ReNESAS

256K X 36, 512K X 18 3.3V Synchronous SRAMs

2.5V I/O, Burst Counter

Pipelined Outputs, Single Cycle Deselect

IDT71V67602 IDT71V67802

Features

- $256 \mathrm{~K} \times 36,512 \mathrm{~K} \times 18$ memory configurations
- Supports high system speed:
- 166MHz 3.5ns clock access time
- $150 \mathrm{MHz} 3.8 n s$ clock access time
- 133 MHz 4.2 ns clock access time
- $\overline{\text { LBO }}$ input selects interleaved or linear burst mode
- Self-timed write cycle with global write control ($\overline{\mathrm{GW}}$), byte write enable ($\overline{\mathrm{BWE}})$, and byte writes ($\overline{\mathrm{BW}} \mathrm{x}$)
- 3.3 V core power supply
- Power down controlled by ZZ input
- 2.5 V I/O supply (VdDQ)
- Packaged in a JEDEC Standard 100-pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array.

Description

The IDT71V67602/7802 are high-speed SRAMs organized as $256 \mathrm{~K} \times 36 / 512 \mathrm{~K} \times 18$. The IDT71V676/78 SRAMs contain write, data, address and control registers. Internal logic allowsthe SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle.

The burstmode feature offers the highestlevel of performance to the system designer, as the IDT71V67602/7802 can provide four cycles of datafor asingle address presentedtotheSRAM. An internal burstaddress counter accepts the first cycle address from the processor, initiating the access sequence. The first cycle of output data will be pipelined for one cycle before it is available on the next rising clock edge. If burst mode operation is selected ($\overline{\mathrm{ADV}}=\mathrm{LOW}$), the subsequentthree cycles of output data will be available to the user on the next three rising clock edges. The order of these three addresses are defined by the internal burst counter and the $\overline{\mathrm{LBO}}$ input pin.

The IDT71V67602/7802SRAMsutilize IDT'slatesthigh-performance CMOS process and are packaged in a JEDEC standard $14 \mathrm{~mm} \times 20 \mathrm{~mm}$ 100-pin thin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA).

Pin Description Summary

Ao-A18	Address Inputs	Input	Synchronous
$\overline{\mathrm{CE}}$	Chip Enable	Input	Synchronous
$\mathrm{CS}_{0}, \overline{\mathrm{CS}} \overline{1}_{1}$	Chip Selects	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
$\overline{\mathrm{GW}}$	Global Write Enable	Input	Synchronous
$\overline{\mathrm{BWE}}$	Byte Write Enable	Input	Synchronous
$\overline{\mathrm{BW}} 1, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BW}}_{4}{ }^{(1)}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
$\overline{\mathrm{ADV}}$	Burst Address Advance	Input	Synchronous
$\overline{\mathrm{ADSC}}$	Address Status (Cache Controller)	Input	Synchronous
$\overline{\mathrm{ADSP}}$	Address Status (Processor)	Input	Synchronous
$\overline{\mathrm{LBO}}$	Linear / Interleaved Burst Order	Input	DC
$\overline{Z Z}$	Sleep Mode	Asynchronous	
I/O-I/O31, I/OP1-I/Op4	Data Input / Output	Supply	Synchronous
VDD, VDDQ	Core Power, I/O Power	Supply	N/A
Vss	Ground	N/A	

NOTE:

1. $\overline{\mathrm{BW}}_{3}$ and $\overline{\mathrm{BW}}_{4}$ are not applicable for the IDT71V67802.

