
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

CubeSuite+ V1.00.00

Integrated Development Environment
User’s Manual: V850 Build

Rev.1.00 Apr 2011

Target Device
V850 Microcontroller

www.renesas.com

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

How to Use This Manual

This manual describes the role of the CubeSuite+ integrated development environment for developing application

systems for V850 microcontrollers, and provides an outline of its features.

CubeSuite+ is an integrated development environment (IDE) for V850 microcontrollers, integrating the necessary

tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without

the need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the

CubeSuite+ and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the

CubeSuite+ to use for reference in developing the hardware or software of systems

using these devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 BUILD OUTPUT LISTS

APPENDIX A WINDOW REFERENCE

APPENDIX B COMMAND REFERENCE

APPENDIX C INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic

circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: XXX
–––

 (overscore over pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeric representation: Decimal … XXXX

 Hexadecimal … 0xXXXX

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Start R20UT0545E

78K0 Design R20UT0546E

78K0R Design R20UT0547E

RL78 Design R20UT0548E

V850 Design R20UT0549E

R8C Design R20UT0550E

78K0 Coding R20UT0551E

RL78,78K0R Coding R20UT0552E

V850 Coding R20UT0553E

Coding for CX Compiler R20UT0554E

R8C Coding R20UT0576E

78K0 Build R20UT0555E

RL78,78K0R Build R20UT0556E

V850 Build This manual

Build for CX Compiler R20UT0558E

R8C Build R20UT0575E

78K0 Debug R20UT0559E

78K0R Debug R20UT0560E

RL78 Debug R20UT0561E

V850 Debug R20UT0562E

R8C Debug R20UT0574E

Analysis R20UT0563E

CubeSuite+

Integrated Development Environment

User's Manual

Message R20UT0407E

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective
owners.

[MEMO]

[MEMO]

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 12

1.1 Overview ... 12
1.2 Features ... 14

CHAPTER 2 FUNCTIONS ... 15

2.1 Overview ... 15
2.1.1 Create a load module ... 15
2.1.2 Create a user library ... 16

2.2 Change the Build Tool Version ... 17
2.3 Set Build Target Files ... 18

2.3.1 Set a startup routine ... 18
2.3.2 Automatically generate link directives ... 20
2.3.3 Add a file to a project ... 25
2.3.4 Remove a file from a project ... 29
2.3.5 Remove a file from the build target ... 30
2.3.6 Classify a file into a category ... 30
2.3.7 Change the file display order ... 31
2.3.8 Update file dependencies ... 32

2.4 Set the Type of the Output File ... 35
2.4.1 Change the output file name ... 35
2.4.2 Output an assemble list ... 36
2.4.3 Output map information ... 37
2.4.4 Output symbol information ... 37

2.5 Set Compile Options ... 38
2.5.1 Perform optimization with the code size precedence ... 39
2.5.2 Perform optimization with the execution speed precedence ... 39
2.5.3 Add an include path ... 39
2.5.4 Set a macro definition ... 41
2.5.5 Enable C++ comments ... 42
2.5.6 Reduce the code size (perform prologue/epilogue runtime calls) ... 42
2.5.7 Change the register mode ... 43

2.6 Set Assemble Options ... 44
2.6.1 Add an include path ... 44
2.6.2 Set a macro definition ... 46

2.7 Set Link Options ... 47
2.7.1 Add a user library ... 48

2.8 Set ROMization Process Options ... 50
2.8.1 Create an object for ROMization ... 50

2.9 Set Hex Convert Options ... 52
2.9.1 Set the output of a hex file ... 52
2.9.2 Fill the vacant area ... 53

2.10 Set Archive Options ... 55
2.10.1 Set the output of an archive file ... 55

2.11 Set Section File Generate Options ... 56
2.11.1 Automatically allocate variables through static analysis ... 56

2.12 Set Dump Options ... 58
2.12.1 Use the dump tool ... 58
2.12.2 Reference the section information ... 58

2.13 Set Cross Reference Options ... 59
2.13.1 Use the cross reference tool ... 59

2.14 Set Memory Layout Visualization Options ... 60
2.14.1 Use the memory layout visualization tool ... 60

2.15 Set Build Options Separately ... 61
2.15.1 Set build options at the project level ... 61
2.15.2 Set build options at the file level ... 61

2.16 Prepare for Implementing Boot-flash Relink Function ... 64
2.16.1 Prepare the build target files ... 64
2.16.2 Set the boot area project ... 64
2.16.3 Set the flash area project ... 66

2.17 Make Settings for Build Operations ... 68
2.17.1 Set the link order of files ... 68
2.17.2 Change the file build order of subprojects ... 69
2.17.3 Display a list of build options ... 69
2.17.4 Change the file build target project ... 69
2.17.5 Add a build mode ... 71
2.17.6 Change the build mode ... 73
2.17.7 Delete a build mode ... 74
2.17.8 Set the current build options as the standard for the project ... 75

2.18 Run a Build ... 76
2.18.1 Run a build of updated files ... 78
2.18.2 Run a build of all files ... 79
2.18.3 Run a build in parallel with other operations ... 79
2.18.4 Run builds in batch with build modes ... 81
2.18.5 Compile/assemble individual files ... 82
2.18.6 Stop running a build ... 83
2.18.7 Save the build results to a file ... 83
2.18.8 Delete intermediate files and generated files ... 83

2.19 Estimate the Stack Capacity ... 85
2.19.1 Starting and exiting ... 85
2.19.2 Check the call relationship ... 86
2.19.3 Check the stack information ... 87
2.19.4 Check unknown functions ... 88
2.19.5 Change the frame size ... 89

CHAPTER 3 BUILD OUTPUT LISTS ... 91

3.1 Assembler ... 91
3.1.1 Output method ... 91
3.1.2 Output example ... 91

3.2 Linker ... 94

3.2.1 Output method ... 94
3.2.2 Link map output example ... 94

3.3 Hex Converter ... 97
3.3.1 Intel expanded ... 97
3.3.2 Motorola S type ... 101
3.3.3 Expanded tektronix ... 103

3.4 Section File Generator ... 108
3.4.1 Cautions ... 111

3.5 Dump Tool ... 112
3.5.1 Dump list display contents ... 112
3.5.2 Element values and meanings ... 117

3.6 Disassembler ... 120
3.7 Cross Reference Tool ... 121

3.7.1 Cross reference ... 121
3.7.2 Tag information ... 122
3.7.3 Call tree ... 123
3.7.4 Function metrics ... 126
3.7.5 Call database ... 128

3.8 Memory Layout Visualization Tool ... 131
3.8.1 Memory map table ... 131

3.9 Format of Object File ... 133
3.9.1 Structure of object file ... 133
3.9.2 ELF header ... 133
3.9.3 Program header table ... 134
3.9.4 Section header table ... 134
3.9.5 Sections ... 136

APPENDIX A WINDOW REFERENCE ... 139

A.1 Description ... 139

APPENDIX B COMMAND REFERENCE ... 352

B.1 C Compiler ... 352
B.1.1 I/O files ... 354
B.1.2 Executable object ... 354
B.1.3 Method for manipulating ... 355
B.1.4 Option ... 357
B.1.5 Cautions ... 463

B.2 Assembler ... 470
B.2.1 I/O files ... 470
B.2.2 Method for manipulating ... 470
B.2.3 Option ... 471
B.2.4 Cautions ... 499

B.3 Linker ... 506
B.3.1 Method for manipulating ... 509
B.3.2 Option ... 510
B.3.3 Boot-flash relink function ... 556
B.3.4 Supplementary information ... 570

B.4 ROMization Processor ... 578
B.4.1 I/O files ... 580
B.4.2 rompsec section ... 580
B.4.3 Creating object for ROMization ... 583
B.4.4 Copy function ... 590
B.4.5 Example of using copy function ... 595
B.4.6 Method for manipulating ... 597
B.4.7 Option ... 597

B.5 Hex Converter ... 614
B.5.1 I/O files ... 614
B.5.2 Method for manipulating ... 614
B.5.3 Option ... 615

B.6 Archiver ... 632
B.6.1 Method for manipulating ... 632
B.6.2 Key/Option ... 633

B.7 Section File Generator ... 651
B.7.1 Section file ... 651
B.7.2 Method for manipulating ... 653
B.7.3 Option ... 655
B.7.4 Cautions ... 677

B.8 Dump Tool ... 678
B.8.1 Method for manipulating ... 678
B.8.2 Option ... 679

B.9 Disassembler ... 707
B.9.1 Method for manipulating ... 707
B.9.2 Option ... 708
B.9.3 Cautions ... 724

B.10 Cross Reference Tool ... 725
B.10.1 Input/Output ... 725
B.10.2 Method for manipulating ... 726
B.10.3 Option ... 727

B.11 Memory Layout Visualization Tool ... 764
B.11.1 Input/Output ... 764
B.11.2 Method for manipulating ... 764
B.11.3 Option ... 765

APPENDIX C INDEX ... 777

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0557EJ0100 Rev.1.00 Page 12 of 782
Apr 01, 2011

CHAPTER 1 GENERAL

This chapter explains the product overview of the build tool.

1.1 Overview

The build tool is comprised of components provided by this product. It enables various types of information to be con-

figured via a GUI tool, enabling you to generate ROMization object file, load module file, hex file, or archive file from your

source files, according to your objectives.

The build tool process flow is shown below.

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0557EJ0100 Rev.1.00 Page 13 of 782
Apr 01, 2011

Figure 1-1. Build Tool Process Flow

C source files

Relocatable object files

Archive file

Load module file

Assembler source files

C compiler

Assembler

Archiver

Linker

...

...

...

Hex file

Hex converter

ROMization object file

ROMization processor

Dump tool

DisassemblerNote

Cross reference tool

Memory layout visualization tool

Note Command line only

Link directive file

Include file Section file

Section file generator

Dump list

Memory map table

Output information file

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0557EJ0100 Rev.1.00 Page 14 of 782
Apr 01, 2011

1.2 Features

The features of the build tools are shown below.

- Optimization function

You can generate efficient object module files by performing optimizations such as prioritizing code size or execu-

tion speed when compiling.

It is possible to select from six optimization levels and set a different optimization level for each source.

- Functions optimized for embedded systems

It is possible to write interrupt processing and real-time OS tasks in C language.

Access to the peripheral hardware of the microcomputer can be handled in the same way as normal access to

variables.

Overhead associated with saving to and restoring from registers during interrupt processing is reduced by restrict-

ing the number of general registers that are used by the C compiler (register mode).

It is possible to fill the holes between members of structures and unions formed by alignment and handle the struc-

tures and unions predetermined by alignment (structure/union packing function).

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 15 of 782
Apr 01, 2011

CHAPTER 2 FUNCTIONS

This chapter describes the build procedure using CubeSuite+ and about the main build functions.

2.1 Overview

This section describes how to create a load module and user library.

2.1.1 Create a load module

The procedure for creating a load module is shown below.

(1) Create or load a project

Create a new project, or load an existing one.

Remark See "CubeSuite+ Start" for details about creating a new project or loading an existing one.

(2) Set a build target project

Set a build target project (see "2.17 Make Settings for Build Operations").

If there is no subproject, the project is always active.

Remarks 1. If there is no subproject in the project, the project is always active.

2. When setting a build mode, add the build mode (see "2.17.5 Add a build mode").

(3) Set build target files

Add or remove build target files and update the dependencies (see "2.3 Set Build Target Files").

Remarks 1. See "2.7.1 Add a user library" for the method of adding a user library to the project.

2. Also, you can set the link order of object module files and library files (see "2.17.1 Set the link

order of files").

(4) Specify the output of a load module

Select the type of the load module to be generated (see "2.4 Set the Type of the Output File").

(5) Set build options

Set the options for the compiler, assembler, linker, and the like (see "2.5 Set Compile Options", "2.6 Set

Assemble Options", "2.7 Set Link Options").

(6) Run a build

Run a build (see "2.18 Run a Build").

The following types of builds are available.

- Build (see "2.18.1 Run a build of updated files")

- Rebuild (see "2.18.2 Run a build of all files")

- Rapid build (see "2.18.3 Run a build in parallel with other operations")

- Batch build (see "2.18.4 Run builds in batch with build modes")

Remark If there are any commands you wish to run before or after the build process, on the Property panel,

from the [Common Options] tab, in the [Others] category, set the [Commands executed before build

processing] and [Commands executed after build processing] properties.

If there are any commands you wish to run before or after the build process at the file level, you can set

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 16 of 782
Apr 01, 2011

them from the [Individual Compile Options] tab (for a C source file) and [Individual Assemble Options]

tab (for an assembler source file).

(7) Save the project

Save the setting contents of the project to the project file.

Remark See "CubeSuite+ Start" for details about saving the project.

2.1.2 Create a user library

The procedure for creating a user library is shown below.

(1) Create or load a project

Create a new project, or load an existing one.

When you create a new project, set a library project.

Remark See "CubeSuite+ Start" for details about creating a new project or loading an existing one.

(2) Set a build target project

Set a build target project (see "2.17 Make Settings for Build Operations").

If there is no subproject, the project is always active.

Remarks 1. If there is no subproject in the project, the project is always active.

2. When setting a build mode, add the build mode (see "2.17.5 Add a build mode").

(3) Set build target files

Add or remove build target files and update the dependencies (see "2.3 Set Build Target Files").

(4) Set build options

Set the options for the compiler, assembler, archiver, and the like (see "2.5 Set Compile Options", "2.6 Set

Assemble Options", "2.10 Set Archive Options").

Remark To create a library common to various devices, set the [Output common object file for various devices]

property in the [Output File Type and Path] category from the [Common Options] tab on the Property

panel.

(5) Run a build

Run a build (see "2.18 Run a Build").

The following types of builds are available.

- Build (see "2.18.1 Run a build of updated files")

- Rebuild (see "2.18.2 Run a build of all files")

- Rapid build (see "2.18.3 Run a build in parallel with other operations")

- Batch build (see "2.18.4 Run builds in batch with build modes")

Remark If there are any commands you wish to run before or after the build process, on the Property panel,

from the [Common Options] tab, in the [Others] category, set the [Commands executed before build

processing] and [Commands executed after build processing] properties.

If there are any commands you wish to run before or after the build process at the file level, you can set

them from the [Individual Compile Options] tab (for a C source file) and [Individual Assemble Options]

tab (for an assembler source file).

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 17 of 782
Apr 01, 2011

(6) Save the project

Save the setting contents of the project to the project file.

Remark See "CubeSuite+ Start" for details about saving the project.

2.2 Change the Build Tool Version

You can change the version of the build tool (compiler package) used in the project (main project or subproject).

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Select

[Always latest version which was installed] or the version on the [Using compiler package version] property in the [Version

Select] category.

Figure 2-1. [Version Select] Category

Remarks 1. When the build tool used in the main project and subprojects is the same, you can collectively change

the build tool version by selecting all of the Build tool nodes and setting the property.

2. If you have selected a compiler package that has not been installed (e.g. if you open a project created

in another execution environment), then that version is also displayed.

3. If the options change depending on the compiler package, then the display of the build tool's properties

will change according to the selected version.

Properties that are hidden when the version is changed are saved in the project file's settings, and the

values will be reproduced when the properties are displayed again.

Options are changed in accordance with the following rules. Information about changes is displayed in

the Output panel.

- If you change from an older version to a newer version, the option settings will be inherited and

converted (only if necessary).

- If you change from a newer version to an older version, only identical option settings will be

inherited.

Options that only exist in the older version will be set to the default values.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 18 of 782
Apr 01, 2011

2.3 Set Build Target Files

Before running a build, you must add the build target files (such as C source file, assembler source file) to the project.

This section explains operations on setting files in the project.

2.3.1 Set a startup routine

(1) Using the standard startup routine

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To use the standard startup routine, select [Yes] on the [Use standard startup routine] property in the [Input File]

category.

Figure 2-2. [Use standard startup routine] Property

The following file is used as the standard startup routine, depending on the value of the [Select register mode]

property in the [Register Mode] category from the [Common Options] tab.

(2) Using other than the standard startup routine

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To use other than the standard startup routine, select [No] on the [Use standard startup routine] property in the

[Input File] category ([Yes] is selected by default).

Figure 2-3. [Use standard startup routine] Property

Next, add a startup file (a file that the startup routine is described) to the Startup node on the project tree. See

"2.3.3 Add a file to a project" for the method of adding the file to the project tree.

Value of [Select register mode] Property Standard Startup Routine

32-register mode(None) Using compiler package install folder\lib850\r32\crtE.o

26-register mode(-reg26) Using compiler package install folder\lib850\r26\crtE.o

22-register mode(-reg22) Using compiler package install folder\lib850\r22\crtE.o

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 19 of 782
Apr 01, 2011

Figure 2-4. Project Tree Panel (After Adding Startup File)

Caution A build target file added directly below the Startup node on the project tree is treated as the

startup file. It is not treated as a startup file if it is added to the category below the Startup node.

When adding a startup file to the Startup node, if a startup file has already been added then only

the latest startup file to be added is targeted by a build; any such files added prior to this one

will not be targeted.

When setting a startup file that is not targeted by a build as a build target, if other startup files

have also been added then the file will be targeted by the build, and the others will not be

targeted.

Remark To create a new startup routine, copy the following sample and add it to the project. And then edit it.

A startup routine must be described in assembly language.

See “CubeSuite+ V850 Coding” for details about a startup routine.

Register Mode Sample of Startup Routine

32-register mode Using compiler package install folder\lib850\r32\crtE.s

26-register mode Using compiler package install folder\lib850\r26\crtE.s

22-register mode Using compiler package install folder\lib850\r22\crtE.s

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 20 of 782
Apr 01, 2011

2.3.2 Automatically generate link directives

Although users can create a link directive file and add it to a project, it is also possible to generate it automatically in

CubeSuite+.

Remark See “CubeSuite+ V850 Coding” for details about link directives and creating a link directive file.

On the project tree, select the Build tool node, and then select [Create Link Directive File...] from the context menu.

The Link Directive File Generation dialog box opens.

Figure 2-5. Link Directive File Generation Dialog Box

Edit the segments/sections and symbols in the dialog box.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 21 of 782
Apr 01, 2011

(1) Edit segments/sections

The [Segment / Section list] area displays the device memory allocation information, and a list of the currently

configured segments and sections.

When a segment/section is selected from the list, detailed information on that segment/section is displayed in the

[Segment/Section detail] area. Edit the items in the [Segment / Section detail] area.

Remark Some items in reserved sections cannot be edited (items for which values are set automatically).

See “APPENDIX A WINDOW REFERENCE”, “Link Directive File Generation dialog box” for details

about each item and how reserved sections are handled.

Figure 2-6. Segment Detail (When SCONST Is Selected)

Figure 2-7. Section Detail (When .sconst Is Selected)

Segments and sections can also be added.

Click [Add Segment] to add a new segment "NewSegment_XXX" directly below the row selected in the list (XXX: 0

to 255 in decimal numbers). Edit the items in the [Segment / Section detail] area. By default, [Attribute] is set to

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 22 of 782
Apr 01, 2011

[Executable(RX)] (if added to the internal ROM area or non mapping area) or to [Read/Write(RW)] (if added to the

internal RAM area).

Caution When a section row is selected in the list, the [Add segment] button is invalid.

Figure 2-8. Add Segment

Click [Add Section] to add a new section "NewSection_XXX" directly below the row selected in the list (XXX: 0 to

255 in decimal numbers). Edit the items in the [Segment / Section detail] area. By default, [Type] is set to [Exist

data (PROGBITS)], and [Attribute] inherits the value of the parent segment.

Figure 2-9. Add Section

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 23 of 782
Apr 01, 2011

(2) Edit symbols

The [Symbol list] area displays the list of currently configured symbols.

When a symbol is selected from the list, detailed information on that symbol is displayed in the [Symbol detail]

area. Edit the items in the [Symbol detail] area.

Figure 2-10. Segment Detail (When _tp_TEXT Is Selected)

Symbols can also be added.

Click [Add symbol] to add a new symbol "NewSymbol_XXX" directly below the row selected in the list (XXX: 0 to

255 in decimal numbers). Edit the items in the [Symbol detail] area. By default, [Type] is set to [TP

symbol(%TP_SYMBOL)].

Figure 2-11. Add Symbol

After editing the segments/sections and symbols, click the [Generate] button.

A link directive file (named project-name.dir) is generated based on the specified memory, segments, sections, and

symbol allocation information, and then added to the project.

The link directive file is generated in the project folder. The link directive file that has been generated is also shown on

the project tree, under the File node.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 24 of 782
Apr 01, 2011

Figure 2-12. Project Tree Panel (After Generating Link Directive File)

Caution The generated link directive file will be a build target. If a link directive file has already been

registered to the project, then the file will be removed from the build target.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 25 of 782
Apr 01, 2011

2.3.3 Add a file to a project

Files can be added to a project by the following methods.

- Adding an existing file

- Creating and adding an empty file

(1) Adding an existing file

(a) Add individual files

Drag a folder from Explorer or the like, and drop it onto the empty space below the project tree.

The file is added below the File node.

Figure 2-13. Project Tree Panel (File Drop Location)

Caution To add other than a startup routine, drop a file onto the Startup node. See "2.3.1 Set a

startup routine" for details about using other than a startup routine.

(b) Add a folder

Drag a folder from Explorer or the like, and drop it onto the empty space below the project tree. The Add

Folder and File dialog box opens.

Remark You can also add multiple folders to the project at the same time by dragging multiple folders at

same time and dropping them onto the project tree.

Caution When a folder with the name that is more than 200 characters is dropped, the folder is

added to the project tree as a category with the name that 201st character and after are

deleted.

Drop the file here

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 26 of 782
Apr 01, 2011

Figure 2-14. Add Folder and File Dialog Box

In the dialog, select the file types to add to the project, specify the number of subfolder levels to add, and then

click the [OK] button.

Remark You can select multiple file types by left clicking while holding down the [Ctrl] or [Shift] key.

If nothing is selected, it is assumed that all types are selected.

The folder is added below the File node.

Note that on the project tree, the folder is the category.

Remark When the category node created by the user exists, you can add a file below the node by dropping the

file onto the node (see "2.3.6 Classify a file into a category" for a category node).

(2) Creating and adding an empty file

On the project tree, select either one of the Project node, Subproject node, or File node, and then select [Add] >>

[Add New File...] from the context menu. The Add File dialog box opens.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 27 of 782
Apr 01, 2011

Figure 2-15. Add File Dialog Box

In the dialog box, specify the file to be created and then click the [OK] button.

The file is added below the File node.

The project tree after adding the file will look like the one below.

Figure 2-16. Project Tree Panel (After Adding File "main.c")

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 28 of 782
Apr 01, 2011

Figure 2-17. Project Tree Panel (After Adding Folder "src")

Remark The location of the file added below the File node depends on the current file display order setting. See

"2.3.7 Change the file display order" for the method of changing the file display order.

Cautions 1. If the paths differ, you can add source files with the same name. Note, however, that if the

setting of the output file name is left as the default, the output files will have the same name,

which will prevent the build from running correctly (for example, when adding

D:\sample1\func.c and D:\sample2\func.c, the default output file name for these files is both

func.o).

To avoid this problems, set the output file name for each of those files to a different name with

the individual build options for the source files.

Changing the name of the C source file is made with the [Object file name] property in the

[Output File] category from the [Individual Compile Options] tab. Changing the name of the

assembler source file is made with the [Object file name] property in the [Output File] category

from the [Individual Assemble Options] tab. See "2.15.2 Set build options at the file level" for

how to set the individual build options.

2. If source files with the same name are added, the target file cannot opened during debugging.

3. If a file with an extension of "dr" or "dir" is added to the project, it is treated as a link directive

file. It is also treated as a link directive file if it is added below the Startup node.

When adding a link directive file to the project, if a link directive file has already been added

then only the latest link directive file to be added is targeted by a build; any such files added

prior to this one will not be targeted.

When setting a link directive file that is not targeted by a build as a build target, if other link

directive files have also been added then the file will be targeted by the build, and the others will

not be targeted.

4. Up to 5000 files can be added to the main project or subproject.

When a new file is added, an empty file is created in the location specified in the Add File dialog box.

By double clicking the file name on the project tree, you can open the Editor panel and edit the file.

The files that can be opened with the Editor panel are shown below.

- C source file (.c)

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 29 of 782
Apr 01, 2011

- Assembler source file (.s)

- Header file (.h, .inc)

- Link directive file (.dr, .dir)

- Section file (.sf)

- Map file (.map)

- Hex file (.hex)

- Text file (.txt)

Remarks 1. You can use one of the methods below to open files other than those listed above in the Editor panel.

- Drag a file and drop it onto the Editor panel.

- Select a file and then select [Open with Internal Editor...] from the context menu.

2. When the environment is set to use an external editor on the Option dialog box, the file is opened with

the external editor that has been set. Other files are opened with the applications associated by the

host OS.

2.3.4 Remove a file from a project

To remove a file added to a project, select the file to be removed from the project on the project tree and then select

[Remove from Project] from the context menu.

In addition, the file itself is not deleted from the file system.

Figure 2-18. [Remove from Project] Item

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 30 of 782
Apr 01, 2011

2.3.5 Remove a file from the build target

You can remove a specific file from the build target out of all the files added to the project.

Select the file to be removed from the build target on the project tree and select the [Build Settings] tab on the Property

panel. Select [No] on the [Set as build-target] property in the [Build] category.

Figure 2-19. [Set as build-target] Property

Remark The files that can be applied this function are C source files, assembler source files, link directive files,

section file, object files, and archive file.

2.3.6 Classify a file into a category

You can create a category under the File node and classify files by the category. This makes it easier to view files

added to the project on the project tree, and makes it easier to manage files according to function.

To create a category node, select either one of the Project node, Subproject node, or File node on the project tree, and

then select [Add] >> [Add New Category] from the context menu.

Figure 2-20. [Add New Category] Item (For File Node)

Figure 2-21. Project Tree Panel (After Adding Category Node)

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 31 of 782
Apr 01, 2011

Remarks 1. The default category name is "New category".

To change the category name, you can use [Rename] from the context menu of the category node.

2. You can also add a category node with the same name as an existing category node.

3. Categories can be nested up to 20 levels.

You can classify files into the created category node by dragging and dropping the file.

2.3.7 Change the file display order

You can change the display order of the files and category nodes using the buttons on the project tree.

Figure 2-22. Toolbar (Project Tree Panel)

Select any of the buttons below on the toolbar of the Project Tree panel.

Button Description

Sorts category nodes and files by name.

: Ascending order

: Descending order

: Ascending order

Sorts category nodes and files by timestamp.

: Descending order

: Ascending order

: Descending order

Displays category nodes and files in the specified order by the user (default).

You can change the display order of the category nodes and files arbitrarily by dragging and dropping

them.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 32 of 782
Apr 01, 2011

2.3.8 Update file dependencies

When you perform a change (changing include file paths, adding an include statement of the header file to the C source

file and assembler source file, etc.) that effects the file dependencies in the compile option settings or assemble option

settings, you must update the dependencies of the relevant files.

Updating file dependencies is performed for the entire project (main project and subprojects) or active project.

(1) For the entire project

From the [Build] menu, select [Update Dependencies].

Figure 2-23. [Update Dependencies] Item

(2) For the active project

From the [Build] menu, select [Update Dependencies of active project].

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 33 of 782
Apr 01, 2011

Figure 2-24. [Update Dependencies of active project] Item

Remark If there are files being edited with the Editor panel when updating file dependencies, then all these files are

saved.

Cautions 1. During checking of dependence relationships of include files with CubeSuite+, condition

statements such as #if and comments are ignored. Therefore, include files not required for

build are mistaken as required files (In the example below, header1.h and header5.h are judged

as required for build).

2. During checking of dependence relationships of include files with CubeSuite+, include

statements described after comments are ignored. Therefore, include files required for build

#if 0

#include "header1.h" /* Dependence relationship judged to exist */

#else /* ! zero */

#include "header2.h" /* Dependence relationship to exist */

#endif

#define AAA

#ifdef AAA

#include "header3.h" /* Dependence relationship to exist */

#else

#include "header4.h" /* Dependence relationship to exist */

#endif

/*

#include "header5.h" /* Dependence relationship judged to exist */

*/

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 34 of 782
Apr 01, 2011

are mistaken as no-required files (In the example below, header6.h and header7.h are judged as

no-required for build).

/* Dependence relationship judged not to exist */

/* comment */ #include "header6.h"

/* Dependence relationship judged not to exist */

/*

comment

*/ #include "header7.h"

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 35 of 782
Apr 01, 2011

2.4 Set the Type of the Output File

Set the type of the file to be output as the product of the build.

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Select the

file type on the [Output file type] property in the [Output File Type and Path] category.

Figure 2-25. [Output file type] Property

(1) When [Execute Module(ROMization Module)] is selected

A ROMization module file is created.

The file set in the [Output File] category on the [ROMization Process Options] tab is the debug target.

(2) When [Execute Module(Load Module File)] is selected (default)

A load module file is created.

The file set in the [Output File] category on the [Link Options] tab is the debug target.

(3) When [Execute Module(Hex File)] is selected

A hex file is also created.

The file set in the [Output File] category on the [Hex Convert Options] tab is the debug target.

Caution For library projects, this property is always [Library] and cannot be changed.

2.4.1 Change the output file name

The names of the ROMization module file, load module file, hex file, archive file output by the build tool are set to the

following names by default.

"%ProjectName%" is an embedded macro. It is replaced to the project name.

ROMization module file name: romp.out

Load module file name: %ProjectName%.out

Hex file name: %ProjectName%.hex

Archive file name: lib%ProjectName%.a

The method to change these file names is shown below.

(1) When changing the ROMization module file name

Select the build tool node on the project tree and select the [ROMization Process Options] tab on the Property

panel. Enter the file name to be changed to on the [ROMized object file name] property in the [Output File]

category.

Figure 2-26. [ROMized object file name] Property (For ROMized Module File)

Remark You can also change the option in the same way with the [ROMized object file name] property in the

[Frequently Used Options(for ROMization)] category on the [Common Options] tab.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 36 of 782
Apr 01, 2011

(2) When changing the load module file name

Select the build tool node on the project tree and select the [Link Options] tab on the Property panel. Enter the file

name to be changed to on the [Output file name] property in the [Output File] category.

Figure 2-27. [Output file name] Property (For Load Module File)

Remark You can also change the option in the same way with the [Output file name] property in the [Frequently

Used Options(for Link)] category on the [Common Options] tab.

(3) When changing the hex file name

Select the build tool node on the project tree and select the [Hex Convert Options] tab on the Property panel. Enter

the file name to be changed to on the [Hex file name] property in the [Output File] category.

Figure 2-28. [Hex file name] Property

Remark You can also change the option in the same way with the [Hex file name] property in the [Frequently

Used Options(for Hex Convert)] category on the [Common Options] tab.

(4) When changing the archive file name

Select the build tool node on the project tree and select the [Archive Options] tab on the Property panel. Enter the

file name to be changed to on the [Output file name] property in the [Output File] category.

Figure 2-29. [Output file name] Property (For Archive File)

2.4.2 Output an assemble list

The results of the assembly are output to the assembler list file.

Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel. To output

the assemble list, select [Yes(-a -l)] on the [Output assemble list file] property in the [Assemble List] category.

Figure 2-30. [Output assemble list file] Property

Remark See "3.1 Assembler" for the assemble list.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 37 of 782
Apr 01, 2011

2.4.3 Output map information

Map information (information on the location of section) is output to the link map file.

Select the build tool node on the project tree and select the [Link Options] tab on the Property panel. To output the link

map file, select [Yes(-m)] on the [Output link map file] property in the [Link Map] category.

Figure 2-31. [Output link map file] Property (For Map Information)

When outputting a link map file, you can set the output folder and output file name.

(1) Set the output folder

Setting the output folder is made with the [Output folder for link map file] property by directly entering to the text box

or by the [...] button. Up to 247 characters can be specified in the text box. "%BuildModeName%" is set by default.

"%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

(2) Set the output file name

Setting the output file is made with the [Link map file name] property by directly entering to the text box. Up to 259

characters can be specified in the text box. "%ProjectName%.map" is set by default. "%ProjectName%" is an

embedded macro. It is replaced to the project name.

Remark See "3.2 Linker" for map information.

2.4.4 Output symbol information

To output symbol information defined in the input module, use the -t option of the dump tool.

Select the build tool node on the project tree and select the [Dump Options] tab on the Property panel.

Set the -t option in the [Dump Tool] category. If you select [Yes] on the [Use dump tool] property, the [Additional options

for dump tool] property is displayed.

Figure 2-32. [Use dump tool] and [Additional options for dump tool] Property

Specify "-t" on the [Additional options for dump tool] property.

Remarks 1. See "(8) Symbol table" for symbol information to be output.

2. If "-t num" on the [Additional options for dump tool] property, the numth and greater symbol table entries

will be displayed. If "-v" is also specified, a value such as a section attribute can be displayed as a

string instead of a number.

See "B.8.2 Option" for details about the options.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 38 of 782
Apr 01, 2011

2.5 Set Compile Options

To set options for the compiler, select the Build tool node on the project tree and select the [Compile Options] tab on the

Property panel.

You can set the various compile options by setting the necessary properties in this tab.

Figure 2-33. Property Panel: [Compile Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Compile)] category on the

[Common Options] tab.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 39 of 782
Apr 01, 2011

2.5.1 Perform optimization with the code size precedence

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To perform optimization with the code size precedence, select [Level 2 Advanced Opt.(Code size precedence)(-Os)] on

the [Type of the optimization] property in the [Optimization] category ([Default Optimization(None)] is selected by default).

Figure 2-34. [Type of the optimization] Property (Code Size Precedence)

Remarks 1. You can also set the option in the same way with the [Type of the optimization] property in the

[Frequently Used Options(for Compile)] category on the [Common Options] tab.

2. See "(3) Efficient use of optimization" for details about optimization.

2.5.2 Perform optimization with the execution speed precedence

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To perform optimization with the execution speed precedence, select [Level 2 Advanced Opt.(Speed precedence)(-Ot)]

on the [Type of the optimization] property in the [Optimization] category ([Default Optimization(None)] is selected by

default).

Figure 2-35. [Type of the optimization] Property (Execution Speed Precedence)

Remarks 1. You can also set the option in the same way with the [Type of the optimization] property in the

[Frequently Used Options(for Compile)] category on the [Common Options] tab.

2. See "(3) Efficient use of optimization" for details about optimization.

2.5.3 Add an include path

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

The include path setting is made with the [Additional include paths] property in the [Preprocess] category.

Figure 2-36. [Additional include paths] Property

If you click the [...] button, the Path Edit dialog box will open.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 40 of 782
Apr 01, 2011

Figure 2-37. Path Edit Dialog Box

Enter an include path per line in [Path(One path per one line)]. You can specify up to 259 characters per line, up to 64

line.

Remark You can also specify the include path by dragging and dropping from Explorer or the like, or by the

[Browse...] button. Select the [Subfolders are automatically included] check box before clicking the

[Browse...] button to add all paths under the specified one (down to 5 levels) to [Path(One path per one

line)].

If you click the [OK] button, the entered include paths are displayed as subproperties.

Figure 2-38. [Additional include paths] Property (After Adding Include Paths)

To change the include paths, you can use the [...] button or enter the path directly in the text box of the subproperty.

When the include path is added to the project tree, the path is added to the top of the subproperties automatically.

Remark You can also set the option in the same way with the [Additional include paths] property in the [Frequently

Used Options(for Compile)] category on the [Common Options] tab.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 41 of 782
Apr 01, 2011

2.5.4 Set a macro definition

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

The macro definition setting is made with the [Macro definition] property in the [Preprocess] category.

Figure 2-39. [Macro definition] Property

If you click the [...] button, the Text Edit dialog box will open.

Figure 2-40. Text Edit Dialog Box

Enter the macro definition in the format of "macro name=defined value", with one macro name per line. You can

specify up to 256 characters per line, up to 30 line. The "=defined value" part can be omitted, and in this case, "1" is used

as the defined value.

If you click the [OK] button, the entered macro definitions are displayed as subproperties.

Figure 2-41. [Macro definition] Property (After Setting Macros)

To change the macro definitions, you can use the [...] button or enter the path directly in the text box of the subproperty.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 42 of 782
Apr 01, 2011

Remark You can also set the option in the same way with the [Macro definition] property in the [Frequently Used

Options(for Compile)] category on the [Common Options] tab.

2.5.5 Enable C++ comments

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To enable C++ comments, select [Yes(-Xcxxcom)] on the [Use C++ style comment] property in the [Preprocess]

category (default).

Figure 2-42. [Use C++ style comment] Property

2.5.6 Reduce the code size (perform prologue/epilogue runtime calls)

It is possible to reduce the code size by performing a part of prologue/epilogue processing of the function based on

runtime library function calls. However, the execution time overhead will increase because the callt instruction performs a

runtime call.

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.

To perform prologue/epilogue processing of the function based on runtime library function calls, select [Yes(-

Xpro_epi_runtime=on)] on the [Use prologue/epilogue library] property in the [Output Code] category.

Figure 2-43. [Use prologue/epilogue library] Property

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 43 of 782
Apr 01, 2011

2.5.7 Change the register mode

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel.

Select the register mode to on the [Select register mode] property in the [Register Mode] category.

Figure 2-44. [Select register mode] Property

You can select from the following register modes.

Remark See “CubeSuite+ V850 Coding” for details about the register mode.

Register Mode Working Registers Registers for Register Variables

32-register mode(None) (default) r10 to r19 r20 to r29

26-register mode(-reg26) r10 to r16 r23 to r29

22-register mode(-reg22) r10 to r14 r25 to r29

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 44 of 782
Apr 01, 2011

2.6 Set Assemble Options

To set options for the assembler, select the Build tool node on the project tree and select the [Assemble Options] tab on

the Property panel.

You can set the various assemble options by setting the necessary properties in this tab.

Figure 2-45. Property Panel: [Assemble Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Assemble)] category on the

[Common Options] tab.

2.6.1 Add an include path

Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel.

The include path setting is made with the [Additional include paths] property in the [Preprocess] category.

Figure 2-46. [Additional include paths] Property

If you click the [...] button, the Path Edit dialog box will open.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 45 of 782
Apr 01, 2011

Figure 2-47. Path Edit Dialog Box

Enter an include path per line in [Path(One path per one line)]. You can specify up to 259 characters per line, up to 64

line.

Remark You can also specify the include path via the [Browse...] button. Select the [Subfolders are automatically

included] check box before clicking the [Browse...] button to add all paths under the specified one (down to

5 levels) to [Path(One path per one line)].

If you click the [OK] button, the entered include paths are displayed as subproperties.

Figure 2-48. [Additional include paths] Property (After Adding Include Paths)

To change the include paths, you can use the [...] button or enter the path directly in the text box of the subproperty.

When the include path is added to the project tree, the path is added to the top of the subproperties automatically.

Remark You can also set the option in the same way with the [Additional include paths] property in the [Frequently

Used Options(for Assemble)] category on the [Common Options] tab.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 46 of 782
Apr 01, 2011

2.6.2 Set a macro definition

Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel.

The macro definition setting is made with the [Macro definition] property in the [Preprocess] category.

Figure 2-49. [Macro definition] Property

If you click the [...] button, the Text Edit dialog box will open.

Figure 2-50. Text Edit Dialog Box

Enter the macro definition in the format of "macro name=defined value", with one macro name per line. You can

specify up to 31 characters per line, up to 30 line. The "=defined value" part can be omitted, and in this case, "1" is used

as the defined value.

If you click the [OK] button, the entered macro definitions are displayed as subproperties.

Figure 2-51. [Macro definition] Property (After Setting Macros)

To change the macro definitions, you can use the [...] button or enter the path directly in the text box of the subproperty.

Remark You can also set the option in the same way with the [Macro definition] property in the [Frequently Used

Options(for Assemble)] category on the [Common Options] tab.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 47 of 782
Apr 01, 2011

2.7 Set Link Options

To set options for the linker, select the Build tool node on the project tree and select the [Link Options] tab on the

Property panel.

You can set the various link options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-52. Property Panel: [Link Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Link)] category on the

[Common Options] tab.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 48 of 782
Apr 01, 2011

2.7.1 Add a user library

Select the build tool node on the project tree and select the [Link Options] tab on the Property panel.

Adding a user library is made with the [Using libraries] property in the [Library] category.

Figure 2-53. [Using libraries] Property

If you click the [...] button, the Text Edit dialog box will open.

Figure 2-54. Text Edit Dialog Box

In the [Text], specify only the "string" part of the library file name "libstring.a" (example: if you specify "user", "libuser.a"

is assumed to be specified). Add one item in one line. You can specify up to 63 characters per line, up to 256 line.

If you click the [OK] button, the entered library files are displayed as subproperties.

Figure 2-55. [Using libraries] Property (After Setting Library Files)

To change the library files, you can use the [...] button or enter the path directly in the text box of the subproperty.

Remark You can also set the option in the same way with the [Using libraries] property in the [Frequently Used

Options(for Link)] category on the [Common Options] tab.

The library files are searched from the library path. To add a library path, set the [Additional library paths] property.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 49 of 782
Apr 01, 2011

Caution Library files can also be linked by adding them directly to the project. In this case, the library files

are not searched from the library paths because they are linked directly via their absolute paths.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 50 of 782
Apr 01, 2011

2.8 Set ROMization Process Options

To set options for the ROMization processor, select the Build tool node on the project tree and select the [ROMization

Process Options] tab on the Property panel.

You can set the various ROMization processor options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-56. Property Panel: [ROMization Process Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for ROMization)] category on

the [Common Options] tab.

2.8.1 Create an object for ROMization

The following procedure shows how to create an object for ROMization using the ROMization area reservation code

(rompcrt.o) that is provided as the default object.

The ROMization processor is a tool that takes default value information for variables in data-attribute sections as well

as programs allocated to RAM and packs them into a single section. By default, this section becomes the "rompsec

section". By allocating the rompsec section to ROM and calling the copy function, it is possible to deploy default value

information and programs into RAM.

Remark See “B.4.3 Creating object for ROMization” for details about the method of creating the ROMization object.

(1) Call a copy function within the application

In the program, specify the section you want to copy from ROM to RAM using the copy function (_rcopy, _rcopy1,

_rcopy2 and _rcopy4).

Specify the label "__S_romp" (label defined in rompcrt.o) which indicates the start address of the rompsec section

as the first argument of the copy function.

Remark Call the copy function as early as possible in the program, such as within the startup routine or at the

start of the main function.

(2) Create a link directive

During ROMization, a rompsec section is added immediately after the .text section. By allocating the .text section

to the end of ROM in the link directive, the rompsec section up to the end of ROM can be allocated.

(3) Set ROMization process options

Select the build tool node on the project tree and select the [ROMization Process Options] tab on the Property

panel.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 51 of 782
Apr 01, 2011

(a) Configure the object for ROMization output

To create the object for ROMization, select [Yes(-Xr -lr)] on the [Output ROMized object file] property in the

[Output File] category.

Figure 2-57. [Output ROMized object file] Property

When outputting a ROMized object file, you can set the output folder and output file name.

<1> Set the output folder

Setting the output folder is made with the [Output folder for ROMized object file] property by directly

entering to the text box or by the [...] button. Up to 247 characters can be specified in the text box.

"%BuildModeName%" is set by default. "%BuildModeName%" is an embedded macro. It is replaced to

the build mode name.

<2> Set the output file name

Setting the output file is made with the [ROMized object file name] property by directly entering to the text

box. Up to 259 characters can be specified in the text box. "romp.out" is set by default.

(b) Configure using the standard ROMization area reservation code file

To use the standard ROMization area reservation code file, set the [Use standard ROMization area reservation

code file] property to [Yes] (default).

Figure 2-58. [Use standard ROMization area reservation code file] Property

(4) Run a build

By running a build, the code that specifies "__S_romp" as the label indicating the start address of the rompsec

section is generated, and the ROMization area reservation code (rompcrt.o) and ROMization library that stores the

_rcopy function (libr.a) are linked. Finally, the ROMization object file will be generated from the generated load

module file.

If [Yes] on the [Output hex file] property in the [Output File] category from the [Hex Convert Options] tab on the

Property panel is selected, a hex file is also generated.

Figure 2-59. [Output hex file] Property

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 52 of 782
Apr 01, 2011

2.9 Set Hex Convert Options

To set options for the hex converter, select the Build tool node on the project tree and select the [Hex Convert Options]

tab on the Property panel.

You can set the various hex converter options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-60. Property Panel: [Hex Convert Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Hex Convert)] category on

the [Common Options] tab.

2.9.1 Set the output of a hex file

Select the build tool node on the project tree and select the [Hex Convert Options] tab on the Property panel.

The setting to output a hex file is made with the [Output hex file] property in the [Output File] category. To output a hex

file, select [Yes] (default), to not output a hex file, select [No].

Figure 2-61. [Output hex file] Property

When outputting a hex file, you can set the output folder and output file name.

(1) Set the output folder

Setting the output folder is made with the [Output folder for hex file] property by directly entering to the text box or

by the [...] button. Up to 247 characters can be specified in the text box. "%BuildModeName%" is set by default.

"%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 53 of 782
Apr 01, 2011

(2) Set the output file name

Setting the output file is made with the [Hex file name] property by directly entering to the text box. Up to 259

characters can be specified in the text box. "%ProjectName%.hex" is set by default. "%ProjectName%" is an

embedded macro. It is replaced to the project name.

You can also set the format of the hex file.

Select the format on the [Hex file format] property in the [Hex Format] category.

Figure 2-62. [Hex file format] Property

You can select any of the formats below.

Remark See "3.3 Hex Converter" for details about the hex file format.

2.9.2 Fill the vacant area

Select the build tool node on the project tree and select the [Hex Convert Options] tab on the Property panel.

The setting to fill the vacant area is made with the [HEX Format] category. If you select [Yes(-U)] on the [Specify

converted address range] property, the [Filling value] property is displayed.

Figure 2-63. [Specify converted address range] and [Filling value] Property

Enter the fill value for the vacant area directly to the text box. The range that can be specified for the value is 0x00 to

0xFF (hexadecimal). "0xFFFF" is set by default.

Format Configuration

Intel expanded hex format(-fI)

(default)

Start address record, expanded address record, data record, and end

record

Motorola S type format(standard address)(-fS) S0 record as a header record, S2 record as data record, and S8 record as

end record

Motorola S type format(32-bit address)(-fs) S0 record as a header record, S3 record as data record, and S7 record as

end record

Expanded Tektronix hex format(-fT) Data block, symbol block, and termination block

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 54 of 782
Apr 01, 2011

Set the address range of the area to be converted to a hex file. The range that can be specified for the value is 0x0 to

the maximum value of the address that can be handled by the device (hexadecimal) for the [Start address] property, 0x1

to the maximum value of the address that can be handled by the device (hexadecimal) for the [Size] property. By default,

the start address and size of the internal ROM area defined in the device file are set.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 55 of 782
Apr 01, 2011

2.10 Set Archive Options

To set options for the archiver, select the Build tool node on the project tree and select the [Archive Options] tab on the

Property panel.

You can set the various archive options by setting the necessary properties in this tab.

Caution This tab is displayed only for library projects.

Figure 2-64. Property Panel: [Archive Options] Tab

2.10.1 Set the output of an archive file

Select the build tool node on the project tree and select the [Archive Options] tab on the Property panel.

The setting to output an archive file is made with the [Output File] category.

Figure 2-65. [Output File] Category

(1) Set the output folder

Setting the output folder is made with the [Output folder] property by directly entering to the text box or by the [...]

button. Up to 247 characters can be specified in the text box. "%BuildModeName%" is set by default.

"%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

(2) Set the output file name

Setting the output file is made with the [Output file name] property by directly entering to the text box. Up to 259

characters can be specified in the text box. "%ProjectName%.a" is set by default. "%ProjectName%" is an

embedded macro. It is replaced to the project name.

Add "lib" to the head of the output file name, naming the file "lib%ProjectName%.a" so that it can be specified in the

link options.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 56 of 782
Apr 01, 2011

2.11 Set Section File Generate Options

To set options for the section file generator, select the Build tool node on the project tree and select the [Section File

Generate Options] tab on the Property panel.

You can set the various section file generate options by setting the necessary properties in this tab.

Figure 2-66. Property Panel: [Section File Generate Options] Tab

2.11.1 Automatically allocate variables through static analysis

To allocate variables automatically through static analysis, use the section file generator. This tool generates a section

file (a file defining the sections to which external variables are allocated). Variables will be allocated to the specified

sections by performing compilation using that file.

Select the build tool node on the project tree and select the [Section File Generate Options] tab on the Property panel.

In the [Output File] category, set the [Use section file generator] property to [Yes] to generate an empty section file, and

add it to the project (it will also appear in the File node of the project tree). The output destination is the file set in the

[Output folder for section file] property and the [Section file name] property.

Remark If a section file with the same name already exists, the build will be configured to use it.

Figure 2-67. [Use section file generator] Property

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 57 of 782
Apr 01, 2011

Figure 2-68. Project Tree Panel (After Generating Section File)

Remark See "3.4 Section File Generator" for details about the format of the section file to be generated.

The settings of the output folder and file of the section file are can be changed.

(1) Set the output folder

Setting the output folder is made with the [Output folder for section file] property by directly entering to the text box

or by the [...] button. Up to 247 characters can be specified in the text box. "%BuildModeName%" is set by default.

"%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

(2) Set the output file name

Setting the output file is made with the [Section file name] property by directly entering to the text box. Up to 259

characters can be specified in the text box. "%ProjectName%.sf" is set by default. "%ProjectName%" is an

embedded macro. It is replaced to the project name.

If this property is changed, an empty section file is generated and added to the project (it will also appear in the File

node of the project tree).

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 58 of 782
Apr 01, 2011

2.12 Set Dump Options

To set options for the dump tool, select the Build tool node on the project tree and select the [Dump Options] tab on the

Property panel.

You can set the various dump options by setting the necessary properties in this tab.

Figure 2-69. Property Panel: [Dump Options] Tab

2.12.1 Use the dump tool

Using the dump tool, you can output information such as the address, attribute, and symbol name of a section/segment

in the object file and archive file.

Select the build tool node on the project tree and select the [Dump Options] tab on the Property panel.

To use the dump tool, select [Yes] on the [Use dump tool] property in the [Dump Tool] category ([No] is selected by

default).

Figure 2-70. [Use dump tool] Property

Remark See "3.5 Dump Tool " for details about the information output by the dump tool.

2.12.2 Reference the section information

To output section information defined in the input module, use the -h option of the dump tool.

Select the build tool node on the project tree and select the [Dump Options] tab on the Property panel.

Set the -h option in the [Dump Tool] category. If you select [Yes] on the [Use dump tool] property, the [Additional

options for dump tool] property is displayed.

Figure 2-71. [Use dump tool] and [Additional options for dump tool] Property

Specify "-h" on the [Additional options for dump tool] property.

Remark See "3.5 Dump Tool" for section information to be output.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 59 of 782
Apr 01, 2011

2.13 Set Cross Reference Options

To set options for the cross reference tool, select the Build tool node on the project tree and select the [Cross

Reference Options] tab on the Property panel.

You can set the various cross reference options by setting the necessary properties in this tab.

Figure 2-72. Property Panel: [Cross Reference Options] Tab

2.13.1 Use the cross reference tool

Using the cross reference tool, you can take all the C source files registered to the project as an input and output all

information (cross reference information, tag jump information, call tree, function metrics and call database) to the files in

text format and CSV format.

Select the build tool node on the project tree and select the [Cross Reference Options] tab on the Property panel.

To use the cross reference tool, select [Yes] on the [Use cross reference tool] property in the [Cross Reference Tool]

category ([No] is selected by default).

Figure 2-73. [Use cross reference tool] Property

Remark See "3.7 Cross Reference Tool " for details about the information output by the cross reference tool.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 60 of 782
Apr 01, 2011

2.14 Set Memory Layout Visualization Options

To set options for the memory layout visualization tool, select the Build tool node on the project tree and select the

[Memory Layout Visualization Options] tab on the Property panel.

You can set the various memory layout visualization options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-74. Property Panel: [Memory Layout Visualization Options] Tab

2.14.1 Use the memory layout visualization tool

Using the memory layout visualization, you can take an object file (*.out) as an input and output a memory map table

(memory map information of variables) to the files in text format and CSV format.

Select the build tool node on the project tree and select the [Memory Layout Visualization Options] tab on the Property

panel.

To use the memory layout visualization tool, select [Yes] on the [Use memory layout visualization tool] property in the

[Memory Layout Visualization Tool] category ([No] is selected by default).

Figure 2-75. [Use memory layout visualization tool] Property

Remark See "3.8 Memory Layout Visualization Tool" for details about the memory map table.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 61 of 782
Apr 01, 2011

2.15 Set Build Options Separately

Build options are set at the project or file level.

- Project level: See "2.15.1 Set build options at the project level"

- Project level: See "2.15.2 Set build options at the file level"

2.15.1 Set build options at the project level

To set options for build options for a project (main project or subproject), select the Build tool node on the project tree to

display the Property panel.

Select the component tabs, and set build options by setting the necessary properties.

Compiler: [Compile Options] tab

Assembler: [Assemble Options] tab

Linker: [Link Options] tab

ROMization processor: [ROMization Process Options] tab

Hex converter: [Hex Convert Options] tab

Archiver: [Archive Options] tab

Section file generator: [Section File Generate Options] tab

Dump tool: [Dump Options] tab

Cross reference tool: [Cross Reference Options] tab

Memory layout visualization tool: [Memory Layout Visualization Options] tab

2.15.2 Set build options at the file level

You can individually set compile and assemble options for each source file added to the project.

(1) When setting compile options for a C source file

Select a C source file on the project tree and select the [Build Settings] tab on the Property panel. In the [Build]

category, if you select [Yes] on the [Set individual compile option] property, the message dialog box ("Figure 2-77.

Message Dialog Box") is displayed.

Figure 2-76. [Set individual compile option] Property

Figure 2-77. Message Dialog Box

If you click the [Yes] button in the dialog box, the [Individual Compile Options] tab will be displayed.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 62 of 782
Apr 01, 2011

Figure 2-78. Property Panel: [Individual Compile Options] Tab

You can set compile options for the C source file by setting the necessary properties in this tab. Note that this tab

takes over the settings of the [Compile Options] tab by default.

(2) When setting assemble options for an assembler source file

Select an assembler source file on the project tree and select the [Build Settings] tab on the Property panel. In the

[Build] category, if you select [Yes] on the [Set individual assemble option] property, the message dialog box

("Figure 2-80. Message Dialog Box") is displayed.

Figure 2-79. [Set individual assemble option] Property

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 63 of 782
Apr 01, 2011

Figure 2-80. Message Dialog Box

If you click the [Yes] button in the dialog box, the [Individual Assemble Options] tab will be displayed.

Figure 2-81. Property Panel: [Individual Assemble Options] Tab

You can set assemble options for the assembler source file by setting the necessary properties in this tab. Note

that this tab takes over the settings of the [Assemble Options] tab by default.

Remark You can also set assemble options for assembler source files created from C source files. Select a C

source file on the project tree and select the [Individual Compile Options] tab on the Property panel. If

you select [Yes(-Fs)] on the [Output assemble file] property in the [Output File] category, the [Individual

Assemble Options] tab is displayed.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 64 of 782
Apr 01, 2011

2.16 Prepare for Implementing Boot-flash Relink Function

Depending on the system, in addition to the area which cannot be rewritten/replaced (boot area), there are occasions

when you can use the area which can be rewritten/replaced (flash area), such as the flash or external ROM.

In these kinds of systems, when you wish to change the program in the flash area, a function called the "relink function"

correctly performs function calls between the boot area and flash area without rebuilding the program in the boot area.

By creating load module files for the boot area and flash area, you can implement the relink function. The method to

implement the relink function is shown below.

Remark See "B.3.3 Boot-flash relink function" for details about the relink function and how to implement it.

2.16.1 Prepare the build target files

(1) Prepare the link directive files

Prepare link directive files for the projects for both the boot area and flash area.

Remark You can use the same link directive file with the boot area and flash area, but since the description will

become complicated, it is recommend to use a separate link directive file for each area.

(2) Describe the .ext_func quasi directive

Describe the .ext_func quasi directive in the assembler source file.

With the .ext_func directive, specify the ID value for the target function (the actual function exists in the flash area

and is called from the boot area).

Remark In order to prevent description mistakes and inconsistencies between source files, it is recommend that

you organize the .ext_func directive description in a single file, and regardless of the boot area or flash

area, include that file in all the assembler source files using the .include directive.

2.16.2 Set the boot area project

(1) Create the boot area project

Create a project for the boot area and add the build target files to the project.

Add the startup routine to the Startup node.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 65 of 782
Apr 01, 2011

Figure 2-82. Boot Area Project

(2) Set the build options for the boot area project

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Set the

build options in the [Flash] category.

If you select [Yes] on the [Output flash object file] property, the [Branch table address] property and [Object file

type] property are displayed.

Figure 2-83. [Output flash object file], [Branch table address], and [Object file type] property in Boot Area

Specify the start address of the branch table (address in the flash area) in the [Branch table address] property. The

range that can be specified for the value is 0x0 to 0xffffffff (hexadecimal). "0x0" is set by default.

Also, select [Boot area object file(None)] on the [Object file type] property.

(3) Run a build of the boot area project

When you run a build of the boot area project, a load module file is created.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 66 of 782
Apr 01, 2011

Figure 2-84. ""Created Files for Boot Area

2.16.3 Set the flash area project

(1) Create the flash area project

Create a project for the boot area and add the build target files to the project.

Add the startup routine to the Startup node.

Figure 2-85. Flash Area Project

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 67 of 782
Apr 01, 2011

(2) Set the build options for the flash area project

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Set the

build options in the [Flash] category.

If you select [Yes] on the [Output flash object file] property, the [Branch table address] property and [Object file

type] property are displayed.

Figure 2-86. [Output flash object file], [Branch table address], [Object file type], and [Boot area object file name]

Property

Specify the start address of the branch table (same as the address specified in the boot area project) in the [Branch

table address] property.

If you select [Flash area object file(-Wa, -zf)] on the [Object file type] property, the [Boot area object file name]

property are displayed. Specify the boot area object file.

Caution Specify an object output by the linker. An error occurs if an object output by the ROMization

processor is specified.

(3) Run a build of the flash area project

When you run a build of the flash area project, a load module file which implements the relink function is created.

Figure 2-87. Created Files for Flash Area

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 68 of 782
Apr 01, 2011

2.17 Make Settings for Build Operations

This section explains operations on a build.

- Set the link order of files

- Change the file build order of subprojects

- Display a list of build options

- Change the file build target project

- Add a build mode

- Change the build mode

- Delete a build mode

- Set the current build options as the standard for the project

2.17.1 Set the link order of files

The link order of object module files and library files is decided automatically, but you can also set the order.

On the project tree, select the Build tool node, and then select [Set Link Order...] from the context menu. The Link

Order dialog box opens.

Figure 2-88. Link Order Dialog Box

The names of the following files are listed in [File] in the order that the files are input to the linker.

- Object module files generated from the source files added to the selected main project or subproject

- Object module files added directly to the project tree of the selected main project or subproject

- Library files added directly to the project tree of the selected main project or subproject

Remark The default order is the order the files are added to the project.

Object module files created from newly added source files and newly added object module files are added

after the last object module file in the list. Newly added library files are added to the end of the list.

By changing the display order of the files, you can set the input order of the files to the linker.

To change the display order, use the [Up] and [Down] buttons, or drag and drop the file names. After changing the dis-

play order, click the [OK] button.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 69 of 782
Apr 01, 2011

2.17.2 Change the file build order of subprojects

Builds are run in the order of subproject, main project, but when there are multiple subprojects added, the build order of

subprojects is their display order on the project tree.

To change the display order of the subprojects on the project tree, drag the subproject to be moved and drop it on the

desired location.

2.17.3 Display a list of build options

You can display the list of build options set currently on the Property panel for the project (main project and subproject).

If you select [Build Options List] from the [Build] menu, the current settings of the options for the project are displayed

on the [Build Tool] tab from the Output panel in the build order.

Remark You can change the display format of the build option list.

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel.

Set the [Format of build option list] property in the [Others] category.

Figure 2-89. [Format of build option list] Property

"%FileName% : "%FileName% : %Program% %Options%" is set by default.

"%FileName%", "%Program%", and "%Options%" are embedded macros. They are replaced to the file name

being built, program name under execution, and command line option under build execution.

2.17.4 Change the file build target project

When running a build that targets a specific project (main project or subproject), you must set that project as the "active

project".

To set the active project, select the main project or subproject to be set as the active project on the project tree and

select [Set selected subproject as Active Project] from the context menu.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 70 of 782
Apr 01, 2011

Figure 2-90. [Set selected project as Active Project] Item

When a project is set as the active project, that project is underlined.

Figure 2-91. Active Project

Remarks 1. Immediately after creating a project, the main project is the active project.

2. When you remove a subproject that set as the active project from a project, the main project will be the

active project.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 71 of 782
Apr 01, 2011

2.17.5 Add a build mode

When you wish to change the build options and macro definitions according to the purpose of the build, you can collec-

tively change those settings. Build options and macro definition settings are organized into what is called "build mode",

and by changing the build mode, you eliminate the necessity of changing the build options and macro definition settings

every time.

The build mode prepared by default is only "DefaultBuild". Add a build mode according to the purpose of the build.

The method to add a build mode is shown below.

(1) Create a new build mode

Creating a new build mode is performed with duplicating an existing build mode.

Select [Build Mode Settings...] from the [Build] menu. The Build Mode Settings dialog box opens.

Figure 2-92. Build Mode Settings Dialog Box

Select the build mode to be duplicated from the build mode list and click the [Duplicate...] button. The Character

String Input dialog box opens.

Figure 2-93. Character String Input Dialog Box

In the dialog box, enter the name of the build mode to be created and then click the [OK] button. The build mode

with that name will be duplicated. The created build mode is added to the build modes of the main project and all

the subprojects which belong to the project.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 72 of 782
Apr 01, 2011

Figure 2-94. Build Mode Settings Dialog Box (After Adding Build Mode)

(2) Change the build mode

Change the build mode to the newly created build mode (see "2.17.6 Change the build mode").

(3) Change the setting of the build mode

Select the build tool node on the project tree and change the build options and macro definition settings on the

Property panel.

Remark Creating a build mode is regarded a project change. When closing the project, you will be asked to confirm

whether or not to save the build mode.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 73 of 782
Apr 01, 2011

2.17.6 Change the build mode

When you wish to change the build options and macro definitions according to the purpose of the build, you can collec-

tively change those settings. Build options and macro definition settings are organized into what is called "build mode",

and by changing the build mode, you eliminate the necessity of changing the build options and macro definition settings

every time.

(1) When changing the build mode for the main project or subprojects

Select the Build tool node of the target project on the project tree and select the [Common Options] tab on the

Property panel. Select the build mode to be changed to on the [Build mode] property in the [Build Mode] category.

Figure 2-95. [Build Mode] Property

(2) When changing the build mode for the entire project

Select [Build Mode Settings...] from the [Build] menu. The Build Mode Settings dialog box opens.

Figure 2-96. Build Mode Settings Dialog Box

If you select the build mode to be changed from the build mode list, the selected build mode is displayed in

[Selected build mode]. If you click the [Apply to All] button, the build mode for the main project and all the sub-

projects which belong to the project will be changed to the build mode selected in the dialog box.

Caution For projects that the selected build mode does not exist, the build mode is duplicated from

"DefaultBuild" with the selected build mode name, and the build mode is changed to the dupli-

cated build mode.

Remarks 1. The build mode prepared by default is only "DefaultBuild". See "2.17.5 Add a build mode" for the

method of adding a build mode.

2. You can change the name of the build mode by selecting the build mode from the build mode list and

clicking the [Rename...] button. However, you cannot change the name of "DefaultBuild".

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 74 of 782
Apr 01, 2011

2.17.7 Delete a build mode

Deleting a build mode is performed with the Build Mode Settings dialog box.

Select [Build Mode Settings...] from the [Build] menu. The dialog box opens.

Figure 2-97. Build Mode Settings Dialog Box

Select the build mode to be deleted from the build mode list and click the [Delete] button. The Message dialog box

below opens.

Figure 2-98. Message Dialog Box

To continue with the operation, click the [OK] button in the dialog box.

The selected build mode is deleted from the project.

Caution You cannot delete "DefaultBuild".

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 75 of 782
Apr 01, 2011

2.17.8 Set the current build options as the standard for the project

On the Property panel, if you add a change to the settings for the standard build options, the value of the property will

be displayed in boldface.

Figure 2-99. Property Panel (After Changing Standard Build Option)

To make the build options for the currently selected project (main project or subproject) the standard build options

(remove the boldface), select the Build tool node on the project tree and select [Set to Default Build Option for Project]

from the context menu.

Figure 2-100. [Set to Default Build Option for Project] Item

The value of the properties after setting them as the standard build option are as shown below.

Figure 2-101. Property Panel (After Setting Standard Build Option)

Caution When the main project is selected, only the main project settings are made. Even if subprojects are

added, their settings are not made.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 76 of 782
Apr 01, 2011

2.18 Run a Build

This section explains operations related to running a build.

(1) Build types

The following types of builds are available.

Table 2-1. Build Types

Remarks 1. Builds are run in the order of subproject, main project.

Subprojects are built in the order that they are displayed on the project tree (see "2.17.2 Change

the file build order of subprojects").

2. If there are files being edited with the Editor panel when running a build, rebuild, or batch build,

then all these files are saved.

(2) Display execution results

The execution results of the build (output messages of the build tool) are displayed in each tab on the Output

panel.

- Build, rebuild, or batch build: [All Messages] tab and [Build Tool] tab

- Rapid build: [Rapid Build] tab

Figure 2-102. Build Execution Results (Build, Rebuild, or Batch Build)

Type Description

Build Out of build target files, runs a build of only updated files.

See "2.18.1 Run a build of updated files".

Rebuild Runs a build of all build target files.

See "2.18.2 Run a build of all files".

Rapid build Runs a build in parallel with other operations.

See "2.18.3 Run a build in parallel with other operations".

Batch build Runs builds in batch with the build modes that the project has.

See "2.18.4 Run builds in batch with build modes".

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 77 of 782
Apr 01, 2011

Figure 2-103. Build Execution Results (Rapid Build)

Remarks 1. The text in the [Rapid Build] tab becomes dimmed.

2. When a file name or line number can be obtained from the output messages, if you double click on

the message, you can jump to the relevant line in the file.

3. If you press the [F1] key when the cursor is on a line displaying the warning or error message, you

can display the help related to that line's message.

Files generated by the build tool appear on the Project Tree panel, under the Build tool generated files node.

Figure 2-104. Build Tool Generated Files

Remark Files displayed under the Build tool generated files node are as follows.

- For other than library projects

Load module file (*.out)

Link map file (*.map)

Hex file (*.hex)

Dump list (dump.txt)

Cross reference information (cxref)

Tag information (ctags)

Call tree information (ccalltre.csv, ccalltre.lst)

Function metrics information (cmeasure.csv, cmeasure.lst)

Call database information (cprofile.csv, cprofile.dat)

Memory map table (rammap.csv)

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 78 of 782
Apr 01, 2011

- For library projects

Archive file (*.a)

Dump list (dump.txt)

Cross reference information (cxref)

Tag information (ctags)

Call tree information (ccalltre.csv, ccalltre.lst)

Function metrics information (cmeasure.csv, cmeasure.lst)

Call database information (cprofile.csv, cprofile.dat)

Caution The Build tool generated files node is created during build.

This node will no longer appear if you reload the project after building.

2.18.1 Run a build of updated files

Out of build target files, run a build of only updated files (hereafter referred to as "build").

Running a build is performed for the entire project (main project and subprojects) or active project (see "2.17.4

Change the file build target project").

(1) When running a build of the entire project

Click on the toolbar.

(2) When running a build of the active project

Select the project, and then select [Build active project] from the context menu.

Figure 2-105. [Build active project] Item

Remark If the included source files are not built after editing the header file and running the build, update the file

dependencies (see "2.3.8 Update file dependencies").

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 79 of 782
Apr 01, 2011

2.18.2 Run a build of all files

Run a build of all build target files (hereafter referred to as "rebuild").

Running a rebuild is performed for the entire project (main project and subprojects) or active project (see "2.17.4

Change the file build target project").

(1) When running a rebuild of the entire project

Click on the toolbar.

(2) When running a rebuild of the active project

Select the project, and then select [Rebuild active project] from the context menu.

Figure 2-106. [Rebuild active project] Item

2.18.3 Run a build in parallel with other operations

CubeSuite+ has a function that a build is started automatically when one of the following events occurs (hereafter

referred to as "rapid build").

- When C source files, assembler source files, header files, link directive file, section file, object module file, or

library file that has been added to the project are updated

- When a build target file has been added to or removed from the project

- When the link order of object module files and library files has changed

- When the properties of the build tool or build target files are changed

(except, however, when the properties of [Dump Options] tab, [Cross Reference Options] tab, and [Memory Layout

Visualization Options] tab are changed)

If a rapid build is enabled, it is possible to perform a build in parallel with the above operations.

To enable/disable a rapid build, select [Rapid Build] from the [Build] menu. A rapid build is enabled by default.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 80 of 782
Apr 01, 2011

Figure 2-107. [Rapid Build] Item (When Rapid Build Is Valid)

Figure 2-108. [Rapid Build] Item (When Rapid Build Is Invalid)

Remarks 1. After editing source files, it is recommend to save frequently by pressing the [Ctrl] + [S] key.

2. Enabling/disabling a rapid build is set for the entire project (main project and subprojects).

3. If you disable a rapid build while it is running, it will be stopped at that time.

Caution This function is valid only when editing source files with the Editor panel.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 81 of 782
Apr 01, 2011

2.18.4 Run builds in batch with build modes

You can run builds, rebuilds and cleans in batch with the build modes that the project (main project and subproject) has

(hereafter referred to as "batch build").

Remark See the sections below for a build, rebuild, and clean.

- Build: See "2.18.1 Run a build of updated files".

- Rebuild: See "2.18.2 Run a build of all files".

- Clean: See "2.18.8 Delete intermediate files and generated files".

Select [Batch Build] from the [Build] menu. The Batch Build dialog box opens.

Figure 2-109. Batch Build Dialog Box

In the dialog box, the list of the combinations of the names of the main project and subprojects in the currently opened

project and their build modes and macro definitions is displayed.

Select the check boxes for the combinations of the main project and subprojects and build modes that you wish to run

a batch build, and then click the [Build], [Rebuild], or [Clean] button.

Remark The batch build order follows the project build order, the order of the subprojects, main project.

When multiple build modes are selected for a single main project or subproject, after running builds of the

subproject with all the selected build modes, the build of the next subproject or main project is run.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 82 of 782
Apr 01, 2011

2.18.5 Compile/assemble individual files

You can just compile or assemble for each source file added to the project.

(1) When compiling a C source file

Select a C source file on the project tree and select the [Compile] from the context menu.

Figure 2-110. [Compile] Item

(2) When assembling an assembler source file

Select an assembler source file on the project tree and select the [Assemble] from the context menu.

Figure 2-111. [Assemble] Item

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 83 of 782
Apr 01, 2011

2.18.6 Stop running a build

To stop running a build, rebuild, or batch build, click on the toolbar.

2.18.7 Save the build results to a file

You can save the execution results of the build (output messages of the build tool) that displayed on the Output panel.

Select the [Build Tool] tab on the panel, and then select [Save Output - Build Tool As...] from the [File] menu. The Save

As dialog box opens.

Figure 2-112. Save As Dialog Box

In the dialog box, specify the file to be saved and then click the [Save] button.

2.18.8 Delete intermediate files and generated files

You can delete all the intermediate files and generated files output by running a build (hereafter referred to as "clean").

Running a clean is performed for the entire project (main project and subprojects) or active project (see "2.17.4

Change the file build target project").

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 84 of 782
Apr 01, 2011

(1) When running a clean of the entire project

From the [Build] menu, select [Clean Project].

Figure 2-113. [Clean Project] Item

(2) When running a clean of the active project

Select the project, and then select [Clean active project] from the context menu.

Figure 2-114. [Clean active project] Item

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 85 of 782
Apr 01, 2011

2.19 Estimate the Stack Capacity

To estimate the stack capacity, use the the stack usage tracer.

The stack usage tracer performs a static analysis, and displays the functions called by a function in a tree format, as

well as stack information for each function (function name, total stack size, frame size, additional margin, and file name)

in list format.

2.19.1 Starting and exiting

To start the stack usage tracer, from the Main window, select the [Tool] menu >> [Startup Stack Usage Tracer].

After the stack usage tracer finishes starting up, it will display the function call relationship and stack information for

each function in the tree display area/list display area of the Stack Usage Tracer window.

Figure 2-115. Starting Up Stack Usage Tracer

To exit the stack usage tracer, from the Stack Usage Tracer window, select [File] menu >> [Exit sk850].

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 86 of 782
Apr 01, 2011

2.19.2 Check the call relationship

You can check the function-call relationship in the tree display area of the Stack Usage Tracer window.

Figure 2-116. Tree Display Area

Remark The table below shows the meaning of the icon displayed to the left of the string representing the function

name.

The display priority for icons is from High: to Low: .

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been modified via the Adjust Stack

Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 87 of 782
Apr 01, 2011

2.19.3 Check the stack information

You can check the stack information (function name, total stack size, frame size, additional margin, and file name) from

the list display area of the Stack Usage Tracer window.

- Total stack size (including stack size of callee functions)

- Frame size (not including stack size of callee functions)

- Additional margin (value mandatorily added to frame size)

Figure 2-117. List Display Area

Remark If you make changes to the project that will affect the total stack size while the stack usage tracer is running

(e.g. you edit the files in your project so that the total stack size changes), then after rebuilding the project,

click to update the display.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 88 of 782
Apr 01, 2011

2.19.4 Check unknown functions

You can check functions for which the stack usage tracer could not obtain stack information in the Stack Size Unknown

/ Adjusted Function Lists dialog box, under [Unknown Functions].

Figure 2-118. Stack Size Unknown / Adjusted Function Lists Dialog Box

Remark Functions will appear under [Unknown Functions] in the following circumstances.

- The frame size could not be measured.

- A recursive function for which the recursion depth has not been set in the Adjust Stack Size dialog box.

- The function includes indirect function calls which are not set as callee functions in the Adjust Stack Size

dialog box.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 89 of 782
Apr 01, 2011

2.19.5 Change the frame size

You can dynamically change the frame size of functions for which the stack usage tracer was not able to obtain stack

information, or for functions that you intentionally want to modify, using the Adjust Stack Size dialog box or a stack size

specification file.

(1) Using the Adjust Stack Size dialog box

The procedure for using the Adjust Stack Size dialog box is as follows.

- Select the desired item in the tree display area of the Stack Usage Tracer window, then click toolbar >> .

The Adjust Stack Size dialog box opens.

Figure 2-119. Adjust Stack Size Dialog Box

- After setting [Additional Margin], [Recursion Depth], and [Callee Functions], click the [OK] button.

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0557EJ0100 Rev.1.00 Page 90 of 782
Apr 01, 2011

(2) Using a stack size specification file

Below is the procedure for using a stack size specification file.

- Create a stack size specification file

Write the functions in the stack size specification file that you would like to set dynamically, using the following

format.

function name [, ADD=additional margin] [, RECTIME=recursion depth] [, CALL=callee function] ...

Figure 2-120. Sample Stack Size Specification File

- From the Stack Usage Tracer window, select [File] menu >> [Load Stack Size Specification File...]. The Open

dialog box opens. Specify the stack size specification file, then click the [Open] button.

Set the frame size of function "_flib" written in assembly

language to 50

[flib], ADD=50

Set the frame size of function "sub2" written in C to 100

sub2, ADD=100

#Set the recursion depth of recursive function "sub3" written

in C to 123

sub3, RECTIME=123

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 91 of 782
Apr 01, 2011

CHAPTER 3 BUILD OUTPUT LISTS

This chapter describes format and other aspects of lists output by the build via various commands.

3.1 Assembler

This section describes the assemble list. An assemble list is a list-formatted version of the code that is produced when

the source has been compiled and assembled. It can be used to check the code resulting from compilation and

assembly.

Remark See "B.2.1 I/O files" for details about input and output files of the assembler.

3.1.1 Output method

The assemble list can be output as follows.

(1) Command input

When the -a option has been specified, the assemble list is output via standard output. If the -a option is specified

along with the -I option which specifies an output file name, the assemble list is output to the specified file.

When using the C compiler to compile the C source, if the "output assemble list" has been specified along with

"output source comment" (via the -Xc option), the C source line that corresponds to the code appears as

comments in the assemble list.

However, the code line and source line may not correspond if optimization has been forced.

(2) CubeSuite+

On the Project Tree panel, select the Build tool node, and then select the [Assemble Options] tab on the Property

panel. To output the assemble list file, in the [Assemble List] category, set the [Output assemble list file] property to

[Yes(-a -l)]. The output destination is the folder set in the [Output folder for assemble list file] property.

The list is output to a file, and the file name extension is changed to ".v".

When compiling the C source, open the [Compile Options] tab , then in the [Output File] category, set the [Output

assemble list file] property to [Yes(-Fv)]. And then, in the [Output Code] category, set the [Output comment to

assembly language source file] property to [Yes(-Xc)]. The C source line that corresponds to the code appears as

comments in the assemble list.

However, the code line and source line may not correspond if optimization has been forced.

3.1.2 Output example

An assemble list output example is shown below.

An example of the assemble list that is output by compiling the C source in the example and then assembling the

output assembler source file.

- C source file

void main(void)

{

int a;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 92 of 782
Apr 01, 2011

- Output assemble list

(1) (2) (3) (4) (5)

 :

A-X- 00000000 41 .file “c:\work\src\a.c“

A-X- 00000000 42 .align 4

A-X- 00000000 43 #@BF

A-X- 00000000 44 .frame _main, .s2

A-X- 00000000 45 .globl _main

A-X- 00000000 46 _main:

A-X- 00000000 47 #@B_PROLOGUE

A-X- 00000000 D505 48 jbr .L15

A-X- 00000002 49 .L16:

A-X- 00000002 50 .G17:

A-X- 00000002 51 .G18:

A-X- 00000002 52 .G9:

A-X- 00000002 53 .G11:

A-X- 00000002 54 .G19:

A-X- 00000002 55 #@B_EPILOGUE

A-X- 00000002 23FF0100 56 ld.w -4+.F2[sp], lp

A-X- 00000006 441A 57 add .S2, sp

A-X- 00000008 7F00 58 jmp [lp] --0

A-X- 0000000A 59 #@E_EPILOGUE

A-X- 0000000A 60 .L15:

A-X- 0000000A 5C1A 61 add -.S2, sp

A-X- 0000000C 63FF0100 62 st.w lp, -4+.F2[sp]

A-X- 00000010 63 #@E_EPILOGUE

A-X- 00000010 95F0 64 jbr .L16

A-X- 00000012 65 #@FUNC_ARG

A-X- 00000012 66 .G5:

A-X- 00000012 67 .set .S2, 0x4

A-X- 00000012 68 .set .F2, 0x4

A-X- 00000012 69 .set .A2, 0x0

A-X- 00000012 70 .set .T2, 0x0

A-X- 00000012 71 .set .P2, 0x0

A-X- 00000012 72 .set .R2, 0x0

A-X- 00000012 73 .set .X2, 0x0

 :

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 93 of 782
Apr 01, 2011

Item

Number

Description

(1) Section attribute

These are section attributes for sections stored in the corresponding line.

Section attributes and their meanings are as follows.

A: Section occupying memory

W: Section that can be written

X: Executable section

G: Section allocated to memory area that can be referenced by using global pointer (gp) and 16-bit

displacement

(2) Location counter value

This is the location counter value for the beginning of the line of code.

(3) Code

This is the code, expressed as a hexadecimal number.

(4) Line number

This is the line number, expressed as a decimal number.

(5) Source program

This is the assembly language source program on the line. If instruction expansion is executed for the

instruction on that line, the instruction string resulting from the instruction expansion is indicated following --.

The C source program corresponding to that line's assembly source program is also displayed in this area.

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 94 of 782
Apr 01, 2011

3.2 Linker

This section describes the link map output by the linker.

A link map is where link result-related information is written. It can be referenced for information such as a section's

allocation addresses.

3.2.1 Output method

The link map can be output as follows.

(1) Command input

Specify the -m option to display the link map in standard output when linking ends. If the -mo option is specified,

display in the old format of CA850 Ver. 2.60 or earlier. A file name is specified as the -m=file option or the -mo=file

option to output to a file.

(2) CubeSuite+

On the Project Tree panel, select the Build tool node, and then select the [Link Options] tab on the Property panel.

To output the link map, in the [Link Map] category, set the [Output link map file] property to [Yes(-m)]. The output

destination is the folder set in the [Output folder for link map file] property and the [link map file name] property . It

is also shown on the Project Tree panel, under the Build tool generated files node.

3.2.2 Link map output example

A link map output example is shown below.

An example of the link map that is output when object files have been linked.

- Objects

crtN.o

main.o

func.o

libc.a (standard library)

- Link map output example

 ********** MEMORY ALLOCATION MAP **********

(1)OUTPUT (2)SEGMENT (3)VIRTUAL (4)SIZE(16) (5)SIZE(10)

 SEGMENT ATTRIBUTE ADDRESS

 TEXT RX 0x00000000 0x00000082 130

 DATA RW 0x00000088 0x00000018 24

 ********** LINK EDITOR ALLOCATION MAP **********

(6)OUTPUT (7)INPUT (8)VIRTUAL (9)SIZE (10)INPUT

 SECTION SECTION ADDRESS FILE

 .text 0x00000000 0x00000082

 .text 0x00000000 0x0000001a crtN.o

 .text 0x0000001c 0x0000002c main.o

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 95 of 782
Apr 01, 2011

If an area is allocated by using the .comm quasi directive, the area is common to all the files, and its section is

displayed as "*(Common)*" or "*(GpCommon)*". If the object file to which the input section belongs is an object file in an

archive file (library), the archive file is displayed in the following format.

- Object file name (archive file name)

If display in the old format of CA850 Ver. 2.60 or earlier is specified by using the -mo option, *(nil)* is displayed for the

section created with the linker, and sections created with the assembler such as .symtab, .strtab, and.shstrtab.

Remark *(nil)*

(nil) may appear in the data areas of the .sbss and .sdata sections. This indicates that a globally declared

variable without an initial value has been allocated. Even if a variable with the same name is used for a

 .text 0x00000048 0x00000018 func.o

 .text 0x00000060 0x00000022 strcmp.o(..\lib850\

 .sdata 0x00000088 0x0000000e

 .sdata 0x00000088 0x0000000e main.o

 .sbss 0x00000098 0x00000008

 .sbss 0x00000098 0x00000004 func.o

 .sbss 0x0000009c 0x00000004 *(GpCommon)*

Item

Number

Description

(1) Output segment

Names of output segments configuring the object file to be generated (names of the output segments are not

stored in the generated object file)

(2) Segment attribute

R: Read

W: Write

X: Executable

(3) Address

Start address of the output segment

(4) Size (hexadecimal)

Size of the memory including the alignment conditions between sections and the align hole (hexadecimal)

(5) Size (decimal)

Size of the memory including the alignment conditions between sections and the align hole (decimal)

(6) Output section

Section name output to the load module (displayed up to 12 characters)

(7) Input section

Name of input section configuring output section (displayed up to 12 characters)

(8) Address

The start address of output section or input section

(9) Size

Size of output section or input section

(10) Input file

Object file names belonging to an input section

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 96 of 782
Apr 01, 2011

different file, it is still inevitably part of the load module, so the file name containing the variable becomes

undefined and therefore appears as *(nil)* in the link map.

However, if data without an initial value was declared using the #pragma section "data" instruction, the file

name appears instead of *(nil)* since the file's allocation is identified.

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 97 of 782
Apr 01, 2011

3.3 Hex Converter

This section describes the hx850 output file formats.

To configure the hex file output in CubeSuite+, on the Project Tree panel, select the Build tool node, then on the

Property panel, make the settings from the [Hex Convert Options] tab.

In the [Output File] category, set the [Output hex file] property to [Yes]. The output destination is the folder set in the

[Output folder for hex file] property and the [Hex file name] property . The setting for the output file format is performed in

the [Hex file format] property in the [Hex Format] category. The Hex file is also shown on the Project Tree panel, under

the Build tool generated files node.

