LENESAS

C
77
@D
ﬂ\l
7
<
Q
S
-
QL

CubeSuite+ V1.00.00

Integrated Development Environment
User’s Manual: V850 Build

Target Device
V850 Microcontroller

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWw.renesas.com Rev.1.00 Apr 2011

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

How to Use This Manual

This manual describes the role of the CubeSuite+ integrated development environment for developing application
systems for V850 microcontrollers, and provides an outline of its features.
CubeSuite+ is an integrated development environment (IDE) for V850 microcontrollers, integrating the necessary

tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without
the need to use many different tools separately.

Readers

Purpose

Organization

How to Read This Manual

Conventions

This manual is intended for users who wish to understand the functions of the
CubeSuite+ and design software and hardware application systems.

This manual is intended to give users an understanding of the functions of the
CubeSuite+ to use for reference in developing the hardware or software of systems
using these devices.

This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 BUILD OUTPUT LISTS
APPENDIX A WINDOW REFERENCE
APPENDIX B COMMAND REFERENCE
APPENDIX C INDEX

It is assumed that the readers of this manual have general knowledge of electricity, logic
circuits, and microcontrollers.

Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Decimal ... XXXX
Hexadecimal ... OXXXXX

Related Documents

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name

Document No.

CubeSuite+

Integrated Development Environment

User's Manual

Start R20UT0545E
78K0 Design R20UTO0546E
78KOR Design R20UT0547E
RL78 Design R20UTO0548E
V850 Design R20UTO0549E
R8C Design R20UTO0550E
78K0 Coding R20UTO551E
RL78,78KOR Coding R20UTO0552E
V850 Coding R20UTO0553E
Coding for CX Compiler R20UTO0554E
R8C Coding R20UT0576E
78K0 Build R20UTO0555E
RL78,78KOR Build R20UT0556E
V850 Build This manual

Build for CX Compiler R20UT0558E
R8C Build R20UT0575E
78K0 Debug R20UT0559E
78KOR Debug R20UT0560E
RL78 Debug R20UTO561E
V850 Debug R20UT0562E
R8C Debug R20UT0574E
Analysis R20UTO0563E
Message R20UT0407E

Caution The related documents listed above are subject to change without
notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective

owners.

[MEMO]

[MEMO]

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 12

1.1 Overview ... 12
1.2 Features ... 14

CHAPTER 2 FUNCTIONS ... 15

2.1 Overview ... 15
2.1.1 Create aload module ... 15
2.1.2 Create a user library ... 16
2.2 Change the Build Tool Version ... 17
2.3 Set Build Target Files ... 18
2.3.1 Set a startup routine ... 18
2.3.2 Automatically generate link directives ... 20
2.3.3 Add afile to a project ... 25
2.3.4 Remove a file from a project ... 29
2.3.5 Remove a file from the build target ... 30
2.3.6 Classify afile into a category ... 30
2.3.7 Change the file display order ... 31
2.3.8 Update file dependencies ... 32
2.4 Set the Type of the Output File ... 35
2.4.1 Change the output file name ... 35
2.4.2 Output an assemblelist ... 36
2.4.3 Output map information ... 37
2.4.4 Output symbol information ... 37
2.5 Set Compile Options ... 38
2.5.1 Perform optimization with the code size precedence ... 39
2.5.2 Perform optimization with the execution speed precedence ... 39
2.5.3 Add an include path ... 39
2.5.4 Set a macro definition ... 41
2.5.5 Enable C++ comments ... 42
2.5.6 Reduce the code size (perform prologue/epilogue runtime calls) ... 42
2.5.7 Change the register mode ... 43
2.6 Set Assemble Options ... 44
2.6.1 Add an include path ... 44
2.6.2 Set a macro definition ... 46
2.7 Set Link Options ... 47
2.7.1 Add auser library ... 48
2.8 Set ROMization Process Options ... 50
2.8.1 Create an object for ROMization ... 50
2.9 Set Hex Convert Options ... 52
2.9.1 Setthe output of a hex file ... 52
2.9.2 Fill the vacant area ... 53

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

Set Archive Options ... 55

2.10.1 Set the output of an archive file ... 55

Set Section File Generate Options ... 56

2.11.1 Automatically allocate variables through static analysis ...
Set Dump Options ... 58

2.12.1 Usethe dump tool ... 58

2.12.2 Reference the section information ... 58

Set Cross Reference Options ... 59

2.13.1 Use the cross reference tool ... 59
Set Memory Layout Visualization Options ... 60
2.14.1 Use the memory layout visualization tool ... 60

Set Build Options Separately ... 61

2.15.1 Set build options at the project level ... 61
2.15.2 Set build options at the file level ... 61

Prepare for Implementing Boot-flash Relink Function ... 64
2.16.1 Prepare the build target files ... 64

