Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SH7263/SH7203 Group

Data Transfer to On-chip Peripheral Modules with DMAC

Introduction

This application note provides an example of transferring data to on-chip peripheral modules with the direct memory access controller (DMAC) of the SH7263/SH7203.

Target Device

SH7263/SH7203

Contents

1.	Introduction	2
2.	Description of Sample Application	3
	Sample Program	
4.	Documents for Reference	. 15

1. Introduction

1.1 Specification

- DMAC channel 1 is used to transfer data from external memory to the transmit FIFO data register (SCFTDR) in the serial communication interface with FIFO (SCIF channel 0) in order to transmit character string data.
- SCIF transmit FIFO data empty transfer requests (on-chip peripheral module request) are used to request DMA transfer.

1.2 Modules Used

- Direct memory access controller (DMAC channel 1)
- Serial communication interface with FIFO (SCIF channel 0)

1.3 Applicable Conditions

• Microcontroller: SH7263/SH7203

• Operating Frequency: Internal clock 200 MHz

Bus clock 66.67 MHz Peripheral clock 33.33 MHz

• C Compiler: SuperH RISC engine family C/C++ compiler package Ver.9.01, from Renesas

Technology

• Compile Option: -cpu = sh2afpu -fpu = single -include = "\$(WORKSPDIR)\inc"

 $-object = "\$(CONFIGDIR) \setminus \$(FILELEAF).obj" - debug - gbr = auto - chgincpath$

-errorpath -global_volatile = 0 -opt_range = all -infinite_loop = 0 -del_vacant_loop = 0

 $-struct_alloc = 1 - nologo$

1.4 Related Application Notes

- The operation of the reference program for this document was confirmed with the setting conditions described in the application note: *SH7263/SH7203 Initialization Example*. Please refer to the application note in combination with this one.
- Details on SCIF UART transmission are described in the application: SH7263/SH7203 Example Settings for UART Transmission by the SCIF.

Please refer to the above application notes in combination with this one.

2. Description of Sample Application

In this sample application, the DMAC and on-chip peripheral module requests are used to transfer data from external memory to the SCIF.

2.1 Operational Overview of Modules Used

When a DMA transfer request is made, the DMAC starts to transfer data in accordance with the priority order of channels, and continues the transfer operation until the transfer end condition is met. Transfer requests for the DMAC are of three kinds: auto requests, external requests, and on-chip peripheral module requests. The bus mode is selectable as burst mode or cycle-stealing mode.

An overview of the DMAC is given in table 1. Also, a block diagram of the DMAC is shown in figure 1.

Table 1 Overview of DMAC

Item	Description
Number of channels	8 (CH0 to CH7)
	Only 4 (CH0 to CH3) can receive external requests.
Address space	4 Gbytes
Length of transfer data	Byte, word (2 bytes), longword (4 bytes), and 16 bytes (longword × 4)
Maximum transfer count	16,777,216 (24 bits) transfers
Address mode	Single address mode and dual address mode
Transfer request	 Auto request, external request, and on-chip peripheral module request SH7203/SH7263 (SCIF: 8 sources, I²C3: 8 sources, ADC: 1 source, MTU2: 5 sources, CMT: 2 sources, USB: 2 sources, FLCTL: 2 sources, RCAN-TL1: 2 sources, SSI: 4 sources, SSU: 4 sources) SH7263 (SRC: 2 sources, ROM-DEC: 1 source, SDHI: 2 sources)
Bus mode	Cycle-stealing mode and burst mode
Priority level	Channel priority fixed mode and round-robin mode
Interrupt request	An interrupt request to the CPU is made when half or all of a transfer process is completed.
External request detection	DREQ input low/high level detection, rising/falling edge detection
Transfer request acknowledge signal/transfer end signal	Active levels for DACK and TEND can be set independently

Note: For details on the DMAC, refer to the section on the direct memory access controller in the SH7263/SH7203 Group Hardware Manual.

