intersil

HS-303CEH

Radiation Hardened BiCMOS Dual SPDT Analog Switch

The <u>HS-303CEH</u> is an analog switch and a monolithic device that is fabricated using the Renesas dielectrically isolated Radiation Hardened Silicon Gate (RSG) process technology to ensure latch-up free operation. The HS-303CEH is pinout compatible and functionally equivalent to the HS-303RH. The HS-303CEH offers low-resistance switching performance for analog voltages up to the supply rails. ON-resistance is low and stays reasonably constant across the full range of operating voltage and current. ON-resistance also stays reasonably constant when exposed to radiation.

Break-before-make switching is controlled by 5V digital inputs. The HS-303CEH can operate with \pm 15V rails.

Specifications

See SMD <u>5962-95813</u> for detailed electrical specifications.

Related Literature

For a full list of related documents, visit our website:

• HS-303CH device page

Features

- QML, per MIL-PRF-38535
- · No latch-up, dielectrically isolated device islands
- Pinout and functionally compatible with the HS-303RH series of analog switches
- Analog signal range equal to the supply voltage range
- · Low leakage: 150nA (max, post-rad)
- Low r_{ON}: 60Ω (max, post-rad)
- Low standby supply current: ±150µA (max, post-rad)
- Radiation assurance
 - High dose rate (50 to 300rad(Si)/s): 100krad(Si)
 - Low dose rate (0.01rad(Si)/s): 50krad(Si) (<u>Note 1</u>)
- · Single event effects
 - For LET = 60MeV·cm²/mg at 60° incident angle,
 <150pC charge transferred to the output of an off switch (based on SOI design calculations)

Note:

16

 Product capability established by initial characterization. The EH version is acceptance tested on a wafer-by-wafer basis to 50krad(Si) at low dose rate.

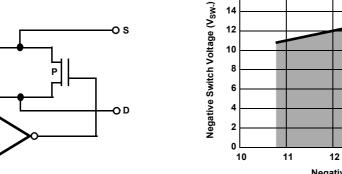
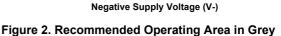
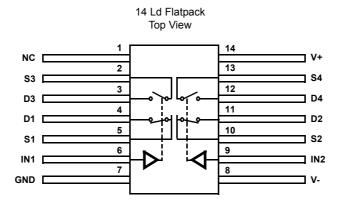



Figure 1. Logic Circuit

Table 1. Truth Table

Logic	SW1 and SW2	SW3 and SW4
0	OFF	ON
1	ON	OFF


13

14

15

1. Overview

1.1 Pin Configuration

1.2 Pin Descriptions

Pin Number	Pin Name	Pin Description
1	NC	Not electrically connected
2	S3	Analog switch: source connection
3	D3	Analog switch: drain connection
4	D1	Analog switch: drain connection
5	S1	Analog switch: source connection
6	IN1	Digital control input for SW1 and SW3
7	GND	Ground
8	V-	Negative power supply
9	IN2	Digital control input for SW2 and SW4
10	S2	Analog switch: source connection
11	D2	Analog switch: drain connection
12	D4	Analog switch: drain connection
13	S4	Analog switch: source connection
14	V+	Positive power supply

1.3 Ordering Information

Ordering SMD Number (<u>Note 3</u>)	Part Number (<u>Note 2</u>)	Temp. Range (°C)	Package (RoHS Compliant)	Pkg. Dwg. #
5962R9581308VXC	HS9-303CEH-Q	-55 to +125	14 Ld Flatpack	K14.A
5962R9581308V9A	HS0-303CEH-Q	-55 to +125	Die	N/A
N/A	HS9-303CEH/PROTO (<u>Note 4</u>)	-55 to +125	14 Ld Flatpack	K14.A
N/A	HS0-303CEH/SAMPLE (Note 4)	-55 to +125	Die	N/A

Notes:

2. These Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.

3. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed in this table must be used when ordering.

4. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across the temperature range specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE die is capable of meeting the electrical limits and conditions specified in the DLA SMD at +25°C only. The /SAMPLE is a die and does not receive 100% screening across the temperature range to the DLA SMD electrical limits. These part types do not come with a certificate of conformance because there is no radiation assurance testing and they are not DLA qualified devices.

