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Introduction

This application note derives two fundamental curves for parallel resonant crystals which have direct bearing on designing for 
frequency accuracy and stability of parallel resonant mode based crystal oscillators and VCXOs. First is the load curve, the 
crystal parallel resonant frequency as a function of external circuit capacity. This is a non-linear curve of the frequency offset of 
a crystal as a function of load capacity. Second is the tuning curve, which is the inverse of the load curve. The tuning curve gives 
the load capacity as a function of the crystal frequency and is used to center an oscillator's frequency.

Typically these non-linear functions are approximated by their slopes at the nominal crystal frequency. This approximation forces 
the oscillator designer into a series of tuning capacitor trials to determine the set of nominal capacitors to center the frequency 
of their oscillator design. Possession of the exact tuning curve in conjunction with measured crystal data allows for direct solution 
of tuning capacitors, with the bias of the crystal tolerance removed, with an accuracy limited only by the measured data and the 
fit of the crystal electrical elements to the data. Further the load curve is required in order to predict the tuning range of a given 
VCXO oscillator for any particular crystal.

Modeling a Crystal in Parallel Resonant Mode

Modeling the frequency dependence of a crystal oscillator on load capacity requires the impedance of the crystal in the oscillator 
feedback loop. The impedance is simplified for most purposes by the network of Figure 1. The motional electrical elements are 
commonly named Li, Ci and Ri where the i script denotes the vibrational mode of the crystal; 1 for fundamental, 3 for third 
overtone etc. There is one element, C0, which is the static crystal holder capacity and is common to all modes. 

The nomenclature used by crystal vendors for fundamental mode crystals, L1, C1, RR (rather than R1) and C0, is adopted for 
this article for direct correspondence with measured crystal data. Additionally crystal vendors can provide FR for the low 
impedance motional series crystal resonant frequency and FL as the high impedance parallel resonant frequency for a series of 
external load capacitors, CL. Both frequencies are provided as either mode may be used depending on the application.

Figure 1. Electrical Model of a Crystal with a Parallel Load Capacitor

The following will help to familiarize the user with the physical basis of the electrical elements of the model.
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The electrical elements of the impedance are directly related to the mechanical properties of the crystal when vibrating in a 
particular mode; mass, stiffness and damping coefficient. There are two reasons why this electrical to mechanical association is 
possible. The first is the well known correspondence of F=ma for mechanical systems and e = Ldi/dt for electrical systems. This 
formal correspondence immediately leads to associating force and voltage, position displacement and electrical charge, mass 
with inductance, damping with resistance and spring constant with capacity. The second is what makes the crystal special; when 
a crystal is physically vibrating the piezoelectric effect exhibited by quartz results in polarization charges appearing at the crystal 
electrodes in direct proportion to the crystal positional displacement. 

The mechanical to electrical analogy for a crystal is then not just a formality with no practical application; rather the crystal 
behaves simultaneously as a mechanical and electrical element. Not only does the piezoelectric effect allow for electrical 
systems to take advantage of the much higher Q values available from mechanical systems, the inverse piezoelectric effect 
allows for stresses and therefore vibrations to be induced into crystals electrically. The inverse effect is used in actuators such 
as inkjet print injectors and slip-stick stepper motors where two orthogonal vibration modes are simultaneously driven electrically.

Crystal Series and Parallel Resonant Mode Frequencies

The following definitions tare used to simplify the subsequent algebra:

CS is the series combination of the crystal motional capacitance C1 and the total parallel capacity seen by the crystal, C0+CL. 
This is not the effective capacity of the series resonant mode, which is C1; it is the effective capacity of the series combination 
of C0 and CP that with L1, determines the frequency of the parallel resonant mode.

The crystal circuit model is written as the parallel combination of the crystal series impedance and the parallel capacities.
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The crystal impedance is given by Equation 1 above. The series motional resonant mode frequency is defined by the zeros and 
is a property of the crystal only. The series resonant frequency is defined as FR and given by Equation 2 below. The parallel 
resonance frequency, FL, depends on the crystal, crystal package and the external load capacity is related to FR by Equation 
3 below. The simple impedance pole at the origin is simply the sum of all the crystal circuit capacities and like RR, is not relevant 
to tuning. The two resonant frequencies are related and as shown below; the parallel resonant frequency is higher than the series 
resonant frequency.

Derivation of the Sensitivity Based Load and Tuning Curves

Before deriving the exact crystal load and tuning curves below, it is useful to start with the tuning curve typically used, the tune 
sensitivity, otherwise known as the trim sensitivity. This is the derivative of the parallel resonant frequency with respect to CL 
when the crystal is loaded with the vendor specified nominal CL, CLn. It is easiest to begin by squaring Equation 3.
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The sensitivity based load curve, Equation 4, follows directly by substituting finite differences for the differentials and making the 
further approximation to the first derivative approximation that C1 is small relative to C0+CL.

Generating the tuning curve, Equation 5, the change in CL necessary to tune the crystal oscillator back to the nominal frequency, 
follows directly by substituting - ∆CL for ∆CL and rearranging.

Derivation of the Crystal Load Curve

To generate the exact tuning curves, begin by expanding the frequency of the parallel resonance and associated CL in finite 
differences. The load resonant frequency then is FL = FLn+ ∆FL and the load capacity, CL, expanded from the nominal load 
capacity, CLn, is CLn+ ∆CL.