2.16.2 Setthe boot area project ... 64

2.16.3 Set the flash area project ... 66

Make Settings for Build Operations ... 68

2.17.1 Setthe link order of files ... 68

2.17.2 Change the file build order of subprojects ... 69
2.17.3 Display alist of build options ... 69

2.17.4 Change the file build target project ... 69
2.17.5 Add a build mode ... 71

2.17.6 Change the build mode ... 73

2.17.7 Delete a build mode ... 74

2.17.8 Set the current build options as the standard for the project ...

Run a Build ... 76

2.18.1 Run a build of updated files ... 78

2.18.2 Run a build of all files ... 79

2.18.3 Run a build in parallel with other operations ... 79
2.18.4 Run builds in batch with build modes ... 81
2.18.5 Compile/assemble individual files ... 82

2.18.6 Stop running a build ... 83

2.18.7 Save the build results to a file ... 83

2.18.8 Delete intermediate files and generated files ... 83
Estimate the Stack Capacity ... 85

2.19.1 Starting and exiting ... 85

2.19.2 Check the call relationship ... 86

2.19.3 Check the stack information ... 87

2.19.4 Check unknown functions ... 88

2.19.5 Change the frame size ... 89

CHAPTER 3 BUILD OUTPUT LISTS ... 91

3.1 Assembler ... 91

3.1.1 Output method ... 91
3.1.2 Output example ... 91

3.2 Linker ... 94

75

3.2.1 Output method ... 94
3.2.2 Link map output example ... 94
3.3 Hex Converter ... 97
3.3.1 Intel expanded ... 97
3.3.2 Motorola Stype ... 101
3.3.3 Expanded tektronix ... 103
3.4 Section File Generator ... 108
3.4.1 Cautions ... 111
3.5 Dump Tool ... 112
3.5.1 Dump list display contents ... 112
3.5.2 Element values and meanings ... 117
3.6 Disassembler ... 120
3.7 Cross Reference Tool ... 121
3.7.1 Cross reference ... 121
3.7.2 Tag information ... 122
3.7.3 Call tree ... 123
3.7.4 Function metrics ... 126
3.7.5 Call database ... 128
3.8 Memory Layout Visualization Tool ... 131
3.8.1 Memory map table ... 131
3.9 Format of Object File ... 133
3.9.1 Structure of object file ... 133
3.9.2 ELF header ... 133
3.9.3 Program header table ... 134
3.9.4 Section header table ... 134
3.9.5 Sections ... 136

APPENDIX A WINDOW REFERENCE ... 139

A.1 Description ... 139

APPENDIX B COMMAND REFERENCE ... 352

B.1 C Compiler ... 352
B.1.1 l/Ofiles ... 354
B.1.2 Executable object ... 354
B.1.3 Method for manipulating ... 355
B.1.4 Option ... 357
B.1.5 Cautions ... 463

B.2 Assembler ... 470
B.2.1 I/Ofiles ... 470
B.2.2 Method for manipulating ... 470
B.2.3 Option ... 471
B.2.4 Cautions ... 499

B.3 Linker ... 506
B.3.1 Method for manipulating ... 509
B.3.2 Option ... 510
B.3.3 Boot-flash relink function ... 556
B.3.4 Supplementary information ... 570

B.4 ROMization Processor ... 578
B.4.1 I/Ofiles ... 580
B.4.2 rompsec section ... 580
B.4.3 Creating object for ROMization ... 583
B.4.4 Copy function ... 590
B.4.5 Example of using copy function ... 595
B.4.6 Method for manipulating ... 597
B.4.7 Option ... 597

B.5 Hex Converter ... 614
B.5.1 I/Ofiles ... 614
B.5.2 Method for manipulating ... 614
B.5.3 Option ... 615

B.6 Archiver ... 632
B.6.1 Method for manipulating ... 632
B.6.2 Key/Option ... 633

B.7 Section File Generator ... 651
B.7.1 Section file ... 651
B.7.2 Method for manipulating ... 653
B.7.3 Option ... 655
B.7.4 Cautions ... 677

B.8 Dump Tool ... 678
B.8.1 Method for manipulating ... 678
B.8.2 Option ... 679

B.9 Disassembler ... 707
B.9.1 Method for manipulating ... 707
B.9.2 Option ... 708
B.9.3 Cautions ... 724

B.10 Cross Reference Tool ... 725
B.10.1 Input/Output ... 725
B.10.2 Method for manipulating ... 726
B.10.3 Option ... 727

B.11 Memory Layout Visualization Tool ... 764
B.11.1 Input/Output ... 764
B.11.2 Method for manipulating ... 764
B.11.3 Option ... 765

APPENDIX C INDEX ... 777

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

CHAPTER 1 GENERAL

This chapter explains the product overview of the build tool.

1.1 Overview

The build tool is comprised of components provided by this product. It enables various types of information to be con-
figured via a GUI tool, enabling you to generate ROMization object file, load module file, hex file, or archive file from your
source files, according to your objectives.

The build tool process flow is shown below.