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	$1 / 0$	Active	Description
A0-A18	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK and ADSC Low or ADSP Low and CE Low.
$\overline{\text { ADSC }}$	Address Status (Cache Controller)	1	LOW	Synchronous Address Status from Cache Controller. $\overline{\text { ADSC }}$ is an active LOW input that is used to load the address registers with new addresses.
$\overline{\text { ADSP }}$	Address Status (Processor)	I	LOW	Synchronous Address Status from Processor. $\overline{\text { ADSP }}$ is an active LOW input that is used to load the address registers with new addresses. $\overline{A D S P}$ is gated by $\overline{\mathrm{CE}}$.
$\overline{\mathrm{ADV}}$	Burst Address Advance	1	LOW	Synchronous Address Advance. $\overline{\mathrm{ADV}}$ is an active LOW input that is used to advance the internal burst counter, controlling burst access after the initial address is loaded. When the input is HIGH the burst counter is not incremented; that is, there is no address advance.
$\overline{\text { BWE }}$	Byte Write Enable	1	LOW	Synchronous byte write enable gates the byte write inputs $\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4$. If $\overline{\mathrm{BWE}}$ is LOW at the rising edge of CLK then BWx inputs are passed to the next stage in the circuit. If BWE is HIGH then the byte write inputs are blocked and only $\overline{\text { GW }}$ can initiate a write cycle.
	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. $\overline{\mathrm{B}}_{1}$ controls I/O $0-7$, I/OP1, $\overline{\mathrm{B}}_{2}$ controls $/ / \mathrm{O}_{8-15}$, //OP2, etc. Any active byte write causes all outputs to be disabled.
$\bar{C} \bar{E}$	Chip Enable	1	LOW	Synchronous chip enable. $\overline{\mathrm{C} E}$ is used with CS 0 and $\overline{\mathrm{CS}} 1$ to enable the IDT71V67602/7802. $\overline{\mathrm{CE}}$ also gates $\overline{\mathrm{ADSP}}$.
CLK	Clock	1	N/A	This is the clock input. All timing references for the device are made with respect to this input.
CSo	Chip Select 0	I	HIGH	Synchronous active HIGH chip select. CS 0 is used with $\overline{\mathrm{C}} \mathrm{E}$ and $\overline{\mathrm{C}} \bar{S}_{1}$ to enable the chip.
$\overline{\mathrm{C}} \mathrm{S}_{1}$	Chip Select 1	1	LOW	Synchronous active LOW chip select. $\overline{\mathrm{C}} \bar{S}_{1}$ is used with $\overline{\mathrm{C}}$ and CS 0 to enable the chip.
$\overline{\mathrm{GW}}$	Global Write Enable	1	LOW	Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. GW supersedes individual byte write enables.
$\begin{gathered} \text { I/Oo-//O31 } \\ \text { I/Op1-//Op4 } \end{gathered}$	Data Input/Output	I/0	N/A	Synchronous data input/output (//O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
$\overline{\mathrm{LBO}}$	Linear Burst Order	1	LOW	Asynchronous burst order selection input. When $\overline{\mathrm{LBO}}$ is HIGH, the interleaved burst sequence is selected. When $\overline{\text { LBO }}$ is LOW the Line ar burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input and must not change state while the device is operating.
$\overline{\mathrm{OE}}$	Output Enable	1	LOW	Asynchronous output enable. When $\overline{O E}$ is LOW the data output drivers are enabled on the I/O pins if the chip is also selected. When $\overline{O E}$ is HIGH the I/O pins are in a highimpedance state.
VDD	Power Supply	N/A	N/A	3.3 V core power supply.
VDDQ	Power Supply	N/A	N/A	2.5V I/O Supply.
Vss	Ground	N/A	N/A	Ground.
NC	No Connect	N/A	N/A	NC pins are not electrically connected to the device.
ZZ	Sleep Mode	I	HIGH	Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71V67602/7802 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
$V_{\text {TERM }}{ }^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
$V_{\text {TERM }}{ }^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
$V_{\text {TERM }}{ }^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
$V_{\text {TERM }}{ }^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
$T A^{(7)}$	Commercial	-0 to +70	${ }^{\circ} \mathrm{C}$
	Industrial	-40 to +85	${ }^{\circ} \mathrm{C}$
Tbias	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
lout	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. TA_{A} is the "instant on" case temperature.

