ENESAS

Application note

QSPI Loader for the DA14681
AN-B-045

Abstract

This document explains how to write a QSPI loader for the DA14681 using our SmartSnippets Studio

platform. This will open the possibility to add support for Flash types that are not booting using the
ROM booter from the DA14681.

AN-B-045 RE NESAS

QSPI Loader for the DA14681

Contents
ADSTFACE ... 1
L0 0 31 1= 3 N 2
I ¢ N 3
FIQUEES ... s s s s s s ssssnsssnsnnssnnnnnnnnnnn 3
1 Terms and definitionscccciiiiiicii e ———————————— 4
2 RefErENCESciiieiiiiiier i 4
3 INtrOAUCHION.....ceeeee et ———— 5
4 SOftware & TOOIS ..ot ——————— 6
LI = T o3 30 1T I=T= Yo T T=Y o T 6
6 How to support a new QSPI Flash model ... e 9
7 Example: How to support a QSPI Flash?.......... i smsr e nmne s 13
7.1 HW CONFIQUIALION. ...ttt stttk e et e e e s abn e e e s nnneee s 13
7.2 Tool to operate with the QSPI FIasShuuuiiiiiii e 14
7.3 QSPI Loader SW arChit@CtUIE.........uuuuuuiueiiiiiiiiiiiiiii s 15
7.4 Testing the QSPI I0AUEr PrOJECE.......ciiuiiiieiiiiie ettt 17
7.5 Generating the binary file of the QSPI loader Projectcccceceieiiiiiiiiiii e 21
8 Burning the OTP using our SmartSnippets toolbox or PLTcccocimiiiiiiccisrrrre e 23
REVISION NISTOrY.....coiiiiiii it 25
Application note Revision 1.1 25-Feb-2022
CFR0014 2 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

Tables

Table 1: Three officially supported QSPI FIash DEVICEScccoviuiiiiiiiii e 5
Table 2: Byte code according to the iNStruCtioN NAMEcoeveiiiiiciiiiiee e 8
Table 3: content of the QSPIC_BURSTCMDA REG......ccuuiiiiiiiiiiiiiieee ettt e et e e 9
Table 4: content of the QSPIC_BURSTCMDB_REG.......ccoiiiiiiiiiiiiiiieee et 9
Table 5: QFIS FLASH Initialization Section (QFIS)coiiiiiiiiiiiiieiiiieee e 11
Table 6: Address for the QSPI LOAAET COURuiiiiiiiiiiiiiiiiieie et e s ee e e e e e s neees 11
Table 7: QSPI FUNCHONS AUAIESSeueiiiieiiiiiiiiiie ettt e e e e e e s et e e e e e e s s snnbeeeeeaeeesaannes 12
Figures

Figure 1: DAL4681 DIOCK diagramccooeiiiiieieice e s 5
Figure 2: DA14681 Development Kit PRO ... s 6
Figure 3: SMartSNIPPELS STUIOoiiiiiiiice s 6
Figure 5: BOOTROM SEOUEINCEuuieiieieice e e s e s 7
Figure 6: Sequence of the Fast read Quad 1/O COMMAaNGcccoiiiiiiiiiiiiir e 10
Figure 7: QSPI Flash correctly mounted on the DA14681 daughter boards...........ccccoevvvveeiiiieeennnnen. 13
Figure 8: Final test bench to evaluate a new QSPI Flash ... 13
Figure 9: SmartSNIPPELS T00IDOXeeieiiiiiiei i 14
Figure 10: QSPI Programmer tab using our SmartSnippets TOOIDOXcoccvveeiriiieeiniiiieeiriiee e 14
Figure 11: Architecture of the QSPI l0ader PrOJECTcuuiiiiiiiie et 15
Figure 12: C codes for each memory VENUOIScooiiiiiiiiiciiccice s 15
FIQUre 13: MaiN.C Ml ... s 16
Figure 14: Memory selected fOr DOOLINGccoooiiiiiii e 16
Figure 15: QSPI FIash CONENL ... s 17
Figure 16: Step 1 to debug the QSPI loader PrOJECTcceeiiieeeeece e 18
Figure 17: Step 2 to debug the QSPI loader PrOJECTcceieiieiiiccece e 18
Figure 18: Beginning of the Debugging ProCeAUIEccooiiiiiiiiiiie e 18
Figure 19: Step 3 to debug the QSPI l0ader ProjecCtcooiiiiiieiiiiie e 19
Figure 20: Memory map Of the DALABSLooiiiiiiiiiiiiiee ettt 19
Figure 21: Memory WINAOWS VIEWcoiuiiieiitieee it e e ettt e ettt e ettt e e sttt e e et e e e sabe e e e s anbe e e e e nnbeeeeenenas 19
Figure 22: Step 4 to debug the QSPI l0ader ProjECtccooiiiiieiiiiie et 20
Figure 23: Step 5 to debug the QSPI l0ader ProjeCtccooiieiiiiiiiiee et 20
Figure 24: Actual binary file of the QSPI I0AdEr ... 22
Figure 25: Size of the actual binary file shown after compilationccoooooiiiiiiiiiiiiiiiccccccc, 22
Figure 26: QFIS parameters burnt in OTP using SmartSnippets toolbOXcccoeeeeiiiiiiiieiiiiiceeceee, 23
Figure 27: DALAB8BL A0VEITISING ...ieeeieeeeieeee e e s 24
Application note Revision 1.1 25-Feb-2022

CFR0O014 3of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

1 Terms and definitions

FLASH Non-volatile memory which can be electrically erased and
reprogrammed.

GUI Graphic User Interface

HW HardWare

PLT Production Line Tool

QFIS QSPI FLASH Initialization Section

QSPI Quad Serial Peripheral Interface

QSPIC Quad Serial Peripheral Interface Controller

SDK Software Development Kit

SW SoftWare

XIP Execute-In-Place

2 References

[1] DA14681 Datasheet, Dialog Semiconductor.
[2] UM-B-044 DA1468x Software Platform Reference, Dialog Semiconductor.
[3] UM-B-041 DA1458x/68x Production Line Tool Hardware and GUI, Dialog Semiconductor.

Application note Revision 1.1 25-Feb-2022

CFR0014 4 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

3 Introduction

The DA14681 which is based on an ARM Cortex-M0O CPU provides a flexible memory architecture,
enabling code execution from embedded memory (RAM, ROM) or non-volatile memory (OTP or
external FLASH memory).

This application note will describe how to make the DA14681 bootable from any Flash memories
using the QSPI interface. This document only explains the creation of a program to bypass the ROM
booter. Fully functional Flash support also needs updates of the drivers and programming scripts.
This is explained section 10.2 Non Volatile Memory storage from [2].

The QSPI loader project is available from the DIALOG support website and must be copied in the
path: your workspace/DA1468x SDK BTLE v x.x.x.xxx/utilities. This project will be used to
generate the actual QSPI loader binary file which will be burnt afterwards into the OTP of the
DA14681.

The maximum size of the QSPI loader binary file is 2016 Bytes see Figure 25].

