	01101b: SSLA2
		10111b: SSISCK0	
			11001b: TS31
PA2PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
1712110	1 022[]		
		00000b: Hi-Z	00000b: Hi-Z
		01010b: RXD5/SMISO5/SSCL5	01010b: RXD5/SMISO5/SSCL5
		01101b: SSLA3	01101b: SSLA3
		OTTO D. OOLAS	11001b: TS30
PA3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOCOD	00001b: MTIOC0D
		00010b: MTCLKD	00010b: MTCLKD
		00011b: TIOCD0	00011b: MTIOC4D
		00100b: TCLKB	00100b: MTIC5V
		01010b: RXD5/SMISO5/SSCL5 10111b: SSIRXD0	01010b: RXD5/SMISO5/SSCL5
			11001b: TS29
PA4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIC5U	00001b: MTIC5U
		00010b: MTCLKA	00010b: MTCLKA
		00011b: TIOCA1	00011b: MTIOC4C
		00101b: TMRI0	00101b: TMRI0
		01010b: TXD5/SMOSI5/SSDA5	01010b: TXD5/SMOSI5/SSDA5
		01101b: SSLA0	01101b: SSLA0
		10111b: SSITXD0	
			11001b: TS28
PA5PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00011b: TIOCB1	
		01101b: RSPCKA	01101b: RSPCKA
			11001b: TS27

Table 2.33 Comparison of PAn Pin Function Control Register (PAnPFS)

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0 to 6)
PA6PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIC5V 00010b: MTCLKB	00001b: MTIC5V 00010b: MTCLKB
		00011b: TIOCA2	00011b: MTIOC3D
		00101b: TMCI3	00101b: TMCI3
		00111b: POE2#	00111b: POE2#
		01011b: CTS5#/RTS5#/SS5#	01011b: CTS5#/RTS5#/SS5#
		01101b: MOSIA	01101b: MOSIA
		10111b: SSIWS0	
			11001b: TS26
PA7PFS		PA7 pin function control register	

Table 2.34 Comparison of PBn Pin Function Control Register (PBnPFS)

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0 to 7)
PBOPFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIC5W	00001b: MTIC5W
			00010b: MTIOC3D
		00011b: TIOCA3	
		01011b: RXD6/SMISO6/SSCL6	01011b: RXD6/SMISO6/SSCL6
		01101b: RSPCKA	01101b: RSPCKA
		11010b: SDHI_CMD	
			11001b: TS25
PB1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0C	00001b: MTIOC0C
		00010b: MTIOC4C	00010b: MTIOC4C
		00011b: TIOCB3	
		00101b: TMCI0	00101b: TMCI0
		01011b: TXD6/SMOSI6/SSDA6	01011b: TXD6/SMOSI6/SSDA6
		10000b: CMPOB1	10000b: CMPOB1
			11001b: TS24
		11010b: SDHI_CLK	
PB2PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00011b: TIOCC3	
		00100b: TCLKC	
		01011b: CTS6#/RTS6#/SS6#	01011b: CTS6#/RTS6#/SS6# 11001b: TS23

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0 to 7)
PB3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0A	00001b: MTIOC0A
		00010b: MTIOC4A	00010b: MTIOC4A
		00011b: TIOCD3	
		00100b: TCLKD	
		00101b: TMO0	00101b: TMO0
		00111b: POE3#	00111b: POE3#
		01011b: SCK6	01011b: SCK6
			11001b: TS22
		11010b: SDHI_WP	
			11011b: LPTO
PB4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00011b: TIOCA4	
		01011b: CTS9#/RTS9#/SS9#	01011b: CTS9#/RTS9#/SS9#
			11001b: TS21
PB5PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC2A	00001b: MTIOC2A
		00010b: MTIOC1B	00010b: MTIOC1B
		00011b: TIOCB4	
		00101b: TMRI1	00101b: TMRI1
		00111b: POE1#	00111b: POE1#
		01010b: SCK9	01010b: SCK9
		10001b: USB0_VBUS	
		11010b: SDHI_CD	
			11011b: TS20
PB6PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3D	00001b: MTIOC3D
		00011b: TIOCA5	
		01010b: RXD9/SMISO9/SSCL9	01010b: RXD9/SMISO9/SSCL9
			11001b: TS19
		11010b: SDHI_D1	
PB7PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3B	00001b: MTIOC3B
		01010b: TXD9/SMOSI9/SSDA9	01010b: TXD9/SMOSI9/SSDA9 11001b: TS18
		11010b: SDHI_D2	
	1		

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 2 to 7)
PCOPFS		PC0 pin function select register	
PC1PFS		PC1 pin function select register	—
PC2PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4B	00001b: MTIOC4B
		00011b: TCLKA	
		01010b: RXD5/SMISO5/SSCL5	01010b: RXD5/SMISO5/SSCL5
		01101b: SSLA3	01101b: SSLA3
		11001b: TS30	11001b: TS17
		11010b: SDHI_D3	
PC3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4D	00001b: MTIOC4D
		00011b: TCLKB	
		01010b: TXD5/SMOSI5/SSDA5	01010b: TXD5/SMOSI5/SSDA5
		11001b: TS27	11001b: <mark>TS16</mark>
		11010b: SDHI_D0	
PC4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3D	00001b: MTIOC3D
		00010b: MTCLKC	00010b: MTCLKC
			00011b: MTIOC0A
		00101b: TMCI1	00101b: TMCI1
		00111b: POE0#	00111b: POE0#
		01010b: SCK5	01010b: SCK5
		01011b: CTS8#/RTS8#/SS8#	01011b: CTS8#/RTS8#/SS8#
		01101b: SSLA0	01101b: SSLA0
		11001b: TSCAP	11001b: TSCAP
		11010b: SDHI D1	
PC5PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3B	00001b: MTIOC3B
		00010b: MTCLKD	00010b: MTCLKD
			00011b: MTIOC0C
		00101b: TMRI2	00101b: TMRI2
		01010b: SCK8	01010b: SCK8
		01101b: RSPCKA	01101b: RSPCKA
		11001b: TS23	11001b: TS15

Table 2.35 Comparison of PCn Pin Function Control Register (PCnPFS)

Register	Bit	RX231 (n = <mark>0 to</mark> 7)	RX140 (n = 2 to 7)
PC6PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3C	00001b: MTIOC3C
		00010b: MTCLKA	00010b: MTCLKA
		00101b: TMCl2	00101b: TMCI2
		01010b: RXD8/SMISO8/SSCL8	01010b: RXD8/SMISO8/SSCL8
		01101b: MOSIA	01101b: MOSIA
		11001b: TS22	11001b: TS14
PC7PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3A	00001b: MTIOC3A
		00010b: MTCLKB	00010b: MTCLKB
		00101b: TMO2	00101b: TMO2
		00111b: CACREF	00111b: CACREF
		01010b: TXD8/SMOSI8/SSDA8	01010b: TXD8/SMOSI8/SSDA8
		01101b: MISOA	01101b: MISOA
			11001b: TS13
			11011b: LPTO

Table 2.36 Comparison of PDn Pin Function Control Register (PDnPFS)

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0 to 2)
PD0PFS	PSEL[4:0]	—	PD0 pin function select register
PD1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4B	00001b: MTIOC4B
			01011b: TXD6/SMOSI6/SSDA6
PD2PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4D	00001b: MTIOC4D
			01011b: SCK6
PD3PFS	—	PD3 pin function select register	—
PD4PFS		PD4 pin function select register	—
PD5PFS	—	PD5 pin function select register	—
PD6PFS	—	PD6 pin function select register	—
PD7PFS	—	PD7 pin function select register	—
PDnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PD0: IRQ0 (100-pin)	PD0: IRQ0 (80-pin)
		PD1: IRQ1 (100-pin)	PD1: IRQ1 (80-pin)
		PD2: IRQ2 (100-pin)	PD2: IRQ2 (80-pin)
		PD3: IRQ3 (100-pin)	
		PD4: IRQ4 (100-pin)	
		PD5: IRQ5 (100-pin)	
		PD6: IRQ6 (100-pin)	
		PD7: IRQ7 (100-pin)	

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0 to 2)
PDnPFS	ASEL	Analog function select bit	Analog function select bit
		0: Used as other than as analog pin	0: Used as other than as analog pin
		1: Used as analog pin	1: Used as analog pin
		PD0: AN024 (100-pin)	PD0: AN024 (80-pin)
		PD1: AN025 (100-pin)	PD1: AN025 (80-pin)
		PD2: AN026 (100-pin)	PD2: AN026 (80-pin)
		PD3: AN027 (100-pin)	
		PD4: AN028 (100-pin)	
		PD5: AN029 (100-pin)	
		PD6: AN030 (100-pin)	
		PD7: AN031 (100-pin)	

Table 2.37 Comparison of PEn Pin Function Control Register (PEnPFS)

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0 to 5)
PE3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4B	00001b: MTIOC4B
			00010b: MTIOC1B
		00111b: POE8#	00111b: POE8#
		01001b: CLKOUT	01001b: CLKOUT
		01100b: CTS12#/RTS12#/SS12#	01100b: CTS12#/RTS12#/SS12#
		10111b: AUDIO_MCLK	
			11001b: TS34
PE4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4D	00001b: MTIOC4D
		00010b: MTIOC1A	00010b: MTIOC1A
			00011b: MTIOC4A
		01001b: CLKOUT	01001b: CLKOUT
			11001b: TS33
PE6PFS	—	PE6 pin function control register	—
PE7PFS		PE7 pin function control register	_
PEnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PE2: IRQ7 (100/64/48-pin)	PE2: IRQ7 (80/64/48/32-pin)
		PE5: IRQ5 (100/64-pin)	PE5: IRQ5 (80/64-pin)
		PE6: IRQ6 (100-pin)	
		PE7: IRQ7 (100-pin)	

Register	Bit	RX231 (n = 0 to 7)	RX140 (n = 0 to 5)
PEnPFS	ASEL	Analog function select bit	Analog function select bit
		0: Used as other than as analog pin	0: Used as other than as analog pin
		1: Used as analog pin	1: Used as analog pin
		PE0: AN016 (100/64-pin)	PE0: AN016 (80/64-pin)
		PE1: AN017, CMPB0	PE1: AN017, CMPB0
		(100/64/48-pin)	(80/64/48/32-pin)
		PE2: AN018, CVREFB0	PE2: AN018, CVREFB0
		(100/64/48-pin)	(80/64/48/32-pin)
		PE3: AN019 (100/64/48-pin)	PE3: AN019 (80/64/48/32-pin)
		PE4: AN020, CMPA2	PE4: AN020, CMPA2
		(100/64/48-pin)	(80/64/48/32-pin)
		PE5: AN021 (100/64-pin)	PE5: AN021 (80/64-pin)
		PE6: AN022 (100-pin)	
		PE7: AN023 (100-pin)	

Table 2.38	Comparison of PHn Pin Function Control Register (PHnPFS)
------------	--

Register	Bit	RX231 (n = 0 to 3)	RX140 (n = 0 to 3)
PH0PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
			00001b: MTIOC3B
		00111b: CACREF	00111b: CACREF
			11001b: TS10
PH1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
			00001b: MTIOC3D
		00101b: TMO0	00101b: TMO0
			11001b: TS9
PH2PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
			00001b: MTIOC4C
		00101b: TMRI0	00101b: TMRI0
			11001b: TS8
PH3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
			00001b: MTIOC4D
		00101b: TMCI0	00101b: TMCI0
			11001b: TS7

Table 2.39 Comparison of PJn Pin Function Control Register (PJnPFS)

Register	Bit	RX231 (n = <mark>3</mark>)	RX140 (n = 1, 6, 7)
PJ1PFS	—	_	PJ1 pin function control register
PJ3PFS	—	PJ3 pin function control register	

Register	Bit	RX231	RX140
PFCSE	—	CS output enable register	—
PFAOE0	—	Address output enable register 0	—
PFAOE1		Address output enable register 1	—
PFBCR0	—	External bus control register 0	—
PFBCR1	—	External bus control register 1	—

Table 2.40 Comparisons of Multi-Function Pin Controller Registers

2.16 Port Output Enable 2

Table 2.41 is a comparative overview of the port output enable 2 modules.