Recommended Operating

 Temperature and Supply Voltage| Grade | Temperature $^{(1)}$ | Vss | VDD | VDDQ |
| :---: | :---: | :---: | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 0 V | $3.3 \mathrm{~V} \pm 5 \%$ | $2.5 \mathrm{~V} \pm 5 \%$ |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 0 V | $3.3 \mathrm{~V} \pm 5 \%$ | $2.5 \mathrm{~V} \pm 5 \%$ |

NOTE:
5311 tol 04

1. TA is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	3.135	3.3	3.465	V
VDDQ	//O Supply Voltage	2.375	2.5	2.625	V
VSS	Ground	0	0	0	V
VIH 2	Input High Voltage - Inputs	1.7	-	VDD +0.3	V
VIH	Input High Voltage - I/O	1.7	-	VDDQ +0.3	V
VIL	Input Low Voltage	$-0.3^{(1)}$	-	0.7	V

NOTE:

1. VIL $(\min)=-1.0 \mathrm{~V}$ for pulse width less than $\mathrm{tcyc} / 2$, once per cycle.

100-pin TQFP Capacitance $\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	5	pF
$\mathrm{Cl/O}$	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

165 fBGA Capacitance
$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max	Unit
CIN	Input Capacitance	Vin $=3 \mathrm{dV}$	7	pF
Clo	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

119 BGACapacitance

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	7	pF
C/o	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration - $256 \mathrm{~K} \times 36,100-\mathrm{Pin}$ TQFP

Top View

NOTES:

1. Pin 14 can either be directly connected to VDD , or connected to an input voltage $\geq \mathrm{V}_{\mathrm{IH}}$, or left unconnected
2. Pin 64 can be left unconnected and the device will always remain in active mode.

Pin Configuration-512K x 18, 100-Pin TQFP

Top View

NOTES:

1. Pin 14 can either be directly connected to VDD , or connected to an input voltage $\geq \mathrm{VIH}$, or left unconnected.
2. Pin 64 can be left unconnected and the device will always remain in active mode.

Pin Configuration -256K x 36, 119 BGA

Pin Configuration -512K x 18, 119 BGA

	1	2	3	4	5	6	7
	\bigcirc						
A	VDDQ	A6	A4	$\overline{\text { ADSP }}$	A8	A16	VDDQ
	O	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	O
B	NC	$\mathrm{CS}_{0}{ }^{(4)}$	A3	$\overline{\text { ADSC }}$	A9	A18	NC
	\bigcirc						
C	NC	A7	A2	VDD	A13	A17	NC
	\bigcirc						
D	I/O8	NC	VSS	NC	VSS	I/OP1	NC
	O	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
E	NC	I/O9	VSS	CE	VSS	NC	1/O7
	\bigcirc						
F	VDDQ	NC	VSS	OE	VSS	I/O6	VDDQ
	\bigcirc						
G	NC	1/O10	BW2	$\overline{\text { ADV }}$	VSS	NC	I/O5
	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
H	1/O11	NC	VSS	GW	VSS	I/O4	NC
	\bigcirc						
J	VDDQ	VDD	NC	VDD	NC	VDD	VDDQ
	O	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
K	NC	I/O12	Vss	CLK	VSS	NC	I/O3
	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	O
L	1/O13	NC	VSS	NC	BW1	I/O2	NC
	\bigcirc						
M	VDDQ	1/O14	VSS	BWE	VSS	NC	VDDQ
	\bigcirc						
N	I/O15	NC	VSS	A1	VSS	I/O1	NC
	\bigcirc	\bigcirc	O	O	\bigcirc	\bigcirc	\bigcirc
P	NC	I/OP2	VSS	A0	VSS	NC	1/O0
	\bigcirc						
R	NC	A5	LBO	VDD	VDD / NC ${ }^{(1)}$	A12	NC
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
T	NC	A10	A15	NC	A14	A11	Z ${ }^{(2)}$
	\bigcirc						
U	VDDQ	DNU(3)	DNU(3)	DNU(3)	DNU(3)	DNU ${ }^{(3)}$	VDDQ

Top View

NOTES:

1. R5 can either be directly connected to VDD , or connected to an input voltage $\geq \mathrm{V}_{\mathrm{VH}}$, or left unconnected.
2. T7 can be left unconnected and the device will always remain in active mode.
3. Pin U6 will be internally pulled to VDD if not actively driven. To disable the TAP controller without interfering with normal operation, TRST should be tied low and TCK, TDI, and TMS should be pulled through a resistor to 3.3 V . TDO should be left unconnected
4. On future 18 M device CS_{0} will be removed, B 2 will be be used for address expansion.