Remark See "B.5.1 I/O files" for details about input and output files of the hex converter.

3.3.1 Intel expanded

Intel expanded hex format files, which consist of four recordsNote: the start address record, expanded address record,

data record, and end record

Note Each record is output in ASCII code.

The following figure shows a file configuration in Intel expanded hex format.

Figure 3-1. File Configuration in Intel Expanded Hex Format

Note The expanded address record and data record are repeated.

Each record consists of the following fields.

: CC AAAA TT [field]... SS NL

(1) (2) (3) (4) (5) (6)

Item

Number

Description

(1) Record mark

(2) Number of bytes

number of bytes expressed as 2-digit hexadecimal numbers of [field]...

:

:

Start address record

Expanded address recordNote

Data recordNote

Data record

Expanded address record

Data record

Data record

End record

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 98 of 782
Apr 01, 2011

- Start address record

This record indicates an entry point address.

Note The address is calculated by (paragraph value << 4) + offset value.

- Expanded address record

This record indicates the paragraph value of a load addressNote.

Note The value is output if the segment is renewed at the beginning of a segment (when the data record is

output) or when the offset value of the data record's load address exceeds the maximum value of 0xffff.

(3) Location address

(4) Record type

03: Start address record, 02: Expanded address record, 00: Data record, 01: End record

(5) Checksum

The value expressed as 2-digit hexadecimal number in records (other than :, SS, and NL) sequentially subtracted

from initial value 0 and that lower 1 byte expressed as a 2-digit hexadecimal number

(6) New line (\n)

: 04 0000 03 PPPP OOOO SS NL

 (1) (2) (3) (4) (5)

Item

Number

Description

(1) Number of bytes

Fixed at 04

(2) Fixed at 0000

(3) Record type

03

(4) Paragraph value of entry point addressNote

(5) Offset value of entry point address

: 02 0000 02 PPPP SS NL

 (1) (2) (3) (4)

Item

Number

Description

(1) Number of bytes

Fixed at 02

(2) Fixed at 0000

(3) Record type

02

Item

Number

Description

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 99 of 782
Apr 01, 2011

- Data record

This record indicates the value of a code.

Note This is limited to the range of 0x1 to 0xff (the minimum value for the number of bytes of code indicated by

one data record is 1 and the maximum value is 255).

Example

- End record

This record indicates the end of a code.

(4) Paragraph value of segment

: CC AAAA 00 DD...DD SS NL

 (1) (2) (3) (4)

Item

Number

Description

(1) Number of bytesNote

(2) Location address

(3) Record type

00

(4) Code

Each byte of code expressed as 2-digit hexadecimal number

: 04 0100 00 3C58E01B 6C NL

 (1) (2) (3) (4) (5)

Item

Number

Description

(1) Number of bytes of 3C58E01B expressed as 2-digit hexadecimal number

(2) Location address

(3) Record type

00

(4) Code

Each byte of code expressed as 2-digit hexadecimal number

(5) Checksum

The lower 1 byte of two's complement E6C of 04 + 01 + 00 + 00 + 3C + 58 + E0 + 1B = 194 is expressed

as a 2-digit hexadecimal number.

: 00 0000 01 FF NL

 (1) (2) (3) (4)

Item

Number

Description

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 100 of 782
Apr 01, 2011

Remark Intel hex

An allocation address in the Intel hex format is 2 bytes (16 bits). Therefore, only a 64 KB space can be

directly specified. To extend this area, the Intel extended hex format adds an extension address of 16 bits

so that a space up to 1 M byte (20 bits) can be used.

Specifically, a record type that specifies a 16-bit extension address is added. This extension address is

shifted 4 bits and added to the allocation address to express a 20-bit address.

To indicate FFFFFH, for example, F000H is set as the extension address, and FFFFH is specified as the

location address.

In the Intel extended hex format, only 0 to FFFFFH can be addressed. To express 100000H, another object

format must be used.

The hex converter outputs a message if the rule of this format is violated with this address and size used.

In the Intel extended hex format, a value that can be expressed is 20 bits, or 1 M byte (0x100000).

If the message "W8737" is output, the start address of the area to be converted into the hex format

exceeds 1 M byte.

If the message "W8735" is output, the address to be converted into the hex format exceeds 1 M byte (20

bits).

The above error occurs in the following cases even if 1 M byte is not exceeded.

Examples 1. An offset that starts from the address specified by the -d option is not used

-> The absolute address is stored in the hex format.

2. A section is allocated in the vicinity of the upper limit of the address that can be

expressed by 20 bits

-> The start address fits in 20 bits, but 20 bits are exceeded in the middle of the section.

If these two patterns are satisfied, the message "W8735" is output even if the area to be converted is as

small as 4 bytes.

Item

Number

Description

(1) Number of bytes

Fixed at 00

(2) Fixed at 0000

(3) Record type

01

(4) Checksum

Fixed at FF

W8737 : The start address of convert area exceeds the maximum value of the address
that can be expressed in the Intel expanded hex format

W8735: The address of convert area exceeds the maximum value of the address that
can be expressed in the Intel expanded hex format

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 101 of 782
Apr 01, 2011

3.3.2 Motorola S type

A file in the Motorola S type hex format consists of five recordsNote 1: S0 record as a header record, S2/S3 records as

data records, and S8/S7 records as end recordsNote 2.

The following figure shows the file configuration of the Motorola S type hex format.

Notes 1. Each record is output in ASCII code.

2. The Motorola S type hex formats are divided into two types: (24-bit) standard address and 32-bit address

types. The format of the standard address type consists of S0, S2, and S8 records, and the format of the 32-

bit address type consists of S0, S3, and S7 records.

Figure 3-2. File Configuration of Motorola S Type Hex Format

Each record consists of the following fields.

Note This is 1.

- S0 record

This record indicates a file name.

ST LL field [field]... SS NL

(1) (2) (3) (4)

Item

Number

Description

(1) Record type

(2) Record length

field (number of bytes expressed as 2-digit hexadecimal numbers of [field]...) + number of bytes expressed by

SSNote

(3) Checksum

Lower 1 byte expressed as 2-digit hexadecimal number of one's complement of total of number of bytes in records

(other than ST, SS, and NL) expressed as 2-digit hexadecimal number

(4) New line (\)

S0 LL FF...FF SS NL

(1) (2)

Item

Number

Description

(1) Record type

S0

:

S0 record

S2/S3 record

S2/S3 record

S8/S7 record

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 102 of 782
Apr 01, 2011

- S2 record

This record indicates the value of a code.

Note The range is 0x0 to 0xffffff.

- S3 record

This record indicates the value of a code.

Note The range is 0x0 to 0xffffffff.

- S7 record

This record indicates an entry point address.

(2) File name

Specified file name indicated in ASCII code

S2 LL AAAAAA DD...DD SS NL

(1) (2) (3)

Item

Number

Description

(1) Record type

S2

(2) Load address

24 bitsNote

(3) Code

Each byte of code expressed as 2-digit hexadecimal number

S3 LL AAAAAAAA DD...DD SS NL

(1) (2) (3)

Item

Number

Description

(1) Record type

S3

(2) Load address

32 bitsNote

(3) Code

Each byte of code expressed as 2-digit hexadecimal number

S7 LL AAAAAAAA SS NL

(1) (2)

Item

Number

Description

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 103 of 782
Apr 01, 2011

Note The range is 0x0 to 0xffffffff.

- S8 record

This record indicates an entry point address.

Note The range is 0x0 to 0xffffff.

3.3.3 Expanded tektronix

A file in the expanded tektronix hex format consists of three types of blocks: a data block, symbol block, and termination

block.

The following figure shows the file configuration of the expanded Tek hex format.

Figure 3-3. File Configuration of Expanded Tek Hex Format

Each block consists of the following fields.

Item

Number

Description

(1) Record type

S7

(2) Entry point address

32 bitsNote

S8 LL AAAAAA SS NL

(1) (2)

Item

Number

Description

(1) Record type

S8

(2) Entry point address

24 bitsNote

% LL T SS field [field]... NL

(1) (2) (3) (4) (5)

:

:

Data block

Data block

Symbol block

Symbol block

Termination block

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 104 of 782
Apr 01, 2011

Notes 1. 6: data block, 3: symbol block, 8: termination block

2. The value for each character is determined as follows: 0 to 9: 0 to 9, A to Z: 10 to 35, $: 36, %: 37, .: 38, -:

39, a to z: 40 to 65

- Data block

This record indicates the value of a code.

Example

Item

Number

Description

(1) Header character

(2) Block length

Number of characters in blocks other than % and NL

(3) Type of blockNote 1

(4) Checksum

Remainder expressed as 2-digit hexadecimal number that results from dividing total valueNote 2 of characters in

blocks other than %, SS, and NL, by 256

(5) New line (\)

% LL T SS L A...A D...D NL

 (1) (2) (3)

Item

Number

Description

(1) Block type

(2) Number of digits in load address and the load address

(3) Code

Each byte of code expressed as 2-digit hexadecimal number

% 15 6 1C 3 100 020202020202 NL

 (1) (2) (3) (4) (5)

Item

Number

Description

(1) Block length

(2) Block type

(3) Checksum

Remainder expressed as 2-digit hexadecimal number that results from dividing 1 + 5 + 6 + 3 + 1 + 0 + 0 +

0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 = 28 by 256

(4) Number of digits in load address is 3, and load address is 100.

(5) Code

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 105 of 782
Apr 01, 2011

- Symbol block

This block indicates the value of a symbol.

Notes 1. One section definition field must exist in each section. A section definition field can be followed by or

can follow any of symbol definition fields.

2. Symbol definition field

Examples 1.

% LL T SS L N...N [SEDF] SYDF [SYDF] NL

 (1) (2) (3) (4)

Item

Number

Description

(1) Block type

(2) Number of characters of the section name and the section name

(3) Section definition field (SEDF)Note 1

(4) Symbol definition field (SYDF)Note 2

0 L B...B L L...L

(1) (2) (3)

Item

Number

Description

(1) Indicates that this field is a section definition field.

(2) Number of digits in the base address of a section and the base address of the section

(3) Number of digits in the length of a section and the length of the section

T L S...S L V...V

(1) (2) (3)

Item

Number

Description

(1) Type of symbol

1: global address (symbol having binding class GLOBAL and type other than ABS)

2: global scalar (symbol having binding class GLOBAL and type ABS)

5: local address (symbol having binding class LOCAL and type other than ABS)

6: local scalar (symbol having binding class LOCAL and type ABS)

(2) Number of characters of symbol and the symbol

(3) Number of digits in symbol value and value of symbol

% 37 3 60 8SVCSTUFF 02402C6 22CR1D14OPEN25014READ25815WRITE260 NL

 (1) (2) (3) (4) (5) (6)

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 106 of 782
Apr 01, 2011

2.

- Termination block

Indicates an entry point address.

Example

Item

Number

Description

(1) Block length

(2) Block type

(3) Checksum

(4) Number of characters of section name is 8 and the section name is SVCSTUFF.

(5) Section definition field

number of digits in the base address of the section is 2, the base address of the section is 40, the

number of digits in the length of the section is 2, and the length of the section is C6

(6) Symbol definition field

22CR1D/14OPEN250/14READ258/15WRITE260

% 37 3 C8 8SVCSTUFF 15CLOSE26814EXIT27029BUFLENGTH28013BUF278 NL

 (1) (2) (3) (4) (5)

Item

Number

Description

(1) Block length

(2) Block type

(3) Checksum

(4) Number of characters of section name is 8 and section name is SVCSTUFF.

(5) Symbol definition field

15CLOSE268/14EXIT270/29BUFLENGTH280/13BUF278

% LL T SS L A...A NL

 (1) (2)

Item

Number

Description

(1) Block type

(2) Number of digits in entry point address and the entry point address

% 08 8 1A 2 80 NL

 (1) (2) (3) (4)

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 107 of 782
Apr 01, 2011

Item

Number

Description

(1) Block length

(2) Block type

(3) Checksum

(4) Number of digits in entry point address is 2, and entry point address is 80.

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 108 of 782
Apr 01, 2011

3.4 Section File Generator

Section files are text files that are input at compile time to revise the sections where variables are to be allocated. They

enable variable allocation settings to be changed without having to modify any C source files. Allocation specifications

made via section files take priority over specifications made via #pragma section directives in C-language source

programs.

To configure the section file output in CubeSuite+, on the Project Tree panel, select the Build tool node, and then select

the [Section File Generate Options] tab on the Property panel. To output the link map, in the [Output File] category, set

the [Use section file generator] property to [Yes]. The output destination is the folder set in the [Output folder for section

file] property and the [Section file name] property . It is also shown on the Project Tree panel, under the File node.

The C compiler enables the user to specify the section files output by the section file generator at compile time. The

section file generator merges the information from several files that have been input and outputs a single section file as

specified via the C compiler’s options.

An example of a section file output by the section file generator is shown below.

In each file, all content that follows "//" is regarded as comments.

Variables are displayed in section files as shown below.

There are three ways to display variables, according to the type of variable. The variable types are listed below.

Table 3-1. Variable Types and Displays

Comments are output in the following format.

[tidata]

// [file:[func:]]variable // section size total_freq Byte_freq Word_freq

"main.c:val1" // data 4 10 10 0

"main.c:val2" // data 4 8 8 0

"main.c:func1:val3" // -4 5 5 0

"i" // -4 3 3 0

"j" // -2 1 1 0

[Section type]

file-name:function-name:variable-name" //comment

"file-name:variable-name" // comment

"variable-name" // comment

Display Meaning

file-name:function-name:variable-name Static variable declared in a function

The function name and file name are also displayed.

file-name:variable-name Static variable declared in a file

The file name is also displayed.

variable-name External variable

Only the variable name is displayed.

section size total_freq Byte_freq Word_freq

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 109 of 782
Apr 01, 2011

The displayed variables and their meanings are listed below.

Table 3-2. Variable Displays and Their Meanings

The section file generator outputs a section file in which all variables are allocated to the .tidata section. Since the

.tidata section's memory capacity is 256 bytes, if the variables exceed that amount, they must be revised as determined

on the user side.

However, if the -O option is specified, the file can be input to the C compiler as it is because the variables will be sorted

according to use frequency and only the more frequently used variables will be included up to the .tidata section's

capacity. Also, when specifying the -O option, the user can choose to have the output sent to "tidata_word" and

"tidata_byte" instead of just "tidata".

A section file example output when the "-O option" is specified is shown below.

A section file example output when the "-O2 option" is specified is shown below.

Display Meaning

section Section to which allocation of the variable is explicitly specified

If the variable is not explicitly specified, "-" is displayed.

size Size of variable (in bytes)

If the size is unknown, "0" is displayed.

total_freq Frequency of variable references

This indicates the number of load/store instructions that have appeared for a particular variable.

Byte_freq For the given variable reference frequency, this indicates the number of variable references in byte units.

Word_freq For the given variable reference frequency, this indicates the number of variable references in word

units.

[tidata_byte]

// [file:[func:]]variable // section size total_freq Byte_freq Word_freq

"a.c:si1" // - 4 10 10 0

"a.c:si2" // - 4 8 8 0

"a.c:f1:sfil" // - 4 5 2 3

"j" // - 2 2 1 1

"i" // - 4 3 3 0

[tidata_word]

"a.c:si3" // - 4 10 0 10

"a.c:si4" // - 4 8 0 8

"a.c:f1:sfi2" // - 4 5 0 5

"1" // - 4 3 0 3

"m" // - 2 1 0 1

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 110 of 782
Apr 01, 2011

The specifiable types of output sections include other types besides tidata-attribute sections, tidata.word-attribute

sections, tidata.byte-attribute sections, sidata-attribute sections, sedata-attribute sections, and sdata-attribute sections.

The following character strings can be used to specify section types.

Table 3-3. Types of Sections Specifiable by C Compiler

[tidata_byte]

// [file:[func:]]variable // section size total_freq Byte_freq Word_freq

"a.c:si1" // - 4 10 10 0

"a.c:si2" // - 4 8 8 0

"a.c:f1:sfil" // - 4 5 2 3

"j" // - 2 2 1 1

"i" // - 4 3 3 0

[tidata_word]

"a.c:si3" // - 4 10 0 10

"a.c:si4" // - 4 8 0 8

"a.c:f1:sfi2" // - 4 5 0 5

"1" // - 4 3 0 3

"m" // - 2 1 0 1

[sidata]

"huge3" // - 30000 3 3 0

[sedata]

"huge1" // - 30000 2 2 0

[sdata]

"huge2" // - 30000 1 1 0

Type Specification

Character String

Target Section for Allocation

tidata Byte data for which a default value has been set is allocated to the .tidata.byte section and half-word (or

larger) data for which a default value has been set is allocated to the .tidata.word section.

Byte data for which a default value has not been set is allocated to the .tibss.byte section and half-word

(or larger) data for which a default value has not been set is allocated to the .tibss.word section.

data If a default value has been set, allocation is to the .data section. If a default value has not been set,

allocation is to the .bss section.

sdata If a default value has been set, allocation is to the .sdata section. If a default value has not been set,

allocation is to the .sbss section.

sedata If a default value has been set, allocation is to the .sedata section. If a default value has not been set,

allocation is to the .sebss section.

sidata If a default value has been set, allocation is to the .sidata section. If a default value has not been set,

allocation is to the .sibss section.

const Allocation is to the .const section.

sconst Allocation is to the .sconst section.

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 111 of 782
Apr 01, 2011

3.4.1 Cautions

- Do not insert blank spaces before or after a section name when specifying the section name in square brackets ([

]).

For example, in the case of [tidata], blank spaces cannot be inserted before or after "tidata".

- Enclose a variable name in a section file with "(double quotate). (The format of CA850 Ver. 2.60 or earlier can be

used.)

- Only one variable can be used per line. Do not modify the code to specify two or more variables per line and do

not make one variable specification occupy more than one line.

- Do not insert blank spaces before or after ":".

- Do not specify the path when specifying file names.

- If a function or variable definition is included in a header file, the "file name" in the section file is not the header file

name; it is the C source file name that includes the header file.

- Comments in the form of "/* */" or "//" can be inserted.

However, a section name or variable name must not be delimited by a comment. A blank space is required

immediately after a variable name. ASCII code and EUC (Japanese) code can be used in comments.

- If a variable for which "data" has been specified as the section type in a section file is referenced by another

assembler source file, use the .option quasi directive to specify "data" so that the assembler will be notified of the

data/bss attribute. Also, if a variable for which "sdata" has been specified is referenced by another assembler

source file, use the .option quasi directive to specify "sdata" so that the assembler will be notified of the sdata/sbss

attribute.

A code example is shown below.

// Section file

[data]

"a.c:dat1" // With default value; allocation is to .data section.

"b.c:dat2" // Without default value; allocation is to .bss section.

[sdata]

"a.c:sdat1" // With default value; allocation is to .sdata section.

"b.c:sdat2" // Without default value; allocation is to .sbss section.

Assembler source file

 .option data _dat1

 .text

 ld.w $_dat1, r11

 -- Allocation to .data section is assumed; instruction is expanded.

 .option data _dat2

 .text

 ld.w $_dat2, r12

 -- Allocation to .bss section is assumed; instruction is expanded.

 .option sdata _sdat1

 .text

 ld.w $_sdat1, r13

 -- Allocation to .sdata section is assumed; instruction is not expanded.

 .option sdata _sdat2

 .text

 ld.w $_sdat2, r14

 -- Allocation to .sbss section is assumed; instruction is not expanded.

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 112 of 782
Apr 01, 2011

3.5 Dump Tool

This section describes the display format of the dump tool.

To configure the using the dump tool in CubeSuite+, on the Project Tree panel, select the Build tool node, and then

select the [Dump Options] tab on the Property panel. In the [Dump Tool] category, set the [Use dump tool] property to

[Yes]. The output file name is “dump.txt”. It is also shown on the Project Tree panel, under the Build tool generated files

node.

3.5.1 Dump list display contents

(1) Archive header

Display the contents of the archive header.

(2) Archive symbol table

Display the contents of the archive symbol table.

(3) Archive string table

Display the contents of the archive string table.

 ARCHIVE HEADER

(1)Date (2)Uid (3)Gid (4)Mode (5)Size (6)Member Name

 0x3158DE73 0 0 0100664 0x2B8 atof.o

Item

Number

Description

(1) Member update date

(2) User ID

(3) Group ID

(4) Member permission

(5) Total number of bytes for members

(6) Member name

 ARCHIVE SYMBOL TABLE

 (1)Offset (2)Name

 0x1f3c _abs

Item

Number

Description

(1) Offset in file to member including symbol

(2) Symbol name

 ARCHIVE STRING TABLE

 (1)Offset (2)Name

 0x1100 foo.o

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 113 of 782
Apr 01, 2011

(4) ELF header

Display the contents of the ELF header.

(5) Program header table

Display the contents of the program header table.

Item

Number

Description

(1) Offset

(2) Member name

 ELF HEADER

(1) Class (2) Data (3) Type (4) Machine (5) Version

(6) Entry (7) Phoff (8) Shoff (9) Flags (10)Ehsize

(11)Phentsize (12)Phnum (13)Shentsz (14)Shnum (15)Shstrndx

 1 1 1 070377 1

 0x0 0x0 0x2A4 0x84 0x34

 0x20 0 0x28 6 5

Item

Number

Description

(1) Class

(2) Byte order

(3) Type

(4) Processor

(5) Version number

(6) Entry point address

(7) Offset in file of program header table

(8) Offset in file of section header table

(9) Flag

(10) Size of ELF header

(11) Entry size of program header table

(12) Number of entries in program header table

(13) Entry size of section header table

(14) Number of entries in section header table

(15) Section header table index of string table containing section name

 PROGRAM HEADER

(1)No. (2)Type (3)Offset (4)Vaddr (5)Paddr

 (6)Filesz (7)Memsz (8)Flags (9)Align

 1. 0 0x0 0x0 0x0

 0x0 0x0 0x0 0x0

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 114 of 782
Apr 01, 2011

(6) Section header table

Display the contents of the section header table.

(7) String table

Display the contents of the string table.

Item

Number

Description

(1) Index

(2) Segment type

(3) Offset in file

(4) Virtual address

(5) Physical address

(6) File size

(7) Memory size

(8) Segment attribute

(9) Alignment condition

 SECTION HEADER

(1)No. (2)Type (3)Flags (4) Addr (5) Offset (6)Size (7)Name

 (8)Link (9)Info (10)Adralgn (11)Entsize

 1. 0x1 0x6 0x0 0x1 0x7556 .text

 0x0 0x0 0x4 0x0

Item

Number

Description

(1) Index

(2) Section type

(3) Section attribute

(4) Start address

(5) Offset in file

(6) Size

(7) Section name

(8) Section header table index link

(9) Information

(10) Alignment condition

(11) Size of entry

 STRING TABLE INFORMATION

 (1)Index (2)String

 0x1 .text

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 115 of 782
Apr 01, 2011

(8) Symbol table

Display the contents of the symbol table.

(9) Relocation information

Display the contents of the relocation information (array of relocation entries).

(10)Register mode information

Display the contents of the register mode information.

Item

Number

Description

(1) Index

(2) Character string

 SYMBOL TABLE INFORMATION

(1)No. (2)Value (3)Size (4)Bind (5)Type (6)Other (7)Shndx (8)Name

 1. 0x0 0x0 0 3 0 0x1 .text

Item

Number

Description

(1) Index

(2) Value

(3) Size

(4) Binding class

(5) Type

(6) Unused

(7) Section header table index

(8) Symbol name

 RELOCATION INFORMATION

 (1)Offset (2)Sym (3)Type (4)Addend

 0x20 6 0x23 0x0

Item

Number

Description

(1) Offset

(2) Symbol table index

(3) Relocation type

(4) Added constant

 REGISTER MODE INFORMATION

 (1)SymIdx (2)TmpReg (3)ParReg

 0x1 0x5 0x5

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 116 of 782
Apr 01, 2011

(11) Global pointer table

Display the contents of the global pointer table.

(12)Line number information

Display the contents of the line number information.

Item

Number

Description

(1) Symbol table index

(2) Number of working registers

(3) Number of registers for register variables

 GPTAB INFORMATION

 (1)Gnum (2)Gsize

 0x4 0xc

Item

Number

Description

(1) Value specified by -Gnumor maximum size of symbol

(2) 0 or size of section

 LINE NUMBER INFORMATION

(1)Bfunc (2)Maddr (3)Daddr (4)Pad (5)Function Name (6)Num (7)Snum (8)Offset (9)Flags

 0x0 0xA2 0xE28 0x0 _main 0x5 0x0 0x0 0x1

Item

Number

Description

(1) Start of subsection

(2) Address of function

(3) Address of debug information

(4) Padding

(5) Function name

(6) Line number

(7) Position of statement

(8) Offset

(9) Flag

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 117 of 782
Apr 01, 2011

(13)Debug information

Display the contents of the debug information.

(14)PROGBITS data

Display the contents of the PROGBITS data.

Display the raw data contents of the section having section type PROGBITS in hexadecimal numbers.

3.5.2 Element values and meanings

When the -v option has been specified, the following information indicates that character strings are used instead of

numerical values to indicate the meanings of the values for some elements.

- ELF header

- Program header table

- Section header table

- Symbol table

- Relocation information

- Debug information

The values, the display when -v is specified, and the meanings of the elements that are displayed as character strings

when -v has been specified is shown below.

Note The value is displayed using the number base output by the dump tool.

(1) "Flags" in ELF headers

 DEBUG INFORMATION

 (1)Tag (2)Attr (3)Aux

 0x0016

 size 0x00000026

 0x000c 0x00000E1C

Item

Number

Description

(1) Tag

(2) Attribute

(3) Auxiliary information

 PROGBITS DATA in HEX

0x00000000 : 40 0E 00 00 21 2E 00 00 ...

Value Display When -v Is

Specified

Meaning

0x1 L_ _ _ _ _ _ _ _ _ _ .vline section exists.

0x2 _D_ _ _ _ _ _ _ _ .vdebug section exists.

0x4 _ _ P_ _ _ _ _ _ _ Object is a PIC (Position Independent Code) object.

0x10 _ _ _R_ _ _ _ _ _ Register mode is 22-register mode or 26-register mode.

0x20 _ _ _ _ d_ _ _ _ _ Different register modes are mixed.

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 118 of 782
Apr 01, 2011

(2) "Type" in program header table

(3) "Type" in section header table

(4) "Bind" in symbol table

0x40 _ _ _ _ _r_ _ _ _ Object is output by ROMization processor.

0x80 _ _ _ _ _ _ N_ _ _ Default function call specification (call does not use old specification).

0x100 _ _ _ _ _ _ _M_ _ Uses mask register function.

0x200 _ _ _ _ _ _ _ _ U _ Code making a call using the prolog or epilog runtime callt convention may be

output.

0x400 _ _ _ _ _ _ _ _ _ S CTBP is configured to make calls using the prolog or epilog runtime callt

convention.

Value Display When -v Is

Specified

Meaning

1 Load Segment is loaded into memory.

4 Note Segment, including auxiliary information

Value Display When -v Is

Specified

Meaning

0x1 Progbits Section that corresponds to an entity that contains an actual value in an object file

(machine language instruction and data with an initial value)

0x2 Symtab Symbol table

0x3 Strtab String table

0x4 Rela Relocation information

0x8 Nobits Section that corresponds to an entity that does not contain an actual value in an

object file (data without an initial value)

0x9 Rel Relocation information

0x70000000 Gptab Global pointer table (in which the first entry contains num of -Gnum specified for

the C compiler or assembler, and 0, the 2nd and subsequent entries indicate the

size when aligned with data size and word)

0x70000001 Regmode Section that exists in a linkable object file created using the register mode

function (Information concerning the number of registers used internally by the C

compiler is stored)

Value Display When -v Is

Specified

Meaning

0 Local Symbol that is not used to resolve external reference

1 Global Symbol that is used to resolve external reference

Value Display When -v Is

Specified

Meaning

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 119 of 782
Apr 01, 2011

(5) "Type" in symbol table

(6) "Shndx" in symbol table

See "3.9 Format of Object File" for further description of object file formats.

Value Display When -v Is

Specified

Meaning

1 Object Ordinary object (label)

2 Func Function name

3 Section Section

4 File Ordinary file name

13 Devfile Device file name

Value Display When -v Is

Specified

Meaning

0x0 Undef Undefined symbol

0xFF00 GpCommon Undefined external symbol that is referenced by global pointer (gp) and 16-bit

displacement

0xFFF1 Abs Symbol indicating constant

0xFFF2 Common Undefined external symbol that is referenced by global pointer (gp) and 32-bit

displacement

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 120 of 782
Apr 01, 2011

3.6 Disassembler

A disassembler output example is shown below.

Among the information in the file a.out, the disassembler displays addresses, offsets, codes (according to instruction

format), and titles, along with assembly language instructions. Registers are displayed using aliases.

C:\>dis850 -A a.out

 Address Offset Opecode

 _main:

0x00000000 : 0x00000000 : 45D5 br _main + 0x8a

0x00000002 : 0x00000002 : D800 mov zero, r27

0x00000004 : 0x00000004 : E6230000 movea 0, sp, r28

0x00000008 : 0x00000008 : 301C mov r28, r6

0x0000000A : 0x0000000A : FF800176 jarl _getToken[pc], lp

0x0000000E : 0x0000000E : 580A mov r10, r11

0x00000010 : 0x00000010 : 5A7F cmp -0x1, r11

0x00000012 : 0x00000012 : 1D92 bz _main + 0x44

0x00000014 : 0x00000014 : EE2300E8 movea 0x3e8, zero, r29

0x00000018 : 0x00000018 : D9FD cmp r29, r27

0x0000001A : 0x0000001A : 15DE bge _main + 0x44

0x0000001C : 0x0000001C : 301C mov r28, r6

0x0000001E : 0x0000001E : FF800000 jarl 0[pc], lp

0x00000022 : 0x00000022 : 580A mov r10, r11

0x00000024 : 0x00000024 : 501B mov r27, r10

0x00000026 : 0x00000026 : 52C2 shl 0x2, r10

0x00000028 : 0x00000028 : 66230020 movea 0x20, sp, r12

0x0000002C : 0x0000002C : 61CA add r10, r12

0x0000002E : 0x0000002E : 5F6C0001 st.w r11, 0[r12]

0x00000032 : 0x00000032 : DA41 add 0x1, r27

0x00000034 : 0x00000034 : 301C mov r28, r6

0x00000036 : 0x00000036 : FF80014A jarl _getToken[pc], lp

0x0000003A : 0x0000003A : 580A mov r10, r11

0x0000003C : 0x0000003C : 5A7F cmp -0x1, r11

0x0000003E : 0x0000003E : 05B2 bz _main + 0x44

 :

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 121 of 782
Apr 01, 2011

3.7 Cross Reference Tool

This section describes details about each output format of the cross reference tool.

To configure the using the cross reference tool in CubeSuite+, on the Project Tree panel, select the Build tool node, and

then select the [Cross Reference Options] tab on the Property panel. In the [Cross Reference Tool] category, set the [Use

cross reference tool] property to [Yes]. The output destination of the information files is the folder set from the [Common

Options] tab, in the [Output File Type And Path] category, in the [Intermediate file output folder] property. It is also shown

on the Project Tree panel, under the Build tool generated files node.

Remark See "B.10.1 Input/Output" for details about input and output of the cross reference tool.

3.7.1 Cross reference

The cross reference tool outputs cross reference information of variables and functions that are used within the file, for

each file. The output destination is "standard output (default)" or a "text file." When information is output to a file, the

default output file name is "cxref."

- Cross reference output example

The information is output in alphabetical order of the identifiers. Four types of information are output sequentially from

left to right on each line.

(1) Linkage and storage class

The linkage and storage class are indicated by the following symbols.

(2) Type

The type is indicated by the following symbols.

C:\>cxref -x apli.c

**** apli.c

 G V NULL 20 30 43 90 91 199 204 205 235

 G F combine #163 187 190

 G F delete #216 257

 G V deleted #22 203 220 222

 ...

 L V printtree:depth #232 236 242

 G F removeitem #118 178 209

 G F restore #182 208 212

 G V root #20 42 113 115 115 221 223 224 224 224 261

 ...

G Static external variable or function having external linkage

L Static variable, function, or static variable within a function, having internal linkage

? Unknown

F Function

V Variable

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 122 of 782
Apr 01, 2011

(3) Identifier name

The identifier name is the function name or variable name itself.

However, since duplicate names may exist for variables that are defined within functions, identifier names are

indicated in the format "function-name:variable-name".

(4) Line number

The definition line number and reference line numbers are listed with the following symbols appended.

3.7.2 Tag information

The cross reference tool outputs the definition file name and line number information (tag jump information) for

variables and functions. The output destination is "standard output (default)" or a "text file." When information is output to

a file, the default output file name is "ctags."

- Tag information output example

The information is output in alphabetical order of the identifiers. Five types of information are output sequentially from

left to right on each line.

(1) File name

Indicates the name of the file in which the variable or function is defined.

(2) Line number

Indicates the location of the variable or function definition.

(3) Linkage and storage class

The linkage and storage class are indicated by the following symbols.

? Unknown

!line-number Declaration line

#line-number Definition line

?line-number Whether it is a declaration or definition or a reference is unknown

No symbol Reference line

C:\>cxref -t apli.c

 apli.c 163 G F combine

 apli.c 216 G F delete

 apli.c 22 G V deleted

 apli.c 194 G F deletesub

 apli.c 22 G V done

 apli.c 108 G F insert

 apli.c 54 G F insertitem

 apli.c 86 G F insertsub

 apli.c 21 G V key

 ...

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 123 of 782
Apr 01, 2011

(4) Type

The type is indicated by the following symbols.

(5) Identifier name

The identifier name is the function name or variable name itself.

However, since duplicate names may exist for variables that are defined within functions, identifier names are

indicated in the format "function-name:variable-name".

3.7.3 Call tree

When a call tree information output option such as -c is specified for the cross reference tool, the functions called by

certain functions are output in tree format.

The output file format is text format or CSV format. To directly reference the main important information, output the

data in text format. To reference detailed information in tabular form, output the data in CSV format.

(1) Text-format output example

If the -c option is specified, the call tree is output in text format. The default output file name is "ccalltre.lst".

The text-format output is as follows.

- Call tree text-format output example

G Static external variable or function having external linkage

L Static variable, function, or static variable within a function, having internal linkage

? Unknown

F Function

V Variable

? Unknown

C:\>cxref -c apli.c

1 @newpage

2 |---malloc?

3 |---printf?

4 +---exit?

5 @search

6 @insertitem

7 @split

8 |---newpage...(1)

9 |---insertitem...(6)

10 +---insertitem...(6)

11 @insertsub

12 |---insertsub*

13 |---insertitem...(6)

14 +---split...(7)

 ...

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 124 of 782
Apr 01, 2011

- The group of functions to be processed are output in tree format.

- An ampersand "@" is appended to the front of a function name that is the tree root.

- Functions of provided libraries are also included in the tree.

- The meanings of symbols that are displayed after function names are as follows.

(2) CSV-format output example

If the -cc option is specified, the call tree is output in CSV format. A CSV-format file can be read by spreadsheet

software such as Microsoft Excel®. The default output file name is "ccalltre.csv".

The CSV-format output is as follows.

- Call tree CSV-format output example

? Indicates a function that is not defined in the file to be processed.

... (numerical value) Indicates that subsequent outputs are omitted because it was output once. The

numerical value indicates the line number for the first output.

Indicates the defined source file.

* Indicates that subsequent outputs were suspended because a recursive function was

calling itself.

C:\>cxref -cc apli.c

[SrcFileList]

 No,SrcFileName,FilePath

 1,apli.c,

 [Funcs]

 No,FuncName,SrcFileNo,LineNo,Ret1,Arg1,Ret2,Arg2

 1,free,0,0,,,,

 2,main,1,248,int,(),,

 3,scanf,0,0,,,,

 4,delete,1,217,void,(void),,

 5,search,1,38,void,(void),,

 ...

 [Calltree]

 No,FuncNo,FuncAttr,TopFlg,ElimNo,ChildPtr,ChildCnt,RefFileNo,RefLine

 1,8,0,1,0,1,3,0,0

 2,7,0x21,0,0,0,0,1,30

 3,12,0x21,0,0,0,0,1,31

 4,9,0x21,0,0,0,0,1,32

 [ChildFuncs]

 No,CalltreeNo

 1,2

 2,3

 3,4

 4,8

 5,9

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 125 of 782
Apr 01, 2011

(a) [SrcFileList]

The name of the source file in which the functions used by the program are defined is output.

(b) [Funcs]

All of the functions used by the program are output.

(c) [Calltree]

The call tree is output.

 6,10

 7,12

 8,13

 9,14

10,16

 ...

FileName Source file name

FilePath Source file path

This is output only when the path was specified for the file that was input.

FuncName Function name

SrcFileNo Source file number

Uses the "No" value in [SrcFileList] to indicate the source file in which that function is defined.

LineNo Line number

Indicates the line at which that function’s definition begins in the source file.

Ret1,Ret2 Return values of the function

When the analysis cannot be performed, nothing is output.

Arg1,Arg2 Arguments of the function

When the analysis cannot be performed, nothing is output.

FuncNo Function number

Uses the "No" value in [Funcs] to indicate the function.

FuncAttr Function attribute

Indicates the tree attributes by using a combination of the following numerical values. If there is no

attribute, 0 is output.

0x0001: There is no program description.

0x0002: It is a recursive function.

0x0004: Omits subsequent tree output.

0x0008: Outputs source file name and description starting line.

0x0010: Outputs return values and arguments.

0x0020: Outputs reference information.

TopFlag Top flag

When the function is the tree root, 1 is output. When it is not the tree root, 0 is output.

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 126 of 782
Apr 01, 2011

(d) [ChildFuncs]

The tree in which that child function exists is output as child function information.

3.7.4 Function metrics

When a function metrics information output option such as -m is specified for the cross reference tool, the information is

output in terms of individual functions. The output file format is text format or CSV format. To directly reference the main

important information, output the data in text format. To reference detailed information in tabular form, output the data in

CSV format.

(1) Text-format output example

If the -m option is specified, the function metrics are output in text format. The default output file name is

"cmeasure.lst".

The text-format output is as follows.

- Function metrics text-format output example

ElimNo Tree number for previous output

When the function corresponds to "0x0004" for "FuncAttr," this uses "No" in [Calltree] to indicate the

tree in which that function was previously output.

If it does not correspond to "0x0004," 0 is output.

ChildPtr Starting position of child function display

Uses "No" in [ChildFuncs] to indicate the position at which the first child function of the function is

output.

ChildCnt Number of child functions

Indicates the number of child functions registered in [ChildFuncs]. If there is no child function, 0 is

output.

CallTreeNo Tree number

Uses "No" in [Calltree] to indicate the tree in which that child function exists.

C:\>cxref -m apli.c

 File Line Called

 newpage apli.c 27 2

 search apli.c 38 1

 insertitem apli.c 55 3

 split apli.c 68 1

 insertsub apli.c 87 2

 insert apli.c 109 1

 removeitem apli.c 119 2

 moveright apli.c 128 1

 moveleft apli.c 146 1

 combin apli.c 164 2

 restore apli.c 183 2

 deletesub apli.c 195 3

 delete apli.c 217 1

 printtree apli.c 231 3

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 127 of 782
Apr 01, 2011

(a) File

File name

Indicates the name of the source file in which that function is defined.

(b) Line

Starting line

Indicates the line number in the source file at which that function is defined.

(c) Called

Call histogram

Indicates the frequency with which that function was called. The frequencies that are output are based on the

assumption that the function is called once for each function call description.

(2) CSV-format output example

If the -mc option is specified, the function metrics are output in CSV format. A CSV-format file can be read by

spreadsheet software such as Microsoft Excel. The default output file name is "cmeasure.csv".

The CSV-format output is as follows.

- Function metrics CSV-format output example

 main apli.c 248 0

 ...

C:\>cxref -mc apli.c

[SrcFileList]

 No,SrcFileName,FilePath

 1,apli.c,

 [Funcs]

 No,FuncName,SrcFileNo,LineNo,Ret1,Arg1,Ret2,Arg2

 1,free,0,0,,,,

 2,main,1,248,int,(),,

 3,scanf,0,0,,,,

 4,delete,1,217,void,(void),,

 5,search,1,38,void,(void),,

 ...

 [Measure]

No,FuncNo,FuncSz,Clk,TClk,Stk,TStk,CalledCnt,StkUp,StkUpPtr,StkUpCnt,ClkUp,ClkUpPtr,ClkUp
Cnt,StkDw,StkDwPtr,StkDwCnt,ClkDw,ClkDwPtr,ClkDwCnt

 1,8,64,37,37,12,68,2,68,1,4,496,5,4,12,0,0,37,0,0

 2,5,208,118,118,12,24,1,24,9,1,237,10,1,12,0,0,118,0,0

 3,19,148,71,71,16,72,3,72,11,4,530,15,4,16,0,0,71,0,0

 ...

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 128 of 782
Apr 01, 2011

(a) [SrcFileList]

The name of the source file in which the functions used by the program are defined is output.

(b) [Funcs]

All of the functions used by the program are output.

(c) [Measure]

Function metrics information is output.

3.7.5 Call database

When a call database information output option such as -b is specified for the cross reference tool, the functions called

by a given function and the number of times each function is called by that function are output. The output file format is

text format or CSV format. To directly reference the main important information, output the data in text format. To

reference detailed information in tabular form, output the data in CSV format.

(1) Text-format output example

If the -b option is specified, the call database is output in text format. The default output file name is "cprofile.dat".

The text-format output is as follows.

- Call database text-format output example

FileName Source file name

FilePath Source file path

This is output only when the path was specified for the file that was input.

FuncName Function name

SrcFileNo Source file number

Uses the "No" value in [SrcFileList] to indicate the source file in which that function is defined.

LineNo Line number

Indicates the line at which that function’s definition begins in the source file.

Ret1,Ret2 Return values of the function

When the analysis cannot be performed, nothing is output.

Arg1,Arg2 Arguments of the function

When the analysis cannot be performed, nothing is output.

FuncNo Function number

Uses the "No" value in [Funcs] to indicate the function.

CalledCnt Call histogram

Indicates the frequency with which that function was called. The frequencies that are output are

based on the assumption that the function is called once for each function call description.

C:\>cxref -b apli.c

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 129 of 782
Apr 01, 2011

Five types of information are output sequentially from left to right on each line.

(a) Calling function name

(b) Name of source file in which calling function is defined

If no analysis can be performed, "???" is output.

(c) Called function name

(d) Name of source file in which called function is defined

Since the source file name is unknown for a function in a library, 0 is output.

(e) Number of times called function is called within calling function

(2) CSV-format output example

If the -bc option is specified, the call database is output in CSV format. A CSV-format file can be read by

spreadsheet software such as Microsoft Excel. The default output file name is "cprofile.csv".

The CSV-format output is as follows.

- Call database CSV-format output example

newpage,apli.c,malloc,0,1

newpage,apli.c,printf,0,1

newpage,apli.c,exit,0,1

split,apli.c,newpage,apli.c,1

split,apli.c,insertitem,apli.c,2

insertsub,apli.c,insertsub,apli.c,1

insertsub,apli.c,insertitem,apli.c,1

insertsub,apli.c,split,apli.c,1

insert,apli.c,insertsub,apli.c,1

insert,apli.c,newpage,apli.c,1

combine,apli.c,removeitem,apli.c,1

combine,apli.c,free,0,1

 ...

C:\>cxref -bc apli.c

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 130 of 782
Apr 01, 2011

(a) [SrcFileList]

The name of the source file in which the functions used by the program are defined is output.

(b) [Funcs]

All of the functions used by the program are output.

 [SrcFileList]

 No,SrcFileName,FilePath

 1,apli.c,

 [Funcs]

 No,FuncName,SrcFileNo,LineNo,Ret1,Arg1,Ret2,Arg2

 1,free,0,0,,,,

 2,main,1,248,int,(),,

 3,scanf,0,0,,,,

 4,delete,1,217,void,(void),,

 5,search,1,38,void,(void),,

 ...

 [CallDataBase]

 No,FuncNo,ChildFuncNo,CallCnt

 1,8,7,1

 2,8,12,1

 3,8,9,1

 4,11,8,1

 5,11,19,2

 ...

FileName Source file name

FilePath Source file path

This is output only when the -p option is specified.

FuncName Function name

SrcFileNo Source file number

Uses the "No" value in [SrcFileList] to indicate the source file in which that function is defined.

LineNo Line number

Indicates the line at which that function’s definition begins in the source file.

Ret1,Ret2 Return values of the function

When the analysis cannot be performed, nothing is output.

Arg1,Arg2 Arguments of the function

When the analysis cannot be performed, nothing is output.

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 131 of 782
Apr 01, 2011

(c) [CallDataBase]

Call database information is output.

3.8 Memory Layout Visualization Tool

This section describes details about each output format of the memory layout visualization tool.

To configure the using the memory layout visualization tool in CubeSuite+, on the Project Tree panel, select the Build

tool node, and then select the [Memory Layout Visualization Options] tab on the Property panel. In the [Memory Layout

Visualization Tool] category, set the [Use memory layout visualization tool] property to [Yes]. The output destination of the

information files is the folder set from the [Common Options] tab, in the [Output File Type And Path] category, in the

[Intermediate file output folder] property. It is also shown on the Project Tree panel, under the Build tool generated files

node.

Remark See "B.11.1 Input/Output" for details about input and output of the memory layout visualization tool.

3.8.1 Memory map table

The memory layout visualization tool outputs a memory map table that shows variable names, sizes, and the memory

layout. The output destination is "standard output" or a "file." When information is output to a file, the output file format is

text format or CSV format. To directly reference the main important information, output the data in text format. To

reference detailed information in tabular form, output the data in CSV format.

- The memory map table has 16 bytes per line.

- For a variable name, the name in the C source file is displayed in the following format (when the variable name is

assumed to be "name").

- The size is displayed in the format "(number of bytes in decimal notation)" following the variable name.

(1) Text-format output example

If the -m option is specified, the memory map table is output in text format. The default output file name is

"rammap.txt".

The text-format output is as follows.

- Memory map table text-format output example

FuncNo Calling function number

Uses the "No" value in [SrcFileList] to indicate the calling function number.

ChildFuncNo Called function number

Uses the "No" value in [SrcFileList] to indicate the called function number.

CalledCnt Number of times called

Number of times called function is called within calling function

External variable _name

Local variable within file file-name@_name

Static variable or string constant within function file-name@LLnumber

C:\>rammap -m a.out

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 132 of 782
Apr 01, 2011

- The variable name and size are displayed left-aligned at the start of the relevant address.

- A variable name that cannot fit in the memory layout frame is displayed as far as it fits.

- A colon (:) is output for a line that has no variable name, and the line is omitted. Unused area, the text attribute

section, and the interior of large variables correspond to these kinds of lines.

(2) CSV-format output example

If the -mc option is specified, the memory map table is output in CSV format. A CSV-format file can be read by

spreadsheet software such as Microsoft Excel. The default output file name is "rammap.csv".

The CSV-format output is as follows.

- Memory map table CSV-format output example

- A colon (:) is output for a line that has no variable name, and the line is omitted. Unused area, the text

attribute section, and the interior of large variables correspond to these kinds of lines.

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

0x00000000 |

:

0x00FFE000 |crtN.s@__argc(>|crtN.s@__argv(>| |test.c@LL29(5)-

0x00FFE010 |-->| |test.c@_svar(4>|_var(4)------->|_gAppName(8)---

0x00FFE020 |-------------->|_c>| |_tmp(4)------->|_buf(100)------

:

0x00FFE080 |-->|

0x00FFE090 |_var2(4)------>|_c>| |crtN.s@__stack(512)------------

:

0x00FFE290 |------------------------------>|

:

0xFFFFFFF0 |

------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

:

C:\>rammap -mc a.out

Address,0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

0x00000000,,,,,,,,,,,,,,,,

:

0x00FFE000,crtN.s@_ _ argc(4),,,,crtN.s@_ _ argv(4),,,,,,,,test.c@LL29(5),,,

0x00FFE010,,,,,test.c@_svar(4),,,,_var(4),,,,_gAppName(8),,,

0x00FFE020,,,,,_cInput(1),,,,_tmp(4),,,,_buf(100),,,

:

0x00FFE090,_var2(4),,,,_c(1),,,,crtN.s@_ _ stack(512),,,,,,,

:

0xFFFFFFF0,,,,,,,,,,,,,,,,

...

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 133 of 782
Apr 01, 2011

3.9 Format of Object File

This section describes the format of the object file used with the C compiler.

3.9.1 Structure of object file

The format of the object file used with the C compiler conforms to the ELF format, a standard object file format.

The structure of an object file in this format differs somewhat between relocatable object files and executable object

files (see the following figure). A relocatable object file contains the information that is needed to create an executable

object file, and an executable object file contains the information needed to execute the object file.

The following sections describe the ELF header, program header table, section header table, section, and segment,

which are constituent elements in ELF-format object files.

Figure 3-4. Object File Structures

3.9.2 ELF header

This section describes the ELF header, which is a constituent element in ELF-format object files.

The ELF header is at the start of the object file and contains the information needed to interpret the object file or to

access the other constituent elements in the object file (see “Figure 3-4. Object File Structures”).

Table 3-4. Constituent Elements of ELF Header and Their Meanings

Constituent Elements Meaning

ident[CLASS] Class of this object file

ident[DATA] Byte order of data in this object file (2MSB if big endian, or 2LSB if little endian)

type Type of this object file

machine Target processor of this object file

version Version number of this object file format

entry Entry point address

phoff Offset in file of program header table

shoff Offset in file of section header table

flags Unique flag for processor that this object file runs on

ehsize Byte size of this ELF header

phentsize Size of program header table entry

phnum Number of program header table entries

shentsize Size of section header table entries

Relocatable object file executable object file

ELF headerELF header

Section 1

...

...

...

...

...

Section n

Section header table

...

Program header table

Segment 1

Segment n

Other information

Section header table

(Start)

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 134 of 782
Apr 01, 2011

3.9.3 Program header table

This section describes the program header table, which is a constituent element in ELF-format object files.

The program header table is an array of program header table entries that contain information about all the segments

included in the object file (see the following table).

An index (i.e. a subscript) to this array is called a program header table index, which is used to reference the program

header table entries.

Table 3-5. Constituent Elements of Program Header Table Entries and Their Meanings

Note If a section having section type NOBITS (section not having an actual value in the object file) is allocated to the

corresponding segment, a value other than the memsz value is set.

3.9.4 Section header table

This section describes the section header table that is a constituent element in ELF-format object files.

The section header table is an array of section header table entries that contain information about all of the sections

included in the object file. An index (subscript) to this array is called a section header table index, which is used to

reference the section header table entries.

Table 3-6. Constituent Elements of Section Header Table Entries and Their Meanings

shnum Number of section header table entries

shstrndx Section header table index of string table .shstrtab that contains the section name

Constituent Elements Meaning

type Segment type of corresponding segment (type is LOAD if segment is loaded to memory, or NOTE if

segment has auxiliary information)

offset Offset in file of corresponding segment

vaddr Virtual address of corresponding segment

paddr Physical address of corresponding segment

filesz Size of corresponding segment in fileNote

memsz Size of corresponding segment in memory

flags Segment attribute of corresponding segment (attribute is R for segment that can be read, W for

segment that can be written, or X for executable segment)

align Alignment condition of corresponding segment

Constituent Elements Meaning

name Name of corresponding section (index to string table .shstrtab that contains the section name)

type Section type of corresponding section (see "(1) Section type")

flags Section attribute of corresponding section (attribute is A for a section occupying memory, W for a

section that can be written, X for an executable section, and G for a section that is allocated to a

memory range that can be referenced using global pointer (gp) with 16-bit displacement)

addr Start address of corresponding section

offset Offset in file of corresponding section

size Size of corresponding section

Constituent Elements Meaning

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 135 of 782
Apr 01, 2011

(1) Section type

The section types indicated by the constituent element “type” in the section header table are shown with an

explanation of their meanings in the following table.

Table 3-7. Section Types and Their Meanings

Note See the explanation of the register mode specification option (-reg) of the C compiler.

(2) Constituent elements (link/info) dependent on section type

The meanings of the section header table's constituent elements “link” and “info”, which are dependent on section

type, are shown below.

Table 3-8. Meanings of Link and Info

link Section header table index link of corresponding section (see "(2) Constituent elements (link/info)

dependent on section type")

info Information dependent on section type of corresponding section (see "(2) Constituent elements

(link/info) dependent on section type")

addralign Alignment condition of corresponding section

entsize Size of entries in corresponding section

Section Type Meaning

GPTAB Global pointer table (in which the first entry contains num of -Gnum specified for the C

compiler or assembler, and 0, the 2nd and subsequent entries indicate the size when aligned

with data size and word)

NOBITS Section for data that does not have an actual value in the object file (e.g., data for which no

initial value is specified)

PROGBITS Section for data that has an actual value in the object file (e.g., data for which a machine

language instruction or initial value has been specified)

REGMODE Section existing in relocatable object file created using the register mode functionNote (stores

information on the number of registers internally used by the C compiler)

REL (not supported) Relocation information

RELA Relocation information

SYMTAB Symbol table (see “(1) Symbol table”)

STRTAB String table (”(2) String table”)

Section Type Meaning of Link Meaning of Info

GPTAB --- Section header table index of section to which

corresponding data is allocated

REL

(not supported)

Section header table index of

corresponding symbol table

Section header table index of section to be

relocated

RELA Section header table index of

corresponding symbol table

Section header table index of section to be

relocated

SYMTAB Section header table index of

corresponding string table

Symbol table index of symbol that appears

first when table is not local

Constituent Elements Meaning

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 136 of 782
Apr 01, 2011

3.9.5 Sections

The following describes the sections that are constituent elements in ELF-format object files.

A section is a main constituent element of object files. Its contents include machine language instructions, data,

symbol tables, string tables, debug information, and line number information.

A section must meet the following conditions.

- One section header table entry corresponding to the section header table must exist in each section.

- In some cases (such as a section having section type NOBITS), a section may have only a section header table

entry but no actual value exists in the object file.

- A section that has an actual value in the object file occupies a contiguous area in the object file.

- Sections do not share an area in the object file. In other words, there is no area that belongs to more than one

section.

(1) Symbol table

The following describes the symbol table, a type of section.

The symbol table, a section of section type SYMTAB, is an array of symbol table entries containing information

about all of the symbols included in the object file.

An index (subscript) to this array is called a symbol table index, and the symbol table entries are referenced using

this symbol table indexNote.

Note An entry with symbol table index 0 is reserved, and each constituent element's value is 0.

Table 3-9. Constituent Elements of Symbol Table Entries and Their Meanings

(2) String table

The following describes the string table, a type of section.

The string table, a section of section type STRTAB, consists of a character string that ends with a null character

(\0). This character string is referenced using an index that is an offset from the beginning of the string tableNote.

An ELF-format object file uses this character string to hold the names of symbols and sections. For example, the

constituent element “name” in the section header table entry has an index to the string table .shstrtab which holds

a section name.

Note The rule is that the first byte expressed by index 0 is a null character.

Constituent

Elements

Meaning

name Name of corresponding symbol (index to string table .strtab)

value Value of corresponding symbol

size Size of corresponding symbol

BIND (info) Binding class of corresponding symbol (binding class is GLOBAL for a symbol used to resolve an

external reference, or LOCAL for a symbol not used to resolve an external reference)

TYPE (info) Type of corresponding symbol (type is FILE for a normal file name, FUNC for a function name,

NOTYPE for an undefined symbol, OBJECT for a symbol indicating a normal label, SECTION for a

section name, or DEVFILE for a device file name)

other ---

shndx Section header table index of section for corresponding symbol (which takes one of the following

values: ABS for a symbol indicating a constant, COMMON for an undefined external symbol that is

referenced using a global pointer (gp) with 32-bit displacement, GPCOMMON for an undefined

external symbol that is referenced using a global pointer (gp) with 16-bit displacement, or UNDEF

for an undefined symbol)

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 137 of 782
Apr 01, 2011

Table 3-10. Relationship Between Indexes and Character Strings in String Table

(3) Reserved sections

In ELF-format object files, several sections are reserved as reserved sections.

The following table lists the names, section types, and section attributes of these reserved sections.

Table 3-11. Reserved Sections

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 \0 n a m e . \0 V a r

+10 i a b l e \0 a b l e

+20 \0 \0 x x \0

Index String

0 null string

+1 name

+7 Variable

+11 able

+16 able

+24 null string

NameNote 1 Description Section Type Section Attribute

.bss .bss section NOBITS AW

.const .const section PROGBITS A

.data .data section PROGBITS AW

.ext_info

.ext_info_boot

Information section for flash/external ROM re-link

function

PROGBITS None

.ext_table Branch table section for flash/external ROM re-link

function

PROGBITS AX

.ext_tgsym Information section for flash/external ROM re-link

function

PROGBITS None

.gptabname Global pointer table Note 2 GPTAB None

.pro_epi_runtime Prologue/epilogue run-time call section PROGBITS AX

.regmode Register mode information REGMODE None

.relname Relocation information REL None

.relaname Relocation information RELA None

.sbss .sbss section NOBITS AWG

.sconst .sconst section PROGBITS A

.sdata .sdata section PROGBITS AWG

.sebss .sebss section NOBITS AW

.sedata .sedata section PROGBITS AW

.shstrtab String table containing section names STRTAB None

CubeSuite+ Ver.1.00.00 CHAPTER 3 BUILD OUTPUT LISTS

R20UT0557EJ0100 Rev.1.00 Page 138 of 782
Apr 01, 2011

Notes 1. The name part of .gptabname, .relname, and .relaname indicates the name of the section

corresponding to each respective section.

2. This is information that is used when processing the linker's -A option.

.sibss .sibss section NOBITS AW

.sidata .sidata section PROGBITS AW

.strtab String table STRTAB None

.symtab Symbol table SYMTAB None

.text .text section PROGBITS AX

.tibss .tibss section NOBITS AW

.tibss.byte .tibss.byte section NOBITS AW

.tibss.word .tibss.word section NOBITS AW

.tidata .tidata section PROGBITS AW

.tidata.byte .tidata.byte section PROGBITS AW

.tidata.word .tidata.word section PROGBITS AW

.vdbstrtab Symbol table for debug information STRTAB None

.vdebug Debug information PROGBITS None

.version Version information section PROGBITS None

.vline Line number information PROGBITS None

NameNote 1 Description Section Type Section Attribute

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 139 of 782
Apr 01, 2011

APPENDIX A WINDOW REFERENCE

This appendix explains windows/panels/dialog boxes used in build process.

A.1 Description

The following lists the windows/panels/dialog boxes used in build process.

Table A-1. List of Windows/Panels/Dialog Boxes

Window/Panel/Dialog Box Name Function Description

Main window This is the first window to be open when CubeSuite+ is launched.

Project Tree panel This panel is used to display the project components in tree view.

Property panel This panel is used to display the detailed information on the build tool, file,

or category that is selected on the Project Tree panel and change the

settings of the information.

Editor panel This panel is used to display/edit text files/source files.

Output panel This panel is used to display the message that is output from the build tool.

Add File dialog box This dialog box is used to create a new file and add it to the project.

Add Folder and File dialog box This dialog box is used to add existing files and folder hierarchies to the

project.

Character String Input dialog box This dialog box is used to input and edit characters in one line.

Text Edit dialog box This dialog box is used to input and edit texts in multiple lines.

Path Edit dialog box This dialog box is used to edit or add the path.

System Include Path Order dialog box This dialog box is used to refer the system include paths specified for the

compiler and set their specified sequence.

Build Tool Warning Messages Settings dialog

box

This dialog box is used to set the warning messages output by the build

tool.

File Save Settings dialog box This dialog box is used to set the encoding and newline code of the file that

is editing on the Editor panel.

Link Directive File Generation dialog box This dialog box is used to generate a link directive file.

Object File Select dialog box This dialog box is used to select an object file and retrieve it for the caller.

Segment Select dialog box This dialog box is used to select a segment and retrieve it for the caller.

Link Order dialog box This dialog box is used to display object module files and library files to

input to the linker and configure these link order.

Build Mode Settings dialog box This dialog box is used to add and delete build modes and configure the

current build mode in batch.

Batch Build dialog box This dialog box is used to do build, rebuild and clean process in batch with

the build mode that each project has.

Go to the Location dialog box This dialog box is used to move the caret to the designated location.

Progress Status dialog box This dialog box is used to show how the process has been progressed.

Option dialog box This dialog box is used to configure the CubeSuite+ environment.

Add Existing File dialog box This dialog box is used to select existing files to add to projects.

Browse For Folder dialog box This dialog box is used to select a folder and retrieve it for the caller.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 140 of 782
Apr 01, 2011

Specify Boot Area Object File dialog box This dialog box is used to select the boot area object file to set in the caller

of the dialog box.

Specify Function Information File dialog box This dialog box is used to select the function information file to set in the

caller of the dialog box.

Specify Intermediate Language File for External

Variable Sorting dialog box

This dialog box is used to select the intermediate language file for external

variable sorting to set in the caller of the dialog box.

Specify Far Jump File dialog box This dialog box is used to select the Far Jump file to set in the caller of the

dialog box.

Specify ROMization Area Reservation Code File

dialog box

This dialog box is used to select the ROMization area reservation code file

and retrieve it for the caller.

Save As dialog box This dialog box is used to save the editing file or contents of each panel to a

file with a name.

Open with Program dialog box This dialog box is used to select the application to open the file.

Stack Usage Tracer window This is the first window to be open when the stack usage tracer is launched.

Stack Size Unknown / Adjusted Function Lists

dialog box

This dialog box is used to display a list of functions for which the stack

usage tracer could not obtain stack information; functions for which

information was changed intentionally, and functions for which the stack

usage tracer forcibly set an additional margin.

Adjust Stack Size dialog box This dialog box is used to change the information for the selected function.

Open dialog box This dialog box is used to open an existing stack size specification file.

Window/Panel/Dialog Box Name Function Description

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 141 of 782
Apr 01, 2011

This is the first window to be open when CubeSuite+ is launched.

This window is used to control the user program execution and open panels for the build process.

Figure A-1. Main Window

The following items are explained here.

- [How to open]

- [Description of each area]

[How to open]

- Select Windows [start] >> [All programs] >> [Renesas Electronics CubeSuite+] >> [CubeSuite+].

Main window

(1)

(2)

(3)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 142 of 782
Apr 01, 2011

[Description of each area]

(1) Menu bar

Displays the menu relates to build.

(a) [Project]

The [Project] menu shows menu items to operate the project and others.

Add New Subproject... Closes the current project and opens the Create Project dialog box to create a

new project.

If the currently open project or file has been modified but it has not been saved

yet, a confirmation message is displayed to ask you whether you want to save it.

Open Project... Closes the current project and opens the Open Project dialog box to open the

existing project.

If the currently open project or file has been modified but it has not been saved

yet, a confirmation message is displayed to ask you whether you want to save it.

Favorite Projects Displays a cascading menu to use to open or save your favorite project.

1 path [Opens your favorite project registered with [Favorite Projects] >> [1 Register to

Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

2 path [Opens your favorite project registered with [Favorite Projects] >> [2 Register to

Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

3 path [Opens your favorite project registered with [Favorite Projects] >> [3 Register to

Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

4 path [Opens your favorite project registered with [Favorite Projects] >> [4 Register to

Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

1 Register to Favorite Project The current project path is added to [1 path] in [Favorite Projects].

2 Register to Favorite Project The current project path is added to [2 path] in [Favorite Projects].

3 Register to Favorite Project The current project path is added to [3 path] in [Favorite Projects].

4 Register to Favorite Project The current project path is added to [4 path] in [Favorite Projects].

Add Shows the cascading menu to add subprojects to the project.

Add Subproject... Opens the Add Existing Subproject dialog box to add an existing subproject to the

project.

Add New Subproject... Opens the Create Project dialog box to add a new subproject to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to

the file to the project.

The added file can be opened with the application corresponds to the file exten-

sion.

Add New Category Adds a new category node to the root of the File node. This allows the category

name to be changed.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

Note that this menu is disabled when the build tool is in operation.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 143 of 782
Apr 01, 2011

(b) [Build]

The [Build] menu shows menu items for the build process and others.

Sets selected project or sub-

project as Active Project.

Set the selected project or subproject as an active project.

Close Project Closes the current project.

If the currently open project or file has been modified but it has not been saved

yet, a confirmation message is displayed to ask you whether you want to save it.

Save Project Saves the configuration information of the current project to the project file.

Save Project As... Opens the Save Project As dialog box to save the configuration information of the

current project to the project file with another name.

Remove from Project Removes the selected project or subproject from the project.

The subproject files or the file themselves are not deleted from the file system.

Save Project and Development

Tools as Package...

Saves a set of the this product and the project by copying them in a folder.

Build Project Builds the project. The subproject is also built when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Rebuild Project Rebuilds the project. The subproject is also rebuilt when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Clean Project Cleans the project. The subproject is also cleaned when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Rapid Build Toggles the rapid build function between enabled (default) and disabled.

Update Dependencies Updates the dependency of the file in the project to build. The dependency of the

file in the subproject to build is also updated when the subproject is added to the

project.

Build active project Builds the active project.

If the active project is the main project, its subproject is not built.

Note that this menu is disabled when the build tool is in operation.

Rebuild active project Rebuilds the active project.

If the active project is the main project, its subproject is not rebuilt.

Note that this menu is disabled when the build tool is in operation.

Clean active project Cleans the active project.

If the active project is the main project, its subproject is not cleaned.

Note that this menu is disabled when the build tool is in operation.

Update Dependencies of active

project

Updates the dependency of the file in the active project to build.

Stop Build Cancels the build, rebuild, batch build and clean operation.

Build Mode Settings... Opens the Build Mode Settings dialog box to modify and add to the build mode.

Batch Build... Opens the Batch Build dialog box to batch build.

Build Option List Lists the currently set build option in the Output panel.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 144 of 782
Apr 01, 2011

(2) Toolbar

Buttons used in build process are displayed.

(a) Build toolbar

Build toolbar shows buttons used in build process.

(3) Panel display area

The following panels are displayed in this area.

- Project Tree panel

- Property panel

- Editor panel

- Output panel

See the each panel section for details of the contents of the display.

Builds projects. The subproject is also built when it is added in the project.

Note that this button is disabled when the build tool is in operation.

Rebuilds projects. The subproject is also rebuilt when it is added in the project.

Note that this button is disabled when the build tool is in operation.

Cancels the build, rebuild, batch build and clean in operation.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 145 of 782
Apr 01, 2011

This panel is used to display the project components such as the build tool, source files, etc. in tree view.

Figure A-2. Project Tree Panel

The following items are explained here.

- [How to open]

- [Description of each area]

- [[Edit] menu (only available for the Project Tree panel)]

- [Context menu]

[How to open]

- From the [View] menu, select [Project Tree].

Project Tree panel

(1)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 146 of 782
Apr 01, 2011

[Description of each area]

(1) Project tree area

Project components are displayed in tree view with the following given node.

Node Description

Project name (Project)

(hereafter referred to as "Project node")

Project name.

Build tool name (Build tool)

(hereafter referred to as "Build tool node")

The build tool (compiler, assembler, etc.) used in the project.

File

(hereafter referred to as "File node")

The following files that are added to the project are displayed under the

root of this node.

- C source file (*.c)

- Assembler source file (*.s)

- Header file (*.h, *.inc)

- Object file (*.o)

- Library file (*.a)

- Link directive file (*.dr, *.dir)

- Section file (*.sf)

- Other file (doc, xml, etc.)

Build tool generated files

(hereafter referred to as "Build tool generated

files node")

The following files generated by the build tool appear directly below the

node generated during the build.

- For other than library projects

Load module file (*.out)

Link map file (*.map)

Hex file (*.hex)

Dump list (dump.txt)

Cross reference information (cxref)

Tag information (ctags)

Call tree information (ccalltre.csv, ccalltre.lst)

Function metrics information (cmeasure.csv, cmeasure.lst)

Call database information (cprofile.csv, cprofile.dat)

Memory map table (rammap.csv)

- For library projects

Archive file (*.a)

Dump list (dump.txt)

Cross reference information (cxref)

Tag information (ctags)

Call tree information (ccalltre.csv, ccalltre.lst)

Function metrics information (cmeasure.csv, cmeasure.lst)

Call database information (cprofile.csv, cprofile.dat)

Files displayed under this node cannot be renamed, deleted, or moved.

This node is always placed lower than the File node.

This node will no longer appear if you reload the project after building.

Startup

(hereafter referred to as "Startup node")

This is a node for adding other than standard startup files to the project.

This node is always placed lower than the File node.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 147 of 782
Apr 01, 2011

When each component (the node or file) is selected, the detailed information (property) is displayed in the Property

panel. You can change the settings.

Remark When more than one components are selected, only the tab that is common to all the components is

displayed.

When multiple files are selected and the values of their common properties are different, then the

corresponding value fields are displayed blank.

This area has the following functions.

(a) Add files

You can add files by one of the following procedure.

The files are added under the File node.

<1> Add existing files

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add File...] from the [File] menu. The Add Existing File dialog box appears. Select files to add.

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add File...] from the context menu. The Add Existing File dialog box appears. Select files to add.

- Copy the file using windows explorer and the like and then point the mouse to this area. Select

[Paste] from the [Edit] menu.

- Drag files using windows explorer and the like and then drop them at the location in this area where

you want to add the files to.

Remark If the files are dragged from the windows explorer and the like and then dropped in the blank

space under the lower project tree, it is regarded as dropped in the Main project.

<2> When new files are added

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add New File...] from the [File] menu. The Add File dialog box appears. Designate the file to

create.

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add New File...] from the context menu. The Add File dialog box appears. Designate the file to

create.

Remark A blank file is created at the location designated in the Add File dialog box.

(b) Remove the file from a project

You can remove files from the project by one of the following procedure.

The removed files are not deleted from the file system in this operation.

- Select the file you want to remove from the project. Then select [Remove from Project] from the [Project]

menu.

Category name

(hereafter referred to as "category node")

Categories that the user created to categorize files (see "2.3.6 Classify a

file into a category").

This node is always placed lower than the File node.

Subproject name (Subproject)

(hereafter referred to as "Subproject node")

Subprojects added to the project.

Node Description

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 148 of 782
Apr 01, 2011

- Select the file you want to remove from the project. Then select [Remove from Project] from the context

menu.

(c) Move files

You can move files by the following procedure.

The file are moved under the File node.

- Drag the file you want to move and then drop it in the destination.

Remarks 1. Individual option is retained when the file is dropped in the main project or subproject.

2. The file is copied, not moved when the file is dropped between the different project, or in the

main project or subproject in same project. Note that this operation does not retain the

individual option set in each file.

(d) Add categories

You can add the category node by one of the following procedure.

The category node are added under the File node.

- Select [Add New Category] from the [Project] menu.

- Select [Add New Category] from the context menu of either one of the Project node, Subproject node, or

File node.

Remarks 1. The default category name is "New category".

2. The new category name can be changed to the same name as the existing category node.

(e) Move categories

You can move the category node by the following procedure.

The category node are moved under the File node.

- Drag the category node you want to move and then drop it in the destination.

Remarks 1. Individual option set in the file in the category node is retained when the category node is

dropped in the main project or subproject.

2. The category node is copied, not moved when the it is dropped between the different project,

or in the main project or subproject in same project. Note that the individual option set in each

file contained in the category node is not retained.

(f) Add folders

You can add folders from Explorer or the like by the following procedure.

The folders are added under the File node.

The folders are added as categories.

- Drag the folder from Explorer or the like, and drop it over its destination. The Add Folder and File dialog

box opens. Specify the file types and subdirectory levels in the folder to add.

Caution You cannot drag and drop folders and files into this area simultaneously.

(g) Modify the display order of the subprojects placed in order of build

The subproject is displayed in order of build from the top. Therefore, the order of build can be changed by

changing the display order of the subprojects.

The project must be built from the subproject then the main project.

(h) Configure the standard build option

When the standard build option is changed, the property is displayed in boldface in the Property panel.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 149 of 782
Apr 01, 2011

You can change the standard build option to the current setting (cancel boldface) by the following procedure.

- Select the Build tool node and then select [Set to Default Build Option for Project] in the context menu.

Remark The configuration of the standard build option takes effect to the whole project (main project and

subproject).

(i) Sort files and categories

You can sort files and category nodes in order of the file name, time stamp, or the user definition by the

following procedure.

- Select one of the buttons in the toolbar.

The following table explains the buttons.

 is selected default by default.

(j) Display the file while editing

When the file added to the project is edited in the Editor panel and the file is not saved once, the file name is

followed by "*". When the file is saved, "*" is deleted.

(k) Display the source file in boldface that the individual build option is set

The source file icon whose option is different from the project general option (individual compile option,

individual assemble option) is changed to a different one from the normal icon.

(l) Highlight the file with read-only attribute

The read-only file added to the project is displayed in italic.

Button Description

Sorts files and category nodes in order of their names.

: Ascending order

: Descending order

: Ascending order

Sorts files and category nodes in order of their time stamp.

: Descending order

: Ascending order

: Descending order

Sorts files and category nodes in order of the user definition (default).

You can change the display order by dragging and dropping the file and category node.

The file that is saved

The file that is not saved after editing

The file with project general option

The file with individual build option

The file without read-only attribute

The file with read-only attribute

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 150 of 782
Apr 01, 2011

(m) Highlight the file that does not exist

The file that is added to the project but does not exist is grayed out and its icon is dimmed.

(n) Highlight the build-target file

<1> The file which the error occurred during building (rapid building), rebuilding, compiling or

assembling is highlighted as the example below.

Remarks 1. The file with both the error and the warning is highlighted in red.

2. The highlight is canceled when the build option (general option or individual option) or

the build mode is changed.

<2> The names of the following files are displayed in boldface.

- The source files that have not been compiled after edited

- The source files after cleaning has been executed

- The source files after build tool options have been changed

- The source files after any build mode has been changed

Remark The file names are all displayed in boldface right after the project is opened. The boldface

display is canceled after building is executed.

(o) Highlight non build-target file

The file that is set as non build-target is highlighted as shown in the example below.

(p) Highlight the project that has been changed

The file component that is added to the project and the property of the project component are changed, the

project name is followed by "*" and is displayed in boldface.

The boldface is canceled when the project is saved.

(q) Highlight the active project

The active projects is underlined.

The file that exists

The file that does not exist

The file without errors or warnings

The file with error

The file with warning

Build-target file

Non build-target file

The project that has not been changed

The project that has been changed

Non-active project

Active project

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 151 of 782
Apr 01, 2011

(r) Run the editor

Open the file with the specific extension in the Editor panel. When an external editor is specified to use in the

Option dialog box, open the file with the external editor. Other files are opened with the application associated

with the OS.

Caution The files with the extensions that are not associated with the OS are not displayed.

You can open the editor by one of the following procedure.

- Double click the file.

- Select the file and then select [Open] from the context menu.

- Select the file and then press the [Enter] key.

The files that can be opened in the Editor panel are as follows.

- C source file (.c)

- Assembler source file (.s)

- Header file (.h, .inc)

- Link directive file (.dr, .dir)

- Section file (.sf)

- Map file (.map)

- Hex file (.hex)

- Text file (.txt)

Remark You can use one of the methods below to open files other than those listed above in the Editor

panel.

- Drag the file and drop it into the Editor panel.

- Select the file and then select [Open with Internal Editor...] from the context menu.

[[Edit] menu (only available for the Project Tree panel)]

Copy Copies the selected file or category node to the clipboard.

While editing the file name or the category name, the characters of the selection are

copied to the clipboard.

Note that this menu is only enabled when the file or category node is selected.

Paste Inserts the contents of the clipboard directly below the selected node on the project tree.

While editing the file name or the category name, insert the contents of the clipboard.

Note that this menu is disabled when the contents of the clipboard exist in the same

project, when multiple files and category nodes are selected, and when the build tool is in

operation.

Rename You can rename the selected project, subproject, file, and category node. Press the

[Enter] key to confirm the rename. Press the [ESC] key to cancel.

When the file is selected, the actual file name is also changed.

When the selected file is added to other project, those file names are also changed.

Note that this menu is only enabled when the project, subproject, file, and category node

is selected. Note that rename is disabled when the build tool is in operation.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 152 of 782
Apr 01, 2011

[Context menu]

(1) When the Project node is selected

Build active project Builds the active project.

If the active project is the main project, its subproject is not built.

Note that this menu is disabled when the build tool is in operation.

Rebuild active project Rebuilds the active project.

If the active project is the main project, its subproject is not rebuilt.

Note that this menu is disabled when the build tool is in operation.

Clean active project Cleans the active project.

If the active project is the main project, its subproject is not cleaned.

Note that this menu is disabled when the build tool is in operation.

Open Folder with Explorer Opens the folder that contains the project file of the selected project with Explorer.

Add Shows the cascading menu to add subprojects and files to the project.

Add Subproject... Opens the Add Existing Subproject dialog box to add the selected subproject to the

project.

Add New Subproject... Opens the Create Project dialog box to add the created subproject to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to the

project.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of the File node. This allows the category name

to be changed.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Set selected project as Active

Project

Sets the selected project to an active project.

Save Project and Development

Tools as Package...

Saves a set of the this product and the project by copying them in a folder.

Paste This menu is always disabled.

Rename You can rename the selected project.

Property Displays the selected project's property on the Property panel.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 153 of 782
Apr 01, 2011

(2) When the Subproject node is selected

Build active project Builds the active project.

Note that this menu is disabled when the build tool is in operation.

Rebuild active project Rebuilds the active project.

Note that this menu is disabled when the build tool is in operation.

Clean active project Cleans the active project.

Note that this menu is disabled when the build tool is in operation.

Open Folder with Explorer Opens the folder that contains the subproject file of the selected subproject with

Explorer.

Add Shows the cascading menu to add subprojects, files, and category nodes to the

project.

Add Subproject... Opens the Add Existing Subproject dialog box to add the selected subproject to the

project.

The subproject cannot be added to another subproject.

Add New Subproject... Opens the Create Project dialog box to add the created subproject to the project.

The subproject cannot be added to another subproject.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to the

project.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of the File node. This allows the category name

to be changed.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Set selected subproject as

Active Project

Sets the selected subproject to an active project.

Remove from Project Removes the selected subproject from the project.

The subproject file itself is not deleted from the file system with this operation.

When the selected subproject is the active project, it cannot be removed from the

project.

Note that this menu is disabled when the build tool is in operation.

Paste This menu is always disabled.

Rename You can rename the selected subproject.

Property Displays the selected subproject's property on the Property panel.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 154 of 782
Apr 01, 2011

(3) When the Build tool node is selected

(4) When the File node is selected

Build Project Builds the selected project (main project or subproject). The subproject is also built

when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Rebuild Project Rebuilds the selected project (main project or subproject). The subproject is also

rebuilt when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Clean Project Cleans the selected project (main project or subproject). The subproject is also

cleaned when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Set to Default Build Option for

Project

Sets the current build option to the standard option for the selected project. When the

subproject is added, it is not set.

When the build option that is different from the standard option is set, its property is

displayed in boldface.

Set Link Order... Opens the Link Order dialog box to display object module files and library files and to

setup their link order.

Note that this menu is disabled when the build tool is in operation.

Create Link Directive File... Opens the Link Directive File Generation dialog box ot create the link directive file.

Property Displays the selected build tool's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The file is

added directly below this node.

The added file can be opened with the application corresponds to the file

extension.The file is added directly below this node.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to the

project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Remove from Project This menu is always disabled.

Copy This menu is always disabled.

Paste Inserts the contents of the clipboard directly below this node.

However, this menu is disabled when the contents of the clipboard exist in the same

project.

Rename This menu is always disabled.

Property Displays the selected category node's property on the Property panel.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 155 of 782
Apr 01, 2011

(5) When a file is selected

Compile Compiles the selected C source file.

Note that this menu is only displayed when a C source file (except for non build-target

file) is selected.

Note that this menu is disabled when the build tool is in operation.

Assemble Assembles the selected assembler source file.

Note that this menu is only displayed when an assembler source file (except for non

build-target file) is selected.

Note that this menu is disabled when the build tool is in operation.

Open Opens the selected file with the application corresponds to the file extension (see "(r)

Run the editor").

Note that this menu is disabled when multiple files are selected.

Open with Internal Editor... Opens the selected file with the Editor panel.

Note that this menu is disabled when multiple files are selected.

Open with Selected

Application...

Opens the Open with Program dialog box to open the selected file with the designated

application.

Note that this menu is disabled when multiple files are selected.

Open Folder with Explorer Opens the folder that contains the selected file with Explorer.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The file is

added to the same level as the selected file.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to the

project. The file is added to the same level as the selected file.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node at the same level as the selected file. You can rename the

category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Remove from Project Removes the selected file from the project.

The removed file is not deleted from the file system in this operation.

Note that this menu is disabled when the build tool is in operation.

Copy Copies the selected file to the clipboard.

When the file name is in editing, the characters of the selection are copied to the

clipboard.

Paste This menu is always disabled.

Rename You can rename the selected file.

The actual file is also renamed.

When the selected file is added to another projects, it is also renamed.

Property Displays the selected file's property on the Property panel.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 156 of 782
Apr 01, 2011

(6) When the Build tool generated files node is selected

(7) When the Startup node is selected

(8) When a category node is selected

Property Displays this node 's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The file is

added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to the

project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Remove from Project This menu is always disabled.

Copy This menu is always disabled.

Paste Inserts the contents of the clipboard directly below this node.

However, this menu is disabled when the contents of the clipboard exist in the same

project.

Rename This menu is always disabled.

Property Displays this node 's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The file is

added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to the

project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be

changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20

levels.

Remove from Project Removes the selected category node from the project.

Note that this menu is disabled when the build tool is in operation.

Copy Copies the selected category node to the clipboard.

When the category name is in editing, the characters of the selection are copied to the

clipboard.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 157 of 782
Apr 01, 2011

Paste Inserts the contents of the clipboard directly below this node.

However, this menu is disabled when the contents of the clipboard exist in the same

project.

When the category name is in editing, the contents of the clipboard are inserted.

Rename You can rename the selected category node.

Property Displays the selected category node's property on the Property panel.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 158 of 782
Apr 01, 2011

This panel is used to display the detailed information on the Build tool node, file, or category node that is selected on

the Project Tree panel by every category and change the settings of the information.

Figure A-3. Property Panel

The following items are explained here.

- [How to open]

- [Description of each area]

- [[Edit] menu (only available for the Project Tree panel)]

- [Context menu]

 Property panel

(2)

(3)

(4)

(1)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 159 of 782
Apr 01, 2011

[How to open]

- On the Project Tree panel, select the Build tool node, file, or category node, and then select [Property] from the

[View] menu or [Property] from the context menu.

Remark When either one of the Build tool node, file, or category node on the Project Tree panel while the Property

panel is opened, the detailed information of the selected node is displayed.

[Description of each area]

(1) Selected node area

Display the name of the selected node on the Project Tree panel.

When multiple nodes are selected, this area is blank.

(2) Detailed information display/change area

In this area, the detailed information on the Build tool node, file, or category node that is selected on the Project

Tree panel is displayed by every category in the list. And the settings of the information can be changed directly.

Mark indicates that all the items in the category are expanded. Mark indicates that all the items are col-

lapsed. You can expand/collapse the items by clicking these marks or double clicking the category name.

Mark indicates that only the hex number is allowed to input in the text box.

See the section on each tab for the details of the display/setting in the category and its contents.

(3) Property description area

Display the brief description of the categories and their contents selected in the detailed information display/

change area.

(4) Tab selection area

Categories for the display of the detailed information are changed by selecting a tab.

In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting on

the tab).

(a) When the Build tool node is selected on the Project Tree panel

- [Common Options] tab

- [Compile Options] tab

- [Assemble Options] tab

- [Link Options] tab

- [ROMization Process Options] tab

- [Hex Convert Options] tab

- [Archive Options] tab

- [Section File Generate Options] tab

- [Dump Options] tab

- [Cross Reference Options] tab

- [Memory Layout Visualization Options] tab

(b) When a file is selected on the Project Tree panel

- [Build Settings] tab (for C source file, assembler source file, link directive file, section file, object file, and

library file)

- [Individual Compile Options] tab (for C source file)

- [Individual Assemble Options] tab (for assembler source file)

- [File Information] tab

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 160 of 782
Apr 01, 2011

(c) When the category node, File node, Build tool generated files node, or Startup node is selected on the

Project Tree panel

- [Category Information] tab

Remark When multiple components are selected on the Project Tree panel, only the tab that is common to all

the components is displayed. If the value of the property is modified, that is taken effect to the selected

components all of which are common to all.

