## Renesns

## FEATURES:

- Low ON resistance: rds(on) $=5 \Omega$
- Fast transition time: ttran $=6 \mathrm{~ns}$
- Wide bandwidth: 700 MHz (-3dB point)
- Crosstalk: -110dB at $50 \mathrm{KHz},-68 \mathrm{~dB}$ at $5 \mathrm{MHz},-66 \mathrm{~dB}$ at 30 MHz
- Off-isolation: -90 dB at $50 \mathrm{KHz},-60 \mathrm{~dB}$ at $5 \mathrm{MHz},-50 \mathrm{~dB}$ at 30 MHz
- Single 5V supply
- Can be used as multiplexer or demultiplexer
- TTL-compatible control inputs
- Ultra-low quiescent current: $9 \mu \mathrm{~A}$
- Available in QVSOP package


## APPLICATIONS:

- High-speed video signal switching/routing
- HDTV-quality video signal multiplexing
- Audio signal switching/routing
- Data acquisition
- ATE systems
- Telecomm routing
- Switch between multiple video sources
- Token Ring transceivers
- High-speed networking


## DESCRIPTION:

The QS4A215 is a high-performance CMOS six-channel multiplexer/ demultiplexerwith individual enables. The low ON-resistance of the QS4A215 allows inputs to be connected to outputs with low insertion loss and high bandwidth. TTL-compatible control circuitry with "Break-Before-Make" feature prevents contention.

The QS4A215 with 700MHz bandwidth makes it ideal for high-performance video signal switching, audio signal switching, and telecom routing applications. High performance and low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A215 is offered in the QVSOP package which has several advantages over conventional packages such as PDIP and SOIC, including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance, resulting in lower ground bounce

The QS4A215 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

## FUNCTIONAL BLOCK DIAGRAM



## PIN CONFIGURATION



## ABSOLUTE MAXIMUM RATINGS(1)

| Symbol | Description | Max | Unit |
| :--- | :--- | :---: | :---: |
| VTERM $^{(2)}$ | Supply Voltage to Ground | -0.5 to +7 | V |
| VTERM $^{(3)}$ | DC Switch Voltage Vs | -0.5 to +7 | V |
| - | Analog Input Voltage | -0.5 to +7 | V |
| VTERM $^{(3)}$ | DC Input Voltage VIn | -0.5 to +7 | V |
| VAC | AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$ | -3 | V |
| Iout | DC Output Current | 120 | mA |
| Pmax | Maximum Power Dissipation | 0.7 | W |
| TSTG | Storage Temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

## PIN DESCRIPTION

| Pin Names | I/O | Description |
| :---: | :---: | :--- |
| $\mathrm{I} x \mathrm{x}$ | $\mathrm{I} / \mathrm{O}$ | Demux Ports A-F |
| Soxx, S1XX | I | Select Inputs |
| $\overline{\mathrm{E}} \overline{\mathrm{x}}$ | I | Enable Inputs A-F |
| Yx | I/O | Mux Ports A-F |

## FUNCTION TABLE(1)

| Enable |  | Select |  | Mux/Demux Ports |  | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E} \bar{A}$ | $\overline{\mathrm{E}}$ B | S1 | So | YA | YB |  |
| H | X | X | X | Z | X | Disable A |
| X | H | X | X | X | Z | Disable B |
| L | L | L | L | 10A | IoB | S 1 AB, $\mathrm{SoAB}=0$ |
| L | L | L | H | 11 A | 11 B | S1AB, SoAB $=1$ |
| L | L | H | L | 12A | 12 B | S1AB, SoAB $=2$ |
| L | L | H | H | I3A | 13 B | S 1 AB, $\mathrm{SoAB}=3$ |

## NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance
2. This function table represents the function for block "AB". The "CD" block nomenclature substitutes "A" for "C" and "B" for "D". The "EF" block nomenclature substitutes "A" for " $E$ " and " $B$ " for " $F$ ".