Pin Configuration $-256 \mathrm{~K} \times 36,165$ fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(3)}$	A7	$\overline{\mathrm{C}} \overline{\mathrm{E}}$	$\overline{\mathrm{BW}} 3$	$\overline{\mathrm{BW}} 2$	$\overline{\mathrm{C}} \mathrm{S}_{1}$	$\overline{\text { BWE }}$	$\overline{\text { ADSC }}$	$\overline{\mathrm{AD}} \overline{\mathrm{V}}$	A8	NC
B	NC	A6	CSo	$\overline{\mathrm{BW}} 4$	$\overline{\mathrm{BW}} 1$	CLK	$\overline{\mathrm{GW}}$	$\overline{\mathrm{OE}}$	$\overline{\text { ADSP }}$	A9	$N C^{(3)}$
C	1/OP3	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	1/Op2
D	1/O17	1/O16	VDDQ	VDD	Vss	Vss	VSS	VDD	VDDQ	1/O15	I/O14
E	1/O19	I/O18	VDDQ	VDD	Vss	Vss	VSS	VDD	VDDQ	I/O13	I/O12
F	I/O21	1/O20	VDDQ	VDD	Vss	Vss	VSS	VDD	VDDQ	1/011	1/O10
G	1/O23	1/O22	VDDQ	VDD	VSS	Vss	VSS	VDD	VDDQ	1/O9	1/08
H	VDD ${ }^{(1)}$	NC	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	$Z^{(2)}$
J	1/O25	I/O24	VDDQ	VDD	Vss	Vss	VSS	VDD	VDDQ	1/07	1/06
K	1/O27	I/O26	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/O5	I/O4
L	1/O29	1/O28	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O3	I/O2
M	I/O31	I/O30	VDDQ	VDD	VsS	Vss	Vss	VDD	VDDQ	I/O1	I/O0
N	1/Op4	NC	VDDQ	Vss	NC	$N C^{(3)}$	NC	Vss	VDDQ	NC	I/OP1
P	NC	$N C^{(3)}$	A5	A2	DNU ${ }^{(4)}$	A1	DNU ${ }^{(4)}$	A10	A13	A14	A17
R	$\overline{\text { LBO }}$	NC ${ }^{(3)}$	A4	A3	DNU ${ }^{(4)}$	A0	DNU ${ }^{(4)}$	A11	A12	A15	A16

5311 tol 17a

Pin Configuration $-512 \mathrm{~K} \times 18,165$ fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	$\mathrm{NC}^{(3)}$	A7	$\overline{\mathrm{C}} \overline{\mathrm{E}}$	$\overline{\mathrm{BW}} 2$	NC	$\overline{\mathrm{C}} \mathrm{S}_{1}$	$\overline{\text { BWE }}$	$\overline{\text { ADSC }}$	$\overline{\mathrm{ADV}}$	A8	A10
B	NC	A6	CSo	NC	$\overline{\mathrm{BW}} 1$	CLK	$\overline{\mathrm{GW}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{ADSP}}$	A9	$N C^{(3)}$
C	NC	NC	VDDQ	VSS	Vss	Vss	Vss	Vss	VDDQ	NC	I/OP1
D	NC	1/O8	VDDQ	VDD	VSS	Vss	Vss	VDD	VDDQ	NC	1/07
E	NC	1/O9	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/O6
F	NC	I/O10	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	NC	1/05
G	NC	$1 / \mathrm{O}_{11}$	VDDQ	VDD	VSS	Vss	VSS	VDD	VDDQ	NC	I/O4
H	VDD ${ }^{(1)}$	NC	NC	VDD	VSS	VSS	VSS	VDD	NC	NC	$\mathrm{ZZ}^{(2)}$
J	1/O12	NC	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/O3	NC
K	1/O13	NC	VDDQ	VDD	Vss	VSS	VSS	VDD	VDDQ	I/O2	NC
L	1/O14	NC	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	I/O1	NC
M	1/O15	NC	VDDQ	VDD	VSS	VSS	VSS	VDD	VDDQ	1/O0	NC
N	I/OP2	NC	VDDQ	VSS	NC	$\mathrm{NC}^{(3)}$	NC	VSS	VDDQ	NC	NC
P	NC	$\mathrm{NC}^{(3)}$	A5	A2	DNU ${ }^{(4)}$	A1	DNU ${ }^{(4)}$	A11	A14	A15	A18
R	$\overline{\mathrm{LBO}}$	$\mathrm{NC}^{(3)}$	A4	A3	DNU ${ }^{(4)}$	A0	DNU ${ }^{(4)}$	A12	A13	A16	A17