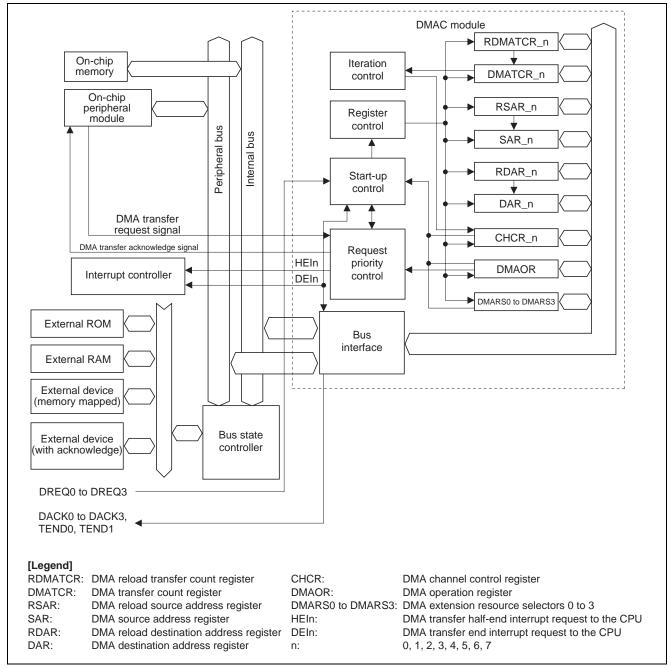


Figure 1 Block Diagram of DMAC

2.2 Procedure for Setting Used Modules

This section describes the procedure for making initial settings when the DMAC is to be used to transfer data from memory to on-chip peripheral modules. On-chip peripheral module requests are used for transfer requests. A flowchart of DMAC initialization is shown in figure 2. For details on registers, refer to the SH7263/SH7203 Group Hardware Manual

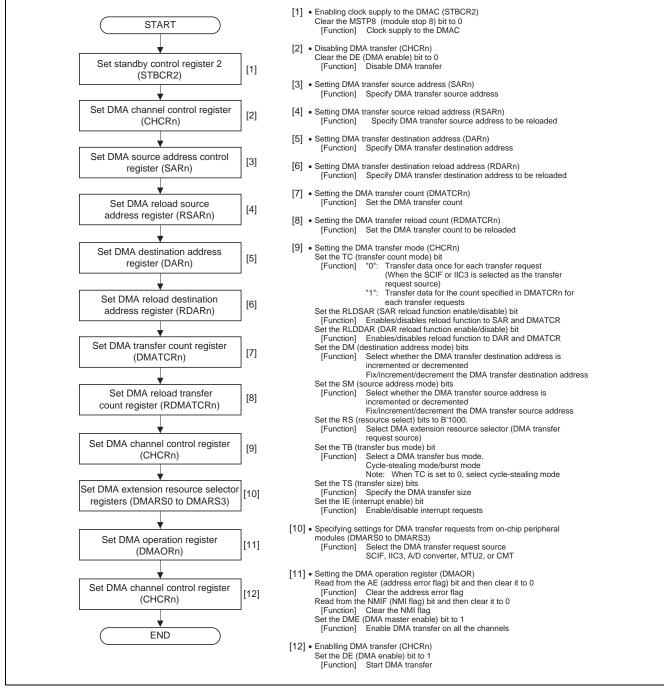


Figure 2 Flowchart of Initializing DMAC

2.3 Operation of Sample Program

In this sample program, SCIF transmit FIFO data empty transfer requests are made to activate DMAC channel 1, and to transfer data from external memory to the transmit FIFO data register (SCFTDR) on SCIF channel 0. The data written to SCFTDR on SCIF channel 0 are transmitted in UART mode. An operation timing of the sample program is shown in figure 3.