Item	RX231 (POE2a)	RX140 (POE2a)
High-impedance control by input level detection	 Ability to specify falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 clock cycles for each of the POE0# to POE3# and POE8# input pins Ability to put pins for complementary PWM output from the MTU in the high-impedance state on detection of falling edges or sampling of the low level on the POE0# to POE3# pins Ability to put pins for output from MTU0 in the high-impedance state on detection of falling edges or sampling of the low level on the POE0# to POE3# pins 	 Ability to specify falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 clock cycles for each of the POE0# to POE3#, and POE8# input pins Ability to put pins for complementary PWM output from the MTU in the high-impedance state on detection of falling edges or sampling of the low level on the POE0# to POE3# pins Ability to put pins for output from MTU0 in the high-impedance state on detection of falling edges or sampling of the low level on the POE8# pin.
High-impedance control by output level comparison	Ability to compare levels output on pins for complementary PWM output from the MTU and put them in the high- impedance state when simultaneous output of the active level continues for one or more cycles of the PCLK clock	Ability to compare levels output on pins for complementary PWM output from the MTU and put them in the high- impedance state when simultaneous output of the active level continues for one or more cycles of the PCLK clock
High-impedance control by oscillation stop detection	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state when oscillation by the clock generation circuit stops	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state when oscillation by the clock generation circuit stops
High-impedance control by software (registers)	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state by writing to the POE registers	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state by writing to the POE registers
High-impedance control by event signals	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state in response to an event signal from the event link controller (ELC)	—
Interrupts	Ability to generate interrupts in response to the results of POE0# to POE3# and POE8# input-level detection or MTU complementary PWM output-level comparison	Ability to generate interrupts in response to the results of POE0# to POE3#, and POE8# input-level detection or MTU complementary PWM output-level comparison

Table 2.41 Comparative Overview of Port Output Enable 2 Modules

2.17 Compare Match Timer

Table 2.42 is a comparative overview of the compare match timers, and Table 2.43 is a comparison of compare match timer registers.

Item	RX231 (CMT)	RX140 (CMT)
Number of channels	4 channels	2 channels
Count clocks	Four frequency-divided clocks: One clock from among PCLK/8, PCLK/32, PCLK/128, and PCLK/512 can be selected individually for each channel.	Four frequency-divided clocks: One clock from among PCLK/8, PCLK/32, PCLK/128, and PCLK/512 can be selected individually for each channel.
Interrupt	A compare match interrupt can be requested for each channel.	A compare match interrupt can be requested for each channel.
Event link function (output)	Event signal output at CMT1 compare match	Event signal output at CMT1 compare match
Event link function (input)	 Support for linked operation of specified module Support for CMT1 counter start, event counter, and count restart 	 Support for linked operation of specified module Support for CMT1 counter start, event counter, and count restart
Low power consumption function	Ability to specify module stop state for each unit	Ability to specify module stop state for each unit

Table 2.42 Comparative Overview of Compare Match Timers

Table 2.43 Comparison of Compare Match Timer Registers

Register	Bit	RX231 (CMT)	RX140 (CMT)
CMSTR1		Compare match timer start register 1	

2.18 Realtime Clock

Table 2.44 is a comparative overview of realtime clocks, and Table 2.45 is a comparison of realtime clock registers.

Item	RX231 (RTCe)	RX140 (RTC <mark>c</mark>)
Count modes	Calendar count mode/binary count mode	Calendar count mode/binary count mode
Count source	Sub-clock (XCIN)	Sub-clock (XCIN)
Clock and calendar functions	 Calendar count mode Year, month, date, day-of-week, hour, minute, second are counted, BCD display 12 hours/24 hours mode switching function 30 seconds adjustment function (a number less than 30 is rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute) Automatic adjustment function for leap years Binary count mode Count seconds in 32 bits, binary display Common to both modes Start/stop function The sub-second digit is displayed in binary units (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, or 64 Hz). Clock error correction function Clock (1 Hz/64 Hz) output 	 Calendar count mode Year, month, date, day-of-week, hour, minute, second are counted, BCD display 12 hours/24 hours mode switching function 30 seconds adjustment function (a number less than 30 is rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute) Automatic adjustment function for leap years Binary count mode Count seconds in 32 bits, binary display Common to both modes Start/stop function The sub-second digit is displayed in binary units (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, or 64 Hz). Clock error correction function Clock (1 Hz/64 Hz) output
Interrupt	 Alarm interrupt (ALM) As an alarm interrupt condition, selectable which of the below is compared with: Calendar count mode: Year, month, date, day-of-week, hour, minute, or second can be selected Binary count mode: Each bit of the 32-bit binary counter Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, or 1/256 second can be selected as an interrupt period. 	 Alarm interrupt (ALM) As an alarm interrupt condition, selectable which of the below is compared with: Calendar count mode: Year, month, date, day-of-week, hour, minute, or second can be selected Binary count mode: Each bit of the 32-bit binary counter Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, or 1/256 second can be selected as an interrupt period.

Table 2.44 Comparative Overview of Realtime Clocks

Item	RX231 (RTCe)	RX140 (RTCc)
Interrupt	 Carry interrupt (CUP) An interrupt is generated at either of the following timings: 	 Carry interrupt (CUP) An interrupt is generated at either of the following timings:
	 When a carry from the 64-Hz counter to the second counter is generated. When the 64-Hz counter is changed and the R64CNT register is read at the same time. Recovery from software standby mode can be performed by an alarm 	 When a carry from the 64-Hz counter to the second counter is generated. When the 64-Hz counter is changed and the R64CNT register is read at the same time. Recovery from software standby mode can be performed by an alarm
	interrupt or periodic interrupt	interrupt or periodic interrupt
Time-capture function	Times can be captured when the edge of the time capture event input pin is detected.	
	For every event input, month, date, hour, minute, and second are captured or 32- bit binary counter value is captured.	
Event link function	Periodic event output	

Table 2.45 Comparison of Realtime Clock Registers

Register	Bit	RX231 (RTCe)	RX140 (RTCc)
RCR3	—	RTC control register 3	—
RTCCRy		Time capture control register y (y = 0 to 2)	
RSECCPy/ BCNT0CPy		Second capture register y (y = 0 to 2)/ BCNT0 capture register y (y = 0 to 2)	—
RMINCPy/ BCNT1CPy		Minute capture register y (y = 0 to 2)/ BCNT1 capture register y (y = 0 to 2)	—
RHRCPy/ BCNT2CPy		Hour capture register y (y = 0 to 2)/ BCNT2 capture register y (y = 0 to 2)	—
RDAYCPy/ BCNT3CPy		Date capture register y (y = 0 to 2)/ BCNT3 capture register y (y = 0 to 2)	—
RMONCPy	—	Month capture register y (y = 0 to 2)	—

2.19 Low-Power Timer

Table 2.46 is a comparative overview of the low-power timers, and Table 2.47 is a comparison of low-power timer registers.

Item	RX231 (LPT)	RX140 (LPT <mark>a</mark>)	
Clock source	Sub-clock oscillator or IWDT-dedicated oscillator	Sub-clock, LOCO clock (divided by 4), or IWDT-dedicated clock	
Clock division ratio	Divided by 2, 4, 8, 16, or 32	No division, or divided by 2, 4, 8, 16, or 32	
Count operation	 Count up using the 16-bit up-counter Count operation can be continued even in software standby mode 	 Count up using the 16-bit up-counter. Count operation can be continued even in software standby mode. 	
Compare match	Compare match 0 (A compare match signal is generated only in software standby mode)	 Compare match 0 (A compare match signal is generated only in software standby mode.) Compare match 1 	
PWM waveform generation	—	A PWM waveform can be output on the LPT0 pin.	
Interrupt	—	Compare match 1	
Event link function (output)	 Compare match 0 An event signal is output (a compare match signal is generated only in software standby mode). 	 Compare match 0 (A compare match signal is generated only in software standby mode.) Compare match 1 	

Table 2.46 Comparative Overview of Low-Power Timers

Register	Bit	RX231 (LPT)	RX140 (LPTa)
LPTCR1	LPCNTPSSEL [2:0]	Low-power timer clock division ratio select bits	Clock division ratio select bits
		b2 b0	b2 b0
			0 0 0: No division
		0 0 1: Source clock divided by 2	0 0 1: Divided by 2
		0 1 0: Source clock divided by 4	0 1 0: Divided by 4
		0 1 1: Source clock divided by 8	0 1 1: Divided by 8
		1 0 0: Source clock divided by 16	0 0 0: Divided by 16
		1 0 1: Source clock divided by 32	1 0 1: Divided by 32
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
	LPCNTCKSEL	Low-power timer clock source	Clock source select bit 2 (b3),
	(RX231) LPCNTCKSEL2,	select bit	clock source select bit (b4)*2
	LPCNTCKSEL		b4 b3
	(RX140)	0: Sub-clock oscillator is selected.	0 0: Sub-clock
		1: IWDT-dedicated on-chip oscillator is selected.	0 1: LOCO clock divided by 4*1
			1 0: IWDT-dedicated clock (IWDTCLK)
			1 1: LOCO clock divided by 4*1
			Make settings such that the
			frequency of the system clock
			(ICLK) and peripheral module
			clock (PCLKB) $\ge 4 \times$ (the
			frequency of the clock source).
	LPCMRE1	—	Compare match 1 enable bit
LPTCR2	OPOL	<u> </u>	Output polarity select bit
	OLVL	<u> </u>	Output level select bit
	PWME	—	PWM mode enable bit
LPCMR1		—	Low-power timer compare registe

Table 2.47 Comparison of Low-Power Timer Registers

Notes: 1. The clock generated by the low-speed on-chip oscillator (LOCO), divided by 4, is supplied to the low-power timer. To ensure that operation of the LOCO clock continues in software standby mode when it being used as the clock source of the low-power timer, set the LFOCR.LOFXIN bit to 1.

2. Modify these bits when the value of the LPTCR2.LPCNTSTP bit is 1 (low-power timer clock is stopped).

2.20 Independent Watchdog Timer

Table 2.48 is a comparative overview of the independent watchdog timers.

ltem	RX231 (IWDTa)	RX140 (IWDTa)
Count source	IWDT-dedicated clock (IWDTCLK)	IWDT-dedicated clock (IWDTCLK)
Clock division ratio	Divide by1, 16, 32, 64, 128, or 256	Divide by 1, 16, 32, 64, 128, or 256
Counter operation	Counting down using a 14-bit down- counter	Counting down using a 14-bit down- counter
Conditions for starting the counter	 Counting automatically starts after a reset (auto-start mode) Counting is started (register start mode) by refreshing the counter (writing 00h and then FFh to the IWDTRR register). 	 Auto-start mode: Counting starts automatically after a reset. Register start mode: Counting is started by refreshing the counter (writing 00h and then FFh to the IWDTRR register).
Conditions for stopping the counter	 Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error is generated Counting restarts (in auto-start mode, counting automatically restarts after a reset or after a non-maskable interrupt request is output. In register start mode, counting restarts after refreshing.) 	 Reset (the down-counter and other registers return to their initial values) Low power consumption state (by means of register setting) Underflow or refresh error (register start mode only)
Window function	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)
Reset output	Down-counter underflows	Down-counter underflows
sources	 Refreshing outside the refresh- permitted period (refresh error) 	Refreshing outside the refresh- permitted period (refresh error)
Non-maskable	Down-counter underflows	Down-counter underflows
interrupt sources	 When refreshing is done outside the refresh-permitted period (refresh error) 	When refreshing is done outside the refresh-permitted period (refresh error)
Reading the counter value	The down-counter value can be read by the IWDTSR register.	The down-counter value can be read by the IWDTSR register.
Event link function (output)	Down-counter underflow event outputRefresh error event output	—
Output signals (internal signals)	Reset outputInterrupt request outputSleep mode count stop control output	 Reset output Interrupt request output Sleep mode count stop control output

Table 2.48 Comparative Overview of Independent Watchdog Timers

Item	RX231 (IWDTa)	RX140 (IWDTa)
Auto-start mode (controlled by option function select register 0 (OFS0))	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0]bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (OFS0.IWDTSLCSTP 	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the vindow end position in the independent watchdog timer (OFS0.IWDTRPES[1:0]bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (OFS0.IWDTSLCSTP
Register start mode (controlled by the IWDT registers)	 bit) Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the vindow end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (IWDTCSTPR.SLCSTP bit) 	 bit) Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the vindow end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (IWDTCSTPR.SLCSTP bit)

2.21 Serial Communications Interface

Table 2.49 is a comparative overview of the serial communications interfaces, and Table 2.50 is a comparison of serial communications interface channel specifications, and Table 2.51 is a comparison of serial communications interface registers.

