Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M32C/81,82,83 Group

Clock synchronous serial communication by using Intellingent I/O group 0,1 external clock

1. Abstract

This application note describes the procedures of clock synchronous serial communication by using Intelligent I/O group 0,1 external clock.

2. Introduction

This application note is applied to the M32C/83 group microcomputer.

This program can also be used when operating other microcomputers within M16C family, provided they have the same SFR (Special Function Registers) as the M32C/83 group. However, some functions may have been modified. Refer to the User's Manual for details. Use functions covered in this Application Note only after careful evaluation.

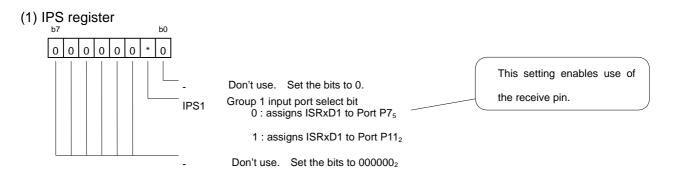
3. Detailed description

This application example offers the features of the clock asynchronous serial communication by using M32C/83 group Intelligent I/O group 1 shown in Table 1.

The transmit data is output from the pin ISTxD1. The transfer clock is input from the pin ISCLK1, and the receive data is input from the pin ISRxD1.

Execute the operation to initialize the Intelligent I/O group 1 if the external clock stops during the communication.

able 1 Clock synchronous senain / Ophon realures and selected realures			
Item	Definition	Selection	
Transfer clock	Internal clock		
	External clock	Yes	
Transfer format	LSB First	Yes	
	MSB First		
TxD,RxD output polarity select	Not reverse	Yes	
	Reverse		
	When G1TB register becomes		
Transfer interrupt factor	empty		
	When the transmission is	Yes	
	completed		

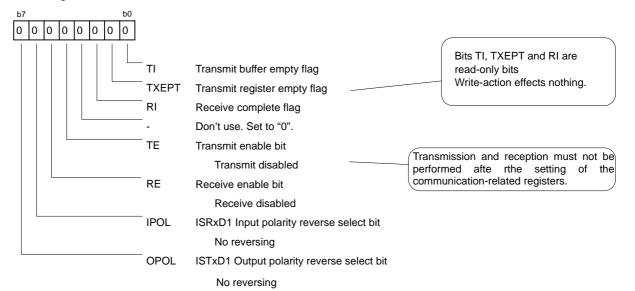

Table 1 Clock synchronous serial I/O option features and selected features

(Note) The communication setting must be operated when the port ISCLK1 is in "H".

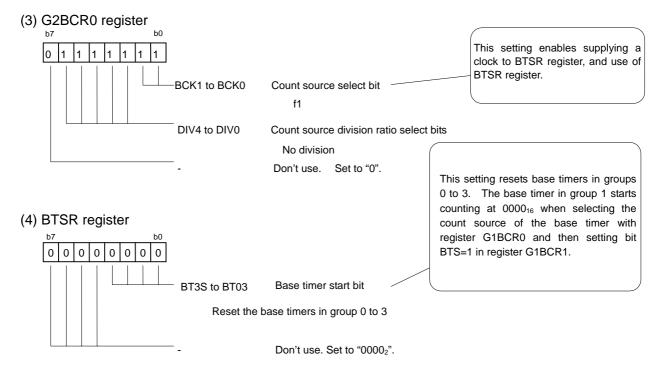
3.1 Register setting

3.1.1 The procedures of the port setting

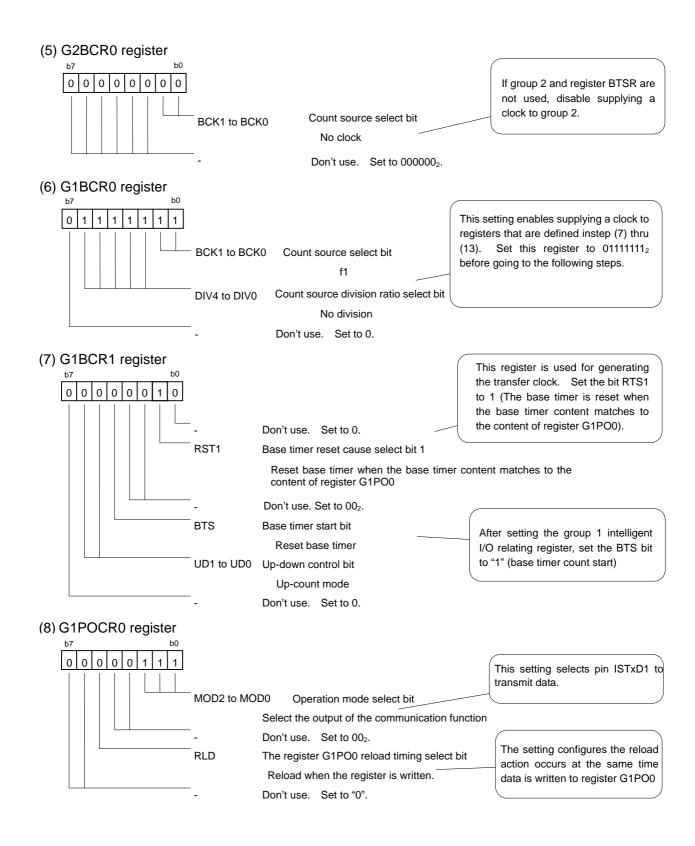
This section describes how to set the port to use for Intelligent I/O group 1. Refer to the M32C/83 group Hardware Manual for the details of each register.