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 5 \%$

| Symbol | Parameter | Test Conditions | Min. | Typ. ${ }^{(1)}$ | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Switch |  |  |  |  |  |  |
| VIN | Analog Signal Range ${ }^{(2)}$ |  | -0.5 | 1 | Vcc-1 | V |
| ros(on) | Drain-source ON resistance ${ }^{(2,3)}$ | $\mathrm{Vcc}=$ Min., $\mathrm{VIN}=0 \mathrm{~V}$, $\mathrm{ION}=30 \mathrm{~mA}$ | - | 5 | 7 | $\Omega$ |
|  |  | $\mathrm{Vcc}=$ Min., $\mathrm{VIN}=2.4 \mathrm{~V}$, $\mathrm{IoN}=15 \mathrm{~mA}$ | - | 13 | 17 |  |
| IC(OFF) | Channel OffLeakage Current | $\mathrm{IN}_{\mathrm{N}}=\mathrm{Vcc}$ or $0 \mathrm{~V} ; \mathrm{Y}_{\mathrm{N}}=0 \mathrm{~V}$ or Vcc; $\overline{\mathrm{EX}}=\mathrm{Vcc}$ | - | 10 | - | nA |
| IC(ON) | Channel On Leakage Current | $I_{N}=Y_{N}=0 V$ <br> (each channel is turned on sequentially) | - | 10 | - | nA |
| Digital Control |  |  |  |  |  |  |
| VIH | Input HIGH Voltage | Guaranteed Logic HIGH for Control Pins | 2 | - | - | V |
| VIL | InputLOW Voltage | Guaranteed Logic LOW for Control Pins | - | - | 0.8 | V |
| Dynamic Characteristics |  |  |  |  |  |  |
| ttrans | Switching Time of Mux Sx to Yx | $R L=1 \mathrm{~K} \Omega, C L=100 \mathrm{pF}$ <br> (See Transition Time) | 0.5 | - | 6.6 | ns |
| ton(EN) | Enable Turn-OnTime $\overline{E X}$ to $Y x$ | $R L=1 \mathrm{~K} \Omega, C L=100 \mathrm{pF}$ (See Switching Time) | 0.5 | - | 6 | ns |
| toff(EN) | Enable Turn-OffTime $\overline{\mathrm{EX}}$ to Yx | $\mathrm{RL}=1 \mathrm{~K} \Omega, C \mathrm{~L}=100 \mathrm{pF}$ <br> (See Switching Time) | 0.5 | - | 6 | ns |
| tPD | Group Delay ${ }^{(2,4)}$ | $\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$ | - | - | 250 | ps |
| f3dB | -3dB Bandwidth | $\mathrm{VIN}=1 \mathrm{Vp}$-p, $\mathrm{RL}=75 \Omega$ | - | 700 | - | MHz |
|  | Off-isolation | VIN $=1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5 \mathrm{MHz}$ | - | -60 | - | dB |
| Xtalk | Crosstalk | VIN $=1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5 \mathrm{MHz}$ | - | -68 | - | dB |
| Cmux(OFF) | Mux Off Capacitance | $\overline{E X}=\mathrm{Vcc}, \mathrm{V}$ IN $=$ Vout $=0 \mathrm{~V}$ | - | 6 | - | pF |
| Cdemux(0FF) | Demux Off Capacitance | $\overline{\mathrm{EX}}=\mathrm{Vcc}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$ | - | 14 | - | pF |
| Cmux(ON) | Mux On Capacitance | $\overline{\mathrm{EX}}=0 \mathrm{~V}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$ | - | 20 | - | pF |
| Cdemux(on) | Demux On Capacitance | $\overline{\mathrm{EX}}=0 \mathrm{~V}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$ | - | 20 | - | pF |
| Qcı | Charge Injection | $C L=1000 \mathrm{pF}$ | - | 1.5 | - | pC |

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Max value is guaranteed but not production tested.
3. Measured by voltage drop between $A$ and $C$ pins or $B$ and $D$ pins at indicated current through the switch. $O N$ resistance is determined by the lower of the voltages on the two ( $I, Y$ ) pins.
4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

## POWER SUPPLY CHARACTERISTICS

| Symbol | Parameter | Test Conditions | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: |
| IccQ | QuiescentPower | VCc $=$ Max., VIN $=$ GND or Vcc, $\mathrm{f}=0$ | 9 | $\mu \mathrm{~A}$ |

## TYPICALCHARACTERISTICS



Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$


Off-isolation and Crosstalk vs. Frequency


Frequency ( Hz )
Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |V o / V s|$


Insertion Loss vs. Frequency
NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

## TYPICAL CHARACTERISTICS (CONTINUED)



Insertion Loss vs. Frequency

NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

## TEST CIRCUITS



Ron LINK
On-Resistance vs. Vin


## TEST CIRCUITS (CONTINUED)



Enable Switching Time


Insertion Loss
NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$


Off-Isolation

NOTE:

1. Off-isolation $=20 \log |V o / V s|$

## ORDERING INFORMATION

QS $\frac{X X X X X}{\text { Device Type }} \frac{X X}{\text { Package }} \begin{array}{lll} & \begin{array}{ll} \\ & \\ \text { Blank } \\ 8\end{array} & \begin{array}{l}\text { Tube or Tray } \\ \text { Tape and Reel }\end{array} \\ & \text { Q1G } & \text { QVSOP - Green }\end{array}$

4A215 High Performance CMOS Six Channel SP4T MUX/DEMUX

## DATASHEET DOCUMENT HISTORY

| 04/13/2014 | Pg. 7 | Updated the Ordering Information by removing non green package version, the "IDT" notation and Adding Tape <br> and Reel information. |
| :--- | :--- | :--- |
| $07 / 07 / 2015$ | Pg. 1,7 | Updated the Ordering Information from QG to Q1G accordingly. |

# IMPORTANT NOTICE AND DISCLAIMER 

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

## Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

## Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

## Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