Item		RX231 (SCIg, SCIh)	RX140 (SCIg, <mark>SCIk</mark> , SCIh)
Number of char	nnels	SCIg: 6 channels	SCIg: 3 channels
			SClk: 2 channels
		SCIh: 1 channel	SCIh: 1 channel
Serial communi	cations modes	Asynchronous	Asynchronous
		Clock synchronous	Clock synchronous
		Smart card interface	Smart card interface
		Simple I ² C bus	• Simple I ² C bus
		Simple SPI bus	Simple SPI bus
Transfer speed		Bit rate specifiable by on-chip baud rate generator.	Bit rate specifiable by on-chip baud rate generator.
Full-duplex communication		 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure. 	 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure.
Data transfer		Selectable as LSB first or MSB first transfer.	Selectable as LSB first or MSB first transfer.
I/O signal level	inversion	—	The levels of input and output signals can be inverted independently (SCI1 and SCI5).
Interrupt source	2S	Transmit end, transmit data empty, receive data full, and receive error, completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	Transmit end, transmit data empty, receive data full, receive error, and data match (SCI1 and SCI5), completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)
Low power cons	sumption function	Individual channels can be transitioned to the module stop state.	Individual channels can be transitioned to the module stop state.
Asynchronous	Data length	7, 8, or 9 bits	7, 8, or 9 bits
mode	Transmission stop bits	1 or 2 bits	1 or 2 bits
	Parity	Even parity, odd parity, or no parity	Even parity, odd parity, or no parity
	Receive error detection function	Parity, overrun, and framing errors	Parity, overrun, and framing errors
	Hardware flow control	CTSn# and RTSn# pins can be used in controlling transmission/reception.	CTSn# and RTSn# pins can be used in controlling transmission/reception.

Table 2.49	Comparative	Overview of	Serial	Communications Interfaces
------------	-------------	--------------------	--------	---------------------------

Item		RX231 (SCIg, SCIh)	RX140 (SCIg, <mark>SCIk</mark> , SCIh)
Asynchronous mode	Data match detection		Compares receive data and comparison data, and generates interrupt when they are matched (SCI1 and SCI5)
	Start-bit detection	Low level or falling edge is selectable.	Low level or falling edge is selectable.
	Receive data sampling timing adjustment		The receive data sampling point can be shifted from the center of the data forward or backward to a base point (SCI1 and SCI5).
	Transmit signal change timing adjustment		Either the falling or rising edge of the transmit data can be delayed (SCI1 and SCI5).
	Break detection	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.	When a framing error occurs, a break can be detected by reading the RXDn pin level directly or by reading the SPTR.RXDMON flag (SCI1 or SCI5).
	Clock source	 An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5, SCI6, and SCI12). 	 An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5, SCI6, and SCI12).
	Double-speed mode	Baud rate generator double- speed mode is selectable.	Baud rate generator double- speed mode is selectable.
	Multi-processor communications function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	The signal paths from input on the RXDn pins incorporate digital noise filters.
Clock	Data length	8 bits	8 bits
synchronous mode	Receive error detection	Overrun error	Overrun error
	Hardware flow control	CTSn and RTSn pins can be used in controlling transmission/ reception.	CTSn# and RTSn# pins can be used in controlling transmission/ reception.
Smart card interface mode	Error processing	 An error signal can be automatically transmitted when detecting a parity error during reception Data can be automatically retransmitted when receiving an error signal during transmission 	 An error signal can be automatically transmitted when detecting a parity error during reception Data can be automatically retransmitted when receiving an error signal during transmission
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.

Item		RX231 (SCIg, SCIh)	RX140 (SCIg, <mark>SCIk</mark> , SCIh)
Simple I ² C mode	Communication format	I ² C bus format	I ² C bus format
mode	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer rate Noise cancellation	Fast mode is supported. The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.	Fast mode is supported. The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.
Simple SPI mode	Data length Detection of errors	8 bits Overrun error	8 bits Overrun error
	SS input pin function	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.	Four kinds of settings for clock phase and clock polarity are selectable.
Extended serial mode (supported by SCI12 only)	Start frame transmission	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection 	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection
	Start frame reception	 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates 	 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates

Item		RX231 (SCIg, SCIh)	RX140 (SCIg, <mark>SCIk</mark> , SCIh)
Extended serial mode (supported by SCI12 only)	I/O control function	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin Signals received on RXDX12 can be passed through to SCIg when the extended serial mode control section is turned off. 	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin
Bit rate modulat	Timer function	Usable as reloading timer Correction of outputs from the on-chip baud rate generator can reduce errors.	Usable as reloading timer Correction of outputs from the on-chip baud rate generator can reduce errors.
Event link funct SCI5 only)	ion (supported by	 Error (receive error or error signal detection) event output Receive data full event output Transmit data empty event output Transmit end event output 	 Error (receive error or error signal detection) event output Receive data full event output Transmit data empty event output Transmit end event output

Table 2.50	Comparison of Serial	Communications Interface	Channel Specifications
------------	----------------------	---------------------------------	------------------------

Item	RX231 (SCIg, SCIh)	RX140 (SCIg, SCIk, SCIh)
Synchronous mode	SCI0, SCI1, SCI5, SCI6, SCI8,	SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI9, SCI12	SCI12
Clock synchronous mode	SCI0, SCI1, SCI5, SCI6, SCI8,	SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI9, SCI12	SCI12
Smart card interface mode	SCI0, SCI1, SCI5, SCI6, SCI8,	SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI9, SCI12	SCI12
Simple I ² C mode	SCI0, SCI1, SCI5, SCI6, SCI8,	SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI9, SCI12	SCI12
Simple SPI mode	SCI0, SCI1, SCI5, SCI6, SCI8,	SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI9, SCI12	SCI12
Data match detection		SCI1, SCI5
Extended serial mode	SCI12	SCI12
TMR clock input	SCI5, SCI6, SCI12	SCI5, SCI6, SCI12
Event link function	SCI5	SCI5
Peripheral module clock	PCLKB:	PCLKB:
	SCI0, SCI1, SCI5, SCI6, SCI8,	SCI1, SCI5, SCI6, SCI8, SCI9,
	SCI9, SCI12	SCI12

Register	Bit	RX231 (SCIg, SCIh)	RX140 (SCIg, <mark>SCIk</mark> , SCIh)
SCR	CKE[1:0]	Clock enable bits	Clock enable bits
		 (Asynchronous mode) b1 b0 0 0: On-chip baud rate generator The SCKn pin is in the high-impedance state. 0 1: On-chip baud rate generator A clock with the same frequency as the bit rate is output on the SCKn pin. 1 x: External clock or MTU clock When using an external clock, input a clock with a frequency 16 times the bit rate on the SCKn pin. When the SEMR.ABCS bit is set to 1, input a clock with a frequency eight times the bit rate. When using the MTU clock, the SCKn pin is in the high-impedance state. 	 (Asynchronous mode) b1 b0 0 0: On-chip baud rate generator The SCKn pin is in the high-impedance state. 0 1: On-chip baud rate generator A clock with the same frequency as the bit rate is output on the SCKn pin. 1 x: External clock or TMR clock*¹ When using an external clock, input a clock with a frequency 16 times the bit rate on the SCKn pin. When the SEMR.ABCS bit is set to 1, input a clock with a frequency eight times the bit rate. When using the TMR clock, the SCKn pin is in the high-impedance state.
		 (Clock synchronous mode) b1 b0 0 x: Internal clock: The SCKn pin functions as the clock output pin. 1 x: External clock: The SCKn pin functions as the clock input pin. 	 (Clock synchronous mode) b1 b0 0 x: Internal clock: The SCKn pin functions as the clock output pin. 1 x: External clock: The SCKn pin functions as the clock input pin.
SEMR	ITE		Immediate transmission enable bit
	ABCSE	—	Asynchronous basic clock select extended bit
CDR			Comparison data register
DCCR	<u> </u>		Data comparison control register
SPTR			Serial port register
TMGR	—		Transmit/receive timing select register
ESMER	—	_	Extended serial module enable register

Table 2.51 Comparison of Serial Communications Interface Registers

Note: 1. Selectable on SCI5, SCI6, and SCI12 only.

2.22 Serial Peripheral Interface

Table 2.52 is a comparative overview of serial peripheral interfaces, and Table 2.53 is a comparison of serial peripheral interface registers.

ltem	RX231 (RSPIa)	RX140 (RSPIc)	
Number of channels	1 channel	1 channel	
RSPI transfer functions	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK 	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK 	
Data format	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). 	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). Byte swapping of transmit and receive data is selectable 	
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 8). Width at high level: 4 cycles of PCLK Width at low level: 4 cycles of PCLK 	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 4 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 4). Width at high level: 2 cycles of PCLK Width at low level: 2 cycles of PCLK 	
Buffer configuration	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers 	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers 	
Error detection	 Mode fault error detection Overrun error detection Parity error detection 	 Mode fault error detection Overrun error detection Parity error detection Underrun error detection 	

Table 2.52 Cor	mparative Overview	of Serial Peri	pheral Interfaces
----------------	--------------------	----------------	-------------------

Item	RX231 (RSPIa)	RX140 (RSPIc)
SSL control function	• Four SSL pins (SSLA0 to SSLA3) for	Four SSL pins (SSLA0 to SSLA3) for
	each channel	each channel
	In single-master mode, SSLA0 to	 In single-master mode, SSLA0 to
	SSLA3 pins are output.	SSLA3 pins are output.
	 In multi-master mode: SSLA0 pin for input, and SSLA1 to 	 In multi-master mode: SSLA0 pin for input, and SSLA1 to
	SSLA9 pin for hiput, and SSLA1 to SSLA3 pins for either output or	SSLA0 pin for hiput, and SSLA1 to SSLA3 pins for either output or
	unused.	unused.
	In slave mode:	In slave mode:
	SSLA0 pin for input, and SSLA1 to	SSLA0 pin for input, and SSLA1 to
	SSLA3 pins for unused.	SSLA3 pins for unused.
	Controllable delay from SSL output assertion to RSPCK operation	 Controllable delay from SSL output assertion to RSPCK operation
	(RSPCK delay)	(RSPCK delay)
	- Range: 1 to 8 RSPCK cycles (set	- Range: 1 to 8 RSPCK cycles (set
	in RSPCK-cycle units)	in RSPCK-cycle units)
	Controllable delay from RSPCK stop	Controllable delay from RSPCK stop
	to SSL output negation (SSL	to SSL output negation (SSL
	negation delay) — Range: 1 to 8 RSPCK cycles (set	negation delay) — Range: 1 to 8 RSPCK cycles (set
	in RSPCK-cycle units)	in RSPCK-cycle units)
	Controllable wait for next-access	Controllable wait for next-access
	SSL output assertion (next-access	SSL output assertion (next-access
	delay)	delay)
	- Range:1 to 8 RSPCK cycles (set	- Range:1 to 8 RSPCK cycles (set
	in RSPCK-cycle units)Function for changing SSL polarity	in RSPCK-cycle units) Function for changing SSL polarity
Control in master	 Function for changing SSL polarity A transfer of up to eight commands 	 Function for changing SSL polarity A transfer of up to eight commands
transfer	can be executed sequentially in	can be executed sequentially in
	looped execution.	looped execution.
	For each command, the following	For each command, the following
	can be set:	can be set:
	SSL signal value, bit rate, RSPCK polarity/phase, transfer data length,	SSL signal value, bit rate, RSPCK polarity/phase, transfer data length,
	MSB/LSB first, burst, RSPCK delay,	MSB/LSB first, burst, RSPCK delay,
	SSL negation delay, and next-access	SSL negation delay, and next-access
	delay	delay
	A transfer can be initiated by writing to the transmit buffer.	 A transfer can be initiated by writing to the transmit buffer.
	 MOSI signal value specifiable in SSL 	 MOSI signal value specifiable in SSL
	negation	negation
	RSPCK auto-stop function	RSPCK auto-stop function
Interrupt sources	Receive buffer full interrupt	Receive buffer full interrupt
	Transmit buffer empty interrupt	Transmit buffer empty interrupt
	RSPI error interrupt (mode fault,	Error interrupt (mode fault, overrun, underrup, or parity error)
	overrun, or parity error)RSPI idle interrupt (RSPI idle)	underrun, or parity error)Idle interrupt
Event link function	The following events can be output to	
(output)	the event link controller. (RSPI0)	
	Receive buffer full signal	
	Transmit buffer empty signal	
	Mode fault, overrun, or parity error	
	signal	
	RSPI idle signal	
	Transmission-completed signal	

Item	RX231 (RSPIa)	RX140 (RSPIc)
Other functions	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode 	Function for initializing the RSPILoopback mode
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Table 2.53	Comparison of	Serial Peripheral	Interface Registers
------------	---------------	--------------------------	---------------------