R20UT0557EJ0100 Rev.1.00 RENESAS Page 12 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 1

GENERAL

Figure 1-1. Build Tool Process Flow

C source files

Section file generator

-
L0
|

!

C compiler ¢

Include file l Section file

Assembler source files

D
D

!

Assembler

!

Relocatable object files

(0

/w

Archiver

Archive file

o

A

Linker

Link directive file

Load module file

Memory layout visualization tool ROMization processor
Memory map table ROMization object file
y y y
Cross reference tool Hex converter Dump tool
Output information file Hex file Dump list

Disassembler

Note

Note Command line only

R20UT0557EJ0100 Rev.1.00 RENESAS

Apr 01, 2011

Page 13 of 782

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

1.2 Features

The features of the build tools are shown below.

- Optimization function
You can generate efficient object module files by performing optimizations such as prioritizing code size or execu-
tion speed when compiling.
It is possible to select from six optimization levels and set a different optimization level for each source.

- Functions optimized for embedded systems
It is possible to write interrupt processing and real-time OS tasks in C language.
Access to the peripheral hardware of the microcomputer can be handled in the same way as normal access to
variables.
Overhead associated with saving to and restoring from registers during interrupt processing is reduced by restrict-
ing the number of general registers that are used by the C compiler (register mode).
It is possible to fill the holes between members of structures and unions formed by alignment and handle the struc-
tures and unions predetermined by alignment (structure/union packing function).

R20UT0557EJ0100 Rev.1.00 RENESAS Page 14 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

CHAPTER 2 FUNCTIONS

This chapter describes the build procedure using CubeSuite+ and about the main build functions.

2.1 Overview

This section describes how to create a load module and user library.

21.1 Create aload module

The procedure for creating a load module is shown below.

(1) Create or load a project
Create a new project, or load an existing one.

Remark See "CubeSuite+ Start" for details about creating a new project or loading an existing one.

(2) Set abuild target project
Set a build target project (see "2.17 Make Settings for Build Operations").
If there is no subproject, the project is always active.

Remarks 1. If there is no subproject in the project, the project is always active.
2. When setting a build mode, add the build mode (see "2.17.5 Add a build mode").

(3) Set build target files
Add or remove build target files and update the dependencies (see "2.3 Set Build Target Files").

Remarks 1. See "2.7.1 Add a user library" for the method of adding a user library to the project.
2. Also, you can set the link order of object module files and library files (see "2.17.1 Set the link
order of files").

(4) Specify the output of aload module
Select the type of the load module to be generated (see "2.4 Set the Type of the Output File").

(5) Set build options
Set the options for the compiler, assembler, linker, and the like (see "2.5 Set Compile Options", "2.6 Set
Assemble Options", "2.7 Set Link Options").

(6) Run abuild
Run a build (see "2.18 Run a Build").
The following types of builds are available.
- Build (see "2.18.1 Run a build of updated files")
- Rebuild (see "2.18.2 Run a build of all files")
- Rapid build (see "2.18.3 Run a build in parallel with other operations")
- Batch build (see "2.18.4 Run builds in batch with build modes")

Remark If there are any commands you wish to run before or after the build process, on the Property panel,
from the [Common Options] tab, in the [Others] category, set the [Commands executed before build
processing] and [Commands executed after build processing] properties.

If there are any commands you wish to run before or after the build process at the file level, you can set

R20UT0557EJ0100 Rev.1.00 RENESAS Page 15 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

them from the [Individual Compile Options] tab (for a C source file) and [Individual Assemble Options]
tab (for an assembler source file).

(7) Save the project
Save the setting contents of the project to the project file.

Remark See "CubeSuite+ Start" for details about saving the project.

2.1.2 Create a user library

The procedure for creating a user library is shown below.

(1) Create or load a project
Create a new project, or load an existing one.
When you create a new project, set a library project.

Remark See "CubeSuite+ Start" for details about creating a new project or loading an existing one.

(2) Set abuild target project
Set a build target project (see "2.17 Make Settings for Build Operations").
If there is no subproject, the project is always active.

Remarks 1. If there is no subproject in the project, the project is always active.
2. When setting a build mode, add the build mode (see "2.17.5 Add a build mode").

(3) Set build target files
Add or remove build target files and update the dependencies (see "2.3 Set Build Target Files").

(4) Set build options
Set the options for the compiler, assembler, archiver, and the like (see "2.5 Set Compile Options", "2.6 Set
Assemble Options”, "2.10 Set Archive Options").

Remark To create a library common to various devices, set the [Output common object file for various devices]
property in the [Output File Type and Path] category from the [Common Options] tab on the Property
panel.

(5) Run abuild
Run a build (see "2.18 Run a Build").
The following types of builds are available.
- Build (see "2.18.1 Run a build of updated files")
- Rebuild (see "2.18.2 Run a build of all files")
- Rapid build (see "2.18.3 Run a build in parallel with other operations")
- Batch build (see "2.18.4 Run builds in batch with build modes")

Remark If there are any commands you wish to run before or after the build process, on the Property panel,
from the [Common Options] tab, in the [Others] category, set the [Commands executed before build
processing] and [Commands executed after build processing] properties.