A cache controller is used for code execution directly from OTP or external QSPI Flashes while
DataRAM is used to store variables, stacks, heaps and application data. The QSPI controller
supports single, dual and quad SPI.

ARM Cortex-M0 Instruction Cache oe- ‘ veL || Lpo
L TTAL >277u4 (BUCK AUGE 10
IMHZ ||\ kHz oo || wo || o || o
[BAT ORE SLEEP RADI
QSPI Flash
QSPIFLASH
CONTROLLER ¢
Bluetooth Smart ™
Bluetooth Smart 4.2 MAC [Radio Transceiver I‘/ +
: 2.4 GHz
COEX
t |
|
S
T~ 7S A 4 -~ %
|]
Analog Comm

‘ UART / UART2

USB 1.1 FS Device

CHARGE DETECTION

T m

GPIO MULTIPLEXING
Figure 1: DA14681 block diagram

The DA14681 can boot and operate correctly using these three flash types mentioned in Table 1.
Other flash devices with compatible boot sequence will also work without the need for a QFIS loader
but might need updates in the driver or programming scripts (see section 10.2 from [2]).

5

Table 1: Three officially supported QSPI Flash Devices

Flash version Flash vendor
GD25LQ80B, 8Mbits C
Giga I)-gc e
MX25U51245G, 512Mbits E:_I
W25Q80EW, 8Mbits wi”ba”d
Application note Revision 1.1 25-Feb-2022

CFR0014 5 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

4 Software & Tools

The tools and software needed to perform the tests are the following:

A DIALOG DA14681 Development kit Pro. The DIALOG website indicates our distributors and
partners.

This includes the following:
- Mother board PRO
- USB cable/ Coin cell battery
- DA14681 daughterboard

Figure 2: DA14681 Development kit PRO

The SmartSnippets Studio (which includes SmartSnippets Toolbox) which can run on both Windows
and Linux can be downloaded from our portal in the Software & Tools section:

https://support.dialog-semiconductor.com/

SmartSnippets Toolbox
4.5.0.1434

¢Jdialog
SmartSnippets™ Studio

D[ializing Power Profiler

Figure 3: SmartSnippets Studio

A python script is used when the compilation is done to generate the actual hex file of the QSPI
loader. Make sure to install Python 3.5 or above version from: https://www.python.org/downloads/

5 BootROM sequence

The Figure 4] shows the booting sequence of the DA14681. We will be focusing on the QFIS loader
block highlighted at the bottom left corner in the Figure 4]. It will be used in order to boot from a
specific QSPI Flash model. The QFIS loader will be used to copy the QSPI Flash content into the
RAM of the DA14681.

Application note Revision 1.1 25-Feb-2022

CFR0014 6 of 27 © 2022 Renesas Electronics

https://support.dialog-semiconductor.com/
https://www.python.org/downloads/

AN-B-045 RE NESAS

QSPI Loader for the DA14681

- Boot start

Default clockis ___——"

RC16M
Disable XTAL16M
Start LDO_RADIO
Initialise OTP
Shuffle RAM cells
| Enable/disable JTAG |
e
| Copy TCS to registers }'a\ If copy values are
0x00: Serial boot " not correct then
OxAA NVM boot -___ | Wait for 200us and enable XTAL16M | issue a HW reset
Else: HW reset “‘__H
—
Product
Yes No
Ready? e
< Wait for 4 ms |
e
| Switch 1o XTALT6M |
Read serial
QASPI QSPlor OTP configuration
2 T
_ ? OTP Yes
| Read reset seq. from OTP and run it | _ _
Initialise specific
| Check for “gQ" in the QSPI FLASH | serial device
Cached/
L Initialise peripheral
“qQ” devices
No identified?
Boot from
‘ Yes Mirrored Cached SPI Master| &3
| HW reset || Copy QFIS uCode to QSPI FIFO—|
T
Yes No
Coched) Boot from kves
c . | UART
M 12 Mirrored
Configure image Copy interrupt Yes

A }—J length vector table to Mo
Cached ‘L 0x7FC00000
Enable cache Copy image to l Boot from |,
controller Data RAM Enable cache SPI Slave
controller

o
Z
o
g &
= Copy interrupt No Mo |
o vector table to T~
O 0x7FC00000 Copy Boot from 14
m done? e fYes w
— Execute QFIS w0
= loader
e ¥ Remap to Download code to
b address 0x0 Data RAM
L
| SW reset |[__Disable Watchdog _|—No-

L

I
@ | Wait forever |

Figure 4: BootROM sequence

The BootROM of the DA14681 automatically takes care of the instructions mentioned below:

IMPORTANT NOTE

The QSPI loader project also follows the same sequence which can be modified (especially the
properties of the Fast Read Quad I/O (FAST_READ) command) to make the DA14681 bootable from
a specific QSPI Flash.

Application note Revision 1.1 25-Feb-2022

CFR0O014 7 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

¢ Reset Quad I/O (RSTQIO) of the QSPI Flash:

The Reset Quad I/O instruction resets the device to 1-bit Standard SPI operation.

e Reset-Enable (RSTEN) & Reset-Memory (RST) the QSPI Flash:

The Reset operation is used as a system (software) reset that puts the device in normal
operating Ready mode. This operation consists of two commands: Reset-Enable (RSTEN)
and Reset (RST).

¢ Release from Deep Power-Down and Read Device ID (RDI):

Once the device has entered the Deep Power-down mode, all instructions are ignored except
the Release from Deep Power-down and Read Device ID (RDI) instruction. Executing this
instruction takes the device out of the Deep Power-down mode.

The Table 2 summarizes the reset sequence of the BootROM including the Byte code for each single
RESET commands.

Table 2: Byte code according to the instruction name

Instruction name Byte 1 Code
Reset Quad I/O or Fast Read Enhance Mode OxFF
(RSTQIO)

Reset-Enable 0x66
(RSTEN)

Reset-Memory 0x99

(RST)

Release from Deep Power-Down, and read Device ID OxAB

(RDI)

IMPORTANT NOTE

If the Flash which needs to boot from the DA14681 does have the same Byte codes, the reset
sequence does not need to be implemented again in the QSPI loader project.

e The Auto mode which is used to execute from FLASH.

The Auto Mode is used to execute in QSPI Flash cached mode. The Auto Mode is up-to 32
Mbyte transparent Code access for XIP (Execute In Place) and Data access with 3-byte and
4-byte addressing modes.

XIP mode allows the memory to be read by sending an address to the device and then
receiving the data on one, two, or four pins in parallel, depending on the customer
requirements. It is a method of executing programs directly from long term storage rather
than copying it into RAM. XIP mode offers maximum flexibility to the application, saves
instruction overhead, and reduces random access time.