Register	Bit	RX231 (RSPIa)	RX140 (RSPIc)
SPSR	MODF	Mode fault error flag	Mode fault error flag
		0: No mode fault error occurs	0: Neither a mode fault error nor an underrun error occurs
		1: A mode fault error occurs	1: A mode fault error or an underrun error occurs
	UDRF		Underrun error flag
SPDR		RSPI data register	RSPI data register
		Accessible size	Accessible size
		Longwords access	Longwords access
		(SPDCR.SPLW = 1)	(SPDCR.SPLW = 1, SPBYTE = 0)
		Words access	Words access
		(SPDCR.SPLW = 0)	(SPDCR.SPLW = 0, SPBYTE = 0)
			Bytes access
			(SPDCR.SPBYT = 1)
SPDCR	SPBYT		RSPI byte access specification bit
SPCR2	SPPE	Parity enable bit	Parity enable bit
		 0: A parity bit is not added to transmit data, and no parity checking of receive data is performed. 1: A parity bit is added to transmit data, and parity checking of receive data is performed (when SPCR.TXMD = 0). A parity bit is added to transmit data, but no parity checking of receive data is performed (when SPCR.TXMD = 1). 	 0: A parity bit is not added to transmit data, and no parity checking of receive data is performed. 1: A parity bit is added to transmit data, and parity checking of receive data is performed.
SPDCR2	—	—	RSPI data control register 2

2.23 Capacitive Touch Sensing Unit

Table 2.54 is a comparative overview of the capacitive touch sensing units, and Table 2.55 is a comparison of capacitive touch sensing unit registers.

ltem		RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
Operating clock		PCLK, PCLK/2, or PCLK/4	Selectable among PCLKB (1 MHz and above), PCLKB/2, or PCLKB/4, and PCLKB/8
I/O pins	Electrostatic capacitance measurement pins	Electrostatic capacitance measurement pins (24 channels)	Electrostatic capacitance measurement pins (36*1/12 channels)
	Measurement power supply capacitor connection pin	TSCAP	TSCAP (0.01 µF)
Measurement modes	Self-capacitance method	A single touch key is assigned to a single touch pin, and the electrostatic capacitance when in proximity to the human body is measured.	The electrostatic capacitance of pins is determined by measuring the current flow to a switched capacitor.
	Mutual capacitance method	The electrostatic capacitance between two electrodes facing each other (transmission electrode and reception electrode) is measured.	The mutual capacitance between two pins is determined by measuring the current flow to a switched capacitor.
		 The transmission power supply can be switched between the internal logic power supply and VCC (dedicated). 	 The transmission power supply can be switched among the internal logic power supply, I/O power supply, and VCC (dedicated).
	Current measurement mode		Direct reading of current flowing to pin
Scan modes	Single-scan mode	Electrostatic capacitance is measured on a user-defined channel.	Electrostatic capacitance is measured on one channel.
	Multi-scan mode	Electrostatic capacitance is measured on multiple user- defined channels successively.	Electrostatic capacitance is measured on multiple channels successively.
Noise prevention		Synchronous noise prevention, high-range noise prevention	 Sensor drive pulse spectrum diffusion function Sensor drive pulse random phase shift function Noise hopping function using multiple-frequency sensor drive pulses
Individual pin adjustments		 Offset current adjustment function Specification of sensor drive pulse frequency Specification of measurement duration 	 Offset current adjustment function Specification of sensor drive pulse frequency Specification of measurement duration

Table 2.54 Comparative Overview of Capacitive Touch Sensing Units

Item	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
Measurement start conditions	 Software trigger External trigger (event input from event link controller (ELC)) 	 Software trigger External trigger (event input from event link controller (ELC))
Automatic processing functions		 Automatic correction function*1 Automatic determination function*1
Low-power functions		 Ability to perform measurement in snooze mode Measurement start by external trigger input via ELC Ability to end snooze mode by contactless determination using automatic determination function*1 Ability to cancel snooze mode by measurement end interrupt
Interrupt sources	 Channel-specific setting register write request interrupt (CTSUWR) Measurement data transfer request interrupt (CTSURD) Measurement end interrupt (CTSUFN) 	 Register setting request interrupt (CTSUWR) Measurement result read request interrupt (CTSURD) Measurement end interrupt (CTSUFN)
Event link function		Measurement start trigger input

Note: 1. These functions are implemented on products with ROM capacity of 128 KB or greater.

Table 2.55	Comparison of Capacitive Touch Sensing Unit Registers	,
------------	---	---

Register	Bit	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUCR0, CTSUCR1 (RX231)	_	CTSU control register 0, CTSU control register 1	CTSU control register A
CTSUCRA (RX140)		CTSUCR0 and CTSUCR1 are 8-bit registers.	CTSUCRA is a <mark>32</mark> -bit register.
	CTSUCR0.CTSUSTRT (RX231) STRT (RX140)	CTSU measurement operation start bit	Measurement operation start bit
	CTSUCR0.CTSUCAP (RX231) CAP (RX140)	CTSU measurement operation start trigger select bit	Measurement start trigger select bit
	CTSUCR0.CTSUSNZ (RX231) SNZ (RX140)	CTSU wait state power- saving enable bit	Snooze function enable bit
	CTSUCR0.CTSUIOC	CTSU transmit pin control bit	_
			(The CTSUCALIB.IOC bit performs the same function.)
	CTSUCR0.CTSUINIT (RX231) INIT (RX140)	CTSU control block initialization bit	Control block initialization bit
	TXVSEL[1:0] (RX140)	_	Transmission power supply select bit (b7 and b6)
			b7 b6 0 0: I/O power supply 0 1: VCC 1 0: Internal logic power supply
			1 1: VCC
	CTSUCR1.CTSUPON (RX231) PON (RX140)	CTSU power supply enable bit (b0)	Measurement power supply enable bit (b8)
	CTSUCR1.CTSUCSW (RX231) CSW (RX140)	CTSU LPF capacitance charging control bit (b1)	LPF capacitance charging control bit (b9)
	CTSUCR1.CTSUATUNE0 (RX231) ATUNE0 (RX140)	CTSU power supply operating mode setting bit (b2)	Power supply operating mode setting bit (b10)
			Set this bit to 1 when the VCC voltage is less than 2.4 V.

Register	Bit	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUCR0,	CTSUCR1.CTSUATUNE1	CTSU power supply	Current range setting bit 1
CTSUCR1	(RX231)	capacity adjustment bit (b3)	(b11)
(RX231)	ATUNE1, ATUNE12		Current range setting bit 2
CTSUCRA	(RX140)		(b17)
(RX140)		0: Normal output	
		1: High-current output	
			ATUNE2 ATUNE1
			0 0: 80 μΑ
			0 1: 40 µA
			0 0: 20 μA
		OTOL	1 1: 160 μA
	CTSUCR1.CTSUCLK[1:0]	CTSU operating clock	Operating clock select bits
	(RX231) CLK[1:0] (RX140)	select bits (b5 and b4)	(b13 and b12)
	CLR[1.0] (RX140)	b5 b4	b13 b12
		0 0: PCLK	0 0: PCLKB
		0 1: PCLK/2	0 1: PCLKB/2
		(PCLK divided by 2)	(PCLKB divided by 2)
		1 0: PCLK/4	1 0: PCLKB/4
		(PCLK divided by 4)	(PCLKB divided by 4)
		1 1: Setting prohibited.	1 1: PCLKB/8
			(PCLKB divided by 4)
	CTSUCR1.CTSUMD[1:0]	CTSU measurement mode	Measurement mode select
	(RX231)	select bits	bits 0 and 1
	MD0, MD1 (RX140)	(b7 and b6)	(b15 and b14)
		b7 b6	b15 b14
		0 0: Self-capacitance	0 0: Self-capacitance
		single-scan mode	single-scan mode
		0 1: Self-capacitance multi-scan mode	0 1: Self-capacitance multi-scan mode
		1 0: Setting prohibited.	1 0: Mutual capacitance
		1 0. Setting profibited.	single-scan mode
		1 1: Mutual capacitance	1 1: Mutual capacitance
		full-scan mode	multi-scan mode
	PUMPON	—	Step-up circuit activation bit
			Set this bit to 1 when the
			VCC voltage is less than
			4.5 V.
	LOAD[1:0]		Measurement load control
			bits
	POSEL[1:0]		Non-measurement channel
			output select bits
	SDPSEL	-	Sensor drive panel select bit
	PCSEL	 	Step-up circuit clock select
			bit
	STCLK[5:0]		State clock select bits
	DCMODE		Current measurement
			mode select bit
	DCBACK		Current measurement
			feedback select bit
	1		

Register	Bit	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUSDPRS, CTSUSST (RX231) CTSUCRB (RX140)		CTSU synchronous noise reduction setting register, CTSU sensor stabilization wait control register	CTSU control register B
		CTSUSDPRS and CTSUSST are 8-bit registers.	CTSUCRB is a <mark>32</mark> -bit register.
	CTSUSDPRS. CTSUPRRATIO[3:0] (RX231)	CTSU measurement time and pulse count adjustment bits	Pseudorandom number update period setting bit* ¹
	PRRATIO (RX140)	Recommended setting value: 3 (0011b)	Sets the shift period of the linear feedback shift register (LFSR) used to generate pseudorandom numbers.
	CTSUSDPRS. CTSUPRMODE[1:0] (RX231) PRMODE (RX140)	CTSU base period and pulse count setting bits	Pseudorandom number generation cycle setting bit ^{*1}
		b5 b4	b5 b4
		0 0: 510 pulses	0 0: 255 cycles
		0 1: 126 pulses	0 1: 63 cycles
		1 0: 62 pulses (recommended setting value)	1 0: 31 cycles
		1 1: Setting prohibited.	1 1: 3 cycles
	CTSUSDPRS.CTSUSOFF (RX231) SOFF (RX140)	CTSU high-pass noise reduction function off setting bit	Frequency diffusion function off bit
	PROFF	_	Pseudorandom number off bit
	CTSUSST.CTSUSST[7:0] (RX231) SST[7:0] (RX140)	CTSU sensor stabilization wait control bits (b7 to b0)	Sensor stabilization wait time setting bits (b15 to b8)
		The value of these bits should be fixed at 0001 0000b.	 Random pulse mode If n is defined as the setting value when (CTSUCRA.SDPSEL = 0), the stabilization wait time is 2 (n + 1) cycles of the PCLKB- synchronous sensor drive pulse. High-resolution pulse mode If n is defined as the setting value when (CTSUCRA.SDPSEL = 1), the stabilization wait time is n + 1 cycles of STCLK.

Register	Bit	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUSDPRS,	SSMOD[2:0]		SUCLK diffusion mode
CTSUSST	001100[2:0]		select bits
(RX231)	SSCNT[1:0]		SUCLK diffusion control
CTSUCRB			bits
(RX140)			
CTSUMCH0,	—	CTSU measurement	CTSU measurement
CTSUMCH1		channel register 0,	channel register
(RX231)		CTSU measurement	
CTSUMCH (RX140)		channel register 1	
(11/140)		CTSUMCH0 and	CTSUMCHCTSUCRB is a
		CTSUMCH1 are 8-bit	32-bit register.
		registers.	
	CTSUMCH0.CTSUMCH0	CTSU measurement	Measurement channel 0
	[5:0] (RX231)	channel 0 bits (b5 to b0)	bits (b5 to b0)
	MCH0[5:0] (RX140)		
		Self-capacitance	Single-scan mode
		single-scan mode	Specifies the number of
		b5 b0	the receive channel to
		0 0 0 0 0 0: TS0	be measured.
		: :	
		100011:TS35	
		Other than above:	
		Starting measurement operation	
		(CTSUCR0.CTSUSTRT bit	
		= 1) is prohibited after	
		these bits are set.	
		Measurement modes	Multi-scan mode
		other than	Specifies the number of
		self-capacitance	the receive channel
		single-scan mode	currently being measured.
		b5 b0	measured.
		0 0 0 0 0 0: TS0	
		1 0 0 0 1 1: TS35	
		1 1 1 1 1 1 1: Measurement is	
		stopped.	
	CTSUMCH1.CTSUMCH1	CTSU measurement	Measurement channel 1
	[5:0] (RX231)	channel 1 bits (b5 to b0)	bits (b13 to b8)
	MCH1[5:0] (RX140)	``````````````````````````````````````	· · · ·
		B5 b0	Single-scan mode
		0 0 0 0 0 0: TS0	Specifies the number of
		: :	the transmit channel to
		1 0 0 0 1 1: TS35	be measured.
		1 1 1 1 1 1 1: Measurement is	 Multi-scan mode Specifies the number of
		stopped.	the transmit channel
			currently being
			measured.
	MCAn		Multi-clock n enable bit
			(n = 0 to 3)