If there are any commands you wish to run before or after the build process at the file level, you can set
them from the [Individual Compile Options] tab (for a C source file) and [Individual Assemble Options]
tab (for an assembler source file).

R20UT0557EJ0100 Rev.1.00 RENESAS Page 16 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(6) Save the project
Save the setting contents of the project to the project file.

Remark See "CubeSuite+ Start" for details about saving the project.

2.2 Change the Build Tool Version

You can change the version of the build tool (compiler package) used in the project (main project or subproject).

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Select
[Always latest version which was installed] or the version on the [Using compiler package version] property in the [Version
Select] category.

Figure 2-1. [Version Select] Category

B Yersion Select

C Izing compiler package verzsion Alwayz latest version which was ingtalled »)

Remarks 1. When the build tool used in the main project and subprojects is the same, you can collectively change
the build tool version by selecting all of the Build tool nodes and setting the property.
2. If you have selected a compiler package that has not been installed (e.g. if you open a project created
in another execution environment), then that version is also displayed.
3. If the options change depending on the compiler package, then the display of the build tool's properties
will change according to the selected version.
Properties that are hidden when the version is changed are saved in the project file's settings, and the
values will be reproduced when the properties are displayed again.
Options are changed in accordance with the following rules. Information about changes is displayed in
the Output panel.
- If you change from an older version to a newer version, the option settings will be inherited and
converted (only if necessary).
- If you change from a newer version to an older version, only identical option settings will be
inherited.
Options that only exist in the older version will be set to the default values.

R20UT0557EJ0100 Rev.1.00 RENESAS Page 17 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.3 Set Build Target Files
Before running a build, you must add the build target files (such as C source file, assembler source file) to the project.

This section explains operations on setting files in the project.

23.1 Set a startup routine

(1) Using the standard startup routine
Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.
To use the standard startup routine, select [Yes] on the [Use standard startup routine] property in the [Input File]

category.

Figure 2-2. [Use standard startup routine] Property

ztandard startup routine Ves V)

The following file is used as the standard startup routine, depending on the value of the [Select register mode]
property in the [Register Mode] category from the [Common Options] tab.

Value of [Select register mode] Property Standard Startup Routine
32-register mode(None) Using compiler package install folder\lib850\r32\crtE.o
26-register mode(-reg26) Using compiler package install folder\lib850\r26\crtE.o
22-register mode(-reg22) Using compiler package install folder\lib850\r22\crtE.o

(2) Using other than the standard startup routine
Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.
To use other than the standard startup routine, select [No] on the [Use standard startup routine] property in the

[Input File] category ([Yes] is selected by default).

Figure 2-3. [Use standard startup routine] Property

Ilze standard startup routine V)

Next, add a startup file (a file that the startup routine is described) to the Startup node on the project tree. See
"2.3.3 Add a file to a project" for the method of adding the file to the project tree.

R20UT0557EJ0100 Rev.1.00 RENESAS Page 18 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

Figure 2-4. Project Tree Panel (After Adding Startup File)

Project Tree
2 @ 3
= ﬂ_ﬁ sample {Project)*
% LPD7OF3746 (Microcantraller)
/9 Pin Configurator (Design Toaol)
szl Code Generataor (Design Toal)
A, CABS0 (Build Toal)
e, Y850 Simulator (Debug Tool)

-
::' Program Analyzer (Analvze Tool)

B

Caution A build target file added directly below the Startup node on the project tree is treated as the
startup file. Itis not treated as a startup file if it is added to the category below the Startup node.
When adding a startup file to the Startup node, if a startup file has already been added then only
the latest startup file to be added is targeted by a build; any such files added prior to this one
will not be targeted.
When setting a startup file that is not targeted by a build as a build target, if other startup files
have also been added then the file will be targeted by the build, and the others will not be
targeted.

Remark To create a new startup routine, copy the following sample and add it to the project. And then edit it.

Register Mode Sample of Startup Routine
32-register mode Using compiler package install folder\lib850\r32\crtE.s
26-register mode Using compiler package install folder\lib850\r26\crtE.s
22-register mode Using compiler package install folder\lib850\r22\crtE.s

A startup routine must be described in assembly language.
See “CubeSuite+ V850 Coding” for details about a startup routine.

R20UT0557EJ0100 Rev.1.00 RENESAS Page 19 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.3.2 Automatically generate link directives

Although users can create a link directive file and add it to a project, it is also possible to generate it automatically in
CubeSuite+.

Remark See “CubeSuite+ V850 Coding” for details about link directives and creating a link directive file.

On the project tree, select the Build tool node, and then select [Create Link Directive File...] from the context menu.
The Link Directive File Generation dialog box opens.