5311 tbl 17b
NOTES:

1. H1 can either be directly connected to VDD , or connected to an input voltage $\geq \mathrm{V} I \mathrm{H}$, or left unconnected.
2. H11 can be left unconnected and the device will always remain in active mode.
3. Pin N6, B11, A1, R2 and P2 are reserved for $18 \mathrm{M}, 36 \mathrm{M}, 72 \mathrm{M}$, and 144 M and 288 M respectively.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range (Vdd $=3.3 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit	
\|	니	Input Leakage Current		-	5	$\mu \mathrm{A}$
\|lız		ZZ and $\overline{\text { LBO }}$ Input Leakage Current ${ }^{(1)}$	$V_{D D}=M a x ., V_{1 N}=0 V$ to $V_{\text {d }}$	-	30	$\mu \mathrm{A}$
\|lıO		Output Leakage Current	Vout $=0 \mathrm{~V}$ to VDDQ, Device Deselected	-	5	$\mu \mathrm{A}$
Vol	Output Low Voltage	$10 \mathrm{~L}=+6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V	
Voн	Output High Voltage	$1 \mathrm{OH}=-6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.0	-	V	

NOTE:
5311 tbl 08

1. The $\overline{\mathrm{LBO}}$ pin will be internally pulled to VDD if it is not actively driven in the application and the ZZ pin will be internally pulled to Vss if not actively driven.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range ${ }^{(1)}$

Symbol	Parameter	Test Conditions	166MHz	150MHz		133MHz		Unit
			Com'I Only	Com'l	Ind	Com'I	Ind	
IDD	Operating Power Supply Current	Device Selected, Outputs Open, Vdd = Max., $V_{D D Q}=$ Max., $V \mathbb{V} \geq V_{I H}$ or $\leq V I L, f=f m a x^{(2)}$	340	305	325	260	280	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., VDDQ $=$ Max., VIN \geq VHD or $\leq \operatorname{VLD}, f=0^{(2,3)}$	50	50	70	50	70	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., VDDQ $=$ Max., $V_{I N} \geq V_{H D}$ or $\leq V_{L D}, f=f m A x x^{(2,3)}$	160	155	175	150	170	mA
Izz	Full Sleep Mode Supply Current	$\mathrm{ZZ} \geq \mathrm{VHD}, \mathrm{VDD}=$ Max.	50	50	70	50	70	mA

NOTES:

1. All values are maximum guaranteed values.
2. At $f=f m a x$, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c$ while $\overline{\operatorname{ADSC}}=\mathrm{LOW} ; \mathrm{f}=0$ means no input lines are changing.
3. For $\mathrm{I} / \mathrm{Os} \mathrm{V}$ HD $=\mathrm{V} D D Q-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$. For other inputs $\mathrm{VHD}=\mathrm{V} D \mathrm{D}-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$.

AC Test Conditions

(VDDQ = 2.5V)

Input Pulse Levels	0 to 2.5 V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	VDDQ/2
Output Timing Reference Levels	VDDQ/2
AC Test Load	See Figure 1