Deviaten	Dit		
Register	Bit	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUCHACn	_	CTSU channel enable	CTSU channel enable
(RX231)		control register n $(n - 0, t_0, 4)$	control register x $(x = A, P)$
CTSUCHACx		(n = 0 to 4)	(x = A, B)
(RX140)			
		CTSUCHACn is an 8-bit	CTSUCHACx is a 32-bit register.
		register.	•
	CTSUCHACnj (RX231)	CTSU channel enable	Channel m enable control
	CHACm (RX140)	control nj bit (n = 0 to 4) (i = 0 to 7)	bit (m = 0 to 35)
CTSUCHTRCn		(j = 0 to 7) CTSU channel transmit/	CTSU channel transmit/
(RX231)	—	receive control register n	receive control register x
CTSUCHTRCx		(n = 0 to 4)	(x = A, B)
(RX140)		(1 - 0.04)	(× - A, B)
(17,7140)			CTSUCHTRCA is a 32-bit
		CTSUCHTRCn is an 8-bit	register.
	CTSUCHTRCnj (RX231)	register. CTSU channel transmit/	Channel m transmit/
	CHTRCm (RX140)	receive control nj bit	receive control bit
	CHTRUM (RX140)	(n = 0 to 4) (j = 0 to 7)	(m = 0 to 35)
CTSUDCLKC	CTSUSSMOD[1:0]	CTSU diffusion clock mode	
CISODOLINO	C13033MOD[1.0]	select bits	 (The
			CTSUCRB.SSMOD[2:0]
			bits perform the same
			function.)
	CTSUSSCNT[1:0]	CTSU diffusion clock	
	010000011[1.0]	control bits	(The
			CTSUCRB.CTSUSSCNT
			[1:0] bits perform the same
			function.)
CTSUST		CTSU status register	CTSU status register
(RX231)			Ŭ
CTSUSR		CTSUST is an 8-bit	CTSUSR is a 32-bit
(RX140)		register.	register.
	CTSUSTC[2:0] (RX231)	CTSU measurement status	Measurement status
	STC[2:0] (RX140)	counter (b2 to b0)	counter (b10 to b8)
	CTSUDTSR (RX231)	CTSU data transfer status	Data transfer status flag
	DTSR (RX140)	flag (b4)	(b12)
	CTSUSOVF (RX231)	CTSU sensor counter	Sensor counter overflow
	SOVF (RX140)	overflow flag (b5)	flag (<mark>b13</mark>)
	CTSUROVF (RX231)	CTSU reference counter	Sensor unit clock counter
	UCOVF (RX140)	overflow flag (b6)	overflow flag (b14)
	CTSUPS (RX231)	CTSU mutual capacitance	Mutual capacitance status
	PS (RX140)	status flag (b7)	flag (b15)
	MFC[1:0]		Multi-clock counter
	ICOMPRST	1	ICOMP0 and ICOMP1 flag
			reset bit
	ICOMP1	<u> </u>	Overcurrent detection flag
	ICOMP0	1	Overvoltage detection flag
CTSUSSC		CTSU high-pass noise	
		reduction spectrum	
		diffusion control register	
L	1		

Register	Bit	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUSO0,	—	CTSU sensor offset	CTSU sensor offset
CTSUSO1 (RX231)		registers 0 and 1	register
CTSUSO (RX140)		CTSUSO0 and CTSUSO1 are 16-bit registers.	CTSUSO is a <mark>32</mark> -bit register.
	CTSUSO0.CTSUSO[9:0] (RX231) SO[9:0] (RX140)	CTSU sensor offset adjustment bits	Sensor offset adjustment bits
	CTSUSO0.CTSUSNUM [5:0] (RX231) SNUM[7:0] (RX140)	CTSU measurement count setting bits (b15 to b10)	Measurement period setting bits (b17 to b10)
		These bits specify the number of measurements by the CTSU.	 Random pulse mode (CTSUCRA.SDPSEL = 0) The CTSU measurement period is specified as the number of times the basic measurement unit is repeated. The allowable setting range is 00h to 3Fh. If the setting value is n, the basic measurement unit is repeated n + 1 times. High-resolution pulse mode (CTSUCRA.SDPSEL = 1) The CTSU measurement period is based on STCLK cycles. If the setting value is n, measurement takes place for a period equal to 8 (n + 1) cycles of STCLK.
	CTSUSO1.CTSURICOA	CTSU reference ICO	—
	[7:0]	current adjustment bits	

Register	Bit	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUSO0,	CTSUSO1.CTSUSDPA	CTSU base clock setting	Base clock setting bits
CTSUSO1	[4:0] (RX231)	bits (b12 to b8)	(b31 to b24)
(RX231)	SDPA[7:0] (RX140)	· · · /	
CTSUSO		b12 b8	Random pulse mode
(RX140)		0 0 0 0 0: Operating clock	(CTSUCRA.SDPSEL
(10(110)		divided by 2	= 0)
		-	If the setting value is n,
		0 0 0 0 1: Operating clock	the base clock
		divided by 4	frequency is the
			operating clock divided
		11110: Operating clock	by 2 (n + 1).
		divided by 62	High-resolution pulse
		1 1 1 1 1: Operating clock	mode
		divided by 64	(CTSUCRA.SDPSEL
			= 1)
			If the setting value is n,
			the base clock
			frequency is n + 1
			SUCLK cycles.
	CTSUSO1.CTSUICOG	CTSUICO gain adjustment	—
	[1:0]	bits	
	SSDIV[3:0]		Spectrum diffusion
			sampling cycle control bits
CTSURC	—	CTSU reference counter	
CTSUERRS		CTSU error status register	CTSU calibration register
(RX231)			Ũ
CTSUCALIB		CTSUERRS is a 16-bit	CTSUCALIB is a 32-bit
(RX140)		register.	register.
	CTSUSPMD[1:0]	Calibration mode bits	
	CTSUTSOD (RX231)	TS pin fixed output bit	TS all-pin output control bit
	TSOD (RX140)		
	CTSUDRV (RX231)	Calibration setting bit 1	Calibration setting bit 1
	DRV (RX140)	Calibration Setting Sit 1	Subruion Setting bit 1
	CTSUTSOC (RX231)	Calibration setting bit 2	Calibration setting bit 2
	TSOC (RX140)	Calibration setting bit 2	Calibration setting bit 2
	CTSUICOMP	TSCAP voltage error monitor bit	—
			Manitan alask salast hita
	CLKSEL[1:0]		Monitor clock select bits
	SUCLKEN		SUCLK enable bit
	IOC		Transmit pin control bit
	DCOFF	—	Down-convert off bit
	IOCSEL*2		TS pin IOC fixed select bit
	DACCARRY		DAC upper current source
			carry input
	SUCARRY		CCO carry input
	DACCLK		DAC modulation circuit
			clock select bit
	J		CCO modulation circuit
	CCOCLK		
	CCOCLK		clock select bit
	CCOCLK		
			clock select bit
			clock select bit CCO calibration mode

Register	Bit	RX231 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUSUCLKA	—		CTSU sensor unit clock
			control register A
CTSUSUCLKB		_	CTSU sensor unit clock
			control register B
CTSUTRIMA	<u> </u>	<u> </u>	CTSU trimming register A
CTSUTRIMB		_	CTSU trimming register B
CTSUOPT*2	—		CTSU option setting
			register
CTSUSCNTAC			CTSU sensor counter
T* ²			automatic correction table
			access register
CTSUAJCR*2		_	CTSU automatic
			judgment control register
CTSUAJTHR*2		_	CTSU threshold register
CTSUAJMMAR		_	CTSU moving average
*2			result register
CTSUAJBLACT		_	CTSU baseline average
*2			intermediate result
			register
CTSUAJBLAR		_	CTSU baseline average
*2			result register
CTSUAJRR*2			CTSU automatic
			judgment result register
CTSUADCC			CTSU A/D converter
			connection control
			register

Note: 1. Valid only when the value of the CTSUCRA.SDPSEL bit is 0 (random pulse mode).

Note: 2. These registers are implemented on products with ROM capacity of 128 KB or greater.

2.24 12-Bit A/D Converter

Table 2.56 is a comparative overview of the 12-bit A/D converters, and Table 2.57 is a comparison of 12-bit A/D converter registers.

ltem	RX231 (S12ADE)	RX140 (S12ADE)
Number of units	1 unit	1 unit
Input channels	24 channels	18 channels
Extended analog function	Temperature sensor output, internal reference voltage	Temperature sensor output, internal reference voltage
A/D conversion method	Successive approximation method	Successive approximation method
Resolution	12 bits	12 bits
Conversion time	0.83 µs per channel (when A/D conversion clock ADCLK = 32 MHz)	Per channel Conversion cycle bit = 0: 0.88 μ s, conversion cycle bit = 1: 0.67 μ s (when A/D conversion clock (ADCLK) = 48 MHz)
A/D conversion clock	Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency ratio should be one of the following. PCLK to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, 8:1 ADCLK is set using the clock generation	Peripheral module clock PCLKB and A/D conversion clock ADCLK can be set so that the frequency ratio should be one of the following. PCLKB to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, 8:1 ADCLK is set using the clock generation
	circuit.	circuit.
Data registers	 24 registers for analog input and one for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register. 	 18 registers for analog input, one for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion The value obtained by adding up A/D- converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register.

Table 2.56 Comparative Overview of 12-Bit A/D Converters

Item	RX231 (S12ADE)	RX140 (S12ADE)
Operating modes	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 24 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 24 channels arbitrarily selected. Group scan mode: Analog inputs of up to 24 arbitrarily selected channels are divided into group A and group B, and A/D conversion of the analog inputs selected on a group basis is performed only once. Conversion start conditions (synchronous trigger) can be selected independently for group A and group B, allowing A/D conversion of the groups to start at different times. Group scan mode (when group A is given priority): If a group A trigger is input during A/D conversion on group B is stopped and A/D conversion is performed on group A. Restart (rescan) of A/D conversion on group A can be enabled. 	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 18 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 18 channels arbitrarily selected. Group scan mode: Analog inputs of up to 18 arbitrarily selected channels are divided into group A and group B, and A/D conversion of the analog inputs selected on a group basis is performed only once. Conversion start conditions (synchronous trigger) can be selected independently for group A and group B, allowing A/D conversion of the groups to start at different times. Group scan mode (when group A is given priority): If a group A trigger is input during A/D conversion on group B is stopped and A/D conversion is performed on group A. Restart (rescan) of A/D conversion on group A can be enabled.
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU), the event link controller (ELC), or the 16-bit timer pulse unit (TPU). Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin. 	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU) or event link controller (ELC) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin.