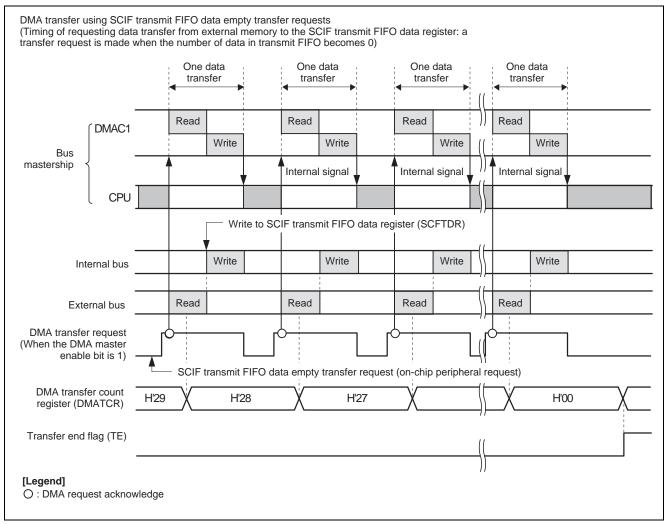


Figure 3 Operation Timing of Sample Application

2.4 Processing Procedure of Sample Program

In this sample program, character string data stored in external memory are transferred by DMA to the transmit FIFO data register (SCFTDR) on SCIF channel 0, and then are transmitted in UART mode.

The register settings for the sample program are listed in table 2. The macro definitions used in this sample program are also listed in table 3. A flowchart of the sample program is illustrated in figure 4.

Table 2 Register Settings for Sample Program

Register Name	Address	Setting Value	Description
Standby control register 2 (STBCR2)	H'FFFE 0018	H'00	MSTP8 = "0": DMAC operates
DMA channel control	H'FFFE 101C	H'0000 0000	DE = "0": Disables DMA transfer
register 1 (CHCR1)		H'0000 1800	TC = "0": Transfers data once for each
			DMA transfer request
			RLDSAE = "0":
			Disables SAR reload function
			RLDDAR = "0":
			Disables DAR reload function
			DM = "B'00": Fixes destination address
			SM = "B'01": Increments source address
			RS = "B'1000": Extension resource selector
			TB = "0": Cycle-stealing mode
			TS = "B'00": Byte transfer
			IE = "0": Disables interrupt request
		H'0000 1801	DE = "1": Enables DMA transfer
DMA source address	H'FFFE 1010	Address where	Start address of transfer source:
register_1 (SAR1)		character string	Start address of character string stored in
		data are stored	external memory
DMA destination	H'FFFE 1014	H'FFFE 800C	Start address of transfer destination:
address register_1			Address of the SCIF transmit FIFO data
(DAR1)			register_1 (SCFTDR_1)
DMA transfer count	H'FFFE 1018	Number of	Transfer count: the number of character
register_1 (DMATCR1)		character string	string data
		data	
DMA operation register	H'FFFE 1200	H'0001	DME = "1": Enables DMA transfer on all the
(DMAOR)			channels
DMA extension	H'FFFE 1300	H'0081	MID = "B'100000"
resource selector			RID = "B'01"
(DMARS0)			Set to SCIF_0 transmit FIFO data empty
			transfer request

Table 3 Macro Definitions Used in Sample Program

Macro Definition	Setting Value	Description	
DMA_SIZE_BYTE	H'0000	Byte transfer	
DMA_SIZE_WORD	H'0001	Word transfer	
DMA_SIZE_LONG	H'0002	Longword transfer	
DMA_SIZE_LONGx4	H'0003	16-byte transfer	
DMA_INT_DISABLE	H'0000	DMA transfer end interrupt disabled	
DMA_INT_ENABLE	H'0010	DMA transfer end interrupt enabled	