(2) PSC register, PSLa register (a=0 to 3), PSb register (b=0 to 3, 5 to 9)

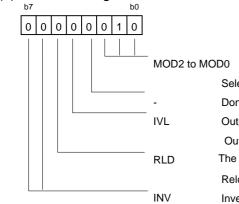
3.1.2 Intelligent I/O setting

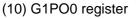

The setting procedures and the setting value will be described to enable the operation defined in "Section 3. Detailed description". The setting must be taken place when the port ISCLK1 is in "H". Refer to the M32C/83 group Hardware Manual for details of each register.

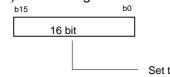
(1) G1CR register



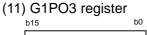
(2) Interrupt disabled


Set the I flag to "0", or set the bits ILV2 - ILVL0 to "000₂" in the registers IIO2IC - IIO3IC where the interrupt request of the intelligent I/O is assigned.

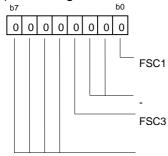


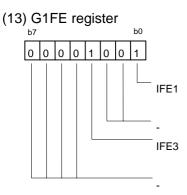


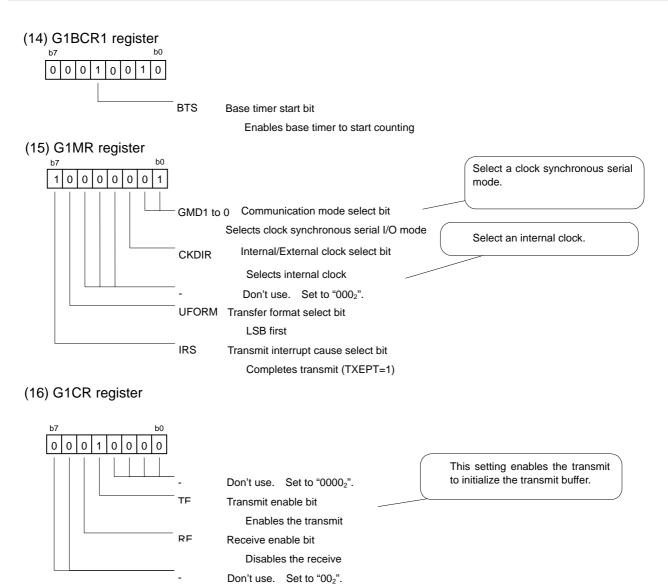
(9) G1POCR3 register




MOD0 Operation mode select bit		
Select phase-delayed waveform output mode		
Don't use. Set to "0".		
Output initial value select bit		
Output "0" as an initial value		
The register G1PO0 reload timing select bit		
Reload when the register is written.		
Inverted waveform output function select bit		
No inverted waveform output		