In the case of Auto Mode of operation the QSPIC generates a sequence of control signals in
SPI BUS. This sequence of control signals is analysed to the following phases:

- Instruction phase

- Address phase

- Extra Byte phase

- Dummy clocks phase

- Read data phase

Application note Revision 1.1 25-Feb-2022

CFR0O014 8 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

These phases are programmed via the registers:
- QSPIC BURSTCMDA REG (command register A to read in Auto Mode)

- QSPIC BURSTCMDB REG (command register B to read in Auto Mode)

e The properties of Fast Read Quad I/O (FAST_READ) command are configured via the
register QSPIC BURSTCMDA REG. This command must be used to boot from the FLASH.

If the reset sequence of the QSPI Flash does totally match the one described just above, only the 2
following registers need to be correctly programmed in the QSPI loader project.

- QSPIC BURSTCMDA REG (more information can be found from [1], section 37 Registers)

- QSPIC BURSTCMDB REG (more information can be found from [1], section 37 Registers)

The Table 3 & Table 4 summarize the content of QSPIC BURSTCMDA REG & QSPIC BURSTCMDA REG
respectively.

Table 3: content of the QSPIC_BURSTCMDA_REG

Content of QSPIC_BURSTCMDA_REG Bits position
Command value (IncBurst, Single) [7:0]
Command value (WrapBurst) [15:8]

Extra Byte [23:16]
Command Transmit Mode [25:24]
Address Transmit Mode [27:26]

Extra Byte Transmit Mode [29:28]
Dummy Bytes Transmit Mode [31:30]

Table 4: content of the QSPIC_BURSTCMDB_REG

Content of QSPIC_BURSTCMDB_REG Bits position
Read Data Receive Mode [1:0]

Extra Byte Enable [2]

Extra Half Byte Disable Out [3]

Num of Dummy Bytes [5:4]
Command Mode [6]

Wrap Mode (7]

Wrap Length [9:8]

Wrap Size [11:10]

CS High Min Number of CLKs [14:12]

6 How to support a new QSPI Flash model

The QSPI Flash models from other vendors can be used by doing the following steps.
The Table 5, Table 6 & Table 7 are extracted from [1], section 3.3.

Application note Revision 1.1 25-Feb-2022

CFR0O014 9 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

STEP 1:

The QSPI_Loader project from the path: \utilities\QSPI loader using SmartSnippets Studio
must be modified according to the QSPI Flash specification to generate the correct QSPI Loader
binary file.

As mentioned in the previous section, the 2 below registers have to be correctly configured using the
QSPI Loader project.

- QSPIC BURSTCMDA REG
- QSPIC BURSTCMDB REG

To do so, the first thing to do is to look at the timing diagram of the Fast Read Quad I/O
(FAST_READ) instruction of the Flash vendor which looks like the following sequence:

s\ /

Mode 3 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 n

e Y O)

o Switclines from

!Input to Putput

A VAVAR OO O 000 00 SR (0 00 Clam S
o OO —— PRI D—

A23-16 | A15-8 | A7-0 | P70 |Dummy:Dummy| | Byte3: Byted !

P

DQ3 XSG

Figure 5: Sequence of the Fast read Quad I/O command

Instruction:

An instruction (in our case: Fast read Quad I/O (0xEB)) is sent to the Flash memory specifying the
type of operation to be performed. This is done in SINGLE SPI mode.

IMPORTANT NOTE

In case the QSPI Flash has a Command transmit mode which is using a Quad SPI mode, the Enable
Quad Peripheral mode (EQPI) instruction must be enabled before the reset sequence.

This can be done using the following command:
SetWord8 (QSPIC WRITEDATA REG, 0xXX); //0xXX is the EQPT value of the Flash vendor

This will enable the flash device to support Full Quad SPI Mode.

Address:

An address is sent to the Flash, specifying the address of the data to be read or written. This is done
in QUAD SPI mode. Address is automatically set in the QSPI loader project. No need to take care of
that.

Application note Revision 1.1 15-Dec-2016

CFR0O014 10 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

Extra-Byte (or Performance enhance indicator):

Extra-Byte field supported by the QSPI SPI interface offers more flexibility. It must be used with the
Fast read Quad 1/0 command and is generally used for controlling the mode of operation (e.g. to
keep the memory in Execute-In-Place mode).

Dummy bytes:

The dummy-cycle phase is needed in some cases when operating at high clock frequencies. This
phase allows to ensure “turnaround” time for changing the data signals from output mode to input
mode. In our case, the SPI clock frequency when booting is set to 8 MHz. Therefore, 2 dummy bytes
are enough.

Data:

The data is sent or received from or to the QSPI memory using QUAD SPI mode.
In our case, it will be the reading of the content of the QSPI Flash.

STEP 2:

The QSPI loader binary file generated from the QSPI_Loader project has to be burnt in the OTP of
the DA14681 at offset: OxF818. This is part of the QFIS FLASH Initialization Section (see [1], section
3.3 SYSTEM CONFIGURATION).

Table 5: QFIS FLASH Initialization Section (QFIS)

Address Size (B) Field name Description

Ox7F8F818 | 2016 Contains all QSPI related code segments

Ox7F8F818 is the start address of the customer functions. You are free to select an address in this
area. But it makes sense to start at the beginning, unless you have to put other QSPI functions there
as well, like the reset function.

STEP 3:

Another part of the OTP must be programmed which is at the address 0x7F8F808.
In this section, the length and the address of the QSPI loader must be programmed. This is part of
the QFIS FLASH Initialization Section.

Table 6: Address for the QSPI Loader code

Address Size (B) Field name Description

Ox7F8F808 | 8 Address for the QSPI Loader code B7-B5: Section length (Bytes)
B3-0: Address

STEP 4:

The last part of the OTP which must be programmed is at the address 0x7F8EA48 which contains
the QSPI functions. In this section, only the Bit2 has to be set to 1.

Application note Revision 1.1 25-Feb-2022

CFR0O014 11 of 27 © 2022 Renesas Electronics

AN-B-045

LENESANS

QSPI Loader for the DA14681

Table 7: QSPI Functions address

Address Size (B) Field name

Description

Ox7F8EA48 | 8 QSPI Functions

Bit0

0: Reset Function of QSPI FLASH is in BootROM

1: Reset Function of QSPI FLASH is in OTP

Bitl

0: Find ‘qQ’ Function of QSPI FLASH is in BootROM
1: Find ‘qQ’ Function of QSPI FLASH is in OTP

Bit2

0: QSPI Loader of QSPI FLASH is in BootROM

1: QSPI Loader of QSPI FLASH is in OTP

Application note

Revision 1.1 25-Feb-2022

CFR0014

12 of 27

© 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

7 Example: How to support a QSPI Flash?
In this section, we will see how to support a new QSPI FLASH. We will call it: XYZ_Flash.

7.1 HW configuration

The combination of the DA14681 mother & daughter boards can be used to perform some tests with
a new QSPI Flash. Make sure you replace the current QSPI Flash mounted on the DA14681 with the
new QSPI Flash as shown in Figure 6.

The power supply of the Flash delivered from the DA14681 (QSPI_VDDIO pin) is 1.80V.