Next, square to make the subsequent manipulations of the RHS more apparent.

Make substitutions using Ɛ and Ɛ' to expand the RHS in terms of ∆CL. In general, ∆CL is not small relative to CLn.

Equation 4
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In the last expression, the well known closed form of an infinite geometric sum was substituted. Taking the square root shows 
that a simple solution for ∆FL/FL in terms of ∆CL/(C0+CLn) will be obtained if the usual MacLaurin expansion is used to pull the 
one from under the square root.

We know that the square root approximation is going to be very good because a crystal mistuned by 1000 ppm relative to nominal 
is still in error by only 0.1%. Truncating a simple power expansion for the root at the first order will be entirely adequate for 0.1% 
accuracy. To begin we take advantage of the fact that C1 is small relative to (C0+C1+CL) regardless of the value of 
Ɛ = -∆CL/(C0+CLn). The expansion is shown below is to second order before truncation so that the error of a first order expansion 
can be evaluated. The exact tuning curve to first order is shown in Equation 6.

Error of the Series Truncation

The error of the approximation can be calculated to first order by taking the ratio of the second order correction to the first order 
correction as below.
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The magnitude of the first order error is the same as that of the first order approximation to the frequency error itself. For a 1000 
ppm offset, the calculation is accurate to 1000ppm or an error in the calculated value of ∆F/FL of 1ppm. Similarly for a 100ppm 
frequency offset, the error is 10 ppb.

Comparison of the Exact Load Curve and the Tuning Sensitivity

As C1 is typically on the order of 10fF and CL is on the order of 10pF, there will be a very small error introduced in the exact load 
curve, Equation 6, by making the same approximation as was done for the tuning sensitivity; C1<<C0+CL. Making this 
approximation results in Equation 7and allows for the tuning sensitivity of Equation 4 and the load curve to be compared directly.

When the approximation that 1 >> ∆CL/(C0+CLn) is introduced into Equation 7, the exact load curve reduces to the sensitivity 
load curve.

Note that load curves are tabulated by crystal vendors as frequency offset vs CL, not ∆CL. To plot these load curves for 
comparison to vendor data, plot the frequency offset vs CL = CLn + ∆CL. 

The Tuning Curve

The exact tuning curve is derived as Equation 8 below from the load curve in the same manner as was done for the sensitivity 
based tuning curve. Both tuning curves are shown below for comparison.

To use the tuning curve, the value of ∆CL that accounts of the fractional frequency error must be placed in parallel to the crystal. 
Since capacity can only be added to a circuit board, it is necessary that the circuit board layout result in less capacity than is 
necessary to tune the center frequency. Since oscillators used with parallel resonant crystals are inverting, the simplest 
implementation of the tuning capacitor is two caps, one each connected between a crystal terminal and ground. Due to the 
inversion of the oscillator, these two caps appear as a series combination across the crystal terminals. The advantage of this 
arrangement is that the series combination of two capacitors results in greater resolution of the parallel capacitance than from 
the standard values themselves. Typically once the parallel tuning capacity required is determined, this value is doubled and two 
caps of this value are connected to the crystal and ground–one cap per crystal terminal.

Experimental Verification of the Exact Load Curve

The load curve obtained appears plausible based on the model, but experimental verification is necessary for both the model 
and the derivation. Characterization data was taken with a Saunders and Associates 250B-1 test set for a sample 25MHz 
3.2mm x 2.5 mm crystal. This test set provided ∆F/FL vs CL data at a 100µW drive level. 
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First the Saunders ∆F/FL vs CL data was plotted in Figure 1 along with the derived ∆F/FL vs CL curve obtained using an optimum 
set of crystal C0, C1 and CL values, fitted to Equation 6 using the Matlab fminsearch function. The results are plotted below in 
Figure 2 where it is seen that the fit between the exact load curve and the experimental data is very close. To make the 
correspondence easier to assess, the difference between the experimental data and Equation 8, which includes the C1 
approximation, is also plotted. Based on these results the model provides a very compact description of the resonant frequency 
with excellent agreement with the data, particularly considering that ∆F/FL varies between 1129 ppm and -113 ppm while the 
load capacity varies from 0pF to 50pF. An added benefit is that this is a direct indication of the quality of the data taken by the 
Saunders test set. 

Figure 2. Saunders 250B-1 Experimental Data and Model Fit 

Lastly the calculated Tuning Curve is plotted in Figure 3 with the Sensitivity Tuning Curve below for comparison.
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Figure 3. Exact and Sensitivity Based Tuning Curves  

Conclusion

An expression, for all intents and purposes exact, has been derived for the tuning curve of a fundamental mode crystal. It is 
further shown that the exact curve is a very simple modification of the standard first order load curve based on differentiating the 
relationship between the series and parallel resonant mode frequencies derived from the standard model of crystal impedance. 

The utility of the expression is most easily seen when designers tune crystal based clock generator for production. The exact 
expression coupled with C0, C1, CL and FL measured data allows for direct calculation of crystal load caps. More significant, 
but outside the scope of this article, is that since the load curve contains the FL for all load capacities, therefore it permits exact 
calculation of load caps to center VCXOs and predict the tuning range. Used properly, this new capability eliminates the errors 
designers often make when selecting VCXO crystals, such as not realizing the required Absolute Pull Range or APR.
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