Item	RX231 (S12ADE)	RX140 (S12ADE)	
Functions	Variable sampling state count	Variable sampling state count	
	Self-diagnosis of 12-bit A/D converter	• Self-diagnosis of 12-bit A/D converter	
	Selectable A/D-converted value	Selectable A/D-converted value	
	addition mode or average mode	addition mode or average mode	
	Analog input disconnection detection	Analog input disconnection detection	
	function (discharge function/precharge	function (discharge function/precharge	е
	function	function)	
	Double trigger mode (duplication of	Double trigger mode (duplication of	
	A/D conversion data)	A/D conversion data)	
	Automatic clear function of A/D data	Automatic clear function of A/D data	
	registers	registers	
	Compare function (window A and	 Compare function (window A and 	
	window B)	window B)	
	16 ring buffers when the compare	 16 ring buffers when the compare 	
	function is used	function is used	
Interrupt	In the modes except double trigger	 In the modes except double trigger 	
sources	mode and group scan mode, A/D scan	mode and group scan mode, A/D scar	
	end interrupt request (S12ADI0) can be	end interrupt request (S12ADI0) can b	be
	generated on completion of single	generated on completion of single	
	scan.	scan.	
	• In double trigger mode, A/D scan end	• In double trigger mode, A/D scan end	
	interrupt request (S12ADI0) can be	interrupt request (S12ADI0) can be	
	generated on completion of double	generated on completion of double	
	scan.	scan.	
	 In group scan mode, an A/D scan end interrupt request (S12ADI0) can be 	 In group scan mode, an A/D scan end interrupt request (S12ADI0) can be 	1
	generated on completion of group A	generated on completion of group A	
	scan, whereas an A/D scan end	scan, whereas an A/D scan end	
	interrupt request (GBADI) for group B	interrupt request (GBADI) for group B	
	can be generated on completion of	can be generated on completion of	
	group B scan.	group B scan.	
	When double trigger mode is selected	When double trigger mode is selected	1
	in group scan mode, A/D scan end	in group scan mode, A/D scan end	
	interrupt request (S12ADI0) can be	interrupt request (S12ADI0) can be	
	generated on completion of double	generated on completion of double	
	scan of group A, whereas A/D scan	scan of group A, whereas A/D scan	
	end interrupt request (GBADI) specially	end interrupt request (GBADI) special	lly
	for group B can be generated on	for group B can be generated on	
	completion of group B scan.	completion of group B scan.	
	The S12ADI and GBADI interrupts can	The S12ADI0 and GBADI interrupts	
	activate the DMA controller (DMAC)	can activate the data transfer controlle	ər
	and the data transfer controller (DTC).	(DTC).	
Event link	An ELC event is generated on	An ELC event is generated on	
function	completion of scans other than group B	completion of scans other than group	В
	scan in group scan mode.	scan in group scan mode.	
	An ELC event is generated on	An ELC event is generated on	
	completion of group B scan in group	completion of group B scan in group	
	scan mode.	scan mode.	
	An ELC event is generated on appletion of all approx	An ELC event is generated on completion of all access	
	completion of all scans.	completion of all scans.	.+
	• Scan can be started by a trigger output	 Scan can be started by a trigger output by the ELC 	μ
	by the ELC.	by the ELC.	
	An ELC event is generated according to the event conditions of the window	 An ELC event is generated according to the event conditions of the window 	
		to the event conditions of the window	
	compare function in single scan mode.	compare function in single scan mode	;.

ltem	RX231 (S12ADE)	RX140 (S12ADE)
Low power	Ability to specify module stop state	Ability to specify module stop state
consumption		
function		

Table 2.57 Comparison of 12-Bit A/D Converter Registers

Register	Bit	RX231 (S12ADE)	RX140 (S12ADE)
ADDRy		A/D data register y	A/D data register y
		(y = 0 to 7, 16 to 31)	(y = 0 to 8, 16 to 21, 24 to 26)
ADANSA0	ANSA008		A/D conversion channel select
			bit
ADANSA1	ANSA106,	A/D conversion channel select	—
	ANSA107,	bits	
	ANSA111 to ANSA115		
ADANSB0	ANSB008		A/D conversion channel select
ADANODU	ANSBUUD		bit
ADANSB1	ANSB106,	A/D conversion channel select	
	ANSB107,	bits	
	ANSB111 to		
	ANSB115		
ADADS0	ADS008	—	A/D-converted value addition/
			average channel select bit
ADADS1	ADS106,	A/D-converted value addition/	—
	ADS107,	average channel select bits	
	ADS111 to		
ADOOTD	ADS115		
ADSSTRn	_	A/D sampling state register n (n = 0 to 7, L, T, O)	A/D sampling state register n (n = 0 to 8, L, T, O)
ADCMPANSR0	CMPCHA008		Compare window A channel
ADGIVIFANOIN			select bit
ADCMPANSR1	CMPCHA106,	Compare window A channel	
	CMPCHA107,	select bits	
	CMPCHA111 to		
	CMPCHA115		
ADCMPLR0	CMPLCHA008		Compare window A
			comparison condition select bit
ADCMPLR1	CMPLCHA106,	Compare window A	—
	CMPLCHA107, CMPLCHA111 to	comparison condition select bits	
	CMPLCHA1110 CMPLCHA115		
ADCMPSR0	CMPSTCHA008	<u> </u>	Compare window A flag
ADCMPSR1	CMPSTCHA106,	Compare window A flag	
	CMPSTCHA107,		
	CMPSTCHA111 to		
	CMPSTCHA115		

Register	Bit	RX231 (S12ADE)	RX140 (S12ADE)
ADHVREFCNT	HVSEL[1:0]	High-potential reference	High-potential reference
		voltage select bits	voltage select bits
		b1 b0	b1 b0
		0 0: AVCC0 is selected as the	0 0: AVCC0 is selected as the
		high-potential reference	high-potential reference
		voltage.	voltage.
		0 1: VREFH0 is selected as the	0 1: VREFH0 is selected as the
		high-potential reference voltage.	high-potential reference voltage.
		Settings other than the above	Settings other than the above
		are prohibited.	are prohibited.
			On 32-pin package products,
			set these bits to 01b.
ADCMPBNSR	CMPCHB[5:0]	Compare window B channel	Compare window B channel
		select bits	select bits
		These bits select channels to	These bits select channels to
		be compared with the compare	be compared with the compare
		window B conditions.	window B conditions.
		b5 b0	b5 b0
		0 0 0 0 0 0: AN000	0 0 0 0 0 0: AN000
		0 0 0 0 0 1: AN001	0 0 0 0 0 1: AN001
		0 0 0 0 1 0: AN002	0 0 0 0 1 0: AN002
		:	:
		0 0 0 1 1 0: AN006	0 0 0 1 1 0: AN006
		0 0 0 1 1 1: AN007	0 0 0 1 1 1: AN007 0 0 1 0 0 0: AN008
		0 1 0 0 0 0: AN016	0 1 0 0 0 0: AN016
		0 1 0 0 0 1: AN017	0 1 0 0 0 1: AN017
			· · · · · · · · · · · · · · · · · · ·
		0 1 0 1 0 1: AN021	0 1 0 1 0 1: AN021
		0 1 0 1 1 0: AN022	
		0 1 0 1 1 1: AN023	
		0 1 1 0 0 0: AN024	0 1 1 0 0 0: AN024
		0 1 1 0 0 1: AN025	0 1 1 0 0 1: AN025
		0 1 1 0 1 0: AN026	0 1 1 0 1 0: AN026
		0 1 1 0 1 1: AN027	
		0 1 1 1 0 0: AN028	
		0 1 1 1 0 1: AN029	
		0 1 1 1 1 0: AN030	
		0 1 1 1 1 1: AN031	
		1 0 0 0 0 0: Temperature sensor	1 0 0 0 0 0: Temperature sensor
		1 0 0 0 0 1: Internal reference	1 0 0 0 0 1: Internal reference
		voltage	voltage
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
ADCCR	<u> </u>	· · · · · · · · · · · · · · · · · · ·	A/D conversion cycle control
			register

2.25 D/A Converter

Table 2.58 is a comparative overview of the D/A converters, and Table 2.59 is a comparison of D/A converter registers.

Item	RX231 (R12DAA)	RX140 (DAa)
Resolution	12 bits	8 bits
Output channels	2 channels	2 channels
Measure against	Measure against interference between	Measure against interference between
interference between	D/A and A/D converters:	D/A and A/D converters:
analog modules	D/A converted data update timing is	D/A converted data update timing is
	controlled by the 12-bit A/D converter	controlled by the 12-bit A/D converter
	synchronous D/A conversion enable	synchronous D/A conversion enable
	signal output by the 12-bit A/D	signal output by the 12-bit A/D
	converter. This reduces degradation of	converter. This reduces degradation of
	A/D conversion accuracy due to	A/D conversion accuracy due to
	interference by controlling the timing of	interference by controlling the timing of
	the 12-bit D/A converter inrush current	the 8-bit D/A converter inrush current
	with the enable signal.	with the enable signal.
Low power	Ability to transition to module stop state	Ability to transition to module stop state
consumption function		
Event link function	Ability to start D/A conversion on	Ability to start D/A conversion on
(input)	channel 0 when an event signal is input	channel 0 when an event signal is input

Table 2.58 Comparative Overview of D/A Converters

Table 2.59 Comparison of D/A Converter Registers

Register	Bit	RX231 (R12DAA)	RX140 (DAa)
DAVREFCR	—	D/A VREF control register	

2.26 Temperature Sensor

Table 2.60 is a comparison of temperature sensor registers.

Table 2.60 Comparison of Temperature Sensor Registers

Register	Bit	RX231 (TEMPSA)	RX140 (TEMPSA)
TSCDRH,	_	Temperature sensor calibration	Temperature sensor calibration
TSCDRL (RX231)		data register	data register
TSCDR (RX140)			

2.27 Comparator B

Table 2.61 is a comparative overview of the comparator B modules, and Table 2.62 is a comparison of comparator B registers.

Item	RX231 (CMPBa)	RX140 (CMPBa)
Number of channels	2 channels × 2 units	2 channels × 1 unit
Analog input voltage	Voltage input to CMPBn pin (n = 0 to 3)	Voltage input to CMPBn pin (n = 0 or 1)
Reference input voltage	Voltage input to CVREFBn pin (n = 0 to 3) or internal reference voltage	Voltage input to CVREFBn pin (n = 0 or 1) or internal reference voltage
Comparison result	 Read from the CPBFLG.CPBnOUT flag (n = 0 to 3) Ability to output comparison result to CMPOBn pin (n = 0 to 3). 	 Read from the CPBFLG.CPBnOUT flag (n = 0 or 1) Ability to output comparison result to CMPOBn pin (n = 0 or 1).
Interrupt request generation timing	 When comparator B0 comparison result changes When comparator B1 comparison result changes When comparator B2 comparison result changes When comparator B3 comparison result changes 	 When comparator B0 comparison result changes When comparator B1 comparison result changes
Timing of event generation to ELC	 When comparator B0 comparison result changes When comparator B0 or comparator B1 comparison result changes 	 When comparator B0 comparison result changes When comparator B0 or comparator B1 comparison result changes
Selectable functions	 Digital filter function Ability to specify whether or not the digital filter is applied and to select the sampling frequency Window function Ability to specify whether or the window function is enabled or disabled (low-side reference (VRFL)) < CMPBn (n = 0 to 3) < high-side reference (VRFH)) Reference input voltage Ability to select CVREFBn pin (n = 0 to 3) input or internal reference voltage (generated internally) Comparator B response speed Ability to select high-speed or low- speed mode 	 Digital filter function Ability to specify whether or not the digital filter is applied and to select the sampling frequency Window function Ability to specify whether or the window function is enabled or disabled (VRFL < CMPBn (n = 0 or 1) < VRFH) Reference input voltage Ability to select CVREFBn pin (n = 0 or 1) input or internal reference voltage (generated internally) Comparator B response speed Ability to select high-speed or low- speed mode
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop state

Table 2.61	Comparative Overview of Comparator B Modules
------------	--

Table 2.62 Comparison of Comparator B Registers

Differences Between the RX140 Group and the RX231 Group

Register	Bit	RX231 (CMPBa)	RX140 (CMPBa)
CPB1CNT1	—	Comparator B1 control register 1	—
CPB1CNT2	_	Comparator B1 control register 2	—
CPB1FLG	_	Comparator B1 flag register	—
CPB1INT	—	Comparator B1 interrupt control register	_
CPB1F	_	Comparator B1 filter select register	—
CPB1MD	_	Comparator B1 mode select register	—
CPB1REF	—	Comparator B1 reference input voltage select register	—
CPB1OCR	—	Comparator B1 output control register	—

2.28 RAM

Table 2.63 is a comparative overview of RAM.

Table 2.03 Comparative Overview of KAM	Table 2.63	Comparative Overview of RAM	N
--	------------	------------------------------------	---

Item	RX231	RX140
RAM capacity	Max. 64 KB	Max. 64 KB
RAM address	 RAM capacity 64 KB RAM0: 0000 0000h to 0000 FFFFh RAM capacity 32 KB RAM0: 0000 0000h to 0000 7FFFh 	 RAM capacity 64 KB RAM0: 0000 0000h to 0000 FFFFh RAM capacity 32 KB RAM0: 0000 0000h to 0000 7FFFh RAM capacity 16 KB RAM0: 0000 0000h to 0000 3FFFh
Access	 Single-cycle access is possible for both reading and writing. RAM can be enabled or disabled. 	 Single-cycle access is possible for both reading and writing. RAM can be enabled or disabled.
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

2.29 Flash Memory

Table 2.64 is a comparative overview of flash memory, and Table 2.65 is a comparison of flash memory registers.