5311 tbl 10

AC Test Load

Figure 1. AC Test Load

Figure 2. Lumped Capacitive Load, Typical Derating

Synchronous Truth Table ${ }^{(1,3)}$

Operation	Address Used	$\overline{\mathrm{C}} \overline{\mathrm{E}}$	CSo	$\overline{\mathrm{C}} \bar{S}_{1}$	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	GW	BWE	$\overline{\mathrm{BW}} \mathrm{X}$	OE (2)	CLK	1/0
Deselected Cycle, Power Down	None	H	X	X	X	L	X	X	X	X	X	-	HI-Z
Deselected Cycle, Power Down	None	L	X	H	L	X	X	X	X	X	X	-	HI-Z
Deselected Cycle, Power Down	None	L	L	X	L	X	X	X	X	X	X	-	HI-Z
Deselected Cycle, Power Down	None	L	X	H	X	L	X	X	X	X	X	-	HI-Z
Deselected Cycle, Power Down	None	L	L	X	X	L	X	X	X	X	X	-	HI-Z
Read Cycle, Begin Burst	External	L	H	L	L	X	X	X	X	X	L	-	Dout
Read Cycle, Begin Burst	External	L	H	L	L	X	X	X	X	X	H	-	HI-Z
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	H	X	L	-	Dout
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	H	L	-	Dout
Read Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	H	H	-	HI-Z
Write Cycle, Begin Burst	External	L	H	L	H	L	X	H	L	L	X	-	Din
Write Cycle, Begin Burst	External	L	H	L	H	L	X	L	X	X	X	-	Din
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	H	X	L	-	Dout
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	H	X	H	-	HI-Z
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	X	H	L	-	Dout
Read Cycle, Continue Burst	Next	X	X	X	H	H	L	H	X	H	H	-	HI-Z
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	H	X	L	-	Dout
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	H	X	H	-	HI-Z
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	X	H	L	-	Dout
Read Cycle, Continue Burst	Next	H	X	X	X	H	L	H	X	H	H	-	HI-Z
Write Cycle, Continue Burst	Next	X	X	X	H	H	L	H	L	L	X	-	DIN
Write Cycle, Continue Burst	Next	X	X	X	H	H	L	L	X	X	X	-	Din
Write Cycle, Continue Burst	Next	H	X	X	X	H	L	H	L	L	X	-	Din
Write Cycle, Continue Burst	Next	H	X	X	X	H	L	L	X	X	X	-	Din
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	H	X	L	-	Dout
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	H	X	H	-	HI-Z
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	X	H	L	-	Dout
Read Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	X	H	H	-	HI-Z
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	H	X	L	-	Dout
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	H	X	H	-	HI-Z
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	X	H	L	-	Dout
Read Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	X	H	H	-	HI-Z
Write Cycle, Suspend Burst	Current	X	X	X	H	H	H	H	L	L	X	-	Din
Write Cycle, Suspend Burst	Current	X	X	X	H	H	H	L	X	X	X	-	Din
Write Cycle, Suspend Burst	Current	H	X	X	X	H	H	H	L	L	X	-	Din
Write Cycle, Suspend Burst	Current	H	X	X	X	H	H	L	X	X	X	-	Din
NOTES: 1. $\mathrm{L}=\mathrm{V} \mathrm{IL}, \mathrm{H}=\mathrm{V} \mathrm{IH}, \mathrm{X}=$ Don't Care 2. $\overline{\mathrm{OE}}$ is an asynchronous input. 3. $Z Z=$ low for this table.													5311 tol 11

Cond

Synchronous Write Function Truth Table ${ }^{(1,2)}$

Operation	$\overline{\mathrm{GW}}$	$\overline{\mathrm{BWE}}$	$\overline{\mathrm{BW}}_{1}$	$\overline{\mathrm{BW}}_{2}$	$\overline{\mathrm{BW}}_{3}$	$\overline{\mathrm{BW}}_{4}$
Read	H	H	X	X	X	X
Read	H	L	H	H	H	H
Write all Bytes	L	X	X	X	X	X
Write all Bytes	H	L	L	L	L	L
Write Byte 1 $^{(3)}$	H	L	L	H	H	H
Write Byte 2 ${ }^{(3)}$	H	L	H	L	H	H
Write Byte 3 ${ }^{(3)}$	H	L	H	H	L	H
Write Byte $4^{(3)}$	H	L	H	H	H	L

NOTES:
5311 tbl 12

1. $\mathrm{L}=\mathrm{V}_{\mathrm{L}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=$ Don't Care.
2. $\overline{\mathrm{BW}}_{3}$ and $\overline{\mathrm{BW}}_{4}$ are not applicable for the IDT71V67802.
3. Multiple bytes may be selected during the same cycle.