¢Jdialog XYZ_Flash

i 0

224-15-E AN

“ ©oa) 1a s
Uk B m—
L0 ',)) 1o ¢
Osmio I Y - 13839/ a70H []¢
[1] 4 . I3
Osneux ™ o 7 Sa— o0n []®
O O oy i 5 :
VEAT ",

- & o =

dialog
DA14681AE-
1631_00198

m

e gdialeg EME
a=ll DA14681-UN R?
Sl 1627_00203 [m]

13834/ a10H

Figure 6: QSPI Flash correctly mounted on the DA14681 daughter boards

IMPORTANT NOTE

Our SmartSnippets toolbox supports the QSPI Flashes with both HOLD and RESET signal on pin #7 (103) to
program, read & erase the Flash content. It is using the single SPI mode because the majority of the SPI
Flashes are using the same operational codes for program, read & erase.

The final setup with the correct jumper positions on the mother board should looks like the following:

‘s—-_'—u--n:muw N — . I

Figure 7: Final test bench to evaluate a new QSPI Flash

Application note Revision 1.1 25-Feb-2022

CFR0014 13 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

7.2 Tool to operate with the QSPI Flash
Our Smart Snippets toolbox can be used to Read / Erase / Program the QSPI Flash.

SmartSnippets Toolbox

11

Initializing Sleep Mode Advisor

Figure 8: SmartSnippets toolbox
This tool can be downloaded from (with a windows machine):
http://support.dialog-semiconductor.com/resource/smartsnippetsstudiovl2-windows-0s
Or in case you have a Linux machine:

http://support.dialog-semiconductor.com/resource/smartsnippetsstudiov12-linux-os

To operate with the QSPI Flash, the QSPI Programmer tab must be used. This is show below.
More information about how to use our tool can be found from the help tab.

File Layout Help Feedback

CIER Y=T- TSNy ey =]

Select File to download: Browse QSPI type:| W25Q80EW | ¥ |Offset (HEX): Length (DEC, in KBJ: Memory size (Hex, in Byles): 100000

Data File Contents Memory Contents

Prepare Image (Add header) Connect I Read I I Erase I I Bumn I

Figure 9: QSPI Programmer tab using our SmartSnippets Toolbox

Application note Revision 1.1 25-Feb-2022

CFR0014 14 of 27 © 2022 Renesas Electronics

http://support.dialog-semiconductor.com/resource/smartsnippetsstudiov12-windows-os
http://support.dialog-semiconductor.com/resource/smartsnippetsstudiov12-linux-os

AN-B-045

LENESANS

QSPI Loader for the DA14681

7.3

QSPI Loader SW architecture

As already mentioned earlier, the QSPI Loader project must be copied in the path:
DA1468x SDK BTLE v x.x.x.xxx/utilities.

This project must be imported using our SmartSnippets Studio.

Then, the proper programming macro in the config.h file needs to be defined, based on your flash

memory selection for your application.

An example is shown in Figure 10, where WINBOND is used for demonstration.

0~ | &> &~ B

& [project Explorer 2 =3

-

a5

=
4 |I£5 gspi_loader’
v 4% Binaries
v & Includes
4 (= config

File Edit Source Refactor Navigate Search Project Run Window Help

LURLA

ErEr G v@vrBv® § o 5w

[W configh &2 I

#ifndef _ CONFIG H__
#define _ CONFIG H__

/1 ¥¥*x0x%x SELECTION OF THE QSPI FLASH **¥xsxxxxxxxxx)y
#define QSPI_WINBOND

| > [configh

#undef QSPI_MACRONIX

#undef QSPI_EON

» (= ldscripts
(= qgspi_input_files
4 (= gspi_output_file
=) actual_gspi_bootloader.bin
» (= Release
b Gp sdk
4 = src
» |2 eonc
~ € macronix.c
> € main.c
> € micron.c
» ¢ winbond.c
- (= startup
= jlink.log
|= gspi_loader_generator.sh
[F] gspi_loader.py
|= uartboot_attach.launch
|= uartboot.launch
» & scripts

#undef QSPI_MICRON

#undef RESET_SEQUENCE
[FERERRERREERREOCOORE RO RO R)

#define QSPIC_SET_SINGLE (ex0001)
#define QSPIC_SET DUAL (ex0002)
#define QSPIC_SET_QUAD (ex0004)
#define QSPIC_EN_CS (0x0008)
#define QSPIC_DIS CS (ex0010)
#define QSPIC_AUTO_MD (ex0001)
#define QSPIC_CLK_MD (ex0002)
#define QSPIC_I02_OEN (@x0004)
#define QSPIC_IO3_OEN (0x0008)
#define QSPIC_I02 DAT (ex0010)
#define QSPIC_IO03_DAT (@x0020)
#define QSPIC_HRDY_MD (0x0840)
#define QSPIC_RXD_NEG (ex0080)
#define QSPIC_RPIPE_EN (ex0100)
#define QSPIC_PCLK_MD (exorea)
#define QSPIC_FORCENSEQ EN (ex1000)
| #define QSPIC_USE_32BA (@x2000)

Figure 10: Architecture of the QSPI loader project

In the source folder, you can find the C files for each memory vendors.

K C/C++ - gspi_loader/src/winbond.c - SmartSnippets Studio v1.3.0.596

il g [B-&~@E xw[&%

File Edit Source Refactor Navigate Search Project Run Window Help

Ere- -G~ @ -t~ Q-® P~ S~ v

& [25 Project Explarer &2

=B |@ winbond.c 23"@ macronix.c ” [J eon.c “ [micron‘cl

S-S

> = qspi_input_files
4 = qgspi_output_file
|= actual_gspi_bootloader.bin
» = Release
> p sdk
4 = srC
| - |g eon.c |
- lel macronix.c
- g mainc
| b micron.c |

» (= startup
= jlinklog
|2 gspi_loader_generator.sh
[l gspi_loader.py
=l uartboot_attach.launch
|5 vartbootlaunch
=4 scripts

-~

« [Elgspiloader _::Lnl::me VD::\.d qsp::m_er_mhle_quad_pads (vnir;l);
S __inline void qspic_disable_quad_pads (void);
&) Includes ~inline void WND_WaitEndOfWrite(void);
4 (= config __inline void WND_WriteStatus (unsigned char w_statusl, unsigned char w_status2);
> [0 configh __inline void WND_SetHighPerf (void);
» = Idscripts __inline void WND_AutoCfg_QuadIO (void);

“uint8 WND_Init(void)

// Disable quad pads. Memory are in single mode.
qspic_disable_quad_pads();

// Initialize the Status registers.

// Disable Write Protection and Enable Quad mode
WND_WriteStatus(0x0,WND_STATUS_QE);

// 103 hi-z, 102 hi-z
gspic_enable_guad_pads();

// Enable high frequencies
WND_SetHighPerf();

// Fast Read Quad I/0 instruction during the Auto mode
WND_AutoCfg_QuadIO();

return(1);

Application note

Figure 11: C codes for each memory vendors

Revision 1.1

25-Feb-2022

CFR0014

15 of 27

© 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

In the main.c file, you can find the memory manufacturer IDs and the memory vendor which will be
used for booting as shown in Figure 12.