2. Specifications

2.1 Absolute Maximum Ratings

Parameter	Minimum	Maximum	Unit	
Voltage Between V+ and V- Terminals		35	V	
±V _{SUPPLY} to Ground (V+, V-)		±17.5	V	
Analog Input Voltage				
(+V _S)		+V _{SUPPLY} + 1.5	V	
(-V _S)		-V _{SUPPLY} - 1.5	V	
Digital Input Voltage		-		
(+V _A)		+V _{SUPPLY} + 4	V	
(-V _A)		-V _{SUPPLY} - 4	V	
Peak Current (S or D), (Pulse at 1ms, 10% Duty Cycle Max)		40	mA	
Continuous Current		10	mA	
ESD Rating	Value		Unit	
Human Body Model		2		
Machine Model		200		
Charged Device Model		1	kV	

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

2.2 Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C/W)	θ _{JC} (°C/W)
Flatpack Package (<u>Notes 5, 6</u>)	105	17

Notes:

5. θ_{JA} is measured in free air with the component mounted on a low-effective thermal conductivity test board in free air. See <u>TB379</u>.

6. For θ_{JC} , the "case temp" location is the center of the package underside.

Parameter	Minimum	Maximum	Unit
Package Power Dissipation at 125°C for Flatpack Package		0.48	W/°C
Junction Temperature (T _J)		+175	°C
Storage Temperature Range	-65	+150	°C
Lead Temperature (Soldering, 10s)		+300	°C

2.3 Recommended Operation Conditions

Parameter	Minimum	Maximum	Unit
Operating Temperature Range	-55	+125	°C
Operating Supply Voltage Range (±V _{SUPPLY})		±15	V
Analog Input Voltage (V _S)		±V _{SUPPLY}	V
Logic Low Level (V _{AL})	0	0.8	V
Logic High Level (V _{AH})	4.0	+V _{SUPPLY}	V

2.4 Electrical Specifications

V_{SUPPLY} = ±15V unless otherwise specified. Boldface limits apply across the operating temperature range, -55°C to +125°C.

Parameter	Symbol	Test Conditions	Min (<u>Note 9</u>)	Тур	Max (<u>Note 9</u>)	Unit
"Switch On" Resistance	+r _{DS(ON)}	V _D = 10V, I _S = -10mA		35	75	Ω
"Switch On" Resistance	-r _{DS(ON)}	V _D = -10V, I _S = 10mA		35	75	Ω
Leakage Current into Source of	+I _{S(OFF)}	V _S = +14V, V _D = -14V	-150	0.05	150	nA
an "OFF" Switch		V _S = +15V, V _D = -15V	-20		20	μA
Leakage Current into Source of	-I _{S(OFF)}	V _S = -14V, V _D = +14V	-150	0.5	150	nA
an "OFF" Switch		V _S = -15V, V _D = +15V	-20		20	μA
Leakage Current into Drain of an	+I _{D(OFF)}	V _S = +14V, V _D = -14V	-150	0.05	150	nA
"OFF" Switch		V _S = +15V, V _D = -15V	-20		20	μA
Leakage Current into Drain of an	-I _{D(OFF)}	V _S = -14V, V _D = +14V	-150	0.5	150	nA
"OFF" Switch		V _S = -15V, V _D = +15V	-20		20	μA
Leakage Current from an "ON" Driver into the Switch (Drain and Source)	+I _{D(ON)}	V _S = +14V, V _D = +14V	-100	-0.1	100	nA
Leakage Current from an "ON" Driver into the Switch (Drain and Source)	-I _{D(ON)}	V _S = -14V, V _D = -14V	-100	0.01	100	nA
Low Level Input Address Current	I _{AL}	All Channels V _A = 0.8V	-1000	0.03	1000	nA
High Level Input Address Current	I _{AH}	All Channels V _A = 4.0V	-1000	0.03	1000	nA
Positive Supply Current	+	All Channels V _A = 0.8V		45	150	μA
		$V_{A1} = 0V, V_{A2} = 4V$ $V_{A1} = 4V, V_{A2} = 0V$		0.15	0.6	mA
Negative Supply Current	l-	All Channels V _A = 0.8V		-0.1	-100	μA
		$V_{A1} = 0V, V_{A2} = 4V$ $V_{A1} = 4V, V_{A2} = 0V$		-0.1	-100	μA
Switch Input Capacitance	CIS(OFF)	From Source to GND (Notes 7, 8)			28	pF
Driver Input Capacitance	CC1	V _A = 0V (<u>Notes 7, 8</u>)			10	pF
Driver Input Capacitance	CC2	V _A = 15V (<u>Notes 7</u> , <u>8</u>)			10	pF
Switch Output	COS	Measured Drain to GND (<u>Notes 7, 8</u>)			28	pF
Off Isolation	V _{ISO}	V _{GEN} = 1V _{p-p} , f = 1MHz (<u>Notes 7</u> , <u>8</u>)	40			dB
Cross Talk	V _{CR}	V _{GEN} = 1V _{p-p} , f = 1MHz (<u>Notes 7</u> , <u>8</u>)	40			dB
Charge Transfer Error	V _{CTE}	V _S = GND, C _L = 0.01μF (<u>Notes 7, 8</u>)			15	mV
Break-before-make Time Delay	t _{OPEN}	R _L = 300Ω, V _S = 3V, V _{AH} = 5V, V _{AL} = 0V	10	50	300	ns
Switch Turn "ON" Time	t _{ON}	R_L = 300 Ω , V_S = 3V, V_{AH} = 4V, V_{AL} = 0V		250	500	ns
Switch Turn "OFF" Time	t _{OFF}	R _L = 300Ω, V _S = 3V, V _{AH} = 4V, V _{AL} = 0V		200	450	ns