Figure 2-5. Link Directive File Generation Dialog Box

Link Directive File Generation

Segment / Section fist: Segment / Section detail:

Mernary /£ M ame Startéddress Enddddress

S5 Internal ROM Q00000000 Ce000FEFeE
=% SCOMST -
G goonst -
=% COMST ..
G .canst -
EE TEXT
[.pro_epi_runtime
G et -
El Mon Mapping (00 00000 D0 3fefff
=I5 Internal Rk D0 3EF0000 D03t
=e SIDATA D0 3EF0000 -
3 .tidata.byte -
3 tibszs.bute - W

Symbaol
Symbal list: Symbol detail:

Mame Type Address
Cgp _tp TEXT TP symbal%TP_SvMEOL)
Cap _op_DATA GF symboll%GP_SYMBOL)
lep _ep DATA EP symbol%EFP_SYMBOL])

Generate] ’ Cloze] ’ Help

Edit the segments/sections and symbols in the dialog box.

R20UT0557EJ0100 Rev.1.00 RENESAS Page 20 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(1) Edit segments/sections

The [Segment / Section list] area displays the device memory allocation information, and a list of the currently
configured segments and sections.

When a segment/section is selected from the list, detailed information on that segment/section is displayed in the
[Segment/Section detail] area. Edit the items in the [Segment / Section detail] area.

Remark Some items in reserved sections cannot be edited (items for which values are set automatically).
See “APPENDIX A WINDOW REFERENCE?”, “Link Directive File Generation dialog box” for details

about each item and how reserved sections are handled.

Figure 2-6. Segment Detail (When SCONST Is Selected)

Segment / Section list: Segment / Section detail:
Memary ¢ Mame Starthddress. Endaddress. #%| |B Segment
= 50 leterrar B, Ox00000000 e OO0FEEEE
UG ST N | Autie Read onlR)
TEONST] Start address HEH
[.const . b asirmum memon
=0 TEXT . Hole size HEH
[pro_epi_runtime . Filling walue HER
3 et . Alignment walue [HEx
£ Mon Mapping =007 Q0000 (=0 3fefEFe
=10 Internal Rk Qw03Fr0000 G Mame
== SIDATA 0=03f0000 . Specifiez the segment name.
I3 tidata. byte - The following characters can be used
[tibes bute o only 09, 42 &z AN

[&dd segment] [Add gection] [Delete]

Figure 2-7. Section Detail (When .sconst Is Selected)

Seament / Sectian list; Segment / Section detail:
Memomny / Name Startdddress Endfddress #+| B Section
=0 Internal RO Q00000000 e OO0FEEEE Mame -sconst
= SEONET~_ -
D
-0 TRNST—] Start address HEH
[const . Hole size HEH
=5) TEXT . Alignrment walue [HEH
[pro_epi_runtime . Input section nan . sconst
3 tewt ; Object file names Object file names(0]
£ Mon Mapping (=007 00000 (=0 3FefrFf Mame
=150 Internal RAM O=03F 0000 0=03fkeftt Specifies the sectian name.
=15 SIDATA O=03FE0000 - The following characters can be used
[tidata. hute oo lonky 0942, a2, AN

’ Add zection] ’ Delete]

Segments and sections can also be added.
Click [Add Segment] to add a new segment "NewSegment_XXX" directly below the row selected in the list (XXX: 0
to 255 in decimal numbers). Edit the items in the [Segment / Section detail] area. By default, [Attribute] is set to

R20UT0557EJ0100 Rev.1.00 RENESAS Page 21 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

[Executable(RX)] (if added to the internal ROM area or non mapping area) or to [Read/Write(RW)] (if added to the
internal RAM area).

Caution When a section row is selected in the list, the [Add segment] button is invalid.

Figure 2-8. Add Segment

Segment / Section list: Segment / Section detail;
Mermom A Mame Startdddress Endtddress | |E Segment
=I5 Intemal ROM 0x00000000 OO0 Name NewSegment_0
. Aftrbute Executable[RX]

=% SCONST

oo Start addresz [HER]

b aximum memon [Hex]

Hole zize [Hex]
. Fillirg «alue [Hex]
=5 TEXT . Aligrment value [HEx]
[pro_epi_untime
B 3 et - Name
= Mon Mapping 0007 Q0000 (03 eFFEF Specifies the segment name.
=S Intemal Rakd Q=03F0000 (w03 FF The following characters can be uzed
=53 SIDATA 00360000 - v ol 03 AL a2 LA

Add section] [Delete]

Click [Add Section] to add a new section "NewSection_XXX" directly below the row selected in the list (XXX: O to
255 in decimal numbers). Edit the items in the [Segment / Section detail] area. By default, [Type] is set to [Exist
data (PROGBITS)], and [Attribute] inherits the value of the parent segment.