Asynchronous Truth Table ${ }^{(1)}$

Operation $^{(2)}$	$\overline{\mathbf{O E}}$	ZZ	I/O Status	Power
Read	L	L	Data Out	Active
Read	H	L	High-Z	Active
Write	X	L	High-Z - Data In	Active
Deselected	X	L	High-Z	Standby
Sleep Mode	X	H	High-Z	Sleep

NOTES:

1. $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{I}}, \mathrm{X}=$ Don't Care.
2. Synchronous function pins must be biased appropriately to satisfy operation requirements.

Interleaved Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{V}$ DD)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{V} s \mathrm{~s}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

AC Electrical Characteristics

(VDD $=3.3 \mathrm{~V} \pm 5 \%$, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	166MHz		150MHz		133MHz		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tcyc	Clock Cycle Time	6	-	6.7	-	7.5	-	ns
tch ${ }^{(1)}$	Clock High Pulse Width	2.4	-	2.6	-	3	-	ns
tcL ${ }^{(1)}$	Clock Low Pulse Width	2.4	-	2.6	-	3	-	ns

Output Parameters

tCD	Clock High to Valid Data	-	3.5	-	3.8	-	4.2	ns
tcoc	Clock High to Data Change	1.5	-	1.5	-	1.5	-	ns
tč-2 ${ }^{(2)}$	Clock High to Output Active	0	-	0	-	0	-	ns
tchz $^{(2)}$	Clock High to Data High-Z	1.5	3.5	1.5	3.8	1.5	4.2	ns
toE	Output Enable Access Time	-	3.5	-	3.8	-	4.2	ns
toLz(2)	Output Enable Low to Output Active	0	-	0	-	0	-	ns
tohz $Z^{(2)}$	Output Enable High to Output High-Z	-	3.5	-	3.8	-	4.2	ns

Set Up Times

tsA	Address Setup Time	1.5	-	1.5	-	1.5	-	ns
tss	Address Status Setup Time	1.5	-	1.5	-	1.5	-	ns
tsD	Data In Setup Time	1.5	-	1.5	-	1.5	-	ns
tsw	Write Setup Time	1.5	-	1.5	-	1.5	-	ns
tsAv	Address Advance Setup Time	1.5	-	1.5	-	1.5	-	ns
tsc	Chip Enable/Select Setup Time	1.5	-	1.5	-	1.5	-	ns

Hold Times

tHA	Address Hold Time	0.5	-	0.5	-	0.5	-	ns
tHS	Address Status Hold Time	0.5	-	0.5	-	0.5	-	ns
tHD	Data In Hold Time	0.5	-	0.5	-	0.5	-	ns
tHw	Write Hold Time	0.5	-	0.5	-	0.5	-	ns
tHAV	Address Advance Hold Time	0.5	-	0.5	-	0.5	-	ns
tHC	Chip Enable/Select Hold Time	0.5	-	0.5	-	0.5	-	ns

Sleep Mode and Configuration Parameters

tZPW	ZZ Pulse Width	100	-	100	-	100	-	ns
tZR $^{(3)}$	ZZ Recovery Time	100	-	100	-	100	-	ns
tcFG $^{(4)}$	Configuration Set-up Time	24	-	27	-	30	-	ns

NOTES:

1. Measured as HIGH above VIH and LOW below VIL.
2. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
3. Device must be deselected when powered-up from sleep mode.
4. tcFG is the minimum time required to configure the device based on the $\overline{\mathrm{LBO}}$ input. $\overline{\mathrm{LBO}}$ is a static input and must not change during normal operation.

Timing Waveform of Pipelined Read Cycle ${ }^{(1,2)}$

NOTES:

1. O1 (Ax) represents the first output from the external address $A x$. O1 (Ay) represents the first output from the external address $A y$, O2 (Ay) represents the next output data in the burst sequence of the base address $A y$, etc. where $A O$ and $A 1$ are advancing for the four word burst in the sequence defined by the state of the $\overline{L B O}$ input.
2. CSO timing transitions are identical but inverted to the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CS}} 1$ signals. For example, when $\overline{\mathrm{C}} \overline{\mathrm{E}}$ and $\overline{\mathrm{CS}} 1$ are LOW on this waveform, CSO is HIGH.