Notes:

7. Limits established by characterization and are not production tested.

8. V_{AL} = 0V and V_{AH} = 4V.

9. Parameters with Min and/or Max limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

2.5 Post Radiation Characteristics (Test Rate 50rad(Si)/s to 300rad(Si)/s

 V_{SUPPLY} = ±15V unless otherwise specified. This data is typical test data post radiation exposure at a rate of 50 to 300rad(Si)/s. This data shows typical parameter shifts due to total ionizing dose (high dose radiation) T_A = +25°C.

Symbol	Parameter	Test Conditions	0k	100k	Unit
+r _{DS(ON)}	"Switch On" Resistance	V _D = 10V, I _S = -10mA	34	35	Ω
-r _{DS(ON)}	"Switch On" Resistance	V _D = -10V, I _S = 10mA	28	29	Ω
+I _{S(OFF)}	Leakage Current into Source of an "OFF" Switch	V _S = +14V, V _D = -14V	-0.20	-0.31	nA
		V _S = +15V, V _D = -15V	-0.003	-0.47	μA
-I _{S(OFF)}	Leakage Current into Source of an "OFF" Switch	V _S = -14V, V _D = +14V	0.30	0.84	nA
		V _S = -15V, V _D = +15V	0.001	0.02	μA
+I _{D(OFF)}	Leakage Current into Drain of an "OFF" Switch	V _S = +14V, V _D = -14V	-1.20	-0.90	nA
		V _S = +15V, V _D = -15V	-0.001	-0.001	μA
-I _{D(OFF)}	Leakage Current into Drain of an "OFF" Switch	V _S = -14V, V _D = +14V	0.31	0.90	nA
		V _S = -15V, V _D = +15V	0.0003	0.001	μA
+I _{D(ON)}	Leakage Current from an "ON" Driver into the Switch (Drain and Source)	V _S = +14V, V _D = +14V	-0.2	-0.55	nA
-I _{D(ON)}	Leakage Current from an "ON" Driver into the Switch (Drain and Source)	V _S = -14V, V _D = -14V	0.15	0.28	nA
I _{AL}	Low Level Input Address Current	All channels V _A = 0.8V	0.35	0.25	nA
I _{AH}	High Level Input Address Current	All channels $V_A = 4.0V$	1.98	1.47	nA
l+	Positive Supply Current	All channels $V_A = 0.8V$	55	53	μA
		V _{A1} = 0V, V _{A2} = 4V V _{A1} = 4V, V _{A2} = 0V	167.2	113.7	μA
 -	Negative Supply Current	All channels $V_A = 0.8V$	-0.01	-0.01	μA
		V _{A1} = 0V, V _{A2} = 4V V _{A1} = 4V, V _{A2} = 0V	-0.01	-0.02	μA
t _{OPEN}	Break-before-make Time Delay	$R_{L} = 300\Omega, V_{S} = 3V, V_{AH} = 5V, V_{AL} = 0V$	42	47	ns
t _{ON}	Switch Turn "ON" Time	$R_{L} = 300\Omega, V_{S} = 3V, V_{AH} = 4V, V_{AL} = 0V$	224	213	ns
t _{OFF}	Switch Turn "OFF" Time	$R_{L} = 300\Omega, V_{S} = 3V, V_{AH} = 4V, V_{AL} = 0V$	192	173	ns