[[Edit] menu (only available for the Project Tree panel)]

[Context menu]

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies them to

the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, Selects all the characters of the selected property.

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies them to

the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, selects all the characters of the selected property.

Reset to Default Restores the configuration of the selected item to the default configuration of the project.

For the [Individual Compile Options] tab and [Individual Assemble Options] tab, restores

to the configuration of the general option.

Reset All to Default Restores all the configuration of the current tab to the default configuration of the project.

For the [Individual Compile Options] tab and [Individual Assemble Options] tab, restores

to the configuration of the general option.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 161 of 782
Apr 01, 2011

[Common Options] tab

This tab shows the detailed information on the build tool categorized by the following and the configuration can be

changed.

(1) [Build Mode]

(2) [Output File Type and Path]

(3) [Frequently Used Options(for Compile)]

(4) [Frequently Used Options(for Assemble)]

(5) [Frequently Used Options(for Link)]

(6) [Frequently Used Options(for ROMization)]

(7) [Frequently Used Options(for Hex Convert)]

(8) [Frequently Used Options(for Section File Generate)]

(9) [Register Mode]

(10) [Flash]

(11) [Device]

(12) [Build Method]

(13) [Version Select]

(14) [Notes]

(15) [Others]

Remark If the property in the [Frequently Used Options] category is changed, the value of the property having the

same name contained in the corresponding tab will be changed accordingly.

Category from [Common Options] Tab Corresponding Tab

[Frequently Used Options(for Compile)] category [Compile Options] tab

[Frequently Used Options(for Assemble)] category [Assemble Options] tab

[Frequently Used Options(for Link)] category [Link Options] tab

[Frequently Used Options(for ROMization)] category [ROMization Process Options] tab

[Frequently Used Options(for Hex Convert)] category [Hex Convert Options] tab

[Frequently Used Options(for Section File Generate)] category [Section File Generate Options] tab

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 162 of 782
Apr 01, 2011

Figure A-4. Property Panel: [Common options] Tab

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 163 of 782
Apr 01, 2011

[Description of each category]

(1) [Build Mode]

The detailed information on the build mode is displayed and the configuration can be changed.

(2) [Output File Type and Path]

The detailed information on output file types and paths are displayed and the configuration can be changed.

Build mode Select the build mode to be used during build.

Note that this property is not applied to [Reset All to Default] from the context menu.

Default DefaultBuild

How to change Select from the drop-down list.

Restriction DefaultBuild Builds with the default build mode that is set

when a new project is created.

Build mode that is added

to the project (other than

DefaultBuild)

Builds with the build mode that is added to the

project (other than DefaultBuild).

Output file type Select the type of the file to be generated during build.

The file type set here is subject to debugging.

For other than library projects, only [Execute Module(ROMization Module)], [Execute

Module(Load Module File)], and [Execute Module(Hex File)] are displayed. However, only

[Execute Module(ROMization Module)] and [Execute Module(Load Module File)] is displayed

when [Yes] is selected in the [Output hex file] property in the [Output File] category from the

[Hex Convert Options] tab. Only [Execute Module(Load Module File)] and [Execute

Module(Hex File)] is displayed when [No] is selected in the [Output ROMized object file]

property in the [Output File] category from the [ROMization Process Options] tab.

For library projects, only [Library] is displayed.

Default - For other than library projects

Execute Module(Load Module File)

- For library projects

Library

How to change Select from the drop-down list.

Restriction Execute

Module(ROMization

Module)

The file to be generated during build is regarded

as the executable format (ROMization module

file).

Execute Module(Load

Module File)

The file to be generated during build is regarded

as the executable format (load module file).

Execute Module(Hex

File)

The file to be generated during build is regarded

as the executable format (hex file).

Library The file to be generated during build is regarded

as the library format (library file).

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 164 of 782
Apr 01, 2011

(3) [Frequently Used Options(for Compile)]

The detailed information on frequently used options for compilation are displayed and the configuration can be

changed.

Output common object

file for various devices

Select whether to output the objects common to the various devices.

This corresponds to the -cn, -cnv850e and -cnv850e2 options of the compiler and assembler.

This property is displayed only for library projects.

Default No(specific device)(None)

How to change Select from the drop-down list.

Restriction Yes(V850 core

common)(-cn)

Outputs an object that can be used commonly in

the V850 core.

The resultant object can be linked with the

V850/V850ES/V850E1/V850E2 core object.

Yes(V850E/ES core

common)(-cnv850e)

Outputs an object that can be used commonly in

the V850E/ES core.

The resultant object can be linked with the

V850ES/V850E1/V850E2 core object.

Yes(V850E2 core

common)(-cnv850e2)

Outputs an object that can be used commonly in

the V850E2 core.

The resultant object can be linked with the

V850E2 core object.

No(specific

device)(None)

The object having information specific to the

specified device is output.

It is possible to use SFR names and interrupts in

the description contained in the library.

Intermediate file output

folder

Specify the path to the folder to which intermediate files are to be output.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 165 of 782
Apr 01, 2011

Type of the optimization Select the type of the optimization for compiling.

This corresponds to the -O* option of the compiler.

Default Default Optimization(None)

How to change Select from the drop-down list.

Restriction Optimize for

Debugging(-Od)

Performs optimization with the debug precedence.

Generates codes emphasizing source debugging,

without putting stress on the ROM capacity and

execution speed.

Default

Optimization(None)

Generates codes emphasizing source debugging.

Performs optimization within a range where source

debugging is not affected.

Standard

Optimization(-Og)

Performs appropriate optimization.

Performs optimization that allows debugging of the C

source in most cases.

Level 1 Advanced

Optimization(-O)

Performs advanced optimization.

Performs optimization emphasizing the ROM

capacity.

Level 2 Advanced

Opt.(Code size

precedence)(-Os)

Performs more advanced optimization (object size

precedence).

Performs the maximum optimization placing the

utmost emphasis on the ROM capacity.

Level 2 Advanced

Opt.(Speed

precedence)(-Ot)

Performs more advanced optimization (execution

speed precedence).

Performs the maximum optimization placing the

utmost emphasis on the execution speed.

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

When this property is omitted, only the standard folder of the compiler is searched. The

reference point of the path is the project folder.

This corresponds to the -I option of the compiler.

The specified include path is displayed as the subproperty.

When the include path is added to the project tree, the path is added to the top of the

subproperties.

Uppercase characters and lowercase characters are not distinguished for the include paths.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 166 of 782
Apr 01, 2011

(4) [Frequently Used Options(for Assemble)]

The detailed information on frequently used options for assembling are displayed and the configuration can be

changed.

System include paths The include paths which the system set during compiling are displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

The system include path is searched with lower priority than the additional include path.

The reference point of the path is the project folder.

This corresponds to the -i option of the compiler.

The include path is displayed as the subproperty.

Default System include paths[number of defined items]

How to change Edit by the System Include Path Order dialog box which appears when

clicking the [...] button.

Restriction Changes not allowed (Only the specified order of the include paths can be

changed.)

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=def" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

When this property is omitted, only the standard folder of the assembler is searched. The

reference point of the path is the project folder.

This corresponds to the -I option of the assembler.

The specified include path is displayed as the subproperty.

When the include path is added to the project tree, the path is added to the top of the

subproperties.

Uppercase characters and lowercase characters are not distinguished for the include paths.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified. However, this also includes the number of

paths used by linked tools.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 167 of 782
Apr 01, 2011

(5) [Frequently Used Options(for Link)]

The detailed information on frequently used options for linking are displayed and the configuration can be changed.

This category is not displayed for library projects.

System include paths The include paths which the system set during assembling are displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

The system include path is searched with lower priority than the additional include path.

The reference point of the path is the project folder.

This corresponds to the -i option of the assembler.

The include path is displayed as the subproperty.

Default System include paths[number of defined items]

How to change Edit by the System Include Path Order dialog box which appears when

clicking the [...] button.

Restriction Changes not allowed (Only the specified order of the include paths can be

changed.)

Macro definition Specifies the macro name to be defined.

Specify in the format "macro name=defined value", with one macro name per line. The "=def"

part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the assembler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Using libraries Specify the library file name (libstring.a) to be used other than the standard libraries.

Specify only the "string" part (example: if you specify "abc", "libabc.a" is assumed to be

specified).

Add one file in one line.

The library files are searched from the library path.

This corresponds to the -l option of the linker.

The specified library file name is displayed as the subproperty.

Default Using libraries[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 63 characters

Up to 256 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 168 of 782
Apr 01, 2011

(6) [Frequently Used Options(for ROMization)]

The detailed information on frequently used options for ROMization are displayed and the configuration can be

changed.

This category is not displayed for library projects.

Additional library paths Specify the search folder to be used other than the standard libraries.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

The library files are searched from the library path. If a relative path is specified, the reference

point of the path is the project folder.

This corresponds to the -L option of the linker.

The specified library path name is displayed as the subproperty.

Default Additional library paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 256 items can be specified.

Output folder Specify the folder for saving the module that is generated.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Output file name Specify the load module file name to be generated.

The extension other than ".out" cannot be specified. If the extension is omitted, ".out" is

automatically added.

This corresponds to the -o option of the linker.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

Default %ProjectName%.out

How to change Directly enter to the text box.

Restriction Up to 259

characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 169 of 782
Apr 01, 2011

(7) [Frequently Used Options(for Hex Convert)]

The detailed information on frequently used options for hex conversion are displayed and the configuration can be

changed.

This category is not displayed for library projects.

Output ROMized object

file

Select whether to output the ROMized object file.

This corresponds to the -Xr option of the compiler and the -lr option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xr -lr) Outputs the ROMized object file.

No Does not output the ROMized object file.

Output folder for

ROMized object file

Specify the folder for saving the ROMized object file.

This corresponds to the -o option of the ROMization processor.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Xr -lr)] in the [Output ROMized object file] property

is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

ROMized object file

name

Specify the ROMized object file name.

The extension other than ".out" cannot be specified. If the extension is omitted, ".out" is

automatically added.

This corresponds to the -o option of the ROMization processor.

This property is displayed only when [Yes(-Xr -lr)] in the [Output ROMized object file] property

is selected.

Default romp.out

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output hex file Select whether to output the hex file.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs the hex file.

No Does not output the hex file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 170 of 782
Apr 01, 2011

(8) [Frequently Used Options(for Section File Generate)]

The detailed information on frequently used options for section file generation are displayed and the configuration

can be changed.

Output folder for hex file Specify the folder for saving the hex file.

This corresponds to the -o option of the hex converter.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

Hex file name Specify the hex file name.

This corresponds to the -o option of the hex converter.

The extension can be freely specified.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %ProjectName%.hex

How to change Directly enter to the text box.

Restriction Up to 259 characters

Hex file format Select the format of the hex file to be generated.

This corresponds to the -f option of the hex converter.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default Intel expanded hex format(-fI)

How to change Select from the drop-down list.

Restriction Intel expanded hex format(-

fI)

Specifies the Intel expanded hex format as

the format of the hex file to be generated.

Motorola S type

format(standard address)(-

fS)

Specifies the Motorola S type format

(standard address) as the format of the hex

file to be generated.

Motorola S type format(32-

bit address)(-fs)

Specifies the Motorola S type format (32-bit

address) as the format of the hex file to be

generated.

Expanded Tektronix hex

format(-fT)

Specifies the expanded Tektronix hex format

as the format of the hex file to be generated.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 171 of 782
Apr 01, 2011

(9) [Register Mode]

The detailed information on register modes are displayed and the configuration can be changed.

Use section file

generator

Select whether to use the section file generator.

Default No

How to change Select from the drop-down list.

Restriction Yes Uses the section file generator.

The section information file will be removed from the rapid

build target.

No Does not use the section file generator.

Output folder for section

file

Specify the folder for saving the section file.

This corresponds to the -o option of the section file generator.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Use section file generator] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

Section file name Specify the section file name.

The extension other than ".sf" cannot be specified. If the extension is omitted, ".sf" is

automatically added.

This corresponds to the -o option of the section file generator.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes] in the [Use section file generator] property is

selected.

Default %ProjectName%.sf

How to change Directly enter to the text box.

Restriction Up to 259 characters

Select register mode Selects the register mode (number of registers used by the C compiler)Note of the software

register bank function.

This corresponds to the -reg option of the compiler and linker.

Default 32-register mode(None)

How to change Select from the drop-down list.

Restriction 32-register mode(None) Sets the register mode to 32.

26-register mode(-reg26) Sets the register mode to 26.

22-register mode(-reg22) Sets the register mode to 22.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 172 of 782
Apr 01, 2011

Note Register modes provided by the C compiler are shown below.

(10)[Flash]

The detailed information on the flash are displayed and the configuration can be changed.

Use mask registers Select whether to use the r20 register and the r21 register as mask registers.

This corresponds to the -Xmask_reg option of the compiler, the -m option of the assembler,

and the -mask_reg option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xmask_reg,-m, -

mask_reg)

Outputs codes, assuming that an 8-bit mask

value, 0xff, is set to r20 and a 16-bit mask value,

0xffff, is set to r21.

When [32-register mode(None)] in the [Select

register mode] property is selected, the library

for a mask register function is referenced.

No Does not use the mask register function.

Register Mode Working Registers Registers for Register Variables

22-register mode r10 to r14 r25 to r29

26-register mode r10 to r16 r23 to r29

32-register mode r10 to r19 r20 to r29

Output flash object file Selects whether to generate the object file for flash.

This must be specified for both the flash area and the boot area.

Default No

How to change Select from the drop-down list.

Restriction Yes Generates the object file for flash.

No Does not generate the object file for flash.

Branch table address Specify the start address of the branch table.

Specify the same address for both the flash area and the boot area.

This corresponds to the -ext_table option of the linker.

This property is displayed only when [Yes] in the [Output flash object file] property is selected.

Default 0x0

How to change Directly enter to the text box.

Restriction 0x0 to 0xffffffff (hexadecimal number)

Object file type Select the type of the object file to be generated.

This corresponds to the -Wa, -zf option of the compiler, the -zf option of the assembler, and the

-zf option of the linker.

This property is displayed only when [Yes] in the [Output flash object file] property is selected.

Default Boot area object file (None)

How to change Select from the drop-down list.

Restriction Boot area object file (None) Generates a boot area object file.

Flash area object file(-Wa, -zf) Generates a flash area object file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 173 of 782
Apr 01, 2011

(11) [Device]

The detailed information on the device is displayed and the configuration can be changed.

(12)[Build Method]

The detailed information on the build method is displayed and the configuration can be changed.

Boot area object file

name

Specifies the name of the boot area object file.

This corresponds to the -zf option of the linker.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

This property is displayed only when [Flash area object file(-Wa, -zf)] in the [Object file type]

property is selected.

Default Blank

How to change Directly enter to the text box or edit by the Specify Boot Area Object File

dialog box which appears when clicking the [...] button.

Restriction Up to 259 characters

256 MB mode In the case of a device with 256 MB of physical address space, select whether to create a

program that uses an address space of more than 64 MB and up to 256 MB.

This corresponds to the -256M option of the compiler, assembler, and linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-X256M) Treats the memory space as having 256 MB.

No Treats the memory space as having 64 MB.

Programmable I/O area

start address

Specify the use of the programmable I/O area and the start address.

The address is aligned with 16 KB.

This corresponds to the -Xbpc option of the compiler and the -bpc option of the assembler.

Values saved in versions of CubeSuite below 1.20 may be outside the allowed setting range. If

the values set outside the allowed range are restored, this property is blank.

This property is not displayed when the device does not have a programmable I/O function.

Default Blank

How to change Directly enter to the text box.

Restriction Hexadecimal number (depends on the selected device)

Security ID Specify the security ID of an on-chip flash memory device.

This corresponds to the -Xsid option of the linker.

This property is not displayed when the device does not have a security ID function.

Default 0xffffffffffffffffffff

How to change Directly enter to the text box.

Restriction 0x00000000000000000000 to 0xffffffffffffffffffff

(20-digit (10-byte) hexadecimal number)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 174 of 782
Apr 01, 2011

(13)[Version Select]

The detailed information on the build tool version is displayed and the configuration can be changed.

(14)[Notes]

The detailed information on notes is displayed and the configuration can be changed.

Handling the source file

includes non-existing file

Selects whether to recompile/assemble the source file if there are no files that include it.

Default Re-compile/assemble the source file

How to change Select from the drop-down list.

Restriction Re-compile/assemble the

source file

Recompiles/assembles the source file if there

are no files that include it.

Ignore re-compiling/

assembling the source file

Does not recompile/assemble the source file

if there are no files that include it.

Using compiler package

install folder

Display the folder in which the compiler package to be used is installed.

Default Install folder name

How to change Changes not allowed

Using compiler package

version

Select the version of the compiler package to be used.

This setting is common to all the build modes.

If you have selected a compiler package that has not been installed (e.g. if you open a project

created in another execution environment), then that version is also displayed.

If the options change depending on the compiler package, then the display of the build tool's

properties will change according to the selected version.

Default Always latest version which was installed

How to change Select from the drop-down list.

Restriction Always latest version

which was installed

Uses the latest version in the installed compiler

packages.

Versions of the

installed compiler

packages

Uses the selected version in the compiler package.

Latest compiler package

version which was

installed

Display the version of the compiler package to be used when [Always latest version which was

installed] is selected in the [Using compiler package version] property.

This setting is common to all the build modes.

This property is displayed only when [Always latest version which was installed] in the [Using

compiler package version] property is selected.

Default The latest version of the installed compiler packages

How to change Changes not allowed

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 175 of 782
Apr 01, 2011

(15)[Others]

Other detailed information on the build tool are displayed and the configuration can be changed.

Memo Add memos to the build tool.

Add one item in one line.

This setting is common to all the build modes.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Output message format Specify the format of the message being built.

This applies to the messages output by the build tool to be used, and commands added by

plugins.

It does not apply to the output messages of commands specified in the [Commands executed

before build processing] or [Commands executed after build processing] property.

The following macro names are available as embedded macros.

%Program%: Replaces with the program name under execution.

%Options%: Replaces with the command line option under build execution.

%FileName%: Replaces with the file name being built.

If this is blank, it is assumed that "%Program% %Options%" has been specified.

Default %FileName%

How to change Directly enter to the text box (up to 256 characters) or select from the drop-

down list.

Restriction %FileName% Displays the file name in the output message.

%FileName%: %Options% Displays the file name and command line

options in the output message.

%Program% %Options% Displays the program name and command

line options in the output message.

Format of build option list Specify the display format of the build option list (see "2.17.3 Display a list of build options").

This applies to the options of the build tool to be used, and commands added by plugins.

It does not apply to the options of commands specified in the [Commands executed before

build processing] or [Commands executed after build processing] property.

The following macro names are available as embedded macros.

%Program%: Replaces with the program name under execution.

%Options%: Replaces with the command line option under build execution.

%FileName%: Replaces with the file name being built.

If this is blank, it is assumed that "%FileName% : %Program% %Options%" has been

specified.

Default %FileName% : %Program% %Options%

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 256 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 176 of 782
Apr 01, 2011

Temporary folder Specify the folder to which the temporary files generated by each command included in the

build tool during execution are saved.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

If this is blank, it is treated as if the project folder is specified.

Default Blank

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 200 characters

Commands executed

before build processing

Specify the command to be executed before build processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

The specified command is displayed as the subproperty.

Default Commands executed before build processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after build processing

Specify the command to be executed after build processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

The specified command is displayed as the subproperty.

Default Commands executed after build processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 177 of 782
Apr 01, 2011

[Compile Options] tab

This tab shows the detailed information on the compiler categorized by the following and the configuration can be

changed.

(1) [Debug Information]

(2) [Optimization]

(3) [Optimization(Details)]

(4) [Preprocess]

(5) [Message]

(6) [Kanji Code]

(7) [C Language]

(8) [Output Code]

(9) [Output File]

(10) [Input File]

(11) [External Register]

(12) [Others]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 178 of 782
Apr 01, 2011

Figure A-5. Property Panel: [Compile Options] Tab

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 179 of 782
Apr 01, 2011

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

(2) [Optimization]

The detailed information on the optimization are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by outputting symbol information for the

source debugger.

This corresponds to the -g option of the compiler.

Default Yes(-g)

How to change Select from the drop-down list.

Restriction Yes(-g) Outputs symbol information for the source debugger.

No Does not output symbol information for the source debug-

ger.

Type of the optimization Select the type of the optimization for compiling.

This corresponds to the -O* option of the compiler.

Default Default Optimization(None)

How to change Select from the drop-down list.

Restriction Optimize for

Debugging(-Od)

Performs optimization with the debug precedence.

Generates codes emphasizing source debugging,

without putting stress on the ROM capacity and exe-

cution speed.

Default Optimiza-

tion(None)

Generates codes emphasizing source debugging.

Performs optimization within a range where source

debugging is not affected.

Standard Optimiza-

tion(-Og)

Performs appropriate optimization.

Performs optimization that allows debugging of the C

source in most cases.

Level 1 Advanced

Optimization(-O)

Performs advanced optimization.

Performs optimization emphasizing the ROM capac-

ity.

Level 2 Advanced

Opt.(Code size pre-

cedence)(-Os)

Performs more advanced optimization (object size

precedence).

Performs the maximum optimization placing the

utmost emphasis on the ROM capacity.

Level 2 Advanced

Opt.(Speed prece-

dence)(-Ot)

Performs more advanced optimization (execution

speed precedence).

Performs the maximum optimization placing the

utmost emphasis on the execution speed.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 180 of 782
Apr 01, 2011

(3) [Optimization(Details)]

The detailed information on the optimization are displayed and the configuration can be changed.

Save memory of preopti-

mizer

Select whether to save the memory usage amount of the preoptimizer during compiling.

Specify this property when the memory of the machine is insufficient and compile processing

cannot be completed normally.

This corresponds to the -Wp,-D option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wp,-D) Saves the memory usage amount of the preoptimizer dur-

ing compiling.

However, the compiling speed decreases.

No Does not specify saving the memory usage amount of the

preoptimizer during compiling.

Save memory of

machine-dependent opti-

mization module

Select whether to save the memory usage amount of the machine-dependent optimization

module during compiling.

Specify this property when the memory of the machine is insufficient and compile processing

cannot be completed normally.

This corresponds to the -Wi,-D option of the compiler.

This property is not displayed when any of [Optimize for Debugging(-Od)], [Default Optimiza-

tion(None)], or [Standard Optimization(-Og)] in the [Type of the optimization] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wi,-D) Saves the memory usage amount of the machine-depen-

dent optimization module during compiling.

However, the compiling speed decreases.

No Does not specify saving the memory usage amount of the

machine-dependent optimization module during compiling.

Perform inline expansion Select whether to perform inline expansion.

This corresponds to the -Wp,-inline option of the compiler.

Default Expansion(None)

How to change Select from the drop-down list.

Restriction Expansion(None) Performs inline expansion.

Expansion only

‘inline‘ function(-

Wp,-inline)

Performs inline expansion of only a function for which

#pragma inline is specified.

No Expansion(-

Wp,-no_inline)

Does not specify inline expansion of all functions,

including the function for which #pragma inline is

specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 181 of 782
Apr 01, 2011

Maximum code size for

performing inline expan-

sion

Specify the maximum size in the intermediate language of the function for performing inline

expansion.

For the function greater than the specified size, inline expansion is not performed.

This corresponds to the -Wp,-N option of the compiler.

As to a guide value for the size, see the function information file output by specifying the [Out-

put function information] property.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline

expansion] property is selected.

Default - When [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the [Type of the

optimization] property is selected

128

- When other than [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the

[Type of the optimization] property is selected

24

How to change Directly enter to the text box.

Restriction 0 to 9999 (decimal number)

Maximum stack size for

performing inline expan-

sion

Specify the maximum value (bytes) of the stack size in the intermediate language of the func-

tion for performing inline expansion.

For the function greater than the specified size, inline expansion is not performed.

This corresponds to the -Wp,-G option of the compiler.

As to a yardstick for the size, see the function information file output by specifying the [Output

function information] property.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline

expansion] property is selected.

Default 32

How to change Directly enter to the text box.

Restriction 0 to 9999 (decimal number)

Expand static function Specify whether to perform inline expansion against the static function that has been refer-

enced only once.

This corresponds to the -Wp,-S option of the compiler.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline

expansion] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wp,-S) Performs inline expansion against the static function that

has been referenced only once.

No Does not specify inline expansion against the static func-

tion that has been referenced only once.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 182 of 782
Apr 01, 2011

Output function informa-

tion

Specify whether to output the code size and stack size in the intermediate language of each

function to a file.

Information that is output will serve as a yardstick when specifying values in the [Maximum

code size for performing inline expansion] property and [Maximum stack size for performing

inline expansion] property.

This corresponds to the -Wp,-l option of the compiler.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline

expansion] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wp,-l) Outputs the code size and stack size in the intermediate

language of each function to a file.

No Does not specify the output of the code size and stack size

in the intermediate language of each function to a file.

Function information file

name

Specify the file name for outputting the code size and stack size in the intermediate language of

each function.

This corresponds to the -Wp,-l option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is assumed that "%BuildModeName%\FunctionData.txt" has been specified.

This property is not displayed when [No] in the [Output function information] property is

selected.

Default %BuildModeName%\FunctionData.txt

How to change Directly enter to the text box or edit by the Specify Function Information File

dialog box which appears when clicking the [...] button.

Restriction Up to 259 characters

Loop expansion Specify whether to expand the loops such as "for" and "while".

This corresponds to the -Wo,-Ol,-Xlo option of the compiler.

This property is displayed only when [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the

[Type of the optimization] property is selected.

Default Yes(Adjust automatically unrolling number)(-Wo,-Ol)

How to change Select from the drop-down list.

Restriction Yes(Adjust auto-

matically unrolling

number)(-Wo,-Ol)

Performs loop expansions so that the code size is

minimized while keeping the number of times to

expand below the value specified in the [Maximum

number of loop expansions] property.

Yes(Constant

unrolling number)(-

Wo,-Ol,-Xlo)

Performs loop expansions for a number of times spec-

ified in the [Maximum number of loop expansions]

property.

No(-Wo,-Ol0) Does not specify loop expansion.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 183 of 782
Apr 01, 2011

Maximum number of

loop expansions

Specify the maximum number of times to expand the loops such as "for" and "while".

This corresponds to the -Wo,-Ol option of the compiler.

This property is not displayed when [No(-Wo,-Ol0)] in the [Loop expansion] property is

selected.

Default 4

How to change Directly enter to the text box.

Restriction 0 to 999 (decimal number)

Sort external variables Select whether to rearrange external variables allocated to a section other than const/sconst

sequentially, starting from the largest alignment size.

This corresponds to the -Wo,-Op option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wo,-Op) Rearranges external variables allocated to a section other

than const/sconst sequentially, starting from the largest

alignment size.

No Does not specify the rearrangement of external variables

starting from the largest alignment size.

Intermediate language

file name for external

variable sorting

Specify the name of the intermediate language file (.ic) created after sorting external variables.

Specify this property when sorting all external variables included in the project instead of sort-

ing external variables within each source file.

This corresponds to the -Wo,-Op option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

This property is not displayed when [No] in the [Sort external variables] property is selected.

Default Blank

How to change Directly enter to the text box or edit by the Specify Intermediate Language

File for External Variable Sorting dialog box which appears when clicking the

[...] button.

Restriction Up to 259 characters

Output branch instruc-

tions with code size pri-

ority

Select whether to arrange and output branch instructions, giving precedence to the code size.

This corresponds to the -Wo,-XFo option of the compiler.

This property is not displayed when [Optimize for Debugging(-Od)] or [Default Optimiza-

tion(None)] in the [Type of the optimization] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wo,-XFo) Arranges and outputs branch instructions, giving pre-

cedence to the code size.

No Outputs a code that the debug information is given

priority for branch instructions.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 184 of 782
Apr 01, 2011

(4) [Preprocess]

The detailed information on the preprocess are displayed and the configuration can be changed.

Pack alignment Specify whether to inhibit the optimization that aligns branch destination labels.

This corresponds to the -Wi,-P option of the compiler.

This property is displayed only when [Level 1 Advanced Optimization(-O)], [Level 2 Advanced

Opt.(Code size precedence)(-Os)], or [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the

[Type of the optimization] property is selected.

However, when [Level 1 Advanced Optimization(-O)] or [Level 2 Advanced Opt.(Code size pre-

cedence)(-Os)] is selected, this function is included. Therefore, [Yes(-Wi,-P)] is always

selected.

Default - When [Level 1 Advanced Optimization(-O)] or [Level 2 Advanced

Opt.(Code size precedence)(-Os)] in the [Type of the optimization] property

is selected

[Yes(-Wi,-P)]

- When [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the [Type of the

optimization] property is selected

No

How to change Select from the drop-down list.

Restriction Yes(-Wi,-P) Inhibits the optimization that aligns branch destination

labels.

The size of the execution code can be reduced.

No Does not specify the inhibition of the optimization that

aligns branch destination labels.

Perform advanced opti-

mization

Specify whether to execute the strongest optimization through strict data flow analysis.

Specify this property to perform the stronger optimization when performing the advanced opti-

mization.

This corresponds to the -Wi,-O4 option of the compiler.

This property is displayed only when [Level 1 Advanced Optimization(-O)], [Level 2 Advanced

Opt.(Code size precedence)(-Os)], or [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the

[Type of the optimization] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wi,-O4) Executes the strongest optimization through strict data flow

analysis.

However, the compiling speed significantly decreases.

No Does not specify advanced optimization.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 185 of 782
Apr 01, 2011

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

When this property is omitted, only the standard folder of the compiler is searched. The refer-

ence point of the path is the project folder.

This corresponds to the -I option of the compiler.

The specified include path is displayed as the subproperty.

When the include path is added to the project tree, the path is added to the top of the

subproperties.

Uppercase characters and lowercase characters are not distinguished for the include paths.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of

paths used by linked tools.

System include paths The include paths which the system set during compiling are displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

The system include path is searched with lower priority than the additional include path.

The reference point of the path is the project folder.

This corresponds to the -i option of the compiler.

The include path is displayed as the subproperty.

Default System include paths[number of defined items]

How to change Edit by the System Include Path Order dialog box which appears when

clicking the [...] button.

Restriction Changes not allowed (Only the specified order of the include paths can be

changed.)

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 186 of 782
Apr 01, 2011

Macro undefinition Specify the macro name to be undefined.

Specify in the format of "macro name", with one macro name per line.

This corresponds to the -U option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro undefinition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Limit of number of macro Specify the upper limit for the number of macro identifiers.

This corresponds to the -Xm option of the compiler.

Default 2047

How to change Directly enter to the text box.

Restriction 1 to 999999 (decimal number)

Use C++ style comment Specify whether to enable C++ comment style (from "//" to the end of the line), in addition to

regular comments.

This corresponds to the -Xcxxcom option of the compiler.

Default Yes(-Xcxxcom)

How to change Select from the drop-down list.

Restriction Yes(-Xcxxcom) Enables C++ comment style (from "//" to the end of the

line), in addition to regular comments.

No Disables C++ comment style (from "//" to the end of the

line).

Include comments in

preprocessor output file

Specify whether to include the comments of the source program in the output of the C language

source program's preprocessing.

This corresponds to the -C option of the compiler.

This property is not displayed when [No] in the [Output preprocessed source file] property in the

[Output File] category is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-C) Includes the comments of the source program in the output

of the C language source program's preprocessing.

No Does not include the comments of the source program in

the output of the C language source program's preprocess-

ing.

Use trigraph Specify whether to replace trigraph sequences.

A trigraph is a sequence of 3 characters replaced with a single character, defined in the ANSI

standard.

This corresponds to the -t option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-t) Replaces trigraph sequences.

No Does not replace trigraph sequences.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 187 of 782
Apr 01, 2011

(5) [Message]

The detailed information on messages are displayed and the configuration can be changed.

Verbose mode Select whether to display the execution status of the compiler to the Output panel during build.

This corresponds to the -v option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the compiler during build.

No Does not display the execution status of the compiler dur-

ing build.

Warning level Select the warning display level under compiling.

This corresponds to the -w option of the compiler.

Default Level 1(None)

How to change Select from the drop-down list.

Restriction No Output(-w) Does not output warning messages.

Level 1(None) Outputs normal warning messages.

Level 2(-w2) Outputs detailed warning messages.

Limit of number of error Specify the maximum number of error messages to be output.

This corresponds to the -err_limit option of the compiler.

Default 15

How to change Directly enter to the text box.

Restriction 15 to 50 (decimal number)

Displayed warning mes-

sage

Specify the warning message number to be displayed regardless of the setting of the [Warning

level] property.

If specifying multiple warning messages, delimit the message numbers with "," (comma)

(example: 2042,2107). Also, the range can be set using "-" (hyphen) (example: 2222-

2554,2699-2782).

If the same number is specified in the [Undisplayed warning message] property and this prop-

erty, the number specified in this property takes precedence.

This corresponds to the -won option of the compiler.

Default Blank

How to change Directly enter to the text box or edit by the Build Tool Warning Messages Set-

tings dialog box which appears when clicking the [...] button.

Restriction Up to 2048 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 188 of 782
Apr 01, 2011

(6) [Kanji Code]

The detailed information on kanji codes are displayed and the configuration can be changed.

(7) [C Language]

The detailed information on C language are displayed and the configuration can be changed.

Undisplayed warning

message

Specify the warning message number to not be displayed regardless of the setting of the

[Warning level] property.

If specifying multiple warning messages, delimit the message numbers with "," (comma)

(example: 2042,2107). Also, the range can be set using "-" (hyphen) (example: 2222-

2554,2699-2782).

If the same number is specified in the [Displayed warning message] property and this property,

the number specified in the [Displayed warning message] property takes precedence.

This corresponds to the -woff option of the compiler.

Default Blank

How to change Directly enter to the text box or edit by the Build Tool Warning Messages Set-

tings dialog box which appears when clicking the [...] button.

Restriction Up to 2048 characters

Kanji character code of

source

Specify the kanji code to be used for Japanese comments and character strings in the input file.

This corresponds to the -Xk option of the compiler.

Default Shift_JIS(None)

How to change Select from the drop-down list.

Restriction Shift_JIS(None) Interprets the kanji code of the source as Shift_JIS.

None(-Xk=none) Interprets the source as not containing kanji codes.

The code is not guaranteed.

EUC-JP(-Xk=euc) Interprets the kanji code of the source as EUC-JP.

Kanji character code for

target

Specify the kanji code to be converted into for Japanese character strings.

Set this property if you want to change the kanji code used during application development in

the target.

This corresponds to the -Xkt option of the compiler.

Default None(None)

How to change Select from the drop-down list.

Restriction None(None) Does not convert the kanji code of the target.

The code is not guaranteed.

Shift_JIS(-Xkt=sjis) Converts the kanji code of the target into Shift_JIS.

EUC-JP(-Xkt=euc) Converts the kanji code of the target into EUC-JP.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 189 of 782
Apr 01, 2011

Sign of bit field Select whether int type bit fields without a type specifier (signed or unsigned) are handled as

signed or unsigned.

This corresponds to the -Xbitfield option of the compiler.

Default signed

How to change Select from the drop-down list.

Restriction signed Handles int type bit fields without a type specifier as

signed.

unsigned(-Xbit-

field=unsigned)

Handles int type bit fields without a type specifier as

unsigned.

Sign of char Select whether char type bit fields without a type specifier (signed or unsigned) are handled as

signed or unsigned.

This corresponds to the -Xchar option of the compiler.

Default signed

How to change Select from the drop-down list.

Restriction signed Handles char type without a type specifier as

signed.

unsigned(-

Xchar=unsigned)

Handles char type without a type specifier as

unsigned.

Enumeration type Specify which integer type matches with the enumeration type.

This corresponds to the -Xenum_type option of the compiler.

Default int(None)

How to change Select from the drop-down list.

Restriction int(None) Matches int type with the enumeration type.

signed char(-

Xenum_type=char)

Matches signed char type with the enumeration

type.

unsigned char(-

Xenum_type=uchar)

Matches unsigned char type with the enumeration

type.

short(-

Xenum_type=short)

Matches short type with the enumeration type.

unsigned short(-

Xenum_type=ushort)

Matches unsigned short type with the enumeration

type.

Compile strictly accord-

ing to ANSI standards

Specify whether to apply the ANSI standard to the compiler processing strictly and display error

and warning messages for descriptions that violate the standard.

This corresponds to the -ansi option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-ansi) Applies the ANSI standard to the compiler processing

strictly and displays error and warning messages for

descriptions that violate the standard.

No Confers compatibility with the conventional C language

specifications and continues the compiler processing after

warning message is output.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 190 of 782
Apr 01, 2011

(8) [Output Code]

The detailed information on output codes are displayed and the configuration can be changed.

Use expansion of

CC78K

Select whether to enable the expansion functions compatible with the 78K microcontrollers C

compiler CC78K.

This corresponds to the -cc78k option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-cc78k) Enables the expansion functions compatible with the

CC78K.

No Disables the expansion functions compatible with the

CC78K.

Perform strictly integer

operation

Specify whether to use runtime libraries ___mul/___mulu, ___div/___divu or mul, mulu, div,

divu instructions without using the mulh and divh instructions, for integers of 16-bit data or less,

in order to execute multiply and divide instructions strictly according to the ANSI standard.

This corresponds to the -Xe option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xe) Uses runtime libraries ___mul/___mulu or ___div/___divu

for integers of 16-bit data or less.

No Uses runtime libraries mulh or divh instructions for integers

of 16-bit data or less.

Treat tentative definition

as definition

Specify whether to treat tentative definitions of variables as definitions.

This corresponds to the -Xdefvar option of the compiler.

Default Yes(-Xdefvar)

How to change Select from the drop-down list.

Restriction Yes(-Xdefvar) Treats tentative definition of variables as definition.

No Does not treat tentative definition of variables as definition.

Size threshold of sdata/

sbss section alloca-

tion(Bytes)

Specify the upper limit size of the data length allocated to the .sdata/.sbss sections.

However, the data for which the .sdata/.sbss sections are specified with the #pragma section

directive or the section file is allocated to the .sdata/.sbss sections regardless of its size.

This corresponds to the -G option of the compiler.

If this property is changed, the value of the [Size threshold of sdata/sbss section alloca-

tion(Bytes)] property in the [Others] category from the [Assemble Options] tab will be changed

accordingly.

Default Blank

How to change Directly enter to the text box.

Restriction 0 to 32767 (decimal number)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 191 of 782
Apr 01, 2011

Allocate data to sconst

section

Specify whether to allocate const attribute data and character string literals to the .sconst sec-

tion.

This corresponds to the -Xsconst option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xsconst) Allocates const attribute data and character string literals to

the .sconst section.

No Allocates const attribute data and character string literals to

the .const section.

Size threshold of sconst

section allocation(Bytes)

Specify the upper limit size (bytes) for allocating const attribute data and character string liter-

als to the .const section.

However, the data for which the .sconst sections are specified with the #pragma section direc-

tive or the section file is allocated to the .sconst sections regardless of its size.

This corresponds to the -Xsconst option of the compiler.

This property is not displayed when [No] in the [Allocate data to sconst section] property is

selected.

Default 32767

How to change Directly enter to the text box.

Restriction 0 to 32767 (decimal number)

Use prologue/epilogue

library

Specify whether to perform prologue/epilogue processing of functions through runtime library

calls.

This corresponds to the -Xpro_epi_runtime option of the compiler.

Default Auto(None)

How to change Select from the drop-down list.

Restriction Auto(None) In the [Type of the optimization] property in the

[Optimization] category, corresponds to [No(-

Xpro_epi_runtime=off)] when [Level 2 Advanced

Opt.(Speed precedence)(-Ot)] is selected, [Yes(-

Xpro_epi_runtime=on)] when any of other items is

selected.

No(-

Xpro_epi_runtime=off)

Does not perform prologue/epilogue processing of

functions through runtime library calls.

Yes(-

Xpro_epi_runtime=on)

Performs prologue/epilogue processing of functions

through runtime library calls.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 192 of 782
Apr 01, 2011

Output code of switch

statement

Specify the code output mode for switch statements in programs.

This corresponds to the -Xcase option of the compiler.

Default Auto(None)

How to change Select from the drop-down list.

Restriction Auto(None) Automatically judges the format considered opti-

mum by the compiler.

if-else(-Xcase=ifelse) Outputs the code in the same format as the if-else

statement along a string of case statements in pro-

grams.

Because the case statements are compared start-

ing from the top, unnecessary comparison can be

reduced and the execution speed can be increased

if the case statement that most often matches is

written first or if the number of labels is few.

Binary search(-

Xcase=binary)

Outputs the code in the binary search format for

switch statements in programs.

Because a matching case statement is searched by

using a binary search algorithm, when many labels

are used, any case statement can be found at

almost the same speed.

Table jump(-

Xcase=table)

Outputs the code in the table jump format for switch

statements in programs.

References a table indexed on the values in the

case statements, and selects and processes case

labels from the switch statement values. Code will

branch to all the case statements with about the

same speed. If case values are not used in suc-

cession, an unnecessary area is created.

Label size of switch table Specify the size per label of the branch table for the case labels in switch statements.

This corresponds to the -Xword_switch option of the compiler.

Default 2 bytes(None)

How to change Select from the drop-down list.

Restriction 2 bytes(None) Generates one 2-byte branch table per case label

in a switch statement.

4 bytes(-

Xword_switch)

Generates one 4-byte branch table per case label

in a switch statement.

Select this item when a compile error occurs

because the switch statement is long.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 193 of 782
Apr 01, 2011

Structure packing Selects the value of the structure packing.

The specified alignment can be used without aligning structure members according to the type

of each member. The data size can be reduced but the code size increases.

This corresponds to the -Xpack option of the compiler.

Default 8 bytes(None)

How to change Select from the drop-down list.

Restriction 1 byte(-Xpack=1) Aligns structure members on a 1-byte boundary.

2 bytes(-Xpack=2) Aligns structure members on a 2-byte boundary.

4 bytes(-Xpack=4) Aligns structure members on a 4-byte boundary.

8 bytes(None) Aligns structure members on a 8-byte boundary.

Perform inline expan-

sion of strcpy/strcmp

Selsect whether to perform inline expansion of strcpy() or strcmp() function calls, with regarding

the alignment conditions of the array (including character strings) and the structure as 4 bytes.

This improves the execution speed of the object but it also increases the code size.

This corresponds to the -Xi option of the compiler.

This property is displayed only when [8 bytes(None)] in the [Structure packing] property is

selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xi) Performs inline expansion of strcpy() or strcmp() function

calls, with regarding the alignment conditions of the array

(including character strings) and the structure as 4 bytes.

No Does not perform inline expansion of strcpy() or strcmp()

function calls.

Perform pointer byte

access

Select whether to perform an indirect address access of structure in byte units.

Use this property if a limit is exceeded when the structure packing function is used.

This corresponds to the -Xbyte option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xbyte) Performs an indirect address access of structure in byte

units.

No Does not perform an indirect address access of structure in

byte units.

Output comment to

assembly language

source file

Select whether to output a C source program as a comment to the assembler source file to be

output.

This corresponds to the -Xc option of the compiler.

This property is not displayed when [Yes(-Fs)] in the [Output assemble file] property or [Yes(-

Fv)] in the [Output an assemble list] property is selected in the [Output File] category.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xc) Outputs a C source program as a comment to the assem-

bler source file.

No Does not output a C source program as a comment to the

assembler source file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 194 of 782
Apr 01, 2011

(9) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Use jmp instruction for

branch instruction of

interruption

Select whether to use the jmp instruction for interrupt functions defined in C language.

This corresponds to the -Xj option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xj) Uses the jmp instruction for interrupt functions defined in C

language.

No Uses the jr instruction for interrupt functions defined in C

language.

Prohibit the operation

that replaces word with

bit instructions

Select whether to prohibit replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit manipula-

tion instructions (set1, clr1, tst1, and not1).

This corresponds to the -Xno_word_bitop option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xno_word_bitop) Prohibits replacing the ld.w/ld.h and st.w/st.h

instructions with 1-bit manipulation instructions

(set1, clr1, tst1, and not1).

No Replaces the ld.w/ld.h and st.w/st.h instructions

with 1-bit manipulation instructions (set1, clr1, tst1,

and not1).

Output assembly file Select whether to output the assembler source file of the compile result for a C source.

This corresponds to the -Fs option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Fs) Outputs the assembler source file.

No Does not output the assembler source file.

Output folder for assem-

bly file

Specify the output destination folder of an assembler source file.

The assembler source file is saved under the source file name with the extension replaced by

".s".

This corresponds to the -Fs option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Fs)] in the [Output assemble file] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 195 of 782
Apr 01, 2011

Output assemble list file Select whether to output the assemble list of the compile result for a C source.

This corresponds to the -Fv option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Fv) Outputs an assemble list.

No Does not output an assemble list.

Output folder for assem-

ble list file

Specify the output destination folder of an assemble list.

The assemble list is saved under the source file name with the extension replaced by ".v".

This corresponds to the -Fv option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Fv)] in the [Output assemble list file] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Output frequency infor-

mation file

Select whether to output the frequency information file for the variables used by the section file

generator.

This corresponds to the -Xcre_sec_data option of the compiler.

This property is not displayed when [Yes] on the [Use section file generator] property in the

[Output File] category from the [Section File Generate Options] tab is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xcre_sec_data) Outputs the frequency information file for the vari-

ables.

No Does not output the frequency information file for

the variables.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 196 of 782
Apr 01, 2011

(10) [Input File]

The detailed information on input files are displayed and the configuration can be changed.

Output folder for fre-

quency information file

Specify the output destination folder of the frequency information file.

The frequency information file is saved under the source file name with the extension replaced

by ".sec".

This corresponds to the -Xcre_sec_data option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Output frequency information file] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Output preprocessed

source file

Select whether to execute the command that execute only preprocessing (preprocess process-

ing) for a C source program prior to compile processing.

The result is output under the source file name with the extension replaced by ".i".

The line numbers and file name of the source program are not output.

Default No

How to change Select from the drop-down list.

Restriction Yes(-P) Executes only preprocessing for a C source program and

outputs the result.

No Does not execute only preprocessing for a C source pro-

gram and does not output the result.

Section file names Display the name of the section file that is used to define section that allocates global variable/

static variable when the C compiler is activated.

An effective section file to be added to the project is retrieved, and used.

This corresponds to the -Xsec_file option of the compiler.

The specified section file name is displayed as the subproperty.

This property is not displayed when [Yes] on the [Use section file generator] property in the

[Output File] category from the [Section File Generate Options] tab is selected.

Default Section file name[The name of the effective section file that is added to the

project]

How to change Changes not allowed

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 197 of 782
Apr 01, 2011

(11) [External Register]

The detailed information on external registers are displayed and the configuration can be changed.

This category is not displayed when [32-register mode(None)] in the [Select register mode] property in the [Regis-

ter Mode] category from the [Common Options] tab is selected.

Far Jump file names Specify the Far Jump file name.

The Far Jump file outputs the code that uses the jmp instruction for branch instructions of func-

tions described in the file. The linker outputs an error if the function is in a range that cannot be

branched to by the jarl or jr directive (±2MB or more), in which case this property is used to

recompile.

Use the extension ".fjp".

This corresponds to the -Xfar_jump option of the compiler.

The specified Far Jump file name is displayed as the subproperty.

Default Far Jump file names[number of set items]

How to change Edit by the Specify Far Jump File dialog box which appears when clicking the

[...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 5000 items can be specified.

External variable

assigned to the r15 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r15 option of the compiler.

This property is not displayed when [26-register mode(-reg26)] in the [Select register mode]

property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable

assigned to the r16 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r16 option of the compiler.

This property is not displayed when [26-register mode(-reg26)] in the [Select register mode]

property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable

assigned to the r17 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r17 option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable

assigned to the r18 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r18 option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 198 of 782
Apr 01, 2011

(12)[Others]

Other detailed information on compilation are displayed and the configuration can be changed.

External variable

assigned to the r19 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r19 option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable

assigned to the r20 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r20 option of the compiler.

This property is not displayed when [Yes(-Xmask_reg,-m, -mask_reg)] on the [Use mask regis-

ters] property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable

assigned to the r21 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r20 option of the compiler.

This property is not displayed when [Yes(-Xmask_reg,-m, -mask_reg)] on the [Use mask regis-

ters] property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable

assigned to the r22 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r22 option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable

assigned to the r23 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r23 option of the compiler.

This property is not displayed when [26-register mode(-reg26)] in the [Select register mode]

property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable

assigned to the r24 reg-

ister

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r24 option of the compiler.

This property is not displayed when [26-register mode(-reg26)] in the [Select register mode]

property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 199 of 782
Apr 01, 2011

Commands executed

before compile process-

ing

Specify the command to be executed before compile processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed before compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after compile processing

Specify the command to be executed after compile processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed after compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the compile options to be added additionally.

The options set here are added at the end of the compile options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 200 of 782
Apr 01, 2011

[Assemble Options] tab

This tab shows the detailed information on the assembler categorized by the following and the configuration can be

changed.

(1) [Debug Information]

(2) [Preprocess]

(3) [Assemble List]

(4) [Message]

(5) [Others]

Figure A-6. Property Panel: [Assemble Options] Tab

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the object file

being generated.

This corresponds to the -g option of the assembler.

Default Yes(-g)

How to change Select from the drop-down list.

Restriction Yes(-g) Adds debug information to the object file being generated.

No Does not add debug information to the object file being

generated.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 201 of 782
Apr 01, 2011

(2) [Preprocess]

The detailed information on the preprocess are displayed and the configuration can be changed.

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

When this property is omitted, only the standard folder of the assembler is searched. The

reference point of the path is the project folder.

This corresponds to the -I option of the assembler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of

paths used by linked tools.

System include paths The include paths which the system set during assembling are displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

The system include path is searched with lower priority than the additional include path.

The reference point of the path is the project folder.

This corresponds to the -i option of the assembler.

The include path is displayed as the subproperty.

Default System include paths[number of defined items]

How to change Edit by the System Include Path Order dialog box which appears when

clicking the [...] button.

Restriction Changes not allowed (Only the specified order of the include paths can be

changed.)

Macro definition Specify the macro name to be defined.

Specify in the format "macro name=defined value", with one macro name per line. The

"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the assembler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 202 of 782
Apr 01, 2011

(3) [Assemble List]

The detailed information on the assemble list are displayed and the configuration can be changed.

(4) [Message]

The detailed information on messages are displayed and the configuration can be changed.

Output assemble list file Select whether to output the assemble list file.

This corresponds to the -a -l option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-a -l) Outputs an assemble list file.

No Does not output an assemble list file.

Output folder for

assemble list file

Specify the output destination folder of an assemble list file.

The assemble list file is saved under the assembler source file name with the extension ".s"

replaced by ".v".

This corresponds to the -l option of the assembler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-a -l)] in the [Output assemble list file] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Verbose mode Select whether to display the execution status of the assembler to the Output panel during

build.

This corresponds to the -v option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the assembler during

build.

No Does not display the execution status of the assembler

during build.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 203 of 782
Apr 01, 2011

Warn of using r0 register

as destination register

Select whether to display warnings when the r0 register is specified as the destination register.

This corresponds to the -wr0- and -wr0+ options of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-wr0+) Displays warnings when the r0 register is specified as the

destination register.

Specification by this property takes precedence over the

[Display warning message] property.

No(-wr0-) Does not display warnings when the r0 register is specified

as the destination register.

Specification by this property takes precedence over the

[Display warning message] property.

No This item is in accordance with the [Display warning

message] property.

Warn of using r1 register Select whether to display warnings when the r1 register is specified as the source register or

destination register.

This corresponds to the -wr1- and -wr1+ options of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-wr1+) Displays warnings when the r1 register is specified as the

source register or destination register.

Specification by this property takes precedence over the

[Display warning message] property.

No(-wr1-) Does not display warnings when the r1 register is specified

as the source register or destination register.

Specification by this property takes precedence over the

[Display warning message] property.

No This item is in accordance with the [Display warning

message] property.

Display warning

message

Select whether to display warnings when the r1 register is specified as the source register or

destination register, when the r0 register is specified as the destination register, or when the

r20 or r21 register is specified as the destination register while using the mask register function.

This corresponds to the -w option of the assembler.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Displays warnings when the r1 register is specified as the

source register or destination register, when the r0 register

is specified as the destination register, or when the r20 or

r21 register is specified as the destination register while

using the mask register function.

No(-w) Does not display warnings when the r1 register is specified

as the source register or destination register, when the r0

register is specified as the destination register, or when the

r20 or r21 register is specified as the destination register

while using the mask register function.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 204 of 782
Apr 01, 2011

(5) [Others]

Other detailed information on assembly are displayed and the configuration can be changed.

Size threshold of sdata/

sbss section

allocation(Bytes)

Specify the upper limit of the data length allocated to the .sdata/.sbss sections.

This corresponds to the -G option of the assembler.

If this property is changed, the value of the [Size threshold of sdata/sbss section

allocation(Bytes)] property in the [Output Code] category from the [Compile Options] tab will be

changed accordingly.

Default Blank

How to change Directly enter to the text box.

Restriction 0 to 32767 (decimal number)

Perform optimization Select whether to perform optimization that rearranges instructions to avoid register/flag

hazards.

This corresponds to the -O option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-O) Performs optimization that avoid register/flag hazards.

No Does not perform optimization that avoid register/flag

hazards.

Use 32-bit branch

instruction

Select whether to specify far jump for branch instructions (jarl, jr) where 22/32 is not described

in the instruction.

This corresponds to the -Xfar_jump option of the assembler.

This property is displayed only when the V850E2 core device is specified as a device type.

Default Yes(-Xfar_jump)

How to change Select from the drop-down list.

Restriction Yes(-Xfar_jump) Specifies far jump for branch instructions (jarl, jr) where

22/32 is not described in the instruction.

No The branch instructions (jarl, jr) where 22/32 is not

described in the instruction is the ordinary branch

instruction.

Commands executed

before assemble

processing

Specify the command to be executed before assemble processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

The specified command is displayed as the subproperty.

Default Commands executed before assemble processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 205 of 782
Apr 01, 2011

Commands executed

after assemble

processing

Specify the command to be executed after assemble processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

The specified command is displayed as the subproperty.

Default Commands executed after assemble processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the assemble options to be added additionally.

The options set here are added at the end of the assemble options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 206 of 782
Apr 01, 2011

[Link Options] tab

This tab shows the detailed information on the linker categorized by the following and the configuration can be

changed.

(1) [Debug Information]

(2) [Input File]

(3) [Output File]

(4) [Library]

(5) [Message]

(6) [Link Map]

(7) [Others]

Caution This tab is not displayed for library projects.

Figure A-7. Property Panel: [Link Options] Tab

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 207 of 782
Apr 01, 2011

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

(2) [Input File]

The detailed information on input files are displayed and the configuration can be changed.

(3) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Delete debug information Select whether to remove debug information, line number information, and global pointer tables

when generating an object file.

This corresponds to the -s option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-s) Removes debug information, line number information, and

global pointer tables when generating an object file.

No Does not remove debug information, line number

information, and global pointer tables when generating an

object file.

Use standard startup

routine

Select whether to link, during linking, the object module file provided with the compiler in which

the standard startup routine is written.

However, when any C source file is added to the project and when the build target file is added

to the Startup node, the object module file provided with the compiler is not linked.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Links the object module file provided with the compiler.

The files that have been added to the Startup node will not

be targeted.

No Does not link the object module file provided with the

compiler.

Using link directive file Display the link directive file to be used for linking.

This corresponds to the -D option of the linker.

Default The name of the link directive file that is added to the project

How to change Changes not allowed

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 208 of 782
Apr 01, 2011

(4) [Library]

The detailed information on the library creation are displayed and the configuration can be changed.

Output folder Specify the folder for saving the module file that is generated.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Output file name Specify the load module file name to be generated.

The extension other than ".out" cannot be specified. If the extension is omitted, ".out" is

automatically added.

This corresponds to the -o option of the linker.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, it is treated as if "%ProjectName%.out" is specified.

Default %ProjectName%.out

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output relocatable object

file

Select whether to generate a relocatable object file.

This corresponds to the -r option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-r) Generates a relocatable object file.

No Does not generate a relocatable object file.

Using libraries Specify the library file name (libstring.a) to be used other than the standard libraries.

Specify only the "string" part (example: if you specify "user", "libuser.a" is assumed to be

specified).

Add one file in one line.

The library files are searched from the library path.

This corresponds to the -l option of the linker.

The specified library file name is displayed as the subproperty.

Default Using libraries[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 63 characters

Up to 256 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 209 of 782
Apr 01, 2011

System libraries The name of the library file which the system uses is displayed.

The system library file is searched with lower priority than the library file to be used.

The library file name is displayed as the subproperty.

Default System libraries[number of defined items]

How to change Changes not allowed

Additional library paths Specify the search folder to be used other than the standard libraries.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

The library files are searched from the library path. If a relative path is specified, the reference

point of the path is the project folder.

This corresponds to the -L option of the linker.

The specified library path name is displayed as the subproperty.

Default Additional library paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 256 items can be specified.

System library paths The folder to search the system library file is displayed.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

If a relative path is displayed, the reference point of the path is the project folder.

This corresponds to the -L option of the linker.

The library path name is displayed as the subproperty.

Default System library paths[number of defined items]

How to change Changes not allowed

Link standard library Select whether to link the standard library (libc.a).

This corresponds to the -lc option of the linker.

Default Yes(-lc)

How to change Select from the drop-down list.

Restriction Yes(-lc) Links the standard library.

No Does not link the standard library.

Link mathematical library Select whether to link the mathematical library (libm.a).

This corresponds to the -lm option of the linker.

This property is displayed only when [Yes(-lc)] in the [Link standard library] property is selected.

Default Yes(-lm)

How to change Select from the drop-down list.

Restriction Yes(-lm) Links the mathematical library.

No Does not link the mathematical library.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 210 of 782
Apr 01, 2011

(5) [Message]

The detailed information on messages are displayed and the configuration can be changed.

(6) [Link Map]

The detailed information on the link map are displayed and the configuration can be changed.

Verbose mode Select whether to display the execution status of the linker to the Output panel during build.

This corresponds to the -v option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the linker during build.

No Does not display the execution status of the linker during

build.

Display warning

message

Select whether to display the warning messages on the Output panel.

This corresponds to the -w option of the linker.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Displays warning messages.

No(-w) Does not display warning messages.

Output link map file Select whether to output the link map file.

This corresponds to the -m option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-m) Outputs a link map file.

No Does not output the link map file.

Output folder for link map

file

Specify the output destination folder of a link map file.

This corresponds to the -m option of the linker.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-m)] in the [Output link map file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 211 of 782
Apr 01, 2011

(7) [Others]

Other detailed information on linking are displayed and the configuration can be changed.

Link map file name Specify the name of a link map file.

This corresponds to the -m option of the linker.

Use the extension ".map". If the extension is omitted, ".map" is automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, it is treated as if "%ProjectName%.map" is specified.

This property is displayed only when [Yes(-m)] in the [Output link map file] property is selected.

Default %ProjectName%.map

How to change Directly enter to the text box.

Restriction Up to 259 characters

Entry symbol Specify the symbol to be set as the entry point address of the object file.

If this is blank, the entry point address is determined in the following sequence.

(1) If symbol "__start" exists, it is used.

(2) If the text attribute section exists, the start address of the text attribute section that is

allocated to the lowest address area in the generated object file is used.

(3) Address 0

This corresponds to the -e option of the linker.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 1022 characters

Specify filling value of

holes

Select whether to specify the filling value for align holes between sections of the generated

object.

This corresponds to the -f option of the linker.

This property is displayed only when [Yes(-B)] in the [Link in 2-pass mode] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-f) Specifies the filling value of holes.

No Does not specify the filling value of holes.

Filling value of holes Specify the filling value for align holes between sections of the generated object.

This corresponds to the -f option of the linker.

This property is displayed only when [Yes(-f)] in the [Specify filling value of holes] property is

selected.

Default 0x0000

How to change Directly enter to the text box.

Restriction 0x0000 to 0xffff (hexadecimal number)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 212 of 782
Apr 01, 2011

Display GP information Select whether to display on the Output panel the information used as a yardstick in the value

setting on [Size threshold of sdata/sbss section allocation(Bytes)] property in the [Others]

category from the [Assemble Options] tab.

This corresponds to the -A option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-A) Displays the information used as a yardstick in the value

setting on [Size threshold of sdata/sbss section

allocation(Bytes)] property.

No Does not display the information used as a yardstick in the

value setting on [Size threshold of sdata/sbss section

allocation(Bytes)] property.

Link in 2-pass mode Select whether to perform linking in the 2-pass mode.

The 2-pass mode is slower than the 1-pass mode, but it is able to process larger sized files.

This corresponds to the -B option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-B) Performs linking in the 2-pass mode.

No Performs linking in the 1-pass mode.

Ignore illegal relocation Select whether to continue linking outputting warning messages instead of errors if the

following illegalities is found during relocation processing.

- The result of address calculation of an unresolved external reference is illegal

- The relationship with the section to be allocated is illegal

This corresponds to the -E option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-E) Continues linking outputting warning messages if an

illegalities is found during relocation processing.

No Stops linking outputting warning messages if an illegalities

is found during relocation processing.

Check all multi-defined

symbols

Select whether to output a message for all multi-defined external symbols and stop link

processing.

This corresponds to the -M option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-M) Outputs a message for all multi-defined external symbols

and stops link processing.

No Outputs a message for the first multi-defined external

symbol and stops link processing.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 213 of 782
Apr 01, 2011

Check illegality of

undefined external

symbol

Select whether to check if the size and alignment conditions of an undefined external symbol

are invalid when linking it.

This corresponds to the -t option of the linker.

This property is displayed only when [Yes] on the [Display warning message] property in the

[Message] category is selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks if the size and alignment conditions of an

undefined external symbol are invalid when linking it.

No(-t) Does not check if the size and alignment conditions of an

undefined external symbol are invalid when linking it.

Check illegality of

external symbol

Select whether to check if the size and alignment conditions of an external symbol are invalid

when linking it.

This corresponds to the -T option of the linker.

This property is displayed only when [Yes] on the [Display warning message] property in the

[Message] category is selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks if the size and alignment conditions of an external

symbol are invalid when linking it.

No(-T) Does not check if the size and alignment conditions of an

external symbol are invalid when linking it.

Check mask register

function

Select whether to check if the file that uses the mask register function and the file that does not

use that function are mixed when linking the object files generated from the C source files.

This corresponds to the -mc option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-mc) Checks if the file that uses the mask register function and

the file that does not use that function are mixed.

No Does not check if the file that uses the mask register

function and the file that does not use that function are

mixed.

Check register mode Select whether to display detailed information when register modes are mixed for all input

object files.

This corresponds to the -rc option of the linker.

Default Yes(-rc)

How to change Select from the drop-down list.

Restriction Yes(-rc) Displays detailed information when register modes are

mixed for all input object files.

No Does not display detailed information when register modes

are mixed for all input object files.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 214 of 782
Apr 01, 2011

Rescan library files Select whether to re-references the library file specified on the [Using libraries] and [System

libraries] property in the [Library] category.

When this property is specified, symbols that are unresolved through the link sequence of the

library can be prevented.

This corresponds to the -rescan option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-rescan) Re-references the library file to be used.

No Does not re-reference the library file to be used.

Check allocation for

internal ROM area

Select whether to check for the allocation to the internal ROM area.

Select [No(-rom_less)] when using the ROM-less mode.

This corresponds to the -rom_less option of the linker.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks for the allocation to the internal ROM area.

No(-rom_less) Does not check for the allocation to the internal ROM area.

Behavior on internal

memory overflow

Select whether to continue the processing by displaying a warning message or stop the

processing by displaying an error message if an overflow occurs during the allocation to the

internal ROM/RAM area.

This corresponds to the -Ximem_overflow=warning option of the linker.

Default Error(None)

How to change Select from the drop-down list.

Restriction Error(None) Stops the processing by displaying an error message if

an overflow occurs during the allocation to the internal

ROM/RAM area.

Warning(-

Ximem_overflow

=warning)

Continues the processing by displaying a warning

message if an overflow occurs during the allocation to

the internal ROM/RAM area.

Commands executed

before link processing

Specify the command to be executed before link processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%LinkedFile%: Replaces with the absolute path of the output file under link processing.

The specified command is displayed as the subproperty.

Default Commands executed before link processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 215 of 782
Apr 01, 2011

Commands executed

after link processing

Specify the command to be executed after link processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%LinkedFile%: Replaces with the absolute path of the output file under link processing.

The specified command is displayed as the subproperty.

Default Commands executed after link processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the link options to be added additionally.

The options set here are added at the end of the link options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 216 of 782
Apr 01, 2011

[ROMization Process Options] tab

This tab shows the detailed information on the ROMization processor categorized by the following and the configura-

tion can be changed.

(1) [Output File]

(2) [Input File]

(3) [Section List]

(4) [Memory Map]

(5) [Others]

Caution This tab is not displayed for library projects.

Figure A-8. Property Panel: [ROMization Process Options] Tab

[Description of each category]

(1) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Output ROMized object

file

Select whether to output the ROMized object file.

This corresponds to the -Xr option of the compiler and the -lr option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xr -lr) Outputs the ROMized object file.

No Does not output the ROMized object file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 217 of 782
Apr 01, 2011

(2) [Input File]

The detailed information on input files are displayed and the configuration can be changed.

This category is not displayed when [No] in the [Output ROMized object file] property in the [Output File] category

is selected.

Output folder for

ROMized object file

Specify the folder for saving the ROMized object file.

This corresponds to the -o option of the ROMization processor.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Xr -lr)] in the [Output ROMized object file] property

is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

ROMized object file

name

Specify the ROMized object file name.

The extension other than ".out" cannot be specified. If the extension is omitted, ".out" is auto-

matically added.

This corresponds to the -o option of the ROMization processor.

This property is displayed only when [Yes(-Xr -lr)] in the [Output ROMized object file] property

is selected.

Default romp.out

How to change Directly enter to the text box.

Restriction Up to 259 characters

Use standard ROMiza-

tion area reservation

code file

Select whether to use the standard ROMization area reservation code file (rompcrt.o) that con-

forms to the register mode selected on the [Select register mode] property in the [Register

Mode] category from the [Common Options] tab.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Uses the standard ROMization area reservation code file.

No Does not use the standard ROMization area reservation

code file.

Make the ROMization area reservation code file, and spec-

ify the file for the [ROMization area reservation code file

name] property.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 218 of 782
Apr 01, 2011

(3) [Section List]

The detailed information on the section list are displayed and the configuration can be changed.

This category is not displayed when [No] in the [Output ROMized object file] property in the [Output File] category

is selected.

ROMization area reser-

vation code file name

Specify the name of the ROMization area reservation code file.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

If this field is blank, a link error occurs. Be sure to specify the boot area load module file name.

This property is displayed only when [No] in the [Use standard ROMization area reservation

code file] property is selected.

Default Blank

How to change Directly enter to the text box or edit by the Specify ROMization Area Reserva-

tion Code File dialog box which appears when clicking the [...] button.

Restriction Up to 259 characters

Order of storing to the

rompsec section

Specify the section name to be ROMized and the order of storing to the rompsec section.

Specify in the format of "section name option attribute", with one section name per line.

If [Yes] is selected in the [Output ROMization section file] property, a ROMization section file is

output when editing this property is finalized.

Formats of the option attribute are as described below.

- -p

Specify this property when the section to be added has the data attribute or sdata attribute.

If this property attribute is omitted, all sections that have the data attribute or sdata attribute

and sections allocated to the internal instruction RAM are assumed to be specified.

- -t

Specify this property when the section to be added has the text attribute or const attribute.

If this property attribute is omitted, sections allocated to the internal instruction RAM are

assumed to be specified.

If this property attribute specifies a particular section of an input file linked specifying a device

file with internal instruction RAM, sections allocated to unspecified internal instruction RAM

will not be stored in the rompsec section, and will also be deleted from the output file.

This corresponds to the -t and -p options of the ROMization processor.

The specified section name is displayed as the subproperty.

Default Order of storing to the rompsec section[number of set items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1022 characters

Up to 1024 items can be specified.

Output ROMization sec-

tion file

Select whether to output the ROMized section file.

Default No

How to change Select from the drop-down list.

Restriction Yes Outputs a ROMization section file when editing the [Order

of storing to the rompsec section] property is finalized.

No Does not output the ROMized section file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 219 of 782
Apr 01, 2011

(4) [Memory Map]

The detailed information on memory map are displayed and the configuration can be changed.

This category is not displayed when [No] in the [Output ROMized object file] property in the [Output File] category

is selected.

Output folder for

ROMized section file

Specify the folder for saving the ROMized section file.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Output ROMization section file] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

ROMized section file

name

Specify the ROMized section file name.

The extension can be freely specified.

This property is displayed only when [Yes] in the [Output ROMization section file] property is

selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output memory map file Select whether to output the memory map file.

This corresponds to the -m option of the ROMization processor.

Default No

How to change Select from the drop-down list.

Restriction Yes(-m) Outputs a memory map file.

No Does not output a memory map file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 220 of 782
Apr 01, 2011

(5) [Others]

Other detailed information on ROMization process are displayed and the configuration can be changed.

This category is not displayed when [No] in the [Output ROMized object file] property in the [Output File] category

is selected.

Output folder for memory

map file

Specify the folder for saving a memory map file.

This corresponds to the -m option of the ROMization processor.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-m)] in the [Output memory map file] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Memory map file name Specify the memory map file name.

The extension other than ".map" cannot be specified. If the extension is omitted, ".map" is

automatically added.

This corresponds to the -m option of the ROMization processor.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, it is treated as if "romp.map" is specified.

This property is displayed only when [Yes(-m)] in the [Output memory map file] property is

selected.

Default romp.map

How to change Directly enter to the text box.

Restriction Up to 259 characters

Entry label Specify the entry label to be used as the start address of the rompsec section to be generated.

This corresponds to the -b option of the ROMization processor.

If this is blank, it is treated as if "__S_romp" is specified.

Default __S_romp

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 1022 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 221 of 782
Apr 01, 2011

Include a text attribute

section into the ROMiza-

tion object file

Select whether to include a text attribute section into the ROMization object file to be gener-

ated.

This corresponds to the -d option of the ROMization processor.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Includes a text attribute section into the ROMization object

file.

No(-d) Does not include a text attribute section into the ROMiza-

tion object file.

Check address duplica-

tion

Select whether to check for the duplicate address of the input file (executable object file) and

output file (ROMization object file).

This corresponds to the -i option of the ROMization processor.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks for the duplicate address of the input file (execut-

able object file) and output file (ROMization object file).

No(-i) Does not check for the duplicate addresses of the input file

and output file.

Check allocation for

internal ROM area

Select whether to check for the allocation to the internal ROM area.

Select [No(-rom_less)] when using the ROM-less mode.

This corresponds to the -rom_less option of the ROMization processor.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks for the allocation to the internal ROM area.

No(-rom_less) Does not check for the allocation to the internal ROM area.

Behavior on internal

memory overflow

Select whether to continue the processing by displaying a warning message or stop the pro-

cessing by displaying an error message if an overflow occurs during the allocation to the inter-

nal ROM/RAM area.

Default Error(None)

How to change Select from the drop-down list.

Restriction Error(None) Stops the processing by displaying an error message if

an overflow occurs during the allocation to the internal

ROM/RAM area.

Warning(-

Ximem_overflow

=warning)

Continues the processing by displaying a warning mes-

sage if an overflow occurs during the allocation to the

internal ROM/RAM area.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 222 of 782
Apr 01, 2011

Commands executed

before ROMization pro-

cessing

Specify the command to be executed before ROMization processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%RomizedFile%: Replaces with the absolute path of the output file under ROMization process-

ing.

The specified command is displayed as the subproperty.

Default Commands executed before ROMization processing[number of defined

items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after ROMization pro-

cessing

Specify the command to be executed after ROMization processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%RomizedFile%: Replaces with the absolute path of the output file under ROMization process-

ing.

The specified command is displayed as the subproperty.

Default Commands executed after ROMization processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the ROMization process options to be added additionally.

The options set here are added at the end of the ROMization process options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 223 of 782
Apr 01, 2011

[Hex Convert Options] tab

This tab shows the detailed information on the hex converter categorized by the following and the configuration can be

changed.

(1) [Output File]

(2) [Hex Format]

(3) [Symbol Table]

(4) [Others]

Caution This tab is not displayed for library projects.

Figure A-9. Property Panel: [Hex Convert Options] Tab

[Description of each category]

(1) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Output hex file Select whether to output the hex file.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs the hex file.

No Does not output the hex file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 224 of 782
Apr 01, 2011

(2) [Hex Format]

The detailed information on the hex format are displayed and the configuration can be changed.

This category is not displayed when [No] in the [Output hex file] property in the [Output File] category is selected.

Output folder for hex file Specify the folder for saving the hex file.

This corresponds to the -o option of the hex converter.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Hex file name Specify the hex file name.

This corresponds to the -o option of the hex converter.

The extension can be freely specified.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %ProjectName%.hex

How to change Directly enter to the text box.

Restriction Up to 259 characters

Hex file format Select the format of the hex file to be generated.

This corresponds to the -f option of the hex converter.

Default Intel expanded hex format(-fI)

How to change Select from the drop-down list.

Restriction Intel expanded hex format(-

fI)

Specifies the Intel expanded hex format as the

format of the hex file to be generated.

Motorola S type

format(standard address)(-

fS)

Specifies the Motorola S type format (standard

address) as the format of the hex file to be

generated.

Motorola S type format(32-

bit address)(-fs)

Specifies the Motorola S type format (32-bit

address) as the format of the hex file to be

generated.

Expanded Tektronix hex

format(-fT)

Specifies the expanded Tektronix hex format

as the format of the hex file to be generated.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 225 of 782
Apr 01, 2011

Specify converted

address range

Select whether to specify the address range to be converted to a hex file.

This corresponds to the -U option of the hex converter.

This property is not displayed when [Expanded Tektronix hex format(-fT)] in the [Hex file format]

property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-U) Specifies the address range to be converted to a hex file.

No Does not specify the address range to be converted to a

hex file.

Filling value Specify the filling value of the unused areas under the case of converting to a hex file.

This corresponds to the -U option of the hex converter.

This property is displayed only when [Yes(-U)] in the [Specify converted address range]

property is selected.

Default 0xFF

How to change Directly enter to the text box.

Restriction 0x0000 to 0xFFFF (2- or 4-digit hexadecimal number)

Start address Specify the start address of the area to be converted to a hex file.

This corresponds to the -U option of the hex converter.

This property is displayed only when [Yes(-U)] in the [Specify converted address range]

property is selected.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to the maximum value of the address that can be handled by the device

(hexadecimal)

Size Specify the size of the area to be converted to a hex file.

This corresponds to the -U option of the hex converter.

This property is displayed only when [Yes(-U)] in the [Specify converted address range]

property is selected.

Default Blank

How to change Directly enter to the text box.

Restriction 0x1 to the maximum value of the address that can be handled by the device

(hexadecimal)

Converted sections Specify the section to be converted to a hex file.

Add one section in one line.

When this property is omitted, all the sections with the section type other than NOBITS and

section attribute A are converted to hex files.

This corresponds to the -H option of the hex converter.

The specified section name is displayed as the subproperty.

This property is displayed only when [No] in the [Specify converted address range] property is

selected.

Default Converted sections[number of set items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1022 characters

Up to 1024 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 226 of 782
Apr 01, 2011

Specify maximum length

of block/record

Select whether to specify the maximum length of block/record of a hex file.

This corresponds to the -b option of the hex converter.

Default No

How to change Select from the drop-down list.

Restriction Yes(-b) Specifies the maximum length of block/record.

No Does not specify the maximum length of block/record.

Maximum length of

block/record

Specify the maximum length of block/record of a hex file.

This corresponds to the -b option of the hex converter.

Note that if a change to the [Hex file format] property causes the value set in this property to be

outside the specifiable range, then it is set to the default value of the format.

This property is displayed only when [Yes(-b)] in the [Specify maximum length of block/record]

property is selected.

Default - When [Intel expanded hex format(-fI)] on the [Hex file format] property is

selected and [Reset to Default] from the context menu of this property

31

- When [Motorola S type format(standard address)(-fS)] on the [Hex file

format] property is selected and [Reset to Default] from the context menu

of this property

80

- When [Motorola S type format(32-bit address)(-fs)] on the [Hex file format]

property is selected and [Reset to Default] from the context menu of this

property

80

- When [Expanded Tektronix hex format(-fT)] on the [Hex file format]

property is selected and [Reset to Default] from the context menu of this

property

255

How to change Directly enter to the text box.

Restriction - When [Intel expanded hex format(-fI)] on the [Hex file format] property is

selected

1 to 255 (decimal number), or 0x01 to 0xff (hexadecimal number)

- When [Motorola S type format(standard address)(-fS)] on the [Hex file

format] property is selected

1 to 251 (decimal number), or 0x01 to 0xfb (hexadecimal number)

- When [Motorola S type format(32-bit address)(-fs)] on the [Hex file format]

property is selected

1 to 250 (decimal number), or 0x01 to 0xfa (hexadecimal number)

- When [Expanded Tektronix hex format(-fT)] on the [Hex file format]

property is selected

16 to 255 (decimal number), or 0x10 to 0xff (hexadecimal number)

Specify offset of output

address

Select whether to specify the offset of an output address when converting to a hex file.

This corresponds to the -d option of the hex converter.

Default No

How to change Select from the drop-down list.

Restriction Yes(-d) Specifies the offset of an output address.

No Does not specify the offset of an output address.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 227 of 782
Apr 01, 2011

(3) [Symbol Table]

The detailed information on the symbol table is displayed and the configuration can be changed.

This category is not displayed when [No] in the [Output hex file] property in the [Output File] category is selected

and [Expanded Tektronix hex format(-fT)] in the [Output hex file] property in the [Hex Format] category is selected.

(4) [Others]

Other detailed information on hex conversion are displayed and the configuration can be changed.

This category is not displayed when [No] in the [Output hex file] property in the [Output File] category is selected.

Offset of output address Specify the offset of an output address when converting to a hex file.

This corresponds to the -d option of the hex converter.

This property is displayed only when [Yes(-d)] in the [Specify offset of output address] property

is selected.

Default 0x0

How to change Directly enter to the text box.

Restriction 0x0 to 0xfffffffe (hexadecimal number)

Initialize section of data

without initial value to

zero

Select whether to initialize the section of the data without an initial value to zero during the

conversion to a hex file.

This corresponds to the -z option of the hex converter.

This property is displayed only when [Yes(-U)] in the [Specify converted address range]

property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-z) Initializes the section of the data without initial value to

zero.

No Does not initialize the section of the data without initial

value to zero.

Convert symbol table Select whether to convert a symbol table during the conversion to a hex file.

This corresponds to the -S -x option of the hex converter.

Default No

How to change Select from the drop-down list.

Restriction Yes(Convert global and local

symbols)(-S -x)

Converts global symbols and local

symbols.

Yes(Convert global symbols)(-S) Converts global symbols.

No Does not convert a symbol table.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 228 of 782
Apr 01, 2011

Warn internal ROM

overflow

Select whether to display a warning message when the area to be converted to a hex file

overflows from the internal ROM area.

This corresponds to the -rom_less option of the hex converter.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Displays a warning message when the area to be

converted to a hex file overflows from the internal ROM

area.

No(-rom_less) Does not display a warning message when the area to be

converted to a hex file overflows from the internal ROM

area.

Commands executed

before hex convert

processing

Specify the command to be executed before hex convert processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the output file under hex convert processing.

%HexConvertedFile%: Replaces with the absolute path of the output file under hex convert

processing.

The specified command is displayed as the subproperty.

Default Commands executed before hex convert processing[number of defined

items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after hex convert

processing

Specify the command to be executed after hex convert processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the output file under hex convert processing.

%HexConvertedFile%: Replaces with the absolute path of the output file under hex convert

processing.

The specified command is displayed as the subproperty.

Default Commands executed after hex convert processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 229 of 782
Apr 01, 2011

Other additional options Input the hex convert options to be added additionally.

The options set here are added at the end of the hex convert options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 230 of 782
Apr 01, 2011

[Archive Options] tab

This tab shows the detailed information on the archiver categorized by the following and the configuration can be

changed.

(1) [Output File]

(2) [Message]

(3) [Others]

Caution This tab is displayed only for library projects.

Figure A-10. Property Panel: [Archive Options] Tab

[Description of each category]

(1) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Output folder Specify the folder for saving the archive file that is generated.

This corresponds to the -q key of the archiver.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 231 of 782
Apr 01, 2011

(2) [Message]

The detailed information on messages is displayed and the configuration can be changed.

Note The meanings of the output of execution status are shown below.

(3) [Others]

Other detailed information on archiving are displayed and the configuration can be changed.

Output file name Specify the archive file name to be generated.

This corresponds to the -q key of the archiver.

The extension other than ".a" cannot be specified. If the extension is omitted, ".a" is automati-

cally added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

Default lib%ProjectName%.a

How to change Directly enter to the text box.

Restriction Up to 259 characters

Verbose mode Select whether to display the execution status of the archiverNote to the Output panel during

build.

This corresponds to the v option of the archiver.

Default No

How to change Select from the drop-down list.

Restriction Yes(v) Displays the execution status of the archiver during build.

No Does not display the execution status of the archiver during

build.

Output Format Meaning

q - file-name Create a new archive file, or add a member

Commands executed

before archive process-

ing

Specify the command to be executed before archive processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%ArchivedFile%: Replaces with the absolute path of the output file under archive processing.

The specified command is displayed as the subproperty.

Default Commands executed before archive processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 232 of 782
Apr 01, 2011

Commands executed

after archive processing

Specify the command to be executed after archive processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%ArchivedFile%: Replaces with the absolute path of the output file under archive processing.

The specified command is displayed as the subproperty.

Default Commands executed after archive processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the archive options to be added additionally.

The options set here are added at the end of the archive options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 233 of 782
Apr 01, 2011

[Section File Generate Options] tab

This tab shows the detailed information on the section file generator categorized by the following and the configuration

can be changed.

(1) [Output File]

(2) [Message]

(3) [Allocation of Variables]

(4) [Others]

Figure A-11. Property Panel: [Section File Generate Options] Tab

[Description of each category]

(1) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Use section file genera-

tor

Select whether to use the section file generator during build.

Default No

How to change Select from the drop-down list.

Restriction Yes Generates a section file after a frequency information file

has been created, and performs compilation using that

section file.

The section information file will be removed from the rapid

build target.

No Does not create a frequency information file and use the

section file generator during build.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 234 of 782
Apr 01, 2011

(2) [Message]

The detailed information on messages is displayed and the configuration can be changed.

This category is not displayed when [No] in the [Use section file generator] property in the [Output File] category is

selected.

(3) [Allocation of Variables]

The detailed information on the allocation of variables are displayed and the configuration can be changed.

This category is not displayed when [No] in the [Use section file generator] property in the [Output File] category is

selected.

Output folder for section

file

Specify the folder for saving the section file.

This corresponds to the -o option of the section file generator.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Use section file generator] property is

selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Section file name Specify the section file name.

The extension other than ".sf" cannot be specified. If the extension is omitted, ".sf" is automat-

ically added.

This corresponds to the -o option of the section file generator.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

If this is blank, it is treated as if "%ProjectName%.sf" is specified.

This property is displayed only when [Yes] in the [Use section file generator] property is

selected.

Default %ProjectName%.sf

How to change Directly enter to the text box.

Restriction Up to 259 characters

Verbose mode Select whether to display the execution status of the section file generator to the Output panel

during build.

This corresponds to the -v option of the section file generator.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the section file generator

during build.

No Does not display the execution status of the section file

generator during build.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 235 of 782
Apr 01, 2011

Sort key of variables Select the sort key of the variables to be output into the section file.

This corresponds to the -ns, -sname, -ssection, -ssize, -O, and -O2 options of the section file

generator.

Default Frequency of use(None)

How to change Select from the drop-down list.

Restriction Do not sort(-ns) Does not sort variables to be output to the section

file.

Frequency of

use(None)

Sorts variables to be output to the section file in

decreasing order of frequency in which they are

used.