Figure 2-9. Add Section

Segment / Section list: Segment / Section detail;
bemary / Mame Starttddress. Endiddiess) #| |E Sechon
=5 Internal ROM Q00000000 Do O00EEEEE Mame NewSection_0
=% SCOMST ; Type Ewxizt data[PROGEITS)
e . Attribute Read only[A]
tian [. Start address [Hex]
El= NS — ; Hole size [FEx]
3 const ; Alignment wvalue [Hex]
=% TEXT . Input section nan
[pro_epi_runtime . Object file names Object file nanmez[0]
3 tewt ; Name
£l Mon Mapping (007 00000 (w0 3fefrf Specifies the section name.
=0 Internal Rt D= 03FE 0000 (=03 FekfE The following characters can be used
=5 SIDATA Q030000 .| jonbe 08 A a7 AN
R20UT0557EJ0100 Rev.1.00 RENESAS Page 22 of 782

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

(2) Edit symbols
The [Symbol list] area displays the list of currently configured symbols.
When a symbol is selected from the list, detailed information on that symbol is displayed in the [Symbol detail]
area. Edit the items in the [Symbol detail] area.

Figure 2-10. Segment Detail (When _tp_TEXT Is Selected)

Symbal fist: Symbol detail:
hﬁune’—\ Type Addresz | |E Symbol
QWA TF cvboli=TP_SvMEOL Nane —tp_TEXT
T —opDtTA GP symbol%GP_SYMBOL) Type TP symboll%TP_SYMEOL]
o _ep DATA EP symbol[%EP_SYMBOL) Address HEr
Alignment value HEH
Segment name Segment name[0]
Mame

Specifies the zymbol name.

The following characters can be used only: 0-9,
AL az AN

Add symbal] [Delete symbol

Symbols can also be added.

Click [Add symbol] to add a new symbol "NewSymbol_XXX" directly below the row selected in the list (XXX: 0 to
255 in decimal numbers). Edit the items in the [Symbol detail] area. By default, [Type] is set to [TP
symbol(%TP_SYMBOL)].

Figure 2-11. Add Symbol

Symbol fist: Symbol detail:
Mame Tupe &ddress | |E Symbol
Lt TEAT~_ TP symbol(%TP_SvMBOL) M ame NewSymbol_0

NS TP symbol(%TP_SYMEOL) Type TP symbal(%TP_SYMBEOL)

To—apbaFs GP symbol. Base symbol name

o _ep DATA EP symbolZEP_SvMBOL) Address [He<]
Alignment value [HEx]

Segment name Segment name[0]

Mame
Specifies the symbal name.

The following characters can be uged only: 0-
4L 8z, . AN

< Add symbal] Delete zymbal

After editing the segments/sections and symbols, click the [Generate] button.

A link directive file (named project-name.dir) is generated based on the specified memory, segments, sections, and
symbol allocation information, and then added to the project.

The link directive file is generated in the project folder. The link directive file that has been generated is also shown on

the project tree, under the File node.

R20UT0557EJ0100 Rev.1.00 RENESAS Page 23 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

Figure 2-12. Project Tree Panel (After Generating Link Directive File)

Project Tree
2 @ 3
= j sample {Project)*
% LPD7OF3746 (Microcantraller)
/9 Pin Configurator (Design Toaol)
B:,_J Code Generataor (Design Toal)
A, CABS0 (Build Toal)
e, Y850 Simulator (Debug Tool)

J::' Program Analyzer (Analvze Tool)
=3 File
rﬂff. Startup
E _

samnple. dir

Caution The generated link directive file will be a build target. If a link directive file has already been

registered to the project, then the file will be removed from the build target.

R20UT0557EJ0100 Rev.1.00 RENESAS
Apr 01, 2011

Page 24 of 782

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.3.3 Add afile to a project

Files can be added to a project by the following methods.
- Adding an existing file
- Creating and adding an empty file
(1) Adding an existing file
(a) Add individual files
Drag a folder from Explorer or the like, and drop it onto the empty space below the project tree.

The file is added below the File node.

Figure 2-13. Project Tree Panel (File Drop Location)

Project T ree

B PO7OF3746 (Microcontroller)
/9 Pin Configurator (Design Toal)
D;xl Code Generakar (Design Toal)

4, CASS0 (Build Tool)

2, WE50 Simulator (Debug Tool)

=
::' Program Analyzer (Analvze Tool)
=3 File

.rﬂfi Startup

Drop the file here

Caution To add other than a startup routine, drop a file onto the Startup node. See "2.3.1 Set a
startup routine" for details about using other than a startup routine.

(b) Add afolder
Drag a folder from Explorer or the like, and drop it onto the empty space below the project tree. The Add
Folder and File dialog box opens.

Remark You can also add multiple folders to the project at the same time by dragging multiple folders at
same time and dropping them onto the project tree.

Caution When afolder with the name that is more than 200 characters is dropped, the folder is
added to the project tree as a category with the name that 201st character and after are
deleted.