2.6 Post Radiation Characteristics (Test Rate <10mrad(Si)/s

 V_{SUPPLY} = ±15V unless otherwise specified. This data is typical test data post radiation exposure at a rate of <10mrad(Si)/s. This data shows typical parameter shifts due to total ionizing dose (low dose radiation). T_A= +25°C.

Parameter	Symbol	Test Conditions	0k	25k	50k	75k	100k	Unit
"Switch On" Resistance	+r _{DS(ON)}	V _D = 10V, I _S = -10mA	33.57	34.39	34.37	34.75	34.65	Ω
"Switch On" Resistance	-r _{DS(ON)}	V _D = -10V, I _S = 10mA	27.56	28.37	28.48	28.92	28.77	Ω
Leakage Current into Source of an	+I _{S(OFF)}	V _S = +14V, V _D = -14V	-0.30	-0.26	-0.36	-0.55	-0.47	nA
"OFF" Switch		V _S = +15V, V _D = -15V	-0.006	-0.002	-0.002	-0.003	-0.002	μA
Leakage Current into Source of an	-I _{S(OFF)}	V _S = -14V, V _D = +14V	0.32	0.45	0.75	1.05	0.94	nA
"OFF" Switch	DFF" Switch	V _S = -15V, V _D = +15V	0.004	0.003	0.003	0.003	0.002	μA
Leakage Current into Drain of an	+I _{D(OFF)}	V _S = +14V, V _D = -14V	-0.36	-0.22	-0.25	-0.46	-0.40	nA
"OFF" Switch		V _S = +15V, V _D = -15V	-0.001	-0.001	-0.001	-0.001	-0.002	μA
Leakage Current into Drain of an	-I _{D(OFF)}	V _S = -14V, V _D = +14V	0.34	0.43	0.69	1.02	0.92	nA
"OFF" Switch		V _S = -15V, V _D = +15V	0.0004	0.0008	0.0011	0.0014	0.0018	μA

Parameter	Symbol	Test Conditions	0k	25k	50k	75k	100k	Unit
Leakage Current from an "ON" Driver into the Switch (Drain and Source)	+I _{D(ON)}	V _S = +14V, V _D = +14V	-0.25	-0.26	-0.36	-0.55	-0.65	nA
Leakage Current from an "ON" Driver into the Switch (Drain and Source)	-I _{D(ON)}	V _S = -14V, V _D = -14V	0.17	0.15	0.26	0.45	0.40	nA
Low Level Input Address Current	I _{AL}	All channels V _A = 0.8V	0.19	0.30	0.23	0.71	0.48	nA
High Level Input Address Current	I _{AH}	All channels V _A = 4.0V	1.72	0.87	0.83	0.28	1.31	nA
Positive Supply Current	l+	All channels V _A = 0.8V	54	51	50	49	50	μA
		$V_{A1} = 0V, V_{A2} = 4V$ $V_{A1} = 4V, V_{A2} = 0V$	185	146	129	116	106	μA
Negative Supply Current	I-	All channels V _A = 0.8V	-0.011	-0.015	-0.011	-0.019	-0.022	μA
		$V_{A1} = 0V, V_{A2} = 4V$ $V_{A1} = 4V, V_{A2} = 0V$	-0.013	-0.016	-0.017	-0.019	-0.014	μA
Break-before-make Time Delay	t _{OPEN}	$ \begin{array}{l} R_{L} = 300\Omega, V_{S} = 3V, V_{AH} = 5V, \\ V_{AL} = 0V \end{array} $	42.58	50.84	55.63	56.74	58.06	ns
Switch Turn "ON" Time	t _{ON}	$ \begin{array}{l} R_{L} = 300\Omega, V_{S} = 3V, V_{AH} = 4V, \\ V_{AL} = 0V \end{array} $	221.03	229.24	240.85	249.79	256.37	ns
Switch Turn "OFF" Time	t _{OFF}	$ \begin{array}{l} R_{L} = 300\Omega, V_{S} = 3V, V_{AH} = 4V, \\ V_{AL} = 0V \end{array} $	188.62	184.65	182.27	184.06	182.45	ns