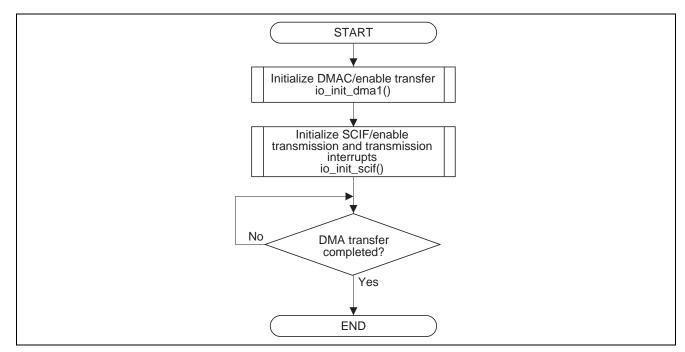


Figure 4 Flowchart of Sample Program

3. Sample Program

1. Sample Program Listing "main.c" (1)

```
2 *
      System Name: SH7203 Sample Program
4 *
    File Name : main.c
5 *
      Contents : Data transfer to on-chip peripheral modules with DMAC
6 *
      Version : 1.00.00
                : M3A-HS30
7 *
      Model
8 *
      CPU
                : SH7203
      Compiler : SHC9.1.1.0
9 *
10*
     note
               : Sample program for transferring data from the SCIF by DMAC1
11*
12*
                    <CAUTION>
13*
                    This sample program is for reference
                    and its operation is not guaranteed.
15*
                    Customers should use this sample program for technical reference
16*
                    in software development.
17*
18*
     The information described here may contain technical inaccuracies or
19*
      typographical errors. Renesas Technology Corporation and Renesas Solutions
20*
      assume no responsibility for any damage, liability, or other loss rising
      from these inaccuracies or errors.
21*
     Copyright(C) 2007 Renesas Technology Corp. All Rights Reserved
23*
24*
     AND Renesas Solutions Corp. All Rights Reserved
25*
                : 2007.12.27 ver.1.00.00
    history
28#include <string.h>
29#include "iodefine.h"
                            /* iodefine.h is automatically created by HEW */
31/* ==== Macro declaration ==== */
32/* ==== DMAC Settings ==== */
33#define DMA_SIZE_BYTE
34#define DMA_SIZE_WORD
                         0x0001u
                         0x0002u
35#define DMA_SIZE_LONG
                         0x0003u
36#define DMA_SIZE_LONGx4
37#define DMA_INT_DISABLE
                         0x0000u
38#define DMA_INT_ENABLE
                         0x0010u
                          (DMA_INT_ENABLE >> 4u)
39#define DMA_INT
41/* ==== Prototype declaration ==== */
42void main(void);
43void io_init_dmal(void *src, void *dst, size_t size, unsigned int mode);
44void io_dmal_stop(void);
45void io_init_scif0(int);
46
47/* ==== Type declaration ==== */
48/* SCIF baud rate setting */
49typedef struct {
     unsigned char scbrr;
     unsigned short scsmr;
52} SH7203_BAUD_SET;
53
```


2. Sample Program Listing "main.c" (2)

```
54 /* ---- Values for baud rate specification ---- */
55 enum{
56
        CBR 1200,
57
        CBR 2400,
58
        CBR_4800,
59
        CBR_9600,
        CBR_19200,
61
        CBR_31250,
62
        CBR_38400,
63
        CBR_57600,
64
        CBR_115200
65 };
66
67 /* ==== Table of register setting values ==== */
  static SH7203_BAUD_SET scif_baud[] = {
68
                        /* 1200bps (-0.07%) */
        {214, 1},
69
                         /* 2400bps ( 0.39%) */
70
        {106, 1},
                        /* 4800bps (-0.07%) */
71
        {214, 0},
                        /* 9600bps ( 0.39%) */
        {106, 0},
                        /* 19200bps (-0.54%) */
73
        { 53, 0},
74
        { 32, 0},
                        /* 31250bps ( 0.00%) */
                        /* 38400bps (-0.54%) */
75
        { 26, 0},
76
                        /* 57600bps (-0.54%) */
        { 17, 0},
77
        { 8, 0}
                         /*115200bps (-0.54%) */
78 };
79
  /* Character string to be transmitted */
80
  const signed char data[] = "SCIF request DMAC Sample Software SH7203.\fmathbf{Y}r\fmathbf{Y}n";
81
  82
                 : Sample Program Main (UART transmission with use of DMAC)
83
    *-----
85
    * Include
              : #include <string.h>
    *-----
86
87
    * Declaration : void main(void);
88
    *_____
89
                : The character string data stored in external memory is DMA transferred
90
                : to the SCIF transmit FIFO data register. The DMAC is activated
91
                   : by an SCIF transmit interrupt request.
92
    *-----
    * Argument
                : void
93
94
    *_____
95
    * Return Value : void
    * Notice
    98
99
   void main(void)
100 {
101
           /* ==== Enabling DMAC initialization/transfer ==== */
102
           io_init_dma1(data, (void *)&SCIF0.SCFTDR.BYTE ,sizeof(data),
                         DMA_SIZE_BYTE | DMA_INT_DISABLE);
104
                 /* On-chip peripheral module request (SCIF transmit interrupt request) */
105
                 /* Data transfer from external memory to SCIF transmit */
                 /* Data transfer to data registers */
106
```