R20UT0557EJ0100 Rev.1.00 RENESAS Page 25 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

Figure 2-14. Add Folder and File Dialog Box

Add Folder and File f'5__<

File type: Two or more zelections

C =source file [F.c]

Header file [*.h; ".inc)
Azzemble file [*.2)

Link. directive file [*.dir; *.dr]
Section file [7.=f]

Archive File[®.a)

Object File[*.a]

Test file [*tat)

Subfolder level to zearch:

ok || cancel || Heb |

In the dialog, select the file types to add to the project, specify the number of subfolder levels to add, and then
click the [OK] button.

Remark You can select multiple file types by left clicking while holding down the [Ctrl] or [Shift] key.
If nothing is selected, it is assumed that all types are selected.

The folder is added below the File node.
Note that on the project tree, the folder is the category.

Remark When the category node created by the user exists, you can add a file below the node by dropping the
file onto the node (see "2.3.6 Classify a file into a category" for a category node).

(2) Creating and adding an empty file
On the project tree, select either one of the Project node, Subproject node, or File node, and then select [Add] >>
[Add New File...] from the context menu. The Add File dialog box opens.

R20UT0557EJ0100 Rev.1.00 RENESAS Page 26 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

Figure 2-15. Add File Dialog Box

Add File X
File tpe:

C zource file [*.c]

Header filz [*.h; .inc]
Azzemble file [7.5]

Link, directive file [*.dir; *.di]
Section file [*.2f]

Test file [*.tat)

Empty C source file. |

File name: |main.|: |

File location: | C:hwyorksample_vE50 | Refer...

0K | [Cancel || Hep |

In the dialog box, specify the file to be created and then click the [OK] button.
The file is added below the File node.

The project tree after adding the file will look like the one below.

Figure 2-16. Project Tree Panel (After Adding File "main.c")

Project Tree
2 @8
= [_ﬁ sarnple (Project]
% LPD7OF3746 (Microcantraller)
/9 Pin Configurator (Design Toaol)

B:,_J Code Generataor (Design Toal)
A, CABS0 (Build Toal)

o, WES0 Simulator (Debug Tool)
"::' Program Analyzer (Analyvze Tool)

R20UT0557EJ0100 Rev.1.00

RENESAS Page 27 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

Figure 2-17. Project Tree Panel (After Adding Folder "src")

Project Tree (%]
2 @28
= _f_'; sample {Project)*

% LPD7OF3746 (Microcantraller)

/9 Pin Configurator (Design Toaol)

szl Code Generataor (Design Toal)
A, CABS0 (Build Toal)
o, WES0 Simulator (Debug Tool)
J::' Program Analyzer (Analvze Tool)

=3 File

Fartup

ﬂ main.c
ﬂ sub.s
die| fink, dir

Remark The location of the file added below the File nhode depends on the current file display order setting. See
"2.3.7 Change the file display order" for the method of changing the file display order.

Cautions 1. If the paths differ, you can add source files with the same name. Note, however, that if the
setting of the output file name is left as the default, the output files will have the same name,
which will prevent the build from running correctly (for example, when adding
D:\samplel\func.c and D:\sample2\func.c, the default output file name for these files is both
func.o).

To avoid this problems, set the output file name for each of those files to a different name with
the individual build options for the source files.
Changing the name of the C source file is made with the [Object file name] property in the
[Output File] category from the [Individual Compile Options] tab. Changing the name of the
assembler source file is made with the [Object file name] property in the [Output File] category
from the [Individual Assemble Options] tab. See "2.15.2 Set build options at the file level" for
how to set the individual build options.

2. If source files with the same name are added, the target file cannot opened during debugging.

3. If afile with an extension of "dr" or "dir" is added to the project, it is treated as a link directive
file. Itis also treated as a link directive file if it is added below the Startup node.
When adding a link directive file to the project, if a link directive file has already been added
then only the latest link directive file to be added is targeted by a build; any such files added
prior to this one will not be targeted.
When setting a link directive file that is not targeted by a build as a build target, if other link
directive files have also been added then the file will be targeted by the build, and the others will
not be targeted.

4. Upto 5000 files can be added to the main project or subproject.

When a new file is added, an empty file is created in the location specified in the Add File dialog box.
By double clicking the file name on the project tree, you can open the Editor panel and edit the file.
The files that can be opened with the Editor panel are shown below.

- C source file (.c)

R20UT0557EJ0100 Rev.1.00 RENESAS Page 28 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

- Assembler source file (.s)
- Header file (.h, .inc)

- Link directive file (.dr, .dir)
- Section file (.sf)

- Map file (.map)

- Hex file (.hex)

- Text file (.txt)

Remarks 1. You can use one of the methods below to open files other than those listed above in the Editor panel.
- Drag a file and drop it onto the Editor panel.
- Select a file and then select [Open with Internal Editor...] from the context menu.
2. When the environment is set to use an external editor on the Option dialog box, the file is opened with
the external editor that has been set. Other files are opened with the applications associated by the
host OS.

2.3.4 Remove a file from a project

To remove a file added to a project, select the file to be removed from the project on the project tree and then select
[Remove from Project] from the context menu.
In addition, the file itself is not deleted from the file system.