 $V_{SUPPLY} = \pm 15V$ unless otherwise specified. This data is typical test data post radiation exposure at a rate of <10mrad(Si)/s. This data shows typical parameter shifts due to total ionizing dose (low dose radiation). T_A = +25°C. (Continued)

3. Test Circuits

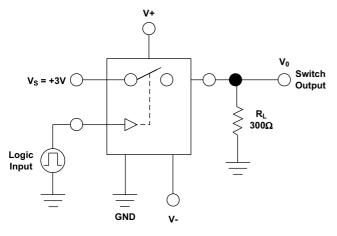


Figure 3. Switching Test Circuit

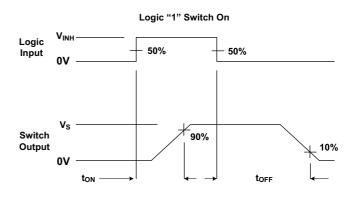


Figure 4. Switching Test Circuit Waveform

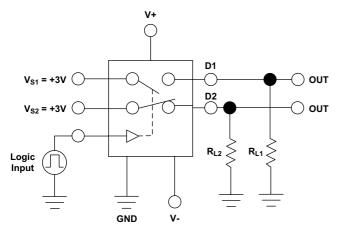
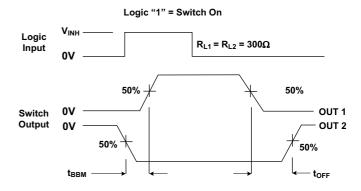
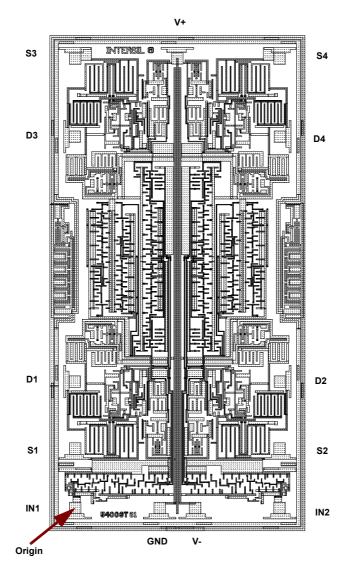


Figure 5. Break-Before-Make Test Circuit




Figure 6. Break-Before-Make Test Circuit Waveforms

4. Die Characteristics

Table 2. Die and Assembly Related Information

Die Information			
Dimensions	2815µm x 5325µm (106 milsx205 mils) Thickness: 483µm ±25.4µm (19 mils ±1 mil)		
Interface Materials	· · ·		
Glassivation	Type: PSG (Phosphorous Silicon Glass) Thickness: 8.0kÅ ±1.0kÅ		
Top Metallization	Type: AlSiCu Thickness: 16.0kÅ ±2kÅ		
Backside Finish	Silicon		
Substrate	Radiation Hardened Silicon Gate, Dielectric Isolation		
Assembly Information	· · ·		
Substrate Potential	Unbiased (DI)		
Additional Information	·		
Worst Case Current Density	<2.0 x 10 ⁵ A/cm ²		
Transistor Count	348		
Package Lid Potential	Floating		

5. Metallization Mask Layout

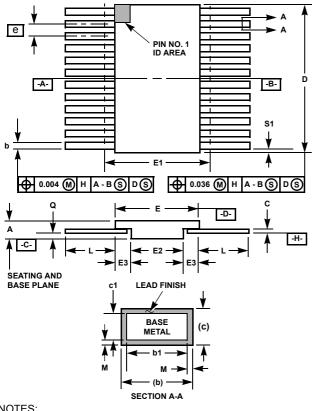
5.1 Layout Characteristics

Step and Repeat: 2815µm x 5325µm

 Table 3.
 Layout X-Y Coordinates

Pad Name	Χ (μm)	Υ (μm)	DX (µm)	DY (μm)
S3	0	4672.5	109	109
D3	-4.5	3861	109	109
D1	-4.5	1314	109	109
S1	0	617.5	109	109
IN1	0	0	109	109
GND	878	0	109	109
V-	1246	0	109	109
IN2	2124	0	109	109
S2	2124	617.5	109	109
D2	2128.5	1314	109	109
D4	2128.5	3861	109	109