Variable name(-

sname)

Sorts variables to be output to the section file

according to the dictionary order of variable names.

Section name(-ssec-

tion)

Sorts variables to be output to the section file

according to the dictionary order of section names.

Variable size(-ssize) Sorts variables to be output to the section file in

increasing order of their size.

Optimized location(-O) Sorts variables to be output to the section file in

decreasing order of frequency in which they are

used and outputs only a part of them which are

possible to be allocated to the .tidata section.

All section optimized

location(-O2)

Selects variables to the section file for each vari-

able size that can be allocated to .tidata, sidata,

.sedata, and .sdata sections in the order starting

from highest use frequency and determines that

only the number of variables that can be allocated

will be selected and outputs.

Specification of sections

excluded in optimization

Select the section not subject to optimization during the section file generation.

This corresponds to the -Xcs option of the section file generator.

This property is displayed only when [Optimized location(-O)] or [All section optimized loca-

tion(-O2)] in the [Sort key of variables] property is selected.

Default Optimize all sections(None)

How to change Select from the drop-down list.

Restriction Optimize all sec-

tions(None)

Includes all sections in optimization during the sec-

tion file generation.

Exclude all sections in

optimization(-Xcs)

Excludes all sections from optimization during the

section file generation.

Specify sections

excluded in optimiza-

tion(-Xcs)

Specifies the section not subject to optimization

during the section file generation.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 236 of 782
Apr 01, 2011

Sections excluded in

optimization

Specify the section not subject to optimization during the section file generation.

Add one section in one line.

When this property is omitted, any sections are not subjected to optimization.

This corresponds to the -Xcs option of the section file generator.

The specified section name is displayed as the subproperty.

This property is displayed only when [Specify sections excluded in optimization(-Xcs)] in the

[Specification of sections excluded in optimization] property is selected.

Default Sections excluded in optimization[number of set items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1022 characters

Up to 1024 items can be specified.

Specify allocatable size

of tidata section

Select whether to specify the allocatable size for the tidata.word/tidata.byte sections.

This corresponds to the -size_tidata option of the section file generator.

This property is displayed only when [Optimized location(-O)] or [All section optimized loca-

tion(-O2)] in the [Sort key of variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_tidata) Specifies the allocatable size for the tidata.word/

tidata.byte sections.

No Does not specify the allocatable size for the

tidata.word/tidata.byte sections.

Allocatable size of tidata

section

Specify the allocatable size for the tidata.word/tidata.byte sections.

This corresponds to the -size_tidata option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of tidata section] prop-

erty is selected.

Default 256

How to change Directly enter to the text box.

Restriction 0 to 256 (decimal number)

Specify allocatable size

of tidata.byte section

Select whether to specify the allocatable size for the tidata.byte section.

This corresponds to the -size_tidata_byte option of the section file generator.

This property is displayed only when [Optimized location(-O)] or [All section optimized loca-

tion(-O2)] in the [Sort key of variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_tidata_byte) Specifies the allocatable size for the tidata.byte

section.

No Does not specify the allocatable size for the

tidata.byte section.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 237 of 782
Apr 01, 2011

Allocatable size of

tidata.byte section

Specify the allocatable size for the tidata.byte section.

This corresponds to the -size_tidata_byte option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of tidata.byte section]

property is selected.

Default 128

How to change Directly enter to the text box.

Restriction 0 to 128 (decimal number)

Specify allocatable size

of sidata section

Select whether to specify the allocatable size for the sidata section.

This corresponds to the -size_sidata option of the section file generator.

This property is displayed only when [All section optimized location(-O2)] in the [Sort key of

variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_sidata) Specifies the allocatable size for the sidata section.

No Does not specify the allocatable size for the sidata

section.

Allocatable size of sidata

section

Specify the allocatable size for the sidata section.

This corresponds to the -size_sidata option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of sidata section] prop-

erty is selected.

Default 32768

How to change Directly enter to the text box.

Restriction 0 to 32768 (decimal number)

Specify allocatable size

of sedata section

Select whether to specify the allocatable size for the sedata section.

This corresponds to the -size_sedata option of the section file generator.

This property is displayed only when [All section optimized location(-O2)] in the [Sort key of

variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_sedata) Specifies the allocatable size for the sedata sec-

tion.

No Does not specify the allocatable size for the sedata

section.

Allocatable size of

sedata section

Specify the allocatable size for the sedata section.

This corresponds to the -size_sedata option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of sedata section] prop-

erty is selected.

Default 32768

How to change Directly enter to the text box.

Restriction 0 to 32768 (decimal number)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 238 of 782
Apr 01, 2011

(4) [Others]

Other detailed information on section file generation are displayed and the configuration can be changed.

This category is not displayed when [No] in the [Use section file generator] property in the [Output File] category is

selected.

Specify allocatable size

of sdata section

Select whether to specify the allocatable size for the sdata section.

This corresponds to the -size_sdata option of the section file generator.

This property is displayed only when [All section optimized location(-O2)] in the [Sort key of

variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_sdata) Specifies the allocatable size for the sdata section.

No Does not specify the allocatable size for the sdata

section.

Allocatable size of sdata

section

Specify the allocatable size for the sdata section.

This corresponds to the -size_sdata option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of sdata section] prop-

erty is selected.

Default 65536

How to change Directly enter to the text box.

Restriction 0 to 65536 (decimal number)

Variables excluded in

optimization

Specify the variable not subject to optimization during the section file generation.

Add one variable in one line.

This corresponds to the -Xcv option of the section file generator.

The specified variable name is displayed as the subproperty.

This property is displayed only when [Optimized location(-O)] or [All section optimized loca-

tion(-O2)] in the [Sort key of variables] property is selected.

Default Variables excluded in optimization[number of set items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1022 characters

Up to 1024 items can be specified.

Comment level Select the level of the comments to be output into the section file.

This corresponds to the -cl option of the section file generator.

Default Level 1(None)

How to change Select from the drop-down list.

Restriction No Output(-cl 0) Does not output comments into the section file.

Level 1(None) Outputs a comment (file generation information such

as time and date, variable information and the

description) into the section file. Variable information

consists of a section name, size and frequency of

usage.

Level 2(-cl 2) Outputs a format guide in addition to level 1.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 239 of 782
Apr 01, 2011

Other additional options Input the section file generate options to be added additionally.

The options set here are added at the end of the section file generator options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 240 of 782
Apr 01, 2011

[Dump Options] tab

This tab shows the detailed information on the dump tool categorized by the following and the configuration can be

changed.

(1) [Dump Tool]

Figure A-12. Property Panel: [Dump Options] Tab

[Description of each category]

(1) [Dump Tool]

The detailed information on the dump tool are displayed and the configuration can be changed.

Use dump tool Select whether to start the dump tool after build processing ends.

Default No

How to change Select from the drop-down list.

Restriction Yes Starts the dump tool for the load module file after build pro-

cessing ends.

No Does not start the dump tool after build processing ends.

Additional options for

dump tool

Input the dump tool options to be added.

The options set here are added at the end of the dump options group.

This property is displayed only when [Yes] in the [Use dump tool] property is selected.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 241 of 782
Apr 01, 2011

[Cross Reference Options] tab

This tab shows the detailed information on the cross reference tool categorized by the following and the configuration

can be changed.

(1) [Cross Reference Tool]

Figure A-13. Property Panel: [Cross Reference Options] Tab

[Description of each category]

(1) [Cross Reference Tool]

The detailed information on the cross reference tool are displayed and the configuration can be changed.

Use cross reference tool Select whether to start the cross reference tool after build processing ends.

If the cross reference tool is started, all the C source files registered to the project are taken as

an input and all information (cross reference information, tag jump information, call tree, func-

tion metrics and call database) is output to the files in text format and CSV format.

Default No

How to change Select from the drop-down list.

Restriction Yes Starts the cross reference tool after build processing ends.

No Does not start the cross reference tool after build process-

ing ends.

Additional options for

cross reference tool

Input the cross reference tool options to be added.

The options set here are added at the end of the cross reference options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 242 of 782
Apr 01, 2011

[Memory Layout Visualization Options] tab

This tab shows the detailed information on the memory layout visualization tool categorized by the following and the

configuration can be changed.

(1) [Memory Layout Visualization Tool]

Caution This tab is not displayed for library projects.

Figure A-14. Property Panel: [Memory Layout Visualization Options] Tab

[Description of each category]

(1) [Memory Layout Visualization Tool]

The detailed information on the memory layout visualization tool are displayed and the configuration can be

changed.

Use memory layout visu-

alization tool

Select whether to start the memory layout visualization tool after build processing ends.

If the memory layout visualization is started, an object file (*.out) is taken as an input and a

memory map table is output to the files in text format and CSV format.

The object file (*.out) output by the linker is taken as an input.

Default No

How to change Select from the drop-down list.

Restriction Yes Starts the memory layout visualization tool after build pro-

cessing ends.

No Does not start the memory layout visualization tool after

build processing ends.

Additional options for

memory layout visualiza-

tion tool

Input the memory layout visualization tool options to be added.

The options set here are added at the end of the memory layout visualization options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 243 of 782
Apr 01, 2011

[Build Settings] tab

This tab shows the detailed information on each C source file, assembler source file, link directive file, section file,

object file, and archive file categorized by the following and the configuration can be changed.

(1) [Build]

Figure A-15. Property Panel: [Build Settings] Tab (When Selecting C Source File)

Figure A-16. Property Panel: [Build Settings] Tab (When Selecting Assembler Source File)

Figure A-17. Property Panel: [Build Settings] Tab (When Selecting Link Directive File)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 244 of 782
Apr 01, 2011

Figure A-18. Property Panel: [Build Settings] Tab (When Selecting Section File)

Figure A-19. Property Panel: [Build Settings] Tab (When Selecting Object File)

Figure A-20. Property Panel: [Build Settings] Tab (When Selecting Archive File)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 245 of 782
Apr 01, 2011

[Description of each category]

(1) [Build]

The detailed information on the build are displayed and the configuration can be changed.

Set as build-target Select whether to build the selected file.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Builds the selected file.

No Does not build the selected file.

Set individual compile

option

Select whether to set a compile option that differs from the project settings to the selected C

source file.

This property is displayed only when a C source file is selected on the Project Tree panel and

[Yes] is selected in the [Set as build-target] property.

Default No

How to change Select from the drop-down list.

Restriction Yes Sets a compile option that differs from the project settings

to the selected C source file.

No Does not set a compile option that differs from the project

settings to the selected C source file.

Set individual assemble

option

Select whether to set an assemble option that differs from the project settings to the selected

assembler source file.

This property is displayed only when an assembler source file is selected on the Project Tree

panel and [Yes] is selected in the [Set as build-target] property.

Default No

How to change Select from the drop-down list.

Restriction Yes Sets a compile option that differs from the project settings

to the selected assembler source file.

No Does not set a compile option that differs from the project

settings to the selected assembler source file.

File type Display the type of the selected file.

Default C source (when C source file is selected)

Assembly source (when assembler source file is selected)

Link directive (when link directive file is selected)

Section file (when section file is selected)

Object (when object file is selected)

Library (when archive file is selected)

How to change Changes not allowed

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 246 of 782
Apr 01, 2011

[Individual Compile Options] tab

This tab shows the detailed information on a C source file categorized by the following and the configuration can be

changed.

Note that this tab takes over the settings of the [Compile Options] tab. If the settings are changed from the [Compile

Options] tab, the properties are displayed in boldface.

(1) [Debug Information]

(2) [Optimization]

(3) [Optimization(Details)]

(4) [Preprocess]

(5) [Message]

(6) [Kanji Code]

(7) [C Language]

(8) [Output Code]

(9) [Output File]

(10) [Others]

Remark This tab is displayed only when [Yes] in the [Set individual compile option] property in the [Build] category

from the [Build Settings] tab is selected.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 247 of 782
Apr 01, 2011

Figure A-21. Property Panel: [Individual Compile Options] Tab

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by outputting symbol information for the

source debugger.

This corresponds to the -g option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-g) Outputs symbol information for the source debugger.

No Does not output symbol information for the source debug-

ger.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 248 of 782
Apr 01, 2011

(2) [Optimization]

The detailed information on the optimization are displayed and the configuration can be changed.

Type of the optimization Select the type of the optimization for compiling.

This corresponds to the -O* option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Optimize for

Debugging(-Od)

Performs optimization with the debug precedence.

Generates codes emphasizing source debugging,

without putting stress on the ROM capacity and exe-

cution speed.

Default Optimiza-

tion(None)

Generates codes emphasizing source debugging.

Performs optimization within a range where source

debugging is not affected.

Standard Optimiza-

tion(-Og)

Performs appropriate optimization.

Performs optimization that allows debugging of the C

source in most cases.

Level 1 Advanced

Optimization(-O)

Performs advanced optimization.

Performs optimization emphasizing the ROM capac-

ity.

Level 2 Advanced

Opt.(Code size pre-

cedence)(-Os)

Performs more advanced optimization (object size

precedence).

Performs the maximum optimization placing the

utmost emphasis on the ROM capacity.

Level 2 Advanced

Opt.(Speed prece-

dence)(-Ot)

Performs more advanced optimization (execution

speed precedence).

Performs the maximum optimization placing the

utmost emphasis on the execution speed.

Save memory of

machine-dependent opti-

mization module

Select whether to save the memory usage amount of the machine-dependent optimization

module during compiling.

Specify this property when the memory of the machine is insufficient and compile processing

cannot be completed normally.

This corresponds to the -Wi,-D option of the compiler.

This property is not displayed when any of [Optimize for Debugging(-Od)], [Default Optimiza-

tion(None)], or [Standard Optimization(-Og)] in the [Type of the optimization] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wi,-D) Saves the memory usage amount of the machine-depen-

dent optimization module during compiling.

However, the compiling speed decreases.

No Does not specify saving the memory usage amount of the

machine-dependent optimization module during compiling.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 249 of 782
Apr 01, 2011

(3) [Optimization(Details)]

The detailed information on the optimization are displayed and the configuration can be changed.

Save memory of preopti-

mizer

Select whether to save the memory usage amount of the preoptimizer during compiling.

Specify this property when the memory of the machine is insufficient and compile processing

cannot be completed normally.

This corresponds to the -Wp,-D option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wp,-D) Saves the memory usage amount of the preoptimizer dur-

ing compiling.

However, the compiling speed decreases.

No Does not specify saving the memory usage amount of the

preoptimizer during compiling.

Perform inline expansion Select whether to perform inline expansion.

This corresponds to the -Wp,-N option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Expansion(None) Performs inline expansion.

Expansion only

'inline' function(-

Wp,-inline)

Performs inline expansion of only a function for which

#pragma inline is specified.

No Expansion(-

Wp,-no_inline)

Does not specify inline expansion of all functions,

including the function for which #pragma inline is

specified.

Maximum code size for

performing inline expan-

sion

Specify the maximum size in the intermediate language of the function for performing inline

expansion.

For the function greater than the specified size, inline expansion is not performed.

This corresponds to the -Wp,-N option of the compiler.

As to a yardstick for the size, see the function information file output by specifying the [Output

function information] property.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline

expansion] property is selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0 to 9999 (decimal number)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 250 of 782
Apr 01, 2011

Maximum stack size for

performing inline expan-

sion

Specify the maximum value (bytes) of the stack size in the intermediate language of the func-

tion for performing inline expansion.

For the function greater than the specified size, inline expansion is not performed.

This corresponds to the -Wp,-G option of the compiler.

As to a yardstick for the size, see the function information file output by specifying the [Output

function information] property.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline

expansion] property is selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0 to 9999 (decimal number)

Expand static function Specify whether to perform inline expansion against the static function that has been refer-

enced only once.

This corresponds to the -Wp,-S option of the compiler.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline

expansion] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wp,-S) Performs inline expansion against the static function that

has been referenced only once.

No Does not specify inline expansion against the static func-

tion that has been referenced only once.

Output function informa-

tion

Specify whether to output the code size and stack size in the intermediate language of each

function to a file.

Information that is output will serve as a yardstick when specifying values in the [Maximum

code size for performing inline expansion] property and [Maximum stack size for performing

inline expansion] property.

This corresponds to the -Wp,-l option of the compiler.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline

expansion] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wp,-l) Outputs the code size and stack size in the intermediate

language of each function to a file.

No Does not specify the output of the code size and stack size

in the intermediate language of each function to a file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 251 of 782
Apr 01, 2011

Function information file

name

Specify the file name for outputting the code size and stack size in the intermediate language of

each function.

This corresponds to the -Wp,-l option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the configuration of the general option is specified.

This property is not displayed when [No] in the [Output function information] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Specify Function Information File

dialog box which appears when clicking the [...] button.

Restriction Up to 259 characters

Loop expansion Specify whether to expand the loops such as "for" and "while".

This corresponds to the -Wo,-Ol,-Xlo option of the compiler.

This property is displayed only when [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the

[Type of the optimization] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Adjust auto-

matically unrolling

number)(-Wo,-Ol)

Performs loop expansions so that the code size is

minimized while keeping the number of times to

expand below the value specified in the [Maximum

number of loop expansions] property.

Yes(Constant

unrolling number)(-

Wo,-Ol,-Xlo)

Performs loop expansions for a number of times spec-

ified in the [Maximum number of loop expansions]

property.

No(-Wo,-Ol0) Does not specify loop expansion.

Maximum number of

loop expansions

Specify the maximum number of times to expand the loops such as "for" and "while".

This corresponds to the -Wo,-Ol option of the compiler.

This property is not displayed when [No(-Wo,-Ol0)] in the [Loop expansion] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0 to 999 (decimal number)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 252 of 782
Apr 01, 2011

(4) [Preprocess]

The detailed information on the preprocess are displayed and the configuration can be changed.

Output branch instruc-

tions with code size pri-

ority

Select whether to arrange and output branch instructions, giving precedence to the code size.

This corresponds to the -Wo,-XFo option of the compiler.

This property is not displayed when [Optimize for Debugging(-Od)] or [Default Optimiza-

tion(None)] in the [Type of the optimization] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wo,-XFo) Arranges and outputs branch instructions, giving pre-

cedence to the code size.

No Outputs a code that the debug information is given

priority for branch instructions.

Pack alignment Specify whether to inhibit the optimization that aligns branch destination labels.

This property is displayed only when [Level 1 Advanced Optimization(-O)], [Level 2 Advanced

Opt.(Code size precedence)(-Os)], or [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the

[Type of the optimization] property is selected.

However, when [Level 1 Advanced Optimization(-O)] or [Level 2 Advanced Opt.(Code size pre-

cedence)(-Os)] is selected, this function is included. Therefore, [Yes(-Wi,-P)] is always

selected.

This corresponds to the -Wi,-P option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wi,-P) Prevents optimization that allows branch destination labels

to be aligned.

The size of the execution code can be reduced.

No Does not specify the inhibition of the optimization that

aligns branch destination labels.

Perform advanced opti-

mization

Specify whether to execute the strongest optimization through strict data flow analysis.

Specify this property to perform the stronger optimization when performing the advanced opti-

mization.

This property is displayed only when [Level 1 Advanced Optimization(-O)], [Level 2 Advanced

Opt.(Code size precedence)(-Os)], or [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the

[Type of the optimization] property is selected.

This corresponds to the -Wi,-O4 option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wi,-O4) Executes the strongest optimization through strict data flow

analysis.

However, the compiling speed significantly decreases.

No Does not specify advanced optimization.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 253 of 782
Apr 01, 2011

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

When this property is omitted, only the standard folder of the compiler is searched. The refer-

ence point of the path is the project folder.

This corresponds to the -I option of the compiler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.

Use whole include paths

specified for build tool

Select whether to compile using the include path specified in the [Additional include paths]

property in the [Preprocess] category from the [Compile Options] tab of the build tool to be

used.

This corresponds to the -I option of the compiler.

The paths are added to the -i option according to the following sequence.

- Paths specified in the [Additional include paths] property

- Paths specified in the [Additional include paths] in the [Preprocess] category from the [Com-

pile Options] tab

- Paths specified in the [System include paths] in the [Preprocess] category from the [Compile

Options] tab

Default Yes

How to change Select from the drop-down list.

Restriction Yes Compiles using the include path specified in the property of

the build tool to be used.

No Does not use the include path specified in the property of

the build tool to be used.

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The

"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the compiler.

The specified macro is displayed as the subproperty.

Default Configuration of the general option

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 254 of 782
Apr 01, 2011

Macro undefinition Specify the macro name to be undefined.

Specify in the format of "macro name", with one macro name per line.

This corresponds to the -U option of the compiler.

The specified macro is displayed as the subproperty.

Default Configuration of the general option

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Limit of number of macro Specify the upper limit for the number of macro identifiers.

This corresponds to the -Xm option of the compiler.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 1 to 999999 (decimal number)

Use C++ style comment Specify whether to enable C++ comment style (from "//" to the end of the line), in addition to

regular comments.

This corresponds to the -Xcxxcom option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xcxxcom) Enables C++ comment style (from "//" to the end of the

line), in addition to regular comments.

No Disables C++ comment style (from "//" to the end of the

line).

Include comments in

preprocessor output file

Specify whether to include the comments of the source program in the output of the C language

source program's preprocessing.

This corresponds to the -C option of the compiler.

This property is not displayed when [No] in the [Output preprocessed source file] property in the

[Output File] category is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-C) Includes the comments of the source program in the output

of the C language source program's preprocessing.

No Does not include the comments of the source program in

the output of the C language source program's preprocess-

ing.

Use trigraph Specify whether to replace trigraph sequences.

A trigraph is a sequence of 3 characters replaced with a single character, defined in the ANSI

standard.

This corresponds to the -t option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-t) Replaces trigraph sequences.

No Does not replace trigraph sequences.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 255 of 782
Apr 01, 2011

(5) [Message]

The detailed information on messages are displayed and the configuration can be changed.

(6) [Kanji Code]

The detailed information on kanji codes are displayed and the configuration can be changed.

Verbose mode Select whether to display the execution status of the compiler to the Output panel during build.

This corresponds to the -v option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the compiler during build.

No Does not display the execution status of the compiler dur-

ing build.

Warning level Select the warning display level under compiling.

This corresponds to the -w option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction No Output(-w) Does not output warning messages.

Level 1(None) Outputs normal warning messages.

Level 2(-w2) Outputs detailed warning messages.

Limit of number of error Specify the maximum number of error messages to be output.

This corresponds to the -err_limit option of the compiler.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 15 to 50 (decimal number)

Kanji character code of

source

Specify the kanji code to be used for Japanese comments and character strings in the input file.

This corresponds to the -Xk option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Shift_JIS(None) Interprets the kanji code of the source as Shift_JIS.

None(-Xk=none) Interprets the source as not containing kanji codes.

The code is not guaranteed.

EUC-JP(-Xk=euc) Interprets the kanji code of the source as EUC-JP.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 256 of 782
Apr 01, 2011

(7) [C Language]

The detailed information on C language are displayed and the configuration can be changed.

Kanji character code for

target

Specify the kanji code to be converted into for Japanese character strings.

Set this property if you want to change the kanji code used during application development in

the target.

This corresponds to the -Xkt option of the compiler.

Default None(None)

How to change Select from the drop-down list.

Restriction None(None) Does not convert the kanji code of the target.

The code is not guaranteed.

Shift_JIS(-Xkt=sjis) Converts the kanji code of the target into Shift_JIS.

EUC-JP(-Xkt=euc) Converts the kanji code of the target into EUC-JP.

Sign of bit field Select whether int type bit fields without a type specifier (signed or unsigned) are handled as

signed or unsigned.

This corresponds to the -Xbitfield option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction signed Handles int type bit fields without a type specifier as

signed.

unsigned(-Xbit-

field=unsigned)

Handles int type bit fields without a type specifier as

unsigned.

Sign of char Select whether char type bit fields without a type specifier (signed or unsigned) are handled as

signed or unsigned.

This corresponds to the -Xchar option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction signed Handles char type without a type specifier as

signed.

unsigned(-

Xchar=unsigned)

Handles char type without a type specifier as

unsigned.

Enumeration type Specify which integer type matches with the enumeration type.

This corresponds to the -Xenum_type option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction int(None) Matches int type with the enumeration type.

signed char(-

Xenum_type=char)

Matches signed char type with the enumeration

type.

unsigned char(-

Xenum_type=uchar)

Matches unsigned char type with the enumeration

type.

short(-

Xenum_type=short)

Matches short type with the enumeration type.

unsigned short(-

Xenum_type=ushort)

Matches unsigned short type with the enumeration

type.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 257 of 782
Apr 01, 2011

(8) [Output Code]

The detailed information on output codes are displayed and the configuration can be changed.

Compile strictly accord-

ing to ANSI standards

Specify whether to apply the ANSI standard to the compiler processing strictly and display error

and warning messages for descriptions that violate the standard.

This corresponds to the -ansi option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-ansi) Applies the ANSI standard to the compiler processing

strictly and displays error and warning messages for

descriptions that violate the standard.

No Confers compatibility with the conventional C language

specifications and continues the compiler processing after

warning message is output.

Use expansion of

CC78K

Select whether to enable the expansion functions compatible with the 78K microcontrollers C

compiler CC78K.

This corresponds to the -cc78k option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-cc78k) Enables the expansion functions compatible with the

CC78K.

No Disables the expansion functions compatible with the

CC78K.

Perform strictly integer

operation

Specify whether to use runtime libraries ___mul/___mulu, ___div/___divu or mul, mulu, div,

divu instructions without using the mulh and divh instructions, for integers of 16-bit data or less,

in order to execute multiply and divide instructions strictly according to the ANSI standard.

This corresponds to the -Xe option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xe) Uses runtime libraries ___mul/___mulu or ___div/___divu

for integers of 16-bit data or less.

No Uses runtime libraries mulh or divh instructions for integers

of 16-bit data or less.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 258 of 782
Apr 01, 2011

Use prologue/epilogue

library

Specify whether to perform prologue/epilogue processing of functions through runtime library

calls.

This corresponds to the -Xpro_epi_runtime option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Auto(None) In the [Type of the optimization] property in the

[Optimization] category, corresponds to [No(-

Xpro_epi_runtime=off)] when [Level 2 Advanced

Opt.(Speed precedence)(-Ot)] is selected, [Yes(-

Xpro_epi_runtime=on)] when any of other items is

selected.

No(-

Xpro_epi_runtime=off)

Does not perform prologue/epilogue processing of

functions through runtime library calls.

Yes(-

Xpro_epi_runtime=on)

Performs prologue/epilogue processing of functions

through runtime library calls.

Output code of switch

statement

Specify the code output mode for switch statements in programs.

This corresponds to the -Xcase option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Auto(None) Automatically judges the format considered opti-

mum by the compiler.

if-else(-Xcase=ifelse) Outputs the code in the same format as the if-else

statement along a string of case statements in pro-

grams.

Because the case statements are compared start-

ing from the top, unnecessary comparison can be

reduced and the execution speed can be increased

if the case statement that most often matches is

written first or if the number of labels is few.

Binary search(-

Xcase=binary)

Outputs the code in the binary search format for

switch statements in programs.

Because a matching case statement is searched by

using a binary search algorithm, when many labels

are used, any case statement can be found at

almost the same speed.

Table jump(-

Xcase=table)

Outputs the code in the table jump format for switch

statements in programs.

References a table indexed on the values in the

case statements, and selects and processes case

labels from the switch statement values. Code will

branch to all the case statements with about the

same speed. If case values are not used in suc-

cession, an unnecessary area is created.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 259 of 782
Apr 01, 2011

Label size of switch table Specify the size per label of the branch table for the case labels in switch statements.

This corresponds to the -Xword_switch option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction 2 bytes(None) Generates one 2-byte branch table per case label

in a switch statement.

4 bytes(-

Xword_switch)

Generates one 4-byte branch table per case label

in a switch statement.

Select this item when a compile error occurs

because the switch statement is long.

Structure packing Selects the value of the structure packing.

The specified alignment can be used without aligning structure members according to the type

of each member. The data size can be reduced but the code size increases.

This corresponds to the -Xpack option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction 1 byte(-Xpack=1) Aligns structure members on a 1-byte boundary.

2 bytes(-Xpack=2) Aligns structure members on a 2-byte boundary.

4 bytes(-Xpack=4) Aligns structure members on a 4-byte boundary.

8 bytes(None) Aligns structure members on a 8-byte boundary.

Perform inline expan-

sion of strcpy/strcmp

Selsect whether to perform inline expansion of strcpy() or strcmp() function calls, with regarding

the alignment conditions of the array (including character strings) and the structure as 4 bytes.

This improves the execution speed of the object but it also increases the code size.

This corresponds to the -Xi option of the compiler.

This property is displayed only when [8 bytes(None)] in the [Structure packing] property is

selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xi) Performs inline expansion of strcpy() or strcmp() function

calls, with regarding the alignment conditions of the array

(including character strings) and the structure as 4 bytes.

No Does not perform inline expansion of strcpy() or strcmp()

function calls.

Perform pointer byte

access

Select whether to perform an indirect address access of structure in byte units.

Use this property if a limit is exceeded when the structure packing function is used.

This corresponds to the -Xbyte option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xbyte) Specifies indirect address access to a structure in byte

units.

No Does not perform an indirect address access of structure in

byte units.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 260 of 782
Apr 01, 2011

(9) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

Output comment to

assembly language

source file

Select whether to output a C source program as a comment to the assembler source file to be

output.

This corresponds to the -Xc option of the compiler.

This property is not displayed when [Yes(-Fs)] in the [Output assemble file] property or [Yes(-

Fv)] in the [Output an assemble list] property is selected in the [Output File] category.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xc) Outputs a C source program as a comment to the assem-

bler source file.

No Does not output a C source program as a comment to the

assembler source file.

Use jmp instruction for

branch instruction of

interruption

Select whether to use the jmp instruction for interrupt functions defined in C language.

This corresponds to the -Xj option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xj) Uses the jmp instruction for interrupt functions defined in C

language.

No Uses the jr instruction for interrupt functions defined in C

language.

Prohibit the operation

that replaces word with

bit instructions

Select whether to prohibit replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit manipula-

tion instructions (set1, clr1, tst1, and not1).

This corresponds to the -Xno_word_bitop option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xno_word_bitop) Prohibits replacing the ld.w/ld.h and st.w/st.h

instructions with 1-bit manipulation instructions

(set1, clr1, tst1, and not1).

No Replaces the ld.w/ld.h and st.w/st.h instructions

with 1-bit manipulation instructions (set1, clr1, tst1,

and not1).

Object file name Specify the name of the object file generated after compilation.

The extension other than ".o" cannot be specified. If the extension is omitted, ".o" is automati-

cally added.

If this field is blank, the file is saved under the file name with extension .c replaced by .o.

This corresponds to the -o option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 261 of 782
Apr 01, 2011

Output assemble file Select whether to output the assembler source file of the compile result for a C source.

This corresponds to the -Fs option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Fs) Outputs the assembler source file.

No Does not output the assembler source file.

Output folder for assem-

bly file

Specify the output destination folder of an assembler source file.

The assembler source file is saved under the source file name with the extension replaced by

".s".

This corresponds to the -Fs option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Fs)] in the [Output assemble file] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Output assemble list file Select whether to output the assemble list of the compile result for a C source.

This corresponds to the -Fv option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Fv) Outputs an assemble list.

No Does not output an assemble list.

Output folder for assem-

ble list file

Specify the output destination folder of an assemble list.

The assemble list is saved under the source file name with the extension replaced by ".v".

This corresponds to the -Fv option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Fv)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 262 of 782
Apr 01, 2011

(10)[Others]

Other detailed information on compilation are displayed and the configuration can be changed.

Output frequency infor-

mation file

Select whether to output the frequency information file for the variables used by the section file

generator.

This corresponds to the -Xcre_sec_data option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xcre_sec_data) Outputs the frequency information file for the vari-

ables.

No Does not output the frequency information file for

the variables.

Output folder for fre-

quency information file

Specify the output destination folder of the frequency information file.

The frequency information file is saved under the source file name with the extension replaced

by ".sec".

This corresponds to the -Xcre_sec_data option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Output frequency information file] property is

selected.

Default Blank

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Output preprocessed

source file

Select whether to execute the command that execute only preprocessing (preprocess process-

ing) for a C source program prior to compile processing.

The result is output under the source file name with the extension replaced by ".i".

The line numbers and file name of the source program are not output.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-P) Executes only preprocessing for a C source program and

outputs the result.

No Does not execute only preprocessing for a C source pro-

gram and does not output the result.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 263 of 782
Apr 01, 2011

Commands executed

before compile process-

ing

Specify the command to be executed before compile processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed before compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after compile processing

Specify the command to be executed after compile processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed after compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the compile options to be added additionally.

The options set here are added at the end of the compile options group.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 264 of 782
Apr 01, 2011

[Individual Assemble Options] tab

This tab shows the detailed information on an assemble source file categorized by the following and the configuration

can be changed.

Note that this tab takes over the settings of the [Assemble Options] tab. If the settings are changed from the [Assemble

Options] tab, the properties are displayed in boldface.

(1) [Debug Information]

(2) [Preprocess]

(3) [Output File]

(4) [Assemble List]

(5) [Message]

(6) [Others]

Remarks 1. This tab is displayed when [Yes] in the [Set individual assemble option] property in the [Build] category

from the [Build Settings] tab is selected.

2. This tab is also displayed when a C source file is selected and [Yes(-Fs)] is selected in the [Output

assemble file] property in the [Output File] category from the [Individual Compile Options] tab.

Figure A-22. Property Panel: [Individual Assemble Options] Tab

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 265 of 782
Apr 01, 2011

[Description of each category]

(1) [Debug Information]

The detailed information on debug information is displayed and the configuration can be changed.

(2) [Preprocess]

The detailed information on the preprocess are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the object file

being generated.

This corresponds to the -g option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-g) Adds debug information to the object file being generated.

No Does not add debug information to the object file being

generated.

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%MicomToolPath%: Replaces with the absolute path of the product install folder.

When this property is omitted, only the standard folder of the assembler is searched. The

reference point of the path is the project folder.

This corresponds to the -I option of the assembler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of

paths used by linked tools.

Use whole include paths

specified for build tool

Select whether to assemble using the include path specified in the [Additional include paths]

property in the [Preprocess] category from the [Assemble Options] tab of the build tool to be

used.

This corresponds to the -I option of the assembler.

The paths are added to the -i option according to the following sequence.

- Paths specified in the [Additional include paths] property in the [Preprocess] category

- Paths specified in the [Additional include paths] property in the [Preprocess] category from

the [Assemble Options] tab

- Paths specified in the [System include paths] property in the [Preprocess] category from the

[Assemble Options] tab

Default Yes

How to change Select from the drop-down list.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 266 of 782
Apr 01, 2011

(3) [Output File]

The detailed information on output files are displayed and the configuration can be changed.

(4) [Assemble List]

The detailed information on the assemble list are displayed and the configuration can be changed.

Macro definition Specify the macro name to be defined.

Specify in the format "macro name=defined value", with one macro name per line. The

"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the assembler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Object file name Specify the name of the object file generated after assembling.

The extension other than ".o" cannot be specified. If the extension is omitted, ".o" is

automatically added.

If this field is blank, the file is saved under the file name with extension .s replaced by .o.

This corresponds to the -o option of the assembler.

This property is not displayed when a C source file is selected and [Yes(-Fs)] is selected in the

[Output assemble file] property in the [Output File] category from the [Individual Compile

Options] tab.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output assemble list file Select whether to output the assemble list file.

This corresponds to the -a -l option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-a -l) Outputs an assemble list file.

No Does not output an assemble list file.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 267 of 782
Apr 01, 2011

(5) [Message]

The detailed information on messages are displayed and the configuration can be changed.

Output folder for

assemble list file

Specify the output destination folder of an assemble list file.

The assemble list file is saved under the assembler source file name with the extension ".s"

replaced by ".v".

This corresponds to the -l option of the assembler.

If a relative path is specified, the reference point of the path is the main project or subproject

folder.

If an absolute path is specified, the reference point of the path is the main project or subproject

folder (unless the drives are different).

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-a -l)] in the [Output assemble list file] property is

selected.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Browse For Folder dialog box

which appears when clicking the [...] button.

Restriction Up to 247 characters

Verbose mode Select whether to display the execution status of the assembler to the Output panel during

build.

This corresponds to the -v option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the assembler during

build.

No Does not display the execution status of the assembler

during build.

Warn of using r0 register

as destination register

Select whether to display warnings when the r0 register is specified as the destination register.

This corresponds to the -wr0- and -wr0+ options of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-wr0+) Displays warnings when the r0 register is specified as the

destination register.

No(-wr0-) Does not display warnings when the r0 register is specified

as the destination register.

No Displays warnings regardless of the destination register

specification of the r0 register.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 268 of 782
Apr 01, 2011

(6) [Others]

Other detailed information on assembly are displayed and the configuration can be changed.

Warn of using r1 register Select whether to display warnings when the r1 register is specified as the source register or

destination register.

This corresponds to the -wr1- and -wr1+ options of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-wr1+) Displays warnings when the r1 register is specified as the

source register or destination register.

No(-wr1-) Does not display warnings when the r1 register is specified

as the source register or destination register.

No Displays warnings regardless of the source register or

destination register specification of the r1 register.

Display warning

message

Select whether to display warnings when the r1 register is specified as the source register or

destination register, when the r0 register is specified as the destination register, or when the r20

or r21 register is specified as the destination register while using the mask register function.

This corresponds to the -w option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes Displays warnings when the r1 register is specified as the

source register or destination register, when the r0 register

is specified as the destination register, or when the r20 or

r21 register is specified as the destination register while

using the mask register function.

No(-w) Does not display warnings when the r1 register is specified

as the source register or destination register, when the r0

register is specified as the destination register, or when the

r20 or r21 register is specified as the destination register

while using the mask register function.

Perform optimization Select whether to perform optimization that rearranges instructions to avoid register/flag

hazards.

This corresponds to the -O option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-O) Performs optimization that avoid register/flag hazards.

No Does not perform optimization that avoid register/flag

hazards.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 269 of 782
Apr 01, 2011

Use 32-bit branch

instruction

Select whether to specify far jump for branch instructions (jarl, jr) where 22/32 is not described

in the instruction.

This corresponds to the -Xfar_jump option of the assembler.

This property is displayed only when the V850E2 core device is specified as a device type.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-

Xfar_jump)

Specifies far jump for branch instructions (jarl, jr) where 22/

32 is not described in the instruction.

No The branch instructions (jarl, jr) where 22/32 is not

described in the instruction is the ordinary branch

instruction.

Commands executed

before assemble

processing

Specify the command to be executed before assemble processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro name is available as an embedded macro.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

This property is not displayed when a C source file is selected and [Yes(-Fs)] is selected in the

[Output assemble file] property in the [Output File] category from the [Individual Compile

Options] tab.

Default Commands executed before assemble processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed

after assemble

processing

Specify the command to be executed after assemble processing.

Use the call instruction to specify a batch file (example: call a.bat).

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

This property is not displayed when a C source file is selected and [Yes(-Fs)] is selected in the

[Output assemble file] property in the [Output File] category from the [Individual Compile

Options] tab.

Default Commands executed after assemble processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 270 of 782
Apr 01, 2011

Other additional options Input the assemble options to be added additionally.

The options set here are added at the end of the assemble options group.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 259 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 271 of 782
Apr 01, 2011

[File Information] tab

This tab shows the detailed information on each file categorized by the following and the configuration can be changed.

(1) [File Information]

(2) [Notes]

Figure A-23. Property Panel: [File Information] Tab

[Description of each category]

(1) [File Information]

The detailed information on the file are displayed and the configuration can be changed.

File name Display the file name.

Change the file name on the Project Tree panel.

Default File name

How to change Changes not allowed

Relative path Display the relative path of the file from the project folder.

Default The relative path of the file from the project folder

How to change Changes not allowed

Absolute path Display the absolute path of the file.

Default The absolute path of the file

How to change Changes not allowed

Save with absolute path Select whether to save the file location with the absolute path.

Default No

How to change Select from the drop-down list.

Restriction Yes Saves the file location with the absolute path.

No Saves the file location with the relative path.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 272 of 782
Apr 01, 2011

(2) [Notes]

The detailed information on notes is displayed and the configuration can be changed.

Last update Display the time and date on which this file was changed last.

Default File updated time and date

How to change Changes not allowed

Writable Select whether to enable writing to the file.

Default Yes (when the file is write enabled)

No (when the file is not write enabled)

How to change Select from the drop-down list.

Restriction Yes Enables the file to write.

No Does not enable the file to write.

Memo Add memos to the file.

Add one item in one line.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 memos can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 273 of 782
Apr 01, 2011

[Category Information] tab

This tab shows the detailed information on the category that the user added, File node, Build tool generated files node,

and Startup node categorized by the following and the configuration can be changed.

(1) [Category Information]

(2) [Notes]

Figure A-24. Property Panel: [Category Information] Tab

[Description of each category]

(1) [Category Information]

The detailed information on the category is displayed and the configuration can be changed.

(2) [Notes]

The detailed information on notes is displayed and the configuration can be changed.

This category of the File node, Build tool generated files node, and Startup node is not displayed.

Category name Specify the category name to categorize files.

This property of the File node, Build tool generated files node, and Startup node is displayed in

gray and you cannot change the attribute.

Default Category name of files

How to change Directly enter to the text box.

Restriction 1 to 200 characters

Memo Add memos to the category of files.

Add one item in one line.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 memos can be specified.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 274 of 782
Apr 01, 2011

This panel is used to display/edit text files/source files.

See "CubeSuite+ V850 Coding" for details about this panel.

Figure A-25. Editor Panel

Editor panel

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 275 of 782
Apr 01, 2011

This panel is used to display the message that is output from the build tool.

Messages are shown individually on the tab categorized by the output tool.

Figure A-26. Output Panel

The following items are explained here.

- [How to open]

- [Description of each area]

- [[File] menu (only available for the Output panel)]

- [[Edit] menu (only available for the Output panel)]

- [Context menu]

[How to open]

- From the [View] menu, select [Output].

[Description of each area]

(1) Message area

Display messages and the search results output from each tool.

In build result/search result (batch search) display, a new message is displayed deleting the previous message

every time build/search is done (but not the [All Messages] tab).

Remark Up to 500000 lines of messages can be displayed. If 500001 lines or more of messages are output,

then the excess lines are deleted, oldest first.

The message colors differ as follows depends on the type of the output message (the character color/background

color is set in [General - Font and Color] category in the Option dialog box).

Output panel

Message Type Example (Default) Description

Normal message Character color Black Information on something.

Background color White

Warning Character color Blue Warning for the operation.

Background color Normal color

(1)

(2)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 276 of 782
Apr 01, 2011

This area has the following functions.

(a) Tag jump

When the output message is double-clicked, or the [Enter] key is pressed with the caret over the message, the

Editor panel appears and the destination line number of the file is displayed.

You can jump to the line of the source file that generated the error from the error message output when build-

ing.

(b) Display help

help with regard to the message in the line is shown by selecting [Help for Message] in the context menu or

pressing the [F1] key while the caret is in the line where the warning message or the error message is dis-

played.

(c) Save log

The contents displayed on the currently selected tab can be saved in a text file (*.txt) by selecting [Save Output

- tab name As...] from the [File] menu and opens the Save As dialog box (messages on the tab that is not

selected will not be saved).

(2) Tab selection area

Select tabs that messages are output from.

Tabs that are displayed are as follows.

Caution Tab is not automatically switched when a new message is output on the non-selected tab.

If this is the case, is added to the tab informing a new message is output.

[[File] menu (only available for the Output panel)]

The following items are exclusive for the [File] menu in the Output panel (other items are common to all the panels).

Error message Character color Red Fatal error or operation disabled because of

an error in operation.
Background color Light gray

Tab Name Description

All Messages Shows all the messages by order of output. (Except while executing a rapid build)

Rapid Build Shows the message output from the build tool by running a rapid build.

Build Tool Shows the message output from the build tool by running build/rebuild/clean.

Save Output - tab name Saves the contents on the currently selecting tab in the previously saved text file (*.txt) (see

"(c) Save log").

When this item is selected for the first time after launching the program, the operation is

equivalent to when selecting [Save Output - tab name As...].

Save Output - tab name As... Opens the Save As dialog box to save the contents on the currently selecting tab in the des-

ignated text file (*.txt) (see "(c) Save log").

Message Type Example (Default) Description

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 277 of 782
Apr 01, 2011

[[Edit] menu (only available for the Output panel)]

The following items are exclusive to the [Edit] menu in the Output panel (other items are all invalid).

[Context menu]

Copy Copies the selected characters to the clipboard.

Select All Selects all the messages displayed on this panel.

Find... Opens the Find and Replace dialog box with the [Quick Find] tab target.

Replace... Opens the Find and Replace dialog box with the [Replace in Files] tab target.

copy Copies the selected characters to the clipboard.

Select All Selects all the messages displayed on this panel.

Clear Deletes all the messages displayed on this panel.

Tag Jump Jumps to the caret line in the editor indicated by the message (file, line, and column).

Help for Message Shows the help with regard to the message at the current caret.

Note that the help is only for warning/error messages.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 278 of 782
Apr 01, 2011

This dialog box is used to create a new file and add it to the project.

Figure A-27. Add File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [File] menu, select [Add] >> [Add New File...].

- On the Project Tree panel, select either one of the Project node, Subproject node, File node, or category node, and

then select [Add] >> [Add New File...] from the context menu.

[Description of each area]

(1) [File type] area

Select file types to create.

The description is shown at the lower box when a file type is selected.

File types to be shown are as follows.

- C source file (*.c)

- Header file (*.h; *.inc)

- Assemble file (*.s)

- Link directive file (*.dir; *.dr)

- Section file (*.sf)

- Text file (*.txt)

Add File dialog box

(1)

[Function buttons]

(2)

(3)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 279 of 782
Apr 01, 2011

(2) [File name] area

Directly enter the name of the file to create.

The default file extension is "txt".

Remark If extensions are not designated, the one selected in the [File type] area are is added. Also that if

extensions different from the one selected in the [File type] area are designated, the one selected in the

[File type] area is added as an extension (for example, if you designate "aaa.txt" as a file name and

select "C source file (*.c)" as file type, the file is named as "aaa.txt.c").

(3) [File location] area

Designate the location to create a file by directly entering its path or selecting from [Refer...] button.

The default file location is the project folder path.

(a) Button

Remarks 1. When the text box is left blank, the project folder is regarded to be designated.

2. When the relative path is used, the path is regarded to be from the project folder.

Remark The number of characters that can be entered in the [File name] area and the [File location] area is up to

259 both for the path name and file name together. When the input violates any restriction, the following

messages are shown in the tooltip in the [File name] area.

[Function buttons]

Refer... Opens the Browse For Folder dialog box.

When a folder is selected, a path is added in the text box.

Message Description

The file name including the path is too long. Make it

within 259 characters.

The file name with the path is more than 259 characters.

The specified path contains a folder that does not exist. The path includes the folder that does not exist.

The file name or path name is invalid. The following

characters cannot be used: \, /, :, *, ?, ", <, >, |

The file name with the invalid path is designated. The charac-

ters, \, /, :, *, ", <, >, |, cannot be used for the file name and

folder name.

Button Function

OK Creates the file with the entered file name, adds it to the project, and opens with the Editor

panel. Then closes this dialog box.

Cancel Does not create a file and closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 280 of 782
Apr 01, 2011

This dialog box is used to add existing files and folder hierarchies to the project.

The folder is added as a category.

Figure A-28. Add Folder and File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- Drag the folder from Explorer or the like, and drop it on the Project Tree panel.

[Description of each area]

(1) [File type] area

Select the file types to add to the project.

You can select multiple types by left clicking while holding down the [Ctrl] or [Shift] key.

If nothing is selected, it is assumed that all types are selected.

The file types displayed are shown below.

- C source file (*.c)

- Header file (*.h; *.inc)

- Assemble file (*.s)

- Link directive file (*.dir; *.dr)

- Section file (*.sf)

Add Folder and File dialog box

[Function buttons]

(2)

(1)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 281 of 782
Apr 01, 2011

- Archive file (*.a)

- Object file (*.o)

- Text file (*.txt)

(2) [Subfolder level to search] area

Directly enter the number of subfolder levels to add to the project.

The default number is "1".

Remark Decimal numbers of up to 10 are allowed. When the input violates any restriction, the following mes-

sages are shown in the tooltip.

[Function buttons]

Message Description

Fewer than 0 or more than 10 values cannot be

specified.

More than 10 subfolder levels have been specified.

Specify in decimal. A number in other than base-10 format or a string has

been specified.

Button Function

OK The folder that was dragged and dropped and the files in that folder are added to the

project.And then close the dialog box.

Cancel Do not add a folder and files, and then closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 282 of 782
Apr 01, 2011

This dialog box is used to input and edit characters in one line.

Figure A-29. Character String Input Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Format of build option list] in the [Others] category.

- From the [Compile Options] tab, [Displayed warning message] and [undisplayed warning message] in the

[Message] category, [Other additional options] in the [Others] category.

- From the [Assemble Options] tab, [Other additional options] in the [Others]category.

- From the [Link Options] tab, [Entry symbol] and [Other additional options] in the [Others] category.

- From the [ROMization Process Options] tab, [Entry label] and [Other additional options] in the [Others] cate-

gory.

- From the [Hex Convert Options] tab, [Other additional options] in the [Others] category.

- From the [Archive Options] tab, [Other additional options] in the [Others] category.

- From the [Section File Generate Options] tab, [Other additional options] in the [Others] category.

- From the [Dump Options] tab, [Additional options for dump tool] in the [Dump Tool] category.

- From the [Cross Reference Options] tab, [Additional options for cross reference tool] in the [Cross Reference

Tool] category.

- From the [Memory Layout Visualization Options] tab, [Additional options for memory layout visualization tool]

in the [Memory Layout Visualization Tool] category.

- From the [Individual Compile Options] tab, [Other additional options] in the [Others] category.

- From the [Individual Assemble Options] tab, [Other additional options] in the [Others] category.

- In the Link Directive File Generation dialog box , select a segment or section in the [Segment / Section list] area,

and then click the [...] button in the [Segment / Section detail] area.

- In the Link Directive File Generation dialog box, select a section in the [Segment / Section list] area, and then click

the [...] button on [Input section name] in the [Segment / Section detail] area.

- In the Link Directive File Generation dialog box, select a symbol in the [Symbol list] area, and then click the [...] but-

ton on [Name] in the [Symbol detail] area.

- In the Link Directive File Generation dialog box, select a symbol in the [Symbol list] area, and then click the [...] but-

ton on [Base symbol name] in the [Symbol detail] area.

- In the [General - External Tools] category of the Option dialog box, check [Require options at start-up] in the New

registration area. Then the dialog box automatically opens when an external tool is launched from [Tool] menu.

Character String Input dialog box

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 283 of 782
Apr 01, 2011

[Description of each area]

(1) [String] area

Input characters in one line.

By default, this dialog box opens with its edit box reflecting the current value of the property selected to call the dia-

log box.

Line break is not allowed.

Remark Up to 32767 characters can be entered. When the input violates any restriction, the following mes-

sages are shown in the toolchip.

[Function buttons]

Message Description

More than maximum number of restriction in the prop-

erty that called this dialog box characters cannot be

specified.

The characters exceeds the maximum number of

restriction in the property that called this dialog box.

Button Function

OK Reflects the entered characters to the property that called this dialog box then closes the

dialog box.

Cancel Does not reflect the entered characters to the property that called this dialog box then

closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 284 of 782
Apr 01, 2011

This dialog box is used to input and edit texts in multiple lines.

Figure A-30. Text Edit Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Macro definition] in the [Frequently Used Options(for Compile)] category,

[Macro definition] in the [Frequently Used Options(for Assemble)] category, [Using libraries] in the [Frequently

Used Options(for Link)] category, [Memo] in the [Notes] category, and [Commands executed before build pro-

cessing], [Commands executed after build processing] in the [Others] category.

- From the [Compile Options] tab, [Macro definition] and [Macro undefinition] in the [Preprocess] category,

[Commands executed before compile processing] and [Commands executed after compile processing] in the

[Others] category.

- From the [Assemble Options] tab, [[Macro definition] in the [Preprocess] category, [Commands executed

before assemble processing] and [Commands executed after assemble processing] in the [Others] category.

- From the [Link Options] tab, [Using libraries] in the [Library] category, [Commands executed before link pro-

cessing] and [Commands executed after link processing] in the [Others] category.

- From the [ROMization Process Options] tab, [Order of storing to the rompsec section] in the [Section List] cat-

egory, [Commands executed before ROMization processing] and [Commands executed after ROMization pro-

cessing] in the [Others] category.

- From the [Hex Convert Options] tab, [Converted sections] in the [Hex Format] category, [Commands executed

before hex convert processing] and [Commands executed after hex convert processing] in the [Others] cate-

gory.

- From the [Archive Options] tab, [Commands executed before archive processing] and [Commands executed

after archive processing] in the [Others] category.

- From the [Section File Generate Options] tab, [Sections excluded in optimization] and [Variables excluded in

optimization] in the [Allocation of Variables] category.

- From the [Individual Compile Options] tab, [Macro definition] and [Macro undefinition] in the [Preprocess] cate-

gory, [Commands executed before compile processing] and [Commands executed after compile processing]

in the [Others] category.

Text Edit dialog box

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 285 of 782
Apr 01, 2011

- From the [Individual Assemble Options] tab, [Macro definition] in the [Preprocess] category, [Commands exe-

cuted before assemble processing] and [Commands executed after assemble processing] in the [Others] cat-

egory.

- From the [File Information] tab, [Memo] in the [Notes] category

- From the [Category Information] tab, [Memo] in the [Notes] category

[Description of each area]

(1) [Text] area

Input and edit texts in multiple lines.

By default, this dialog box opens with its edit box reflecting the current value of the property selected to call the dia-

log box.

Remark Up to 65535 lines and 65535 characters are allowed. When the input violates any restriction, the fol-

lowing messages are shown in the tooltip.

[Function buttons]

Message Description

More than maximum number of restriction in the prop-

erty that called this dialog box characters cannot be

specified. The current number of characters is dis-

played between brackets at the beginning of the line in

excess of the limit.

The characters exceeds the maximum number of

restriction in the property that called this dialog box.

Button Function

OK Reflects the entered text to the text box that opened this dialog box and closed the dialog

box.

Cancel Does not reflect the entered text to the text box that opened this dialog box and closed the

dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 286 of 782
Apr 01, 2011

This dialog box is used to edit or add the path or the file name including path.

Figure A-31. Path Edit Dialog Box (When Editing Path)

Figure A-32. Path Edit Dialog Box (When Editing File Name Including Path)

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

Path Edit dialog box

(1)

[Function buttons]

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 287 of 782
Apr 01, 2011

- From the [Common Options] tab, [Additional include paths] in the [Frequently Used Options(for Compile)] cat-

egory, [Additional include paths] in the [Frequently Used Options(for Assemble)] category, and [Additional

library paths] in the [Frequently Used Options(for Link)] category.

- From [Compile Options] tab, [Additional include paths] in the [Preprocess] category, [Far jump file names] in

the [Input File] category.

- From [Assemble Options] tab, [Additional include paths] in the [Preprocess] category.

- From [Link Options] tab, [Additional library paths] in the [Library] category.

- From [Individual Compile Options] tab, [Additional include paths] in the [Preprocess] category.

- From [Individual Assemble Options] tab, [Additional include paths] in the [Preprocess] category.

[Description of each area]

(1) Path edit area

Edit or add the path or the file name including path .

(a) [Path(One path per one line)]

Edit or adds the path or the file name including path by directly entering the path or the file name including path

.

Path or the file name including path can be designated in multiple lines. Designate a path or the file name

including path at a line.

By default, the contents of the text box that opened this dialog box are reflected in this area.

Path can be added by one of the following method.

- Click the [Browse...] button, and then select folders in the Browse For Folder dialog box.

- Drag and drop the folder using such as Explorer.

File names including path can be added by one of the following method.

- Select the file in the Specify Far Jump File dialog box which opens by clicking the [Browse...] button.

- Drag and drop the file using such as Explorer.

Caution If an extremely long absolute path is specified as a relative path, an error could occur when

clicking the [OK] button. In this case, designate the absolute path.

Remark Up to 10000 lines are allowed. Up to the maximum characters that are limited by the Windows OS are

allowed. When the input violates any restriction, the following messages are shown in the tooltip.

Message Description

Specify a path. The field is empty.

The path is too long. Specify a path with a number of

characters equal to or fewer than maximum number of

restriction in the property that called this dialog box.

The file name including the path is exceeding the

character limit defined in the original path.

The specified path contains a folder that does not exist. The path includes the folder that does not exist.

The file name or path name is invalid. The following

characters cannot be used: \, /, :, *, ?, ", <, >, |

The file name with the invalid path is designated.

The characters, \, /, :, *, ", <, >, |, cannot be used for

the file name and folder name.

More than maximum number of paths or files specified

by the caller lines cannot be specified.

The number of paths or files which have been input

exceeds the maximum number of paths or files

specified by the caller.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 288 of 782
Apr 01, 2011

(b) Button

[Function buttons]

Browse... - When adding the path

Opens the Browse For Folder dialog box.

When a folder is selected, the path is added to [Path(One path per one line)].

- When adding the file name including path

Opens the Specify Far Jump File dialog box.

When a file is selected, the file name is added to [Path(One path per one line)].

Button Function

OK Reflects the entered path to the property that called this dialog box then closes the dialog

box.

Cancel Does not reflect the entered path to the property that called this dialog box then closes the

dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 289 of 782
Apr 01, 2011

This dialog box is used to refer the system include paths specified for the compiler and set their specified sequence.

Figure A-33. System Include Path Order Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [System include paths] in the [Frequently Used Options(for Compile)] cate-

gory, and [System include paths] in the [Frequently Used Options(for Assemble)] category

- From the [Compile Options] tab, [System include paths] in the [Preprocess] category

- From the [Assemble Options] tab, [System include paths] in the [Preprocess] category

[Description of each area]

(1) Path list display area

This area displays the list of the system include paths specified for the compiler.

(a) [Path]

This area displays the list of the system include paths in the specified sequence for the compiler.

The default order is the order that the files are registered to the project.

By changing the display order of the paths, you can set the specified order of the paths to the compiler.

To change the display order, use the [Up] and [Down] buttons, or drag and drop the path names.

Remarks 1. Move the mouse cursor over a file name to display a tooltip with the absolute path of that file.

2. Newly added system include paths are added next to the last path of the list.

3. When the path names are dragged and dropped, the multiple path names which are next to

each other can be selected together.

(b) Button

System Include Path Order dialog box

Up Moves the selected path to up.

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 290 of 782
Apr 01, 2011

Remark Note that above buttons are disabled when any path is not selected.

[Function buttons]

Down Moves the selected path to down.

Button Function

OK Sets the specified order of the paths to the compiler as the display order in the Path list dis-

play area and closes this dialog box.

Cancel Cancels the specified order of the paths and closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 291 of 782
Apr 01, 2011

This dialog box is used to set the warning messages output by the build tool.

Figure A-34. Build Tool Warning Messages Settings dialog box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Compile Options] tab, [Displayed warning message] and [Undisplayed warning message] in the

[Message] category

Build Tool Warning Messages Settings dialog box

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 292 of 782
Apr 01, 2011

[Description of each area]

(1) [Messages and output type] area

This area displays the list of the warning messages output by the build tool.

(a) [Number]

Show numbers of warning messages.

The icon corresponding to [Output Type] is shown on the check box.

Remark By clicking check boxes, items of [Output Type] can be changed.

(b) [Output Type]

Set the output type of warning messages by selecting from the drop-down list.

The contentes of the [Displayed warning message] property and [Undisplayed warning message] property are

reflected by default.

However, if the same number is specified on the [Displayed warning message] property and [Undisplayed

warning message] property, the number specified on the [Displayed warning message] property takes

precedence.

(c) [Message]

Show warning messages.

Remarks 1. By clicking each header ([Number]/[Output Type]/[Message]), the list of warning messages can be

sorted in order of the number, output type, or message in ascending/descending order.

Warning messages are sorted in descending order of the number by default.

2. You can select multiple warning messages by holding down the [Ctrl] or [Shift] key.

When multiple messages are selected, you can change the output type of selected all messages.

- Click the check box.

- Select from the drop-down list while holding down the [Ctrl] or [Shift] key.

Icon [Output Type]

Follow a Warning Level(Default)

Warns(Ignore a Warning Level)(-won)

Never Warns(-woff)

Item Description

Follow a Warning Level(Default) Displays the warning message according to the setting of the [Warning

level] property.

Warns(Ignore a Warning Level)(-won) Displays the warning message regardless of the setting of the [Warning

level] property.

Never Warns(-woff) Does not display the warning message regardless of the setting of the

[Warning level] property.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 293 of 782
Apr 01, 2011

[Function buttons]

Button Function

OK Reflects the settings to the [Displayed warning message] property and [Undisplayed

warning message] property and closes this dialog box.

Cancel Does not reflect the settings to the [Displayed warning message] property and [Undisplayed

warning message] property and closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 294 of 782
Apr 01, 2011

This dialog box is used to set the encoding and newline code of the file that is being edited on the Editor panel.

Remark The target file name is displayed on the title bar.

Figure A-35. File Save Settings Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- Focus the Editor panel, and then select [file name Save Settings...] from the [File] menu.

[Description of each area]

(1) [Encode]

Select the encoding to be set from the drop-down list.

The items of the drop-down list are displayed according to the following sequence.

Note that the same encoding and encoding which are not supported by the current OS will not be displayed.

- Encoding of the current file (default)

- Default encoding of the current OS

- Encoding of code page 932 (SJIS)

- Encoding of code page 50222 (JIS)

- Encoding of code page 51932 (EUC)

- Encoding of code page 65001 (UTF8)

- Encoding supported by the current OS other than those mentioned above

(2) [Newline code]

Select the newline code to be set from the drop-down list.

You can select any of items below.

- Keep current newline code

- Windows (CR LF)

- Macintosh (CR)

File Save Settings dialog box

(1)

[Function buttons]

(2)

(3)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 295 of 782
Apr 01, 2011

- Unix (LF)

"Keep current newline code" is selected by default.

After the newline code is changed, the set newline code is selected by default.

(3) [Reload the file]

Use this check box to select whether to reload the file with the selected encoding and newline code when the [OK]

button is clicked.

The check box is not selected by default.

[Function buttons]

Button Function

OK Sets the selected encoding and newline code to the target file and closes this dialog box.

If [Reload the file] is selected, sets the selected encoding and newline code to the target file

and reloads the file.And then closes this dialog box.

Cancel Cancels the settings of the encoding and newline code and closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 296 of 782
Apr 01, 2011

This dialog box is used to generate a link directive file based on the specified memory, segments, sections, and symbol

allocation information.

Figure A-36. Link Directive File Generation Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Project Tree panel, select the Build tool node, and then select [Create Link Directive File...] from the context

menu.

Link Directive File Generation dialog box

(1)

[Function buttons]

(3)

(2)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 297 of 782
Apr 01, 2011

[Description of each area]

(1) [Segment / Section list] area

Display the device memory allocation information, and a list of the currently configured segments and sections.

(a) [Memory / Name]

Display the names of the memory area, segments, and sections.

For the memory area, the name of the corresponding memory area as shown below is displayed.

- Internal ROM

- Non Mapping

- Internal RAM

- DataFlash

This item can be edited directly for the segments and sections.If a segment name and section name is

changed, the value of [Name] in the [Segment / Section detail] area is also changed.

Caution Some segment and section names in reserved sections cannot be edited.See the remark of

the [Segment / Section detail] area for details.

(b) [Start Address]

Display the start addresses of the memory area, segments, and sections.

This item can be edited directly for the segments and sections.If the start address is changed, the value of

[Start Address] in the [Segment / Section detail] area is also changed.

(c) [End Address]

Display the end addresses of the memory area.

A dash (-) appears in segment and section rows.

(d) Button

This area has the following functions.

- Expand/collapse a row view

You can expand/collapse each low view by double clicking the row or clicking or at the beginning of the

row.

Add segment Adds a new segment directly below the row selected in the list.

The segment name is "NewSegment_XXX" by default (XXX: 0 to 255 in decimal num-

bers).

Make detailed segment settings in the [Segment / Section detail] area.

This button is invalid when a section row is selected, or when 256 segments have been

registered to the list.

Add section Adds a new section directly below the row selected in the list.

The section name is "NewSection_XXX" by default (XXX: 0 to 255 in decimal numbers).

Make detailed section settings in the [Segment / Section detail] area.

This button is invalid when 256 sections are registered in the list.

Delete Deletes the segment or section that is selected in the list.

If a segment is deleted, the section included in the segment is also deleted.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 298 of 782
Apr 01, 2011

- Move a segment or section row

You can move segment or section rows by dragging and dropping them.

Remark If a segment is moved, the section included in the segment is also moved.

- Copy a segment or section

After selecting a segment or section, press the [Ctrl] + [C] key to copy it, then the [Ctrl] + [V] key to paste it.

The copy of the row is pasted immediately below the row that is selected when the [Ctrl] + [V] key is pressed.

"Copy_" is added to the head of the name of the copy of the segment or section.

Remarks 1. If a segment is copied, the section included in the segment is also copied.

2. The start address of the copy of the segment or section is blank.

3. If the copy cannot be performed due to the attributes of the segment being copied to, an error

will occur.

(2) [Segment / Section detail] area

Display and edit detailed information on the segment or section selected in the [Segment / Section list] area.

(a) Detailed information of segments

Name Specify the segment name.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

Default NewSegment_XXX (XXX: 0 to 255 in decimal numbers)

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Attribute Select the attribute of the segment.

If a segment contains a reserved section, then this is only available if the segment

attributes can also be set according to the section attributes. In this case, the attributes

that cannot be set are not appear in the drop-down list.

Default - When adding the segment to the internal ROM area or non mapping

area

Executable(RX)

- When adding the segment to the internal ROM

Read/Write(RW)

- When adding the segment to the DataFlash area

Read only(R)

How to change Select from the drop-down list.

Restriction Executable(RX) Makes the segment readable and executable.

Read only(R) Makes the segment readable.

Read/Write(RW) Makes the segment readable and writable.

All enable (RWX) Makes the segment readable, writable, and exe-

cutable.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 299 of 782
Apr 01, 2011

(b) Detailed information of sections

Start address Specify the start address to allocate the segment.

If this field is blank, the segment is allocated in the behind of the previous segment by the

link function of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Maximum memory size Specify the maximum memory size of the segment.

If this field is blank, the size is considered as 0x100000 bytes by the link function of the

compiler.

An error occurs if the specified maximum memory size is exceeded.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Hole size Specify the hole size between segments.

If this field is blank, the size is considered as 0x0 (byte) by the link function of the com-

piler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Filling value Specify the filling value for a hole between segments.

If this field is blank, the value is considered as 0x0000 by the link function of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0000 to 0xFFFF (hexadecimal number)

Alignment value Specify the alignment conditions of the segment.

When the odd number value is specified, it changes to the even number value by auto-

matically adding one.

If this field is blank, the value is considered as 0x8 by the link function of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFF (hexadecimal number)

Name Specify the section name.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

Default NewSection_XXX (XXX: 0 to 255 in decimal numbers)

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 1022 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 300 of 782
Apr 01, 2011

Type Select the type of the section.

Select [Exist data(PROGBITS)] when a object file contains sections with actual values

(.text, .data, etc.). Select [No data(NOBITS)] when a object file contains sections without

actual values (.bss, .sbss, etc.).

Default Exist data (PROGBITS)

How to change Select from the drop-down list.

Restriction Exist data

(PROGBITS)

Sets the section with a default value.

No data

(NOBITS)

Sets the section without a default value.

Attribute Select the attribute of the section.

Default - When the attribute of the parent segment is [Executable(AX)]

Executable(AX)

- When the attribute of the parent segment is [Read only(A)]

Read only(A)

- When the attribute of the parent segment is [Read/Write(AW)]

Read/Write(AW)

- When the attribute of the parent segment is [All enable (AWX)]

All enable (AWX)

How to change Select from the drop-down list.

Restriction Executable(AX) Sets a section that occupies a memory and enables

to execute.

This item is not displayed when the attribute of the

parent segment is [Read only(R)].

Read only(A) Sets a section that occupies a memory.

Read/Write(AW) Sets a section that occupies a memory and enables

to write.

This item is displayed only when the attribute of the

parent segment is [Read/Write(RW)] or [All enable

(RWX)].

GP with 1

instruction(AWG)

Sets a section assigned within a memory range that

enables it to occupy a memory, write to it, and ref-

erence it using a global pointer (gp) and 16-bit dis-

placement.

This item is displayed only when the attribute of the

parent segment is [Read/Write(RW)] or [All enable

(RWX)].

All enable (AWX) Sets a section that occupies a memory and enables

to write and execute.

This item is displayed only when the attribute of the

parent segment is [All enable (RWX)].

Start address Specify the start address to allocate the section.

If this field is blank, the section is allocated in the behind of the previous section by the link

function of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 301 of 782
Apr 01, 2011

Remark Reserved sections are handled as follows.

- If a section defined in the C compiler as a reserved section is specified by [Name] or [Input section name],

then the [Types] and [Attribute] cannot be edited, and their values are set automatically.

The combinations of reserved section names and values set automatically are shown below.

Hole size Specify the hole size between sections.

If this field is blank, the size is considered as 0x0 (byte) by the link function of the

compiler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Alignment value Specify the alignment conditions of the section.

When the odd number value is specified, it changes to the even number value by auto-

matically adding one.

If this field is blank, the value is considered as 0x4 by the link function of the compiler.

However, if the section name is ".tidata.byte" or ".tibss.byte", the odd number value can be

specified. If this field is blank, the value is considered as 0x1 by the link function of the

compiler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFF (hexadecimal number)

Input section name Specify the input section name.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog

box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Object file name Specify the name of the object file including the input section.

The specified object file name is displayed as the subproperty.

Default Object file name[number of set items]

How to change Edit by the Object File Select dialog box which appears when clicking

the [...] button.

Reserved Section Name Type Attribute

.pro_epi_runtime Exist data (PROGBITS) Executable(AX)

.text Exist data (PROGBITS) Executable(AX)

.data Exist data (PROGBITS) Read/Write(AW)

.sedata Exist data (PROGBITS) Read/Write(AW)

.sidata Exist data (PROGBITS) Read/Write(AW)

.tidata Exist data (PROGBITS) Read/Write(AW)

.tidata.byte Exist data (PROGBITS) Read/Write(AW)

.tidata.word Exist data (PROGBITS) Read/Write(AW)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 302 of 782
Apr 01, 2011

- The linker limits the reserved sections below to the names of segments where they can be assigned.

If one of these section names is specified for [Name], then the name of the parent segment is referenced.

Although these sections cannot be moved within a segment, they can be moved to other segments.

- For the following reserved sections, the linker creates a fixed correspondence between the output and

input section names. For this reason, even if the input section name is omitted, the linker will assign it

automatically.

.pro_epi_runtime, .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .sidata, .sibss, .sedata, .sebss

(3) [Symbol list] area

Display the list of currently configured symbols.

(a) [Name]

Display the symbol name.

This item can be edited directly. If the symbol name is changed, the value of [Name] in the [Symbol detail]

area is also changed.

(b) [Type]

Display the type of the symbol.

This item can be edited directly. If the type is changed, the value of [Type] in the [Symbol detail] area is also

changed.

(c) [Address]

Specify the start address to allocate the symbol.

This item can be edited directly. If the address is changed, the value of [Address] in the [Symbol detail] area is

also changed.

.bss No data (NOBITS) Read/Write(AW)

.sebss No data (NOBITS) Read/Write(AW)

.sibss No data (NOBITS) Read/Write(AW)

.tibss No data (NOBITS) Read/Write(AW)

.tibss.byte No data (NOBITS) Read/Write(AW)

.tibss.word No data (NOBITS) Read/Write(AW)

.sdata Exist data (PROGBITS) GP with 1 instruction(AWG)

.sbss Exist data (PROGBITS) GP with 1 instruction(AWG)

.const Exist data (PROGBITS) Read only(A)

.sconst Exist data (PROGBITS) Read only(A)

Section Name Segment Name

.sidata, .sibss, .tidata, .tibss, .tidata byte, .tibss.byte, .tidata.word, .tibss.word SIDATA

.sedata, .sebss SEDATA

.sconst SCONST

Reserved Section Name Type Attribute

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 303 of 782
Apr 01, 2011

(d) Button

This area has the following functions.

- Move a symbol row

You can move symbol rows by dragging and dropping them.

(4) [Symbol detail] area

Display and edit detailed information on the symbol selected in the [Symbol list] area.

Add symbol Adds a new symbol directly below the row selected in the list.

The symbol name is "NewSymbol_XXX" by default. (XXX: 0 to 255 in decimal numbers)

Make detailed symbol settings in [Symbol detail] area.

This button is invalid when 256 symbols are registered in the list.

Delete symbol Deletes the section that is selected in the list.

Name Specify the symbol name.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

Default NewSymbol_XXX (XXX: 0 to 255 in decimal numbers)

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 1022 characters

Type Select the type of the symbol.

Default TP symbol(%TP_SYMBOL)

How to change Select from the drop-down list.

Restriction TP sym-

bol(%TP_SYMBOL)

Sets the TP symbol as the type of the symbol.

GP sym-

bol(%GP_SYMBOL)

Sets the GP symbol as the type of the symbol.

EP sym-

bol(%EP_SYMBOL)

Sets the EP symbol as the type of the symbol.

Base symbol name Specify the base symbol (TP symbol that is used when the GP symbol value is defined) from

among the TP symbol that already exists.

If a base symbol name is specified, the offset value from the TP symbol value will be the GP

symbol value.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

This property is displayed only when [GP symbol(%GP_SYMBOL)] in the [Type] property is

selected.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog box

which appears when clicking the [...] button.

Restriction Up to 1022 characters

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 304 of 782
Apr 01, 2011

[Function buttons]

Address Specify the symbol to allocate the section.

If this field is blank, the address is considered automatically by the link function of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Alignment value Specify the alignment conditions of the symbol.

When the odd number value is specified, it changes to the even number value by automatically

adding one.

If this field is blank, the value is considered as 0x4 by the link function of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFF (hexadecimal number)

Segment name Specify the segment name that will be referenced by TP and GP symbol values.

The specified segment name is displayed as the subproperty.

This property is not displayed when [EP symbol(%EP_SYMBOL)] in the [Type] property is

selected.

Default Segment name[number of set items]

How to change Edit by the Segment Select dialog box which appears when clicking the [...]

button.

Button Function

Symbol Toggles the [Symbol list] area and [Symbol detail] area between visible and hidden.

Generate Generates a link directive file (named project-name.dir) based on the specified memory,

segments, sections, and symbol allocation information, and then adds to the project.

The link directive file is generated in the project folder. The link directive file that has been

generated is also shown on the project tree, under the File node.

The generated link directive file will be a build target. If a link directive file has already been

registered to the project, then the file will be removed from the build target.

Close Closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 305 of 782
Apr 01, 2011

This dialog box is used to select the object file to set in the caller of the dialog box from among object files and library

files added to the project.

Figure A-37. Object File Select Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- In the Link Directive File Generation dialog box, select a section in the [Segment / Section list] area, and then click

the [...] button on [Object file name] in the [Segment / Section detail] area.

[Description of each area]

(1) [Object file list] area

Display a list of object files and library files added to the project that opened the Link Directive File Generation dia-

log box, and the sections that specify them in the Link Directive File Generation dialog box.

(a) [Object File]

Display the following file name list.

Select files to set to [Object file name] in the [Segment / Section detail] area in the Link Directive File Genera-

tion dialog box that opened this dialog box, via check boxes.

- The object module files generated from the source files added to the project

- The object module files added directly to the project tree

- The library files added directly to the project tree

Remarks 1. Move the mouse cursor over a file name to display a tooltip with the absolute path of that file.

Object File Select dialog box

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 306 of 782
Apr 01, 2011

2. In the Link Directive File Generation dialog box that opened this dialog box, in the [Segment /

Section detail] area, if an object file is already set in [Object file name], the check box for that

object file will be selected by default.

(b) [Section]

Display the section that specifies the corresponding object file in the Link Directive File Generation dialog box.

If an object file is specified from multiple sections, they are displayed separated by commas.

If the section that specifies the object file does not exist, this field is blank.

[Function buttons]

Button Function

OK Closes this dialog box and sets the selected file to [Object file name] in the [Segment / Sec-

tion detail] area in the Link Directive File Generation dialog box.

Cancel Cancels the file selecting and closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 307 of 782
Apr 01, 2011

This dialog box is used to select the segment to set in the caller of the dialog box from the segments currently set in the

Link Directive File Generation dialog box.

Figure A-38. Segment Select Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- In the Link Directive File Generation dialog box, select a symbol in the [Symbol list] area, and then click the [...] but-

ton on [Segment name] in the [Symbol detail] area.

[Description of each area]

(1) [Segment list] area

Display the list of currently set segments in the Link Directive File Generation dialog box and symbols that specify

them.

(a) [Segment]

Display a list of segment names currently set in the Link Directive File Generation dialog box.

Select segments to set to [Segment name] in the [Symbol detail] area in the Link Directive File Generation dia-

log box that opened this dialog box, via check boxes.

Remarks 1. Move the mouse cursor over a file name to display a tooltip with the absolute path of that file.

2. In the Link Directive File Generation dialog box that opened this dialog box, in the [Symbol

detail] area, if a segment is already set in [Segment name], the check box for that segment will

be selected by default.

Segment Select dialog box

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 308 of 782
Apr 01, 2011

3. The check box for the segment that specifies a symbol other than the one that opened this dia-

log box will be disabled.

(b) [Symbol]

Specify the symbol specifying the displayed segment.

If the symbol that specifies the segment does not exist, this field is blank.

[Function buttons]

Button Function

OK Closes this dialog box and sets the selected segment to [Segment name] in the [Symbol

detail] area in the Link Directive File Generation dialog box.

Cancel Cancels the file selecting and closes the dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 309 of 782
Apr 01, 2011

This dialog box is used to display object module files and library files to input to the linker and configure these link

order.

Figure A-39. Link Order Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Project Tree panel, select the Build tool node, and then select [Set Link Order...] from the context menu.

[Description of each area]

(1) File list display area

Show the file list to input to linker.

(a) [File]

Display the following file name lists in input order to linker.

- Object module files that are generated from the source file registered in the selected main project or sub-

project.

- Object module files that are directly added to the project tree in the selected main project or subproject.

- Library files that are directly added to the project tree in the selected main project or subproject.

By default, input order to linkers is the order registered in the project.

You can change the input order by changing the display order of files.

Use [Up] or [Down] buttons, or drag and drop the file name to change the display order.

Link Order dialog box

[Function buttons]

(1)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 310 of 782
Apr 01, 2011

Remarks 1. When the mouse cursor is hovered over a file name, the path of the file appears in a popup. If

the file is on the same drive as the project file, then it appears as the relative path; if it is on the

different drive, then it appears as the absolute path.

2. The object module file that is generated from the newly added source file and newly added

object module file are added to the end of the module file list. The newly added library file is

added to the end of the list.

3. When the file is dragged and dropped, the multiple files that are next to each other can be

selected together.

(b) Button

Remark Note that above buttons are disabled when any file is not selected.

[Function buttons]

Up Moves the selected file to up.

Down Moves the selected file to down.

Button Function

OK Sets the file input order to linker as the display order of the File list display area and closes

this dialog box.

Cancel Cancels the link order settings and closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 311 of 782
Apr 01, 2011

This dialog box is used to add and delete build modes and configure the current build mode in batch.

Figure A-40. Build Mode Settings Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Build] menu, select [Build Mode Settings...].

[Description of each area]

(1) [Selected build mode] area

Show the build mode selected in the [Build mode list] area.

(a) Button

(2) [Build mode list] area

Show all the build modes that exist in the currently opening project (main project and subproject) in a list.

Current build mode in the selected project is selected by default.

The current build modes of all projects are same, the build mode is selected by default. If they are not same,

"DefaultBuild" will be selected.

Note that the "DefaultBuild" is the default build mode and is always shown at the top.

Build Mode Settings dialog box

Apply to All Sets the build mode of the main project and all subprojects of the currently opened project

to the currently displayed build mode.

(1)

(2)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 312 of 782
Apr 01, 2011

(a) Button

Caution When duplicating or renaming the build mode, the existing build mode name cannot be

used.

Remarks 1. Up to 127 characters can be used as a build mode name. When the input violates any restriction,

the following messages are shown in the tooltip.

2. Up to 20 build modes can be added. When the input violates any restriction, the following mes-

sages are shown in the tooltip.

[Function buttons]

Duplicate... Duplicates the selected build mode.

The Character String Input dialog box opens and the build mode is duplicated with the

name entered and added to the main project and all the subprojects in the currently open-

ing project.

When the build mode with "*" mark does not exist in the main project or subproject and

duplicate the build mode, DefaultBuild is duplicated.

Up to 20 build modes can be added.

Delete Deletes the selected build mode.

Note that DefaultBuild cannot be deleted.

Rename... Renames the selected build mode.

Rename the build mode with entered name in the opening the Character String Input dia-

log box.

Message Description

A build mode with the same name already exists. The entered build mode name already exists.

More than 127 characters cannot be specified. Build mode name is too long (more than 128 charac-

ters).

The build mode name is invalid. The following charac-

ters cannot be used: \, /, :, *, ?, ", <, >, |

Invalid build mode name is entered. The characters,

(\, /, :, *, ?, ", <, >, |) cannot be used as the name is

used for the folder name.

Message Description

The maximum number of build modes that can be set

per project/subproject is 20.

The number of build modes exceed 20.

Button Function

Close Closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 313 of 782
Apr 01, 2011

This dialog box is used to do build, rebuild and clean process in batch with the build mode that each project (main

project and subproject) has.

Remark Order of the batch build follows the build order of the project which the subproject comes before the main

project.

When more than one build mode is selected for a main project or a subproject, all the selected build modes

are built and then the next subproject or main project is built.

Figure A-41. Batch Build Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Build] menu, select [Batch Build...].

[Description of each area]

(1) [Build mode list] area

Show the combination list of the names of the main project and the subproject which the currently opening project

has and build modes and defined macros which they have.

(a) [Project]

Show the main project and the subproject which the currently opening project has.

Select the combination of the main project and subproject to build and the build modes.

When this dialog box is opened for the first time after the project is created, all the check boxes are

unchecked. From the second time, the previous setting is retained.

Batch Build dialog box

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 314 of 782
Apr 01, 2011

(b) [Build mode]

Show build modes which the main project and subproject have.

(c) [Defined macros]

Show defined macros separated with "|", configured for the combination of the main project and the subproject

and their build modes in the [Compile Options] tab and the [Assemble Options] tab in the Property panel.

Note that the defined macro in Compile Option comes before the one in Assemble Option and they are sepa-

rated with ", ".

[Function buttons]

Button Function

Build Closes this dialog box and executes a batch build of the selected projects in the respective

build modes. The execution result of the build are displayed on the Output panel.

After the batch build is complete, the build mode configuration restores to the one before

this dialog box was opened.

Note that this buttons is disabled when any project is not selected.

Rebuild Closes this dialog box and executes a batch rebuild of the selected projects in the respec-

tive build modes. The execution result of the rebuild are displayed on the Output panel.

After the batch rebuild is complete, the build mode configuration restores to the one before

this dialog box was opened.

Note that this buttons is disabled when any project is not selected.

Clean Closes this dialog box and deletes the files built in the respective build modes set for the

selected projects. The execution result of the clean are displayed on the Output panel.

After the clean is complete, the build mode configuration restores to the one before this dia-

log was opened.

Note that this buttons is disabled when any project is not selected.

Close Closes this dialog box.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 315 of 782
Apr 01, 2011

This dialog box is used to move the caret to the designated location.

Figure A-42. Go to the Location Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Edit] menu, select [Go To...].

[Description of each area]

(1) [Line number] area

Specify the line number (decimal number) or symbol name of the location to which the caret is moved.

You can directly enter the characters into the text box or select from the input history in the drop down list (maxi-

mum numbers of the history: 10).

[Function buttons]

Go to the Location dialog box

Button Function

OK Displays the designated location at the top of the target panel display and moves the caret

there.

Note that this button is enabled when the project that the opened file is registered is the

active project and other than library project.

Cancel Cancels the criteria and closes this dialog box.

Help Displays the help of this dialog box.