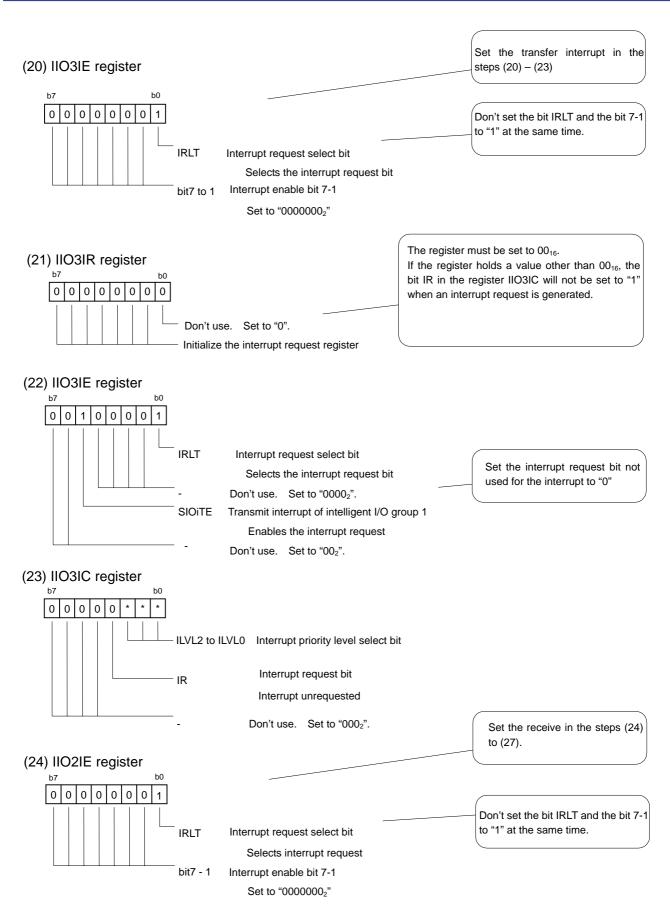



Set to 0001₁₆



Channel 0 time measurement, wave generation select bit Select the wave generation function. Don't use. Set to " 00_2 ". Channel 3 time measurement, wave generation select bit Select the wave generation function. Don't use. Set to " 00_2 ".

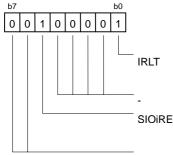
Channel 0 function enable bit Enables Channel 0 function Don't use. Set to "00₂". Channel 3 function enable bit Enables Channel 3 function. Don't use. Set to "00₂". Set the bit IFE of un-used Channels to 0.



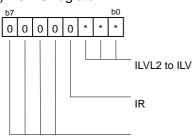
(17) Wait until the bit TXEPT = "1" (Transmit completes) in the register G1CR.

Outputs all data left in the transmit buffer by using the internal clock. (Initialization of the transmit buffer.)

(18) G1MR register 1 0 0 0 1 0 1			Select the external clock
	CKDIR	Internal / external clock select bit	-
		Selects external clock	
(19) G1ERC register			
b7 b0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0			
	-	Don't use. Set to " 00000_2 ".	
	RSHTE	Receive shift operation enable bit	
		Enables receive shift operation	
<u> </u>	-	Don't use. Set to "00 ₂ ".	



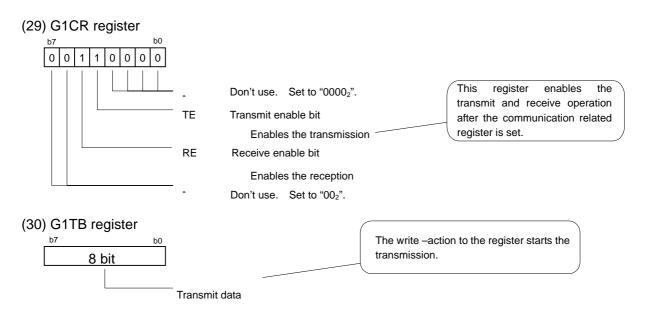
(26) IIO2IE register



Interrupt request select bit		
Uses interrupt request for an interrupt		
Don't use. Set to "0000 ₂ ".		
Transmit interrupt of intelligent I/O group 1		
Enables the interrupt request.		

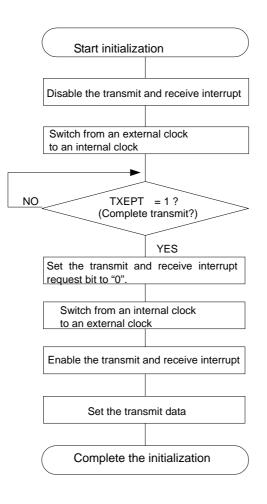
Don't use. Set to "002".

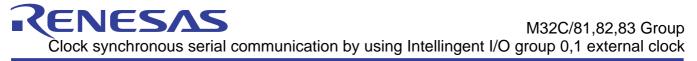
Set the interrupt request bit not used for the interrupt to "0"


(27) IIO2IC register

ILVL2 to ILVL0 Interrupt priority level select bit Selects the interrupt priority level. Interrupt request bit No Interrupt requested Don't use. Set to "00002".

(28) Interrupt enabled (I flag ="1")

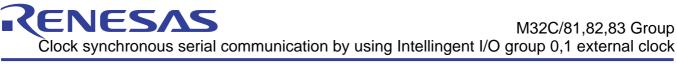

When using the interrupt, set I flag to "1" before setting the register for enabling receive and transmit operation.


3.2 Process of an initialization when an external clock stops during the communication

Data is remained in the transmit buffer when an external clock stops during the communication. Switch from an external clock to an internal clock to output all the data remained in the transmit data. (Initialization of the transmit buffer). The receive buffer does not have to be initialized because the data is overwritten on the next data.

3.3 Precaution on Interrupts

Set the register IIOiIR (i=0 to 11) to " 00_{16} " (Initialization) during the intelligent I/O interrupt routine. If you skip this procedure, the IR bit in the IIOiIC register is not set to "1" when the intelligent I/O generates the interrupt request, resulting in no interrupt being invoked.