‘ C/C++ - gspi_loader/src/main.c - SmartSnippets Studio v1.3.0.596
File Edit Source Refactor Navigate Search Project Run Window Help

C~HEl2~-&%-BE %% BrE~vv@ @~ H~vQr-@ P SETMY ~Fl v~
& [Project Explorer 2 =8 main.c &
B ¥ & * File: main.c[]
4 =5 gspi_loader #include "config.h”
o ¥ Binaries #:}nclude :sdk_defs.h:
» & Includes #include "core_cmd@.h
I = config
I = ldscripts [/FFEERRRREE Memory MANUFACTURER IDs *¥ssxxsskxxx [/
i = gspi_input_files #define WINBOND_ID AxEF
(= gspi_output_file #define MACRONIX_ID axC2
» & Release #define FON_ID ax1C
b G sdk #define MICRON_ID 0x20
4 = src
» 14 eonc #ifdef QSPI_WINBOND

Lt Macronix.c uint8 t WND_Init(void);
» |8 main.g #endif

I g micron.c

- [@ winbond.c #ifdef QSPI_MACRONIX

I & startup u1n‘t£_i_‘t MX_Tnit(void);
o #endif
= jlinklog
= gspi_loader_generator.sh #ifdef QSPI_EON
Bl gspi_loader.py uint8_t EON_Init(wvoid};
= uartboot_attach.launch #andif

= uartboot.launch

b & scripts #ifdef QSPI_MICRON
uint8_t MICRON_Init(veid);
#endif
Figure 12: main.c file
[8 mainc 2
" =int main(void)
{

é REG_SETF(CRG_TOP, CLK_16M_REG, RC16M_ENABLE, 1);
REG_SETF(CRG_TOP, CLK_CTRL_REG, SYS_CLK_SEL, 1);
GPREG->SET_FREEZE_REG = GPREG_SET_FREEZE_REG_FRZ_WDOG_Msk;
WDOG->WATCHDOG_REG = OxFF;

REG_SET_BIT(CRG_TOP, SYS_CTRL_REG, DEBUGGER_ENABLE);
while(((CRG_TOP->CLK_CTRL_REG) & RUNNING_AT_RC16M)==@);
qspi_init();
#ifdef QSPI_WINBOND
WND_Init();
#endif
#ifdef QSPI_MACRONIX
MX_Init();
#endif
#ifdef QSPI_EON
EON_Init();
#endif
#ifdef QSPI_MICRON
MICRON_Init();
#endif
while(1);
}
Figure 13: Memory selected for booting
Application note Revision 1.1 25-Feb-2022

CFR0014 16 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

7.4 Testing the QSPI loader project
For testing purposes, our SmartSnippets tool can be used to write any images in the QSPI Flash.
In order to know how to use our SmartSnippets tool, please refer to the HELP tab.

We first need to program the QSPI flash using the *.HEX file of the ble_adv demo project of the
DA14681 with the purpose to debug the QSPI loader later on.

This gives us the following content:

Memory Contents

0x00000 71 51 00 00 20 01 1E 94 ad » 1 =

0x00008 00 80 FC 07 BD 02 00 08 =0

0x00010 59 03 00 02 59 03 00 08 ¥ Y

0x00018 00 00 00 00 00 00 00 0O

0x00020 00 00 00 00 00 00 00 0O

0x00028 00 00 00 00 00 00 00 0O

0x00030 00 00 00 00 &5 03 00 08 e

0x00038 00 00 00 00 00 00 00 0O

0x00040 75 BS 00 08 59 03 00 08 ud Y

0x00048 11 17 FD 07 E1 16 FD 07 of£o

0x00050 59 03 00 08 59 03 00 08 Y Y

0x00058 19 1D 00 08 59 03 00 08 Y

0x00060 45 C7 FO 07 59 03 00 08 EOO Y

0x00068 E9 22 00 08 F9 22 00 08 <" o"

0x00070 59 03 00 08 59 03 00 08 Y Y

0x00078 59 03 00 08 59 03 00 08 Y Y

0x00080 79 OF 00 08 59 03 00 08 ¥y Y

0x00088 59 03 00 08 39 3D 00 08 Y 9=

0x00090 59 03 00 08 25 10 FD 07 Y 50

0x00098 59 03 00 08 59 03 00 08 Y Y

0x000R0 59 03 00 08 59 03 00 08 Y Y

Ox000RSE 59 03 00 08 31 23 00 08 Y 1%

0x000BO 19 OB 00 08 85 41 00 08 s

0x000B8 7D 20 00 08 59 03 00 08 1

0x000CO 4D 35 00 08 59 03 00 08 M5 ¥

0x000C8 31 01 00 08 31 01 00 08 1 1

0x000D0 31 01 00 08 31 01 00 08 1 1

0x000D8 31 01 00 08 31 01 00 08 1 1

0x000EO0 31 01 00 08 31 01 00 08 1 1

0x000E8 31 01 00 08 31 01 00 08 1 1

0x000F0 31 01 00 08 31 01 00 08 1 1

0x000F8 31 01 00 08 31 01 00 08 1 1

0x00100 31 01 00 08 31 01 00 08 1 1 :-

Figure 14: QSPI Flash content

IMPORTANT NOTE
Our SmartSnippets toolbox supports the QSPI Flashes with both HOLD and RESET signal on pin #7 (103) to
program, read & erase the Flash content. It is using the single SPI mode because the majority of the SPI
Flashes are using the same operational codes for program, read & erase.
The ble_adv demo now resides in flash but in order for this program to execute, the QSPI loader
needs to be programmed in OTP. This is explained in section [8].
Application note Revision 1.1 25-Feb-2022

CFR0014 17 of 27 © 2022 Renesas Electronics

AN-B-045

LENESANS

QSPI Loader for the DA14681

Now, going back to our SmartSnippet Studio platform, we can start debugging the QSPI loader
project by going through the following steps:

Step 1: Click on the Build button and select Release.