Item	RX231	RX140 (FLASH)
Memory capacity	 User area: Up to 512 KB Data area: 8 KB Extra area: Stores the start-up area information, access window information, and unique ID 	 User area: Up to 256 KB Data area: Up to 8 KB Extra area: Stores the start-up area information, access window information, and unique ID
Addresses	 Products with capacity of 512 KB FFF8 0000h to FFFF FFFFh Products with capacity of 384 KB FFFA 0000h to FFFF FFFFh Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh 	 Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh Products with capacity of 64 KB FFFF 0000h to FFFF FFFFh
Software commands	 The following software commands are implemented: Program, blank check, block erase, and all-block erase The following commands are implemented for programming the extra area: Start-up area information program and access window information program 	 The following software commands are implemented: Program, blank check, block erase, and all-block erase The following commands are implemented for programming the extra area: Start-up area information program, access window protect, and access window information program
Value after	ROM: FFh	ROM: FFh
erasure	E2 DataFlash: FFh	E2 DataFlash: FFh
Interrupt	An interrupt (FRDYI) is generated upon completion of software command processing or forced stop processing.	An interrupt (FRDYI) is generated upon completion of software command processing or forced stop processing.

Table 2.64	Comparative Overview of Flash Memory
------------	---

Item	RX231	RX140 (FLASH)
On-board programming	 Boot mode (SCI interface) Channel 1 of the serial communications interface (SCI1) is used for asynchronous communication. The user area and data area can be programmed. Boot mode (FINE interface) The FINE interface is used. The user area and data area can be programmed. Boot mode (USB interface) Channel 0 (USB0) of the USB 2.0 function module is used. The user area and data area can be programmed. Boot mode (USB interface) Channel 0 (USB0) of the USB 2.0 function module is used. The user area and data area can be programmed. The flash memory can be programmed. A personal computer can be connected using only a USB cable. Self-programming (single-chip mode) The user area and data area can 	 Boot mode (SCI interface) Channel 1 of the serial communications interface (SCI1) is used for asynchronous communication. The user area and data area can be programmed. Boot mode (FINE interface) The FINE interface is used. The user area and data area can be programmed. Boot mode (FINE interface) The User area and data area can be programmed. Boot mode (FINE interface) The User area and data area can be programmed. Self-programming (single-chip mode) The user area and data area can
Off-board programming	be programmed using a flash programming routine in a user program. The user area and data area can be programmed using a flash programmer (serial programmer or parallel	be programmed using a flash programming routine in a user program. The user area and data area can be programmed using a flash programmer compatible with the MCU.
ID codes protection	 programmer) compatible with the MCU. Connection with a serial programmer can be controlled using ID codes in boot mode. Connection with an on-chip debugging emulator can be controlled using ID codes. Connection with a parallel programmer can be controlled using ROM codes. 	 Connection with a serial programmer can be controlled using ID codes in boot mode. Connection with an on-chip debugging emulator can be controlled using ID codes.
Start-up program protection function	This function is used to safely program blocks 0 to 7.	This function is used to safely program blocks 0 to 7.
Area protection	During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.	During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.
Background operation (BGO) function	Programs in the ROM can run while the E2 DataFlash is being programmed.	Programs in the ROM can run while the E2 DataFlash is being programmed.

Table 2.65	Comparison of Fla	sh Memory Registers
------------	-------------------	---------------------

Register	Bit	RX231	RX140 (FLASH)
MEMWAITR	—	—	Memory wait cycle setting register
DFLWAITR	—	-	Data flash wait cycle setting register
FPMCR	FMS0, FMS1, FSM2 (RX231)	Flash operating mode select bits 0, 1, and 2	Flash operating mode select bits 0 and 1
	FMS0, FMS1	FMS2 FMS1 FMS0	FMS1 FMS0
	(RX140)	0 0 0: ROM/E2 DataFlash read mode	0 0: ROM/E2 DataFlash read mode
			0 1: ROMP/E mode
		0 1 0: E2 DataFlash P/E mode	1 0: E2 DataFlash P/E mode
		0 1 1: Discharge mode 1 1 0 1: ROM P/E mode 1 1 1: Discharge mode 2	1 1: Setting prohibited.
		Settings other than the above are prohibited.	
	LVPE	Low-voltage P/E mode enable bit	
FISR	PCKA[4:0] (RX231) PCKA[5:0] (RX140)	Peripheral clock notification bits	Peripheral clock notification bits
FEXCR	CMD[2:0]	Software command setting bits	Software command setting bits
		b2 b0	b2 b0
		0 0 1: Start-up area information program	0 0 1: Start-up area information program/access window protect
		0 1 0: Access window information program	0 1 0: Access window information program
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
FSCMR	AWPR		Access window protect flag
FAWSMR		Flash access window start address monitor register	Flash access window start address monitor register
		Initial value after a reset differs.	1
FAWEMR	-	Flash access window end address monitor register	Flash access window end address monitor register
		Initial value after a reset differs.	

2.30 Packages

As indicated in Table 2.66, there are discrepancies in the package drawing codes and availability of some package types, and this should be borne in mind at the board design stage.

Table 2.66 Packages

	Renesas Code	Renesas Code	
Package Type	RX231	RX140	
100-pin LFQFP	0	×	
100-pin TFLGA	0	X	
80-pin LFQFP	×	0	
64-pin LQFP	X	0	
64-pin WFLGA	0	×	
64-pin HWQFN	0	×	
48-pin HWQFN	PWQN0048KB-A	PWQN0048KC-A	
32-pin LQFP	X	0	
32-pin HWQFN	×	0	

○: Package available (Renesas code omitted); X: Package not available

3. Comparison of Pin Functions

This section presents a comparative description of pin functions as well as a comparison of the pins for the power supply, clocks, and system control. Items that exist only on one group are indicated by **blue text**. Items that exists on both groups with different specifications are indicated by **red text**. **Black text** indicates there is no differences in the item's specifications between groups.

3.1 64-Pin Package

Table 3.1 is a comparative listing of the pin functions of 64-pin package products.

 Table 3.1
 Comparative Listing of 64-Pin Package Pin Functions

64-Pin		
LFQFP/		
LQFP	RX231	RX140
1	P03/DA0	P03*1/DA0
2	VCL	VCL
3	MD/FINED	MD/PG7/FINED
4	XCIN	XCIN/PH7* ³
5	XCOUT	XCOUT/PH6* ³
6	RES#	RES#
7	XTAL/P37	XTAL/P37/IRQ4
8	VSS	VSS
9	EXTAL/P36	EXTAL/P36/IRQ2
10	VCC	VCC
11	UPSEL/P35/NMI	P35/NMI
12	VBATT	P32/MTIOC0C/TMO3/TXD6*3/SMOSI6*3/
		SSDA6* ³ /TS0* ³ /IRQ2/RTCOUT
13	P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/
	RTS1#/SS1#/SSISCK0/IRQ1	TS1* ³ /IRQ1
14	P30/MTIOC4B/TMRI3/POE8#/RTCIC0/	P30/MTIOC4B/TMRI3/POE8#/RXD1/
	RXD1/SMISO1/SSCL1/AUDIO_MCLK/IRQ0/	SMISO1/SSCL1/TS2*3/IRQ0
	CMPOB3	
15	P27/MTIOC2B/TMCI3/SCK1/SSIWS0/TS2/	P27/MTIOC2B/TMCI3/SCK1/TS3
	CVREFB3	
16	P26/MTIOC2A/TMO1/TXD1/SMOSI1/	P26/MTIOC2A/TMO1/LPTO/TXD1/SMOSI1/
	SSDA1/USB0_VBUSEN/SSIRXD0/TS3/	SSDA1/TS4
	CMPB3	
17	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/
	TIOCB0/TCLKD/SCK1/MISOA/SDA/	SCK1/MISOA/ <mark>SDA0</mark> /IRQ7
	SSITXD0/IRQ7/CMPOB2	
18	P16/MTIOC3C/MTIOC3D/TMO2/TIOCB1/	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/
	TCLKC/RTCOUT/TXD1/SMOSI1/SSDA1/	SMOSI1/SSDA1/MOSIA/ <mark>SCL0</mark> /IRQ6/
	MOSIA/SCL/USB0_VBUS/USB0_VBUSEN/	RTCOUT/ADTRG0#
	USB0_OVRCURB/IRQ6/ADTRG0#	
19	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/
	TCLKB/RXD1/SMISO1/SSCL1/CRXD0/TS12/	SMISO1/SSCL1/CRXD0/TS5*3/IRQ5
	IRQ5/CMPB2	
20	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/
	TCLKA/CTS1#/RTS1#/SS1#/CTXD0/	RTS1#/SS1#/CTXD0/ <mark>TS6</mark> * ³ /IRQ4
	USB0_OVRCURA/TS13/IRQ4/CVREFB2	
21	VCC_USB*4/PH3*4/TMCI0*4	PH3/MTIOC4D/TMCI0/TS7*3
22	PH2* ⁴ /TMRI0* ⁴ /USB0_DM* ⁴ /IRQ1* ⁴	PH2/MTIOC4C/TMRI0/TS8*3/IRQ1

64-Pin		
LFQFP/ LQFP	RX231	RX140
23	PH1* ⁴ /TMO0* ⁴ /USB0_DP* ⁴ /IRQ0* ⁴	PH1/MTIOC3D/TMO0/TS9* ³ /IRQ0
24	VSS_USB*4/PH0*4/CACREF*4	PH0/MTIOC3B/TS10*3/CACREF
25	P55/MTIOC4D/TMO3/CRXD0/TS15	P55/MTIOC4A/MTIOC4D/TMO3/CRXD0/
		TS11* ³
26	P54/MTIOC4B/TMCI1/CTXD0/TS16	P54/MTIOC4B/TMCI1/CTXD0/TS12*3
27	UB/PC7/MTIOC3A/MTCLKB/TMO2/TXD8/	PC7/MTIOC3A/MTCLKB/TMO2/LPTO/
	SMOSI8/SSDA8/MISOA/CACREF	TXD8* ³ /SMOSI8* ³ /SSDA8* ³ /MISOA/TS13/ CACREF
28	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8* ³ /
	SMISO8/SSCL8/MOSIA/USB0_EXICEN/ TS22	SMISO8* ³ /SSCL8* ³ /MOSIA/TS14
29	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/	PC5/MTIOC0C/MTIOC3B/MTCLKD/TMRI2/
	RSPCKA/USB0_ID/TS23	SCK8* ³ /RSPCKA/TS15
30	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/	PC4/MTIOC0A/MTIOC3D/MTCLKC/TMCI1/
	SCK5/CTS8#/RTS8#/SS8#/SSLA0/SDHI_D1/ TSCAP	POE0#/SCK5/CTS8#* ³ /RTS8#* ³ /SS8#* ³ / SSLA0/TSCAP
31	PC3/MTIOC4D/TCLKB/TXD5/SMOSI5/	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/
	SSDA5/IRTXD5/SDHI_D0/TS27	TS16* ³
32	PC2/MTIOC4B/TCLKA/RXD5/SMISO5/	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/
	SSCL5/SSLA3/IRRXD5/SDHI_D3/TS30	SSLA3/TS17* ³
33	PB7/PC1/MTIOC3B/TIOCB5/TXD9/SMOSI9/ SSDA9/SDHI_D2	PB7/PC1* ² /MTIOC3B/TXD9* ³ /SMOSI9* ³ / SSDA9* ³ /TS18* ³
34	PB6/PC0/MTIOC3D/TIOCA5/RXD9/SMISO9/ SSCL9/SDHI_D1	PB6/PC0* ² /MTIOC3D/RXD9* ³ /SMISO9* ³ / SSCL9* ³ /TS19* ³
35	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ TIOCB4/SCK9/USB0_VBUS/SDHI_CD	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ SCK9* ³ /TS20* ³
36	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/
	TIOCD3/TCLKD/SCK6/SDHI_WP	LPTO/SCK6* ³ /TS22* ³
37	PB1/MTIOC0C/MTIOC4C/TMCI0/TIOCB3/	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6*3/
	TXD6/SMOSI6/SSDA6/SDHI_CLK/IRQ4/ CMPOB1	SMOSI6* ³ /SSDA6* ³ /TS24* ³ /IRQ4/CMPOB1
38	VCC	VCC
39	PB0/MTIC5W/TIOCA3/RXD6/SMISO6/ SSCL6/RSPCKA/SDHI_CMD	PB0/MTIOC3D/MTIC5W/RXD6* ³ /SMISO6* ³ / SSCL6* ³ /RSPCKA/TS25
40	VSS	VSS
41	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/ TIOCA2/CTS5#/RTS5#/SS5#/MOSIA/ SSIWS0	PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/ POE2#/CTS5#/RTS5#/SS5#/MOSIA/TS26* ³
42	PA4/MTIC5U/MTCLKA/TMRI0/TIOCA1/ TXD5/SMOSI5/SSDA5/SSLA0/SSITXD0/	PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/ TXD5/SMOSI5/SSDA5/SSLA0/TS28/IRQ5/
40	IRTXD5/IRQ5 /CVREFB1	
43	PA3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/ RXD5/SMISO5/SSCL5/SSIRXD0/IRRXD5/ IRQ6 /CMPB1	PA3/MTIOC0D/MTIOC4D/MTIC5V/MTCLKD/ RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1
44	PA1/MTIOC0B/MTCLKC/TIOCB0/SCK5/ SSLA2/SSISCK0	PA1/MTIOC0B/MTIOC3B/MTCLKC/SCK5/ SSLA2/TS31
45	PA0/MTIOC4A/TIOCA0/SSLA1/CACREF	PA0/MTIOC4A/SSLA1/TS32* ³ /CACREF
46	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/ CMPOB0	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/ CMPOB0