4. The example of a reference program

The following will show the example of a reference program to use intelligent I/O external clock for a clock synchronous serial communication. Some changes and arrangements of the program will be necessary according to each user's application.

/**************************************
/* File Name: rej05b0262_src.c */
/* Ver : 1.00 */
/* FUNCTION:Clock synchronous serial */ /* communication by using intelligent I/O group external clock */
/******************************/
/* include fil */
/****************************/ #include <stdio.h></stdio.h>
#include = state
/* Function Definition */ /******************************/
void iio_init(void);
void receive_int(void);
void trans_int(void);
<pre>#pragma INTERRUPT receive_int #pragma INTERRUPT trans_int</pre>
/****************************/
/* Global Variable Definition */
/*********************************/
static int rec_buff;
/*******************************/
/* main Function */ /*******************************/
void main(void){
_asm(" fclr i"); /* Disable the interrupt */
/* main clock set */ prc0 = 1; /* protect off */
prc0 = 1; /* protect off */ mcd = 0x12; /* main clock : no division */
prc0 = 0;
/* */
/* port set */ ips = 0x00; /* Set P75 as ISRxD1 */
psc = 0x08;
psl1 = 0x00;
ps1 = 0x08;
iio_init(); /* IIO synchronous communication initial set */
g1tb = 0xD5; /* Write the transmit the data $*/$

```
pd4 = 0xff;
    pd5 = 0xff;
    while(1){
         /* external clock stop? */
         if( 0/* Check external clock stop */ ){
                iio_init();
                                       /* IIO synchronous communication re-set */
                g1tb = 0x8a;
                                           Set the receive data */
                                       /*
         }
    }
}
   iio communication function initialize */
void iio_init(void){
    short dummy;
    g1cr = 0x00;
                               /* Disable the transmit and receive operation */
                              /* Disable the interrupt request */
    asm(" fclr i ");
    /* base clock initial set */
                              /* Supply a clock for BTSR register */
    g2bcr0 = 0x7f;
    btsr = 0x00;
                              /* Base timer reset */
    g2bcr0 = 0x00;
                                  Stop group 2 clock */
                                /*
    /* iio group1 initial set */
    g1bcr0 = 0x7f;
                               /* b0,b1: count source f1
                                  b2 to b6: division rate of count source: no division*/
    g1bcr1 = 0x02;
    g1pocr0 = 0x07;
                                /* ISTxD1 select */
    g1pocr3 = 0x02;
    g1po0 = 0x01;
    g1po3 = 0x00;
    g1fs = 0x00;
                                  ch0,ch3 Select a waveform generation function */
                                  ch0,ch3 Enable the operation */
    g1fe = 0x09;
                               /*
                                      Start the base timer */
   g1bcr1 = 0x12;
                                   /*
                                    /* Internal clock
                                                         */
     g1mr = 0x81;
     g1cr = 0x10;
                                    /* Enable the transmit */
   /* wait */
     while(txept_g1cr == 0)p1_5 = to p1_5; /* Output all the date remained in the transmit buffer by using the
```

internal clock */


```
dummy = g1rb;
    g1mr = 0x85;
                                      clock synchronous serial, external clock, LSB first */
                                   /*
    g1erc = 0x20;
    /* iio group0 interrupt initial set */
                                /* Use the request use for interrupt
                                                                         */
    iio2ie = 0x01;
    iio3ie = 0x01;
    iio2ir = 0x00;
    iio3ir = 0x00;
    iio2ie = 0x21;
                                /* gr1 Enable the receive interrupt */
    iio3ie = 0x21;
                                /*
                                   gr1 Enable the transmit interrupt */
    iio2ic = 0x03;
                                /*
                                    Select the interrupt priority level */
                                /* Select the interrupt priority level */
    iio3ic = 0x03;
                         */
    /* interrupt enable
    _asm("fset
                   i");
    /* sio initial setting */
    g1cr = 0x30;
                                  /* Enable the transmit and receive operation */
   iio ch0 interrupt
                      */
void receive_int(void){
         iio2ir = 0x00;
                                     /* Clear the interrupt request */
                                      /* Read the received data */
         rec_buff = g1rb;
                                   Write the transmit data */
         g1tb = 0x55;
void trans_int(void){
         iio3ir = 0x00;
                                     /*
                                        Clear the interrupt request */
```

/*----- end program */

}

/*

}

}

5. Reference

HADWARE MANUAL Refer to the M32C/83 group HARDWARE MANUAL.

6. Web-site and contact for support

Renesas Web-site

http://www.renesas.com

Contact for Renesas technical support

Mail to : support_apl@renesas.com

REVISION HISTORY

Rev. Issue date		Revised		
	issue date	Page	Point	
1.00	Jan.30, 2004	-	First edition issued	
1.01	Sep.16,2004	5	5 Inverted waveform output mode → phase-delayed waveform mode	

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.