Table 3. Layout X-Y Coordinates (Continued)


Pad Name	X (μm)	Υ (μm)	DX (μm)	DY (μ m)
S4	2124	4672	109	109
V+	1062	4675	109	109

Note: "Origin" as labeled in the Metallization Mask layout is the centroid of the pad labeled "IN1".

6. Revision History

Date	Revision	Change
Jun.17.19	FN8399.4	Applied new template. Updated single event effects description on page 1. Added related literature section on page 1. Added note 4 on page 3. Updated links. Removed About Intersil section.
Mar.4.15	FN8399.3	On page 7, changed the transistor count from "216" to "348". In <u>Table 3 on page 10</u> , updated 2 pad names to match the "Metallization Mask Layout": - Changed from "VEE" to "V-" and from "VCC" to "V+".
Dec.19.13	FN8399.2	Added ESD ratings to Abs Max Table on page 3
Apr.5.13	FN8399.1	Title on page 1 changed CMOS to BiCMOS Continuous Current in Absolute Maximum Ratings on page 3: changed from 30mA to 10mA " $V_{SUPPLY} = \pm 15V$ unless otherwise specified. This data is typical test data post radiation exposure at a rate of 50 to 300rad(Si)/s. This data shows typical parameter shifts due to total ionizing dose (high dose radiation) T_A = +25°C." on page 6 changed unit in positive supply current from mA to μ A. Updated throughout 300krad to 100krad. Updated Ordering Information on page 2 Updated Electrical Spec Table MIN and MAX values for Leakage Current in Source and Drain for ±15V from ±5 to ±20 Updated in Post Radiation Characteristics Typical values on page 4 for Positive Supply Current for VA1, VA2 from 107.1 to 113.7 and Negative Supply Current for VA1, VA2 from -0.01 to -0.02 Added 100k column to Post Radiation Characteristics table on page 5 Removed negative symbol under 75k column IAL, IAH from 0.71, 0.28 and added negative symbol in I- to 0.019 in VA1, VA2 Removed the words exposed pad from Tjc note. Updated numbers in Table 2 in X(μ m) column. Added Note to Table 2.
December 21, 2012	FN8399.0	Initial Release

7. Package Outline Drawing

NOTES:

- 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternately, a tab (dimension k) may be used to identify pin one.
- 2. If a pin one identification mark is used in addition to a tab, the limits of dimension k do not apply.
- 3. This dimension allows for off-center lid, meniscus, and glass overrun.
- Dimensions b1 and c1 apply to lead base metal only. Dimension 4. M applies to lead plating and finish thickness. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 5. N is the maximum number of terminal positions.
- 6. Measure dimension S1 at all four corners.
- 7. For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.
- 8. Dimension Q shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension Q minimum shall be reduced by 0.0015 inch (0.038mm) maximum when solder dip lead finish is applied.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.

For the most recent package outline drawing, see K14.A.

K14.A MIL-STD-1835 CDFP3-F14 (F-2A, CONFIGURATION B) 14 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.045	0.115	1.14	2.92	-
b	0.015	0.022	0.38	0.56	-
b1	0.015	0.019	0.38	0.48	-
С	0.004	0.009	0.10	0.23	-
c1	0.004	0.006	0.10	0.15	-
D	-	0.390	-	9.91	3
E	0.235	0.260	5.97	6.60	-
E1	-	0.290	-	7.11	3
E2	0.125	-	3.18	-	-
E3	0.030	-	0.76	-	7
е	0.050 BSC		1.27 BSC		-
k	0.008	0.015	0.20	0.38	2
L	0.270	0.370	6.86	9.40	-
Q	0.026	0.045	0.66	1.14	8
S1	0.005	-	0.13	-	6
М	-	0.0015	-	0.04	-
Ν	14		14		-

Rev. 0 5/18/94

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
 prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
 promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/