3. Sample Program Listing "main.c" (3)

```
/* ==== Enabling SCIF0 initialization/transfer ==== */
           io_init_scif0(CBR_115200);
109
                    /* Communication mode :UART mode */
                    /* Bit rate:115.2Kbps */
110
111
                    /* TXI interrupt is generated when data in transmit FIFO is one byte */
           /* ==== Disabling DMA transfer ==== */
           io_dma1_stop();
           while(1){
115
                    /* Program end */
116
           }
117
119 * Outline : Initialization for DATA transfer between memory areas with DMAC
120 *-----
             : #include "iodefine.h"
121 * Include
122 *-----
123 * Declaration : io_init_dmal(void *src, void *dst, size_t size, int mode);
124 *----
125 * Function : The DMAC transfers the amount of data specified by "size".
             : from the source address "src" to the destination address "dst."
127 *
             : Transfer is performed using requests from the SCIF1.
128 *
             : "mode" is specified for transfer size and interrupt used/not used.
129 *-----
130 * Argument : void *src
                           : Source address
             : void *dst
                           : Destination address
             : size_t size : Transfer size (byte)
133 *
            : unsigned int mode: Transfer mode, specifies the following with logical OR.
134 *
                         DMA_SIZE_BYTE (0x0000) Byte transfer
135 *
             :
                         DMA_SIZE_WORD (0x0001) Word transfer
136 *
             :
                         DMA_SIZE_LONG (0x0002) Longword transfer
137 *
                         DMA_SIZE_LONGx4(0x0003) 16-byte transfer
                         DMA_INT_DISABLE(0x0000) DMA transfer end interrupt disabled
139 *
             :
                        DMA_INT_ENABLE (0x0010) DMA transfer end interrupt disabled
140 *-----
141 * Return Value: void
142 *-----
             : Operation is not guaranteed when the alignment of the source/destination.
             : address is inconsistent.
145 *
             : When interrupts are used, interrupt routines must be registered.
147 void io_init_dma1(void *src, void *dst, size_t size, unsigned int mode)
148 {
149
        unsigned int ts;
150
        unsigned long ie;
151
       ts = mode \& 0x3u;
152
        ie = (mode \& 0x00f0u) >> 4u;
153
154
       /* ====Setting standby control register 2(STBCR2) ==== */
156
       CPG.STBCR2.BIT.MSTP8 = 0x0; /* Cancel DMAC module top mode */
157
        /* ---- Setting DMA channel control register ---- */
158
        159
160
```