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 316 of 782
Apr 01, 2011

This dialog box is used to show how the process has been progressed when the time consuming process is taken

place.

This dialog box automatically closes when the process in progress is done.

Figure A-43. Progress Status Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- This dialog box automatically opens when a message is output while the time consuming process is in progress.

[Description of each area]

(1) Message display area

Display the message output while process is in progress (edit not allowed).

(2) Progress bar

The progress bar shows the current progress of the process in progress with the bar length.

When the process is 100% done (the bar gets to the right end), this dialog box automatically closed.

[Function buttons]

Progress Status dialog box

Button Function

Cancel Cancels the process in progress and closes this dialog box.

Note that if the process termination is impossible, this button is disabled.

[Function buttons]

(1)

(2)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 317 of 782
Apr 01, 2011

This dialog box is used to configure the CubeSuite+ environment.

All settings made via this dialog box are saved as preferences for the current user.

Figure A-44. Option Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Tool] menu, select [Options...].

[Description of each area]

(1) Category selection area

Select the items to configure from the following categories.

Option dialog box

Category Description

[General - Startup and Exit] category Configure startup and shutdown.

[General - Display] category Configure messages from the application.

[General - Text Editor] category Configure the text editor.

[General - Font and Color] category Configure the fonts and colors shown on each panel.

[General - External Tools] category Configure the startup of external tools.

[General - Build/Debug] category Configure building and debugging.

(1)

(2)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 318 of 782
Apr 01, 2011

Remark See "CubeSuite+ Start" for details about categories other than [General - Build/Debug].

(2) Settings

This area is used to configure the various options for the selected category.

For details about configuration for a particular category, see the section for the category in question.

[Function buttons]

[General - Update] category Configure update.

[Other - User Information] category Configure user information.

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will not be

removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Applied all setting (does not close this dialog box).

Help Display the help of this dialog box.

Category Description

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 319 of 782
Apr 01, 2011

[General - Build/Debug] category

Use this category to configure general setting relating to building and debugging.

Figure A-45. Option Dialog Box ([General - Build/Debug] Category)

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Tool] menu, select [Options...].

[Description of each area]

(1) [Enable Rapid Build]

Note This feature automatically begins a build when the source file being edited is saved.

Enabling this feature makes it possible to perform builds while editing source files.

If this feature is used, we recommend saving frequently after editing source files.

Enable the rapid build Note feature (default).

Do not use the rapid build feature.

(1)

(4)

(3)

(2)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 320 of 782
Apr 01, 2011

(2) [Observe registered files changing]

This item is only enabled if the [Enable Rapid Build] check box is selected.

Remark This item is only enabled if the [Enable Rapid Build] check box is selected.

Cautions 1. The rapid build will not finish if this item is selected, and the files to be built have been reg-

istered for automatic editing or overwriting (e.g. by commands executed before or after the

build).

If the rapid build does not finish, unselect this item, and stop the rapid build.

2. If this item is selected, a file that is registered in the project but does not exist (a file grayed

out) will not be observed even if it is registered again by the Explorer etc.

To observe the file, reload the project file, or select this item again after unselecting this

item and closing this dialog box.

(3) [Enable Break Sound]

(4) Buttons

[Function buttons]

Start a rapid build when a source file registered in the project is edited or saved by an external text editor or the

like.

Do not start a rapid build when a source file registered in the project is edited or saved by an external text editor

or the like (default).

Beep when the execution of a user program is halted due to a break event (hardware or software break).

Do not beep when the execution of a user program is halted due to a break event (hardware or software break)

(default).

Initialize Settings Return all currently displayed setting to their default values.

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will not be

removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Apply all setting (does not close this dialog box).

Help Display the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 321 of 782
Apr 01, 2011

This dialog box is used to select existing files to add to projects.

Figure A-46. Add Existing File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [File] menu, select [Add] >> [Add File...].

- On the Project Tree panel, select either one of the Project node, Subproject node, File node, or file, and then select

[Add] >> [Add File...] from the context menu.

[Description of each area]

(1) [Look in] area

Select the folder that the file to add to projects exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in [Look in] and [Files of type] is shown.

(3) [File name] area

Designate the file name of the file to add to projects.

Add Existing File dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 322 of 782
Apr 01, 2011

(4) [Files of type] area

Designate the file type of the file to add to projects.

[Function buttons]

C source file(*.c) C language source file

Header file(*.h; *.inc) Header file

Assemble file(*.s) Assembly language source file

Link directive file(*.dir; *.dr) Link directive file

Section file (*.sf) Section file

Archive file(*.a) Archive file

Object file(*.o) Object file

Text file(*.txt) Text format

All Files(*.*) All the format (default)

Button Function

Open Adds the designated file to a project.

Cancel Closes this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 323 of 782
Apr 01, 2011

This dialog box is used to select a folder and retrieve it for the caller.

Figure A-47. Browse For Folder dialog box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- In the Add File dialog box, click the [...] button in the [File location] area.

- In Path Edit dialog box, click [...] button in the path edit area.

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Intermediate file output folder] in the [Output File Type and Path] category,

[Output folder] in the[Frequently Used Options(for Compile)] category, [Output folder for ROMized object file]

in the [Frequently Used Options(for ROMization)] category, [Output folder for hex file] in the [Frequently Used

Options(for Hex Convert)] category, [Output folder for section file] in the [Frequently Used Options(for Section

File Generate)] category, and [Temporary folder] in the [Others] category.

- From the [Compile Options] tab, [Output folder for assembly file], [Output folder for assemble list], and [Output

folder for frequency information file] in the [Output File] category.

- From the [Assemble Options] tab, [Output folder for assemble list file] in the [Assemble List] category.

- From the [Link Options] tab, [Output folder] in the [Output File] category, [Output folder for link map file] in the

[Link Map] category.

- From the [ROMization Process Options] tab, [Output folder for ROMized object file] in the [Output File] cate-

gory, [Output folder for ROMization section file] in the [Section List] category, [Output folder for memory map

file] in the [Memory Map] category.

Browse For Folder dialog box

(2)

(1)

[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 324 of 782
Apr 01, 2011

- From the [Hex Convert Options] tab, [Output folder for hex file] in the [Output File] category.

- From the [Archive Options] tab, [Output folder] in the [Output File] category.

- From the [Section File Generate Options] tab, [Output folder for section file] in the [Output File] category.

- From the [Individual Compile Options] tab, [Output folder for assembly file], [Output folder for assemble list],

and [Output folder for frequency information file] in the [Output File] category.

- From the [Individual Assemble Options] tab, [Output folder for assemble list file] in the [Assemble List] cate-

gory.

[Description of each area]

(1) Message area

Show messages related to folders selected in this dialog box.

(2) Folder location area

Select a folder to set in the caller of the dialog box.

By default, the folder set in the caller is selected.

Remark When the area is blank or the path which does not exist is entered, "C:\Documents and Settings\user

name\My Documents" is selected instead.

[Function buttons]

Button Function

Make New Folder Creates a new folder in the root of the selected folder.

The default folder name is "New Folder".

OK The designated folder path is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 325 of 782
Apr 01, 2011

This dialog box is used to select the boot area object file to set in the caller of the dialog box.

Figure A-48. Specify Boot Area Object File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Boot area object file name] in the [Flash] category.

[Description of each area]

(1) [Look in] area

Select the folder where the file to be set in the caller of this dialog box exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in [Look in] and [Files of type] is shown.

(3) [File name] area

Specify the file name to set in the caller of the dialog box.

(4) [Files of type] area

Specify the file type to set in the caller of the dialog box.

Specify Boot Area Object File dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 326 of 782
Apr 01, 2011

[Function buttons]

Boot area object file(*.out) Boot area object file (default)

All Files(*.*) All the format

Button Function

Open The designated file is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 327 of 782
Apr 01, 2011

This dialog box is used to select the function information file to set in the caller of the dialog box.

Figure A-49. Specify Function Information File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Compile Options] tab, [Function information file name] in the [Optimization(Details)] category.

- From the [Individual Compile Options] tab, [Function information file name] in the [Optimization(Details)] cate-

gory.

[Description of each area]

(1) [Save in] area

Select the folder where the file to be set in the caller of this dialog box exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in [Save in] and [Save as type] is shown.

(3) [File name] area

Specify the file name to set in the caller of the dialog box.

Specify Function Information File dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 328 of 782
Apr 01, 2011

(4) [Save as type] area

Specify the file type to set in the caller of the dialog box.

[Function buttons]

Function information file(*.txt) Function information file (default)

All Files(*.*) All the format

Button Function

Save The designated file is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 329 of 782
Apr 01, 2011

This dialog box is used to select the intermediate language file for external variable sorting to set in the caller of the dia-

log box.

Figure A-50. Specify Intermediate Language File for External Variable Sorting Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [Compile Options] tab, [Intermediate language file name for external variable sorting] in the [Optimi-

zation(Details)] category.

[Description of each area]

(1) [Save in] area

Select the folder where the file to be set in the caller of this dialog box exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in [Save in] and [Save as type] is shown.

(3) [File name] area

Specify the file name to set in the caller of the dialog box.

Specify Intermediate Language File for External Variable Sorting dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 330 of 782
Apr 01, 2011

(4) [Save as type] area

Specify the file type to set in the caller of the dialog box.

[Function buttons]

Intermediate language file for external variable sorting(*.ic) Intermediate language file for external variable sorting

Button Function

Save The designated file is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 331 of 782
Apr 01, 2011

This dialog box is used to select the Far Jump file to set in the caller of the dialog box.

Figure A-51. Specify Far Jump File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, from the [Compile Options] tab, in the [Input File] category, after selecting the [Far Jump file

name] property, open the Path Edit dialog box by clicking the [...] button.

And then click the [...] button in the dialog box.

[Description of each area]

(1) [Look in] area

Select the folder where the file to be set in the caller of this dialog box exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in [Look in] and [Files of type] is shown.

(3) [File name] area

Specify the file name to set in the caller of the dialog box.

Specify Far Jump File dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 332 of 782
Apr 01, 2011

(4) [Files of type] area

Specify the file type to set in the caller of the dialog box.

[Function buttons]

Far Jump file(*.fjp) Far Jump file

Button Function

Open The designated file is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 333 of 782
Apr 01, 2011

This dialog box is used to select the ROMization area reservation code file to set in the caller of the dialog box.

Figure A-52. Specify ROMization Area Reservation Code File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.

- From the [ROMization Process Options] tab, [ROMization area reservation code file name] in the [Input File] cate-

gory.

[Description of each area]

(1) [Look in] area

Select the folder where the file to be set in the caller of this dialog box exists.

The project folder is selected by default.

(2) File list area

File list that matches to the selections in the [Look in] area and [File of type] area is shown.

(3) [File name] area

Specify the file name to set in the caller of the dialog box.

Specify ROMization Area Reservation Code File dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 334 of 782
Apr 01, 2011

(4) [Files of type] area

Specify the file type to set in the caller of the dialog box.

[Function buttons]

ROMization area reservation code file(*s; *.o) ROMization area reservation code file name (default)

Button Function

Open Sets the specified file in the caller of the dialog box.

Cancel Closes the dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 335 of 782
Apr 01, 2011

This dialog box is used to save the editing file or contents of each panel to a file with a name.

Figure A-53. Save As Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- Focus the Editor panel, and then select [Save file name As...] from the [File] menu.

- Focus the Output panel, and then select [Save tab name As...] from the [File] menu.

[Description of each area]

(1) [Save in] area

Select the folder to save the panel contents in the file.

The following folders are selected by default.

(a) In the Editor panel

The folder that currently editing file is saved.

(b) In the Output panel

The project folder is selected when the file is save for the first time. The previously selected file is selected

after the second time.

(2) File list area

File list that matches the selections in the [Save in] area and [Save as type] area is shown.

Save As dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 336 of 782
Apr 01, 2011

(3) [File name] area

Specify the file name to save.

(4) [Save as type] area

(a) In the Editor panel

The following file types are displayed depend on the file type of the currently editing file.

(b) In the Output panel

The following file types are displayed.

[Function buttons]

Text file(*.txt) Text format

C source file(*.c) C language source file

Header file(*.h; *.inc) Header file

Assemble file(*.s) Assembly language source file

Link directive file(*.dir; *.dr) Link directive file

Section file (*.sf) Section file

Map file(*.map) Map file

Hex file (.hex) Hex file

Text file(*.txt) Text format

Button Function

Save Saves the file as the designated file name.

Cancel Closes this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 337 of 782
Apr 01, 2011

This dialog box is used to select the application to open the file selected in Project Tree.

Figure A-54. Open with Program Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Project Tree panel, select a file, and then select [Open with Selected Application...] from the context menu.

[Description of each area]

(1) [Look in] area

Select the folder where the application to open the file is stored.

Program folder (for Windows XP, "C:\Program Files") is selected by default.

(2) File list area

File list that matches to the selections in the [Look in] area and [File of type] area is shown.

(3) [File name] area

Specify the executable file name of the application to open the file.

(4) [Files of type] area

Specify the executable file type of the application to open the file.

Open with Program dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 338 of 782
Apr 01, 2011

[Function buttons]

Program(*.exe) Executable format (default)

All Files (*.*) All the formats

Button Function

Open Opens the file with the specified application.

Cancel Closes this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 339 of 782
Apr 01, 2011

This is the first window to open when the stack usage tracer is launched.

Use this window to check or modify the amount of stack used on a per-function basis.

Figure A-55. Stack Usage Tracer Window

The following items are explained here.

- [How to open]

- [Description of each area]

- [Caution]

[How to open]

- From the [Tool] menu, select [Startup Stack Usage Tracer].

[Description of each area]

(1) Menu bar

This area consists of the following menu items.

(a) [File] menu

Stack Usage Tracer window

Save Call Chain with Maximum

Stack from Selected Function...

Opens the Save As dialog box for saving the call chain with the greatest total

stack size (including the stack size of callee functions) of the function selected

in the tree display area / list display area to an output result file.

Functions in the same manner as the button.

Save All Call Chains from Selected

Function...

Opens the Save As dialog box for saving all call chains of the function selected

in the tree display area / list display area to an output result file.

Save Call Chain with Maximum

Stack from Every Root...

Opens the Save As dialog box for saving the call chain of the function displayed

in the tree display area with the largest total stack size to an output result file.

(3)

(1)

(2)

(4)

(5)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 340 of 782
Apr 01, 2011

Remark The output result file can only be saved in text format (*.txt) or CSV format (*.csv).

(b) [View] menu

(c) [Option] menu

Save All Call Chains from Every

Root...

Opens the Save As dialog box for saving all call chains of all functions dis-

played in the tree display area to an output result file.

Load Stack Size Specification

File...

Opens the Open dialog box for loading a stack size specification file.

Save Stack Size Specification

File...

Opens the Save As dialog box for saving the results of the operations made in

the Adjust Stack Size dialog box (e.g. changes to function information) to a

stack size specification file.

Exit sk850 Closes this window.

Recalculate Stack Size Recalculates the total stack size.

Functions in the same manner as the button.

Stop Forcibly stop the action of the stack usage tracer (e.g. recalculating the total

stack size).

Functions in the same manner as the button.

Sort List by Changes the function display order in the list display area.

Function Name Sort by function name.

Icon Type Sort by icon display priority (High: to Low:).

Stack Size Sort by total stack size.

Frame Size Sort by frame size.

Additional Margin Sort by additional margin.

File Name Sort by file name.

Stack Size Unknown / Adjusted

Function Lists...

Opens the Stack Size Unknown / Adjusted Function Lists dialog box to display

a list of functions with unknown frame size, functions for which information

(additional margin, recursion depth, or callee functions) has been modified, and

functions for which the stack usage tracer has forcibly set an additional margin.

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional

margin, recursion depth, and callee functions) for the function selected in the

tree display area / list display area.

This dialog box is used to change the information (additional margin, recursion

depth, and callee functions) for the selected function.

Functions in the same manner as the button.

Reset Function Resets the information (additional margin, recursion depth, and callee func-

tions) for the selected function to the default values.

This button will be grayed out if all the information for the selected function has

the default values.

Reset All Functions Resets the information (additional margin, recursion depth, and callee func-

tions) for all functions to the default values.

This button will be grayed out if all the information for all functions has the

default values.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 341 of 782
Apr 01, 2011

(d) [Help] menu

(2) Toolbar

This area consists of the following buttons.

(3) Tree display area

The calling relationship of the functions is shown in tree format.

The table below shows the meaning of the icon displayed to the left of the string representing the function name.

Remark The display priority for icons is from High: to Low: .

(a) Context menu

Select a function in this area, and then right click with the mouse. The context menu described below appears.

sk850 Help Displays the help of this window.

Functions in the same manner as the button.

About sk850... Opens the Version Information dialog box of the stack usage tracer.

Opens the Save As dialog box for saving the call chain with the greatest total stack

size (including the stack size of callee functions) of the function selected in the tree

display area / list display area to an output result file.

Functions in the same manner as when [Save Call Chain with Maximum Stack from

Selected Function...] is selected from the [File] menu.

Recalculates the total stack size. Function in the same manner as when [Recalcu-

late Stack Size] is selected from the [View] menu.

Forcibly stop the action of the stack usage tracer (e.g. recalculating the total stack

size).

Functions in the same manner as when [Stop] is selected from the [View] menu.

Opens the Adjust Stack Size dialog box to change the information (additional mar-

gin, recursion depth, and callee functions) for the function selected in the tree dis-

play area / list display area.

Functions in the same manner as when [Adjust Stack Size...] is selected from the

[Option] menu.

Displays the help of this window.

Functions in the same manner as when [sk850 Help] is selected from the [Help]

menu.

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been modi-

fied via the Adjust Stack Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional

margin, recursion depth, and callee functions) for the selected function.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 342 of 782
Apr 01, 2011

(4) List display area

Display the stack information for a single function (function name, total stack size, frame size, additional margin,

and file name) in list format.

The table below shows the meaning of the icon displayed to the left of the string representing the function name.

(a) Context menu

Select a function in this area, and then right click with the mouse. The context menu described below appears.

(5) Message display area

Display operation logs of the stack usage tracer.

Function Displays the function name.

Note that this area will only display functions from level 1 (the selected function) and

level 2 (functions called directly by the selected function).

Total Stack Size Displays the total stack size (including the stack size of callee functions; in bytes).

Frame Size Displays the frame size (not including the stack size of callee functions; in bytes).

Additional Margin Displays the value to mandatorily added to frame size (in bytes).

File Displays the file name.

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been modi-

fied via the Adjust Stack Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional

margin, recursion depth, and callee functions) for the selected function.

Sort List by Changes the function display order in the list display area.

Function Name Sort by function name.

Icon Type Sort by icon display priority (High: to Low:).

Stack Size Sort by total stack size.

Frame Size Sort by frame size.

Additional Margin Sort by additional margin.

File Name Sort by file name.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 343 of 782
Apr 01, 2011

[Caution]

- Assembly files

The stack usage tracer calculates total stack size by collecting information from the assembly files output by the C

compiler as intermediate files, with debugging information added. As a consequence, in order to obtain stack

information at the function level using the stack usage tracer, it is necessary to configure the compiler options to

output "Assembly files with debugging information".

- Timing of static analysis

The stack usage tracer performs static analysis upon startup, and displays the calling relationship between func-

tions and function-level stack information in its main window. Consequently, changes to the calling relationship

between functions or function-level stack information (e.g. adding files, changing compiler options, or modifying

the source code) will not be reflected in this window.

- Functions analyzed

The stack usage tracer only analyzes functions contained in assembly files with debugging information output by

the C compiler as intermediate files, and in library files provided by the build tool. Consequently, functions in

assembly files written by the user and library files created by the user are not analyzed. For this reason, the infor-

mation for these files must be set using the Adjust Stack Size dialog box.

- Icon display colors

Display priorities (High: to Low:) are assigned to icons displayed in the tree display area/list display area

in the window. Consequently, you must be aware that even if the icon (function called directly by same func-

tion with greatest total stack size) is displayed, information with relatively low priority, such as the icon (frame

size unknown) will be hidden by the GUI.

- Determining the maximum stack size

When the stack usage tracer searches for the path with the largest stack size, it assumes that functions that are

not analyzed have a stack size of zero. Consequently, when determining the maximum stack size, you must make

sure that there are no functions under [Unknown Functions] in the Stack Size Unknown / Adjusted Function Lists

dialog box.

- Tree display for recursive functions

The window's tree display area only displays up to the second call of a recursive function. Consequently, the third

and subsequent calls are hidden.

- Library functions bsearch, exit, and qsort

The stack usage tracer treats bsearch, exit, and qsort as unknown functions, even if they are in a library file pro-

vided by the build tool. Consequently, if you are using these functions, you must set the relevant information (e.g.

recursion depth and callee functions) in the Adjust Stack Size dialog box.

- Callee functions

The stack usage tracer only allows the following types of "callee functions" to be added in the Adjust Stack Size

dialog box: functions contained in C source files, and functions that are explicitly called (not called using a pointer).

Consequently, the [All Functions] section of the Adjust Stack Size dialog box only displays functions meeting the

above conditions.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 344 of 782
Apr 01, 2011

- Functions called by multiple functions

The stack usage tracer treats the stack information of functions called by multiple functions as unique. Conse-

quently, it is not possible to change the stack information for such functions depending on which function is calling

them.

Example If you select function sub called by func1 in the tree display area and open the Adjust Stack Size dialog

box, the changes are reflected in sub called by func2 as well.

- ASM statements in C source

If C source contains ASM statements, the stack usage tracer may output the following message: "W9432 : Illegal

format in file (path name : line number)". If this occurs, fix the problem by disabling the code in question using #if

declarations or the like, or commenting it out.

- Calls to indirectly recursive functions

If a recursion path consists of multiple functions, the stack size may be calculated incorrectly.

Example Assuming that the frame size of recursive functions "func_rec1/func_rec2" is 8 bytes, if the recursion

depth of "func_rec1/func_rec2" is set to 3 in the Adjust Stack Size dialog box, then although the stack

size of func1 will be calculated correctly as "(8 + 24) * 3", the stack size of func2 will be calculated as "8

* 3", ignoring calls to func_rec1.

int sub (int i);

void func1 (void);

void func2 (void);

void main (void) {

 func1 ();

 func2 ();

}

int sub (int i) {

 i++;

 return (i);

}

void func1 (void) {

 int ret, i = 0;

 ret = sub (i);

}

void func2 (void) {

 int ret, i = 100;

 ret = sub (i);

}

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 345 of 782
Apr 01, 2011

void func_rec1 (int i);

void func_rec2 (int i);

void func1 (void);

void func2 (void);

void main (void) {

 func1 ();

 func2 ();

}

void func_rec1 (int i) {

 func_rec2 (i);

}

void func_rec2 (int i) {

 if (i) {

 func_rec1 (i - 1);

 }

}

void func1 (void) {

 func_rec1 (2);

}

void func2 (void) {

 func_rec2 (2);

}

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 346 of 782
Apr 01, 2011

This dialog box is used to display a list of functions for which the stack usage tracer could not obtain stack information;

functions for which information (additional margin, recursion depth, and callee functions) was changed intentionally, and

functions for which the stack usage tracer forcibly set an additional margin.

Figure A-56. Stack Size Unknown / Adjusted Function Lists Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Stack Usage Tracer window, select the [Stack Size Unknown / Adjusted Function Lists...] from the [Option]

menu.

[Description of each area]

(1) [Unknown Functions]

Display a list of "unknown functions" -- functions for which the stack usage tracer could not obtain stack informa-

tion. This area generally displays unknown functions in the following format.

function name (total stack size : frame size)

Remarks 1. If the unknown function is written in assembly language, then the underscore (_) pre-appended to

the symbol name is deleted, and the name is surrounded by square brackets ([]); this is displayed

as the function name.

2. If the unknown function is a recursive function, then an asterisk (*) is appended to the end of the

function name.

Stack Size Unknown / Adjusted Function Lists dialog box

[Function buttons](1)

(3)

(2)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 347 of 782
Apr 01, 2011

3. If the unknown function includes functions called indirectly using function pointers, then an amper-

sand (&) is appended to the end of the function name.

4. If the unknown function is a static function, then "file name#" is appended to the end of the function

name.

(2) [Adjusted Functions]

Display a list of functions for which information (additional margin, recursion depth, or callee functions) has been

modified intentionally via the Adjust Stack Size dialog box or a stack size specification file. This area generally dis-

plays modified ("adjusted") functions in the following format.

function name (total stack size : frame size : additional margin)

Remarks 1. If the adjusted function is written in assembly language, then the underscore (_) pre-appended to

the symbol name is deleted, and the name is surrounded by square brackets ([]); this is displayed

as the function name.

2. If the adjusted function is a recursive function, then an asterisk (*) is appended to the end of the

function name.

3. If the adjusted function includes functions called indirectly using function pointers, then an amper-

sand (&) is appended to the end of the function name.

4. If the adjusted function is a static function, then "file name#" is appended to the end of the function

name.

5. If the only action performed in the Adjust Stack Size dialog box was adding "callee functions", then

the display format of this area will be as follows.

 function name (total stack size : frame size)

(3) [System Library Functions]

Display a list of automatically configured system library functions for which the frame size is unknown, and the

stack usage tracer has forcibly set an additional margin. This area generally displays modified system library func-

tions in the following format.

function name (total stack size : ? : additional margin)

Remarks 1. The underscore (_) pre-appended to the symbol name is deleted, and the name is surrounded by

square brackets ([]); this is displayed as the function name.

2. An appropriate frame size is added to corresponding system library functions in the stack usage

tracer's database as additional margin.

[Function buttons]

Button Function

Close Closes this dialog box.

Adjust Size... Opens the Adjust Stack Size dialog box to change the information (additional margin, recur-

sion depth, and callee functions) for the function selected in the [Unknown Functions]/

[Adjusted Functions]/[System Library Functions].

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 348 of 782
Apr 01, 2011

This dialog box is used to change the information (additional margin, recursion depth, and callee functions) for the

selected function.

Figure A-57. Adjust Stack Size Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then select

[Adjust Stack Size...] from the [Option] menu.

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then click the

 button from toolbar.

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then select

[Adjust Stack Size...] from the context menu.

- On the [Unknown Functions]/[Adjusted Functions]/[System Library Functions] of the Stack Size Unknown /

Adjusted Function Lists dialog box, select a function, and then click the [Adjust Size...] button.

Adjust Stack Size dialog box

(1)

[Function buttons]
(2)

(3)

(4)

(5)

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 349 of 782
Apr 01, 2011

[Description of each area]

(1) [Function Name]

Display the function name of the selected function.

Remarks 1. If the selected function is written in assembly language or it is a system library function, then the

underscore (_) pre-appended to the symbol name is deleted, and the name is surrounded by

square brackets ([]); this is displayed as the function name.

2. If the selected function is a recursive function, then an asterisk (*) is appended to the end of the

function name.

3. If the selected function includes functions called indirectly using function pointers, then an amper-

sand (&) is appended to the end of the function name.

4. If the selected function is a static function, then "file name#" is appended to the end of the function

name.

(2) [Frame Size]

Display the frame size (not including the stack size of callee functions; in bytes) of the selected function.

Remark If the frame size is not known, then a question mark (?) is displayed; if it is over the maximum limit, then

"SIZEOVER" is displayed.

(3) [Additional Margin]

Specify the value to forcibly add to the selected function (in bytes), either as a decimal number, or as a hexadeci-

mal number starting with "0x" or "0X".

(4) [Recursion Depth]

Specify the recursion depth, either as a decimal number, or as a hexadecimal number starting with "0x" or "0X".

Remark If the selected function is not a recursive function, then this item will be grayed out.

(5) [Callee Function List (for Indirect Call)] area

(a) [Callee Functions]

Display a list of "callee" functions called by the selected function (functions called indirectly using a function

pointer or the like).

This area generally displays callee functions in the following format.

function name (total stack size : frame size : additional margin)

Remarks 1. If the callee function is written in assembly language or it is a system library function, then the

underscore (_) pre-appended to the symbol name is deleted, and the name is surrounded by

square brackets ([]); this is displayed as the function name.

2. If the callee function is a recursive function, then an asterisk (*) is appended to the end of the

function name.

3. If the callee function includes functions called indirectly using function pointers, then an amper-

sand (&) is appended to the end of the function name.

4. If the callee function is a static function, then "file name#" is appended to the end of the func-

tion name.

5. Functions added intentionally from [All Functions] by clicking the [Add] button are shown with a

plus sign (+) appended to the end of the function name.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 350 of 782
Apr 01, 2011

(b) [All Functions]

Display a list of functions that can be added as functions called by the selected function ("callee functions").

This area generally displays functions that can be added in the following format.

function name (total stack size : frame size : additional margin)

Remarks 1. If the function that can be added is written in assembly language or it is a system library func-

tion, then the underscore (_) pre-appended to the symbol name is deleted, and the name is

surrounded by square brackets ([]); this is displayed as the function name.

2. If the function that can be added is a recursive function, then an asterisk (*) is appended to the

end of the function name.

3. If the function that can be added includes functions called indirectly using function pointers,

then an ampersand (&) is appended to the end of the function name.

4. If the function that can be added is a static function, then "file name#" is appended to the end

of the function name.

(c) Button area

Remark Functions can only be deleted from [Callee Functions] if the function name ends with a plus sign (+)

(functions added from [All Functions] intentionally by clicking [Add]).

[Function buttons]

Add Adds the function selected in [All Functions] to [Callee Functions].

If no function is selected in [All Functions], then this button will be grayed out.

Delete Deletes the function selected in [Callee Functions] from [Callee Functions].

If no function is selected in [Callee Functions], then this button will be grayed

out.

Button Function

OK Reflects the settings in the Stack Usage Tracer window / save them to the project file (*.prj),

then close the dialog.

Cancel Ignores the setting and closes this dialog box.

Reset Resets the information (additional margin, recursion depth, and callee functions) for the

selected function to the default values.

This button will be grayed out if all the information for the selected function has the default

values.

Help Displays the help of this dialog box.

CubeSuite+ Ver.1.00.00 APPENDIX A WINDOW REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 351 of 782
Apr 01, 2011

This dialog box is used to open an existing stack size specification file.

Figure A-58. Open Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Stack Usage Tracer window, select [Load Stack Size Specification File...] from the [File] menu.

[Description of each area]

(1) [Look in] area

Select the folder containing the stack size specification file you wish to open.

(2) List of files

This area displays a list of files matching the conditions selected in [Look in] area and [Files of type] area.

(3) [File name] area

Specify the file name of the stack size specification file to open.

(4) [Files of type] area

Select the type of file to open.

[Function buttons]

Open dialog box

Stack Size Specification File (*.txt) Text format

Button Function

Open Opens the specified file.

Cancel Ignores the setting and closes this dialog box.

(3)

(1)

(2)

(4)
[Function buttons]

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 352 of 782
Apr 01, 2011

APPENDIX B COMMAND REFERENCE

This appendix describes the detailed specifications of each command included in the build tool.

B.1 C Compiler

The C compiler creates relocatable object files and object files executable on the target system from C language

source programs described in C source files.

The C compiler acts as the driver of the modules included in the package and performs operations such as macro

expansion, comment processing, merging of intermediate language files, optimization, creation/conversion from

assembler source programs to machine language instructions, and linking of object files.

The C compiler performs processing in the following sequence.

As is shown in "Figure B-1. Operation Flow of C Compiler", the processing flow varies slightly depending on the

specified optimization level.

(1) Front end (cafe)

Performs macro expansion and comment processing of a C source program and then converts the program into an

intermediate language program.

(2) Pre-optimizer (popt)

Rearranges the functions in the intermediate language program.

If this command is activated from the command line, and if "File merging option (-Om)" is specified, two or more

intermediate language programs are merged into one.

If "Level 2 advanced option (Speed precedence)" is specified, inline expansion is performed for the functions in the

intermediate language program.

(3) Global optimization module (opt)

Optimizes the intermediate language program.

(4) Code generation module (cgen)

Converts the intermediate language program into an assembler source program.

(5) Machine-dependent optimization module (impr)

Optimizes the assembler source program.

(6) Assembler (as850)

Converts the assembler source program into machine language instructions and creates a relocatable object file.

(7) Linker (ld850)

Links the relocatable object file, and creates an executable object file.

The global optimization module and machine-dependent optimization module are called only when the optimization

option is specified.

It is assumed that the modules of (1) through (5) are started from the C compiler. Consequently, operation is not

guaranteed if any of these modules is started alone.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 353 of 782
Apr 01, 2011

Figure B-1. Operation Flow of C Compiler

.c

Front end

.ic

-Om not specified
-Om specified

NO

YES

.ic

Pre-optimizer

Global optimization module

Input file processing

completed

.ic

Code generation module

.s

.s

.o

Assembler

-O/Os/Ot specified

-Od/-Og/Default (-Ob)

specified

-Om not specified
-Om specified

Input file processing

completed

NO

YES

Linker
.a

.out

Machine-dependent

optimization module

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 354 of 782
Apr 01, 2011

B.1.1 I/O files

The C compiler can specify the following files as input files or output files.

- The .s file is passed to the assembler without modification (a source program directly coded in assemble language

does not go through the machine-dependent optimization module).

- All the files other than .c, .ic, and .s files, such as .a and .o files, are all passed as is to the linker.

The input file names supported by Windows can be specified, but "@" cannot be used at the head of a file name

because it is regarded as a command option.

If the kanji code of the file is EUC, a file name or folder name cannot be used in Japanese.

B.1.2 Executable object

The C compiler can read a C source file and create an executable object file at the same time since it starts both the

assembler and linker.

You can also use an option (-S) to stop the process just before launching the assembler and linker, and output compiler

code and generate relocatable object files (see "B.1.3 Method for manipulating" for details about the method for

manipulating).

Examples of starting commands from command line are shown below (see "B.1.4 Option" for details about options).

(1) When executing everything from the C compiler

This specifies "-cpu 3201" (V850ES/SA2) as the device and reads file.c and obj.o to create an executable object

file a.out. At this time, crtE.o is linked as the startup module and the standard libraries libc.a and libm.a are

referenced.

This reads file.c and obj.o to create an executable object file a.out. At this time, org_crt.o is linked as the startup

module and the standard libraries libc.a and libm.a are referenced.

(2) When starting from the C compiler to the assembler, and starting the linker alone

This reads file.c and asm.o to create a relocatable object file file.o and asm.o.

file.c C source file (called the .c file)

file.ic Intermediate language file (called the .ic file)

file.s Assembler source file (called the .s file)

file.o Object file (called the .o file)

file.a Archive file (called the .a file)

C:\>ca850 -cpu 3201 file.c obj.o

C:\>ca850 -cpu 3201 -R org_crt.o file.c obj.o

C:\>ca850 -cpu 3201 -c file.c asm.s

C:\>ld850 -cpu 3201 org_crt.o file.o asm.o obj.o -lc

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 355 of 782
Apr 01, 2011

This links org_crt.o, file.o, asm.o, and obj.o to create the executable object file a.out. At this time, libc.a is

referenced.

(3) When starting the C compiler, assembler, and linker by themselves

This reads file.c to create a relocatable object file file.o.

This reads asm.s to create a relocatable object file asm.o.

This links org_crt.o, file.o, and asm.o to create the executable object file a.out. At this time, libc.a is referenced.

B.1.3 Method for manipulating

This section explains how to manipulate the C compiler.

(1) Command input method

Enter the following from the command prompt.

(2) Set options in CubeSuite+

This section describes how to set compile options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens .Next, select the [Compile Options] tab.

You can set the various compile options by setting the necessary properties in this tab.

C:\>ca850 -cpu 3201 -c file.c

C:\>as850 -cpu 3201 asm.s

C:\>ld850 org_crt.o file.o asm.o -lc

C:\>ca850 [option] ... file-name [file-name or option] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 356 of 782
Apr 01, 2011

Figure B-2. Property Panel: [Compile Option] Tab

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 357 of 782
Apr 01, 2011

B.1.4 Option

This section explains compile options.

Caution When launching from the command line, if an option that is not listed in "Table B-1. Compile

Options" is assigned, then these options are assumed to be for the linker and are passed to the

linker.

The types and explanations for compile options are shown below.

Table B-1. Compile Options

Classification Option Description

Version/help display/

operation status

-V Outputs the version information of the C compiler to the standard error

output.

-help Outputs option descriptions to the standard error output.

-v Outputs the execution status of the C compiler to the standard error output

in detail.

Output file

specification

-Fic Specifies where an intermediate language file is to be saved.

-Fo Specifies where an object file is to be saved.

-Fs Specifies where an assembly language file is to be saved.

-Fv Specifies where an assemble list file is to be saved.

-o Specifies the output file.

-temp Specifies the work folder.

Controlling source

debugger

-Xno_word_bitop Prohibits replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit

manipulation instructions.

-g Outputs symbol information for the source debugger.

Device specification -X256M Treats the memory space as having 256 MB.

-Xbpc Sets the higher address of the programmable peripheral I/O register.

-cn Embeds the magic number common to V850 core.

-cnv850e Embeds the magic number common to V850Ex core.

-cnv850e2 Embeds the magic number common to V850E2 core.

-cpu Specifies the target device.

-devpath Specifies the folder to search device files.

Compiler control

specification

-S Outputs the assembler source file without executing any modules after the

assembler.

-a Outputs an assemble list.

-c Outputs the object file without starting the linker.

-m Executes the only front end, generates an .ic file, and then terminates

processing.

ROMization control -Xr This option is necessary when creating a ROMization object.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 358 of 782
Apr 01, 2011

Preprocessor

processing setting

-C Includes source program comments in the preprocessing output.

-D Assumes that #define is entered before the C source program.

-E Executes preprocessing only for a C source program and outputs the

results to the standard output.

-I Specifies the folder to search the header file of the C source program.

-P Executes preprocessing only for a C source program and outputs the

results to a file.

-U Assumes that #undef is entered before the C source program.

-Wa,-D Assumes that .set is entered before the assembler source.

-Wa,-I, Specifies the folder to search the header file of the assembler source file.

-Xcxxcom In addition to ordinary comments, interprets all characters that appear after

"//" and before the end of the line as comments.

-Xd Outputs a warning message in response to initialization of a pointer type

external variable which uses a variable address that is not an automatic

variable or which uses a function address.

-Xm Specifies the upper limit for the number of macro identifiers.

-t Replaces a trigraph sequence.

Memory saving during

compilation

-Wp,-D Reduces the memory capacity used in the pre-optimizer phase during

compiling.

-Wi,-D Reduce the memory capacity used in the machine dependent optimization

phase during compiling.

Error output

specification

+err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-err_limit Specifies the maximum number of error messages to be output.

Expansion function

specification

-cc78k Enables the expansion functions compatible with the 78K microcontrollers

C compiler CC78Kx.

Optimization -Od This is the optimize for debugging option.

-Ob This is the default optimization option.

-Og This is the standard optimization option.

-O This is the Level 1 advanced optimization.

-Os This is the Level 2 advanced optimization option (object size precedence).

-Ot This is the Level 2 advanced optimization option (execution speed

precedence).

Target code

optimization

-Wi,-O4 Analyzes the data flow strictly and perform the most advanced optimization.

-Wi,-P Prevents optimization that allows branch destination labels to be aligned.

File merging -Om Merges the files when two or more files are specified at the same time.

Classification Option Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 359 of 782
Apr 01, 2011

Inline expansion

optimization control

-Wp,-G Restricts the stack size for a function subject to inline expansion in the

intermediate language so that inline expansion is not performed for the

large value.

-Wp,-N Restricts the intermediate language size for a function subject to inline

expansion so that inline expansion is not performed for the large value.

-Wp,-S Performs inline expansion of a static function that is referenced only once

unconditionally.

-Wp,-l Outputs function information to the standard output or additionally outputs

to the file.

-Wp,-inline Performs inline expansion of only a function for which #pragma inline is

specified.

-Wp,-no_inline Suppresses inline expansion of all functions, including the function for

which #pragma inline is specified.

-Wp,-r Deletes unnecessary functions from the functions called from an entry

function after inline expansion.

Loop expansion

optimization control

-Wo,-Ol Expands a loop the specified times using "for" and "while".

-Wo,-Xlo Expands a loop by fixing the number of times of expanding the loop.

strcpy, strcmp

expansion

-Xi Sets a 4-byte alignment condition for arrays and structures and performs

inline expansion of strcpy() or strcmp() function calls.

External variable sort -Wo,-Op Rearranges external variables starting from the largest alignment size.

Branch instruction

control

-Wo,-XFo Arranges and outputs branch instructions, giving precedence to the code

size.

Register use control -r Allocates the specified external variable to the specified register.

-reg Limits the number of registers used by the C compiler.

-Xmask_reg Uses the mask register function.

Prologue/epilogue

processing control

-Xpro_epi_runtime Specifies whether or not to perform prologue/epilogue processing of the

function based on runtime library function calls.

Variable placement

control

-G Allocates data of less than the specified bytes to the .sdata or .sbss section.

-Xsconst Allocates const attribute data and character string literals to the .sconst

section.

-Xcre_sec_data Outputs the frequency information file for the variables used by the section

file generator.
-Xcre_sec_data_only

-Xsec_file Specifies the name of the section file that is used to specify section

allocation of data when the C compiler is activated.

signed/unsigned

control

-Xbitfield Specifies whether int type bit fields that do not indicate the type specifier

are handled as signed or unsigned.

-Xchar Specifies whether char type that do not indicate the type specifier are

handled as signed or unsigned.

-Xenum_type Specifies which integer type the enumeration type matches.

Switch-case

statement output code

control

-Xcase Specifies a mode in which the code of a switch statement is to be output.

-Xword_switch Generates one 4-byte branch table per case label in a switch statement.

Classification Option Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 360 of 782
Apr 01, 2011

Table B-2. Mark Used in Option Descriptions

Structure packing

control

-Xbyte Specifies indirect address access to a structure in byte units.

-Xpack Specifies alignment of structure members.

Far jump output

control

-Xfar_jump Uses jmp directive to branch to the specified function.

-Xj Uses the jmp instruction for an ordinary interrupt function defined in C

language.

Comment output -Xc Outputs the C source program as a comment to the assembler source file.

ANSI standard -Xe Uses runtime library, without using the mulh and divh directives for integers

corresponding to data that is 16 bits or less.

-Xdefvar Treats tentative definition of variables as definition.

-ansi Makes C compiler processing comply strictly with the ANSI standard and

outputs an error or warning for a specification that violates the standard.

Library specification -L Specifies the folder to search libraries.

-R Specifies the startup module to be used when startup goes as far as the

linker.

-l Specifies the archive file that is referenced by the linker.

Warning message

control

-w Specifies the level, output, and suppression of a warning message.

-won Outputs a warning message of the specified number.

-woff Suppresses a warning message of the specified number.

Command file

specification

@ Handles the specified file as a command file.

CPU bug patch -Xv850patch Specifies the -p option for the assembler for an assembler source file output

by the C compiler to output a code corresponding to a CPU fault.

Each module -W Specifies options to each module.

Other +Oc Performs advanced optimization.

[V850E2] Option dedicated to V850E2 core

[V850E] Option dedicated to V850Ex core

[78K-compatible] Option compatible with 78K microcontrollers C compiler CC78Kx

Classification Option Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 361 of 782
Apr 01, 2011

The version/help display/operation status options are as follows.

- -V

- -help

- -v

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version information of the C compiler to the standard error output.

[Example of use]

- To output the version information of the C compiler to the standard error output, describe as:

Version/help display/operation status

-V

C:\>ca850 -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 362 of 782
Apr 01, 2011

-help

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs option descriptions to the standard error output.

[Example of use]

- To output option descriptions to the standard error output, describe as:

-help

C:\>ca850 -help

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 363 of 782
Apr 01, 2011

-v

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the execution status of the C compiler to the standard error output in detail.

[Example of use]

- To output the execution status of the C compiler to the standard error output in detail, describe as:

-v

C:\>ca850 -v prime.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 364 of 782
Apr 01, 2011

The output file specification options are as follows.

- -Fic

- -Fo

- -Fs

- -Fv

- -o

- -temp

-Fic

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies where an intermediate language file generated during compilation is to be saved.

(1) If the file name is specified as outfile

Saves outfile to the current folder under the specified file name.

The extension of outfile is restricted to ".ic".

(2) If the folder is specified as outfile

Saves the file under the file name with extension .c replaced by .ic to the specified folder.

(3) If =outfile is omitted

Saves the file under the file name with extension .c replaced by .ic to the current folder.

(4) If two or more files are output

Creates a folder specified for outfile, and saves the files under each file name with extension .c replaced by .ic.

[Example of use]

- To save the intermediate language file to folder "D:\sample" with "main.ic" as a file name, describe as:

Output file specification

-Fic[=outfile]

C:\>ca850 -cpu f3719 -Fic=D:\sample main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 365 of 782
Apr 01, 2011

-Fo

[Description format]

- Interpretation when omitted

Saves the file under the file name with extension .c or .s replaced by .o to the current folder.

[Function Description]

- This option specifies where an object file generated during compilation is to be saved.

(1) If the file name is specified as outfile

Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile

Saves the file under the file name with extension .c or .s or .ic replaced by .o to the specified folder.

(3) If =outfile is omitted

Saves the file under the file name with extension .c or .s or .ic replaced by .o to the current folder.

(4) If two or more files are output

Creates a folder specified for outfile, and saves the files under each file name with extension .c or .s or .ic replaced

by .ic.

[Example of use]

- To save the object file with "sample.o" as a file name, describe as:

-Fo[=outfile]

C:\>ca850 -cpu f3719 -Fo=sample.o main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 366 of 782
Apr 01, 2011

-Fs

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies where an assembly language file generated during compilation is to be saved.

(1) If the file name is specified as outfile

Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile

Saves the file under the file name with extension .c or .ic replaced by .s to the specified folder.

(3) If =outfile is omitted

Saves the file under the file name with extension .c or .ic replaced by .s to the current folder.

(4) If two or more files are output

Creates a folder specified for outfile, and saves the files under each file name with extension .c or .ic replaced by

.s.

[Example of use]

- To save the assembly language file to folder "D:\sample" with "main.s" as a file name, describe as:

-Fs[=outfile]

C:\>ca850 -cpu f3719 -Fs=D:\sample main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 367 of 782
Apr 01, 2011

-Fv

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies where an assemble list generated during compilation is to be saved.

(1) If the file name is specified as outfile

Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile

Saves the file under the file name with extension .c or .s or .ic replaced by .v to the specified folder.

(3) If =outfile is omitted

Saves the file under the file name with extension .c or .s or .ic replaced by .v to the current folder.

(4) If two or more files are output

Creates a folder specified for outfile, and saves the files under each file name with extension .c or .s or .ic replaced

by .v.

- If this option and the -a option are not specified, an assemble list is not generated.

[Example of use]

- To save the assemble list with "sample.v" as a file name, describe as:

-Fv[=outfile]

C:\>ca850 -cpu f3719 -Fv=sample.v main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 368 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

The output file is saved to the current folder.

[Function Description]

- This option specifies an output file as outfile.

(1) If this option is specified with the -S option

An assembler file (.s) is specified.

(2) If this option is specified with the -c option

A relocatable object file (.o) is specified.

(3) If this option is specified with the -m option

A front-end output file (.ic) is specified.

(4) Other than above

An executable object file (.out) is specified. The default assumption is a.out.

(5) If two or more files are output

An error occurs.

- It is valid even if compiling is stopped midway by specifying the compiler control option -S, -c, or -m.

[Example of use]

- To save the executable object file with "sample.out" as a file name, describe as:

-o outfile

C:\>ca850 -cpu f3719 -o sample.out main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 369 of 782
Apr 01, 2011

-temp

[Description format]

- Interpretation when omitted

Temporary files are created in the folder specified by the environment variable TEMP or in the root folder of the

current drive.

[Function Description]

- This option specifies the work folder for generating temporary files that are used internally.

- If the capacity of the hard disk runs short and a temporary file cannot be generated, an error occurs. This error can

be avoided by using this option.

[Example of use]

- To use folder "D:\tmp" as a work folder for generating temporary files, describe as:

-temp=dir

C:\>ca850 -cpu f3719 -temp=D:\tmp main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 370 of 782
Apr 01, 2011

The controlling source debugger options are as follows.

- -Xno_word_bitop

- -g

-Xno_word_bitop

[Description format]

- Interpretation when omitted

This option replaces the ld.w/ld.h and st.w/st.h instructions with 1-bit manipulation instructions (set1, clr1, tst1, and

not1).

[Function Description]

- This option prohibits replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit manipulation instructions (set1, clr1,

tst1, and not1).

- If a read/write event of a variable is set during debugging, an event may not be occur if these instructions are

replaced by 1-bit manipulation instructions. If this option is specified in such a case, the ld.w/ld.h and st.w/st.h

instructions are not replaced by 1-bit manipulation instructions, it makes debugging easy.

[Example of use]

- To prohibit replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit manipulation instructions (set1, clr1, tst1, and

not1), describe as:

Controlling source debugger

-Xno_word_bitop

C:\>ca850 -cpu f3719 -Xno_word_bitop main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 371 of 782
Apr 01, 2011

-g

[Description format]

- Interpretation when omitted

Symbol information for the source debugger is not output.

[Function Description]

- This option outputs symbol information for the source debugger.

In other words, performing debugging at the C source level is possible by specifying this option.

- When the assembler is started via the C compiler, specification of this option is regarded as the same as

specifying the -g option of the assembler. As a result, performing debugging at the assembler source level is

possible.

[Example of use]

- To output symbol information for the source debugger and make performing debugging at the C source level

possible, describe as:

-g

C:\>ca850 -cpu f3719 -g main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 372 of 782
Apr 01, 2011

The device specification options are as follows.

- -X256M

- -Xbpc

- -cn

- -cnv850e

- -cnv850e2

- -cpu

- -devpath

-X256M

[Description format]

- Interpretation when omitted

The memory space is treated as having 64 MB and the addresses are resolved.

[Function Description]

[V850E]

- This option treats the memory space as having 256 MB.

- Set this option in accordance with the chipset to be used. The physical address space of the V850Ex core has 256

MB in many cases. When creating an application that uses a space between 64 MB and 256 MB, specify this

option.

[Example of use]

- To treat the memory space as having 256 MB, describe as:

Device specification

-X256M

C:\>ca850 -cpu f3719 -X256M main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 373 of 782
Apr 01, 2011

-Xbpc

[Description format]

- Interpretation when omitted

The higher address of the programmable peripheral I/O register is treated as 0.

[Function Description]

- This option sets the higher address of the programmable peripheral I/O register.

- In num, specify only the part of address from which the highest bit of the BPC register is removed.

- If the target device has programmable peripheral I/O register functions (such as V850E/IA1) and you want to set

the variable address portion (= value set in BPC register), the value must be determined when compiling

(assembling) the application.

- If this option is specified, compilation (assembly) is performed using the specified value. When this option is

specified, be sure to specify a value.

A binary, octal, decimal, or hexadecimal number can be used for the value. If an invalid value is specified, or if a

value outside the range that can be set in the BPC register is specified, a warning message is output and this

option is ignored.

- One value is set for an entire application. If you specify "-Xbpc" or "-bpc" when setting options by file, make the

values the same between files.

However, this option is not needed to be specify for files that do not use the programmable peripheral I/O register

- If this option is specified for a target device that does not have programmable peripheral I/O register functions or

when assembling as a common for V850 core/V850Ex core/V850E2 core, a warning message is output and this

option is ignored.

- This option is for determining the address of the programmable peripheral I/O register when compiling

(assembling) and does not actually reflect a value in the BPC register. For operation, it is necessary to set a value

in the BPC register separately using a startup module or the like.

See "CubeSuite+ V850 Coding" about a sample of the startup routine. Also, a sample appears (commented out)

in the startup module included in the package.

- The assembler outputs the .bpc section which is a reserved section when the programmable peripheral I/O

register is referenced, regardless of whether this option is specified or omitted.

This section is used for checking when linking. The .bpc section is a special reserved section for information and

is never loaded into memory. Therefore, it need not be specified in a link directive like a normal section.

[Example of use]

- If the target device is V850E/IA1, the following option setting treats the start address of the programmable

peripheral I/O register area to be shifted 14 bits to the left, or "0x48d0000".

Specify the following descriptions in the startup module to make the variable portion of the start address of the

programmable peripheral I/O register "0x1234" and set the flag 0x8000 that enables the use of this function.

-Xbpc=num

C:\>ca850 -cpu 3116 -Xbpc=0x1234 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 374 of 782
Apr 01, 2011

mov 0x9234,r10 -- 0x1234 | 0x8000 = 0x9234

st.h r10, BPC

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 375 of 782
Apr 01, 2011

-cn

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option embeds the magic number common to V850 core into the object to be generated.

[Example of use]

- To embed the magic number common to V850 core into the object, describe as:

-cn

C:\>ca850 -cn -c main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 376 of 782
Apr 01, 2011

-cnv850e

[Description format]

- Interpretation when omitted

None

[Function Description]

[V850E]

- This option embeds the magic number common to V850Ex core into the object to be generated.

[Example of use]

- To embed the magic number common to V850Ex core into the object, describe as:

-cnv850e

C:\>ca850 -cnv850e -c main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 377 of 782
Apr 01, 2011

-cnv850e2

[Description format]

- Interpretation when omitted

None

[Function Description]

[V850E2]

- This option embeds the magic number common to V850E2 core into the object to be generated.

[Example of use]

- To embed the magic number common to V850E2 core into the object, describe as:

-cnv850e2

C:\>ca850 -cnv850e2 -c main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 378 of 782
Apr 01, 2011

-cpu

[Description format]

- Interpretation when omitted

This option cannot be omitted (except when specifying -cn, -cnv850e, -cnv850e2 or #pragma cpu).

[Function Description]

- This option specifies the target deviceNote.

Note This option and "#pragma cpu device-name" are identical.

If specification by the -cpu option and specification by the #pragma directive are specified but have different

contents, this option takes priority.

- If this option is omitted and nothing has been specified by the -cn, -cnv850e, -cnv850e2 option, or #pragma

directive, compilation is stopped.

[Example of use]

- To specify V850E as the target device, describe as:

-cpu device-name

C:\>ca850 -cpu f3719 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 379 of 782
Apr 01, 2011

-devpath

[Description format]

- Interpretation when omitted

The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder dir.

[Example of use]

- To search a device file from folder D:\dev, describe as:

-devpath=dir

C:\>ca850 -cpu f3719 -devpath=D:\dev main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 380 of 782
Apr 01, 2011

The compiler control specification options are as follows.

- -S

- -a

- -c

- -m

-S

[Description format]

- Interpretation when omitted

Phases after the assembler are also executed.

[Function Description]

- This option outputs the generated assembler source file without executing any modules after the assembler.

- The output file name uses .s as the extension instead of .c or .ic. Use the -o option to specify the output file name

(see the description of the -o option). Also, the output file name can be specified by the -Fs option.

[Example of use]

- To output the assembler source file (main.s) without executing any modules after the assembler, describe as:

Compiler control specification

-S

C:\>ca850 -cpu f3719 -S main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 381 of 782
Apr 01, 2011

-a

[Description format]

- Interpretation when omitted

No assemble list is output.

[Function Description]

- This option outputs an assemble list. The file name uses .v as the extension instead of .c or .s or .ic (see "3.1

Assembler").

- When the -Og, -O, -Os, or -Ot option is specified, a part of the assemble list may be incorrectly output due to

instruction rearrangement for optimization by the assembler.

[Example of use]

- To output the assemble list (main.v), describe as:

-a

C:\>ca850 -cpu f3719 -a main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 382 of 782
Apr 01, 2011

-c

[Description format]

- Interpretation when omitted

The procedure up to the point of starting the linker is performed.

[Function Description]

- This option outputs the object file without starting the linker.

- The file name uses .o as the extension instead of .c or .s or .ic.

- Use the -o option to specify the output file name (see the description of the -o option). Also, the output file name

can be specified by the -Fo option.

[Example of use]

- To output an object file (main.o), describe as:

-c

C:\>ca850 -cpu f3719 -c main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 383 of 782
Apr 01, 2011

-m

[Description format]

- Interpretation when omitted

Modules after the font end are also executed.

[Function Description]

- This option executes the only front end, generates an .ic file, and then terminates processing.

[Example of use]

- To execute the only front end and output the intermediate language file (main.c), describe as:

-m

C:\>ca850 -cpu f3719 -m main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 384 of 782
Apr 01, 2011

The ROMization control option is as follows.

- -Xr

-Xr

[Description format]

- Interpretation when omitted

An object that does not have ROMization information is created.

[Function Description]

- This option is necessary when creating a ROMization object.

- The compiler processing is as follows.

(1) The label for the first argument of a function beginning with "_ rcopy" has attempted to indicate the first

address (aligned on 4-byte boundaries) that exceeds the end of the .text section in the object.

(2) Consequently, this indicates the area reservation code for the rompsec section (default name: rompcrt.o)

and libr.a to be linked by the linker.

- See "B.4.3 Creating object for ROMization" for details about the method of creating the ROMization object.

[Example of use]

- To output the object file (a.out) that has ROMization information, describe as:

ROMization control

-Xr

C:\>ca850 -cpu f3719 -Xr main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 385 of 782
Apr 01, 2011

The preprocessor processing setting options are as follows.

- -C

- -D

- -E

- -I

- -P

- -U

- -Wa,-D

- -Wa,-I

- -Xcxxcom

- -Xd

- -Xm

- -t

-C

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option includes source program comments in a C source program's preprocessing output. This option is valid

only when the -E or -P option is specified.

[Example of use]

- To include source program comments in the preprocessing output and output the results to the standard output,

describe as:

Preprocessor processing setting

-C

C:\>ca850 -cpu f3719 -C -E main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 386 of 782
Apr 01, 2011

-D

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option assumes that #define name def is entered before the C source program.

- If def is omitted, it is regarded as 1. Up to 256 of this options can be specified.

[Example of use]

- To assume that "#define sample 256" is entered before the C source program, describe as:

-Dname[=def]

C:\>ca850 -cpu f3719 -Dsample=256 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 387 of 782
Apr 01, 2011

-E

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option executes preprocessing only for a C source program and outputs the results to the standard output.

- The results include the line numbers and file name of the source program.

[Example of use]

- To execute preprocessing only and outputs the results to the standard output, describe as:

-E

C:\>ca850 -cpu f3719 -E main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 388 of 782
Apr 01, 2011

-I

[Description format]

- Interpretation when omitted

The header file of the C source program is searched from the standard folder.

The standard folder is "install folder\CA850\Vx.xxNote\inc850".

Note Vx.xx is the version of the C compiler.

[Function Description]

- The header file of the C source program is searched from folder dir, the standard folder in that order.

Up to 100 of this options can be specified.

- If #include "header file name" is specified in the #include statement, folders with source files are searched first.

[Example of use]

- To search the header file of the C source program from folder D:\head, the standard folder in that order, describe

as:

-Idir

C:\>ca850 -cpu f3719 -ID:\head main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 389 of 782
Apr 01, 2011

-P

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option executes preprocessing only for a C source program and outputs the results to the file under the file

name with extension .c replaced by .i.

- The line numbers and file name of the source program are not output.

[Example of use]

- To execute preprocessing only and outputs the results to the file (main.i), describe as:

-P

C:\>ca850 -cpu f3719 -P main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 390 of 782
Apr 01, 2011

-U

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option assumes that #undef name is entered before the C source program.

Up to 256 of this options can be specified.

[Example of use]

- To assume that "#undef test" is entered before the C source program, describe as:

-Uname

C:\>ca850 -cpu f3719 -Utest main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 391 of 782
Apr 01, 2011

-Wa,-D

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option assumes that ".set name, num" is entered before the assembler source.

- If num is omitted, it is regarded as 1.

[Example of use]

- To assume that ".set _sample, 256" is entered before the assembler source, describe as:

-Wa,-Dname[=num]

C:\>ca850 -cpu f3719 -Wa,-D_sample=256 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 392 of 782
Apr 01, 2011

-Wa,-I

[Description format]

- Interpretation when omitted

The header file of the assembler source file is searched from the standard folder.

[Function Description]

- The header file of the assembler source file is searched from folder dir, the standard folder in that order.

If the header file is not found in the standard folder, the folder where assembler source files are located and the

folder where C source files are located are searched in that order.

[Example of use]

- To search the header file of the assembler source file from folder D:\head, the standard folder in that order,

describe as:

-Wa,-I,dir

C:\>ca850 -cpu f3719 -Wa,-I,D:\head main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 393 of 782
Apr 01, 2011

-Xcxxcom

[Description format]

- Interpretation when omitted

None

[Function Description]

- In addition to ordinary comments, this option interprets all characters that appear after "//" and before the end of

the line as comments (C++ comment style).

[Example of use]

- To interpret all characters that appear after "//" and before the end of the line as comments, describe as:

-Xcxxcom

C:\>ca850 -cpu f3719 -Xcxxcom main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 394 of 782
Apr 01, 2011

-Xd

[Description format]

- Interpretation when omitted

This option does not output a warning message in response to initialization of a pointer type external variable

which uses a variable address that is not an automatic variable or which uses a function address.

[Function Description]

- This option outputs a warning message in response to initialization of a pointer type external variable which uses a

variable address that is not an automatic variable or which uses a function address.

[Example of use]

- To output a warning message in response to initialization of a pointer type external variable which uses a variable

address that is not an automatic variable or which uses a function address, describe as:

-Xd

C:\>ca850 -cpu f3719 -Xd main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 395 of 782
Apr 01, 2011

-Xm

[Description format]

- Interpretation when omitted

-Xm2047

[Function Description]

- This option specifies the upper limit for the number of macro identifiers. Specify decimal numbers up to 999999 as

num.

- This option increases the size of the buffer used by the preprocessor.

It is not possible, however, to use this to calculate the specific length of the character buffer that can be obtained.

[Example of use]

- To specify 32000 as the upper limit for the number of macro identifiers, describe as:

-Xmnum

C:\>ca850 -cpu f3719 -Xm32000 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 396 of 782
Apr 01, 2011

-t

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option replaces a trigraph sequence. This option specifies a three-character (trigraph) string to be replaced

by a single character defined by the ANSI standard.

See the documents related to the ANSI standard for details.

[Example of use]

- To replace a trigraph sequence, describe as:

-t

C:\>ca850 -cpu f3719 -t main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 397 of 782
Apr 01, 2011

The memory saving during compilation options are as follows.

- -Wp,-D

- -Wi,-D

-Wp,-D

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option reduces the memory capacity used in the pre-optimizer phase during compiling.

- Specify this option if compiling is not completed correctly because the memory of the machine runs short. When

this option is specified, the compilation speed slow down.

[Example of use]

- To reduce the memory capacity used in the pre-optimizer phase during compiling, describe as:

Memory saving during compilation

-Wp,-D

C:\>ca850 -cpu f3719 -Wp,-D main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 398 of 782
Apr 01, 2011

-Wi,-D

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option reduces the memory capacity used in the machine dependent optimization phase during compiling.

- Specify this option if compiling is not completed correctly because the memory of the machine runs short.

- When this option is specified, the compilation speed slow down.

[Example of use]

- To reduce the memory capacity used in the machine dependent optimization phase during compiling, describe as:

-Wi,-D

C:\>ca850 -cpu f3719 -Wi,-D main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 399 of 782
Apr 01, 2011

The error output specification options are as follows.

- +err_file

- -err_file

- -err_limit

+err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

Error output specification

+err_file=file

C:\>ca850 -cpu f3719 +err_file=err main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 400 of 782
Apr 01, 2011

-err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C:\>ca850 -cpu f3719 -err_file=err main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 401 of 782
Apr 01, 2011

-err_limit

[Description format]

- Interpretation when omitted

The maximum number of error messages to be output is regarded as 15.

[Function Description]

- This option specifies the maximum number of error messages to be output, num.

- Specify 15 to 50 in decimal numbers as num.

[Example of use]

- To specify 50 as the maximum number of error messages to be output, describe as:

-err_limit=num

C:\>ca850 -cpu f3719 -err_limit=50 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 402 of 782
Apr 01, 2011

The expansion function specification option is as follows.

- -cc78k

-cc78k

[Description format]

- Interpretation when omitted

The expansion functions compatible with the 78K microcontrollers C compiler CC78Kx is invalid.

[Function Description]

[78K-compatible]

- This option enables the expansion functions compatible with the 78K microcontrollers C compiler CC78Kx.

[Example of use]

- To enable the expansion functions compatible with the 78K microcontrollers C compiler CC78Kx, describe as:

Expansion function specification

-cc78k

C:\>ca850 -cpu f3719 -cc78k main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 403 of 782
Apr 01, 2011

The optimization options are as follows.

- -Od

- -Ob

- -Og

- -O

- -Os

- -Ot

-Od

[Description format]

- Interpretation when omitted

-Ob

[Function Description]

- This is the optimize for debugging option.

- This option generates codes emphasizing source debugging, without putting stress on the ROM capacity and

execution speed.

- Its function is equivalent to the default optimization of CA850 Ver. 2.41 or earlier.

[Example of use]

- To generate codes emphasizing source debugging, describe as:

Optimization

-Od

C:\>ca850 -cpu f3719 -Od main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 404 of 782
Apr 01, 2011

-Ob

[Description format]

- Interpretation when omitted

-Ob

[Function Description]

- This is the default optimization option.

This option generates codes emphasizing source debugging.

- It performs optimization within a range where source debugging is not affected.

[Example of use]

- To generate codes emphasizing source debugging within a range where source debugging is not affected,

describe as:

-Ob

C:\>ca850 -cpu f3719 -Ob main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 405 of 782
Apr 01, 2011

-Og

[Description format]

- Interpretation when omitted

-Ob

[Function Description]

- This is the standard optimization option.

This option performs appropriate optimization.

- It performs optimization that allows debugging of the C source in most cases.

- Both the execution speed and code size are improved from those of the default option because external variables

are assigned to registers.

[Example of use]

- To perform appropriate optimization, describe as:

-Og

C:\>ca850 -cpu f3719 -Og main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 406 of 782
Apr 01, 2011

-O

[Description format]

- Interpretation when omitted

-Ob

[Function Description]

- This is the Level 1 advanced optimization.

This option performs optimization emphasizing the ROM capacity.

[Example of use]

- To perform optimization emphasizing the ROM capacity, describe as:

-O

C:\>ca850 -cpu f3719 -O main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 407 of 782
Apr 01, 2011

-Os

[Description format]

- Interpretation when omitted

-Ob

[Function Description]

- This is the Level 2 advanced optimization option (object size precedence).

This option performs the maximum optimization placing the utmost emphasis on the ROM capacity.

[Example of use]

- To perform the maximum optimization placing the utmost emphasis on the ROM capacity, describe as:

-Os

C:\>ca850 -cpu f3719 -Os main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 408 of 782
Apr 01, 2011

-Ot

[Description format]

- Interpretation when omitted

-Ob

[Function Description]

- This is the Level 2 advanced optimization option (execution speed precedence).

This option performs the maximum optimization placing the utmost emphasis on the execution speed rather than

the ROM capacity.

[Example of use]

- To perform the maximum optimization placing the utmost emphasis on the execution speed, describe as:

-Ot

C:\>ca850 -cpu f3719 -Ot main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 409 of 782
Apr 01, 2011

The target code optimization options are as follows.

- -Wi,-O4

- -Wi,-P

-Wi,-O4

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option strictly analyzes the data flow and performs the most advanced optimization.

- Specify this option, in addition to the optimization option -O, -Os, or -Ot, to perform more advanced optimization.

- Specifically, this option executes optimization as follows.

- Optimization of registers extending over a branch instruction

- Optimization of absolute value operations

- Optimization of a cmp instruction extending over a branch instruction

- Optimization of a return instruction extending over a branch instruction

- Depending on the source, the result may be the same as that of -O, -Os, or -Ot. The compiling time is longer than

that of -Os or -Ot.

[Example of use]

- To analyze the data flow strictly and perform the most advanced optimization, describe as:

Target code optimization

-Wi,-O4

C:\>ca850 -cpu f3719 -Os -Wi,-O4 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 410 of 782
Apr 01, 2011

-Wi,-P

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option prevents optimization that allows branch destination labels to be aligned.

- This option can reduce the size of the execution code.

- This option is valid when Level 2 advanced option (execution speed precedence) -Ot is specified.

[Example of use]

- To prevent optimization that allows branch destination labels to be aligned during performing optimization giving

priority to the execution speed, describe as:

-Wi,-P

C:\>ca850 -cpu f3719 -Ot -Wi,-P main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 411 of 782
Apr 01, 2011

The file merging option is as follows.

- -Om

-Om

[Description format]

- Interpretation when omitted

None

[Function Description]

- When two or more files are specified at the same time, this option merges the files.

- Although it will slow down the compiler, you can widen the scope of inline expansion by specifying optimization

options -O, -Os, and -Ot at the same time. However, it makes source debugging difficult.

[Example of use]

- When two or more files are specified at the same time, to merges the files, describe as:

File merging

-Om

C:\>ca850 -cpu f3719 -Om -Os main.c sub.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 412 of 782
Apr 01, 2011

The inline expansion optimization control options are as follows.

- -Wp,-G

- -Wp,-N

- -Wp,-S

- -Wp,-l

- -Wp,-inline

- -Wp,-no_inline

- -Wp,-r

-Wp,-G

[Description format]

- Interpretation when omitted

-Wp,-G32

[Function Description]

- This option restricts the stack size for a function subject to inline expansion to num specification in the intermediate

language so that inline expansion is not performed for any value larger than num.

- See the -Wp,-l option for details about a yardstick of num.

[Example of use]

- To restrict the stack size for a function subject to inline expansion to 64 in intermediate language, describe as:

Inline expansion optimization control

-Wp,-Gnum

C:\>ca850 -cpu f3719 -Wp,-G64 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 413 of 782
Apr 01, 2011

-Wp,-N

[Description format]

- Interpretation when omitted

When the Level 2 advanced option (execution speed precedence) is specified, it is assumed that -Wp,-N128 has

been specified. Otherwise, it is assumed that -Wp,-N24 has been specified.

[Function Description]

- This option restricts the intermediate language size for a function subject to inline expansion to num specification

so that inline expansion is not performed for any value larger than num.

- See the -Wp,-l option for details about a yardstick of num.

[Example of use]

- To restrict the intermediate language size for a function subject to inline expansion to 64, describe as:

-Wp,-Nnum

C:\>ca850 -cpu f3719 -Wp,-N64 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 414 of 782
Apr 01, 2011

-Wp,-S

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option unconditionally performs inline expansion of a static function that is referenced only once.

[Example of use]

- To perform inline expansion of a static function that is referenced only once unconditionally, describe as:

-Wp,-S

C:\>ca850 -cpu f3719 -Wp,-S -Os main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 415 of 782
Apr 01, 2011

-Wp,-l

[Description format]

- Interpretation when omitted

Function information is not output.

[Function Description]

- This option outputs function information to the standard output or additionally outputs to file.

- The output information is a yardstick for the value to be specified by the -Wp,-G and -Wp,-N options. For example,

a function called is expanded inline if the function requires stack size equal to or less than the value specified by -

Wp,-N. Also, it is expanded inline if the function requires code size equal to or less than the value specified by -

Wp,-G.

- Note that the stack size output by this option is the size in intermediate language output by the pre-optimizer and is

different from the stack size actually used by the function.

[Example of use]

- To output function information to the standard output, describe as:

-Wp,-l[=file]

C:\>ca850 -cpu f3719 -Wp,-l main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 416 of 782
Apr 01, 2011

-Wp,-inline

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option performs inline expansion of only a function for which #pragma inline is specified.

- When -Ot is specified, the compiler automatically identifies the function and performs inline expansion.

- Specify this option to expand only the function specified by the user.

[Example of use]

- To perform inline expansion of only a function for which #pragma inline is specified, describe as:

-Wp,-inline

C:\>ca850 -cpu f3719 -Wp,-inline -Ot main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 417 of 782
Apr 01, 2011

-Wp,-no_inline

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option suppresses inline expansion of all functions, including the function for which #pragma inline is

specified.

- It is useful for suppressing all inline expansion functions when -Ot is specified.

[Example of use]

- To suppress inline expansion of all functions, describe as:

-Wp,-no_inline

C:\>ca850 -cpu f3719 -Wp,-no_inline -Ot main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 418 of 782
Apr 01, 2011

-Wp,-r

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option deletes unnecessary functions from the functions called from an entry function, funcname, after inline

expansion.

- Specify funcname by prefixing '_' to a function described in C language. If funcname is not specified, it is assumed

that "_main" has been specified.

- The function that is called only by an assembler source is deleted as an unnecessary function because the calling

is not recognized.

Interrupt functions and real-time OS tasks are not included as functions subject to deletion.

[Example of use]

- To delete unnecessary functions from the functions called from an entry function "func", after inline expansion.

-Wp,-r[funcname]

C:\>ca850 -cpu f3719 -Wp,-r_func -Om -Os main.c sub.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 419 of 782
Apr 01, 2011

The loop expansion optimization control options are as follows.

- -Wo,-Ol

- -Wo,-Xlo

-Wo,-Ol

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option expands a loop num times using "for" and "while".

- This option can be specified only when performing optimization giving priority to the execution speed.

- The loop is converted into execution of a loop that is executed N times (N is a constant) and execution of a loop

that includes a code expanded num times.

If the code size after expansion is too great or if the number of times of execution of the loop is too few, the number

of times of expansion may decrease, or the loop may not be expanded at all. In addition, a loop having a

complicated structure, such as having inner loops, may not be expanded.

- If 0 or 1 is specified as num, expansion is suppressedNote. If num is not specified, it is assumed that 4 has been

specified. Specify num in decimal numbers.

Note This option is useful when loop expansion does not need to be performed with the Level 2 advanced option

(execution speed precedence) specified.

[Example of use]

- To expand a loop that is executed 10 times four times, describe as:

If the following source is compiled,

The following results are obtained.

Loop expansion optimization control

-Wo,-Ol[num]

C:\>ca850 -cpu f3719 -Wo,-Ol4 -Ot main.c

i = 0;

while(i < 10) {

 /* Processing */

 ++i;

}

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 420 of 782
Apr 01, 2011

i = 0;

/* Processing */

i =1;

/* Processing */

i = 2;

while(i < 10) {

 /* Processing */

 ++i;

 /* Processing */

 ++i;

 /* Processing */

 ++i;

 /* Processing */

 ++i;

}

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 421 of 782
Apr 01, 2011

-Wo,-Xlo

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option expands a loop by fixing the number of times of expanding the loop to the value specified by -Wo,-

Olnum.

- This option can be specified only when performing optimization giving priority to the execution speed.

[Example of use]

- To expands a loop by fixing the number of times of expanding the loop to 4 times, describe as:

-Wo,-Xlo

C:\>ca850 -cpu f3719 -Wo,-Xlo -Ot main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 422 of 782
Apr 01, 2011

The strcpy, strcmp expansion option is as follows.

- -Xi

-Xi

[Description format]

- Interpretation when omitted

Inline expansion of strcpy() or strcmp() function calls does not performed.

[Function Description]

- This option sets a 4-byte alignment condition for arrays (including character strings) and structures and performs

inline expansion of strcpy() or strcmp() function calls.

- This improves the execution speed of the object but it also increases the code size.

- This option executes conversion only when the second argument of strcpy() is a character string or when strcmp()

is called. In addition, the program requires four-byte alignment of the arguments (the C compiler aligns the second

argument of strcpy() since it is a character string).

- This option can not be specified together with the -Xpack option.

[Example of use]

- To set a four-byte alignment condition for arrays (including character strings) and structures and performs inline

expansion of strcpy() or strcmp() function calls, describe as:

strcpy, strcmp expansion

-Xi

C:\>ca850 -cpu f3719 -Xi main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 423 of 782
Apr 01, 2011

The external variable sort option is as follows.

- -Wo,-Op

-Wo,-Op

[Description format]

- Interpretation when omitted

External variables are not rearranged sequentially, starting from the largest alignment size.

[Function Description]

- This option rearranges external variables allocated to a section other than const/sconst sequentially, starting from

the largest alignment size.

- If intermediate file file is specified, the definition and tentative definition of variables in the source file allocated to a

section other than const/sconst having external linkage are moved to file. After being moved, the definition and

tentative definition of variables in the source file are treated in the same manner as declaration. An error will not

occur even if file does not exist at the beginning.

[Example of use]

- To rearrange external variables allocated to a section other than const/sconst sequentially, starting from the

largest alignment size, describe as:

External variable sort

-Wo,-Op[=file]

C:\>ca850 -cpu f3719 -Wo,-Op main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 424 of 782
Apr 01, 2011

The branch instruction control option is as follows.

- -Wo,-XFo

-Wo,-XFo

[Description format]

- Interpretation when omitted

A code that the debug information is given priority for branch instructions is output.

[Function Description]

- This option arranges and outputs branch instructions, giving precedence to the code size.

However, it makes source debugging difficult.

- This option is valid when -Og, -O, -Os, or -Ot is specified.

[Example of use]

- To output a code with branch instructions arranged so that the code size is given priority and performs appropriate

optimization, describe as:

Branch instruction control

-Wo,-XFo

C:\>ca850 -cpu f3719 -Os -Wo,-XFo main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 425 of 782
Apr 01, 2011

The register use control options are as follows.

- -r

- -reg

- -Xmask_reg

-r

[Description format]

- Interpretation when omitted

External variables are not be statically allocated to a register.

[Function Description]

- This option allocates the specified external variable sym to register rnum.

- In num, specify a register other than the mask register that is vacated by specifying the -reg option.

- sym is an external variable name. A volatile variable, variable using address operator, aggregate, array, variable

having internal linkage, and peripheral I/O register cannot be specified.

[Example of use]

- To allocate external variable "arg" to register "r18" (when using the 22-register mode), describe as:

Register use control

-rnum=sym

C:\>ca850 -cpu f3719 -reg22 -r18=arg main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 426 of 782
Apr 01, 2011

-reg

[Description format]

- Interpretation when omitted

-reg32

[Function Description]

- This option limits the number of registers used by the C compiler as n registers (n = register mode).

The range of values that can be specified for n are as follows.

Table B-3. Register Mode

- This option cannot be set independently for each source file. It is always used for all files.

- Since the settings by this option are also recognized by the linker, a library of the appropriate mode is referenced.

- By specifying this option, the register mode of the software register bank function can be changed.

[Example of use]

- To limit the number of registers used by the C compiler as 22 registers, describe as:

-regn

Register Mode (n) Working Registers Registers for Register Variables

22 r10 to r14 r25 to r29

26 r10 to r16 r23 to r29

32 r10 to r19 r20 to r29

C:\>ca850 -cpu f3719 -reg22 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 427 of 782
Apr 01, 2011

-Xmask_reg

[Description format]

- Interpretation when omitted

The mask register function is invalid.

[Function Description]

- This option specifies use of the mask register function.

- When this function is used, the C compiler outputs codes, assuming that an 8-bit mask value, 0xff, is set to r20 and

a 16-bit mask value, 0xffff, is set to r21. Mask values must be set to the mask registers (r20 and r21) by a user

program such as the startup routine.

- With the V850 microcontrollers, byte data and half-word data are sign-extended to word length, depending on the

value of the highest bit, when they are loaded from memory to registers. Consequently, the mask code of the

higher bits may be generated when an operation on unsigned char or unsigned short type data is performed.

When the result of an operation is stored in a register variable, a mask code is generated for unsigned byte data

and unsigned half-word data to clear the higher bits.

In both the cases, generation of the mask code can be avoided if word data is used. If word data cannot be used

and a mask code is generated, the code size can be reduced by using the mask register function.

- To decide whether the mask register function is to be used or not, the following points must be thoroughly

considered.

- Is it a program that outputs many mask codes?

- Two registers for register variables are used as mask registers: Does this have any effect?

- If an object that uses a mask register and an object that does not use a mask register exist together when this

option is specified, the linker outputs an error.

- In the 32 register mode, -mask_reg is passed to the linker. As a result, the standard library is searched by the

linker first in the mask register folder (lib850\r32msk) and then the standard folder.

[Example of use]

- To use the mask register function, describe as:

-Xmask_reg

C:\>ca850 -cpu f3719 -Xmask_reg main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 428 of 782
Apr 01, 2011

The prologue/epilogue processing control option is as follows.

- -Xpro_epi_runtime

-Xpro_epi_runtime

[Description format]

- Interpretation when omitted

-Xpro_epi_runtime=off (when -Ot is specified)

-Xpro_epi_runtime=on (-Ot is not specified)

[Function Description]

- This option specifies whether or not to perform prologue/epilogue processing of the function based on runtime

library function calls.

- If "on" is specified, prologue/epilogue processing of the function is performed based on runtime library function

calls.

- If neither [=on] or [=off] is specified, it is assumed that [=on] has been specified. This option is set to "on" by

default, and is set to "off" if [=off] is specified or the -Ot option is specified.

[Example of use]

- Not to perform prologue/epilogue processing of the function based on runtime library function calls, describe as:

Prologue/epilogue processing control

-Xpro_epi_runtime[=on|=off]

C:\>ca850 -cpu f3719 -Xpro_epi_runtime=off main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 429 of 782
Apr 01, 2011

The variable placement control options are as follows.

- -G

- -Xsconst

- -Xcre_sec_data

- -Xcre_sec_data_only

- -Xsec_file

-G

[Description format]

- Interpretation when omitted

all data is allocated to the .sdata section or the .sbss section.

[Function Description]

- This option allocates data of less than num bytes to the .sdata or .sbss section.

- Data specified by the .sdata or .sbss section in the #pragma section directive or in "B.7.1 Section file" is allocated

to that section regardless of the size.

- Specify num in decimal numbers. A yardstick for the value to be set is output by the -A option of the linker.

[Example of use]

- To allocate data of less than 16 bytes to the .sdata or .sbss section, describe as:

Variable placement control

-Gnum

C:\>ca850 -cpu f3719 -G16 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 430 of 782
Apr 01, 2011

-Xsconst

[Description format]

- Interpretation when omitted

all the const attribute data and character string literals are allocated to the .const section.

[Function Description]

- This option allocates const attribute data and character string literals to the .sconst section.

- If num has been specified, data whose size is num bytes or less is allocated to the .sconst section and if num has

been omitted, allocation is performed regardless of the data size.

- Specify num in decimal numbers.

- If a different option is specified for each file, a code of a different method of placing and referencing variables may

be generated and an error or warning may be output during linking.

[Example of use]

- To allocates const attribute data and character string literals to the .sconst section, describe as:

-Xsconst[=num]

C:\>ca850 -cpu f3719 -Xsconst main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 431 of 782
Apr 01, 2011

-Xcre_sec_data

[Description format]

- Interpretation when omitted

The frequency information file for the variables is not output.

[Function Description]

- This option outputs the frequency information file for the variables used by the Section File Generator.

(1) If the file name is specified as outfile

Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile

Saves the file under the file name with extension .c or .ic replaced by .sec to the specified folder.

(3) If =outfile is omitted

Saves the file under the file name with extension .c or .ic replaced by .sec to the current folder.

(4) If two or more files are output

Creates a folder specified for outfile, and saves the files under each file name with extension .c or .ic replaced by

.sec.

- If several C source files exist, and a frequency information file is to be created with a file name specified for each

file, specify this option with "=outfile" for each C source file from the command line. C source files are specified

one at a time.

- The frequency information file for the variables outputs information how often the ld or st instruction accesses

variables in the C source file. Nothing is performed on the assembler source file.

- If this option and the -Xcre_sec_data_only option are specified at the same time, the -Xcre_sec_data_only option

takes precedence.

[Example of use]

- To output the frequency information file for the variables (main.sec), describe as:

-Xcre_sec_data[=outfile]

C:\>ca850 -cpu f3719 -Xcre_sec_data main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 432 of 782
Apr 01, 2011

-Xcre_sec_data_only

[Description format]

- Interpretation when omitted

The frequency information file for the variables is not output.

[Function Description]

- This option outputs the frequency information file for the variables used by the Section File Generator.

However, unlike the -Xcre_sec_data, this option outputs only the frequency information file for the variables and

does not perform object generation.

- This option is used when outputting only the frequency information file.

(1) If the file name is specified as outfile

Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile

Saves the file under the file name with extension .c or .ic replaced by .sec to the specified folder.

(3) If =outfile is omitted

Saves the file under the file name with extension .c or .ic replaced by .sec to the current folder.

(4) If two or more files are output

Creates a folder specified for outfile, and saves the files under each file name with extension .c or .ic replaced by

.sec.