& C/C++ - qspi_loader/config/configh - Smartsnippets Studiov1305%6]

File Edit Source]_Refactor Navigate Search Project Run Window Help

Brdol @48 -l B8 w|&% @~ ~r@~%~@~®
2

& [24 Project Expl ﬂ_ £l main.c [W config.h 22

v 2 Release
#ifndef _ CONFIG H__
4|5 gspi_loader| #define _ CONFIG_H__

Figure 15: Step 1 to debug the QSPI loader project

Step 2: Click on the Debug button and download the code into the RAM of the DA14681:

File Edit Source Refactor Navigate Search Project Run Window Help
S~Ha®~8~BE x[&% @@

& |G project Explorer 22 = 8 [2 mainc &2

® <
+[B qspiJoade] o /% enable the QSPT pafl 3RAM
T T QSPIC->QSPIC_GP_REG = Debug As »
¢ %1 Binaries REG_SET_BIT(CRG_TOP, §) // open pad latche
@ Includes ebug Configurations.
I = config /* Power up periphera Organize Favorites...
b (= ldscripts REG_CLR_BIT(CRG_TOP, PMU_CTRL_REG, PERIPH_SLEEP);

while (!REG_GETF(CRG_TOP, SYS_STAT_REG, PER_IS_UP)) {}

I & gspi_input_files

Figure 16: Step 2 to debug the QSPI loader project

At this point, you should have the following windows:

<4

%

File Edit Source Refactor Navigate Search Project Pydev Run Window Help

Sl Gl wrlEBds®eS s #I85® @~H~A-®Fv 43 ~fvobya~
‘#Debugzz Rut|=liv =8
4 @ erase_gspi_jtag_win [Program] m

4 [l RAM [SmartBond "SmartSnippets DA1468x SDK” via J-Link GDB Server]

[¢ main.c & | [W configh

s C\Users\glagnieu\Desktop\DA1468x SDK_BTLE v_1.0.6.968\DA1468x_SDK_BTLE_v_1.0.6.968\utilities\scripts\gspi\erase_qgspi_jtag.| M

4 & gspi_loader.elf =
4 Thread #1 <main> (Suspended : Breakpoint)
= main() at main.c:66 0x256
£ JLinkGDBServerCLexe
s arm-none-eabi-gdb

E Comibacting and CUARS

| I 3 4

KEW_SEI_BLI(LKG_IUF, >Y> ULIKL_KEW, FAU_LAILH_EN); // Open pad latcnes

/* Power up peripherals power domain */
REG_CLR_BIT(CRG_TOP, PMU_CTRL_REG, PERIPH_SLEEP);
while (IREG_GETF(CRG_TOP, SYS_STAT_REG, PER_IS_UP)) {}

/* set SINGLE mode for QSPIC */
QSPIC->QSPIC_CTRLBUS_REG = QSPIC_DIS_CS | QSPIC_SET_SINGLE;// Disable kerial access to device +
QSPIC->QSPIC_CTRLMODE_REG = QSPIC_RXD_NEG | QSPIC_IO3_DAT | QSPIC_IO2_DAT | QSPIC_IO3 OEN | QSPIC_:

=int main(void)

REG_SETF(CRG_TOP, CLK_16M REG, RC16M_ENABLE, 1);
REG_SETF(CRG_TOP, CLK_CTRL_REG, SYS_CLK_SEL, 1);

GPREG->SET_FREEZE_REG = GPREG_SET_FREEZE_REG_FRZ_WDOG_Msk;
WDOG->WATCHDOG_REG = @xFF;

REG_SET_BIT(CRG_TOP, SYS_CTRL_REG, DEBUGGER_ENABLE);
while(((CRG_TOP->CLK_CTRL_REG) & RUNNING_AT_RC16M)==8);

Application note Revision 1.1 25-Feb-2022

Figure 17: Beginning of the Debugging procedure

CFR0014

18 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

Step 3: A memory watch windows needs to be added. Address has to be set to: 0x8000000.

« 1
& Console ¥ Tasks (%! Problems (2 Executables | 0 Memory 2 2
Monitors)% % |4 New Renderings..

I @ 0)(8000000'

\Memory Monitor: 0x8000000 : 0x8000000
Select rendering(s) to create:

Floating Point
jtignal

ASCI

Signed Integer
Unsigned Integer
Hex Integer

Figure 18: Step 3 to debug the QSPI loader project

Indeed, the aim of the QSPI loader project is to read the QSPI content. From the memory map of the
DA14681, the reading of the QSPI flash content is done from the address 0x8000000 as shown in
the Figure 19.

36 Memory map

This section contains a detailed view of the DAT4681 memory map.

Table 61: Memory Map

Address Description Power Domain AMBA
0x0 Remapped Device

0x7F00000 ROM SYS_PD AHB
0x7F40000 OTPC SYS_PD AHB
0x7F80000 OTP SYS_FD AHB
0x7FC0000 DataRAM SYS_PD AHB
0x7FEDO00 CacheRAM SYS_PD AHB
0x8000000 QSPI FLASH SYS_PD AHB
0xC000000 QSPIC SYS_PD AHB

Figure 19: Memory map of the DA14681

You should then have the following windows:

B Console ¥ Tasks (2! Problems @ Executables 0 Memory i

Monitors % 3% %%k 0x8000000 : 0x8000000 <Hex> & 4= New Renderings..]

@ 0x8000000 Address @ - 3 4 -7 8 -B c-F

osoooooe IFEFEFEFEN 13131313 13131313 13131313
08000010 13131313 13131313 13131313 13131313
08000020 13131313 13131313 13131313 13131313
08000630 13131313 13131313 13131313 13131313
08000040 13131313 13131313 13131313 13131313
08000050 13131313 13131313 13131313 13131313
08000060 13131313 13131313 13131313 13131313
08000670 13131313 13131313 13131313 13131313
08000080 13131313 13131313 13131313 13131313

Figure 20: Memory windows view

Application note Revision 1.1 25-Feb-2022

CFR0014 19 of 27 © 2022 Renesas Electronics

AN-B-045

LENESANS

QSPI Loader for the DA14681

Step 4: First, press the Resume button and after a short time (minimum 1 second), press the

Suspend button.

k Debug - gspi_loader/sre/main.c - SmartSnippets Studiov13.059%

File Edit Source Refactor MNavigate Search Project Pydev Run Window Help
g | & B ‘al:lg MR oS s @ ESE
1 2

L % Debug &
4 JHl RAM [SmartBond “SmartSnippets DA1468x SDK” via J-Link GDB Server]
4 [gspi_loader.elf
4 o Thread #1 <main> (Suspended : Breakpoint)
= main() at main.c:66 0x256

w JLinkGDBServerCL.exe

s arm-none-eabi-gdb

s Semihosting and SWV

Figure 21: Step 4 to debug the QSPI loader project

Step 5: From now, you can check the content of the memory windows. Those are the data read in
the QSPI Flash from the DA14681. You should read the same data shown when you read the
memory content using our tool SmartSnippets toolbox.

& Console v Tasks (2! Problems & Executables O Memory 2

Monitors <= % % [0x8000000 : 0x8000000 <Hex> 2 “._Z= New Renderings..