64-Pin		
LFQFP/ LQFP	RX231	RX140
47	PE4/MTIOC4D/MTIOC1A/AN020/CMPA2/	PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/
	CLKOUT	AN020/CMPA2/CLKOUT
48	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/	PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/
	SS12#/AUDIO_MCLK/AN019/CLKOUT	RTS12#/SS12#/TS34/AN019/CLKOUT
49	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/
	SSCL12/IRQ7/AN018/CVREFB0	SSCL12/TS35/IRQ7/AN018/CVREFB0
50	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/
	SMOSI12/SSDA12/AN017/CMPB0	SMOSI12/SSDA12/AN017/CMPB0
51	PE0/SCK12/AN016	PE0/SCK12/AN016
52	VREFL	P47*1/AN007
53	P46/AN006	P46* ¹ /AN006
54	VREFH	P45*1/AN005
55	P44/AN004	P44* ¹ /AN004
56	P43/AN003	P43*1/AN003
57	P42/AN002	P42*1/AN002
58	P41/AN001	P41* ¹ /AN001
59	VREFL0	VREFL0/PJ7*1
60	P40/AN000	P40*1/AN000
61	VREFH0	VREFH0/PJ6*1
62	AVCC0	AVCC0
63	P05/DA1	P05*1/DA1
64	AVSS0	AVSS0/

Notes: 1. The power supply of the I/O buffer for these pins is AVCCO.

2. PC0 and PC1 are valid only when the port switching function is selected.

3. Not implemented on products with a ROM capacity of 64 KB.

4. PH0/CACREF, PH1/IRQ0/TMO0, PH2/IRQ1/TMRI0, and PH3/TMCI0 on the RX230. VSS_USB, USB0_DP, USB0_DM, and VCC_USB on the RX231.

3.2 48-Pin Package

Table 3.2 is a comparative listing of the pin functions of 48-pin package products.

48-Pin LFQFP/	BY224	RX140	
HWQFN	RX231 VCL		
1	—		
2	MD/FINED	MD/PG7/FINED	
3	RES#	RES#	
4	XTAL/P37	XTAL/P37/IRQ4	
5	VSS	VSS	
6	EXTAL/P36	EXTAL/P36/IRQ2	
7	VCC	VCC	
8	UPSEL/P35/NMI	P35/NMI	
9	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/ SSISCK0/IRQ1	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/ TS1* ³ /IRQ1	
10	P30/MTIOC4B/TMRI3/POE8#/RXD1/ SMISO1/SSCL1/AUDIO_MCLK/IRQ0/ CMPOB3	P30/MTIOC4B/TMRI3/POE8#/RXD1/ SMISO1/SSCL1/TS2* ³ /IRQ0	
11	P27/MTIOC2B/TMCI3/SCK1/SSIWS0/TS2/ CVREFB3	P27/MTIOC2B/TMCI3/SCK1/TS3	
12	P26/MTIOC2A/TMO1/TXD1/SMOSI1/ SSDA1/USB0_VBUSEN/SSIRXD0/TS3/ CMPB3	P26/MTIOC2A/TMO1/LPTO/TXD1/SMOSI1/ SSDA1/TS4	
13	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ TIOCB0/TCLKD/SCK1/MISOA/SDA/ SSITXD0/IRQ7/CMPOB2	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA0/IRQ7	
14	P16/MTIOC3C/MTIOC3D/TMO2/TIOCB1/ TCLKC/TXD1/SMOSI1/SSDA1/MOSIA/SCL/ USB0_VBUS/USB0_VBUSEN/ USB0_OVRCURB/IRQ6/ADTRG0#	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/ <mark>SCL0</mark> /IRQ6/ ADTRG0#/RTCOUT	
15	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/ TCLKB/RXD1/SMISO1/SSCL1/CRXD0/TS12/ IRQ5/CMPB2	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/CRXD0/TS5* ³ /IRQ5	
16	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/ TCLKA/CTS1#/RTS1#/SS1#/CTXD0/ USB0_OVRCURA/TS13/IRQ4/CVREFB2	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/CTXD0/ <mark>TS6</mark> * ³ /IRQ4	
17	VCC_USB* ⁴ /PH3* ⁴ /TMCI0* ⁴	PH3/MTIOC4D/TMCI0/TS7*3	
18	PH2*4/TMRI0*4/USB0_DM*4/IRQ1*4	PH2/MTIOC4C/TMRI0/TS8*3/IRQ1	
19	PH1* ⁴ /TMO0* ⁴ /USB0_DP* ⁴ /IRQ0* ⁴	PH1/MTIOC3D/TMO0/TS9*3/IRQ0	
20	VSS_USB*4/PH0*4/CACREF*4	PH0/MTIOC3B/TS10*3/CACREF	
21	UB/PC7/MTIOC3A/MTCLKB/TMO2/TXD8/ SMOSI8/SSDA8/MISOA/CACREF CACREF		
22	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/ SMISO8/SSCL8/MOSIA/USB0_EXICEN/ TS22	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8* ³ / SMISO8* ³ /SSCL8* ³ /MOSIA/ <mark>TS</mark> 14	
23	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/ RSPCKA/USB0_ID/TS23	PC5/MTIOC0C/MTIOC3B/MTCLKD/TMRI2/ SCK8* ³ /RSPCKA/TS15	

 Table 3.2
 Comparative Listing of 48-Pin Package Pin Functions

48-Pin LFQFP/			
HWQFN	RX231	RX140	
24	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/	PC4/MTIOC0A/MTIOC3D/MTCLKC/TMCI1/	
	SCK5/CTS8#/RTS8#/SS8#/SSLA0/TSCAP	POE0#/SCK5/CTS8#* ³ /RTS8#* ³ /SS8#* ³ / SSLA0/TSCAP	
25	PB5/PC3/MTIOC2A/MTIOC1B/TMRI1/	PB5/PC3*1/MTIOC2A/MTIOC1B/TMRI1/	
	POE1#/TIOCB4/USB0_VBUS	POE1#/TS20*3	
26	PB3/PC2/MTIOC0A/MTIOC4A/TMO0/	PB3/PC2*1/MTIOC0A/MTIOC4A/TMO0/	
	POE3#/TIOCD3/TCLKD/SCK6	POE3#/LPTO/SCK6* ³ /TS22* ³	
27	PB1/PC1/MTIOC0C/MTIOC4C/TMCI0/	PB1/PC1*1/MTIOC0C/MTIOC4C/TMCI0/	
	TIOCB3/TXD6/SMOSI6/SSDA6/IRQ4/	TXD6*3/SMOSI6*3/SSDA6*3/TS24*3/IRQ4/	
	CMPOB1	CMPOB1	
28	VCC	VCC	
29	PB0/PC0/MTIC5W/TIOCA3/RXD6/SMISO6/	PB0/PC0*1/MTIOC3D/MTIC5W/RXD6*3/	
	SSCL6/RSPCKA	SMISO6* ³ /SSCL6* ³ /RSPCKA/TS25	
30	VSS	VSS	
31	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/	PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/	
	TIOCA2/CTS5#/RTS5#/SS5#/MOSIA/ SSIWS0	POE2#/CTS5#/RTS5#/SS5#/MOSIA/TS26*3	
32	PA4/MTIC5U/MTCLKA/TMRI0/TIOCA1/	PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/	
	TXD5/SMOSI5/SSDA5/SSLA0/SSITXD0/	TXD5/SMOSI5/SSDA5/SSLA0/TS28/IRQ5/	
	IRTXD5/IRQ5 /CVREFB1	CVREFB1	
33	PA3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/	PA3/MTIOC0D/MTIOC4D/MTIC5V/MTCLKD/	
	RXD5/SMISO5/SSCL5/SSIRXD0/IRRXD5/	RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1	
	IRQ6 /CMPB1		
34	PA1/MTIOC0B/MTCLKC/TIOCB0/SCK5/	PA1/MTIOC0B/MTIOC3B/MTCLKC/SCK5/	
	SSLA2/SSISCK0	SSLA2/TS31	
35	PE4/MTIOC4D/MTIOC1A/AN020/CMPA2/	PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/	
	CLKOUT	AN020/CMPA2/CLKOUT	
36	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/	PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/	
	AUDIO_MCLK/AN019/CLKOUT	RTS12#/TS34/AN019/CLKOUT	
37	PE2/MTIOC4A/RXD12/RXDX12/SSCL12/	PE2/MTIOC4A/RXD12/RXDX12/SSCL12/	
	IRQ7/AN018/CVREFB0	TS35/IRQ7/AN018/CVREFB0	
38	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/	
	SSDA12/AN017/CMPB0	SSDA12/AN017/CMPB0	
39	VREFL	P47* ² /AN007	
40	P46/AN006	P46* ² /AN006	
41	VREFH	P45* ² /AN005	
42	P42/AN002	P42* ² /AN002	
43	P41/AN001	P41* ² /AN001	
44	VREFL0	VREFL0/PJ7* ²	
45	P40/AN000	P40* ² /AN000	
46	VREFH0	VREFH0/PJ6*2	
47	AVCC0	AVCCO	
48	AVSS0	AVSS0	

Notes: 1. PC0 to PC3 are valid only when the port switching function is selected.

2. The power supply of the I/O buffer for these pins is AVCCO.

3. Not implemented on products with a ROM capacity of 64 KB.

4. PH0/CACREF, PH1/IRQ0/TMO0, PH2/IRQ1/TMRI0, and PH3/TMCI0 on the RX230. VSS_USB, USB0_DP, USB0_DM, and VCC_USB on the RX231.

4. Important Information when Migrating Between MCUs

This section presents important information on differences between the RX140 Group and the RX231 Group. 4.1, Notes on Functional Design, presents information regarding the software.

4.1 Notes on Functional Design

Some software that runs on the RX231 Group is compatible with the RX140 Group. Nevertheless, appropriate caution must be exercised due to differences in aspects such as operation timing and electrical characteristics.

Software-related considerations regarding function settings that differ between the RX140 Group and RX231 Group are as follows:

For differences between modules and functions, refer to 2, Comparative Overview of Specifications. For further information, refer to the User's Manual: Hardware of each MCU group, listed in 5, Reference Documents.

4.1.1 Mode Setting Pins

The mode setting pins after reset cancellation are the MD pin only on the RX140 Group and the MD pin and UB pin on the RX231 Group.

4.1.2 PLL Circuit

The frequency multiplication factor of the PLL circuit can be set to \times 4 to \times 12 (in \times 0.5 increments) on the RX140 Group and to \times 4 or \times 13.5 (in \times 0.5 increments) on the RX231 Group. To use the PLL circuit, change the setting of the PLLCR.STC bits to an appropriate value.

4.1.3 Port Direction Register (PDR) Initialization

PDR register initialization differs even between products with the same pin count.

5. Reference Documents

User's Manual: Hardware

RX230 Group, RX231 Group User's Manual: Hardware Rev.1.20 (R01UH0496EJ0120) (The latest version can be downloaded from the Renesas Electronics website.)

RX140 Group User's Manual: Hardware Rev.1.10 (R01UH0905EJ0110) (The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates:

TN-RX*-A0237B/E TN-RX*-A0227A/E TN-RX*-A0224B/E TN-RX*-A0217A/E TN-RX*-A0214A/E TN-RX*-A0198B/E TN-RX*-A0147B/E TN-RX*-A198A/E

TN-RX*-A0258A/E

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Aug. 30, 2021	—	First edition issued
1.10	Feb. 21, 2022	18	<i>Revised:</i> Table 2.10 Comparison of Clock Generation Circuit Registers
		35	<i>Revised:</i> Table 2.24 Comparative Overview of I/O Ports (64- Pin)
		83	<i>Revised:</i> Table 2.55 Comparison of Capacitive Touch Sensing Unit Registers
		98	<i>Revised:</i> Table 3.1 Comparative Listing of 64-Pin Package Pin Functions

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renease Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.