Figure 2-18. [Remove from Project] Item

=3 File

S?f Startup

= mainc)

%ﬁ Compile

g Open
_-,;’f, Cpen with Internal Editar, ..
[% Open with Selected Application...
“_:L_ Cpen Eolder with Explorer
Add »
Remove From Project Shift+Del >
Copy Chrl+C
Fename Fz
Property
R20UT0557EJ0100 Rev.1.00 RENESAS Page 29 of 782

Apr 01, 2011

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.35 Remove a file from the build target

You can remove a specific file from the build target out of all the files added to the project.
Select the file to be removed from the build target on the project tree and select the [Build Settings] tab on the Property
panel. Select [No] on the [Set as build-target] property in the [Build] category.

Figure 2-19. [Set as build-target] Property

as build-target V)

Remark The files that can be applied this function are C source files, assembler source files, link directive files,
section file, object files, and archive file.

2.3.6 Classify a file into a category

You can create a category under the File node and classify files by the category. This makes it easier to view files
added to the project on the project tree, and makes it easier to manage files according to function.

To create a category node, select either one of the Project node, Subproject node, or File node on the project tree, and
then select [Add] >> [Add New Category] from the context menu.

Figure 2-20. [Add New Category] Iltem (For File Node)

=3 :
55[add M [addEe..
| = 1] Add Mew File...
iy < |:|, Add Mew Category >
5
ale
Property

Figure 2-21. Project Tree Panel (After Adding Category Node)

Project Tree
2 @ 3
= ﬂ_ﬁ sample {Project)*
% LPD7OF3746 (Microcantraller)
/9 Pin Configurator (Design Toaol)
B;I Code Generataor (Design Toal)
A, CABS0 (Build Toal)
e, Y850 Simulator (Debug Tool)

J::' Program Analyzer (Analvze Tool)
=3 File
rﬂf. Startup
E _

R20UTO0557EJ0100 Rev.1.00
Apr 01, 2011

Page 30 of 782

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

Remarks 1. The default category name is "New category".

To change the category name, you can use [Rename] from the context menu of the category node.

2. You can also add a category node with the same name as an existing category node.

3. Categories can be nested up to 20 levels.

You can classify files into the created category node by dragging and dropping the file.

2.3.7 Change the file display order

You can change the display order of the files and category nodes using the buttons on the project tree.

Figure 2-22. Toolbar (Project Tree Panel)

Proiect Tree

Wifsample (Project)*

B || PO70F3746 (Microcontroller)
/9 Pin Configurator {Design Tool)
':;\I Code Generatar (Design Toal)

A, CAS50 (Build Tool)

e, WES0 Simulator (Debug Tool)

=
,::' Program Analvzer {Analyze Tool)
= [File
= ﬂ I_E%uild kool generated files

out cample, out
hes cample, hex
—
?i_)_(Startup

"ﬂ main.c

Select any of the buttons below on the toolbar of the Project Tree panel.

Button Description

Sorts category nodes and files by name.
: Ascending order

: Descending order

i || Pl
E=E

: Ascending order

20 [1ot | g
E il

=

ts category nodes and files by timestamp.

So

: Descending order

: Ascending order

[

BEE

: Descending order

them.

Displays category nodes and files in the specified order by the user (default).

You can change the display order of the category nodes and files arbitrarily by dragging and dropping

R20UT0557EJ0100 Rev.1.00 RENESAS
Apr 01, 2011

Page 31 of 782

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

2.3.8 Update file dependencies

When you perform a change (changing include file paths, adding an include statement of the header file to the C source
file and assembler source file, etc.) that effects the file dependencies in the compile option settings or assemble option
settings, you must update the dependencies of the relevant files.

Updating file dependencies is performed for the entire project (main project and subprojects) or active project.

(1) For the entire project
From the [Build] menu, select [Update Dependencies].

Figure 2-23. [Update Dependencies] Item

Build
Build Project: F7

Rebuid Project Shift+F7

==

Clean Projeck

&

S99 Update Dependencies
Build sample

Febuild sample

N AN]

Clean sample

0]
B&

pdate Dependencies of sample
R
[Build Mode Settings...
Tl Batch Buid. ..

1% Build Option List

(2) For the active project
From the [Build] menu, select [Update Dependencies of active project].

R20UT0557EJ0100 Rev.1.00 RENESAS Page 32 of 782
Apr 01, 2011

CubeSuite+ Ver.1.00.00

CHAPTER 2 FUNCTIONS

Figure 2-24.

Build
@ Build Project
@ Rebuild Project
@ Clean Project

ﬁ
=54
o

F.apid Build

Ipdate Dependencies

tj Build sample
'ijj Rebuild sample

_,5} Clean sample

F7

Shift+F7

2 Update Dependencies of sample

&

0
N

[Build Mode Settings...

T1 Batch Buid...

T4 Build Option List

[Update Dependencies of active project] Iltem

Remark If there are files being edited with the Editor panel when updating file dependencies, then all these