@ 0x8000000 Address @ - 3 4 -7 8 -8B C - F
esoooco RGN 80011E94 008SOFCO7 BDA2000S
©8000010 59030008 59030008 00GEEEE0 00EEOEEV
©3000020 0GEEAAOA 0OPAERAA HPAEEAAE GAEEABEV
©8000030 00EE0EBR 65030008 00GEA0Ee 00EE0EEV
08000040 75B990P8 59030008 1117FDA7 E116FDO7
©8020058 59030008 59030008 191DAAA8 59030008
©800006@ 45C7FE07 59030008 E9220008 F9220008
©8000078 59030008 59030008 59030008 59030008
©8000080 790FO0@S 59030008 59030008 39300608
08000090 59030008 2510FDA7 59030008 59030008
©80200A8 59030008 59030008 59830008 31230008
©80000B@ 190BOGS 85410008 70200008 59030008
£80000C8 4D350808 59030008 31010008 31010608
©80000D@ 31010008 31010008 31010008 31010608
©S000GEG 31010008 31010008 31010008 31010608
©80200F@ 31010008 31010008 31010008 31010008
08000100 31010008 31010008 31010008 31010008
©8000118 31010008 31010008 31010008 31010608
©8000120 31010008 31010008 31010008 31010008
©8000138 0GBEGGBE 10B5064C 23780028 07D1054B
08000140 0@2B02D0 0448060E@ @OBFO123 237010BD
©8000150 7401FCO7 00P00P00 01010108 08B5084B
©8000160 ©002BO3D@ ©7480849 OOEPAOBF 07480368
©800017¢ ©02BOGD1 OSBDOGAB B@2BFBD@ 9847F9E7
08000180 0000AAEA 04910108 7801FCA7 7001FCO7
©8000100 00000000 164BEA2B 0GD1144B 9D464822
©80001A8 92020A1A 92460021 8BAGOFA6 1348144A
©80201B8 121AGDF@ SAFFOF4B 002BOADG 98470EAB
©80001C0 ©002BOGD@ 98470020 00210400 0DEAADAS
©80001D8 00280200 GC480PF@ OABFODF@ 33FF2600

Figure 22: Step 5 to debug the QSPI loader project
At this point, you have proven that the QSPI loader you have created works properly!
Application note Revision 1.1 25-Feb-2022

CFR0014

20 of 27

© 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

7.5 Generating the binary file of the QSPI loader project

Once you have verified that the QSPI loader works correctly, this is the time to generate the binary
file.

First, having created you own QSPI loader, you need to mention the flash vendor in Post-build steps.

This can be done by going through the following steps:

STEP 1: STEP 2:
Right click on the project and then Go to C/C++ Build, then Settings and choose the Build Steps
select Properties. tab.
2% v type filter text Settings T
4|5 gspi Inadar] 2wt = id) » Resource -
v @ In New 4 Builders o - -
iod Golmo e Configuration: [Release [Active] ~ | [anage Configurations..|
I~ Build Variables
h il i —5 ETF nvironmen
. ;::C Open in New Window E,in ' [Tool Settings | 1 Toolchains | Bl Devices| ** Build Steps | I Build Artifact & Binary Parsers | © Emor Parsers| |
= ShowIn * EG->t Pre-build steps i
Copy G->hit Tool Chain Editor Command:
E=q @ Paste | SET. Tools Paths - -
2% Delere pac | fl et || pescapuon This needs to be renamed
P H .
| s i_in: Run/Debug Stings with the new memory vendor | -
T Rename... Post-build steps
» [ea Import.. WINE Command: /v
¢ [@ & Export. Init |.7aspi_loader_generator.shleon | g
v B e — Description: .
v g Clean Project L MACE L
" & st &) Refresh 5 [niti
e Close Project @
Eq Close Unrelated Projects EON
Ba q = 5 | Inii
Bu Build Configurations L =
Bu Make Targets 4
» & scrig Index ' | MICH
@ Build Documentation RON_Z
Run As 3
Debug As 4 h.e(l'
Profile As ’ '
Team »
Compare With 4
Restore from Local History... ks E
PyDev [Smar
Run C/C++ Code Analysis 5DB S
Properties Alt+Enter [ped E
STEP 3: STEP 4:
Click on the Build button and select The hex file is generated in the gqspi_output_file folder.
Release. The binary file can be opened using NotePad++.
& C/C++ - gspi_loader/config/config.h - Smai & &5 Project Explorer 52 o=
” o . & =
File Edit Source]Refactor Navigate Se: S
4 (& gspi_loader
By | ® Q vl B \2| 5! i+ & Includes
4 = config
& & proi 1 Debug
& Project Explq]
: v 2 Release v @ configh
- I+ = Idscripts
45 qspi_loader I (= gspi_input_files
4 = gspi_output_file
I\IZEI actual_qspi_bootloader.bin||
Application note Revision 1.1 25-Feb-2022

CFR0014 21 of 27 © 2022 Renesas Electronics

AN-B-045

LENESANS

QSPI Loader for the DA14681

After compiling the project, the python script has been added in the post-build steps to:

e Generate the actual binary file of the QSPI loader.
This binary file will be burnt in the OTP of the DA14681 at the address: Ox7F8F818 (Address
which contains all QSPI related code segments) or at the offset 0xF818.

‘ C/C++ - gspi_loader/config/config.h - SmanSnlp;)ers Studio v1.3.0.596
File Edit Source Refactor Navigate Search Project Run Window Help

Bl ®-&-G8 %[&% G B G @t Ue® (e A

= 0

D RCR A Q

&y Project Explorer 52
BE% ¥
4|5 gspi_loader
v 4 Binaries

o @ Includes
4 = config
- 5 configh
& = |dscripts
» = qspi_input_files
4 (= gspi_output_file

:-B C\Users\glagnieu\Desktop\WORK\gspi_output_file\actual_gspi_bootioader.bin - Notepad+
File Edit Search View Encoding language Settings Macro Run Plugins Window ? X
EHEEGEES LRtz RELIEEENIENER= « v =)

[actual_gspi_bootioader.bin I:i|

Address 0 1 2 3 4 5 65 7 8 9 a b ¢ d e

f Dump

1=l actual_gspi_bootloader.bin

00000000

c0 23 3c

Z1 1b

05 ba

68 99 20 0a 43 b5a

60 5a 68 A#<!,.zh™

.CZ Zzh

I & Release
» e sdk 00000010 30 29 8a 43 5a 60 66 22 05 49 0a 70 08 70 05 4% 093CZ £".I.p.p.I
o e 00000020 98 38 d9 60 la 61 5a 68 02 43 5a 60 70 47 c0 46 .80 .aZh.CZ pGAF
» 1 macronixe 00000030 18 00 00 Oc eb 00 ab a8 el BLUFT
¢ (g mainc
& 4 micron.c Hex Edit View nb char: 56 n:0 Col:9 Sel:8 Hex BigEndian INS

i [¢ winbond.c

v @& startup
=l Jlink.log
= gspi_loader_generator.sh
[& qspi_loader.py
|5 uartboot_attach.launch
5/ uartboot.launch

1 & seripts

Figure 23: Actual binary file of the QSPI loader

e Show the size of the actual binary file.
This size of the binary file will be burnt in the OTP of the DA14681 at the address: 0x78F808
(Address for the QSPI Loader code (Byte7-Byteb5: Section length (Bytes)).