- If several C source files exist, and a frequency information file is to be created with a file name specified for each

file, specify this option with "=outfile" for each C source file from the command line. C source files are specified

one at a time (by specifying -c).

- The frequency information file for the variables outputs information how often the ld or st instruction accesses

variables in the C source file. Nothing is performed on the assembler source file.

[Example of use]

- To output only the frequency information file for the variables (main.sec) and not to perform object generation,

describe as:

-Xcre_sec_data_only[=outfile]

C:\>ca850 -cpu f3719 -Xcre_sec_data_only main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 433 of 782
Apr 01, 2011

-Xsec_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies the name of the section file (see "B.7.1 Section file") that is used to specify section allocation

of data when the C compiler is activated. Be sure to specify the file name.

- Two or more section files can be input by specifying this option two or more times.

[Example of use]

- To specify the name of the section file (section) that is used to specify section allocation of data when the C

compiler is activated, describe as:

-Xsec_file=file

C:\>ca850 -cpu f3719 -Xsec_file=section main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 434 of 782
Apr 01, 2011

The signed/unsigned control options are as follows.

- -Xbitfield

- -Xchar

- -Xenum_type

-Xbitfield

[Description format]

- Interpretation when omitted

int type bit fields that do not indicate the type specifier (signed or unsigned) are handled as signed.

[Function Description]

- This option specifies whether int type bit fields that do not indicate the type specifier (signed or unsigned) are

handled as signed or unsigned.

- The following can be specified as string.

- A warning message is output when the specification is handled as unsigned.

[Example of use]

- To handle int type bit fields that do not indicate the type specifier (signed or unsigned) as signed, describe as:

signed/unsigned control

-Xbitfield=string

s Handled as signed

signed Handled as signed

u Handled as unsigned

unsigned Handled as unsigned

C:\>ca850 -cpu f3719 -Xbitfield=s main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 435 of 782
Apr 01, 2011

-Xchar

[Description format]

- Interpretation when omitted

This option handles char type that do not indicate the type specifier (signed or unsigned) as signed.

[Function Description]

- This option specifies whether char type that do not indicate the type specifier (signed or unsigned) are handled as

signed or unsigned.

- The following can be specified as string.

[Example of use]

- To handle char type that do not indicate the type specifier (signed or unsigned) as signed, describe as:

-Xchar=string

s Handled as signed

signed Handled as signed

u Handled as unsigned

unsigned Handled as unsigned

C:\>ca850 -cpu f3719 -Xchar=s main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 436 of 782
Apr 01, 2011

-Xenum_type

[Description format]

- Interpretation when omitted

The enumeration type is handled as signed int.

[Function Description]

- This option specifies which integer type the enumeration type matches.

- The following can be specified as string.

[Example of use]

- To handle the enumeration type as signed char, describe as:

-Xenum_type=string

char Handled as signed char

uchar Handled as unsigned char

short Handled as short

ushort Handled as unsigned short

C:\>ca850 -cpu f3719 -Xenum_type=char main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 437 of 782
Apr 01, 2011

The switch-case statement output code control options are as follows.

- -Xcase

- -Xword_switch

-Xcase

[Description format]

- Interpretation when omitted

The code output format for switch statements that the compiler considers optimal is automatically determined.

[Function Description]

- This option specifies a mode in which the code of a switch statement is to be output.

- The following can be specified as string.

- A warning message is output when the specification is handled as unsigned.

[Example of use]

- To output a code for the switch statement in the binary search format, describe as:

Switch-case statement output code control

-Xcase=string

ifelse Outputs the code in the same format as the if-else statement along a string of case statements.

If the case statements are written in the order of frequency or if only a few labels are used, select this option.

Because the case statements are compared starting from the top, unnecessary comparison can be reduced

and the execution speed can be increased if the case statement that most often matches is written first.

binary Outputs the code in the binary search format.

Searches for a matching case statement by using a binary search algorithm. If this option is selected when

many labels are used, any case statement can be found at almost the same speed.

table Outputs the code in a table jump format.

References a table indexed on the values in the case statements, and selects and processes case labels from

the switch statement values. Code will branch to all the case statements with about the same speed.If case

values are not used in succession, an unnecessary area is created.

C:\>ca850 -cpu f3719 -Xcase=binary main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 438 of 782
Apr 01, 2011

-Xword_switch

[Description format]

- Interpretation when omitted

2-byte branch tables are generated.

[Function Description]

- This option generates one 4-byte branch table per case label in a switch statement.

- Specify this option when a compile error occurs because the switch statement is long.

[Example of use]

- To generate 4-byte branch tables per case label, describe as:

-Xword_switch

C:\>ca850 -cpu f3719 -Xword_switch main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 439 of 782
Apr 01, 2011

The structure packing control options are as follows.

- -Xbyte

- -Xpack

-Xbyte

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies indirect address access to a structure in byte units.

- Use this option if a limit is exceeded when the structure packing function is used.

[Example of use]

- To specify indirect address access to a structure in byte units, describe as:

Structure packing control

-Xbyte

C:\>ca850 -cpu f3719 -Xbyte main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 440 of 782
Apr 01, 2011

-Xpack

[Description format]

- Interpretation when omitted

None

[Function Description]

- By using this option, the specified alignment can be used without aligning structure members in accordance with

the type of each member.

- The data size can be reduced but the code size increases. 1, 2, 4, or 8 can be specified as num. The default

value is 8Note.

- If this option is specified if structure packing is specified by the #pragma directive in the C source, the value

specified by this option is applied to all structures until the first #pragma directive appears. After that, the value of

the #pragma directive is applied.

Even after the #pragma directive has appeared, however, the value specified by the option is applied if the default

value is specified.

- This option can not be specified together with the -Xi option.

- This option has following restrictions, when using the V850/V850Ex/V850E2 core that is set to disable misalign

access. These restrictions are the same as for #pragma pack.

- The addresses of structure members cannot be correctly obtained.

- Accessing a bit field also accesses data area because the type of the member is read.

If the width of the bit field is less than the type of the member, the outside of the object is accessed because the

type of the member is read. Usually, no problem with execution occurs, but an illegal access may be made if I/O is

mapped.

Note With this version, the operation when the value of num is "4" is the same as that when it is "8".

[Example of use]

- To align structure members by using the specified alignment (1), describe as:

-Xpack=num

C:\>ca850 -cpu f3719 -Xpack=1 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 441 of 782
Apr 01, 2011

The far jump output control options are as follows.

- -Xfar_jump

- -Xj

-Xfar_jump

[Description format]

- Interpretation when omitted

The jarl directive is used to branch to the function.

[Function Description]

- The jmp directive is used to branch to the function specified in file.

- The linker outputs an error if the function is in a range that cannot be branched to by the jarl or jr directive (±2MB

or more), in which case this option is used to recompile.

- A extension is necessary for a file name. The extension ".fjp" is recommended.

- This option cannot be specified to call a function at the flash side from the boot side by using the flash/external

ROM re-link function. See "B.3.3 Boot-flash relink function" for details.

[Example of use]

- To use jmp directive to branch to the function specified in func.fjp, describe as:

Far jump output control

-Xfar_jump=file

-Xfar_jump file

C:\>ca850 -cpu f3719 -Xfar_jump=func.fjp main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 442 of 782
Apr 01, 2011

-Xj

[Description format]

- Interpretation when omitted

The jr instruction is used for an ordinary interrupt function defined in C language.

[Function Description]

- This option uses the jmp instruction for an ordinary interrupt function defined in C language.

- The linker outputs an error if the function is in a range that cannot be branched to by the jr directive (1MB or more),

in which case this option is used to recompile. The jr instruction is used if this option is omitted.

- This option cannot be specified to call a function at the flash side from the boot side by using the flash/external

ROM re-link function. See "B.3.3 Boot-flash relink function" for details.

[Example of use]

- To use the jmp instruction for an ordinary interrupt function defined in C language, describe as:

-Xj

C:\>ca850 -cpu f3719 -Xj main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 443 of 782
Apr 01, 2011

The comment output option is as follows.

- -Xc

-Xc

[Description format]

- Interpretation when omitted

The C source program is not output as a comment to the assembler source file.

[Function Description]

- This option outputs the C source program as a comment to the assembler source file.

- However, the output comments are for reference only and may not correspond exactly to the code.

For example, comments concerning global variables, local variables, function declarations, etc., may be output to

incorrect positions. If the code is deleted by the optimization, only the extracted comment may remain.

- To use this option, one of -S, -a, -Fs, or -Fv must be specified.

[Example of use]

- To output the C source program as a comment to the assembler source file (main.s), describe as:

Comment output

-Xc

C:\>ca850 -cpu f3719 -Xc -S main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 444 of 782
Apr 01, 2011

The ANSI standard options are as follows.

- -Xe

- -Xdefvar

- -ansi

-Xe

[Description format]

- Interpretation when omitted

The mulh and divh directives are used for integers corresponding to data that is 16 bits or less.

[Function Description]

- This option specifies that runtime library ___mul/___mulu or ___div/___divu will be used when using the V850,

runtime library mul/mulu or div/divu will be used when using the V850E, without using the mulh and divh directives

for integers corresponding to data that is 16 bits or less.

- This option slows the processing speed but strictly performs with the multiplication and division processing under

the ANSI standard.

- The runtime library of the C compiler is prepared as the standard library of CA850 so that the instructions not

provided to the architecture of the V850 microcontrollers satisfy the ANSI standard.

[Example of use]

- To use runtime library ___mul/___mulu or ___div/___divu for integers corresponding to data that is 16 bits or less,

describe as:

ANSI standard

-Xe

C:\>ca850 -cpu f3719 -Xe main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 445 of 782
Apr 01, 2011

-Xdefvar

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option treats tentative definition of variables as definition.

- If this option is specified, then if there are tentative definitions with the same name in multiple files, it is possible

that they will not be linked into one definition during linking, and a multiple-definition error will occur.

[Example of use]

- To treat tentative definition of variables as definition, describe as:

-Xdefvar

C:\>ca850 -cpu f3719 -Xdefvar main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 446 of 782
Apr 01, 2011

-ansi

[Description format]

- Interpretation when omitted

Compatibility with the conventional C language specifications is conferred and processing continues after warning

message is output.

[Function Description]

- This option makes C compiler processing comply strictly with the ANSI standard and outputs an error or warning

for a specification that violates the standard.

- Extended description other than in _asm format is recognized.

- Specifying this option defines the macro name __STDC__.

- Processing when compiling in strict adherence to the language specification is as follows.

(1) Trigraph sequences

Replaces trigraphs. They are not replaced if this option is not specified.

(2) Bit fields

An error occurs if a type other than an int type is specified in a bit field. If this option is not specified, a warning is

output and the specification is permitted.

(3) Scope of arguments

If an automatic variable with the same name as a function argument is declared, a duplicate definition error occurs.

If this option is not specified, a warning is output and the automatic variable is valid.

(4) Pointer assignment

(a) An error occurs if a pointer type numeric value is assigned to a general integer type variable. If this

option is not specified, a warning is output and the pointer is assigned by casting.

(b) An error occurs if pointers that point to different types are assigned. If this option is not specified, a

warning is output and the specification is permitted.

(5) Type conversion

An error occurs if a non-left side value array is converted to a pointer. If this option is not specified, a warning is

output and the specification is permitted.

(6) Comparison operators

An error occurs if an arithmetic type variable and a pointer are compared. If this option is not specified, a warning

is output and the specification is permitted.

-ansi

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 447 of 782
Apr 01, 2011

(7) Conditional operators

An error occurs if the second and third expressions are not both general integer types, the same structure, the

same union, or pointer types to the same type of assignment target. If this option is not specified, a warning is

output and the pointer is assigned by casting.

(8) #line-number

An error occurs. If this option is not specified, #line-number is treated the same way as "#line line-number".

(9) "#" character within a line

An error occurs. If this option is not specified, a warning is output and the specification is permitted.

(10)_asm

A warning is output and _asm is treated as a function call. However, __asm is valid. If this option is not specified,

__asm is treated as an assembler insert.

(11) _ _ STDC_ _

A macro with a value of 1 is defined. If this option is not specified, the macro name is not defined as a macro.

(12)Binary constant

Binary constant is unusable. If this option is not specified, a string that consists of "0b" or "0B" followed by one or

more "0" or "1" is treated as a binary constant.

[Example of use]

- To make C compiler processing comply strictly with the ANSI standard and outputs an error or warning for a

specification that violates the standard, describe as:

C:\>ca850 -cpu f3719 -ansi main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 448 of 782
Apr 01, 2011

The library specification options are as follows.

- -L

- -R

- -l

-L

[Description format]

- Interpretation when omitted

Only the standard folder is searched.

[Function Description]

- This option searches libraries from folder dir, the standard folder in that order.

- The standard folder is "install folder\CA850\Vx.xxNote\lib850" and "install folder\CA850\Vx.xxNote\lib850\r32". If the

register mode is specified, however, r22 or r26 folder is searched instead of r32 folder.

Note Vx.xx is the version of the C compiler.

- See the -L option of the linker.

[Example of use]

- To searche libraries from folder "dir", the standard folder in that order, describe as:

Library specification

-Ldir

C:\>ca850 -cpu f3719 -Llib main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 449 of 782
Apr 01, 2011

-R

[Description format]

- Interpretation when omitted

crtN.o or crtE.o in the standard folder is used as the startup module. The standard folder is "install

folder\CA850\Vx.xxNote\lib850\r32(r26, r22)".

Note Vx.xx is the version of the C compiler.

[Function Description]

- When startup goes as far as the linker, the startup module to be used is indicated to the linker as file.

[Example of use]

- To indicate to the linker that the startup module to be used is as start.o, describe as:

-R file

C:\>ca850 -cpu f3719 -R start.o main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 450 of 782
Apr 01, 2011

-l

[Description format]

- Interpretation when omitted

Nothing is referenced. When activating the linker from the C compiler, however, the C compiler automatically

passes the link specification of the standard library (-lc) and mathematical library (-lm) to the linker.

[Function Description]

- This option specifies the archive file that is referenced by the linker.

When activating the linker from the C compiler, however, the C compiler automatically passes the link specification

of the standard library (-lc) and mathematical library (-lm) to the linker.

- See the library specification option (-l) of the linker for how to specify an archive file.

[Example of use]

- To specify the archive file (libarc.a) that is referenced by the linker, describe as:

-lstring

C:\>ca850 -cpu f3719 -larc main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 451 of 782
Apr 01, 2011

The warning message control options are as follows.

- -w

- -won

- -woff

-w

[Description format]

- Interpretation when omitted

If -wnum is omitted, it is assumed that -w1 has been specified.

If -wstring+, -wstring- are omitted, the warning message output is according to the -wnum level.

[Function Description]

- -wnum specifies the level of warning messages.

- The following number can be specified as num.

- If num is omitted, it is assumed that -w0 has been specified.

- -wstring+ and -wstring- specify outputting or suppressing a warning message for each parameter regardless of the

level. A warning message is output when "+" has been specified or is suppressed when "-" has been specified.

- The following character strings can be specified as string.

- An error occurs if neither "+" nor "-" has been specified.

Warning message control

-wnum

-wstring+

-wstring-

0 Suppresses messages

1 Outputs normal warning messages

2 Outputs detailed warning messages

bitfield_align When bit field members have exceeded the boundary set by the alignment condition and have been

allocated starting from the next boundary

bitfield_type When a type that cannot be specified in the ANSI specification is specified for the bit field

callnodecl When an undeclared function is called

cast_type When conversion to a type whose size is smaller than that of the original type is performed

comparison When the comparison expression is always true (or false)

nopic When a pointer type external variable is initialized by using a variable address that is not an automatic

variable or a function address

pragma When a non-executable #pragm+a description appears

sharp When a sharp symbol (#) appears in a source line

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 452 of 782
Apr 01, 2011

[Example of use]

- To output detailed warning messages, describe as:

- To output warning messages when a type that cannot be specified in the ANSI specification is specified for the bit

field, describe as:

C:\>ca850 -cpu f3719 -w2 main.c

C:\>ca850 -cpu f3719 -wbitfield_type+ main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 453 of 782
Apr 01, 2011

-won

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs a warning message of the number specified by num.

- A warning message in the 2000s can be specified as num.

- When the W2042 warning message is output, specify "-won=2042". If num1-num2 is specified, the warning

messages from num1 to num2 are specified. num cannot be omitted.

- If a warning number not provided in the C compiler is specified, a warning message is output.

[Example of use]

- To output the W2042 warning message, describe as:

-won=num[,num]...

-won=num1-num2[,num3-num4]...

C:\>ca850 -cpu f3719 -won=2042 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 454 of 782
Apr 01, 2011

-woff

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option suppresses a warning message of the number specified by num.

- A warning message in the 2000s can be specified as num.

- When the W2042 warning message is suppressed, specify "-woff=2042". If num1-num2 is specified, the warning

messages from num1 to num2 are specified. num cannot be omitted.

- If a warning number not provided in the C compiler is specified, a warning message is output.

[Example of use]

- To suppress the W2042 warning message, describe as:

-woff=num[,num]...

-woff=num1-num2[,num3-num4]...

C:\>ca850 -cpu f3719 -woff=2042 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 455 of 782
Apr 01, 2011

The command file specification option is as follows.

- @

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file (see "(2) Command file"). As a result, there is no need to be aware of

the length limits of option character strings.

- In the command file, the arguments to be specified can be coded over several lines, but do not divide options, file

names, and the like across two lines.

[Example of use]

- To handle "command" as a command file, describe as:

Command file specification

@cfile

C:\>ca850 @command main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 456 of 782
Apr 01, 2011

The CPU bug patch option is as follows.

- -Xv850patch

-Xv850patch

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies the -p[num] option for the assembler according to the num specification for an assembler

source file output by the C compiler to output a code corresponding to a CPU fault (see "(2) Options for avoiding

CPU faults").

- 1, 2, 3, 4, 4a, 5, 6, 7, 8, 9, 10, or 11 can be specified as num. 5 to 10 are valid for the V850E/ES core only.

- If =num is omitted, it is assumed that "1, 2, 3, 4, 4a, 5, 6, 7, 8, 9, 10" has been specified as num.

- This option is to avoid faults of the CPU. To determine whether or not a fault that has occurred is from the CPU

being used, see the documents supplied with the CPU.

- Only the -Xv850patch=11 option is handled by the C compiler. If the -Xv850patch=11 option is specified, the

following instructions are not output.

- set1/clr1/not1

- Misalign access of V850E/ES core (during structure packing)

If these instructions are used in an asm statement and an assembler source file, they are output as is because

asm statements and assembly language source files are not checked.

- When specifying the -Xv850patch=11 option and describing bit access to the peripheral I/O register in the

program, access to the peripheral I/O register is in word (4-byte) units. Change descriptions to byte/half-word unit

operation, not bit access.

- The faults between CPU core and patch option is as follows (for the newest version μPD70(F)3xxx, not including

maintenance or obsolete products).

To determine whether or not the failure affects the CPU being used, see the CPU's documentation.

Table B-4. Faults Between CPU Core and -Xv850patch Option

Remark A: Affected

-: Not affected

CPU bug patch

-Xv850patch[=num]

CPU Core -Xv850patch=11

V850 core -

V850E/MS1 A

V850E1 core A

V850ES core A

V850E2 core -

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 457 of 782
Apr 01, 2011

[Example of use]

- To specify the -p4a option for the assembler for an assembler source file output by the C compiler to output a code

corresponding to a CPU fault, describe as:

C:\>ca850 -cpu f3719 -Xv850patch=4a main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 458 of 782
Apr 01, 2011

The C compiler can pass options to each module.

- -W

-W

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option passes option as an option for module x. If option includes a comma, the option is assigned as multiple

options, each delimited by a comma.

- The following can be specified as module x.

(1) Pre-optimizer (popt)

(a) -Wp,-D

This option reduces the memory capacity used during compiling.

(b) -Wp,-Gnum

This option restricts the stack size for a function subject to inline expansion to num specification in

intermediate language so that inline expansion is not performed for any value larger than num.

See the -Wp,-l option for details about a yardstick of num.

If this option is not specified, it is assumed that -Wp,-G32 has been specified.

(c) -Wp,-Nnum

This option restricts the intermediate language size for a function subject to inline expansion to num

specification so that inline expansion is not performed for any value larger than num.

See the -Wp,-l option for details about a yardstick of num.

If this option is not specified and the Level 2 advanced option (execution speed precedence) is specified, it is

assumed that -Wp,-N128 has been specified. Otherwise, it is assumed that -Wp,-N24 has been specified.

(d) -Wp,-S

This option performs inline expansion of a static function that is referenced only once unconditionally.

Each module

-Wx,option

p Pre-optimizer (popt)

o Global optimization module (opt)

i Machine-dependent optimization module (impr)

a Assembler (as850)

l Linker (ld850)

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 459 of 782
Apr 01, 2011

(e) -Wp,-l[=file]

This option outputs function information to the standard output or additionally outputs to file.

The output information is a yardstick for the value to be specified by the -Wp,-G and -Wp,-N options. For

example, a function called is expanded inline if the function requires stack size equal to or less than the value

specified by -Wp,-N. Also, it is expanded inline if the function requires code size equal to or less than the value

specified by -Wp,-G.

Note that the stack size output by this option is the size in intermediate language output by the pre-optimizer

and is different from the stack size actually used by the function.

(f) -Wp,-r[_funcname]

This option deletes unnecessary functions from the functions called from an entry function, funcname, after

expansion.

Specify funcname by prefixing '_' to a function. If funcname is not specified, it is assumed that "_main" has

been specified.

The function that is called only by an assembler statement is deleted as an unnecessary function because the

calling is not recognized. Interrupt functions and real-time OS tasks are not included as functions subject to

deletion.

(g) -Wp,-inline

This option performs inline expansion of only a function for which #pragma inline is specified.

(h) -Wp,-no_inline

This option suppresses inline expansion of all functions, including the function for which #pragma inline is

specified.

(2) Global optimization module (opt)

(a) -Wo,-Ol[num]

This option expands a loop num times using "for" and "while".

This option can be specified only when performing optimization giving precedence to the execution speed.

The loop is converted into execution of a loop that is executed N times (N is a constant) and execution of a

loop that includes a code expanded num times. If the code size after expansion is too great or if the number of

times of execution of the loop is too few, the number of times of expansion may decrease, or the loop may not

be expanded at all. In addition, a loop having a complicated structure, such as having inner loops, may not be

expanded.

If 0 or 1 is specified as num, expansion is suppressedNote. If num is not specified, it is assumed that 4 has

been specified. Specify num in decimal numbers.

Note This option is useful when loop expansion does not need to be performed with the Level 2 advanced

option (execution speed precedence) specified.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 460 of 782
Apr 01, 2011

Example

(b) -Wo,-Op[=file]

This option rearranges external variables allocated to a section other than const/sconst sequentially, starting

from the largest alignment size.

If intermediate file file is specified, the definition and tentative definition of variables in the source file allocated

to a section other than const/sconst having external linkage are moved to file. After being moved, the

definition and tentative definition of variables in the source file are treated in the same manner as declaration.

An error will not occur even if file does not exist at the beginning.

(c) -Wo,-XFo

This option outputs code giving precedence to the code size for branch instructions.

However, the debug information will be affected. This option is valid when -Og, -O, -Os, or -Ot is specified.

If this option is omitted, this option outputs code giving precedence to debug information for branch

instructions.

(d) -Wo,-Xlo

This option expands a loop under the condition of the version CA850 Ver. 2.02 or earlier.

(3) Machine-dependent optimization module (impr)

(a) -Wi,-D

This option reduces the memory capacity used during compiling.

However, the compilation speed slow down. Specify this option if too much memory is used so that the

compiler is unable to operate normally.

(b) -Wi,-O4

This option analyzes the data flow strictly and performs the following optimization.

- Optimization of registers extending over a branch instruction

- Optimization of absolute value operations

- Optimization of a cmp instruction extending over a branch instruction

When a loop that is executed 10 times expands four times

i = 0;

while(i < 10) {

 /* Processing */

 ++i;

}

i = 0;

/* Processing */

i =1;

/* Processing */

i = 2;

while(i < 10) {

 /* Processing */

 ++i;

 /* Processing */

 ++i;

 /* Processing */

 ++i;

 /* Processing */

 ++i;

}

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 461 of 782
Apr 01, 2011

- Optimization of a return instruction extending over a branch instruction

However, the compilation speed slow down. Specify this option, in addition to optimization option -O, -Os, or -

Ot, to analyze the data flown powerfully.

(c) -Wi,-P

This option suppresses optimization that aligns labels. As a result, the code size can be reduced.

(4) Assembler (as850)

See "B.2.3 Option".

(5) Linker (ld850)

See "B.3.2 Option".

[Example of use]

- To analyze the data flow strictly and perform the optimization, describe as:

C:\>ca850 -cpu f3719 -Wi,-O4 -Os main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 462 of 782
Apr 01, 2011

Other option is as follows.

- +Oc

+Oc

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option performs advanced optimization.

- This function is valid by default if the V850E2 core device is specified as a device type.

[Example of use]

- To perform advanced optimization, describe as:

Other

+Oc

C:\>ca850 +Oc -Ot -Wi,-O4 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 463 of 782
Apr 01, 2011

B.1.5 Cautions

(1) Specifying multiple options

Some options become invalid if they are specified at the same time as certain other options. Of the following

options, those on the right of the ">" symbol become invalid if they are specified with the options shown on the left

of the ">" symbol.

- -E > -P

- -U > -D

- -E/-P > -G > -L > -O > -R > -S > -Wc > -a > -c > -l > -m > -o

Since execution is terminated during preprocessing, the options related to the modules following the front end

are invalid.

- -S > -L / -R / -W[a|l] / -a / -c / -l

Since execution is terminated at the code generation module or the machine-dependent optimization module,

the options related to the modules following the assembler are invalid.

- -V / -help

Any option that is specified after this is invalid.Moreover, this option is specified, all the other options become

invalid.

- -c > -L / -R / -Wl / -l

Since execution is terminated at the assembler, the options related to the modules following the linker are

invalid.

- -m > -G / -L / -O / -R / -S / -Wc / -a / -c / -l

Since execution is terminated at the front end, the options related to the modules following the pre-optimizer

are invalid.

- -Og / -O / -Os / -Ot > -a / -Fv

If -Og, -O, -Os, or -Ot has been specified, an incorrect display may result.

- -Od / -Ob / -Og / -O / -Os / -Ot

Any option that is specified after this is invalid.

- -w / -w[1|2]

Any option that is specified before this is invalid.

(2) Command file

Instead of specifying options and file names for commands as command-line arguments, they can be specified in a

command file. The C compiler treats the contents of a command file as if they were command-line arguments. In

the command file, the arguments to be specified can be coded over several lines. However, options and file

names must not be coded over more than one line. Command files cannot be nested.

In the command file, the following characters are treated as special characters.

The special characters themselves are not included in the command line of the C compiler for which a command

file is specified, but deleted.

Remark With the as850, ar850, hx850, dump850, dis850, and romp850, only " (double quotation mark) can be

used.

" (double quotation mark) The character string before the next " (double quotation mark) is treated as a contiguous

character string.

(sharp) If specified at the beginning of a line, characters on that line before the end of the line are

treated as a comment.

^ (circumflex) The character immediately following this is not treated as a special character.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 464 of 782
Apr 01, 2011

- Example of command file

- Example of command file specification

(3) Efficient use of optimization

"Optimization" is processing used to increase the execution speed of an application or to decrease the ROM

capacity to be used. How optimization is performed differs depending on the level of optimization. If a high level of

optimization is selected, the compilation speed may slow down and the probability of allocating C source lines to

be deleted or changed and variables to registers increases. In the latter case, phenomena such as being unable to

set breakpoints with the debugger may occur, and the debugging efficiency may be affected.

Below is an overview of the optimizations that can be specified with the -O option, and a guideline for efficient use

of optimization.

Figure B-3. Optimization Processing and Parameters

Table B-5. Optimization Processing and Items

-Dtest ... Describes #define test

-o object ... Specifies an object file name

a.c ... Specifies the file to be compiled

C:\>type cfile

 -cpu 3201 -c -Os file.c <-contents of command file

C:\>ca850 @cfile ... Same operation as ca850 -cpu 3201 -c -Os file.c

Option: Optimization Function Effect

Debug Code

Efficiency

Execution

Speed

Compilation

Time

-Od: Optimize for Debugging Level 4 Level 1 Level 1 Level 3

-Ob: Default Optimization Level 3 Level 2 Level 2 Level 3

-Og: Standard Optimization Level 3 Level 3 Level 3 Level 3

Optimization

Strong

Optimization

Weak

Default Optimization(-Ob)

Level 2 Advanced Opt.

(Speed precedence) (-Ot)

Level 2 Advanced Opt.

(Size precedence) (-Os)

Level 1 Advanced Optimization

(-O)

Standard Optimization (-Og)

Optimize for Debugging (-Od)

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 465 of 782
Apr 01, 2011

The meanings of the expressions in this table are as follows.

(a) -Od: Optimize for Debugging

Optimization is executed within a basic blockNote. This is optimization using information that can be grasped in

a basic block.

- Calculation of constants, deformation of expressions

- Recognition of common parts in a basic block

- Propagation of copy in a basic block

This optimization includes the followings.

This optimization is executed by default when compilation is executed. For example, an operation expression

of only constants is replaced by the constants of the operation result during compilation.

The effect of this optimization is the weakest with the C compiler. This optimization is equivalent in level to the

default optimization of CA850 Ver. 2.4x.

Note The longest array of instructions whose first instruction is always executed first. A branch occurs only

from the last instruction of this array.

(b) -Ob: Default Optimization

Optimization in a basic block and allocation of automatic variables to coloring registers are performed.

- Automatic variables are allocated as registers.

This optimization does not affect debugging.

-O: Level 1 Advanced Optimization Level 2 Level 4 Level 4 Level 2

-Os: Level 2 Advanced Option (Size

precedence)

Level 1 Level 5 Level 4 Level 2

-Ot: Level 2 Advanced Option (Speed

precedence)

Level 1 Level 4 Level 5 Level 1

Debug As the level of optimization increases, optimization that deletes C source lines and concentrates the

same processing on one location occurs, and there is a tendency that the places where breakpoints

can be set decrease. In addition, the probability of assigning a variable from the memory to a

register improves.

The level of optimization at which the tendency that many breakpoints can be set and the probability

of allocating variables to registers is small is called level 4, and the level at which the tendency is

the strongest is called level 1. Debugging can be executed even at level 1.

Code Efficiency The ROM size efficiency is classified into levels 1 to 5.

The option that minimizes the ROM size is -Os. This option takes a long compilation time. Use the

-Og or -O option if the ROM capacity has a relatively wide margin.

Execution Speed The execution speed is classified into levels 1 to 5.

To reduce the ROM capacity of the entire module and improve the effective speed of only critical

functions further, specify the -Ot option in file units.

Compilation Time The compilation time is classified into levels 1 to 3.

Options -O, -Os, and -Ot execute powerful optimization and therefore take a longer compilation time

than the other options.

Option: Optimization Function Effect

Debug Code

Efficiency

Execution

Speed

Compilation

Time

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 466 of 782
Apr 01, 2011

This is the default optimization of the CA850. It deletes more unnecessary codes than -Od because register

allocation is a high-level function.

(c) -Og: Standard Optimization

In addition to optimization in a basic block and allocation of coloring registers, the following optimization is

performed by using the information that can be grasped in a function (only the representative operations are

described).

- An instruction string that finds common operations and processes them all at once is output.

- An assignment statement whose value does not change in a loop is moved out of the loop.

Step execution and breakpoints may not be set as intended by the user.

- Redundant assignment statements are deleted.

The breakpoint of a deleted line cannot be set.

- External variables are allocated to registers.

The read/write break to memory may not be correctly executed during debugging.

- Optimization that rearranges instructions by the C compiler to avoid register/flag hazards is performed.

This optimization does not affect debugging.

This optimization is higher in compilation speed than the advanced optimization, and its code efficiency/

execution speed is intermediate in the optimization of the C compiler. The setting this option is recommended

if the ROM capacity has a relatively wide margin.

(d) -O: Level 1 Advanced Optimization

In addition to the optimization performed by options up to -Og, the following optimization is performed (only the

representative operations are described).

- Only a loop that is executed only once is expand to avoid the overhead of end condition judgment.

This optimization does not affect debugging.

- Label alignment and 4-byte alignment at the beginning of a function are suppressed.

This optimization does not affect debugging.

- A label not referenced is deleted.

A breakpoint cannot be set to a label that is to be deleted.

- Unnecessary instructions are deleted.

Breakpoints and step execution may not be set as intended by the user.

- Peep hole optimization (rearrangement of five or less instructions to an efficient instruction string) is

performed.

Breakpoints and step execution may not be set as intended by the user.

This optimization is equivalent to the object size priority option -Os of the CA850 Ver. 2.4x.

This option does not perform inline expansion of a static function that is referenced only once, which is

performed with the CA850 Ver. 2.4x.

(e) -Os: Level 2 Advanced Option (Size precedence)

An optimization is executed until processing of -O can no longer be optimized. This option performs

optimization giving priority to object size and is the most powerful option. It performs all optimization to not

increase the code size of the optimization supported by the C compiler and reduces the size as much as

possible.

Depending on the contents of the application, further optimization may be able to be reinforced by using the

following options and functions, in addition to -Os.

Depending on the contents of the application, optimization may be able to be reinforced by using the following

options and functions, in addition to the above option.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 467 of 782
Apr 01, 2011

- Specifying -Wi,-O4

The data flow is analyzed and optimization is reinforced. However, the compilation time tends to increase

considerably.

- Using mask register

 In the case of an application that often uses mask codes for operations of unsigned char and unsigned

short types, the mask register function can be used to reduce the code size.

However, if the mask register function is used, there will be two less registers for register variables that

can be used when in 32 register mode and two less empty registers when in the mode other than 32

register mode.

- Using section file

If data is allocated to the internal memory or a section that is referenced by one instruction per gp/r0, the

code size can be reduced and the execution speed can be increased. If data is not allocated to a section

by program, it is allocated to [tidata.byte] / [tidata.word] / [sidata] / [sedata] / [sconst] / [sdata] by a section

file (see "B.7.1 Section file") during compilation.

Of the optimization of the C compiler giving emphasis to the code size, this optimization minimizes the size.

This optimization is equivalent to the object size priority option -Os and optional optimization option -Ol of the

CA850 Ver. 2.4x.

This option does not perform inline expansion of a static function that is referenced only once, which is

performed with the CA850 Ver. 2.4x.

(f) -Ot: Level 2 Advanced Option (Speed precedence)

This option performs optimization, giving priority to the execution speed. It is used to shorten the execution

time, even at the expense of the size, in applications such as data processing.

In addition to the optimization performed by options up to -O, this option executes the following optimization of

suppressing.

- 4-byte alignment of a label

- 4-byte alignment at the beginning of a function

In addition, it also executes the followings.

- Tail recursion optimization

- Inline expansion

- Loop expansion

If a return statement at the end of a function calls the function itself, tail recursion optimization converts that

function into a loop and reduces the stack used for function calling.

Inline expansion expands the body of a function at the part calling the function, increasing the possibility of

optimization, and preventing the overhead for the calling.

Loop expansion expands the loop body two or more times to increase the possibility of optimization and

prevent the overhead for conditional judgment and branch.

Inline expansion and loop expansion increase the object size and improve the execution speed.

When -Ot is specified and a function including an asm statement defining a label is used, the same label is

defined at the part of function definition and inline expansion. In this case, a label multiple definition error

occurs. The function specified by #pragma block_interrupt, #pragma interrupt, #pragma rtos_task, or #pragma

text is not subject to inline expansion. In this case, no message is output.

If a function including an asm statement on which inline expansion is not expected to be executed is used,

such as manipulation of a stack frame, an execution error may occur because an illegal function frame

manipulation takes place.

Caution If the size is increased too much by the Level 2 advanced option (speed precedence), adjust

inline expansion and loop expansion by using the options "-Wp,-G" and "-Wo,-Ol". To

execute inline expansion only on a specific function, regardless of the option, use #pragma

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 468 of 782
Apr 01, 2011

inline. This can give priority to the execution speed of only a specific function, while "size

priority" is specified.

Depending on the contents of the application, optimization may be able to be reinforced by using a mask

register in the same manner as when -Os is specified.

In addition, optimization speed can be reinforced by using the following function.

- Expanding strcpy(), strcmp()

If the option -Xi, which executes "expansion of strcpy/strcmp" for an application that often uses the

character string copy function strcpy(), is specified, the execution time is shortened. However, the size

increases.

- Specifying -Wp,-r

An unnecessary function may be generated as a result of inline expansion that has merged source files. If

the "-Wp,-r" option is specified in this case, the unnecessary functions may be deleted, and the size may

be reduced.

Of the optimization of the C compiler giving emphasis to the execution speed, the execution speed of this

option is the highest. This optimization is equivalent to the object speed priority option -Ot and optional

optimization option -Ol of the CA850 Ver. 2.4x.

As explained above, the C compiler has several levels and items of optimization. To specify optimization, the

following criteria must be noted.

- Giving priority to size

- Giving priority to the execution speed at the expense of size

Most optimization functions reduce the size and improve the execution speed at the same time. Whether

emphasis is given to the size or execution speed is determined depending on whether some functions are

used or not.

(4) Effects of optimization on debugging

Note with caution that optimization can have the following kinds of effects when using the source debugger.

- As a result of deformation of an expression by optimization (propagation of copy and recognition of common

part expression), "variable reference" does not take place where the read/write event of a variable appears in

the source program, and the event may not occur as expected by the user.

- When a statement has been made common, deleted, or rearranged, step execution and breakpoints may not

be set as intended by the user.

- The live range of a variable (range in which the variable can be referenced in the program) and position of a

variable (position on a register or memory) may be changed.

- Breakpoints cannot be set for statements that have been deleted.

- Transfer, splitting, or merging of statements may have rearranged the sequence of executable

instructionsNote, so that lines between the lines which have been rearranged may be handled as a single line

for which break points and step execution can no longer be set.

Note The address of an executable instruction within a line of source code may be smaller than the address

of an executable instruction in a previous line or may be greater than the address of an executable

instruction in a subsequent line.

- If the sequence of executable instructions for if-else statements has been rearranged or if loop expansion has

caused a sequence of executable instructions to be rearranged, step execution may no longer be possible, as

when a statement has been made common, deleted, or rearranged.

- The entire function is regarded as the valid range (scope) for all automatic variables. However, if the variables

have been allocated to registers, they can be deleted or otherwise rendered invisible by optimization even

when they are within the scope. This can occur when the variables are being used as "local variables" within

the scope or have been assigned as local variables as a result of optimization.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 469 of 782
Apr 01, 2011

Example

In the above example, the scope of "a" is the entire function f(). However, use of "a" is limited to section

between address 1 and address 2. In this case, if "a" is allocated to a register and optimization causes it

to be deleted from the stack frame, "a" will become invisible outside of the section between address 1 and

address 2. This phenomenon occurs in order to make more efficient use of registers by making the

register where "a" has been allocated (except for the section between address 1 and address 2) available

for the allocation of other variables.

- During compilation, the processing of debug information uses a large amount of memory and therefore can

cause an "out of memory" condition to occur.

- Sections that have been performed inline expansion are treated as a single unit, and cannot be stepped into.

- When loop expansion has been performed, the loop body is treated as a single unit, and cannot be stepped

into. Additionally, the number of times the body unit is stopped is the number of loops after expansion, not

before.

- If a register is allocated to an external variable, optimization debugging cannot be executed because the

debug information of the specified external variable is deleted.

void f(void)

{

 int a; /* Valid within function */

 :

 /* address 1 */

 : /* "a" is used only within the range from address 1 to address 2. */

 /* address 2 */

 :

}

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 470 of 782
Apr 01, 2011

B.2 Assembler

The assembler (as850) assembles a specified assembly source file and creates a relocatable object file.

Figure B-4. Operation Flow of Assembler

B.2.1 I/O files

The assembler can specify the following files as input files.

The name of the relocatable object file generated by the assembler has extension .o instead of.s.

The file names supported by Windows can be specified, but "@" cannot be used at the head of a file name because it

is regarded as a command option. The name of a file or folder that includes a space cannot be used. If the kanji code of

the file is EUC, a file name or folder name in Japanese cannot be used.

If the relocatable object file created by the assembler includes an unresolved external reference, its relocation remains

unresolved.

An executable object file resolving all relocations (called the "execution format") is created by linking the relocatable

object file via the linker.

See "3.1 Assembler" for details about output lists.

B.2.2 Method for manipulating

This section explains how to manipulate the assembler.

(1) Command input method

The assembler is started from the ca850 under the default settings, but it can also be started in the following

format.

Enter the following from the command prompt.

(2) Set options in CubeSuite+

This section describes how to set assemble options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [Assemble Options] tab.

You can set the various assemble options by setting the necessary properties in this tab.

file.s Assembler source file (called the .s file)

C:\>as850 [option] ... file-name

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Assembler source file

Assembler

Relocatable object file

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 471 of 782
Apr 01, 2011

Figure B-5. Property Panel: [Assemble Option] Tab

B.2.3 Option

This section explains assemble options.

Caution To pass the assemble options from the ca850 to the assembler without modification, "-Wa" must be

specified with the ca850 (see "Each module").

The types and explanations for assemble options are shown below.

Table B-6. Assemble Options

Classification Option Description

File -a Generates an assemble list.

+err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-l If the -a option is specified, an assemble list generated is saved.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 472 of 782
Apr 01, 2011

Table B-7. Mark Used in Option Descriptions

Assembler -D Specifies the macro name to be defined.

-G Generates a machine language instruction on the assumption that the data that is less

than the specified bytes is allocated to sections with the sdata or sbss attribute in

response to external label access.

-I Specifies the folder where the file specified by the file input quasi directive is given

precedence to searching.

-m Generates an object file that includes information noting use of the mask register

function.

-O Performs optimization that rearranges instructions to avoid register/flag hazards.

-v Outputs the execution status of the assembler to the standard error output in detail.

-w Specifies the level, output, and suppression of a warning message.

-Xfar_jump Specifies far jump for branch instructions (jarl, jr) that do not include 22/32.

Device -X256M Treats the memory space as having 256 MB.

-bpc Sets the higher address of the programmable peripheral I/O register.

Warning message

control

-woff Suppresses a warning message of the specified number.

Other -cn Embeds the magic number common to V850 core.

-cnv850e Embeds the magic number common to V850Ex core.

-cnv850e2 Embeds the magic number common to V850E2 core.

-cpu Specifies the target device.

-F Specifies the folder where device files are stored.

-g Outputs debug information.

-o Specifies the name of the object file to be assembled and output.

-p Outputs code that avoids CPU faults.

-V Outputs the version information of the assembler to the standard error output.

-zf Performs assembly processing on the flash/external ROM side.

@ Handles the specified file as a command file.

[V850E2] Option dedicated to V850E2 core

[V850E] Option dedicated to V850Ex core

Classification Option Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 473 of 782
Apr 01, 2011

The options of preprocessing for the assembler source file are as follows.

- -a

- +err_file

- -err_file

- -l

-a

[Description format]

- Interpretation when omitted

No assemble list is generated.

[Function Description]

- This option generates an assemble list.

- If the -l option is not specified, an assemble list generated is output to the standard output.

- When the -O option (optimization option) is specified, a part of the assemble list may be incorrectly output due to

instruction rearrangement.

[Example of use]

- To generate an assemble list, describe as:

File

-a

C:\>as850 -cpu f3719 -a main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 474 of 782
Apr 01, 2011

+err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

+err_file=file

C:\>as850 -cpu f3719 +err_file=err main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 475 of 782
Apr 01, 2011

-err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C:\>as850 -cpu f3719 -err_file=err main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 476 of 782
Apr 01, 2011

-l

[Description format]

- Interpretation when omitted

If the -a option is specified, an assemble list generated is output to the standard output.

[Function Description]

- The assemble list generated when the -a option is specified is placed in a file with the name file.

- If the -a option is not specified, this option is invalid.

[Example of use]

- To save the assemble list in the file (asm), describe as:

-l file

C:\>as850 -cpu f3719 -a -l asm main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 477 of 782
Apr 01, 2011

The options of assembler for the assembler source file are as follows.

- -D

- -G

- -I

- -m

- -O

- -v

- -w

- -Xfar_jump

-D

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies the macro name to be defined.

- If =def is omitted, def is regarded as 1. This option assumes that ".set name, def" is entered before the assembler

source program.

[Example of use]

- To assume that ".set sample, 256" is entered before the assembler source program, describe as:

Assembler

-Dname[=def]

C:\>as850 -cpu f3719 -Dsample=256 main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 478 of 782
Apr 01, 2011

-G

[Description format]

- Interpretation when omitted

it is assumed that num = ∞.

[Function Description]

- This option generates a machine language instruction on the assumption that all data that is less than num bytes is

allocated to sections with the sdata or sbss attribute in response to external label access.

- The range that can be specified as num is 0 to 32767 in decimal numbers.

- This option generates an assembler instruction on the assumption that data which sdata is specified in quasi

directive ".option sdata" is allocated to sections with the sdata or sbss attribute, regardless of the size of the data.

- When activating from the ca850, the -Gnum option specified in the ca850 activation is passed.

[Example of use]

- To generate a machine language instruction on the assumption that the data up to 16 bytes is allocated to the

sdata or sbss section, describe as:

-Gnum

C:\>as850 -cpu f3719 -G16 main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 479 of 782
Apr 01, 2011

-I

[Description format]

- Interpretation when omitted

The folder where the source file is placed, the folder where the C source file is placed, and the current folder are

searched in that order.

[Function Description]

- This option specifies the folder where the file specified by the file input quasi directive (.include/.binclude) is

searched prior to the folder where the source files are placed.

- If the file was not found in the specified folder or if this option is omitted, the folder where the source file is placed,

the folder where the C source file is placed, and the current folder are searched in that order.

[Example of use]

- To specify the folder where the file specified by the file input quasi directive (.include/.binclude) is searched from

the folder (D:\head), describe as:

-I dir

C:\>as850 -cpu f3719 -I D:\head main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 480 of 782
Apr 01, 2011

-m

[Description format]

- Interpretation when omitted

The mask register function is invalid.

[Function Description]

- This option generates an object file that includes information noting use of the mask register function.

- When this function is used, the assembler outputs codes, assuming that an 8-bit mask value, 0xff, is set to r20 and

a 16-bit mask value, 0xffff, is set to r21.

- Mask values must be set to the mask registers (r20 and r21) by a user program such as the startup routine.

- To decide whether the mask register function is to be used or not, the following points must be thoroughly

considered.

- Is it a program that outputs many mask codes?

- When in 32-register mode, two registers for register variables are used as mask registers: Does this have any

effect?

- When in the mode other than 32-register mode, two empty registers are used as mask registers: Does this

have any effect?

[Example of use]

- To generate an object file that includes information noting use of the mask register function, describe as:

-m

C:\>as850 -cpu f3719 -m main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 481 of 782
Apr 01, 2011

-O

[Description format]

- Interpretation when omitted

The instruction rearranging optimization is invalid.

[Function Description]

- This option performs optimization that rearranges instructions to avoid register/flag hazards.

- If this option and -g option (debug information output) are specified at the same time, this option is ignored and the

-g option is valid.

- If the -p option (CPU faults avoidance option) is specified at the same time when the target device of the V850 core

is specified or if a V850 core common object is created, this option is ignored and the -p option is valid.

- If the -p option is specified at the same time when the target device of the V850E/V850E1/V850ES core is

specified or if a V850E/V850E1/V850ES core common object is created, this option and the -p option are valid.

[Example of use]

- To perform optimization that rearranges instructions to avoid register/flag hazards, describe as:

-O

C:\>as850 -cpu f3719 -O main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 482 of 782
Apr 01, 2011

-v

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the execution status of the assembler to the standard error output in detail.

[Example of use]

- To output the execution status of the assembler to the standard error output in detail, describe as:

-v

C:\>as850 -cpu f3719 -v main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 483 of 782
Apr 01, 2011

-w

[Description format]

- Interpretation when omitted

No warning messages are suppressed.

[Function Description]

- The -w option does not output a warning message in the following cases.

- If r1 has been specified as the source register or the destination register

- If r0 has been specified as the destination register

- If r20 or r21 has been specified as the destination register when using the mask register function

- -wstring+ and -wstring- specify outputting or suppressing a warning message for each parameter regardless of

whether the -w option is specified. A warning message is output when "+" has been specified or is suppressed

when "-" has been specified.

- The following character strings can be specified as string.

- An error occurs if neither "+" nor "-" has been specified.

[Example of use]

- To output a warning message of the specified number, describe as:

- To output a warning message when r0 has been specified as the destination register, describe as:

-w

-wstring+

-wstring-

r0 If r0 has been specified as the destination register

r1 If r1 has been specified as the source register or the destination register

C:\>as850 -cpu f3719 -w main.s

C:\>as850 -cpu f3719 -wr0+ main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 484 of 782
Apr 01, 2011

-Xfar_jump

[Description format]

- Interpretation when omitted

If 22/32 is not described in the branch instruction, it is the ordinary branch instruction (not a far jump).

[Function Description]

[V850E2]

- When a V850E2 core is specified as the device type for the assembler, this option specifies far jump for branch

instructions (jarl, jr) that do not include 22/32.

- To change the setting in instruction units, explicitly describe jarl22/jarl32 or jr22/jr32.

- The jmp instruction is not affected by the -Xfar_jump option.

[Example of use]

- To specify far jump for branch instructions (jarl, jr) that do not include 22/32, describe as:

-Xfar_jump

C:\>as850 -cpu 3500 -Xfar_jump main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 485 of 782
Apr 01, 2011

The options related to the device of assembler for the assembler source file are as follows.

- -X256M

- -bpc

-X256M

[Description format]

- Interpretation when omitted

The memory space is treated as having 64 MB and the addresses are resolved.

[Function Description]

[V850E]

- Treats the memory space as having 256 MB.

- Set this option in accordance with the chipset to be used.

- The physical address space of the V850Ex core has 256 MB in many cases. When creating an application that

uses a space between 64 MB and 256 MB, specify this option.

[Example of use]

- To treat the memory space as having 256 MB, describe as:

Device

-X256M

C:\>as850 -cpu f3719 -X256M main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 486 of 782
Apr 01, 2011

-bpc

[Description format]

- Interpretation when omitted

The higher address of the programmable peripheral I/O register is treated as 0.

[Function Description]

- This option sets the higher address of the programmable peripheral I/O register.

- In num, specify only the part of address from which the highest bit of the BPC register is removed.

- If the target device has programmable peripheral I/O register functions (such as V850E/IA1) and you want to set

the variable address portion (= value set in BPC register), the value must be determined when assembling the

application. If this option is specified, assembly is performed using the specified value.

- When this option is specified, be sure to specify a value. A binary, octal, decimal, or hexadecimal number can be

used for the value.

- If an invalid value is specified, or if a value outside the range that can be set in the BPC register is specified, a

warning message is output and this option is ignored.

- One value is set for an entire application. If you specify "-Xbpc" or "-bpc" when setting options by file, make the

values the same between files.

- This option is not needed to be specify for files that do not use the programmable peripheral I/O register.

- If this option is specified for a target device that does not have programmable peripheral I/O register functions or

when assembling as a common for V850 core and V850Ex core, a warning message is output and this option is

ignored.

- This option is for determining the address of the programmable peripheral I/O register when assembling and does

not actually reflect a value in the BPC register.

For operation, it is necessary to set a value in the BPC register separately using a startup module or the like.

See "CubeSuite+ V850 Coding" about a sample of the startup routine. Also, a sample appears (commented out)

in the startup module included in the package.

- The assembler outputs the .bpc section which is the special reserved section when the programmable peripheral I/

O register is referenced, regardless of whether this option is specified or omitted.

This section is used for checking when linking. The .bpc section is a special reserved section for information and

is never loaded into memory. Therefore, it need not be specified in a link directive like a normal section.

[Example of use]

- If the target device is V850E/IA1, the following option setting treats the start address of the programmable

peripheral I/O register area to be shifted 14 bits to the left, or "0x48d0000".

Specify the following descriptions in the startup module to make the variable portion of the start address of the

programmable peripheral I/O register "0x1234" and set the flag 0x8000 that enables the use of this function.

-bpc=num

C:\>as850 -cpu 3116 -bpc=0x1234 main.s

mov 0x9234,r10 - - 0x1234 | 0x8000 = 0x9234

st.h r10, BPC

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 487 of 782
Apr 01, 2011

The warning message control options are as follows.

- -woff

-woff

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option suppresses a warning message of the number specified by num.

- 3029, 3030, or 3031 can be specified as num.

- When the W3029 warning message is suppressed, specify "-woff=3029".

- num cannot be omitted.

- If a warning number not provided in the C compiler is specified, a warning message is output.

[Example of use]

- To suppress the W3029 warning message, describe as:

Warning message control

-woff=num

C:\>as850 -cpu f3719 -woff=3029 main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 488 of 782
Apr 01, 2011

Other option is as follows.

- -cn

- -cnv850e

- -cnv850e2

- -cpu

- -F

- -g

- -o

- -p

- -V

- -zf

- @

-cn

[Description format]

- Interpretation when omitted

The magic number defined by the specified target device is embedded.

[Function Description]

- This option embeds the common magic number common to V850 core into the object to be generated as the

magic number. This enables the object to be used as a common object within the V850 core.

[Example of use]

- To embed the magic number common to V850 core into the object, describe as:

Other

-cn

C:\>as850 -cn main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 489 of 782
Apr 01, 2011

-cnv850e

[Description format]

- Interpretation when omitted

The magic number defined by the specified target device is set.

[Function Description]

[V850E]

- This option sets the common magic number common to V850Ex core into the object to be generated as the magic

number. This enables the object to be used as a common object within the V850Ex core.

[Example of use]

- To embed the magic number common to V850Ex core into the object, describe as:

-cnv850e

C:\>as850 -cnv850e main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 490 of 782
Apr 01, 2011

-cnv850e2

[Description format]

- Interpretation when omitted

The magic number defined by the specified target device is set.

[Function Description]

[V850E2]

- This option sets the common magic number common to V850E2 core into the object to be generated as the magic

number. This enables the object to be used as a common object within the V850E2 core.

[Example of use]

- To embed the magic number common to V850E2 core into the object, describe as:

-cnv850e2

C:\>as850 -cnv850e2 main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 491 of 782
Apr 01, 2011

-cpu

[Description format]

- Interpretation when omitted

This option cannot be omitted (except when specifying -cn, -cnv850e, or -cnv850e2).

[Function Description]

- This option specifies the target device.

- This option takes precedence over quasi directive ".option cpu".

- If a target device is specified by this option or quasi directive ".option cpu" and then the -cn/-cnv850e/-cnv850e2

option is specified, a core common object including information peculiar to the target device can be created.

- If neither quasi directive ".option cpu" nor -cn/-cnv850e/-cnv850e2 option is specified, and if this option is omitted,

assemble is stopped.

[Example of use]

- To specify UPD70F3719 as the target device, describe as:

-cpu devicename

C:\>as850 -cpu f3719 main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 492 of 782
Apr 01, 2011

-F

[Description format]

- Interpretation when omitted

The folder where device files are stored is regarded as the standard folder.

[Function Description]

- This option specifies the folder where device files are stored.

[Example of use]

- To search the folder where device files are stored from folder D:\dev, describe as:

-F devpath

C:\>as850 -cpu f3719 -F D:\dev main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 493 of 782
Apr 01, 2011

-g

[Description format]

- Interpretation when omitted

Symbol information for the source debugger is not output.

[Function Description]

- This option outputs debug information.

- Specify this option to debug the program (e.g. to perform assembler source debugging using the debugger).

- When the optimization option (-O) is specified at the same time, this option is ignored if there are sections for

debug information in the source file. If sections for debug information do not exist, the optimization option (-O) is

ignored and this option is valid. In other words, this option takes precedence if there is no debug information.

[Example of use]

- To output debug information, describe as:

-g

C:\>as850 -cpu f3719 -g main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 494 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

The object file name will be the source file name with the extension ".s" replaced by ".o".

[Function Description]

- This option specifies ofile as the name of the object file to be assembled and output.

[Example of use]

- To specify test.o as the name of the object file to be assembled and output, describe as:

-o ofile

C:\>as850 -cpu f3719 -o test.o main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 495 of 782
Apr 01, 2011

-p

[Description format]

- Interpretation when omitted

This option does not output code that avoids CPU faults.

[Function Description]

- This option outputs code that avoids CPU faults.

- Specify the type of the code to be output (1 to 10 or 4a) as num. 1 to 4 and 4a are valid for the V850 core, and 5

to 10 are valid for the V850E/ES core.

- If num is omitted, the following codes are identified from the device file and output.

- If the target device is the V850E/ES core or if "V850E/ES core common" is specified as the magic number by the

assemble option (-cnv850e), code 5 to 10 is output.

If the target device is the V850, code 1 to 3 or 4a is output.

- If "V850 core common" is specified as the magic number by the assemble option (-cn), code 1 to 3 and 5 to 10 is

output.

See "(2) Options for avoiding CPU faults" for details about the code output due to this option.

[Example of use]

- To output code 4a to avoid CPU faults, which inserts a nop instruction immediately after the first load instruction in

relation to the combination of "load instruction (ld.[b|h|w]/sld.[b|h|w]) + load store instruction (ld.[b|h|w]/sld.[b|h|w]/

sst.[b|h|w]/st.[b|h|w])", describe as:

-p[num]

C:\>as850 -cpu f3719 -p4a main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 496 of 782
Apr 01, 2011

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version information of the assembler to the standard error output and terminates

processing.

[Example of use]

- To output the version information of the assembler to the standard error output, describe as:

-V

C:\>as850 -cpu f3719 -V main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 497 of 782
Apr 01, 2011

-zf

[Description format]

- Interpretation when omitted

Assembly processing is performed on the boot/internal ROM side for assembler source files that use the flash/

external ROM relink function.

[Function Description]

- This options performs assembly processing on the flash/external ROM side when the flash/external ROM relink

function has been used for the assembler source file.

- This option is not needed to be specify for assembler source files that does not use the flash/external ROM relink

function. If this option is specified, the function will not be changed.No warning messages are output.

- See "B.3.3 Boot-flash relink function" for details about the flash/external ROM relink function.

[Example of use]

- To perform assembly processing on the flash/external ROM side when the flash/external ROM relink function has

been used for the assembler source file, describe as:

-zf

C:\>as850 -cpu f3719 -zf main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 498 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>as850 @command main.s

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 499 of 782
Apr 01, 2011

B.2.4 Cautions

(1) Magic number

Information indicating the target device for an object is automatically embedded into an object created by the

assembler. This information is called a "magic number". A device-specific magic number is embedded if only a

particular type of device is the target device; if an entire core can serve as target devices, a "common magic

number" is embedded.

An object that has been assembled by the assembler when the -cn option has been specified contains a common

magic number and therefore can be linked to other objects for which a different device type has been specified as

long as the specified device belongs to the same core (the linker does not output an error when they are linked).

As a result, any object that is created after the -cn option has been specified can be used as an object common to

any device in the specified device's core.

Figure B-6. Image of Creating Common Object with Assembler

(a) Cautions

- Magic numbers common to cores and device-specific magic numbers are defined for each device file to

establish associations among the device core. The assembler references the device files and embeds the

magic numbers.

- Object files that operate device-specific peripheral function registers, etc., should not be used as common files

among cores.

- If a target device is specified by the -cpu option or .option quasi directive and then the -cn/-cnv850e/-cnv850e2

option is specified, a core common object including information peculiar to the target device can be created.

However, an object having device-specific information different from that of the target device does not operate

correctly. Check in advance that the device-specific information can be used with the intended target device.

- The V850Ex core is upwardly compatible with the V850 core. Source files that are used with the V850 core

can be used with the V850Ex core. In this cases, specify the "-cn" option or the "-cnv850e" option before

creating an object. The object common to V850 core that is created with "-cn" can be linked with a V850Ex

core object. By contrast, an object that is created with "-cnv850e" cannot be linked with a V850 core object.

as850 -cn

.o

.o

.o.o

Link

Link

Executable object file

 Device specification A

Common magic number: 0x70FF

 Device specification C

Device-specific magic number: 0x70D1

 Device specification B

Device-specific magic number: 0x70D0

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 500 of 782
Apr 01, 2011

- The V850E2 core is upwardly compatible with the V850/V850Ex core. Source files that are used with the

V850/V850Ex core can be used with the V850E2 core. In this cases, specify the "-cn" option or the "-cnv850e"

option before creating an object. The object common to V850/V850Ex core that is created with "-cn" can be

linked with a V850E2 core object. By contrast, an object that is created with "-cnv850e" cannot be linked with

a V850/V850Ex core object.

Figure B-7. Example of Assembler CPU Core Compatibility (V850Ex Core and V850 Core)

(2) Options for avoiding CPU faults

The C compiler provides the -Xv850patch option for the ca850 and the -p option for the assembler to avoid faults

from the V850 core and V850E/ES core CPU. When starting the assembler from the ca850, if the -Xv850patch

option is specified in the ca850, the -p option having the same num value is automatically set by the assembler to

the assembler source file output by the ca850.

Specify the type of the code to be output (1 to 10 or 4a) as num. 1 to 4 and 4a are valid for the V850 core, and 5 to

10 are valid for the V850E/ES core only. If num is omitted, the following codes are identified from the device file

and output.

- If the target device is the V850E/ES core or if "V850E/ES core common" is specified as the magic number by

the assemble option (-cnv850e), code 5 to 10 is output.

- If the target device is the V850 core, code 1 to 4 or 4a is output.

- If "V850 core common" is specified as the magic number by the assemble option (-cn), code 1 to 10, or 4a is

output.

Cautions are shown below.

- To determine whether or not a fault that has occurred is from the CPU being used, see the CPU's

documentation.

- If the -p option and assembler optimization option (-O) are specified at the same time when the target device

of the V850 core is specified or if a V850 core common object is created, -p takes priority and -O is ignored.

- If the -p option and assembler optimization option (-O) are specified at the same time when a target device of

the V850E/ES core is specified or if a V850Ex/ES core common object is created, both -p and -O are valid.

- If a code pattern that generates a fault covers different sections, this option's function becomes invalid.

- Only the -Xv850patch=11 option is handled by the ca850.

- The faults between CPU core and the -p option is as follows (for the newest version μPD70(F)3xxx, not

including maintenance or obsolete products).

To determine whether or not the failure affects the CPU being used, see the CPU's documentation.

as850 -cnas850 -cnv850e

as850 -cpu 3101 as850 -cpu 3002

.o

.o .o

.o

V850Ex core common V850 core common

V850E device specification V852 device specification

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 501 of 782
Apr 01, 2011

Table B-8. Faults Between CPU Core and -p Option

Remark OK: Affected

A: Corrected (for the newest version μPD70(F)3xxx, not including maintenance or obsolete products)

---: Not affected

The types and meanings of num are as follows.

See the user's manual of relevant device's architecture for the instructions and registers.

(a) 1 (-Xv850patch=1 -> -p1)

Inserts a nop instruction immediately after the first ld.w in relation to the combination of "ld.w instruction +

(st.[b|h|w]/sst.[b|h|w]/ld.[b|w]/sld.[b|w] instruction) + branch instruction".

Example

(b) 2 (-Xv850patch=2 -> -p2)

Inserts a nop instruction between the load/store instruction and branch instruction in relation to the

combination of "ld.w/sld.w/st.w/sst.w instruction + branch instruction".

Example

If the pattern of num=1 is processed at the same time, the pattern of num=2 is searched and processed first.

An unnecessary nop instruction does not need to be inserted.

(c) 3 (-Xv850patch=3 -> -p3)

Inserts the clr1 instruction in relation to the corresponding interrupt control register immediately before the reti

instruction.

CPU Core -p1 -p2 -p3 -p4 -p4a -p5 -p6 -p7 -p8 -p9 -p10

V850 core OK OK OK OK OK --- --- --- --- --- ---

V850E/MS1 --- --- --- --- --- OK --- --- A --- A

V850E1 core --- --- --- --- --- --- OK OK --- OK ---

V850ES core --- --- --- --- --- --- --- --- --- --- ---

V850E2 core --- --- --- --- --- --- --- --- --- --- ---

ld.w

sst.w

jarl

ld.w

nop

sst.w

jarl

ld.w

jarl

ld.w

nop

jarl

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 502 of 782
Apr 01, 2011

Example

(d) 4 (-Xv850patch=4 -> -p4)

Inserts a nop instruction immediately after the first load instruction in relation to the combination of "load

instruction (ld.[b|h|w]/sld.[b|h|w]) + load store instruction (ld.[b|h|w]/sld.[b|h|w]/sst.[b|h|w]/st.[b|h|w])" (inserted

when the peripheral I/O register has been accessed in the input file).

Example

(e) 4a (-Xv850patch=4a -> -p4a)

Inserts a nop instruction immediately after the first load instruction in relation to the combination of "load

instruction (ld.[b|h|w]/sld.[b|h|w]) + load store instruction (ld.[b|h|w]/sld.[b|h|w]/sst.[b|h|w]/st.[b|h|w])" (inserted

regardless of whether the peripheral I/O register is accessed or not).

Example

-p4 sets patch 4 in cases where peripheral I/O access occurs in an input file.

-p4a sets patch 4 regardless of whether or not peripheral I/O access occurs.

(f) 5 (-Xv850patch=5 -> -p5)

Inserts a nop instruction in relation to the multiplication instruction immediately after it without any conditions.

Example

(g) 6 (-Xv850patch=6 -> -p6)

Inserts a nop instruction immediately after the load instruction in relation to the combination of "load instruction

(ld.[b|h|w]/sld.[b|h|w]) + jr/jarl/jcond (bcond)".

Example

reti clr15, P0IC0

reti

ld.w

ld.w

ld.w

nop

ld.w

ld.w

ld.w

ld.w

nop

ld.w

mulh

jarl

mulh

nop

jarl

sld.bu

jarl

sld.bu

nop

jarl

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 503 of 782
Apr 01, 2011

(h) 7 (-Xv850patch=7 -> -p7)

Inserts a nop instruction immediately after the callt instruction. It also inserts the "mov r31, r0" instruction

immediately before the switch instruction and reti instruction.

Example

(i) 8 (-Xv850patch=8 -> -p8)

Inserts a nop instruction between the consecutive sld instructions.

Example

(j) 9 (-Xv850patch=9 -> -p9)

Inserts a nop instruction immediately after the sld instruction, if instructions (A), (B), and (C) below exist in a

row.

Example

<1> (A)

Of 2-byte instructions mov, not, satsubr, satsub, satadd, zxb, zxh, sxh, or, xor, and, subr, sub, add, shr,

sar, and shl, instructions that write back to a register other than r0 and r30

Example

Including the instructions that describe a .set symbol with LABEL, expression, or definition after

reference, and that are expanded to the above instructions.

The example below is not a CPU bug pattern but is subject to patching.

Example

switch mov r31, r0

switch

sld.b

sld.b

sld.b

nop

sld.b

add

sld

and

add ... (A)

sld.b ... (B)

nop

and ... (C)

add 0x1, r10

addi SYM, r10, r10

.set SYM, 0x123

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 504 of 782
Apr 01, 2011

<2> (B)

The sld instruction that writes back to a register different from those to which the instructions in (A) write

back

Example

<3> (C)

An instruction that loads a value to the register to which the instructions (A) write back

Example

Including the instructions that describe a .set symbol with LABEL, expression, or definition after

reference, and that load a value to the register to which the instructions (A) write back.

Example

In this example, if the relative values of LABEL2 and LABEL1 exceed the range that can be expressed

by 16 bits, the instructions are expanded as follows:

Instruction (B) is immediately followed by the move instruction, and the value of r10 is not loaded. In

other words, this example is not of a CPU bug pattern but is subject to patching.

(k) 10 (-Xv850patch=10 -> -p10)

Inserts a nop instruction immediately after the store instruction in relation to the combination of "store

instruction (sst.[b|h|w]/st.[b|h|w]) + jcond(bcond)".

Example

(l) No num specification (-Xv850patch -> -p)

Outputs each code in the combination of 1 to 3 and 5 to 10, judged by the device file (see the descriptions

above).

sld.b %LABEL, r11

add r11, r10

 addi LABEL2-LABEL1, r10, r12

LABEL1:

 -- (omitted)

LABEL2:

mov LABEL2-LABEL1, r12

and r10, r12

sst.b

br

sst.b

nop

br

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 505 of 782
Apr 01, 2011

If this option is specified when creating an object that does not require a corresponding patch, no patch is set.

The correspondence between created objects and options is shown below.

Table B-9. Correspondence between Created Objects and -p Options

Remark P: Patched

N: No patched

Created Objects -p1 -p2 -p3 -p4 -p4a -p5 -p6 -p7 -p8 -p9 -p10

Specific to V850 device P P P P P N N N N N N

Specific to V850E/ES

device

N N N N N P P P P P P

Specific to V850E2 device N N N N N N N N N N N

V850 core common P P P P P P P P P P P

V850E/ES core common N N N N N P P P P P P

V850E2 core common N N N N N N N N N N N

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 506 of 782
Apr 01, 2011

B.3 Linker

Generally, an application program is divided into several source files and coded. Source files written in C language

activate the compiler (ca850) or assembler (as850) and source files written in an assembly language activate the

assembler (as850) to output object files.

The linker (ld850) resolves the addresses of these object files in accordance with the information of the link directive

and device files and generates one executable object file, i.e., a load module file.

If there is external reference that is not resolved when the linker links object files, the linker searches the specified

archive file (library file) to resolve the external reference. It then links only the object files necessary for resolving and

generates executable object files. The linker can also generate relocatable object files when the -r option is specified.

Figure B-8. Operation Flow of Linker

Figure B-9. Linker Operation Image (Example)

The ca850 internally activates the as850 and linker as drivers.

When the ca850 is activated, a load module can be generated. Therefore, there is no need to be aware of activating

the as850 and linker.

Object file

Object file
Object file

Archive file

Device fileDirective file

Linker

Directive file Device file

Linker

Establishes relations between

sections and segments and

references addresses

Section 1
Section 2

a.o

Section 1
Section 2

b.o

Section 1
Section 3

c.o

Section 1
Section 2

lib.a

Section 1 of lib.a
Section 1 of c.o

Segment 1

Section 1 of b.o
Section 1 of a.o

a.out

Section 2 of lib.a
Section 2 of b.o

Section 2

Section 2 of a.o

Section 3 of c.o

Section 3

Higher

Lower

Higher

Lower

C:\>ld850 a.o b.o c.o lib.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 507 of 782
Apr 01, 2011

Figure B-10. Batch Processing

Figure B-11. Modular Processing

(1) Link procedure

The link procedure is described below.

(a) The linker links a section (input section) that is included in a specified object file according to a link

directive and device file to create an output section consisting of output object files (see "CubeSuite+

V850 Coding" for details).

Figure B-12. Creation of Output Section

(b) The linker links the output section created in the step (a) according to the link directive and creates a

segmentNote.

ca850

as850

Linker
a.out

.c

.s

.o

.s .o

.c

.s

.o

ca850

as850

Linker

.o

a.out

.text section

.sdata section

.text section

.sbss section

.text section

.sbss section

.sdata section

file.o a.out

Input object file Output object file

func.o in lib.a

Input section

Output section

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 508 of 782
Apr 01, 2011

Note A segment is the minimum unit for loading a program to memory, and it is reflected in the program

header of the created object file.

(c) The linker allocates the segment created in the step (b) to the target machine's memory space

according to the link directive and device file.

Figure B-13. Allocation to Memory Space

(d) The linker resolves unresolved external references in the output section.

(e) The linker creates the following three types of symbols according to the symbol directive in the link

directiveNote.

- Text pointer symbol having the value set to the text pointer (tp)

- Global pointer symbol having the value set to the global pointer (gp)

- Element pointer symbol having the value set to the element pointer (ep)

Note These symbols are used to set appropriate values to the text pointer (tp), global pointer (gp), and

element pointer (ep) before executing the codes created by the C compiler (such as in the startup

module).

Although the user can specify a value for the element pointer, if it is omitted then the linker will read the

peculiar value for the target device (start address of internal RAM) from the specified device file, and set

it to the element pointer symbol.

(f) The linker creates reserved symbols. These reserved symbols include the following.

- Start address of each output section

- Start address (with 4-byte alignment) of segment exceeding each output section

- Start address (with 4-byte alignment) of segment exceeding the created executable object file

See "(3) Reserved symbols" for details about reserved symbols.

.text section

.sbss section

.sdata section

a.out

Output object file

.text section

.sbss section

.sdata section

a.out

TEXT segment

DATA segment

0x100000

0xFF0000Output section

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 509 of 782
Apr 01, 2011

B.3.1 Method for manipulating

This section explains how to manipulate the linker.

(1) Command input method

Enter the following from the command prompt.

(2) Set options in CubeSuite+

This section describes how to set link options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [Link Options] tab.

You can set the various link options by setting the necessary properties in this tab.

Figure B-14. Property Panel: [Link Option] Tab

C:\>ld850 [option] ... file-name [file-name or option] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 510 of 782
Apr 01, 2011

B.3.2 Option

This section explains link options.

The types and explanations for link options are shown below.

Table B-10. Link Options

Classification Option Description

Input file -D Performs linking according to the specified link directive in link directive file.

-Xolddir Selects the compatibility of the format of the link directive file with old versions.

Output file +err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-o Specifies the name of the object file to be generated.

-m Outputs a link map that indicates allocation of the input and output sections to

the memory space.

-mo Outputs a link map that indicates allocation of the input and output sections to

the memory space in the format of products older than CA850 Ver. 2.60.

Library -L Searches the archive file (library file) specified by the -l option from the

specified folder, standard folder in that order.

-lc Links the standard library of the compiler (libc.a).

-lm Links the mathematical library of the compiler (libm.a).

-l References the specified archive file when resolving an unresolved external

symbol reference.

Flash -ext_table Generates an object file for the flash/external ROM relink function using the

value specified as the start address value of the branch table.

-zf Generates the flash area object file from the specified object file as the boot

area object file.

Device -X256M Treats the memory space as having 256 MB.

-Xsid Sets the security ID of an on-chip flash memory device.

-Xob=none Suppress the option byte that is generated by default.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 511 of 782
Apr 01, 2011

Linker -A Outputs as the standard output the information that can be used as a yardstick

for the sdata/sbss data allocation option that is specified for the ca850 and

as850.

-B Performs linking in the 2-pass mode.

-E Outputs a warning message, not an error message, and continues linking if an

illegalities is found during relocation processing.

-M Outputs a message for all multi-defined external symbols and stops link

processing.

-T Does not check the size and alignment condition when linking an external

symbol.

-Ximem_overflow=warning Controls checking when the internal ROM/RAM overflows.

-e Regards the specified symbol value as the entry point address value for the

object file to be generated.

-f Specifies the filling value for align holes between sections of the generated

object.

-mc Checks whether or not the files that use the mask register function are mixed

with files that do not use this function.

-rc Outputs detailed information when register modes are mixed for all input object

files.

-rescan Re-references the library file specified by the -l option.

-rom_less Does not check for the allocation to the internal ROM area.

-s Generates an object file in which the debug information, line number

information, and global pointer table have been removed.

-t Does not check the size and alignment condition of the symbol when linking an

undefined external symbol.

-v Outputs the execution status of the linker in detail.

-w Does not output a warning messages.

Other -F Searches a device file from the specified folder.

-V Outputs the version information of the C compiler to the standard error output.

-cpu Reads the device file for the target device specified.

-fc Checks whether or not the old function calling and the calling specification of

the current version are mixed for all input object files.

-help Outputs option descriptions to the standard error output.

-mask_reg References the library for a mask register function.

-r Generates a relocatable object file.

-ro Generates a relocatable object file in the old mapping mode (CA850 Ver. 2.30

or earlier).

-reg References the corresponding register mode library.

@ Handles the specified file as a command file.

Classification Option Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 512 of 782
Apr 01, 2011

Table B-11. Mark Used in Option Descriptions

[V850E2] Option dedicated to V850E2 core

[V850E] Option dedicated to V850Ex core

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 513 of 782
Apr 01, 2011

The options related to the input file are as follows.

- -D

- -Xolddir

-D

[Description format]

- Interpretation when omitted

The default link directive is used.

[Function Description]

- This option performs linking according to the link directive in link directive file dfile.

- The length of dfile must be no more than 127 characters including the path specification or no more than 14

characters when not including the path specification.

- The extension is necessary. The extension ".dir" is recommended.

- See "CubeSuite+ V850 Coding" for details about the link directive file.

[Example of use]

- To perform linking according to the link directive in the link directive file (link.dir), describe as:

Input file

-D dfile

C:\>ld850 -D link.dir main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 514 of 782
Apr 01, 2011

-Xolddir

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option selects the compatibility of the format of the link directive file with old versions.

- "V240", "V250", or "V260" can be specified as version. If version is omitted, it is assumed that "V240" have been

specified.

- If this option is not specified, the latest link directive file format is supported.

[Example of use]

- To specify that the format of the link directive is equivalent to CA850 Ver. 2.40, describe as:

-Xolddir[=version]

When V240 is specified Section precedence layout function OFF, segment sort OFF (equivalent to CA850 Ver. 2.40)

When V250 is specified Section precedence layout function ON, segment sort OFF (equivalent to CA850 Ver. 2.50)

When V260 is specified Section precedence layout function ON, segment sort ON (equivalent to CA850 Ver. 2.60)

C:\>ld850 -Xolddir=V240 main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 515 of 782
Apr 01, 2011

The options related to the output file are as follows.

- +err_file

- -err_file

- -o

- -m

- -mo

+err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

Output file

+err_file=file

C:\>ld850 +err_file=err main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 516 of 782
Apr 01, 2011

-err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C:\>ld850 -err_file=err main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 517 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

It is assumed that a.out has been specified as the name of the object file to be generated.

[Function Description]

- This option specifies ofile as the name of the object file to be generated.

[Example of use]

- To specify test.out as the name of the object file to be generated, describe as:

-o ofile

C:\>ld850 -o test.out main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 518 of 782
Apr 01, 2011

-m

[Description format]

- Interpretation when omitted

No link map is output.

[Function Description]

- This option outputs a link map that indicates allocation of the input and output sections to the memory space to

mapfile.

- If mapfile is omitted, the link map is output to the standard output.

- See "3.2 Linker" for details about the link map.

[Example of use]

- To output a link map that indicates allocation of the input and output sections to the memory space to the standard

output, describe as:

-m[=mapfile]

C:\>ld850 -m main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 519 of 782
Apr 01, 2011

-mo

[Description format]

- Interpretation when omitted

No link map is output.

[Function Description]

- This option outputs a link map that indicates allocation of the input and output sections to the memory space to

mapfile in the format of products older than CA850 Ver. 2.60.

- If mapfile is omitted, the link map is output to the standard output.

- See "3.2 Linker" for details about the link map.

[Example of use]

- To output a link map that indicates allocation of the input and output sections to the memory space to the standard

output in the format of products older than CA850 Ver. 2.60, describe as:

-mo[=mapfile]

C:\>ld850 -mo main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 520 of 782
Apr 01, 2011

The options related to libraries are as follows.

- -L

- -lc

- -lm

- -l

-L

[Description format]

- Interpretation when omitted

The archive file (library file) specified by the -l option is searched from the standard folder.

[Function Description]

- If the -l option is specified with this option (or after this option in the case of the command line), the archive file

(also called library file) specified by the -l option is searched from folder "dir", the standard folder in that order.

The -I option specified after this option is subject to searching.

- The linker handles the folder where the CA850 is installed, the folder at the position of

CubeSuite+\CA850\Vx.xxNote\lib850, and the folder at the position of lib850\rXY (XY=[32|26|22]) as the standard

folders of libraries.

Note Vx.xx is the version of the C compiler.

[Example of use]

- To search the standard library of the compiler (libc.a) to be linked from folder D:\lib, the standard folder in that

order, describe as:

Library

-Ldir

C:\>ld850 -LD:\lib main.o -lc

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 521 of 782
Apr 01, 2011

-lc

[Description format]

- Interpretation when omitted

The standard library of the compiler (libc.a) is not linked.

[Function Description]

- This option links the standard library of the compiler (libc.a).

[Example of use]

- To link the standard library of the compiler (libc.a), describe as:

-lc

C:\>ld850 main.o -lc

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 522 of 782
Apr 01, 2011

-lm

[Description format]

- Interpretation when omitted

The mathematical library of the compiler (libm.a) is not linked.

[Function Description]

- This option links the mathematical library of the compiler (libm.a).

- This option set with the -lc option at the same time because the mathematical library also references the functions

in the standard library.

- The mathematical library supplied by the C compiler references standard library libc.a. Therefore, when activating

from the command line, specify standard library reference specification "-lc" after mathematical library reference

specification "-lm".

[Example of use]

- To link the mathematical library of the compiler (libm.a), describe as:

-lm

C:\>ld850 main.o -lm -lc

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 523 of 782
Apr 01, 2011

-l

[Description format]

- Interpretation when omitted

No archive file is linked.

[Function Description]

- When resolving an unresolved external symbol reference, this option references archive file libstring.a.

- If two or more archive files are specified by this option, the files are searched in the order of their specification.

- Use no more than 64 characters to specify string.

- When this option has been specified, the linker references the specified archive files only about unresolved

external references at the time they are specified. Therefore, when activating from the command line, specify this

option after specifying the object file that will reference the specified archive files.

[Example of use]

- To reference the archive file (libtest.a) when resolving an unresolved external symbol reference, describe as:

-lstring

C:\>ld850 main.o -ltest

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 524 of 782
Apr 01, 2011

The options related to the flash ROM are as follows.

- -ext_table

- -zf

-ext_table

[Description format]

- Interpretation when omitted

An object file for the flash/external ROM relink function is not generated.

[Function Description]

- This option creates an object file for the flash/external ROM relink function using the value specified by 8-digit

hexadecimal number address as the start address value of the branch table (see "B.3.3 Boot-flash relink

function").

- When specifying the boot area, the branch to the flash area side is processed.

At this time, the process is the branch to the branch table and the address is specified by this option.

- When specifying the flash area, a branch table having the branch instruction to the previous branch destination is

created at the address specified by this option.

- The address value specified by this option must be the same as the value that is used when creating an object file

in the boot area/flash area. If a different value is specified, operation faults occur. No error checking is done.

- The address value specified by this option must be within the ROM area used as the flash area. No error checking

is done because it is not possible to determine which area contains the specified address.

- When creating an object file in the flash area, this option automatically creates the .ext_table section having a size

of "(the maximum ID valueNote + 1) x (Entry size of branch table)" and starting with the specified address value.

Although this section does not require an allocation can specification in the directive file, you must leave enough

space for allocation.

Note This is the value specified by the .ext_func quasi directive in the assembler source file.

- This option can not be specified together with the -r option. Operation faults occur if a relocatable object file that

has been generated using the -r option is input.

- See "B.3.3 Boot-flash relink function" for details about the flash/external ROM relink function.

[Example of use]

- To generate the boot area object file with 0x10000 as the start address of the branch table, describe as:

Flash

-ext_table address

C:\>ld850 -ext_table 0x100000 boot.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 525 of 782
Apr 01, 2011

-zf

[Description format]

- Interpretation when omitted

An object file for the flash/external ROM relink function is not generated.

However, the boot area object file is generated when -ext_table is specified.

[Function Description]

- This option generates the flash area object file from the specified object file as the boot area object file when using

the flash/external ROM relink function.

- Specify the object file that is specified via flash/external ROM relink function and created as the boot area object

file.

- Specify an object file output by the linker. Note that, if you specify an object that was output by the ROMization

processor, an invalid object will be generated.

- The -ext_table option must be specified in order to use this option.

[Example of use]

- Generate the flash area object file with 0x10000 as the start address of the branch table.

To specify boot.out as the name of the boot area object file, describe as:

-zf bootfile

C:\>ld850 -zf boot.out -ext_table 0x100000 flash.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 526 of 782
Apr 01, 2011

The options related to the device are as follows.

- -X256M

- -Xsid

- -Xob=none

-X256M

[Description format]

- Interpretation when omitted

The memory space is treated as having 64 MB and the addresses are resolved.

[Function Description]

[V850E]

- Treats the memory space as having 256 MB.

- Set this option in accordance with the chipset to be used.

- The physical address space of the V850Ex core has 256 MB in many cases. When creating an application that

uses a space between 64 MB and 256 MB, specify this option.