4. Sample Program Listing "main.c" (4)

```
/* ----Setting DMA source address register---- */
      DMAC.SAR1.LONG = (unsigned long)src;
163
      /* ----Setting DMA reload source address register---- */
164
165
      DMAC.RSAR1.LONG = (unsigned long)src;
166
       /* ----Setting DMA destination address register---- */
168
      DMAC.DAR1.LONG = (unsigned long)dst;
169
       /* ----Setting DMA reload destination address register---- */
170
171
      DMAC.RDAR1.LONG = (unsigned long)dst;
172
      /* ----Setting DMA transfer count register---- */
173
      /* ----Setting DMA reload transfer count register---- */
175
176
       switch(ts){
177
      case DMA_SIZE_BYTE:
178
          DMAC.DMATCRO.LONG = size;
                                              /* Specify transfer count (1/1) */
179
          DMAC.RDMATCR0.LONG = size;
          break;
181
     case DMA_SIZE_WORD:
182
        DMAC.DMATCRO.LONG = size >> 1u;
                                              /* Specify transfer count (1/2) */
          DMAC.RDMATCRO.LONG = size >> 1u;
183
184
          break;
185
    case DMA_SIZE_LONG:
          DMAC.DMATCRO.LONG = size >> 2u;
                                              /* Specify transfer count (1/4) */
187
          DMAC.RDMATCRO.LONG = size >> 2u;
188
189
     case DMA_SIZE_LONGx4:
190
          DMAC.DMATCRO.LONG = size >> 4u;
                                              /* Specify transfer count (1/16) */
          DMAC.RDMATCRO.LONG = size >> 4u;
          break;
193
      default:
194
          break;
195
196
      /* ----Setting DMA channel control register---- */
197
198
      DMAC.CHCR1.LONG = 0x00001800ul | (ts << 3u) | (ie << 2u) ;
199
          /*
           bit31
                    : TC DMATCR transfer0-----
200
                                                    Transfer once
                    : reserve 0
201
           bi+30
           bit29
                     : RLDSAR OFF : 0-----
                                                     Disable SAR reload function
202
                     : RLDDAR OFF : 0-----
           bit.28
                                                     Disable DAR reload function
           bit27-24 : reserve 0
205
           bit23
                    : DO over run0 : 0-----
                                                     Unused
           bit22
206
                    : TL TEND low active : 0----
                                                     Unused
207
           bit21
                    : reserve 0
208
           bit20
                    : TEMASK : TE set mask : 0--
                                                     Disable DMA transfer when TE bit is set
209
           bit19
                    : HE :0-----
                                                     Unused
210
           bit18
                    : HIE :0-----
                                                     Unused
211
           bit17
                    : AM :0-----
                                                     Unused
                    : AL :0-----
212
           bit.16
                                                     Unused
           bit15-14 : DM1:0 DM0:0-----
213
                                                     Fix destination address
           bit13-12 : SM1:0 SM0:1-----
                                                     Increment source address
           bit11-8
                     : RS : auto request : B'1000-
                                                     DMA extension resource selector
           bit7
                     : DL : DREQ level : 0 -----
                                                     Unused
```


5. Sample Program Listing "main.c" (5)

```
bit6
             : DS : DREQ select : 0 Low level
                                     Unused
       bit5 : TB : cycle :0----- Cycle-stealing mode
       bit4-3 : TS : transfer size:B'00--- Byte transfer
bit2 : IE : interrupt enable:0--- Disable interrupt
219
220
       bit2
       bit1
221
              : TE : transfer end-----
       bit0
222
              : DE : DMA enable bit:0----
225
   /* ----Setting DMA extension resource selector 0---- */
   DMAC.DMARS0.BIT.CH1MID = 0x20; /* MID = SCIF0 */
   DMAC.DMARS0.BIT.CH1RID = 0 \times 01;
                                   /* RID = Transmission */
227
228
/* ----Setting DMA operation register---- */
  DMAC.DMAOR.WORD &= 0xfff9u;
                                   /* Clear AE,NMI bits
231
   if(DMAC.DMAOR.BIT.DME == 0ul){
                                   /* Enable DMA transfer on all channels
232
      DMAC.DMAOR.BIT.DME = 1ul;
233
234
    /* ----DMA transfer execution---- */
237
    DMAC.CHCR1.BIT.DE = 1ul;
                                   /* Enable DMA transfer
238 }
240 * Outline : DMAC stop
241 *-----
242 * Include : #include "iodefine.h"
244 * Declaration : void io_dma1_stop(void);
245 *-----
246 * Function: Detects the end of DMA transfer and disables DMA transfer
247 *-----
248 * Argument: void
249 *-----
250 * Return Value: void
251 *-----
252 * Notice
254 void io_dmal_stop(void)
255 {
       /* Detecting end of transfer */
256
       while(DMAC.CHCR1.BIT.TE == 0ul){
257
258
           /* Wait until the TE bit is set*/
       }
      /* ----Stopping DMA transfer---- */
261
       DMAC.CHCR1.BIT.DE = Oul; /* Disable DMA1 transfer */
262
263 }
266 * Outline : Initial setting of SCIFO as an asynchronous (UART) transmit module
           : #include "iodefine.h"
269 *-----
270 * Declaration : void io_init_scif0(int bps);
```