[£1 Problems ¥ Tasks & Console % I Properties
CDT Build Console [gspi_loader]

folder
folder

qspi_loader.bin
qspi_loader.map

copied to
copied to

./gspi_input_files
./gspi_input_files

FREE SCRIPT FOR EXTRACTING SPECIFIC DATA BLOCK FROM DA1468x QSPI FLASH
THAMKS TO S DING, G LAGNIEU, M ALAM and Contributors #H
Version sw_v_0000.00003 #i
Developed in 2016 SEPTEM #H#

INFO::
INFO::

gspi_input_files\gspi_loader.bin is found
qspi_input_files\qgspi_loader.map is found

INFO:: ./src/eon.o is found in qspi_input_files\gspi_loader.map file

INFO:: Object file name ------------------~—~--~——-——————___ :: ./src/eon.o

INFO:: Start reading from memory offset ------------—-—-—-——- i1 Bxlcd Size of the actual binawf”e
INFO:: Reading memory block size in decimal value -------- B

which needs to be burnt in
the OTP of the DA14681.

Reading memory block size in hexa-decimal value ---:: @x38

actual_gsp1_bootloader.bin 1s successtully created

INFO::
INFO::

Invoking: Cross ARM GNU Create Flash Image
Finished building: gspi_loader.bin

Invoking: Cross ARM GNU Print Size
text data bss dec
856 100 28 984

Finished building: qspi_loader.siz

hex filename
3d8 qspi_loader.elf

14:41:06 Build Finished (took 6s.469ms)

Figure 24: Size of the actual binary file shown after compilation

Application note Revision 1.1

25-Feb-2022

CFR0014 22 of 27 © 2022 Renesas Electronics

AN-B-045

LENESANS

QSPI Loader for the DA14681

8 Burning the OTP using our SmartSnippets toolbox or PLT

To burn the QSPI loader in the OTP using the PLT tool, please refer to [3].

Having gone through all the steps listed in the section [6], you should have the following:
The parameter QSPI Functions (at address 0x7F8EA48) has to be set to 0x04 using the OTP

header tab.

Bit0 = 0: Reset function of QSPI Flash is in BootROM
Bitl = 0: Find “qQ” Function of QSPI FLASH is in BootROM
Bit2 = 1: QSPI loader of QSPI Flash is in OTP

IMPORTANT NOTE

You can only set this field (QSPI Functions) once. So if you want to add a different function to OTP, like for
example the Reset function, you cannot enter this extra bit here, due to the ECC error it will produce.

The parameter Address for the QSPI Loader code (at address 0x7F8F808) has to be set to
0x4C07F8F818 using the OTP header tab.

B3-B0O: Address.

This must be the starting address where the QSPI loader has been burnt (at address 0x07F8F818)
B7-B5: Section length (in Bytes).
From the Python script, when the output binary is generated, the size of the binary file is shown.
In our case, it is 0x4C (76 Bytes).

The parameter Contains all QSPI related code segments (at address 0x7F8F818 or offset 0xF818)
should use the QSPI loader binary file.

Therefore, we should end up having the following:

Figure 25: QFIS parameters burnt in OTP using SmartSnippets toolbox

Addre e Descriptio
TFBEA4B 8 | QsPIFunctions Bit0 0:ResetFunction of QSPIFLASH is in | 0000000000000004
TFBEASD 8 | UART STX timing Defines the delay for booting from UART in 0000000000000000
TFBEASE 8 | BD Address Bluetooth Address 0000000000000000
TFBEAGD 8 | Reserved Reserved 0000000000000000
TFBEABS 8 | Reserved Reserved 0000000000000000
TFBEATO § | Reserved Reserved 0000000000000000
TFBEATS 384 | Trim and Calibration Register Address and Value B7-B5: Inverted Address, B3-B0: Address D7FFFFAFOESSFFFFT]
TFBEBFB 8 | ECC image length and CRC BT to B4 Inverted value of B3 to BO B3 to B2: | 00000000
TFBECOD 23064 | Containg all ECC ucode for the Curves implementation 000000000000000001
TFBF7F8 8 | Address forthe QSPI Reset code B7-B4: Section length (Bytes) B3-B0: Address | 0000000000000000
TFBFB00 8 | Address for the QSPI "gQ" identification code B7-B4: Section length (Bytes) B3-B0: Address | 0000000000000000
ITFEFBDB 8 | Address for the QSPI Loader code B7-B4: Section length (Bytes) B3-B0: Address DDDDDDACDTFEFEWBI
TFBF810 8 | Address for the QSPI wakeup uCode B7-B4: Section length (Bytes) B3-BO: Address | 0000000000000000
ITFEFB‘\B 2016 | Contains all QSPI related code segments Mo redundancy 684006802003BF000

IMPORTANT NOTE

When burning the value of a parameters in the OTP, for ‘integer’ data-type fields, the least significant
byte of a word is stored in the lowest address (little-endian).

Application note Revision 1.1 25-Feb-2022

CFR0014 23 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

Then after the burning of the OTP is completed, after having an HW Reset, we can see our board
advertising.

So, the hex file from the ble_adv demo which was previously programmed in Flash is now executing.

seeec 15:29 7§ 82% W
Sort LightBlue | Explorer Filter
Peripherals Nearby

Unnameo
-92] service

Dialog Multi-link

91 7 service

.11 Dialog ADV Demo

-44 NoO services

Virtual Peripherals

© Create Virtual Peripheral

Figure 26: DA14681 advertising

Application note Revision 1.1 25-Feb-2022

CFR0014 24 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

Revision history

Revision Date Description
1.1 25-Feb-2022 Updated logo, disclaimer, copyright.
1.0 15-Dec-2016 Initial version.
Application note Revision 1.1 25-Feb-2022

CFR0014 25 of 27 © 2022 Renesas Electronics

AN-B-045 RE NESAS

QSPI Loader for the DA14681

Status definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in
modifications or additions.

APPROVED The content of this document has been approved for publication.
or unmarked

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive
2011/65/EU concerning Restriction of Hazardous Substances (ROHS/RoHS2).

Dialog Semiconductor’s statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS
certificates from our suppliers are available on request.

Application note Revision 1.1 25-Feb-2022

CFR0014 26 of 27 © 2022 Renesas Electronics

https://support.diasemi.com/

AN-B-045 RE NESAS

QSPI Loader for the DA14681

Important Notice and Disclaimer

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND
RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER
DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the
appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets
applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas
grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of
these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or
liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or
other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty
disclaimers for these products.

© 2022 Renesas Electronics Corporation. All rights reserved.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu Contact Information

Koto-ku, Tokyo 135-0061, Japan For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:

www.renesas.com

https://www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

Application note Revision 1.1 25-Feb-2022

CFRO014 27 of 27 © 2022 Renesas Electronics

	Abstract
	Contents
	Tables
	Figures
	1 Terms and definitions
	2 References
	3 Introduction
	4 Software & Tools
	5 BootROM sequence
	6 How to support a new QSPI Flash model
	7 Example: How to support a QSPI Flash?
	7.1 HW configuration
	7.2 Tool to operate with the QSPI Flash
	7.3 QSPI Loader SW architecture
	7.4 Testing the QSPI loader project
	7.5 Generating the binary file of the QSPI loader project

	8 Burning the OTP using our SmartSnippets toolbox or PLT
	Revision history
	Blank Page