[Example of use]

- To treat the memory space as having 256 MB, describe as:

Device

-X256M

C:\>ld850 -X256M main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 527 of 782
Apr 01, 2011

-Xsid

[Description format]

- Interpretation when omitted

-Xsid=0xffffffffffffffffffff (when a device with a security ID is specified)

[Function Description]

- This option sets the security ID of an on-chip flash memory device.

- It cannot be used if a device not supporting the security ID function is used.

- Specify the ID in a hexadecimal number of 10 bytes or less (including the first 0x).

If the specified value less than 10 bytes, the higher bits are filled with 0. If the value exceeds 10 bytes, an error is

output.

- If specification of this option or the security ID written in assembly language (using .section "SECURIYI_ID") is

omitted for a device supporting the security ID function, it is assumed that "0xffffffffffffffffffff" has been specified.

- If the security ID is set using a method other than the above, the linker judges that the security ID is duplicated with

the security ID that is generated by the linker, and outputs the following error.

In such a case, specify the +Xsid option to suppress security ID generation by the linker.

- If an object for a device not supporting the security ID function is specified when the linker is executed, a warning

message is output and the specification is ignored.

[Example of use]

- To set security code "0x112233445566778899aa" (setting 0x11 to address 0x70, 0x22 to address 0x71, 0x33 to

address 0x72, 0x44 to address 0x73, 0x55 to address 0x74, 0x77 to address 0x76, 0x88 to address 0x77, 0x99 to

address 0x78, and 0xaa to address 0x79), describe as:

-Xsid=id

F4264: start address(0x00000070) of section "SECURITY_ID" overlaps previous section
"section name" ended before address (0xXXXXXXXX).

C:\>ld850 -Xsid=0x112233445566778899aa main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 528 of 782
Apr 01, 2011

-Xob=none

[Description format]

- Interpretation when omitted

The option byte is generated (when a device with an option byte is specified).

[Function Description]

- This option suppresses the option byte that is generated by default.

- Only the default generation by the default value registered in the device file is suppressed.

- When the option byte is specified by using .section "OPTION_BYTES" in the assembler source file, the .section

"OPTION_BYTES" specification takes precedence, regardless of this option's specification.

- If this option is specified for a device that does not have a option byte function, this option is ignored without

outputting a message.

[Example of use]

- To suppress the option byte that is generated by default, describe as:

-Xob=none

C:\>ld850 -Xob=none main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 529 of 782
Apr 01, 2011

The linker options are as follows.

- -A

- -B

- -E

- -M

- -T

- -Ximem_overflow=warning

- -e

- -f

- -mc

- -rc

- -rescan

- -rom_less

- -s

- -t

- -v

- -w

Linker

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 530 of 782
Apr 01, 2011

-A

[Description format]

- Interpretation when omitted

Information that can serve as a yardstick for determining the value of num of the -Gnum option is not output.

[Function Description]

- This option outputs as the standard output the information that can be used as a yardstick for the sdata/sbss data

allocation option (num of the -Gnum option) that is specified for the ca850 and as850 when a source file is

compiled or assembled.

- When using the numerical value indicated by *OK*, data with a size less than that value is allocated to the sdata/

sbss area.

- When activating from the ca850, the -A option specified in the ca850 activation is passed.

- See "(1) Using -A option" for details.

[Example of use]

- To output as the standard output the information that can be used as a yardstick for the sdata/sbss data allocation

option (num of the -Gnum option) that is specified for the ca850 and as850, describe as:

-A

C:\>ld850 -A main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 531 of 782
Apr 01, 2011

-B

[Description format]

- Interpretation when omitted

Linking is performed in the 1-pass mode.

[Function Description]

- This option performs linking in the 2-pass mode.

- The 2-pass mode is slower than the 1-pass mode, but it is able to process larger sized files.

[Example of use]

- To perform linking in the 2-pass mode, describe as:

-B

C:\>ld850 -B main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 532 of 782
Apr 01, 2011

-E

[Description format]

- Interpretation when omitted

If an illegalities is found during relocation processing, the linker outputs the following message and stops linking.

[Function Description]

- If any of the following illegalities is found during relocation processing

- The result of address calculation of an unresolved external reference is illegal

- The relationship with the section to be allocated is illegal

This option outputs a warning message, not an error message, and continues linking.

- The value of address calculation judged as an illegality is not assigned to the unresolved external reference judged

as an error and the original value remains.

[Example of use]

- To output a warning message and continue linking when the result of address calculation of an unresolved

external reference is illegal during relocation processing, describe as:

-E

C:\>ld850 -E main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 533 of 782
Apr 01, 2011

-M

[Description format]

- Interpretation when omitted

A message is output for the first multi-defined external symbol and stops link processing.

[Function Description]

- This option outputs a message for all multi-defined external symbols and stops link processing.

[Example of use]

- To output a message for all multi-defined external symbols and stops link processing, describe as:

-M

C:\>ld850 -M main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 534 of 782
Apr 01, 2011

-T

[Description format]

- Interpretation when omitted

The size is checked, and if a size difference is detected, a warning message is output and link processing is

continued.

At this time, the symbol size of the file in which the symbol is defined is valid.

[Function Description]

- This option does not check the size and alignment condition when linking an external symbol.

[Example of use]

- Not to check the size and alignment condition when linking an external symbol, describe as:

-T

C:\>ld850 -T main.o sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 535 of 782
Apr 01, 2011

-Ximem_overflow=warning

[Description format]

- Interpretation when omitted

A warning message is output when overflowing and linking is stopped.

[Function Description]

- This option controls checking when the internal ROM/RAM overflows.

- This option outputs a warning message when overflowing and continues linking.

[Example of use]

- To control checking when the internal ROM/RAM overflows, describe as:

-Ximem_overflow=warning

C:\>ld850 -Ximem_overflow=warning main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 536 of 782
Apr 01, 2011

-e

[Description format]

- Interpretation when omitted

The entry point address value is determined according to the following rules.

- If symbol "__start" exists, it is used.

- _ _ If "__start" does not exist, the start address of the text attribute section that is allocated to the lowest address

area in the generated object file is used.

- If the text attribute section does not exist, "0" is used.

[Function Description]

- This option regards symbol value symbol as the entry point address value for the object file to be generated.

- If the specified symbol cannot be found, the linker outputs a message and stops linking.

- The symbol name cannot include blank spaces.

[Example of use]

- To regard symbol value "_main" as the entry point address value, describe as:

-e symbol

C:\>ld850 -e _main main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 537 of 782
Apr 01, 2011

-f

[Description format]

- Interpretation when omitted

-f 0x0000

[Function Description]

- This option specifies the filling value for align holes between sections of the generated object, with 4-digit

hexadecimal numbers (2 bytes).

- When using this option, specify the -B option to perform linking in the 2-pass mode.

- The first 0x can be omitted.

- Specification by this option takes precedence over the filling value specification in the link directive.

- If the value does not occupy all 4 digits, it is assumed that 0 are used to fill the empty digit(s).

- If the hole size is less than 2 bytes, only the required number of digits are fetched and initialized from the specified

filling value (starting from the lowest value).

[Example of use]

- To specify 0xffff as the filling value for align holes between sections of the generated object, describe as:

-f num

C:\>ld850 -B -f 0xffff main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 538 of 782
Apr 01, 2011

-mc

[Description format]

- Interpretation when omitted

Whether or not the files that use the mask register function are mixed with files that do not use this function is not

checked.

[Function Description]

- This option checks whether or not the files that use the mask register function are mixed with files that do not use

this function when linking the object files generated from the C source files.

- Linking is stopped if they are mixed.

[Example of use]

- To check whether or not the files that use the mask register function are mixed with files that do not use this

function when linking the object files, describe as:

-mc

C:\>ld850 -mc main.o sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 539 of 782
Apr 01, 2011

-rc

[Description format]

- Interpretation when omitted

Detailed information is not output when register modes are mixed for all input object files.

[Function Description]

- This option outputs detailed information when register modes are mixed for all input object files.

- If this option is specified with the -w option, this option is ignored.

[Example of use]

- To output detailed information when register modes are mixed for all input object files, describe as:

-rc

C:\>ld850 -rc main.o sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 540 of 782
Apr 01, 2011

-rescan

[Description format]

- Interpretation when omitted

The library file specified by the -l option is not re-referenced.

[Function Description]

- This option re-references the library file specified by the -l option.

- When this option is specified, symbols that are unresolved through the link sequence of the library can be

prevented.

[Example of use]

- To re-reference the archive files (libtest1.a, libtest2.a), describe as:

-rescan

C:\>ld850 -rescan main.o -ltest1 -ltest2

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 541 of 782
Apr 01, 2011

-rom_less

[Description format]

- Interpretation when omitted

When the application allocation overlaps the addresses of the internal ROM area, a message is output and linking

is stopped.

[Function Description]

- This option does not check for the allocation to the internal ROM area.

When the application allocation overlaps the addresses of the internal ROM area, a warning message is not

output.

- Specify this option when the application is created in the ROM-less mode.

Caution Checking of the overflow of the internal ROM is not supported when the single-chip mode is

selected. Invalidate checking of the overflow of the internal ROM and check the overflow on the

link map.

[Example of use]

- Not to check for the allocation to the internal ROM area, describe as:

-rom_less

C:\>ld850 -rom_less main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 542 of 782
Apr 01, 2011

-s

[Description format]

- Interpretation when omitted

The input object includes the debug information, line number information, and global pointer table, the object file

that includes those information is generated.

[Function Description]

- This option generates an object file in which the debug information, line number information, and global pointer

table have been removed.

[Example of use]

- To generate an object file in which the debug information, line number information, and global pointer table have

been removed, describe as:

-s

C:\>ld850 -s main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 543 of 782
Apr 01, 2011

-t

[Description format]

- Interpretation when omitted

The symbol size and alignment condition are checked, and if a difference is detected, a warning message is output

and link processing is continued.

[Function Description]

- This option does not check the size and alignment condition of the symbol when linking an undefined external

symbol.

- The linker supports multiple definitions of undefined external symbols.

Multiple-defined undefined external symbols are allocated to the .sbss or .bss section after linking. In this case, if

the size of the linked symbol or alignment condition are different, then the size will be the largest size of the linked

symbols, and the alignment condition will be on the lowest common multiple of the alignment condition of the

linked symbols.

[Example of use]

- Not to check the size and alignment condition of the symbol when linking an undefined external symbol, describe

as:

-t

C:\>ld850 -t main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 544 of 782
Apr 01, 2011

-v

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the execution status of the linker in detail. The list of objects to be linked, etc. is displayed.

[Example of use]

- To output the execution status of the linker in detail and display the list of objects to be linked, etc., describe as:

-v

C:\>ld850 -v main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 545 of 782
Apr 01, 2011

-w

[Description format]

- Interpretation when omitted

No warning messages are suppressed.

[Function Description]

- This option does not output a warning messages.

- Only messages for fatal errors are output.

[Example of use]

- To output only messages for fatal errors, describe as:

-w

C:\>ld850 -w main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 546 of 782
Apr 01, 2011

Other options are as follows.

- -F

- -V

- -cpu

- -fc

- -help

- -mask_reg

- -r

- -ro

- -reg

- @

-F

[Description format]

- Interpretation when omitted

The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder devpath when the linker is started by itself.

- When activating from the ca850, use the ca850's -devpath option to specify the path of the device file.

[Example of use]

- To search a device file from folder "D:\dev" when the linker is started by itself, describe as:

Other

-F devpath

C:\>ld850 -F D:\dev main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 547 of 782
Apr 01, 2011

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version information of the linker to the standard error output and terminates processing.

[Example of use]

- To output the version information of the linker to the standard error output, describe as:

-V

C:\>ld850 -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 548 of 782
Apr 01, 2011

-cpu

[Description format]

- Interpretation when omitted

The device file for the target device specified when the .o file is generated.

[Function Description]

- This option reads the device file for the target device specified by devicename.

[Example of use]

- To specify UPD70F3719 as the target device, describe as:

-cpu devicename

C:\>ld850 -cpu f3719 main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 549 of 782
Apr 01, 2011

-fc

[Description format]

- Interpretation when omitted

Only the object file generated from the C source file are checked.

[Function Description]

- This option checks whether or not the old function calling and the calling specification of the current version are

mixed for all input object files.

- The old function calling specification is not supported by the current version.

[Example of use]

- To check whether or not the old function calling and the calling specification of the current version are mixed for all

input object files, describe as:

-fc

C:\>ld850 -fc main.o sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 550 of 782
Apr 01, 2011

-help

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs option descriptions to the standard error output.

[Example of use]

- To output option descriptions to the standard error output, describe as:

-help

C:\>ld850 -help

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 551 of 782
Apr 01, 2011

-mask_reg

[Description format]

- Interpretation when omitted

The library that does not use a mask register function referenced.

[Function Description]

- This option references the library for a mask register function.

- Use the -Xmask_reg option when activating from the ca850.

- The library for a mask register function is the library when in the 32-register mode. When the 22-register mode or

26-register mode is specified, the following warning message is output and any subsequent specification is

ignored.

[Example of use]

- To reference the library for a mask register function, describe as:

-mask_reg

W4857: "-reg22" option is illegal when "-mask_reg" option is specified, ignored "-reg22"
option.

C:\>ld850 -mask_reg main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 552 of 782
Apr 01, 2011

-r

[Description format]

- Interpretation when omitted

If an unresolved external reference remains, the following message is output and linking is stopped. In this case,

an object file (load module file) is not generated.

[Function Description]

- This option generates a relocatable object file.

- If this option is specified with the -ro option, this option is ignored.

- If this option is specified, a message is not output and linking is completed normally even if an unresolved external

reference remains after completing linking.

- If an object file generated by the linker is specified as the target for relinking by the linker, specify this option when

generating the target object file for relinking.

[Cautions]

- If this option is specified, the link directive is valid only for the type and attribute in the mapping directive section

and is otherwise ignored.

- If this option is specified, any reserved symbol is not created.

- The specification of the -r option has changed from CA850 Ver.2.30 or earlier.

When using the mapping method of an old version, use the -ro option instead of the -r option.

[Example of use]

- To generate a relocatable object file, describe as:

-r

F4452: undefined symbol.

 symbol referenced in "file"

C:\>ld850 -r main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 553 of 782
Apr 01, 2011

-ro

[Description format]

- Interpretation when omitted

The relocatable object file is generated.

[Function Description]

- This option generates a relocatable object file in the old mapping mode (CA850 Ver. 2.30 or earlier).

- If this option is specified with the -r option, the -r option is ignored.

[Example of use]

- To generate a relocatable object file in the old mapping mode (CA850 Ver. 2.30 or earlier), describe as:

-ro

C:\>ld850 -ro main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 554 of 782
Apr 01, 2011

-reg

[Description format]

- Interpretation when omitted

-reg32

[Function Description]

- This option references the corresponding register mode library.

- 22, 26, or 32 can be specified as num.

A blank space cannot be entered after -reg.

[Example of use]

- To reference the 22-register mode library.

-regnum

C:\>ld850 -reg22 main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 555 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- On Windows, the length of a character string specified as options for commands is limited. If this option is

specified, you do not need to take string restrictions into account because the option string will be output to the

command file. If many options are set and some of the options cannot be recognized, create a command file and

specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>ld850 @command

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 556 of 782
Apr 01, 2011

B.3.3 Boot-flash relink function

(1) Relink function

Some systems are equipped with flash area or detachable ROM.

To upgrade the version of the program, the contents of the flash area may be rewritten or the detachable ROM

may be replaced with a new ROM.

When changing the program even partially, basically the project itself is reorganized or "rebuilt". However, it would

be convenient if the allocation to be upgraded was limited to the flash area or external ROM and if it was not

necessary to reorganize the project. The boot area is fixed to the internal ROM. If a function is called between the

flash area to be rewritten and the boot area, and if the start address of the function is changed as a result of

modifying the function in the flash area, the function cannot be called correctly.

The "boot-flash relink function" (hereafter referred to as the "relink function") is used to prevent this and enable

functions to be called correctly.

This function is realized as follows.

(a) A "branch table" where instructions to branch to the functions in the flash area are written is prepared

in the flash area.

(b) When a function in the flash area is called from the boot area, execution jumps to the branch table in

the flash area, and then the instruction used to branch to the intended function is executed and jump

occurs.

This mechanism can be realized by the user. If the "relink function" is used, this can be done relatively easily.

To use this function, however, the functions to be called in the flash area must be determined when the boot area

is created. This mechanism is used to call a function from the boot area even if the function is modified in the flash

area.

(2) Image of relink function

A function is called as shown below when the relink function is used.

(a) To call function in the boot area from the boot area

The function can be called without problem because addresses have been resolved before they are

programmed to the boot area.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 557 of 782
Apr 01, 2011

Figure B-15. In Boot Area

(b) To call function in the flash area from the flash area

The function can be called without problem because addresses have been resolved in the flash area.

Figure B-16. In Flash Area

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

 func_rom1();

:

}

The function can be called without problem.

void

func_flash1(void)

{

:

}

void

func_flash2(void)

{

:

 func_flash1();

:

}

The function can be called without problem.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 558 of 782
Apr 01, 2011

(c) To call function in the flash area from the boot area

When a function in the flash area is called from the boot area, the address of the function cannot be known

from the boot area because the function size, etc., have been changed in the flash area. In other words, a

function in the flash area cannot be directly called. To solve this, execution jumps to the branch table in the

flash area.

Execute the jump instruction from that table to the relevant function and jump to the intended function.

Figure B-17. From Boot Area to Flash Area

In the same manner as functions, this is relevant to referencing external variables.

A global variable defined in the flash area cannot be referenced from the boot area. Therefore, an external

variable of the same name can be defined in both the boot area and flash area. Each of these external

variables is referenced only from the respective areas.

(d) To call function in the boot area from the flash area

When a function in the boot area is called from the flash area, the contents of the boot area are not changed.

Therefore, a function in the boot area can be directly called from the flash area.

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

 func_flash1();

:

}

Execution jumps to the branch table of

flash area.

void

func_flash1(void)

{

:

}

void

func_flash2(void)

{

:

 func_flash();

:

}

Branch table

In boot area In flash area

jr _func_flash1

jr _func_flash2

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 559 of 782
Apr 01, 2011

Figure B-18. From Flash Area to Boot Area

In the same manner as functions, this is relevant to referencing external variables. A global variable defined in

the boot area cannot be referenced from the flash area.

(3) Realizing relink function

This section describes specifically how to realize the relink function.

(a) Project of CubeSuite+

To realize the relink function, a boot area and flash area must be separately created. This means that only the

flash area is modified after the boot area has been created (after a program has been stored in ROM). When

creating a project with CubeSuite+, therefore, divide the projects as follows.

- Project to be allocated to the boot area

- Project to be allocated to the flash area (project that may be modified in the future)

In addition, separately prepare a startup routine and link directive file for each project.

(b) .ext_func quasi directive

When calling a function in the flash area from the boot area, the name of the function to be called (label name)

and ID number are assigned to the boot area by using the .ext_func quasi directive. The format of the

.ext_func quasi directive is as follows.

Specify a positive number as the ID number. The different ID number must not be specified for the same

function name or the same ID number must not be specified for the different function names.

When a function name in the flash area is specified in the boot area by using the .ext_func quasi directive, a

branch table (ext_table) is created. The address of this ext_table is specified by the user.

.ext_func function-name, ID-number

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

}

A function in boot area can be directly

called from flash area.

void

func_flash1(void)

{

:

 func_rom2();

:

}

void

func_flash2(void)

{

:

}

Branch table

In boot area In flash area

jr _func_flash1

jr _func_flash2

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 560 of 782
Apr 01, 2011

Specify the address as follows, by using link option "-ext_table", when a load module of the boot area and a

load module of the flash area are created.

When execution branches to the body of a function, the actual function address is obtained by referencing the

offset of the ID number from the beginning of the created branch table, and then execution branches.

The example is shown below.

If the above three C functions are allocated to the flash area and they are called from the boot area, describe

as follows in the boot area using the assembler.

To make this description in a C source file, use the #pragma asm - #pragma endasm directives or __asm().

When the #pragma asm - #pragma endasm directives are used, the example is as follows.

It is recommended to describe these .ext_func quasi directives in one file and include this file in all source files

by using the .include quasi directive (or #include directive when describing in C language), in order to prevent

missing descriptions or the occurrence of contradictions, i.e., to prevent the error of specifying the different ID

numbers for the same function name or specifying the same ID number for the different function names.

If a file using the #pragma asm - #pragma endasm directives is included as above, the compiler outputs the

following message but ignore this (or set by "Individual Warnings" not to output this message).

An image of relink function is shown below.

-ext_table address-to-be-specified

func_flash0()

func_flash1()

func_flash2()

.ext_func _func_flash0, 0

.ext_func _func_flash1, 1

.ext_func _func_flash2, 2

#pragma asm

 .ext_func _func_flash0, 0

 .ext_func _func_flash1, 1

 .ext_func _func_flash2, 2

#pragma endasm

W2244: '#pragma asm' used out of function is not supported completely.

Assembly Source Described by User Assembler Image after Linking

[ext_table.inc]

 .ext_func _func_flash0, 0

 .ext_func _func_flash1, 1

 .ext_func _func_flash2, 2

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 561 of 782
Apr 01, 2011

If the .ext_func quasi directive is specified as shown above, a table is created with the symbol ext_table, and

the first symbol of this table is "__ext_table_head".

Code "jarl__flash0, lp" in the boot area is an offset from __ext_table_head, and obtains the address of

_func_flash0 and jumps to the function body by the jarl instruction.

[rom.s]

 .include "ext_table.inc"

 .extern _func_flash0

 .extern _func_flash1

 .extern _func_flash2

 jarl _func_flash0, lp

 jarl _func_flash1, lp

 jarl _func_flash2, lp

[rom.out]

 .extern __ext_table_head

 jarl __ext_table_head+0x4*0,lp

 jarl __ext_table_head+0x4*1,lp

 jarl __ext_table_head+0x4*2,lp

[flash.s]

 include "ext_table.inc"

 .globl _func_flash0

 .globl _func_flash2

_func_flash0:

 :

 jmp [lp]

 .globl _func_flash1

_func_flash1:

 :

 jmp [lp]

_func_flash2:

 :

 jmp [lp]

[flash.o]

#(branch table)

 .section ".ext_table", text

 .globl __ext_table_head

 .extern _func_flash0

 .extern _func_flash1

 .extern _func_flash2

__ext_table_head:

 jr _func_flash0

 jr _func_flash1

 jr _func_flash2

#(function body)

 .globl _func_flash0

_func_flash0:

 :

 jmp [lp]

 .globl _func_flash1

_func_flash1:

 :

 jmp [lp]

 .globl _func_flash2

_func_flash2:

 :

 jmp [lp]

Assembly Source Described by User Assembler Image after Linking

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 562 of 782
Apr 01, 2011

(c) Startup routine

Separately prepare a startup routine for the boot area and a startup routine for the flash area. Each startup

routine must perform the following processing.

- Setting tp, gp, and ep values in the boot area

- Calling the _rcopy function to initialize the RAM area to be used for the boot area

- Branching from the boot area to the startup routine of the flash area

- Calling the _rcopy function to initialize the RAM area to be used for the flash area

- Moving to the processing of the flash area

If tp, gp, and ep are not used in the boot area, the values may be set in the flash area. When the default value

data is copied by using the _rcopy function, the load module must be "ROMized" by the ROMization

processor. Prepare rompcrt.o having the first symbol of the rompsec section and execute linking by specifying

link option "-lr". By using the packing section created as a result, copy data with a default value by using the

_rcopy function (see "B.4 ROMization Processor").

It is recommended to use the same address values in the boot area and flash area for the tp, gp, and ep

values. These values may be different, but in this case the values must be set each time control has been

transferred between an instruction code in the boot area and one in the flash area.

Boot Area Flash Area

__start:

 mov #__tp_TEXT, tp

 mov #__gp_DATA, gp

 mov #__ep_DATA, ep

 :

To main function in the boot area

It is not necessary to stick to the name
"main function"

 jarl _main, lp

 .ext_func _flash_start 3

 jr __flash_start

 .ext_func _flash_start 3

 jr __flash_start

__flash_start:

 :

To main function in the flash area

 jarl _main, lp

extern unsigned long _S_romp;

void main(void)

{

 _rcopy(&_S_romp, -1);

 :

}

extern unsigned long _S_romp;

void main(void)

{

 _rcopy(&_S_romp, -1);

 :

}

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 563 of 782
Apr 01, 2011

(d) How to create the projects specifically

<1> Create the boot area project

Create a project for the boot area and add the build target files to the project.

Add the startup routine to the Startup node.

Figure B-19. Boot Area Project

<2> Set the build options for the boot area project

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel.

Set the build options in the [Flash] category.

If you select [Yes] on the [Output flash object file] property, the [Branch table address] property and

[Object file type] property are displayed.

Figure B-20. [Output flash object file], [Branch table address], and [Object file type] property in Boot Area

Specifies the start address of the branch table (address in the flash area) in the [Branch table address]

property.The range that can be specified for the value is 0x0 to 0xffffffff (hexadecimal). "0x0" is set by

default.

Also, select [Boot area object file(None)] on the [Object file type] property.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 564 of 782
Apr 01, 2011

<3> Run a build of the boot area project

When you run a build of the boot area project, a load module file is created.

Figure B-21. Created Files for Boot Area

<4> Create the flash area project

Create a project for the boot area and add the build target files to the project.

Add the startup routine to the Startup node.

Figure B-22. Flash Area Project

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 565 of 782
Apr 01, 2011

<5> Set the build options for the flash area project

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel.

Set the build options in the [Flash] category.

If you select [Yes] on the [Output flash object file] property, the [Branch table address] property and

[Object file type] property are displayed.

Figure B-23. [Output flash object file], [Branch table address], [Object file type], and [Boot area object file name]

Property

Specifies the start address of the branch table (same as the address specified in the boot area project) in

the [Branch table address] property.

If you select [Flash area object file(-Wa, -zf)] on the [Object file type] property, the [Boot area object file

name] property are displayed. Specify the boot area object file.

Caution Specify an object output by the linker. An error occurs if an object output by the

ROMization processor is specified.

<6> Run a build of the flash area project

When you run a build of the flash area project, a load module file which implements the relink function is

created.

Figure B-24. Created Files for Flash Area

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 566 of 782
Apr 01, 2011

(e) Describing a link directive file

Each of the boot area and flash area projects has a link directive file. The following points should be noted

when describing a link directive file.

- Even if the address of a section placed in the RAM area overlaps in the boot area and flash area, the

linker does not output an error because the projects are different. In other words, the addresses can

overlap. For the RAM area that must be referenced simultaneously in the boot area and flash area,

addresses must be specified so that they do not overlap.

- It is recommended to use the same address values in the boot area and flash area for the tp, gp, and ep

values. These values may be different, but in this case the values must be set each time control has been

transferred between an instruction code in the boot area and one in the flash area.

- A link directive file related to the branch table (ext_table) does not have to be described. It is

automatically allocated to an address specified by the link option "-ext_table".

However, the following points must be noted.

- If a vacant area of the size of the branch table is at the address specified by -ext_table, the link

directive file is allocated as is. The other segments are not affected. This is the most ideal case.

- If a vacant area of the size of the branch table is not at the address specified by -ext_table, an error

occurs. This applies, for example, if a code has been already allocated to the address specified by -

ext_table in a TEXT segment for which an address is specified. The example is as follows.

- If another segment is allocated to the address specified by -ext_table before the relink function is

used but the address of that segment is not specified in the link directive file, the branch table is

allocated to the address specified by -ext_table and the original segment is moved behind the

branch table.

However, If the segment overlaps a segment for which an address is specified as a result of moving,

an error occurs.

Address specification of the branch table

Link directive file (part)

(Size of TEXT segment is 0x100 bytes or more)

-ext_table 0x500

TEXT : !LOAD ?RX V0x400 {

 .text = $PROGBITS ?AX .text;

};

An error occurs during linking because the branch table cannot be allocated to

address 0x500. Change the value specified by -ext_table.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 567 of 782
Apr 01, 2011

(f) .ext_ent_size directive

When an actual function is called from the branch table in the flash memory, jr branch instructions are output

as follows by default.

However, the jr instruction can branch only within a 22-bit range (±1MB) because of a restriction of the

architecture. To branch in the entire 32-bit space, additionally specify the .ext_ent_size quasi directive. The

format of the .ext_ent_size quasi directive is as follows.

The value that can be specified as the entry size is "4", "8", or "10". "Entry size of table" above means

"instruction size necessary for one branch processing".

The default entry size is "4". In this case, a 4-byte instruction is allocated as follows.

If "8" is specified, a total of 8 bytes of instructions are allocated, as follows.

If "10" is specified, a total of 10 bytes of instructions are allocated, as follows.

__ext_table_head:

 jr _func_flash0

 jr _func_flash1

 jr _func_flash2

.ext_ent_size Entry-size-of-table

jr _flash_func0 -- 4-byte instruction

mov #_flash_func0, r1 -- 6-byte instruction

jmp [r1] -- 2-byte instruction

Address specification of the branch table

Link directive file (part)

(It is assumed that the TEXT segment is allocated from address 0x500 as a continuation

from the segment ahead of the TEXT segment.)

-ext_table 0x500

TEXT : !LOAD ?RX {

 .text = $PROGBITS ?AX .text;

};

At this time, the branch table is allocated to address 0x500 because no

address is specified for the TEXT segment, and the TEXT segment is allocated

behind the branch table.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 568 of 782
Apr 01, 2011

Note that an 8-byte instruction can be used only when the V850Ex/V850E2 core is used (because only the

V850Ex/V850E2 core supports this instruction set).

Specify "10", when the V850 is used. When creating an object common to the V850/V850Ex/V850E2 core

(when using the -cn option), always specify "10".

(g) Library

If a library function is called from the boot area or flash area, the library is linked to the object on the calling

side. For example, even if a library is linked to the flash area, the same library is linked to the boot area if the

same library function is called from the boot area. When a library function is called, therefore, a function does

not have to be specified by the .ext_func quasi directive for the library function because branching does not

take place between the boot area and flash area.

However, in a special case where the library linked to the boot area branches to a function in the flash area, a

function must be specified by the .ext_func quasi directive.

For the "standard library" and "mathematical library" of the CA850 package, a function does not have to be

specified by using the .ext_func quasi directive.

(h) Interrupt handler

Describe the part that calls an interrupt handler in the area where the address of the interrupt handler exists.

In the following case, an interrupt handler function name must also be specified by the .ext_func quasi

directive.

- Interrupt handler address is in the boot area.

- Interrupt handler body is in the flash area.

movhi hi1(#_flash_func0), r0, r1 -- 4-byte instruction

movea lo(#_flash_func0), r1, r1 -- 4-byte instruction

jmp [r1] -- 2-byte instruction

Assembly Source Described by User Assembler Image after Linking

[ext_table.inc]

 .ext_func _int_flash0, 0

[rom.s]

 .include "ext_table.inc"

 .extern _int_flash0

 .section "INT00", text

 jr _int_flash0

[rom.out]
 .section "INT00", text

 jr __ext_table_head+0x4*0,lp

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 569 of 782
Apr 01, 2011

[flash.s]

 .include "ext_table.inc"

 .globl _int_flash0

_int_flash0:

 :

 reti

[flash.o]

#(branch table)

 .section ".ext_table", text

 .globl __ext_table_head

 .extern _int_flash0

__ext_table_head:

 jr _int_flash0

#(handler body)

 .globl _int_flash0

_int_flash0:

 :

 reti

Assembly Source Described by User Assembler Image after Linking

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 570 of 782
Apr 01, 2011

B.3.4 Supplementary information

This section describes the supplementary points related to the linker.

(1) Using -A option

This section describes how to use the -A option.

With CubeSuite+, on the Property panel, from the [Link Options] tab, in the [Other] category, set the [Display GP

information] property to [Yes(-A)].

(a) Function

This option displays the information that serves as a yardstick for the value to be set to num of the -Gnum

option that can be specified for the ca850 and as850 when a source file is compiled or assembled. The

information is output via standard output, if ca850 or as850 has been activated with the -A option specified on

the command line. With CubeSuite+, If [Yes(-A)] in the [Display GP information] property is selected, the

information is output on the Output panel.

The -Gnum option allocates data of less than num bytes to the .sdata or .sbss section.

The ca850 and as850 output codes in compliance with the following rule for the data allocated to the sdata,

sbss, data, and bss areas.

The ca850 or as850 first tries to allocate the data to the sdata-attribute section or sbss-attribute section, which

are areas that can be accessed with a single instruction from the gp register (data with a default value is

allocated to the sdata-attribute section and data without a default value is allocated to the sbss-attribute

section).

Because these areas are accessed by a code that uses gp and a 16-bit displacement for access, data can be

allocated only in a range of +32 KB from gp. If the data does not fit in these areas, the ca850 or as850 tries to

allocate the data to the data-attribute section or bss-attribute section, which are areas that can be accessed

with two instructions from the gp register (data with a default value is allocated to the data-attribute section and

data without a default value is allocated to the bss-attribute section). In these areas, the address of the access

area is first generated, and a code using gp and a 32-bit displacement for access is generated. Consequently,

the entire 4 GB space can be accessed.

Figure B-25. Memory Allocation Image of gp Offset Reference Section

Therefore, the execution efficiency and object efficiency are enhanced if more data is allocated to the sdata-

attribute or sbss-attribute section, which can be accessed with a single instruction.

To allocate data, the user can intentionally specify the allocation location by using the #pragma section

directive in the case of a C source or by using the .section quasi directive in the case of an assembly language

source.

Upper address

bss-attribute section

sbss-attribute section

sdata-attribute section

data-attribute section

Lower address

Data without default value

Data with default value
gp indicates the position of the first

+32 KB of the sdata-attribute section

gp

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 571 of 782
Apr 01, 2011

If a threshold value of the size of the data to be allocated to the sdata-attribute or sbss-attribute section is

prepared and if data of a size less than the threshold value can be allocated to the sdata-attribute or sbss-

attribute section, more data can be allocated without having to modify the source program. This specification

is made by the -Gnum option of the ca850 or as850. The value specified as num of this option is the data size,

so it would be convenient to have information that can be used as a yardstick.

The -A option outputs this information.

If the -A option is specified for the linker, it outputs information that can serve as a yardstick for determining the

value of num of the -Gnum option.

(b) Explanation of output information

An example of the information output when this option is specified when an executable object file is generated

without the -r option, and an example of the information output when this option is specified when a relocatable

object file is generated with the -r option are shown below.

Examples 1. The output information for the executable object file

 ******** LINK EDITOR GP INFORMATION ********

 (1) (2) (3) (4) (5) (6)

GP SYMBOL SECTION SECTION SECTION GP

NAME NAME SIZE(REAL) SIZE(ASSUMED) NUMBER

_gp_DATA

 .sdata 0x000af10

 0x00002000 4 *OK*

 0x00003450 8 *OK*

 0x00004430 12 *OK*

 0x000050a8 16 *OK*

 0x00007b40 20 *OK*

 0x0000a010 24

 0x0000af10 32

 .sbss 0x00012050

 0x00000050 4 *OK*

 0x00002050 16 *OK*

 0x00007050 512 *OK*

 0x00010050 1024

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 572 of 782
Apr 01, 2011

2. The output information for the relocatable object file

 ******** LINK EDITOR GP INFORMATION ********

 (1) (2) (3) (4) (5) (6)

GP SYMBOL SECTION SECTION SECTION GP

NAME NAME SIZE(REAL) SIZE(ASSUMED) NUMBER

*(NOT AVAILABLE)

 .sdata 0x000af10

 0x00002000 4 *OK*

 0x00003450 8 *OK*

 0x00004430 12 *OK*

 0x000050a8 16 *OK*

 0x00007b40 20 *OK*

 0x0000a010 24

 0x0000af10 32

 .sbss 0x00012050

 0x00000050 4 *OK*

 0x00002050 16 *OK*

 GpCommon 0x00010000

 0x00005000 512 *OK*

 0x00010000 1024

Item

Number

Description

(1) Name of global pointer symbol

This is the name of the global pointer symbol used for linking. If the created object file is a

relocatable file, "*(NOT AVAILABLE)*" is displayed.

(2) Section name

This is the name of the sdata-attribute section or sbss-attribute section to which data are allocated.

Because a relocatable object file cannot determine allocation of an undefined external symbol to a

section, the linker internally creates a virtual section "*GpCommon*" and temporarily allocates the

data to this section.

(3) Actual size of section

This is the actual size of the section that is considered for use as the area for the hole generated by

data alignment.

(4) Assumed size of section

This is the size of the section that is assumed if the ca850 is started with the -Gnum option (with the

value shown in the column at the right to this column specified as num). Because the calculation of

this size assumes an alignment condition of more than 4 bytes without taking the actual alignment

condition into consideration, the value shown in this column does not necessarily agree with the

actual size of the created section.

(5) Value of num of -Gnum option assumed

This is the value of the -Gnum option num upon starting the ca850 and the as850 that is assumed as

a result of calculating the "assumed size of section" shown on the column to the left of this column.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 573 of 782
Apr 01, 2011

Note Usually the sections to which data is allocated are allocated from the lower address in the order of

data/sdata/sbss/bss attribute sections in the C compiler. The global pointer (gp) is assumed to be

set in the startup module, etc. so as to indicate the start address of the sdata-attribute section +

32 KB. If the result is OK in this judgement, the sdata/sbss attribute sections are assumed to be

allocated to a memory range that can be referenced using 16-bit displacement.

(c) Cautions

The information output by this option is only a yardstick, and the judgment result may not be correct, such as in

the following cases:

- If allocation of a section that creates a hole is specified by a link directive, etc.

- If a direct address is specified for a global pointer symbol.

- If data is allocated to the .sdata/.sbss section by the #pragma section directive.

(d) Example

file1.o and file2.o are linked and information that can be used as a yardstick for setting the num value of the -

Gnum option that can be specified for the ca850 or the as850 when compiling or assembling is output via

standard output.

(2) Archive file

An archive file is created by linking two or more object files with the archiver.

When an archive file is specified, the linker searches the archive file for unresolved external referencesNote 1 and

links only the necessary object files.

The archive file can be also specified via the link directive's mapping directive. If the archive file is also specified in

the mapping directive, it is searched for unresolved external references at that time and only the necessary object

filesNote 2 are linked.

Notes 1. The archive file includes a symbol table of the symbols belonging to the archiver's object files, and the

archive file is repeatedly searched as long as unresolved external references remain unresolved.

2. Object file that defines a referenced symbol.

(3) Reserved symbols

During link-related processing, the linker creates reserved symbols whose values include the start address of each

output section, the start address beyond the end of each output section, and the start address beyond the end of a

created executable object file.

If the user defines a symbol having the same name as any of these reserved symbols, the linker uses the defined

symbol, and does not create its own symbol.

A symbol having a name made by prefixing "_ _ s" to the name of the output section is used as a reserved symbol

that has the start address of a section as a value.

(6) Judgement result

This is the result of the judgmentNote as to whether or not the size of the section is within a range of

15 bits (0x0 to 0x7fff) if the ca850 is started with the -Gnum option with the value shown in the

column at the left to this column (specified as num). If the size is within this range, "*OK*" is

displayed; if it is not, nothing is displayed.

C:\>ld850 -A file1.o file2.o

Item

Number

Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 574 of 782
Apr 01, 2011

If this section name begins with ".", "." is taken out and "_ _ s" is prefixed to make it a symbol name. A symbol

name with "_ _ e" prefixed to the name of that output section is used as a reserved symbol that has the start

address beyond the end of a section as a value.

If this section name begins with ".", "." is taken out and "_ _ e" is prefixed to make it a symbol name. _ _ end is used

as a reserved symbol having a start address beyond the end of a created executable object file.

The default link directive used by the linker uses the following reserved sections as output sections.

Table B-12. Reserved Section

Therefore, the linker normally creates the following reserved symbols.

Table B-13. Special Symbols in Ordinary Object File

Caution Of the above symbols, only those for which a section exists in the executable file after link

processing are generated. The linker behaves as if no section exists if a section that is actually

allocated does not exist even if a mapping directive is described in the link directive file.

(4) May not be allocated to the expected sections

Even if a directive file specifies an object file or archive file to be allocated to a section, the object file or archive file

may not be allocated to the expected sections, depending on how the file name is described. In such cases, see

the link map (-m) and specify the directive file with the file name displayed on the link map and with the identical

name including the path name, and then relink.

(5) V850 core and V850Ex core

The V850Ex is upwardly compatible with the other V850 core microprocessors. Source programs that are used

with the V850 core can be used with the V850Ex. In this case, create the V850 core object file as an object file

common to the core with the as850 option.

An object file created as "common to V850Ex" cannot link with a non-V850Ex and non-V850E2 object file.

See "(1) Magic number" for details.

(6) V850 core and V850E2 core

The V850E2 is upwardly compatible with the other V850 core microprocessors. Source programs that are used

with the V850 core can be used with the V850E2. In this case, create the V850 core object file as an object file

common to the core with the as850 option.

An object file created as "common to V850E2" cannot link with a non-V850E2 object file.

See "(1) Magic number" for details.

.text, .pro_epi_runtime, .data, .sdata, .sbss, .bss, .sconst, .const, .sedata, .sebss, .sidata, .sibss, .tidata, .tibss,

.tidata.byte, .tibss.byte, .tidata.word, .tibss.word

__end, __ebss, __econst, __edata, __epro_epi_runtime, __esbss, __esconst, __esdata, __esebss, __esedata,

__esibss, __esidata, __etext, __etibss, __etibss.byte, __etibss.word, __etidata, __etidata.byte, __etidata.word,

__sbss, __sconst, __sdata, __spro_epi_runtime, __ssbss, __ssconst, __ssdata, __ssebss, __ssedata, __ssibss,

__ssidata, __stibss, __stibss.byte, __stibss.word, __stidata, __stidata.byte, __stidata.word

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 575 of 782
Apr 01, 2011

(7) Mathematics library

An error such as an undefined symbol error may be output even when a mathematics library function is used in a

program and a mathematics library (libm.a) is linked during linking. This relates to the linking sequence with the

standard libraries. Since this sequence must comply with the ANSI standard, the standard libraries should be

linked last. Note this with caution, especially when starting the linker from the command line. Specifically,

describe the options in the order of the -lm and the -lc.

(8) main function

If linking is performed without creating a main function, an error message may be output to indicate that the _main

symbol is an undefined symbol. This may occur when the user links the default startup routine (crtN.o or

crtE.o[V850E]) rather than a user-specified startup routine, or when the crtN.s or crtE.s that are provided with the

package are used as they are for assembly and linkage. The error is due to the "jarl _main, lp" code that is written

following crtN.s or crtE.s. If the main function is not needed, overwrite this code then use the reassembled object

as the startup routine. In the case of an application that uses the real-time OS, main function does not exist

normally. Use the startup routine provided as a sample of the real-time OS.

(9) Prologue/epilogue runtime library

The prologue/epilogue runtime library must be allocated to the special-purpose .pro_epi_runtime section. If it is

not allocated there, the linker outputs the following message and stops linking.

If a link directive file has been specified, describe the mapping directive before the .text section.

If the .pro_epi_runtime section is placed after the .text section, it overlaps the allocation position of the default

operation of the section that is packed during ROMization. Allocating the .pro_epi_runtime section before the .text

section is recommended. If a link directive file has not been specified, link before the .text section.

(a) Cautions

- The prologue/epilogue runtime libraries are included in standard library libc.a.

- Unlike ordinary sections, the .pro_epi_runtime section has a fixed input section name and only the

special-purpose section is allocated.

- If the .pro_epi_runtime section is placed after the .text section, it overlaps the allocation position of the

default operation of the section that is packed during ROMization. Allocate the .pro_epi_runtime section

before the .text section.

- The prologue/epilogue runtime libraries use the callt instruction when a device of the V850Ex/V850E2

core is used. Set CTBP in the startup routine.

(10)Linking for ROMization

For ROMization, the packing section area must be considered when coding the link directive. See "B.4

ROMization Processor" for details.

ROMization is not possible if the default link directive and the CONST segment are both used. Since the default

link directive allocates the CONST segment immediately after the TEXT segment, the packed section (rompsec

section) and the CONST segment become overlapped during the ROMization processor's default operation.

Perform one of the following responses while considering the additional sample directiveNote attached to the

package.

F4286 : section ".pro_epi_runtime" must be specified in link directive.

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

.text = $PROGBITS ?AX;

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 576 of 782
Apr 01, 2011

Note v850def.dir, v850def2, or dirv850def3.dir stored in "install-folder\CubeSuite+\CA850\Vx.xx\smp850\ca850".

Memory allocation must suit the microprocessor being used. Allocate the CONST segment before the TEXT

segment.

Reserve a packed section area (see "B.4 ROMization Processor") after the TEXT segment and allocate the

CONST segment after that reserved section.

(11) Programmable peripheral I/O register

For an application program that uses programmable peripheral I/O register functions, the .bpc section (which is a

reserved section) is output when assembling. If there is the .bpc section in a input object file to the linker, the linker

checks values specified as BPC values. If values do not match between input object files, the linker outputs an

error message like the following and suspends link processing.

In the above case, there is an error because the value set in file3.o is different.

Object that does not reference the programmable peripheral I/O register is not checked.

As in file4.o above, "*(none)*" is displayed.

v850def.dir Sample using internal ROM/RAM and external RAM

v850def2.dir Sample using only internal ROM/RAM

v850def3.dir Sample using internal ROM/RAM, external RAM, and internal instruction RAM (such as V850E/

ME2)

CONST : !LOAD ?R{

 .const = $PROGBITS ?A .const;

};

TEXT : !LOAD ?RX{

 .text = $PROGBITS ?AX;

};

TEXT : !LOAD ?RX{

 .text = $PROGBITS ?AX;

};

 [Packed section area]

CONST : !LOAD ?R V0x200000{ <- Address specification takes packed section into account

 .const = $PROGBITS ?A .const;

};

F4457: input files have different BPC value.

0x00001234 file1.o

0x00001234 file2.o

0x00001235 file3.o

(none) file4.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 577 of 782
Apr 01, 2011

If there are no errors in checking BPC values, a .bpc section is generated with section type SHT_PROGBITS,

section attribute "none", and section size 0x4. The start address of the programmable peripheral I/O register area,

which is the BPC value shifted a preset number of bits, is stored in the .bpc section.

Example If the BPC value is specified as "0x1234" when using the V850E/IA1, the start address of the

programmable peripheral I/O register area is the value shifted 14 bits to the left, or "0x48d0000". In this

case, the information in the .bpc section is as follows.

- The processing above is performed without question when creating a relocatable object file and when

creating an executable object file.

- The .bpc section is a special reserved section for information and is never loaded into memory.

Therefore, it need not be specified in a link directive like a normal section.

(12)Option byte

Describe 6-byte data in the assembler source as follows in order to use the option byte function.

- If a device not having the option byte is specified, it is handled as an ordinary input section.

- If a device having the option byte is specified and if description of this section is omitted, the default value set

in the device file is set.

- Be sure to describe 6 bytes for this section. If 6 bytes or less is described, the following message is output

and linking is stopped.

- The default value of a bit that cannot be set must not be changed. If it is changed, the following message is

output.

.bpc

 Address 00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F

0x00000000 : 00 00 8d 04 - ...

.section "OPTION_BYTES"

.byte 0b00000001 -- 0x7a

.byte 0b00000000 -- 0x7b

.byte 0b00000000 -- 0x7c

.byte 0b00000000 -- 0x7d

.byte 0b00000000 -- 0x7e

.byte 0b00000000 -- 0x7f

F4112: illegal "section" section size.

W4613: illegal flash mask option access (file:"file" address:num1 bit:num2)

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 578 of 782
Apr 01, 2011

B.4 ROMization Processor

When a variable is declared globally within a program, the variable is allocated to the data-attribute section in RAM if

the variable has a default value, or to the bss-attribute section if it does not have a default value. When the variable has

a default value, that default value is also stored in RAM. In addition, program code may be stored in the internal RAM

area to speed up applications.

In the case of an embedded system, if a debug tool such as an in-circuit emulator is used, executable modules can be

downloaded and executed just as they are in the allocation image. But if you actually write the program to the ROM area

of the target system and execute it, the default values in the data attributes section and the program code to be allocated

to the RAM area must be loaded into RAM before execution.In other words, data that is residing in RAM must be

deployed in ROM, and this means that data must be copied from ROM to RAM before the corresponding application is

executed.

The ROMization processor (romp850) is a tool that takes default value information for variables in data-attribute

sections as well as programs allocated to RAM and packs them into a single section. This makes it easy to load default

value information and program into RAM by allocating this section to ROM, and calling the copy function provided by the

CA850.

The following figure shows an outline of the operation flow in creating objects for ROMization.

Figure B-26. Creation of Object for ROMization

When ROMization objects are created as shown in the figure, execution of the _rcopy function copies the data to be

allocated to RAM from the packed ROM. An image of this operation is shown below.

ROMization area reservation code

(default: rompcrt.o)
Source program

Copy function _rcopy

Additional code

Compile with ROMization

specification option (-Xr)

ROMization library (libr.a)

(_rcopy function)

Link

Executable object

ROMization processor

ROMization

object

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 579 of 782
Apr 01, 2011

Figure B-27. Image of Before and After _rcopy Function Is Called

The default values for the section name and the section's start address (label name) required for the ROMization object

are as follows.

- Name of packed section -> rompsec section

- Start address (label name) of rompsec section -> __S_romp

The function used to copy from the rompsec section to the RAM area is as follows.

- Copy function -> _rcopy, _rcopy1, _rcopy2, _rcopy4 function

This function is stored in the library "libr.a" which is in the lib850\r** folder.

_ _ S_romp is a label that is defined by "rompcrt.o" in the lib850\r** folder (the corresponding source file is rompcrt.s).

Using rompcrt.o as is causes the ROMization processor to create automatically a rompsec section immediately after the

.text attributes (at the 4-byte aligned location).__S_romp becomes the label indicating the start address of that rompsec

section.

In addition to this method for automatically creating a rompsec section, it is also possible to independently create and

allocate a program corresponding to rompcrt.s. See "(2) Creating procedure (customize)" for details.

Copy data to RAM

RAM area for data with

default value

RAM area for data

without default value

RAM allocation program area

Text area

Constant data area

Packed data with

default value

Image of object for ROMization

RAM area for data with

default value

RAM area for data

without default value

RAM allocation program area

Text area

Constant data area

Packed data with

default value

Image after data is copied _rcopy function

Copy text to RAM

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 580 of 782
Apr 01, 2011

The actual ROMization works as follows: after creating this ROMization object, it converts it into a hex file, and writes it

to ROM.

If the application does not include any data that requires packing, there is no need to create a ROMization object.

Convert the object created by the linker into a hex file directly.

If the object files resolved for relocation include symbol information and debug information, the ROMization processor

creates a ROMization object file without deleting them. Therefore, the debugger can debug the source even with a

ROMization object file.

B.4.1 I/O files

The ROMization processor enables the following files to be handled as input file.

The output file is:

The linker and the ROMization processor are both able to specify I/O file names. The default output file name is

romp.out.

B.4.2 rompsec section

(1) Types of sections to be packed

The default data that can be packed as a rompsec section is "data allocated to sections having a write-enabled

attribute". If a device with V850/V850E1 core is specified, sections allocated to the internal instruction RAM are

also packed (they are not packed if a device with V850E2 cores is specified).In addition, any section that has either

the text attribute or const attribute can be specified for packing by specifying the -t option.

Specific examples are listed below.

- The reserved sections listed in "Table B-14. Reserved Sections Packed by ROMization Processor"

- In an assembler program, sections generated with arbitrary names specifying a sdata or data attribute by the

.section pseudo instruction, and sections allocated to the internal instruction RAM.

Table B-14. Reserved Sections Packed by ROMization Processor

Note, however, that if any user-specified sections with either the text attribute or const attribute are not packed and

if the above-listed sections are not in an executable module, there is no need to create a ROMization object.

See the link map file to determine whether or not the sections listed in "Table B-14. Reserved Sections Packed by

ROMization Processor".

It can be confirmed that a rompsec section is created in place of a .data section, .sdata section, sections allocated

to an internal RAM (including interrupt handler sections), and the like, by referencing the object file which is created

by the ROMization processor via the dump tool.

file1.out Executable object output by the ld850

file2.out Executable object for ROMization

.data, .sdata, .sedata, .sidata, .tidata, .tidata.byte, .tidata.word

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 581 of 782
Apr 01, 2011

(2) Size of rompsec section

This section describes the memory area size to be reserved for the rompsec section.

When creating the ROMization module, note the size of the rompsec section as well as the address range and size

of using CPU's internal ROM area and the target system's ROM area. Code the link directive file carefully to

prevent the rompsec section from overlapping other sections. See "B.4.3 Creating object for ROMization" for

specific code examples.

Formulas used to calculate the size of the rompsec section are shown below.

8 + 16 x (Number of sdata/data sections) + Size of sdata/data section

+ Padding sizeNote

For example, if .sdata and .data sections exist, the size of each is 1002 bytes and 1000 bytes, and the alignment

condition of each section is 4 bytes, the size of the rompsec section is as follows.

8 + 16 x 2 + 1002 + 1000 + 2 = 2044 bytes

Note The size is 0 to 3 bytes per section, depending on the alignment condition of the section subject to

ROMization.

(3) rompsec section and link directive

During ROMization, a rompsec section is added immediately after the .text section. Consequently, it is possible to

allocate the rompsec section up to the end of ROM by allocating a .text section to the end of the ROM, or explicitly

specifying the end of the ROM for the rompsec section.

- Link directive taking ROMization processing into consideration

Allocates SCONST, CONST, and TEXT to internal ROM

SCONST : !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

};

CONST : !LOAD ?R {

 .const = $PROGBITS ?A .const;

};

Allocates .text to end of internal ROM

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

 rompsec = $PROGBITS ?AX .text { rompcrt.o };

};

Allocates DATA to external RAM

DATA : !LOAD ?RW V0x100000 {

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBIT ?AWG;

 .bss = $NOBIT ?AW;

};

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 582 of 782
Apr 01, 2011

If the rompsec section exceeds the internal ROM area, the following message is output and the processing is

stopped.

By specifying the -rom_less option, the internal ROM area may be ignored.

By specifying the -Ximem_overflow=warning option, an error message can be changed to a warning message.

The above check is not performed if the rompsec section is allocated to the end of the external ROM area. Check

the memory map information to see if the sections fit in ROM.

If it is necessary to allocate the rompsec section in the middle of ROM, check the area where the rompsec section

is to be allocated as follows, from the size and allocation address of the rompsec section, and specify an

appropriate address for the segment immediately after the rompsec section.

- Link directive taking ROMization processing into consideration (size considered)

Allocates SIDATA to internal RAM

SIDATA : !LOAD ?RW V0xffe000 {

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBIT ?AWG .sibss;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA @ %EP_SYMBOL;

F8425: rompsec section overflowed highest address of target machine.

Allocates SCONST, CONST, and TEXT to internal ROM

SCONST : !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

};

Allocates .text in middle of internal ROM

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

 rompsec = $PROGBITS ?AX .text { rompcrt.o };

};

rompsec between TEXT and CONST

Allocates CONST to end of internal ROM by specifying address taking size into
consideration

CONST : !LOAD ?R Vx3f800 {

 .const = $PROGBITS ?A .const;

};

Allocates DATA to external RAM

DATA : !LOAD ?RW V0x100000 {

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 583 of 782
Apr 01, 2011

B.4.3 Creating object for ROMization

(1) Creating procedure (default)

This section describes a method that uses the ROMization area reservation code (rompcrt.o) that is provided as

the default object.

(a) Call a copy function within the application.

The copy function should be activated early on, such as within the startup routine or at the start of the main

function. _rcopy, _rcopy1, _rcopy2, and _rcopy4 are available as copy functions, and each of these has a

different transfer size (the transfer size of _rcopy and _rcopy1 is the same). See "B.4.4 Copy function" for

details about these.

In the following example, the _rcopy function is activated at the start of the main function.

Example Example of using copy function _rcopy

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBIT ?AWG;

 .bss = $NOBIT ?AW;

};

Allocates SIDATA to internal RAM

SIDATA : !LOAD ?RW V0xffe000 {

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBIT ?AWG .sibss;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA @ %EP_SYMBOL;

#define ALL_COPY(-1)

int _rcopy(unsigned long *, long);

extern unsigned long _S_romp;

void main(void)

{

 int ret;

ret = _rcopy(&_S_romp, ALL_COPY);

 :

}

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 584 of 782
Apr 01, 2011

(b) During ROMization, a rompsec section is added immediately after the .text section.

By allocating the .text section to the end of ROM, the rompsec section up to the end of ROM can be allocated

(see "(3) rompsec section and link directive").

(c) Specify the creation of object for ROMization by the compile option.

<1> From command line

Add compile option "-Xr".

<2> From CubeSuite+

On the Property panel, from the [ROMization Process Options] tab, in the [Output File] category, select

[Yes(-Xr -lr)] on the [Output ROMized object file] property.

Figure B-28. [Output ROMized object file] Property

As a result, a code that indicates that label __S_romp indicates the first address that exceeds the end of the

.text section in the object is generated.

(d) Specify ROMization process option.

<1> From CubeSuite+

On the Property panel, from the [ROMization Process Options] tab, in the [Input File] category, set the

[Use standard ROMization area reservation code file] property to [Yes] (default).

Figure B-29. [Use standard ROMization area reservation code file] Property

(e) Compile and link.

By specifying the creation of object for ROMization for the ca850, the ROMization area reservation code

"rompcrt.o" (that is in lib850\r**) and "libr.a" that stores the _rcopy function are automatically linked. At this

time, the linking sequence is relevant.Because "rompcrt.o" must be linked at the end of a group of TEXT

attributes, link it after the libraries specified by the -l option for linking if the linker has been activated from the

command line. If CubeSuite+ is used, there is no need to be aware of "rompcrt.o" because it is automatically

linked at the end of the TEXT attribute group.

Caution If the linker's -rescan option is specified, the library is linked after rompcrt.o, and the

ROMization processor may output an F8426 error. In such a case, explicitly secure a

rompsec section area (see "(3) rompsec section and link directive").

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 585 of 782
Apr 01, 2011

(f) Activate the ROMization processor.

Generate a ROMization module from the executable module completed in (d), by using the ROMization

processor.

If the creation of object for ROMization is specified with CubeSuite+, (d) and this is automatically performed,

and a hex file is generated. If the commands has been activated from the command line, the ROMization

processor is activated and a ROMization object is created after the C compiler to linker have been activated

and an executable module has been generated. An image of the map is shown below.

Figure B-30. ROMization Image 1

(Executable object output by the linker)

.sidata section

.const section

.sconst section

.text section

.sdata section

.data section

.sedata section

.tidata section

Peripheral I/O

Interrupt

(Executable object output by the ROMization processor)

.const section

.sconst section

.text section

Peripheral I/O

Interrupt

.sidata section

.sdata section

.data section

.sedata section

.tidata section

Copied information
__S_romp

0x0

ROMization processor

Hex converter

Hex file

Target system

ROM

ROM writer

0x0

Internal RAM

External RAM

Internal ROM

__S_romp

rompsec section

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 586 of 782
Apr 01, 2011

(2) Creating procedure (customize)

This section describes the method for independently creating "rompcrt.o" corresponding to the ROMization area

reservation code and determining the desired rompcrt section start address and allocation position.

(a) Enter code corresponding to the default ROMization area reservation code "rompcrt.s".

The file name is "rompack.s" and the name of the symbol indicating the start of the ROMization area is

"__rompack". Also, the section containing this symbol is the "rompack section". In this case, the code in

rompack.s appears as follows.

Example rompack.s

(b) Call a copy function within the application.

The copy function should be activated early on, such as within the startup routine or at the start of the main

function. _rcopy, _rcopy1, _rcopy2, and _rcopy4 are available as copy functions, and each of these has a

different transfer size (the transfer size of _rcopy and _rcopy1 is the same). See "B.4.4 Copy function" for

details about these.

In the following example, the _rcopy function is activated at the start of the main function.

Example Example of using copy function _rcopy

(c) Define the created rompack section in a link directive.

The allocation location of the rompack section can be determined arbitrarily by specifying an address

simultaneously.

To specify ROMPACK as the segment containing the rompack section and to allocate that segment to at

address 0x3000, enter the following link directive.

 .file "rompack.s"

 .section ".rompack",text

 .align 4

 .globl __rompack, 4

__rompack:

#define ALL_COPY (-1)

int _rcopy(unsigned long *, long);

extern unsigned long _rompack;

void main(void)

{

 int ret;

 ret = _rcopy(&_rompack, ALL_COPY);

 :

}

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 587 of 782
Apr 01, 2011

Example Link directive specification example

The rompack section's size is estimated using the formula described in "(2) Size of rompsec section" to avoid

the ROMPACK segment's allocation address from overlapping with adjacent segments.

(d) Specify the creation of object for ROMization by the compile option.

- From command line

Add compile option "-Xr".

- From CubeSuite+

On the Property panel , from the [ROMization Process Options] tab, in the [Output File] category, select

[Yes(-Xr -lr)] on the [Output ROMized object file] property.

Figure B-31. [Output ROMized object file] Property

This generates code that indicates the same address for label "rompack" as is specified for rompsec.

(e) Specify ROMization process option.

- From command line

As a ROMization process option, specify "__rompack" for the "-b" option to specify the entry symbol for

the ROMization area reservation code.

- From CubeSuite+

On the Property panel , from the [ROMization Process Options] tab, in the [Input File] category, select [No]

on the [Use standard ROMization area reservation code file] property. And then add "rompack.s" or

"rompack.o" in the [ROMization area reservation code file name] property.

Figure B-32. [Use standard ROMization area reservation code file] and [ROMization area reservation code file

name] Property

In the [Other] category, specify rompack section's start label "_rompack" in the [Entry label] property.

TEXT: !LOAD ?RX V0x1000 {

 .text = $PROGBITS ?AX .text;

};

ROMPACK: !LOAD ?RX V0x3000 {

 .rompack = $PROGBITS ?AX .rompack;

};

 :

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 588 of 782
Apr 01, 2011

Figure B-33. [Entry label] Property

(f) Compile and link.

By specifying the creation of object for ROMization for the ca850, "libr.a" that stores the _rcopy function are

automatically linked.

Caution If the linker's -rescan option is specified, the library is linked after rompcrt.o, and the

ROMization processor may output an F8426 error. In such a case, explicitly secure a

rompsec section area (see "(3) rompsec section and link directive").

(g) Activate the ROMization processor.

Generate a ROMization module from the executable module completed in (f), by using the ROMization

processor.

If the creation of object for ROMization is specified with CubeSuite+, (f) and this is automatically performed,

and a hex file is generated. If the commands has been activated from the command line, the ROMization

processor is activated and a ROMization object is created after the C compiler to linker have been activated

and an executable module has been generated. An image of the map is shown below.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 589 of 782
Apr 01, 2011

Figure B-34. ROMization Image 2

(Executable object output by the linker)

.sidata section

.const section

.text section

.sdata section

.data section

.sedata section

.tidata section

Peripheral I/O

Interrupt

(Executable object output by the ROMization processor)

.const section

.sconst section

.text section

Peripheral I/O

Interrupt

.sidata section

.sdata section

.data section

.sedata section

.tidata section

Copied information
__rompack

0x0

ROMization processor

Hex converter

Hex file

Target system

ROM

ROM writer

.sconst section

__rompack

0x0

Internal RAM

External RAM

Internal ROM

rompack section

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 590 of 782
Apr 01, 2011

B.4.4 Copy function

This section describes the copy routines (_rcopy) necessary for the program to be stored in ROM.

Table B-15. Copy Routines

Use 1-byte, 2-byte, or 4-byte transfer, depending on the specification of the RAM at the transfer destination. The

specification of each function is as follows.

Function Name Function

_rcopy Copies ROMization section (1-byte transfer)

_rcopy1 Copies ROMization section (1-byte transfer)

_rcopy2 Copies ROMization section (2-byte transfer)

_rcopy4 Copies ROMization section (4-byte transfer)

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 591 of 782
Apr 01, 2011

[Overview]

- Copies default data or RAM textNote (1 byte).

Note Data section with default value which is to be allocated to RAM, and text section for internal RAM.

[Format]

[Description]

- _rcopy(&label, number) copies the default value data of section number number to be copied, or text to be

allocated to RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated

starting at the address following the address indicated by label. If -1 is specified as number, all sections in the

rompsec section are copied. Section number number is a positive number that starts from 1.

- By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to

the rompsec section are specified by the "-p" or "-t" option of the ROMization processor, they are allocated in the

specified order.

- With CubeSuite+, on the Property panel, from the [ROMization Process Options] tab, in the [Section List] category,

set the [Output ROMization section file] property to [Yes]. A C source header file that makes "number" and "label"

correspond to each other by #define is generated, and number can be specified by a label name.

- See "B.4.5 Example of using copy function" for specific examples.

[Return value]

[Cautions]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.

- _rcopy copies data in accordance with the information generated by the ROMization processor.

When executing _rcopy, it is not possible to add an offset to the destination address.

- No data is copied if data may be overwritten as a result of copying.

- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy, label. If

any other value or address is specified, the result is not guaranteed.

- The _rcopy and _rcopy1 functions are identical. _rcopy is used to maintain compatibility with old versions.

_rcopy

int _rcopy(&label, number)

unsigned long label;

long number;

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 592 of 782
Apr 01, 2011

[Overview]

- Copies default data or RAM textNote (1 byte).

Note Data section with default value which is to be allocated to RAM, and text section for internal RAM.

[Format]

[Description]

- _rcopy1(&label, number) copies the default value data of section number number to be copied, or text to be

allocated to RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated

starting at the address following the address indicated by label. If -1 is specified as number, all sections in the

rompsec section are copied. Section number number is a positive number that starts from 1.

- By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to

the rompsec section are specified by the "-p" or "-t" option of the ROMization processor, they are allocated in the

order in which they are specified.

- With CubeSuite+, on the Property panel, from the [ROMization Process Options] tab, in the [Section List] category,

set the [Output ROMization section file] property to [Yes]. A C source header file that makes "number" and "label"

correspond to each other by #define is generated, and number can be specified by a label name.

- See "B.4.5 Example of using copy function" for specific examples.

[Return value]

[Cautions]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.

- _rcopy1 copies data in accordance with the information generated by the ROMization processor.

When executing _rcopy1, it is not possible to add an offset to the destination address.

- No data is copied if data may be overwritten as a result of copying.

- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy1, label. If

any other value or address is specified, the result is not guaranteed.

- The _rcopy1 and _rcopy functions are identical. _rcopy is used to maintain compatibility with old versions.

_rcopy1

int _rcopy1(&label, number)

unsigned long label;

long number;

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 593 of 782
Apr 01, 2011

[Overview]

- Copies default data or RAM textNote (2 byte).

Note Data section with default value which is to be allocated to RAM, and text section for internal RAM.

[Format]

[Description]

- _rcopy2(&label, number) copies the default value data of section number number to be copied, or text to be

allocated to RAM, to the RAM area 2 byte at a time, based on the information in the rompsec section allocated

starting at the address following the address indicated by label. If -1 is specified as number, all sections in the

rompsec section are copied. Section number number is a positive number that starts from 1.

- By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to

the rompsec section are specified by the "-p" or "-t" option of the ROMization processor, they are allocated in the

order in which they are specified.

- With CubeSuite+, on the Property panel, from the [ROMization Process Options] tab, in the [Section List] category,

set the [Output ROMization section file] property to [Yes]. A C source header file that makes "number" and "label"

correspond to each other by #define is generated, and number can be specified by a label name.

- See "B.4.5 Example of using copy function" for specific examples.

[Return value]

[Cautions]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.

- _rcopy2 copies data in accordance with the information generated by the ROMization processor.

When executing _rcopy2, it is not possible to add an offset to the destination address.

- No data is copied if data may be overwritten as a result of copying.

- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy2, label. If

any other value or address is specified, the result is not guaranteed.

_rcopy2

int _rcopy2(&label, number)

unsigned long label;

long number;

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 594 of 782
Apr 01, 2011

[Overview]

- Copies default data or RAM textNote (4 byte).

Note Data section with default value which is to be allocated to RAM, and text section for internal RAM.

[Format]

[Description]

- _rcopy4(&label, number) copies the default value data of section number number to be copied, or text to be

allocated to RAM, to the RAM area 4 byte at a time, based on the information in the rompsec section allocated

starting at the address following the address indicated by label. If -1 is specified as number, all sections in the

rompsec section are copied. Section number number is a positive number that starts from 1.

- By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to

the rompsec section are specified by the "-p" or "-t" option of the ROMization processor, they are allocated in the

order in which they are specified.

- With CubeSuite+, on the Property panel, from the [ROMization Process Options] tab, in the [Section List] category,

set the [Output ROMization section file] property to [Yes]. A C source header file that makes "number" and "label"

correspond to each other by #define is generated, and number can be specified by a label name.

- See "B.4.5 Example of using copy function" for specific examples.

[Return value]

[Cautions]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.

- _rcopy4 copies data in accordance with the information generated by the ROMization processor.

When executing _rcopy4, it is not possible to add an offset to the destination address.

- No data is copied if data may be overwritten as a result of copying.

- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy4, label. If

any other value or address is specified, the result is not guaranteed.

_rcopy4

int _rcopy4(&label, number)

unsigned long label;

long number;

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 595 of 782
Apr 01, 2011

B.4.5 Example of using copy function

(1) To transfer all sections in 1-byte units

The label references an absolute address when the ca850's ROMization option has been specified as shown

above. Therefore, describe as follows to call _rcopy() in an assembler source program.

(2) To transfer sections 1 to 6 in 4-byte units and sections 7 to 11 in 1-byte units

extern unsigned long _S_romp;

main()

{

 int ret;3

 ret = _rcopy(&_S_romp, -1);

 /* -Xr specifies a global label having an absolute value. */

}

.extern __S_romp, 4 -- Declared as an external label

-- Calls rcopy with absolute address of __S_romp as first argument and -1 as second
argument

mov #__S_romp, r6

mov -1, r7

jarl __rcopy, lp

extern unsigned long _S_romp;

main()

{

 int ret, num;

 for(num = 1; num<=6; num++) {

 ret = _rcopy4(&_S_romp, num);

 if(ret == -1) {

 /* Error processing */

 }

 }

 for(num = 7; num <= 11; num++) {

 ret = _rcopy1(&_S_romp, num);

 if(ret == -1) {

 /* Error processing */

 }

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 596 of 782
Apr 01, 2011

(3) Example 1 of incorrect specification

(4) Example 2 of incorrect specification

- The section number to be specified as number is a positive number that starts from 1.

The relationship between the section name and section number can be referenced from the memory map.

When CubeSuite+ is used, on the Property panel, from the [ROMization Process Options] tab, in the [Section

List] category, set the [Output ROMization section file] property to [Yes]. A C language header file in which

correspondence between the section number and label is established can be created. In other words, a label

can be used as number.

- If a section number or -1 is specified as number, nothing is copied.

- If two or more RAMs exist and two or more copy routines are used, and if -1 is specified as number, data

cannot be correctly copied due to problems such as alignment of all sections.

Do not specify -1 as number; specify a section number.

- If -1 is specified as number, data is copied in the order of section numbers.

If there are any sections that are not copied during this operation due to one of the problems above, a value of

-1 is returned.Sections following the section in which a problem has occurred are not copied.

 }

}

extern unsigned long _S_romp;

char *cp;

func()

{

 int ret;

 /* First argument is gp relative value because copied to variable */

 cp = &_S_romp;

 ret = _rcopy(cp, -1);

}

extern unsigned long _S_romp;

int i;

func()

{

 int ret;

 /* First argument is gp relative value because copied to variable */

 i = 0x100;

 ret = _rcopy(i, -1);

}

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 597 of 782
Apr 01, 2011

B.4.6 Method for manipulating

This section explains how to manipulate the ROMization processor.

(1) Command input method

Enter the following from the command prompt.

(2) Set options in CubeSuite+

This section describes how to set ROMization process options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [ROMization Process Options] tab.

You can set the various ROMization process options by setting the necessary properties in this tab.

Figure B-35. Property Panel: [Romization Process Option] Tab

B.4.7 Option

This section explains how to manipulate the ROMization processor.

The types and explanations for ROMization process options are shown below.

Table B-16. ROMization Process Options

C:\>romp850[option] ... file-name

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Classification Option Description

File +err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-o Specifies the name of the object file to be generated.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 598 of 782
Apr 01, 2011

ROMization

processor

-Ximem_overflow=warning Controls checking when the internal ROM/RAM overflows.

-b Regards the specified label value as the start address of the rompsec

section to be created.

-d Creates an object file that includes only a rompsec section.

-i Does not check for the duplicate addresses of the input file and output file.

-m Outputs the memory map of the object file to be created.

-p Inserts the contents of the data and sdata attribute sections and the

corresponding address and size information into the rompsec section.

-rom_less Does not check a peripheral allocation error of the internal ROM for the

rompsec section.

-t Inserts the contents of the text and const attribute sections and the

corresponding address and size information into the rompsec section.

Other -F Searches a device file from the specified folder.

-V Outputs the version information of the C compiler to the standard error

output.

-help Outputs option descriptions to the standard error output.

@ Handles the specified file as a command file.

Classification Option Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 599 of 782
Apr 01, 2011

The options related to the file are as follows.

- +err_file

- -err_file

- -o

+err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

File

+err_file=file

C:\>romp850 +err_file=err a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 600 of 782
Apr 01, 2011

-err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C:\>romp850 -err_file=err a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 601 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

This option specifies romp.out as the name of the object file to be generated.

[Function Description]

- This option specifies ofile as the name of the object file to be generated.

[Example of use]

- To specify test.out as the name of the object file to be generated, describe as:

-o ofile

C:\>romp850 -o test.out a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 602 of 782
Apr 01, 2011

The ROMization processor options are as follows.

- -Ximem_overflow=warning

- -b

- -d

- -i

- -m

- -p

- -rom_less

- -t

-Ximem_overflow=warning

[Description format]

- Interpretation when omitted

A error message is output when overflowing and processing is stopped.

[Function Description]

- This option controls checking when the internal ROM/RAM overflows.

- This option outputs a warning message when overflowing and continues processing.

[Example of use]

- To control checking when the internal ROM/RAM overflows, describe as:

ROMization processor

-Ximem_overflow=warning

C:\>romp850 -Ximem_overflow=warning a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 603 of 782
Apr 01, 2011

-b

[Description format]

- Interpretation when omitted

Label value _ _ S _ r o m p is regarded as the start address of the rompsec section to be created.

[Function Description]

- This option specifies label value label as the start address of the rompsec section to be created.

- If the specified label does not exist in the object file or if the option is specified more than once, a message is

output and processing is stopped.

[Example of use]

- To specify label value "__rompack" as the start address of the rompsec section to be created, describe as:

-b label

C:\>romp850 -b __rompack a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 604 of 782
Apr 01, 2011

-d

[Description format]

- Interpretation when omitted

A section with the text attribute is included.

[Function Description]

- This option creates an object file that includes only a rompsec section; no text-attribute section is included in the

file to be created.

[Example of use]

- To create an object file that includes only a rompsec section; no text-attribute section is included in the file to be

created, describe as:

-d

C:\>romp850 -d a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 605 of 782
Apr 01, 2011

-i

[Description format]

- Interpretation when omitted

The linker checks for the duplicate addresses of the input file and output file and outputs the following message

and stops linking if an illegalities is found.

[Function Description]

- This option does not check for the duplicate addresses of the input file and output file.

[Example of use]

- Not to check for the duplicate addresses of the input file and output file, describe as:

-i

C:\>romp850 -i a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 606 of 782
Apr 01, 2011

-m

[Description format]

- Interpretation when omitted

No link map is output.

[Function Description]

- This option outputs to mapfile a memory map of the object file to be created.

- If mapfile is omitted, the link map is output to the standard output.

[Example of use]

- To output to "mapfile" a memory map of the object file to be created, describe as:

-m[=mapfile]

C:\>romp850 -m=map a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 607 of 782
Apr 01, 2011

-p

[Description format]

- Interpretation when omitted

The contents of all the data and sdata attribute sections and the sections allocated to the internal instruction RAM

and the corresponding address and size information are inserted into the rompsec section.

[Function Description]

- This option inserts the contents of section section and the corresponding address and size information into the

rompsec section.

- This option is related to data and sdata attribute sections.

- If this option is specified more than once, insertion to the rompsec section occurs according to the specified order.

- If the specified section does not exist in the object file, a message is output and processing is stopped.

- The section name cannot include blank spaces.

[Example of use]

- To insert the contents of the section (.sdata) and the corresponding address and size information into the rompsec

section, describe as:

-p section

C:\>romp850 -p .sdata a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 608 of 782
Apr 01, 2011

-rom_less

[Description format]

- Interpretation when omitted

A peripheral allocation error of the internal ROM is not checked for the rompsec section.

[Function Description]

- This option does not check a peripheral allocation error of the internal ROM for the rompsec section.

- It is recommended to specify this option in the ROM-less mode.

- Checking of the overflow of the internal ROM is not supported when the single-chip mode is selected.

- Invalidate checking of the overflow of the internal ROM and check the overflow on the dump tool.

[Example of use]

- Not to check a peripheral allocation error of the internal ROM for the rompsec section, describe as:

-rom_less

C:\>romp850 -rom_less a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 609 of 782
Apr 01, 2011

-t

[Description format]

- Interpretation when omitted

The contents of the sections allocated to the internal instruction RAM and the corresponding address and size

information are inserted into the rompsec section.

[Function Description]

- This option inserts the contents of section section and the corresponding address and size information into the

rompsec section.

- This option is related to text and const attribute sections.

- If this option is specified more than once, insertion to the rompsec section occurs according to the specified order.

- If the specified section does not exist in the object file, a message is output and processing is stopped.

- Only sections having either a text or const attribute can be specified by this option. If any other attribute of section

is specified, a message is output and processing is stopped.

- The section name cannot include blank spaces.

- If this option specifies a particular section of an input file linked specifying a device file with internal instruction

RAM, sections allocated to unspecified internal instruction RAM will not be placed in the rompsec section, and will

also be deleted from the output file.

[Example of use]

- To insert the contents of the section (.text) and the corresponding address and size information into the rompsec

section, describe as:

-t section

C:\>romp850 -t .text a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 610 of 782
Apr 01, 2011

Other options are as follows.

- -F

- -V

- -help

- @

-F

[Description format]

- Interpretation when omitted

The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder devpath.

[Example of use]

- To search a device file from folder D:\dev, describe as:

Other

-F devpath

C:\>romp850 -F D:\dev a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 611 of 782
Apr 01, 2011

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version information of the ROMization processor to the standard error output and

terminates processing.

[Example of use]

- To output the version information of the ROMization processor to the standard error output, describe as:

-V

C:\>romp850 -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 612 of 782
Apr 01, 2011

-help

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs option descriptions of the ROMization processor to the standard error output.

[Example of use]

- To output option descriptions to the standard error output, describe as:

-help

C:\>romp850 -help

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 613 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>romp850 @command

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 614 of 782
Apr 01, 2011

B.5 Hex Converter

The hex converter (hx850) inputs an executable object file output by the ROMization processor and converts the format

of that file into a hex (hexadecimal) format.

If the application does not require the use of the ROMization processor (e.g. there are no default data in the

application), then the executable object file output by the linker is input.

Figure B-36. Operation Flow of Hex Converter

B.5.1 I/O files

The hex converter enables the following files to be handled as input file.

The following formats can be specified as hex format output.

(1) Intel hex format

- Intel expanded hex format

(2) Tektronix hex format

- Expanded Tektronix hex format

(3) Motorola hex format

- S type format (standard address)

- S type format (32-bit address)

Note Addresses of each line in the hex format are output in ascending order.

See "3.3 Hex Converter" for details about output lists.

B.5.2 Method for manipulating

This section explains how to manipulate the hex converter.

(1) Command input method

Enter the following from the command prompt.

file1.out Executable object output by the ld850 or romp850

C:\>hx850 [option] ... file-name

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Hex converter

Executable object file Intel hex format file

Motorola hex format file

Textronix hex format file

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 615 of 782
Apr 01, 2011

(2) Set options in CubeSuite+

This section describes how to set hex convert options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [Hex Convert Options] tab.

You can set the various hex convert options by setting the necessary properties in this tab.

Figure B-37. Property Panel: [Hex Convert Option] Tab

B.5.3 Option

This section explains hex converter.

The types and explanations for hex convert options are shown below.

Table B-17. Hex Convert Options

Classification Option Description

File +err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-o Outputs the hex-converted result to the specified file.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 616 of 782
Apr 01, 2011

Format -b Regards the specified value as the maximum block length.

-d Specifies the offset of the address to be output.

-f Specifies the hex format.

-I Converts and outputs code in the specified section.

-S Converts and outputs a symbol table.

-U Converts into hex format and outputs all the codes in the area specified by the specified

address to the specified size.

-x When converts and outputs the symbol table, also converts and outputs local symbols.

-rom_less Disables use of the information of the internal ROM area defined by the device file when the

-U option is specified.

-z Generates as many null characters (\0) as the size of a section for a section with the section

type NOBITS and section attribute A.

Other -F Searches a device file from the specified folder.

-V Outputs the version information of the C compiler to the standard error output.

@ Handles the specified file as a command file.

Classification Option Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 617 of 782
Apr 01, 2011

The options related to the file are as follows.

- +err_file

- -err_file

- -o

+err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

File

+err_file=file

C:\>hx850 +err_file=err -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 618 of 782
Apr 01, 2011

-err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C:\>hx850 -err_file=err -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 619 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

The hex-converted result to the file is output to the standard output.

[Function Description]

- This option outputs the hex-converted result to the file named ofile.

[Example of use]

- To output the hex-converted result to the file to the file (test), describe as:

-o ofile

C:\>hx850 -o test a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 620 of 782
Apr 01, 2011

The options related to the format are as follows.

- -b

- -d

- -f

- -I

- -S

- -U

- -x

- -rom_less

- -z

-b

[Description format]

- Interpretation when omitted

The default value for each hex format is used as the block length.

[Function Description]

- This option regards the value specified by num as the maximum block length (or, in the case of the Intel expanded

hex format or Motorola S type hex format, the number of bytes of the code indicated in one data record).

- Specify a decimal number or a hexadecimal number that starts with 0x or 0X as num.

Table B-18. HEX Format Block/Record

[Example of use]

- To specify 255 as the maximum number of bytes of the code indicated in one Intel expanded hex format data

record, describe as:

Format

-bnum

HEX Format Range of Specifiable Values Default Value

Intel expanded 1 to 255 (0x01 to 0xff) 31 (0x1f)

Motorola S type 1 to 251 (0x01 to 0xfb) 80 (0x50)

Motorola S type (32-bit address) 1 to 250 (0x01 to 0xfa) 80 (0x50)

Extended tektronix 16 to 255 (0x10 to 0xff) 255 (0xff)

C:\>hx850 -b255 -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 621 of 782
Apr 01, 2011

-d

[Description format]

- Interpretation when omitted

The address to be output is not calculated as the offset.

[Function Description]

- This option regards the address to be output as the offset from num.

- Specify a decimal number or a hexadecimal number that starts with 0x or 0X as num.

- The range that can be specified for the value is 0H to 0xfffffffe.

- The address to be output is the offset value from the specified value.

- The default value is 0.

[Example of use]

- To regard the address to be output as the offset from 0x10000, describe as:

-dnum

C:\>hx850 -d0x10000 -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 622 of 782
Apr 01, 2011

-f

[Description format]

- Interpretation when omitted

Intel expanded hex format is used.

[Function Description]

- This option uses of the hex format specified by character c.

- The meanings of character c are as follows.

- If the -fT and -U options are specified at the same time, -U is ignored.

[Example of use]

- To use the Motorola S type (32-bit address) format, describe as:

-fc

I Intel expanded

S Motorola S type

s Motorola S type (32-bit address)

T Extended tektronix

C:\>hx850 -fs -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 623 of 782
Apr 01, 2011

-I

[Description format]

- Interpretation when omitted

All sections having the section type other than NOBITS and section attribute A are converted.

[Function Description]

- This option converts and outputs code in the section specified by section name name. In other words, the hex

converter converts in section units, not in segment units.

- If a section (section having the section type NOBITS and section attribute A) is specified for the data for which no

default value is specified, null characters (\0) are created corresponding to the section's size.