6. Sample Program Listing "main.c" (7)

```
272 * Function : Initializes SCIF0
               : Asynchronous (UART)/ 8 bits/ No parity/ 1 stop bit/ RTS/CTS disabled
274 *
               : Baud rate is specified by argument bps
275 *
276 *-----
277 * Argument: int bps : Value for baud rate specification
278 *-----
279 * Return Value: void
281 * Notice
               : The baud rate setting values given in this program are those when
282 *
               : the peripheral module clock (Pf) frequency is 33 MHz. If a different
283 *
               : clock is used, the baud rate setting values must be changed.
285 void io_init_scif0(int bps)
286 {
         /* ====Power-down mode cancellation==== */
287
         /* ----Setting standby control register 4 (STBCR4)---- */
288
         CPG.STBCR4.BIT.MSTP47 = 0; /* Start clock supply to SCIF0 */
289
         /* ====SCIF0 initialization==== */
292
         /* ----Setting serial control register (SCSCRi)---- */
         SCIF0.SCSCR.WORD = 0x0000; /* Stop transmission/reception by SCIF0 */
293
294
295
         /* ----Setting FIFO control register (SCFCRi)---- */
         SCIF0.SCFCR.BIT.TFRST = 1;  /* Reset transmit FIFO */
         /* ----Setting serial control register (SCSCRi)---- */
298
         SCIF0.SCSCR.BIT.CKE = 0x0; /* B'00: Internal clock */
299
300
301
         /* ----Setting serial mode register (SCSMRi)---- */
          SCIF0.SCSMR.WORD = scif_baud[bps].scsmr;
303
                                    /* Communication mode 0: Asynchronous mode
304
                                    /* Character length 0: 8-bit data
305
                                    /* Parity enable 0: Disable addition and check */
                                    /* Parity mode
306
                                                       0: Even parity
307
                                    /* Stop bit length 0: 1 stop bit
308
                                    /* Clock select
                                                       : Table value
310
          /* ----Setting bit rate register (SCBRRi)---- */
         SCIF0.SCBRR.BYTE = scif_baud[bps].scbrr;
311
312
          /* ----Setting FIFO control register (SCFCRi)---- */
313
         SCIF0.SCFCR.WORD = 0x0030; /* Transmit FIF0 data count trigger
                                                        : Number of data bytes = 0 */
                                    /* Modem control enable
316
                                                                     : Disabled */
                                    /* Transmit FIFO data register reset : Disabled */
317
                                    /* Loopback test
318
                                                                     : Disabled */
319
         /* ====Setting pin function controller (PFC)==== */
        PORT.PECRL1.BIT.PE1MD = 0x3; /* Switch to TxD0 pin */
321
         /* ----Setting serial control register (SCSCRi) ---- */
322
         SCIF0.SCSCR.BIT.TIE = 1;  /* Enable SCIF0 transmit interrupt */
323
324
         SCIFO.SCSCR.BIT.TE = 1;
                                    /* Enable SCIF0 transmission */
325
326 }
327 /* End of File */
```


4. Documents for Reference

 Software Manual SH-2A, SH2A-FPU Software Manual The most up-to-date version of this document is available on the Renesas Technology Website.

 Hardware Manual SH7203 Group Hardware Manual SH7263 Group Hardware Manual

The most up-to-date version of this document is available on the Renesas Technology Website.

Website and Support

Renesas Technology Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

Desc		

		Descript	
Rev.	Date	Page	Summary
1.00	Apr.17.08	_	First edition issued
1.01	Dec.17.08	_	Source file is updated

All trademarks and registered trademarks are the property of their respective owners.

Data Transfer to On-chip Peripheral Modules with DMAC

Notes regarding these materials

- 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2008. Renesas Technology Corp., all rights reserved.