Timing Waveform of Combined Pipelined Read and Write Cycles ${ }^{(1,2,3)}$

NOTES:

1. Device is selected through entire cycle; $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CS}} 1$ are LOW, CSO is HIGH . 2. $Z Z$ input is LOW and $\overline{\mathrm{BBO}}$ is Don't Care for this cycle.
2. O1 $(A x)$ represents the first output from the external address $A x$. I1 (Ay) represents the first input from the external address $A y$, $O 1$ ($A z$) represents the first output from the external address
$A Z ; O 2(A z)$ represents the next output data in the burst sequence of the base address $A z$, etc. where $A O$ and $A 1$ are advancing for the four word burst in the sequence defined by the state of the $\overline{\mathrm{LBO}}$ input.

Timing Waveform of Write Cycle No. 1 - $\overline{\mathbf{G W}}$ Controlled ${ }^{(1,2,3)}$

NOTES:

1. $Z Z$ input is LOW, $\overline{\mathrm{BWE}}$ is HIGH and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the extemal address $A y, 12$ (Ay) represents the next input data in the burst sequence of the base address $A y$, etc. where $A 0$ and $A 1$ are advancing for . CSO timing transitions are identical but inverted to the $\bar{C} \bar{E}$ and $\overline{\mathrm{CS}} 1$ signals. For example, when $\overline{\mathrm{C}} \overline{\mathrm{E}}$ and $\overline{\mathrm{C}} \bar{S}_{1}$ are LOW on this waveform, CSO is HIGH.

Timing Waveform of Write Cycle No. 2 - Byte Controlled ${ }^{(1,2,3)}$

NOTES: $\overline{\text { IT }} \overline{0}$ is

1. $Z Z$ input is LOW, $\overline{G W}$ is H HH and $\overline{\mathrm{BO}}$ is Don't Care for this cycle. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I (Ay) represents the first input
from the external address Ay, 12 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where AO and A1 are advancing for the four word burst in the sequence defined by the state of the $\overline{L B O}$ input. In the case of input I2 (Ay) this data is valid for two cycles because $\overline{\mathrm{A} D V}$ is high and has suspended the burst. 3. CSO timing transitions are identical but inverted to the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CS}} 1$ signals. For example, when $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CS}} 1$ are LOW on this waveform, CSO is HHG .

Timing Waveform of Sleep (ZZ) and Power-Down Modes ${ }^{(1,2,3)}$

NOTES:

1. Device must power up in deselected Mode
2. $\overline{\mathrm{LB}} \overline{\mathrm{O}}$ is Don't Care for this cycle.
3. It is not necessary to retain the state of the input registers throughout the Power-down cycle.
4. CSo timing transitions are identical but inverted to the $\overline{\mathrm{C}} \overline{\mathrm{E}}$ and $\overline{\mathrm{CS}}_{1}$ signals. For example, when CE and CS 1 are LOW on this waveform, CSO is HIGH .

Non-Burst Read Cycle Timing Waveform

NOTES:
5311 drw 14

1. ZZ input is LOW, $\overline{\mathrm{ADV}}$ is HIGH and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle
2. (Ax) represents the data for address Ax, etc.
3. For read cycles, $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ function identically and are therefore interchangable.

Non-Burst Write Cycle Timing Waveform

1. ZZ input is LOW, $\overline{A D V}$ and $\overline{\mathrm{OE}}$ are HIGH, and $\overline{\mathrm{LBO}}$ is Don't Care for this cycle.
2. (Ax) represents the data for address $A x$, etc.
3. Although only $\overline{\mathrm{GW}}$ writes are shown, the functionality of $\overline{\mathrm{BWE}}$ and $\overline{\mathrm{BW}} \times$ together is the same as $\overline{\mathrm{GW}}$.
4. For write cycles, $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ have different limitations.

100-Pin Thin Plastic Quad Flatpack (TQFP) Package Diagram Outline

119 Ball Grid Array (BGA) Package Diagram Outline

165 Fine Pitch Ball Grid Array (fBGA) Package Diagram Outline

Ordering Information

*Industrial temperature not available on 166 MHz devices

Datasheet Document History

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