- The hex converter converts in section units, not in segment units.

- The section name cannot include blank spaces.

- If this option and -U option are specified at the same time, this option is ignored.

[Example of use]

- To convert and output code in the .text section, describe as:

-Iname

C:\>hx850 -I.text -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 624 of 782
Apr 01, 2011

-S

[Description format]

- Interpretation when omitted

No symbol table is converted and output.

[Function Description]

- This option converts and outputs a symbol table.

- This option is valid only when the expanded Tektronix hex format is specified (via the -fT option).

- If this option and -U option are specified at the same time, this option is ignored.

[Example of use]

- To convert and output a symbol table, describe as:

-S

C:\>hx850 -fT -S -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 625 of 782
Apr 01, 2011

-U

[Description format]

- Interpretation when omitted

All sections having the section type other than NOBITS and section attribute A are converted.

[Function Description]

- This option converts into hex format and outputs all the codes in the area specified by address start to size size.

- If start and size are omitted, all the codes in the internal ROM area defined by the device file are converted into hex

format and output.

- Of the specified area, the unused area is filled with num. 1 or 2 can be specified as num. If num does not occupy

2 or 4 digits, it is assumed that 0 are used to fill the empty digit(s).

- The lower 1 byte of 2 bytes specified as num is allocated to the higher address and the higher 1 byte is allocated to

the lower address.

- If num is omitted, the unused area is filled with 0xff.

- This option cannot be specified when the extended Tektronix hex format is specified.

- If this option is specified, the -I, -S, -x, and -Z options are ignored.

[Example of use]

- All the codes in the internal ROM area defined by the device file are converted into hex format and output. The

unused area is filled with 0xff.

-U

-Unum

-Unum,start,size

-Ustart,size

C:\>hx850 -U -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 626 of 782
Apr 01, 2011

-x

[Description format]

- Interpretation when omitted

When this option converts and outputs the symbol table, it also converts and outputs only global symbols.

[Function Description]

- When this option converts and outputs the symbol table, it also converts and outputs local symbols.

- This option is valid only when the -S option is specified.

- If this option and -U option are specified at the same time, this option is ignored.

[Example of use]

- When this option converts and outputs the symbol table, it also converts and outputs local symbols.

-x

C:\>hx850 -fT -S -x -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 627 of 782
Apr 01, 2011

-rom_less

[Description format]

- Interpretation when omitted

The information of the internal ROM area defined by the device file is used.

[Function Description]

- This option disables use of the information of the internal ROM area defined by the device file when the -U option

is specified.

It also disables output of a warning message if the area subject to hex conversion exceeds the internal ROM area.

- If this option and -U option are specified at the same time, start, size of the -U option must be specified.

- If this option and start, size of the -U option is omitted, the internal ROM area defined in the device file is

converted.

If the area subject to hex conversion exceeds the internal ROM area, a warning message is output.

[Example of use]

- To disable use of the information of the internal ROM area defined by the device file and specify the -U option,

describe as:

-rom_less

C:\>hx850 -rom_less -U0xff,0x0,1000 -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 628 of 782
Apr 01, 2011

-z

[Description format]

- Interpretation when omitted

All sections having the section type other than NOBITS and section attribute A are converted.

[Function Description]

- This option generates as many null characters (\0) as the size of a section for a section with the section type

NOBITS and section attribute A (section for data for which no default value is specified, such as the .bss and .sbss

section).

- If this option and -U option are specified at the same time, this option is ignored.

[Example of use]

- To generate as many null characters (\0) as the size of a section for a section with the section type NOBITS and

section attribute A, describe as:

-z

C:\>hx850 -z -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 629 of 782
Apr 01, 2011

Other options are as follows.

- -F

- -V

- @

-F

[Description format]

- Interpretation when omitted

The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder devpath.

[Example of use]

- To search a device file from folder D:\dev, describe as:

Other

-F devpath

C:\>hx850 -F D:\dev -o a.hex a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 630 of 782
Apr 01, 2011

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version information of the hex converter to the standard error output and terminates

processing.

[Example of use]

- To output the version information of the hex converter to the standard error output, describe as:

-V

C:\>hx850 -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 631 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>hx850 @command

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 632 of 782
Apr 01, 2011

B.6 Archiver

The archiver is a utility that couples specified relocatable object files and generates one archive file. Therefore, this

utility is used to combine two or more objects to create a "library".

In the CA850, "ar850" is the archiver.

Figure B-38. Operation Flow of Archiver

The archive file generated by the archiver can be specified as an input file to the linker. If an archive file is specified,

the ld850 searches the necessary objects from the specified archive file, and links only the objects found.

B.6.1 Method for manipulating

This section explains how to manipulate the archiver.

(1) Command input method

Enter the following from the command prompt.

Note When files are linked within an archive file, they are called members. Each member's name is the same as

its original file name.

(2) Set options in CubeSuite+

This section describes how to set archive options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [Archive Options] tab.

You can set the various archive options by setting the necessary properties in this tab.

C:\>ar850 [error-output-specification-option] key [option][member-nameNote] archive-file-
name [member-name o file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Archive file

Archiver

Object file

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 633 of 782
Apr 01, 2011

Figure B-39. Property Panel: [Archive Options] Tab

When starting the archiver from the command line, collect a group of object files and create an archive file. Various

detailed operations can be performed within archive files, such as manipulation of archive file objects.

By contrast, when using CubeSuite+ to create an archive file, start by compiling and assembling source files, then

collect the resulting objects into an archive file. Operations cannot be executed within complete archive files via

CubeSuite+. The user should keep this difference in mind when choosing between command-line activation and

activation via CubeSuite+.

B.6.2 Key/Option

This section explains keys and options of the archiver.

A key is an item that must be specified for activation, while an option can be omitted.

The types and explanations for archiver keys/options are shown below.

Table B-19. Archive Keys

Classification Key Description

Key V Outputs the version information of the archiver to the standard error output.

d Deletes the specified member from the specified archive file.

m Moves the specified member to the end of the specified archive file.

ma Moves the specified member to the position immediately after the member of the specified

archive file.

mb Moves the specified member to the position immediately before the member of the specified

archive file.

q Adds the specified file to the end of the specified archive file.

r Replaces the specified file with the member having the same name in the specified archive

file.

ra Replaces the specified file with the member having the same name in the specified archive

file, and then moves the specified file to the position immediately after the specified member.

ru If the specified file has been updated more recently than the member having the same name

in the specified archive file, replaces the member with the specified file.

t Outputs only the member name of the member existing in the specified archive file.

x Extracts the member in the specified archive file and creates files having the same names.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 634 of 782
Apr 01, 2011

Table B-20. Archive Options

Classification Option Description

Archiver c Does not output messages.

v Outputs the execution status of the archiver.

@ Handles the specified file as a command file.

Output file +err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 635 of 782
Apr 01, 2011

The archiver keys are as follows.

- V

- d

- m

- ma

- mb

- q

- r

- ra

- ru

- t

- x

V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key outputs the version information of the archiver to the standard error output and terminates processing.

[Example of use]

- To output the version information of the archiver to the standard error output, describe as:

Key

V

C:\>ar850 V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 636 of 782
Apr 01, 2011

d

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key deletes the specified member from the specified archive file.

[Example of use]

- To delete the member (sub.o) from the archive file (libarc.a), describe as:

d

C:\>ar850 d libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 637 of 782
Apr 01, 2011

m

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key moves the specified member to the end of the specified archive file.

[Example of use]

- To move the member (sub.o) to the end of the archive file (libarc.a), describe as:

m

C:\>ar850 m libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 638 of 782
Apr 01, 2011

ma

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key moves the specified member to the position immediately after member member of the specified archive

file.

- If member is omitted, processing is stopped.

[Example of use]

- To move the member (sub.o) to the position immediately after member (main.o) of the archive file (libarc.a),

describe as:

ma member

C:\>ar850 ma main.o libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 639 of 782
Apr 01, 2011

mb

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key moves the specified member to the position immediately before member member of the specified archive

file.

- If member is omitted, processing is stopped.

[Example of use]

- To move the member (sub.o) to the position immediately before member (main.o) of the archive file (libarc.a),

describe as:

mb member

C:\>ar850 mb main.o libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 640 of 782
Apr 01, 2011

q

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key adds the specified file to the end of the specified archive file.

There is no checking as to whether or not a member with the same name as the specified file exists.

- If the specified archive file does not exist, a new archive file that contains the specified file is created.

There is no checking as to whether or not a member with the same name as the specified file exists.

- If there is a members with the same name, the archive file contains multiple members with the same name, and

the oldest member will be selected during linking.

- Be sure to delete on old archive file if a new file is created.

- To replace the member with the member having the same name, use the r key.

[Example of use]

- To add the member (sub.o) to the end of the archive file (libarc.a), describe as:

q

C:\>ar850 q libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 641 of 782
Apr 01, 2011

r

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key replaces the specified file with the member having the same name in the specified archive file.

- If the member with the same name as the specified file does not exist in the specified archive file, the specified file

is added to the end of the specified archive file.

- If the specified archive file does not exist, a new archive file that contains the specified file is created.

[Example of use]

- To replace the member (sub.o) in the archive file (libarc.a), describe as:

r

C:\>ar850 r libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 642 of 782
Apr 01, 2011

ra

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key replaces the specified file with the member having the same name in the specified archive file, and then

moves the specified file to the position immediately after member member.

- If the member with the same name as the specified file does not exist in the specified archive file, the specified file

is added to the end of the specified archive file.

- If member is omitted, processing is stopped.

[Example of use]

- To exchange the member (sub.o) in the archive file (libarc.a), and then moves the member to the position

immediately after the member (main.o), describe as:

ra member

C:\>ar850 ra main.o libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 643 of 782
Apr 01, 2011

ru

[Description format]

- Interpretation when omitted

None

[Function Description]

- If the specified file has been updated more recently than the member having the same name in the specified

archive file, this key replaces the member with the specified file.

- If the member with the same name as the specified file does not exist in the specified archive file, the specified file

is added to the end of the specified archive file.

- If the specified archive file does not exist, a new archive file that contains the specified file is created.

[Example of use]

- If sub.o has been updated more recently than sub.o in the archive file (libarc.a), to replace the members, describe

as:

ru

C:\>ar850 ru libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 644 of 782
Apr 01, 2011

t

[Description format]

- Interpretation when omitted

None

[Function Description]

- If a member name is specified, this key outputs only the member name of the member existing in the specified

archive file.

- If a member name is not specified, this key outputs (via the standard output) the names of all members existing in

the specified archive file.

[Example of use]

- To output the names of all members existing in the archive file (libarc.a), describe as:

t

C:\>ar850 t libarc.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 645 of 782
Apr 01, 2011

x

[Description format]

- Interpretation when omitted

None

[Function Description]

- If a member name is specified and if the specified member exists in the specified archive file, this key extracts that

member and creates a file having the same name.

- If a member name is not specified, this key extracts all of the members existing in the specified archive file and

creates files having the same names. The contents of the archive file are not changed.

[Example of use]

- To extracts the member (sub.o) existing in the archive file (libarc.a) and creates a file, describe as:

x

C:\>ar850 x libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 646 of 782
Apr 01, 2011

The options related to the archiver are as follows.

- c

- v

- @

c

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option does not output messages.

[Example of use]

- Not to output messages, describe as:

Archiver

c

C:\>ar850 tc libarc.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 647 of 782
Apr 01, 2011

v

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the execution status of the archiver using the format "[a|d|q|m|r|x] - file".

[Example of use]

- To display the execute status, describe as:

v

a - file Add

d - file Delete

q - file Create new, or add

m - file Move

r - file Replace

x - file Extract

C:\>ar850 dv libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 648 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>ar850 @command

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 649 of 782
Apr 01, 2011

The options related to the output file are as follows.

- +err_file

- -err_file

+err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

Output file

+err_file=file

C:\>ar850 +err_file=err ar850 d libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 650 of 782
Apr 01, 2011

-err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C:\>ar850 -err_file=err ar850 d libarc.a sub.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 651 of 782
Apr 01, 2011

B.7 Section File Generator

This section explains a section file and the section file generator.

B.7.1 Section file

The section file is a file that define the sections to which external variables (global variables) and static variables that

have been declared in a C source file are allocated. The sections to which these variables are allocated can be

determined at compilation by referencing the section file. As the default setting, as many high access-frequency

variables as possible are assigned to the .tidata-attribute, .tidata.word-attribute, .tidata.byte-attribute, .sidata-attribute,

and .sedata-attribute sections allocated to the internal RAM area of the V850 microcontrollers.

The C compiler provides the following three methods for declaring external variables in C source files and allocating the

variables to the intended sections.

(1) Use the compile option (-Gnum) to limit the data size when allocating to a .sdata section or .sbss section.

(2) Use the #pragma section directive to determine the section for allocation of each variable.

(3) Use a section file to allocate the specified variables when the compiler is activated.

Method (1) is applicable in cases where external variables that do not exceed a certain size can be allocated to either

.sdata or .sbss sections. Since this specification is via a compile option, there is no need to add changes to the C source

file.

Method (2) enables a freer choice of the section for allocation. Here, the #pragma section directive is used in the C

source file to explicitly specify the target section for allocation. However, this method requires that changes be added to

the C source file.

Methods (1) and (2) cannot be used much if you want to freely set the section for allocation, but don't want to use the

#pragma section instruction because you want your code to be strictly ANSI compliant, or you want to port C source files

compiled on other than the CA850 to the CA850 with minimal modifications.

Use the section file in method (3) to resolve this issue.

Define the following for all external variables and static variables in the section file.

- The names of C source files where the static variables are declared

- External variable names, static variable names, and the names of the sections where they are allocated

Also, by having the section file referenced by the CA850, the variables can be allocated to the intended locations

without having to modify the C source file.

With the CA850, specification of a compile option (-Xcre_sec_data or -Xcre_sec_data_only) generates a frequency

information file, which can be input to the section file generator to generate a section file.

However, the section file generator is designed to output information for allocating data to tidata-attribute, tidata.word-

attribute, tidata.byte-attribute, sidata-attribute, sedata-attribute, and sdata-attribute sections that are intended to be

allocated in the internal RAM of V850 microcontroller.

Since a section file is a text-format file, it can be edited and modified by using an editor. In other words, changes can

be made in this way to the section file that is output by the section file generator in order to create the final (completed)

section file.

When compilation is performed once again using the completed section file (with the -Xsec_file option specified), the

object file whose external variables and static variables are allocated to the specified sections is completed.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 652 of 782
Apr 01, 2011

Figure B-40. Image of Compilation Using Section File Specifications

(1) Compile once using the -Xcre_sec_data option to generate a section file.

(2) Use the section file generator to convert the frequency information file into a section file.

(3) Edit the section file, if necessary.

(4) Compile once more using the -Xsec_file option to input the section file.

See "3.4 Section File Generator" for details about the section file's format.

The variables whose allocation can be specified via a section file are external variables (global variables), static

variables in files (static variables that are declared within a file), and static variables in functions (static variables that are

declared within a function). Allocation specifications cannot be made using character string constants (such as "abc").

When compiling each of two or more C source files and linking them to generate an object file, compile each file

specifying its frequency information output, which generates two or more .sec files. However, when generating these

section files, all the .sec files must be input to the section file generator at once and then integrated. Otherwise, the

variable information for the external variables will not be integrated, and valid section files cannot be generated.

Variables specified in the section file are the same as if they are specified for allocation to the section via the "#pragma

section" directive. Therefore, a tentative definition of an external variable is handled as a "definition", so if an external

variable is tentatively defined by two or more files, an error occurs during linking. In such cases, extern must be always

declared in a file that references external variables.

If a variable whose allocation has been specified via a section file has also been specified (via a #pragma section

directive in a C source file) to be allocated to a different section, the specification via the section file takes precedence.

Even when the "-Gnum" compile option has been specified, if a section file specifies that the variable will be allocated

to the .sdata section or .sbss section, it will be allocated to that section regardless of the num value. In other words, the

order of precedence among the specifications, "section file" specification, "#pragma section" specification, and "-Gnum"

specification, is as follows.

Section file

Section file

C source file

C source file

Compile Section file generator

-Xcre_sec_data

is specified

Re-compile

-Xsec_file is specified

(1) (2) (3)

(4)

Frequency information file

(.sec)

Object file with modified

allocation of variables

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 653 of 782
Apr 01, 2011

B.7.2 Method for manipulating

This section explains how to manipulate the section file generator.

(1) Command input method

Enter the following from the command prompt.

(2) Use from command line

This section describes how to use the section file from the command line.

(a) First, create a frequency information file. Specify the compile option "-Xcre_sec_data_only" and

compile the C source file to create a frequency information file for the external variables and static

variables in the C source file. The default file name is "source-file-name.sec".

If the -Xcre_sec_data_only option is specified along with a file name, the specified file name will be the

name of the frequency information file.

Example A frequency information file for "func1.c" is output as "secsrc"

(b) Input the generated frequency information file to the section file generator, which outputs a section

file. In this case, the generated section file specifies that variables will be allocated to tidata-attribute

sections, tidata.word-attribute sections, tidata.byte-attribute sections, sidata-attribute sections,

sedata-attribute sections, and sdata-attribute sections .

Example The three frequency information files func1.sec, func2.sec, and func3.sec are collected as one

section file, which is output as "secfile".

It is convenient to create a command file if there are a large number of files. See "(2) Command file" for

details about command files.

(c) Since the default specification for the output section file is that all variables are allocated to a .tidata-

attribute section, it may be necessary to modify the section file.

If the -O option is specified when activating the section file generator, the variables that can be

accommodated in the memory range of the .tidata-attribute section can be automatically selected in

sequence, starting from the most frequently referenced variable.

(d) Re-compile the C source file by specifying the compile option "-Xsec_file". As a result of compilation,

an object file will be generated with sections allocated in accordance with the input section file.

(Higher precedence) Section file > #pragma section > -Gnum (Lower precedence)

C:\>sf850 [option] ... file-name [file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

C:\>ca850 -cpu 3201 -Xcre_sec_data_only=secsrc func1.c

C:\>sf850 func1.sec func2.sec func3.sec -o secfile

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 654 of 782
Apr 01, 2011

Example "secfile" is input as a section file and func1.c, func2.c, and func3.c are compiled.

(3) Set options in CubeSuite+

This section describes how to set section file generate options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [Section File Generate Options] tab.

You can set the various librarian options by setting the necessary properties in this tab.

Figure B-41. Property Panel: [Section File Generate Option] Tab

C:\>ca850 -cpu 3201 -Xsec_file secfile func1.c func2.c func3.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 655 of 782
Apr 01, 2011

B.7.3 Option

This section explains section file generate options.

The types and explanations for section file generate options are shown below.

Table B-21. Section File Generate Options

Classification Option Description

Section file generator -O Determines that only the number of variables that can be allocated to the

sections to be optimized will be selected, in the order starting from highest use

frequency and outputs.

-V Outputs the version information of the section file generator to the standard

error output.

-Xcs Does not subject variables allocated to the specified section to optimization

when the -O option is specified.

-Xcv Does not subject specified variables to optimization when the -O option is

specified.

-cl Specifies the comment level of the section file to be output.

+err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-h Outputs option descriptions of the section file generator to the standard error

output.
-help

-ns Sorts variable names in the section file to be output in the order they appear.

-o Specifies the section file name to be output.

-size_tidata Limits the upper size variables allocated to the .tidata.word/.tidata.byte section.

-size_tidata_byte Limits the upper size variables allocated to the .tidata.byte section.

-size_sidata Limits the upper size variables allocated to the .sidata section.

-size_sedata Limits the upper size variables allocated to the .sedata section.

-size_sdata Limits the upper size variables allocated to the .sdata section.

-sname Sorts variable names in the section file to be output according to the dictionary

order of variable names.

-ssection Sorts variable names in the section file to be output according to the dictionary

order of section names to be allocated.

-ssize Sorts variable names in the section file to be output according to the variables

(smallest first).

-v Displays the execution process of the section file generator.

@ Handles the specified file as a command file.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 656 of 782
Apr 01, 2011

The section file generator options are as follows.

- -O

- -V

- -Xcs

- -Xcv

- -cl

- +err_file

- -err_file

- -h/-help

- -ns

- -o

- -size_tidata

- -size_tidata_byte

- -size_sidata

- -size_sedata

- -size_sdata

- -sname

- -ssection

- -ssize

- -v

- @

Section file generator

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 657 of 782
Apr 01, 2011

-O

[Description format]

- Interpretation when omitted

All variables that have appeared are output to the section file.

[Function Description]

- If c is not specified, this option determines that only the number of variables that can be allocated to the sections to

be optimized will be selected, in the order starting from highest use frequency and outputs.

- The maximum data size that can be allocated to the .tidata section is 256 bytes, which are internally divided into

.tidata.byte byte data (128 bytes) and .tidata.word word data. When this option is specified, variables are selected

until the total section size of 256 bytes is reached, at which point the variables are output to the section file.

However, selection is stopped when the byte data reaches 128 bytes.

- If 2 is specified for c, this option selects variables for each variable size that can be allocated to .tidata, sidata,

.sedata, and .sdata sections in the order starting from highest use frequency and determines that only the number

of variables that can be allocated will be selected and outputs.

[Example of use]

- To determine that only the number of variables that can be allocated to the sections to be optimized will be

selected, in the order starting from highest use frequency and outputs, describe as:

-Oc

C:\>sf850 -O main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 658 of 782
Apr 01, 2011

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version information of the section file generator to the standard error output and terminates

processing.

[Example of use]

- To output the version information of the section file generator to the standard error output, describe as:

-V

C:\>sf850 -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 659 of 782
Apr 01, 2011

-Xcs

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option does not subject variables allocated to the section specified as name to optimization when the -O or -

O2 option is specified.

- Specify name as a section file name to be specified in the link directive file.

- Replace .bss/.sbss of the bss-attribute section with .data/.sdata.

- If num is omitted, it is assumed that all section names has been specified.

- If .tidata is specified as name, it is assumed that .tidata.word and tidata.byte have been specified.

[Example of use]

- Not to subject variables allocated to the .const section to optimization, describe as:

-Xcs[=name]

C:\>sf850 -O -Xcs=.const main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 660 of 782
Apr 01, 2011

-Xcv

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option does not subject variables specified as name to optimization when the -O or -O2 option is specified.

- Specify name with the same format as "Table 3-1. Variable Types and Displays".

[Example of use]

- Not to subject variable "val" to optimization, describe as:

-Xcv=name

C:\>sf850 -O -Xcv=val main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 661 of 782
Apr 01, 2011

-cl

[Description format]

- Interpretation when omitted

-cl 1

[Function Description]

- This option specifies the comment level of the section file to be output.

- The following number can be specified as num.

[Example of use]

- To specify 2 as the comment level of the section file to be output, describe as:

-cl num

0 No comment is output.

1 A dash (-) will be output for dates and other file generation information, variable information, and variable

information outputting their descriptions if the section name, size, or section names for usage frequency external

variables are not determined.

2 If -O which outputs a format guide in addition to level 1 has been specified, variables judged not to fit in the .tidata

section are output as comments.

C:\>sf850 -cl 2 main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 662 of 782
Apr 01, 2011

+err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

+err_file=file

C:\>sf850 +err_file=err main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 663 of 782
Apr 01, 2011

-err_file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C:\>sf850 -err_file=err main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 664 of 782
Apr 01, 2011

-h/-help

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs option descriptions of the section file generator to the standard error output and terminates

processing.

[Example of use]

- To output option descriptions of the section file generator to the standard error output, describe as:

-h

-help

C:\>sf850 -help

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 665 of 782
Apr 01, 2011

-ns

[Description format]

- Interpretation when omitted

Variable names in the section file to be output are sorted in the order starting from highest use frequency.

[Function Description]

- This option sorts variable names in the section file to be output in the order they appear instead of sorting them.

[Example of use]

- To sort variable names in the section file to be output in the order they appear instead of sorting them, describe as:

-ns

C:\>sf850 -ns main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 666 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

The section file is output to the standard output.

[Function Description]

- This option specifies name as the section file name to be output.

[Example of use]

- To specify "secfile" as the section file name to be output, describe as:

-o name

C:\>sf850 -o secfile main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 667 of 782
Apr 01, 2011

-size_tidata

[Description format]

- Interpretation when omitted

-size_tidata=256

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the tidata.word/tidata.byte section

when the -O or -O2 option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 128 bytes as the upper size limit of variables allocated to the tidata.word/tidata.byte section, describe

as:

-size_tidata=num

C:\>sf850 -O -size_tidata=128 main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 668 of 782
Apr 01, 2011

-size_tidata_byte

[Description format]

- Interpretation when omitted

-size_tidata_byte=128

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the tidata.byte section when the -O

or -O2 option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 64 bytes as the upper size limit of variables allocated to the tidata.byte section, describe as:

-size_tidata_byte=num

C:\>sf850 -size_tidata_byte=64 main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 669 of 782
Apr 01, 2011

-size_sidata

[Description format]

- Interpretation when omitted

-size_sidata=32512

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the .sidata section when the -O

option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 32000 bytes as the upper size limit of variables allocated to the .sidata section, describe as:

-size_sidata=num

C:\>sf850 -size_sidata=32000 main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 670 of 782
Apr 01, 2011

-size_sedata

[Description format]

- Interpretation when omitted

-size_sidata=32768

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the .sedata section when the -O

option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 16384 bytes as the upper size limit of variables allocated to the .sedata section, describe as:

-size_sedata=num

C:\>sf850 -size_sedata=16384 main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 671 of 782
Apr 01, 2011

-size_sdata

[Description format]

- Interpretation when omitted

-size_sdata=65536

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the .sdata section when the -O

option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 32768 bytes as the upper size limit of variables allocated to the .sdata section, describe as:

-size_sdata=num

C:\>sf850 -size_sdata=32768 main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 672 of 782
Apr 01, 2011

-sname

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option sorts variable names in the section file to be output according to the dictionary order of variable names.

- If two variables have the same name, they are sorted according to the dictionary order of file names and function

names.

[Example of use]

- To sort variable names in the section file to be output according to the dictionary order of variable names, describe

as:

-sname

C:\>sf850 -sname func.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 673 of 782
Apr 01, 2011

-ssection

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option sorts variable names in the section file to be output according to the dictionary order of section names

to be allocated.

- If two section files have the same name, they are sorted in the order starting from highest use frequency.

[Example of use]

- To sort variable names in the section file to be output according to the dictionary order of section names to be

allocated, describe as:

-ssection

C:\>sf850 -ssection main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 674 of 782
Apr 01, 2011

-ssize

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option sorts variable names in the section file to be output according to the variables (smallest first).

- If two variables have the same size, they are sorted in the order starting from highest use frequency.

[Example of use]

- To sort variable names in the section file to be output according to the variables (smallest first), describe as:

-ssize

C:\>sf850 -ssize main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 675 of 782
Apr 01, 2011

-v

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option displays the execution process of the section file generator.

[Example of use]

- To display the execution process of the section file generator, describe as:

-v

C:\>sf850 -v main.sec

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 676 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>sf850 @command

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 677 of 782
Apr 01, 2011

B.7.4 Cautions

Some options become invalid if they are specified at the same time as certain other options.

- If two or more options related to sorting (-o or -cl) are specified, the one specified last is valid and the others are

invalid.

- If -V, -h, and -help are specified at the same time, the one specified first is valid, and the others are invalid.

- If -O and an option related to sorting are specified at the same time, -O is valid and the option related to sorting is

invalid.

- Use the frequency information file output by the C compiler as the input to the section file generator, without

modifying it first in any way. Operation is not guaranteed if a frequency information file with modified content has

been input.

See "3.4 Section File Generator" for details about the contents of section files output by the section file generator.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 678 of 782
Apr 01, 2011

B.8 Dump Tool

A dump tool displays the contents or information of a specified object file or archive file. It is used to check information

such as the address, attribute, and symbol name of a section/segment in a created object file or archive file.

In the CA850, "dump850" is the dump tool.

Figure B-42. Operation Flow of Dump Tool

If an archive file is input to the dump tool, and if a member that is not an object file exists in the archive file, a warning

message is output and the next member is processed; except, however, when the -e option is specified.

See "B.8.2 Option" for details about the options.

B.8.1 Method for manipulating

This section explains how to manipulate the dump tool.

(1) Command input method

Enter the following from the command prompt.

(2) Set options in CubeSuite+

This section describes how to set dump options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [Dump Options] tab.

You can set the various dump options by setting the necessary properties in this tab.

Figure B-43. Property Panel: [Dump Options] Tab

C:\>dump850 [option] ... file-name [file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Dump tool

Object file or archive file

Outputs input file contents

via standard output

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 679 of 782
Apr 01, 2011

B.8.2 Option

This section explains dump options.

The types and explanations for dump options are shown below.

Table B-22. Dump Tool Option

Classification Option Description

Dump tool -A Displays the entire contents of the specified object file or archive file.

-T Does not display the update date of the member when the contents of the archive header

are displayed.

-V Outputs the version information of the dump tool to the standard error output.

-a Displays the contents of the archiver header of all members existing in the specified file.

-b Displays the contents of debug information.

-c Displays the contents of the string table.

-d Displays data from the section indicated by the section header table.

+d Displays data up to the section indicated by the section header table.

-e Displays the contents of the member existing in the specified archive file.

-f Displays the contents of the ELF header of all members existing in the specified object

file or archive file.

-g Displays the contents of the external symbol existing in the archive symbol table of the

specified archive file.

-h Displays the contents of all section headers existing in the specified object file or archive

file.

-i Displays the contents of all program headers existing in the specified object file or archive

file.

-k Displays the contents of the global pointer table.

-l Displays the contents of line number information.

-m Displays the contents of the string existing in the archive string table of the specified file.

-n Displays the contents of the specified section.

-p Does not display the title.

-r Displays the contents of relocation information.

-s Displays the contents of the section.

-t Displays the contents of a symbol table starting from the specified symbol table entry.

+t Displays the contents of a symbol table up to the specified symbol table entry.

-v Displays a value, such as for a section attribute value, using a character string to indicate

the meaning of the value.

-z Displays contents of line number information for the function, starting from the specified

line number entry.

+z Displays contents of line number information for the function, up to the specified line

number entry.

@ Handles the specified file as a command file.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 680 of 782
Apr 01, 2011

The dump tool options are as follows.

- -A

- -T

- -V

- -a

- -b

- -c

- -d

- +d

- -e

- -f

- -g

- -h

- -i

- -k

- -l

- -m

- -n

- -p

- -r

- -s

- -t

- +t

- -v

- -z

- +z

- @

Dump tool

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 681 of 782
Apr 01, 2011

-A

[Description format]

- Interpretation when omitted

-A

[Function Description]

- This option displays the entire contents of the specified object file or archive file.

- Specifying this option is the same as specifying "-abcfghiklmrst". If no option is specified, it is assumed that the -A

option has been specified.

[Example of use]

- To display the entire contents of a.out, describe as:

-A

C:\>dump850 -A a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 682 of 782
Apr 01, 2011

-T

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option does not display the update date of the member when the contents of the archive header are

displayed.

[Example of use]

- Not to display the update date of the member when the contents of the archive header are displayed.

-T

C:\>dump850 -T libarc.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 683 of 782
Apr 01, 2011

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This key outputs the version information of the dump tool to the standard error output and terminates processing.

[Example of use]

- To output the version information of the dump tool to the standard error output, describe as:

-V

C:\>dump850 -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 684 of 782
Apr 01, 2011

-a

[Description format]

- Interpretation when omitted

-a

[Function Description]

- This option displays the contents of the archiver header of all members existing in the specified archive file.

[Example of use]

- To display the contents of the archiver header of all members existing in libarc.a, describe as:

-a

C:\>dump850 -a libarc.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 685 of 782
Apr 01, 2011

-b

[Description format]

- Interpretation when omitted

-b

[Function Description]

- This option displays the contents of debug information.

[Example of use]

- To display the contents of debug information, describe as:

-b

C:\>dump850 -b a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 686 of 782
Apr 01, 2011

-c

[Description format]

- Interpretation when omitted

-c

[Function Description]

- This option displays the contents of the string table.

[Example of use]

- To display the contents of the string table, describe as:

-c

C:\>dump850 -c a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 687 of 782
Apr 01, 2011

-d

[Description format]

- Interpretation when omitted

All sections are displayed.

[Function Description]

- This option displays data from the section indicated by the section header table index num.

[Example of use]

- To display data from the section indicated by the section header table index 2, describe as:

-d num

C:\>dump850 -d 2 a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 688 of 782
Apr 01, 2011

+d

[Description format]

- Interpretation when omitted

All sections are displayed.

[Function Description]

- This option displays data up to the section indicated by the section header table index num.

[Example of use]

- To display data up to the section indicated by the section header table index 9, describe as:

+d num

C:\>dump850 +d 9 a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 689 of 782
Apr 01, 2011

-e

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option displays the contents of members (other than archive symbol table, archive string table, and object file)

existing in the specified archive file.

[Example of use]

- To display the contents of members (other than archive symbol table, archive string table, and object file) existing

in libarc.a, describe as:

-e

C:\>dump850 -e libarc.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 690 of 782
Apr 01, 2011

-f

[Description format]

- Interpretation when omitted

-f

[Function Description]

- This option displays the contents of the ELF header of all members existing in the specified object file or archive

file.

[Example of use]

- To display the contents of the ELF header of members existing in a.out, describe as:

-f

C:\>dump850 -f a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 691 of 782
Apr 01, 2011

-g

[Description format]

- Interpretation when omitted

-g

[Function Description]

- This option displays the contents of the external symbol existing in the archive symbol table of the specified

archive file.

[Example of use]

- To display the contents of the external symbol existing in the archive symbol table of libarc.a, describe as:

-g

C:\>dump850 -g libarc.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 692 of 782
Apr 01, 2011

-h

[Description format]

- Interpretation when omitted

-h

[Function Description]

- This option displays the contents of all section headers existing in the specified object file or archive file.

[Example of use]

- To display the contents of all section headers existing in a.out, describe as:

-h

C:\>dump850 -h a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 693 of 782
Apr 01, 2011

-i

[Description format]

- Interpretation when omitted

-i

[Function Description]

- This option displays the contents of all program headers existing in the specified object file or archive file.

[Example of use]

- To display the contents of all program headers existing in a.out, describe as:

-i

C:\>dump850 -i a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 694 of 782
Apr 01, 2011

-k

[Description format]

- Interpretation when omitted

-k

[Function Description]

- This option displays the contents of the global pointer table.

[Example of use]

- To display the contents of the global pointer table, describe as:

-k

C:\>dump850 -k a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 695 of 782
Apr 01, 2011

-l

[Description format]

- Interpretation when omitted

-l

[Function Description]

- This option displays the contents of line number information.

[Example of use]

- To display the contents of line number information, describe as:

-l

C:\>dump850 -l a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 696 of 782
Apr 01, 2011

-m

[Description format]

- Interpretation when omitted

-m

[Function Description]

- This option displays the contents of the string existing in the archive string table of the specified archive file.

[Example of use]

- To display the contents of the string existing in the archive string table of libarc.a, describe as:

-m

C:\>dump850 -m libarc.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 697 of 782
Apr 01, 2011

-n

[Description format]

- Interpretation when omitted

The contents of all sections is displayed.

[Function Description]

- This option displays the contents of the section indicated by section name name.

[Example of use]

- To display the contents of the .text section, describe as:

-n name

C:\>dump850 -n .text a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 698 of 782
Apr 01, 2011

-p

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option does not display the title.

[Example of use]

- Not to display the title, describe as:

-p

C:\>dump850 -p a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 699 of 782
Apr 01, 2011

-r

[Description format]

- Interpretation when omitted

The contents of relocation information is displayed.

[Function Description]

- This option displays the contents of relocation information.

[Example of use]

- To display the contents of relocation information, describe as:

-r

C:\>dump850 -r main.o

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 700 of 782
Apr 01, 2011

-s

[Description format]

- Interpretation when omitted

-s

[Function Description]

- This option displays the contents of the section.

[Example of use]

- To display the contents of the section, describe as:

-s

C:\>dump850 -s a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 701 of 782
Apr 01, 2011

-t

[Description format]

- Interpretation when omitted

The contents of all symbol table is displayed.

[Function Description]

- This option displays the contents of a symbol table starting from the numth symbol table entry.

- If num is omitted, the display starts from the first symbol table entry.

[Example of use]

- To display the contents of a symbol table starting from the 5th symbol table entry, describe as:

-t [num]

C:\>dump850 -t 5 a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 702 of 782
Apr 01, 2011

+t

[Description format]

- Interpretation when omitted

The contents of all symbol table is displayed.

[Function Description]

- This option displays the contents of a symbol table starting up to the numth symbol table entry.

[Example of use]

- To display the contents of a symbol table starting up to the 10th symbol table entry, describe as:

+t num

C:\>dump850 +t 10 arc.a

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 703 of 782
Apr 01, 2011

-v

[Description format]

- Interpretation when omitted

A value, such as for a section attribute value, is displayed using a number.

[Function Description]

- This option displays a value, such as for a section attribute value, using a character string to indicate the meaning

of the value rather than a number (see "3.5.2 Element values and meanings").

[Example of use]

- To display a value, such as for a section attribute value, using a character string to indicate the meaning of the

value rather than a number, describe as:

-v

C:\>dump850 -v a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 704 of 782
Apr 01, 2011

-z

[Description format]

- Interpretation when omitted

The contents of line number information for all functions is displayed.

[Function Description]

- This option displays contents of line number information for function name, starting from the numth line number

entry.

- If num is omitted, the display starts from the first line number entry.

[Example of use]

- To display contents of line number information for the function (func), starting from the first line number entry,

describe as:

-z name [num]

C:\>dump850 -z func a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 705 of 782
Apr 01, 2011

+z

[Description format]

- Interpretation when omitted

The contents of line number information for all functions is displayed.

[Function Description]

- This option displays contents of line number information, up to the numth line number entry.

[Example of use]

- To display contents of line number information for the function (func), up to the 10th line number entry, describe as:

+z num

C:\>dump850 -z func +z 10 a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 706 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>dump850 @command

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 707 of 782
Apr 01, 2011

B.9 Disassembler

A disassembler is a utility that converts the program codes of an object file that has been compiled or assembled, or an

archive file created with the archiver into assembly language codes for output. This utility is used to verify the codes of an

object file.

In the CA850, "dis850" is the disassembler.

Figure B-44. Operation Flow of Disassembler

B.9.1 Method for manipulating

This section explains how to manipulate the disassembler.

(1) Command input method

Enter the following from the command prompt.

C:\>dis850 [option] ... file-name [file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Disassembler

Object file or archive file

Outputs assembly language program

via standard output

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 708 of 782
Apr 01, 2011

B.9.2 Option

This section explains disassemble options.

Caution If no option is specified, it is assumed that the -o option has been specified.

The types and explanations for disassemble options are shown below.

Table B-23. Disassemble Options

Classification Option Description

Disassembler -A Assumes that -aoptr has been specified.

-F The device file is searched from the standard folder.

-V Outputs the version information of the disassembler to the standard error output.

-a Displays the address.

-c Displays the code (assembler instruction and data).

-e Specifies the end address.

-l Specifies the display size.

-m Displays in the assembler source format.

-o Displays the offset from symbols.

-p Displays the code that has been arranged according to the processor's instruction

format.

-r Displays registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and lp.

-s Specifies the start address.

-t Displays the title indicating the displayed contents.

-v Displays comments, etc.

@ Handles the specified file as a command file.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 709 of 782
Apr 01, 2011

The disassembler options are as follows.

- -A

- -F

- -V

- -a

- -c

- -e

- -l

- -m

- -o

- -p

- -r

- -s

- -t

- -v

- @

-A

[Description format]

- Interpretation when omitted

-o

[Function Description]

- This option assumes that -aoptr has been specified.

[Example of use]

- To display the address, offset from the address, and title indicating the displayed contents of a.out, and then

display registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and lp, describe as:

Disassembler

-A

C:\>dis850 -A a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 710 of 782
Apr 01, 2011

-F

[Description format]

- Interpretation when omitted

The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder devpath.

[Example of use]

- To search a device file from folder D:\dev, describe as:

-F devpath

C:\>dis850 -F D:\dev a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 711 of 782
Apr 01, 2011

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version information of the disassembler to the standard error output and terminates

processing.

[Example of use]

- To output the version information of the disassembler to the standard error output, describe as:

-V

C:\>dis850 -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 712 of 782
Apr 01, 2011

-a

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option displays the addresses among the information in the object file or archive file.

[Example of use]

- To display the addresses among the information in a.out, describe as:

-a

C:\>dis850 -a a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 713 of 782
Apr 01, 2011

-c

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option displays the code (assembler instruction and data) of the object file or archive file.

[Example of use]

- To display the code (assembler instruction and data) of a.out, describe as:

-c

C:\>dis850 -c a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 714 of 782
Apr 01, 2011

-e

[Description format]

- Interpretation when omitted

-e 0xffffffff

[Function Description]

- This option specifies the end address.

- Specify a decimal number or a hexadecimal number that starts with 0x as address.

[Example of use]

- To specify 0xffff as the end address, describe as:

-e address

C:\>dis850 -e 0xffff a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 715 of 782
Apr 01, 2011

-l

[Description format]

- Interpretation when omitted

-l 0xffffffff

[Function Description]

- This option specifies the display size.

- Specify a decimal number or a hexadecimal number that starts with 0x as size.

[Example of use]

- To specify 0xffff as the display size, describe as:

-l size

C:\>dis850 -l 0xffff a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 716 of 782
Apr 01, 2011

-m

[Description format]

- Interpretation when omitted

The assembler source is displayed with a symbol offset, etc.

[Function Description]

- This option displays in the assembler source format.

[Example of use]

- To display in the assembler source format, describe as:

-m

C:\>dis850 -m a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 717 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

If the -a or -m option is not specified, the offset from symbols is displayed.

[Function Description]

- This option displays the offset from symbols among the information in the object file or archive file.

[Example of use]

- To display the offset from symbols among the information in a.out, describe as:

-o

C:\>dis850 -o a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 718 of 782
Apr 01, 2011

-p

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option displays the code that has been arranged according to the processor's instruction format among the

information in the object file or archive file.

- The -c option is specified, -c is given precedence,

[Example of use]

- To display the code that has been arranged according to the processor's instruction format among the information

in a.out, describe as:

-p

C:\>dis850 -p a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 719 of 782
Apr 01, 2011

-r

[Description format]

- Interpretation when omitted

All registers are displayed in "rnum" format. "num" is a numerical value from 0 to 31.

[Function Description]

- This option displays registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and lp.

[Example of use]

- To display registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and lp, describe as:

-r

C:\>dis850 -r a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 720 of 782
Apr 01, 2011

-s

[Description format]

- Interpretation when omitted

-s 0x0

[Function Description]

- This option specifies the start address.

- Specify a decimal number or a hexadecimal number that starts with 0x as address.

- If numerical value address is larger than 0xfffffffe, the value is omitted.

[Example of use]

- To specify 0x1000 as the start address, describe as:

-s address

C:\>dis850 -s 0x1000 a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 721 of 782
Apr 01, 2011

-t

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option displays the title indicating the displayed contents among the information in the object file or archive

file.

[Example of use]

- To display the title indicating the displayed contents among the information in a.out, describe as:

-t

C:\>dis850 -t a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 722 of 782
Apr 01, 2011

-v

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option displays comments, etc.

[Example of use]

- To display comments, etc., describe as:

-v

C:\>dis850 -v a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 723 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>dis850 @command

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 724 of 782
Apr 01, 2011

B.9.3 Cautions

Cautions are shown below.

- If labels for the same address exist in the object file, the latter label in the symbol table takes precedence.

- If the program starts from address 0 and if output of the symbol at address 0 is required during output for an object

that does not have a symbol indicating address 0, "_ _ dummy" may be output as the symbol of address 0.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 725 of 782
Apr 01, 2011

B.10 Cross Reference Tool

The cross reference tool "cxref" is a tool that checks identifier references and definition locations based on the C

source file. The target identifiers, which are functions and variables (other than auto variables), also identify their storage

class. Cross reference information and tag jump information are output as the detection results. The analysis is

performed for individual functions, and a call tree, function metrics, and call database can also be output.

In cross reference tool processing, a "reference" means that the identifier appears within an expression and a

"definition" means that the identifier appears within a declaration statement. "Definition" means that the identifier appears

within a declaration statement. The cross reference tool handles an identifier for which it cannot determine whether it

appears in an expression or a declaration statement as "unknown."

Call trees, function metrics, or call databases that are output by the cross reference tool have the following features.

- They do not depend on the target and the ca850 optimization.

- Standard output can be used by specifying an option.

Figure B-45. Operation Flow of Cross Reference Tool

B.10.1 Input/Output

(1) Input file

The input file of the cross reference tool is a C source file. If the -cpp850 option is specified when the cross

reference tool is started, the cross reference tool processing is performed after the specified C source file has

passed through the preprocessor.

- A prerequisite for cross reference tool processing is that the C source file to be input contains no syntax errors.

Confirm that compilation has been executed for the C source file and that no syntax error was found.

- The character set is assumed to be Shift-JIS.

- The cross reference tool does not treat preprocess directives in the C source file as errors. Instead, it simply

ignores them and continue the analysis.Therefore, if a C source file does not contain any of the following

items, it can be processed directly without specifying the -cpp850 option, even if the file has not passed

through the ca850. This is effective when ignoring a header file, when subjecting false condition blocks to

analysis, and when targeting macro names for cross reference.

- Condition block in which braces { } are not balanced

- Macro created for a control structure

- Macro created for a declaration statement

- The input file can contain line number information and comment information.

Cross reference tool

C source file

C compiler

[Output information 1]

- Cross reference

- Tag jump information

 -> Text file or standard output

[Output information 2]

- Call tree

- Call database

- Function metrics

 -> Text file, CSV-format file, or

standard output

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 726 of 782
Apr 01, 2011

(2) Output information

The following information is output by the cross reference tool.

(a) Cross reference

The cross reference tool outputs cross reference information for variables and functions that are used within

the file, for each file.

(b) Tag information

The cross reference tool outputs the definition file name and line number information (tag jump information) for

variables and functions.

(c) Call tree

The cross reference tool outputs which functions are called by certain function in tree format.

(d) Function metrics

The cross reference tool outputs information about the function such as the "number of lines" and "call

frequency."

(e) Call database

The cross reference tool outputs the functions called by certain function, and how many times it calls them.

See "3.7 Cross Reference Tool" for details about these information.

B.10.2 Method for manipulating

This section explains how to manipulate the cross reference tool.

(1) Command input method

Enter the following from the command prompt.

(2) Set options in CubeSuite+

This section describes how to set cross reference options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [Cross Reference Options] tab.

You can set the various cross reference options by setting the necessary properties in this tab.

C:\>cxref [option] ... [file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 727 of 782
Apr 01, 2011

Figure B-46. Property Panel: [Cross Reference Option] Tab

B.10.3 Option

This section explains cross reference options.

The types and explanations for cross reference options are shown below.

Table B-24. Cross Reference Options

Classification Option Description

Common options -V Outputs the version information of the cross reference tool to the standard error output.

-all Outputs all information to a text-format file and CSV-format file.

-cpp850 Processes the C source file after it is passed through the ca850 (preprocessor).

-d Specifies the identifier that is handled as a type name and the name of the file that the

identifier is described.

-file Specifies the file in which the information is described.

-h Outputs option descriptions.

-help

-i Specifies the identifier that is not to be displayed in the execution results.

-ni Does not display include file information.

Specifies the file name that is not to be displayed in the execution results.

-o Specifies the output file path.

@ Handles the specified file as a command file.

Cross reference -x Outputs the cross reference in text-format to the specified file.

-xstd Outputs the cross reference to the standard output.

Tag information -t Outputs the tag information in text-format to the specified file.

-tstd Outputs tag information to the standard output.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 728 of 782
Apr 01, 2011

Call tree -c Outputs the call tree in text-format to the specified file.

-cc Outputs the call tree in CSV-format to the specified file.

-call Outputs the call tree in text-format and CSV-format to the specified file.

-ce Specifies the method of omitting output.

-cf Specifies the name of the function for which the call tree is to be output or the text file

that the function name is described.

-cl Specifies the output level.

-cp Includes the arguments and return value in the output.

-cr Includes reference information in the output.

-cs Includes the source file name and description starting line in the output.

-cstd Outputs the text-format call tree to the standard output.

-ct Outputs only the first tree.

Function metrics -m Outputs the function metrics in text-format to the specified file.

-mc Outputs the function metrics in CSV-format to the specified file.

-mall Outputs the function metrics in text-format and CSV-format to the specified file.

-ms Specifies the output order.

-mstd Outputs the text-format function metrics to the standard output.

Call database -b Outputs the call database in text-format to the specified file.

-bc Outputs the call database in CSV-format to the specified file.

-ball Outputs the call database in text-format and CSV-format to the specified file.

-mstd Outputs the text-format call database to the standard output.

Classification Option Description

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 729 of 782
Apr 01, 2011

The common options of the cross reference tool are as follows.

- -V

- -all

- -cpp850

- -d

- -file

- -h/-help

- -i

- -ni

- -o

- @

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version number of the cross reference tool and then terminates processing.

[Example of use]

- To output the version number of the cross reference tool, describe as:

Common options

-V

C:\>cxref -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 730 of 782
Apr 01, 2011

-all

[Description format]

- Interpretation when omitted

Cross reference is output to the standard output.

[Function Description]

- This option outputs all information to a text-format file and CSV-format file.

- This option has the same result as when "-x -t -c -cc -m -mc -b -bc" is specified.

[Example of use]

- To output all information to a text-format file and CSV-format file, describe as:

-all

C:\>cxref -all main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 731 of 782
Apr 01, 2011

-cpp850

[Description format]

- Interpretation when omitted

The ca850 (preprocessor) is not executed.

[Function Description]

- This option processes the C source file after it is passed through the ca850 (preprocessor).

- This option and all subsequent options are passed as the ca850 options. Therefore, this option must be specified

as the last cross reference option.

- Setting the -c option that works to include comments of the source programs with the preprocessor is

recommended so that line numbers are output correctly.

[Example of use]

- To process the C source file after it is passed through the ca850 (preprocessor), describe as:

-cpp850

C:\>cxref -cpp850 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 732 of 782
Apr 01, 2011

-d

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies identifier ident that is handled as a type name.

- Specify file file that the identifier handled as a type name is described.

[Example of use]

- To handle identifier U16 as a type name, describe as:

-dident

-d=file

C:\>cxref -dU16 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 733 of 782
Apr 01, 2011

-file

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies file file in which the following information is described.

- File name that is not to be displayed in execution results

- Identifier name that is not to be displayed in execution results

- Identifier name that is to be handled as a type name

- If -file=file and -ni are specified at the same time, the contents of "NoIncludeFile" in file of the previously specified -

file=file are invalid.

- File format specified in the -ni/-i/-d/-file options

The -ni/-i/-d options read the corresponding section information, and the -file option reads all the section

information.

The three sections below can be described.

- NoIncludeFile section

- IgnoreIdent section

- DefinitionType section

If the line begins with //, the line is interpreted as a comment.

(1) NoIncludeFile section

This section specifies information that is not displayed as an analysis result in file units. Describe mainly include

files.

The file name described here has the same effect as when specified following the -ni option.

Describe one file name on one line.

Wildcard characters can be used.

(2) IgnoreIdent section

This section specifies information that is not displayed as an analysis result in identifier units.

The file name described here has the same effect as when specified following the -i option.

Describe one identifier on one line.

-file=file

[NoIncludeFile]

// All the * .h files

*.h

// Common definition file

common.def

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 734 of 782
Apr 01, 2011

(3) DefinitionType section

This section specifies an identifier that is handled as a type name.

The file name described here has the same effect as when specified following the -d option.

Describe one identifier on one line.

[Example of use]

- Information of the file name and identifier that is specified in the file (noresult) is not displayed as an analysis

result.

The identifier specified in "noresult" is handled as a type name.

[IgnoreIdent]

// Common area temporarily used in each process

tmp

buf

work

[DefinitionType]

// 1-byte type

BYTE

UBYTE

// 2-byte type

WORD

UWORD

C:\>cxref -file=noresult main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 735 of 782
Apr 01, 2011

-h/-help

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the description of the options and then terminates processing.

[Example of use]

- To output the description of the cross reference options and then terminates processing, describe as:

-h

-help

C:\>cxref -help

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 736 of 782
Apr 01, 2011

-i

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies the identifier that is not to be displayed in the execution results.

[Example of use]

- Not to display the identifier (data) in the execution results, describe as:

-iident

C:\>cxref -idata main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 737 of 782
Apr 01, 2011

-ni

[Description format]

- Interpretation when omitted

None

[Function Description]

- In the case of -ni, this option does not display include file information.

- In the case of -nifile, this option specifies file name file that is not to be displayed in the execution results.

The following wildcard characters can be used in file.

- In the case of -ni=file, this option specifies file file in which file names that are not to be displayed in the execution

results are described.

[Example of use]

- Not to display include file information, describe as:

- Not to display information for files whose name includes an "r", describe as:

- Not to display information for files whose name includes an "e", followed by at least two characters, describe as:

- Not to display information for files whose name starts with "w", contain at least two characters, describe as:

- Not to display information of the file name that is described in the file (noresult), describe as:

-ni

-nifile

-ni=file

? One arbitrary character

* Arbitrary character sequences of zero or more characters

C:\>cxref -ni main.c

C:\>cxref -ni*r* main.c

C:\>cxref -ni*e??* main.c

C:\>cxref -niw?*.h main.c

C:\>cxref -ni=noresult main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 738 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

The file is output to the current path.

[Function Description]

- This option specifies path as the output file path.

[Example of use]

- To output the file to folder D:\sample, describe as:

-o path

C:\>cxref -o D:\sample main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 739 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>cxref @command

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 740 of 782
Apr 01, 2011

The cross reference options are as follows.

- -x

- -xstd

-x

[Description format]

- Interpretation when omitted

Cross reference is output to the standard output.

[Function Description]

- This option outputs the cross reference in text-format to the specified file.

- If =file is omitted, the file name is "cxref".

[Example of use]

- To output the cross reference in text-format to the file (cxfile), describe as:

Cross reference

-x[=file]

C:\>cxref -x=cxfile main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 741 of 782
Apr 01, 2011

-xstd

[Description format]

- Interpretation when omitted

-xstd

[Function Description]

- This option outputs the cross reference to the standard output (default).

[Example of use]

- To output the cross reference to the standard output, describe as:

-xstd

C:\>cxref -xstd main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 742 of 782
Apr 01, 2011

The options for tag information are as follows.

- -t

- -tstd

-t

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the tag information in text-format to the specified file file.

- If =file is omitted, the file name is "ctags".

[Example of use]

- To output the tag information in text-format to the file (tagfile), describe as:

Tag information

-t[=file]

C:\>cxref -t=tagfile main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 743 of 782
Apr 01, 2011

-tstd

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs tag information to the standard output.

[Example of use]

- To output tag information to the standard output, describe as:

-tstd

C:\>cxref -tstd main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 744 of 782
Apr 01, 2011

The options for the call tree are as follows.

- -c

- -cc

- -call

- -ce

- -cf

- -cl

- -cp

- -cr

- -cs

- -cstd

- -ct

-c

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the call tree in text-format to the specified file file.

- If =file is omitted, the file name is "ccalltre.lst".

[Example of use]

- To output the call tree in text-format to the file (callfile.lst), describe as:

Call tree

-c[=file]

C:\>cxref -c=callfile.lst main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 745 of 782
Apr 01, 2011

-cc

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the call tree in CSV-format to the specified file file.

- If =file is omitted, the file name is "ccalltre.csv".

[Example of use]

- To output the call tree in CSV-format to the file (callfile.csv), describe as:

-cc[=file]

C:\>cxref -cc=callfile.csv main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 746 of 782
Apr 01, 2011

-call

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the call tree in text-format and CSV-format to the specified file.

- The file names are file.lst and file.csv.

- If an extension is appended to file, that extension is ignored.

- If =file is omitted, the file names are "ccalltre.lst" and "ccalltre.csv".

[Example of use]

- To output the call tree in text-format and CSV-format to the file (callfile.lst and callfile.csv), describe as:

-call[=file]

C:\>cxref -call=callfile main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 747 of 782
Apr 01, 2011

-ce

[Description format]

- Interpretation when omitted

-ce3

[Function Description]

- This option specifies the method of omitting output.

- Any of the following numbers can be specified as num.

[Example of use]

- To omit output for call trees at the same level, describe as:

-cenum

1 Output all information

2 Omit output for call trees at the same level

3 Omit output once the information has been output

C:\>cxref -call -ce2 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 748 of 782
Apr 01, 2011

-cf

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option specifies for string the name of the function for which the call tree is to be output.

- This option specifies text file file that the name of the function for which the call tree is to be output is described.

[Example of use]

- To specify for "func the name of the function for which the call tree is to be output, describe as:

-cfstring

-cf=file

C:\>cxref -call -cffunc main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 749 of 782
Apr 01, 2011

-cl

[Description format]

- Interpretation when omitted

-cl255

[Function Description]

- This option specifies the output level.1to 255 can be specified as num.

[Example of use]

- To specify the output level, describe as:

-clnum

C:\>cxref -call -cl128 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 750 of 782
Apr 01, 2011

-cp

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option includes the arguments and return value in the output.

[Example of use]

- To include the arguments and return value in the output, describe as:

-cp

C:\>cxref -call -cp main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 751 of 782
Apr 01, 2011

-cr

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option includes reference information in the output.

[Example of use]

- To include reference information in the output, describe as:

-cr

C:\>cxref -call -cr main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 752 of 782
Apr 01, 2011

-cs

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option includes the source file name and description starting line in the output.

[Example of use]

- To include the source file name and description starting line in the output, describe as:

-cs

C:\>cxref -call -cs main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 753 of 782
Apr 01, 2011

-cstd

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the text-format call tree to the standard output.

[Example of use]

- To output the text-format call tree to the standard output, describe as:

-cstd

C:\>cxref -cstd main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 754 of 782
Apr 01, 2011

-ct

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs only the first tree.

[Example of use]

- To output only the first tree, describe as:

-ct

C:\>cxref -call -ct main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 755 of 782
Apr 01, 2011

The options for the function metrics are as follows.

- -m

- -mc

- -mall

- -ms

- -mstd

-m

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the function metrics in text-format to the specified file file.

- If =file is omitted, the file name is "cmeasure.lst".

[Example of use]

- To output the function metrics in text-format to the file (measurefile.lst), describe as:

Function metrics

-m[=file]

C:\>cxref -m=measurefile.lst main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 756 of 782
Apr 01, 2011

-mc

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the function metrics in CSV-format to the specified file file.

- If =file is omitted, the file name is "cmeasure.csv".

[Example of use]

- To output the function metrics in CSV-format to the file (measurefile.csv), describe as:

-mc[=file]

C:\>cxref -mc=measurefile.csv main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 757 of 782
Apr 01, 2011

-mall

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the function metrics in text-format and CSV-format to the specified file.

- The file names are file.lst and file.csv.

- If an extension is appended to file, that extension is ignored.

- If =file is omitted, the file names are "cmeasure.lst" and "cmeasure.csv".

[Example of use]

- To output the function metrics in text-format and CSV-format to the file (measurefile.lst and measurefile.csv),

describe as:

-mall[=file]

C:\>cxref -mall=measurefile main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 758 of 782
Apr 01, 2011

-ms

[Description format]

- Interpretation when omitted

The information is output without sorting, in the order that the functions appeared.

[Function Description]

- This option specifies the output order.Any of the following numbers can be specified as num.

- If "+" is specified, the information is output in ascending order. If "-" is specified, the information is output in

descending order. By default, the information is output in descending order.

[Example of use]

- To output the information sorted in descending order of the function names, describe as:

-ms[+|-]num

1 Output the information sorted in alphabetical order of the function names.

2 Output the information sorted in alphabetical order of the file names and function names.

3 Output the information without sorting.

C:\>cxref -ms1 main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 759 of 782
Apr 01, 2011

-mstd

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the text-format function metrics to the standard output.

[Example of use]

- To output the text-format function metrics to the standard output, describe as:

-mstd

C:\>cxref -mstd main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 760 of 782
Apr 01, 2011

The options for the call database are as follows.

- -b

- -bc

- -ball

- -bstd

-b

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the call database in text-format to the specified file file.

- If =file is omitted, the file name is "cprofile.dat".

[Example of use]

- To output the call database in text-format to the file (calldbfile.dat), describe as:

Call database

-b[=file]

C:\>cxref -b=calldbfile.dat main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 761 of 782
Apr 01, 2011

-bc

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the call database in CSV-format to the specified file file.

- If =file is omitted, the file name is "cprofile.csv".

[Example of use]

- To output the call database in CSV-format to the file (calldbfile.csv), describe as:

-bc[=file]

C:\>cxref -bc=calldbfile.csv main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 762 of 782
Apr 01, 2011

-ball

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the call database in text-format and CSV-format to the specified file.

- The file names are file.dat and file.csv.

- If an extension is appended to file, that extension is ignored.

- If =file is omitted, the file name is "cprofile.dat" and "cprofile.csv".

[Example of use]

- To output the call database in text-format and CSV-format to the file (calldbfile.dat and calldbfile.csv), describe as:

-ball[=file]

C:\>cxref -ball=calldbfile main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 763 of 782
Apr 01, 2011

-bstd

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the text-format call database to the standard output.

[Example of use]

- To output the text-format call database to the standard output, describe as:

-bstd

C:\>cxref -bstd main.c

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 764 of 782
Apr 01, 2011

B.11 Memory Layout Visualization Tool

The memory layout visualization tool is a utility that reads the memory map information of variables from the created

load module file for display.

In the CA850, "rammap" is the memory layout visualization tool.

The memory layout visualization tool outputs the memory map information of variables to a text-format file and CSV-

format file.

Figure B-47. Operation Flow of Memory Layout Visualization Tool

B.11.1 Input/Output

(1) Input file

The input file of the memory layout visualization tool is an executable object fileNote (.out file) output by the ld850.

Note Does not include a re-linkable object file or a file (.out file) output by the romp850.

(2) Output information

The information that is output by memory layout visualization tool is a memory map that shows the variable names,

sizes, and memory layout.

(a) Memory map table

The memory layout visualization tool outputs a memory map that shows the variable names, sizes, and

memory layout.

See "3.8 Memory Layout Visualization Tool" for details about this information.

B.11.2 Method for manipulating

This section explains how to manipulate the memory layout visualization tool.

(1) Command input method

Enter the following from the command prompt.

(2) Set options in CubeSuite+

This section describes how to set memory layout visualization options from CubeSuite+.

On CubeSuite+'s Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The

Property panel opens. Next, select the [Memory Layout Visualization Options] tab.

You can set the various memory layout visualization options by setting the necessary properties in this tab.

C:\>rammap [option][file-name]

 []: Can be omitted

Memory layout visualization tool

Executable object file [Output information]

- Memory map table

 -> Text file, CSV-format file, or standard output

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 765 of 782
Apr 01, 2011

Figure B-48. Property Panel: [Memory Layout Visualization Options] Tab

B.11.3 Option

This section explains memory layout visualization options.

The types and explanations for memory layout visualization options are shown below.

Table B-25. Memory Layout Visualization Options

Classification Option Description

Memory layout

visualization tool

-V Outputs the version number of the memory layout visualization tool to the standard

output.

-all Outputs all information to a text-format file and CSV-format file.

-h Outputs option descriptions.

-help

-m Outputs the memory map table in text-format to the specified file.

-mall Outputs the memory map table in text-format and CSV-format to the specified file.

-mc Outputs the memory map table in CSV-format to the specified file.

-mr Specifies the range for outputting the memory map table.

-mstd Outputs the text-format memory map table to the standard output.

-o Specifies the output file path.

@ Handles the specified file as a command file.

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 766 of 782
Apr 01, 2011

The memory layout visualization options are as follows.

- -V

- -all

- -h/-help

- -m

- -mall

- -mc

- -mr

- -mstd

- -o

- @

-V

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the version number of the memory layout visualization tool and then terminates processing.

[Example of use]

- To output the version number of the memory layout visualization tool, describe as:

Memory layout visualization tool

-V

C:\>rammap -V

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 767 of 782
Apr 01, 2011

-all

[Description format]

- Interpretation when omitted

The text-format memory map table is output to the standard output.

[Function Description]

- This option outputs all information to a text-format file and CSV-format file.

- This option has the same result as when "-mall" is specified.

[Example of use]

- To output all information to a text-format file and CSV-format file, describe as:

-all

C:\>rammap -all a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 768 of 782
Apr 01, 2011

-h/-help

[Description format]

- Interpretation when omitted

None

[Function Description]

- This option outputs the description of the options and then terminates processing.

[Example of use]

- To output option descriptions of the memory layout visualization tool, describe as:

-h

-help

C:\>rammap -help

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 769 of 782
Apr 01, 2011

-m

[Description format]

- Interpretation when omitted

-m

[Function Description]

- This option outputs the memory map table in text-format to the specified file file.

- If =file is omitted, the file name is "rammap.txt".

[Example of use]

- To output the memory map table in text-format to the file (memmapfile.txt), describe as:

-m[=file]

C:\>rammap -m=memmapfile.txt a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 770 of 782
Apr 01, 2011

-mall

[Description format]

- Interpretation when omitted

The text-format memory map table is output to the standard output.

[Function Description]

- This option outputs the memory map table in text-format and CSV-format to the specified file.

- The file names are file.txt and file.csv.

- If an extension is appended to file, that extension is ignored.

- If =file is omitted, the file name is "rammap.txt" and "rammap.csv".

[Example of use]

- To output the memory map table in text-format and CSV-format to the file (memmapfile.txt and memmapfile.csv),

describe as:

-mall[=file]

C:\>rammap -mall=memmapfile a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 771 of 782
Apr 01, 2011

-mc

[Description format]

- Interpretation when omitted

The text-format memory map table is output to the standard output.

[Function Description]

- This option outputs the memory map table in CSV-format to the specified file file.

- If =file is omitted, the file name is "rammap.csv".

[Example of use]

- To output the memory map table in CSV-format to the file (memmapfile.csv), describe as:

-mc[=file]

C:\>rammap -mc=memmapfile.csv a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 772 of 782
Apr 01, 2011

-mr

[Description format]

- Interpretation when omitted

All ranges within the object are targeted for the memory map table.

[Function Description]

- This option specifies the range for outputting the memory map table.

- Do not enter a blank space between "-mr" and range.

- Octal, decimal, or hexadecimal numbers can be specified for the addresses.

- Multiple ranges can be specified.

- To specify multiple ranges, either specify multiple -mr options or separate each of the ranges with commas.

- When specified ranges overlap, they are handled as follows.

Examples 1. This case is handled as one in which the two ranges a to b and c to d are specified.

2. This case is handled as one in which the one range a to d is specified.

3. This case is handled as one in which the one range a to d is specified.

4. This case is handled as one in which the one range a to b is specified.

Cautions 1. The actual address range is aligned at 16 bytes.

For the start address, the specified value is rounded to 16 bytes (logical AND with 0xfffffff0).

For the end address, the specified value is rounded to 16 bytes and added to 0xF.

-mrrange

Octal specification format -mr0200000-0400000

Decimal specification format -mr65536-131072

Hexadecimal specification format -mr0x10000-0x20000

-mr0x10000-0x20000 0x10000 to 0x2000f

a ---------------------------- b c ------------------------- d

a ---------------------------- b
 c -------------------------- d

a ---------------------------- b

c ------------------------------- d

a --- b

c ------------------------------- d

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 773 of 782
Apr 01, 2011

2. If the range specification is illegal, an error message is output, and processing is interrupted.

[Example of use]

- To specify 0x10000 to 0x20000 as the range for outputting the memory map table, describe as:

- To specify 0x10000 as the start address for outputting the memory map table, describe as the following. In this

case, the end address is 0xffffffff.

- To specify 0x20000 as the end address for outputting the memory map table, describe as the following. In this

case, the start address is 0x0.

- To specify 0x10000 to 0x20000 and 0x30000 to 0x40000 as the range for outputting the memory map table,

describe as:

or

-mr0x10004- 0x10000 to 0xffffffff

-mr-0x20005 0x0 to 0x2000f

C:\>rammap a.out -mr0x10000-0x20000

C:\>rammap a.out -mr0x10000-

C:\>rammap a.out -mr-0x20000

C:\>rammap a.out -mr0x10000-0x20000 -mr0x30000-0x40000

C:\>rammap a.out -mr0x10000-0x20000,0x30000-0x40000

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 774 of 782
Apr 01, 2011

-mstd

[Description format]

- Interpretation when omitted

-mstd

[Function Description]

- This option outputs the text-format memory map table to the standard output.

[Example of use]

- To output the text-format memory map table to the standard output, describe as:

-mstd

C:\>rammap -mstd a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 775 of 782
Apr 01, 2011

-o

[Description format]

- Interpretation when omitted

The file is output to the current path.

[Function Description]

- This option specifies path as the output file path.

[Example of use]

- To output the file to folder D:\sample, describe as:

-o path

C:\>rammap -mc -o D:\sample a.out

CubeSuite+ Ver.1.00.00 APPENDIX B COMMAND REFERENCE

R20UT0557EJ0100 Rev.1.00 Page 776 of 782
Apr 01, 2011

@

[Description format]

- Interpretation when omitted

Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.

- Instead of specifying options and file names for commands as command-line arguments, they can be specified in

a command file.

- On Windows, the length of a character string specified as options for commands is limited. If many options are set

and some of the options cannot be recognized, create a command file and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C:\>rammap @command

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0557EJ0100 Rev.1.00 Page 777 of 782
Apr 01, 2011

APPENDIX C INDEX

A

Active project ... 69

Add a build mode ... 71

Add a file to a project ... 25

Add Existing File dialog box ... 321

Add File dialog box ... 278

Add Folder and File dialog box ... 280

Archive file ... 354

Assemble list ... 91

Assembler ... 352

B

Batch build ... 76, 81

Batch Build dialog box ... 313

Boot-flash relink function ... 556

Browse For Folder dialog box ... 323

Build ... 76, 78

Build mode ... 71, 73

Build Mode Settings dialog box ... 311

Build tool version ... 17

Build Tool Warning Messages Settings dialog box ... 291

C

Call database ... 128

Call tree ... 123

Category ... 30

Change the build mode ... 73

Change the output file name ... 35

Character String Input dialog box ... 282

Clean ... 83

Code generation module ... 352

Cross reference ... 121

D

Delete a build mode ... 74

Dump list ... 112

E

Editor panel ... 274

ELF header ... 133

Executable object ... 354

Expanded tektronix hex format ... 103

F

File dependencies ... 32

File display order ... 31

File Save Settings dialog box ... 294

Front end ... 352

Function metrics ... 126

G

[General - Build/Debug] category ... 319

Global optimization module ... 352

Go to the Location dialog box ... 315

I

Intel expanded hex format ... 97

Intermediate language file ... 354

L

Link Directive File Generation dialog box ... 296

Link map ... 94

Link Order dialog box ... 309

Linker ... 352

M

Machine-dependent optimization module ... 352

Magic number ... 499

main function ... 575

Main window ... 141

Memory map table ... 131

Motorola S type hex format ... 101

O

Object file ... 133, 354

Object File Select dialog box ... 305

Object for ROMization ... 583

Open with Program dialog box ... 337

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0557EJ0100 Rev.1.00 Page 778 of 782
Apr 01, 2011

Option dialog box ... 317

[General - Build/Debug] category ... 319

Output an assemble list ... 36

Output information of cross reference tool ... 726

Output map information ... 37

Output panel ... 275

Output symbol information ... 37

P

Path Edit dialog box ... 286

Pre-optimizer ... 352

Program header table ... 134

Progress Status dialog box ... 316

Project Tree panel ... 145

Property panel ... 158

[Archive Options] tab ... 230

[Assemble Options] tab ... 200

[Build Settings] tab ... 243

[Category Information] tab ... 273

[Common Options] tab ... 161

[Compile Options] tab ... 177

[Cross Reference Options] tab ... 241

[Dump Options] tab ... 240

[File Information] tab ... 271

[Hex Convert Options] tab ... 223

[Individual Assemble Options] tab ... 264

[Individual Compile Options] tab ... 246

[Link Options] tab ... 206

[Memory Layout Visualization Options] tab ... 242

[ROMization Process Options] tab ... 216

[Section File Generate Options] tab ... 233

R

Rapid build ... 76, 79

_rcopy ... 591

_rcopy1 ... 592

_rcopy2 ... 593

_rcopy4 ... 594

Rebuild ... 76, 79

Relink function ... 556

Reserved symbols ... 573

rompsec section ... 580

Run a build ... 76

S

Save As dialog box ... 335

Section ... 136

Section file ... 108, 651

Section header table ... 134

Segment Select dialog box ... 307

Set archive options ... 55

Set assemble options ... 44

Set compile options ... 38

Set cross reference options ... 59

Set dump options ... 58

Set hex convert options ... 52

Set link options ... 47

Set memory layout visualization options ... 60

Set ROMization process options ... 50

Set section file generate options ... 56

Specify Boot Area Object File dialog box ... 325

Specify Far Jump File dialog box ... 331

Specify Function Information File dialog box ... 327

Specify Intermediate Language File for External Variable

Sorting dialog box ... 329

Specify ROMization Area Reservation Code File dialog

box ... 333

System Include Path Order dialog box ... 289

T

Tag information ... 122

Tag jump ... 276

Text Edit dialog box ... 284

Revision Record

Rev. Date
Description

Page Summary

1.00 Apr 01, 2011 - First Edition issued

CubeSuite+ V1.00.00
User’s Manual: V850 Build

Publication Date: Rev.1.00 Apr 01, 2011

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

CubeSuite+ V1.00.00

R20UT0557EJ0100

	COVER
	How to Use This Manual
	CHAPTER 1 GENERAL
	1.1 Overview
	1.2 Features

	CHAPTER 2 FUNCTIONS
	2.1 Overview
	2.1.1 Create a load module
	2.1.2 Create a user library

	2.2 Change the Build Tool Version
	2.3 Set Build Target Files
	2.3.1 Set a startup routine
	2.3.2 Automatically generate link directives
	2.3.3 Add a file to a project
	2.3.4 Remove a file from a project
	2.3.5 Remove a file from the build target
	2.3.6 Classify a file into a category
	2.3.7 Change the file display order
	2.3.8 Update file dependencies

	2.4 Set the Type of the Output File
	2.4.1 Change the output file name
	2.4.2 Output an assemble list
	2.4.3 Output map information
	2.4.4 Output symbol information

	2.5 Set Compile Options
	2.5.1 Perform optimization with the code size precedence
	2.5.2 Perform optimization with the execution speed precedence
	2.5.3 Add an include path
	2.5.4 Set a macro definition
	2.5.5 Enable C++ comments
	2.5.6 Reduce the code size (perform prologue/epilogue runtime calls)
	2.5.7 Change the register mode

	2.6 Set Assemble Options
	2.6.1 Add an include path
	2.6.2 Set a macro definition

	2.7 Set Link Options
	2.7.1 Add a user library

	2.8 Set ROMization Process Options
	2.8.1 Create an object for ROMization

	2.9 Set Hex Convert Options
	2.9.1 Set the output of a hex file
	2.9.2 Fill the vacant area

	2.10 Set Archive Options
	2.10.1 Set the output of an archive file

	2.11 Set Section File Generate Options
	2.11.1 Automatically allocate variables through static analysis

	2.12 Set Dump Options
	2.12.1 Use the dump tool
	2.12.2 Reference the section information

	2.13 Set Cross Reference Options
	2.13.1 Use the cross reference tool

	2.14 Set Memory Layout Visualization Options
	2.14.1 Use the memory layout visualization tool

	2.15 Set Build Options Separately
	2.15.1 Set build options at the project level
	2.15.2 Set build options at the file level

	2.16 Prepare for Implementing Boot-flash Relink Function
	2.16.1 Prepare the build target files
	2.16.2 Set the boot area project
	2.16.3 Set the flash area project

	2.17 Make Settings for Build Operations
	2.17.1 Set the link order of files
	2.17.2 Change the file build order of subprojects
	2.17.3 Display a list of build options
	2.17.4 Change the file build target project
	2.17.5 Add a build mode
	2.17.6 Change the build mode
	2.17.7 Delete a build mode
	2.17.8 Set the current build options as the standard for the project

	2.18 Run a Build
	2.18.1 Run a build of updated files
	2.18.2 Run a build of all files
	2.18.3 Run a build in parallel with other operations
	2.18.4 Run builds in batch with build modes
	2.18.5 Compile/assemble individual files
	2.18.6 Stop running a build
	2.18.7 Save the build results to a file
	2.18.8 Delete intermediate files and generated files

	2.19 Estimate the Stack Capacity
	2.19.1 Starting and exiting
	2.19.2 Check the call relationship
	2.19.3 Check the stack information
	2.19.4 Check unknown functions
	2.19.5 Change the frame size

	CHAPTER 3 BUILD OUTPUT LISTS
	3.1 Assembler
	3.1.1 Output method
	3.1.2 Output example

	3.2 Linker
	3.2.1 Output method
	3.2.2 Link map output example

	3.3 Hex Converter
	3.3.1 Intel expanded
	3.3.2 Motorola S type
	3.3.3 Expanded tektronix

	3.4 Section File Generator
	3.4.1 Cautions

	3.5 Dump Tool
	3.5.1 Dump list display contents
	3.5.2 Element values and meanings

	3.6 Disassembler
	3.7 Cross Reference Tool
	3.7.1 Cross reference
	3.7.2 Tag information
	3.7.3 Call tree
	3.7.4 Function metrics
	3.7.5 Call database

	3.8 Memory Layout Visualization Tool
	3.8.1 Memory map table

	3.9 Format of Object File
	3.9.1 Structure of object file
	3.9.2 ELF header
	3.9.3 Program header table
	3.9.4 Section header table
	3.9.5 Sections

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[Common Options] tab
	[Compile Options] tab
	[Assemble Options] tab
	[Link Options] tab
	[ROMization Process Options] tab
	[Hex Convert Options] tab
	[Archive Options] tab
	[Section File Generate Options] tab
	[Dump Options] tab
	[Cross Reference Options] tab
	[Memory Layout Visualization Options] tab
	[Build Settings] tab
	[Individual Compile Options] tab
	[Individual Assemble Options] tab
	[File Information] tab
	[Category Information] tab

	Editor panel
	Output panel
	Add File dialog box
	Add Folder and File dialog box
	Character String Input dialog box
	Text Edit dialog box
	Path Edit dialog box
	System Include Path Order dialog box
	Build Tool Warning Messages Settings dialog box
	File Save Settings dialog box
	Link Directive File Generation dialog box
	Object File Select dialog box
	Segment Select dialog box
	Link Order dialog box
	Build Mode Settings dialog box
	Batch Build dialog box
	Go to the Location dialog box
	Progress Status dialog box
	Option dialog box
	[General - Build/Debug] category

	Add Existing File dialog box
	Browse For Folder dialog box
	Specify Boot Area Object File dialog box
	Specify Function Information File dialog box
	Specify Intermediate Language File for External Variable Sorting dialog box
	Specify Far Jump File dialog box
	Specify ROMization Area Reservation Code File dialog box
	Save As dialog box
	Open with Program dialog box
	Stack Usage Tracer window
	Stack Size Unknown / Adjusted Function Lists dialog box
	Adjust Stack Size dialog box
	Open dialog box

	APPENDIX B COMMAND REFERENCE
	B.1 C Compiler
	B.1.1 I/O files
	B.1.2 Executable object
	B.1.3 Method for manipulating
	B.1.4 Option
	Version/help display/operation status
	-V
	-help
	-v

	Output file specification
	-Fic
	-Fo
	-Fs
	-Fv
	-o
	-temp

	Controlling source debugger
	-Xno_word_bitop
	-g

	Device specification
	-X256M
	-Xbpc
	-cn
	-cnv850e
	-cnv850e2
	-cpu
	-devpath

	Compiler control specification
	-S
	-a
	-c
	-m

	ROMization control
	-Xr

	Preprocessor processing setting
	-C
	-D
	-E
	-I
	-P
	-U
	-Wa,-D
	-Wa,-I
	-Xcxxcom
	-Xd
	-Xm
	-t

	Memory saving during compilation
	-Wp,-D
	-Wi,-D

	Error output specification
	+err_file
	-err_file
	-err_limit

	Expansion function specification
	-cc78k

	Optimization
	-Od
	-Ob
	-Og
	-O
	-Os
	-Ot

	Target code optimization
	-Wi,-O4
	-Wi,-P

	File merging
	-Om

	Inline expansion optimization control
	-Wp,-G
	-Wp,-N
	-Wp,-S
	-Wp,-l
	-Wp,-inline
	-Wp,-no_inline
	-Wp,-r

	Loop expansion optimization control
	-Wo,-Ol
	-Wo,-Xlo

	strcpy, strcmp expansion
	-Xi

	External variable sort
	-Wo,-Op

	Branch instruction control
	-Wo,-XFo

	Register use control
	-r
	-reg
	-Xmask_reg

	Prologue/epilogue processing control
	-Xpro_epi_runtime

	Variable placement control
	-G
	-Xsconst
	-Xcre_sec_data
	-Xcre_sec_data_only
	-Xsec_file

	signed/unsigned control
	-Xbitfield
	-Xchar
	-Xenum_type

	Switch-case statement output code control
	-Xcase
	-Xword_switch

	Structure packing control
	-Xbyte
	-Xpack

	Far jump output control
	-Xfar_jump
	-Xj

	Comment output
	-Xc

	ANSI standard
	-Xe
	-Xdefvar
	-ansi

	Library specification
	-L
	-R
	-l

	Warning message control
	-w
	-won
	-woff

	Command file specification
	@

	CPU bug patch
	-Xv850patch

	Each module
	-W

	Other
	+Oc

	B.1.5 Cautions

	B.2 Assembler
	B.2.1 I/O files
	B.2.2 Method for manipulating
	B.2.3 Option
	File
	-a
	+err_file
	-err_file
	-l

	Assembler
	-D
	-G
	-I
	-m
	-O
	-v
	-w
	-Xfar_jump

	Device
	-X256M
	-bpc

	Warning message control
	-woff

	Other
	-cn
	-cnv850e
	-cnv850e2
	-cpu
	-F
	-g
	-o
	-p
	-V
	-zf
	@

	B.2.4 Cautions

	B.3 Linker
	B.3.1 Method for manipulating
	B.3.2 Option
	Input file
	-D
	-Xolddir

	Output file
	+err_file
	-err_file
	-o
	-m
	-mo

	Library
	-L
	-lc
	-lm
	-l

	Flash
	-ext_table
	-zf

	Device
	-X256M
	-Xsid
	-Xob=none

	Linker
	-A
	-B
	-E
	-M
	-T
	-Ximem_overflow=warning
	-e
	-f
	-mc
	-rc
	-rescan
	-rom_less
	-s
	-t
	-v
	-w

	Other
	-F
	-V
	-cpu
	-fc
	-help
	-mask_reg
	-r
	-ro
	-reg
	@

	B.3.3 Boot-flash relink function
	B.3.4 Supplementary information

	B.4 ROMization Processor
	B.4.1 I/O files
	B.4.2 rompsec section
	B.4.3 Creating object for ROMization
	B.4.4 Copy function
	_rcopy
	_rcopy1
	_rcopy2
	_rcopy4

	B.4.5 Example of using copy function
	B.4.6 Method for manipulating
	B.4.7 Option
	File
	+err_file
	-err_file
	-o

	ROMization processor
	-Ximem_overflow=warning
	-b
	-d
	-i
	-m
	-p
	-rom_less
	-t

	Other
	-F
	-V
	-help
	@

	B.5 Hex Converter
	B.5.1 I/O files
	B.5.2 Method for manipulating
	B.5.3 Option
	File
	+err_file
	-err_file
	-o

	Format
	-b
	-d
	-f
	-I
	-S
	-U
	-x
	-rom_less
	-z

	Other
	-F
	-V
	@

	B.6 Archiver
	B.6.1 Method for manipulating
	B.6.2 Key/Option
	Key
	V
	d
	m
	ma
	mb
	q
	r
	ra
	ru
	t
	x

	Archiver
	c
	v
	@

	Output file
	+err_file
	-err_file

	B.7 Section File Generator
	B.7.1 Section file
	B.7.2 Method for manipulating
	B.7.3 Option
	Section file generator
	-O
	-V
	-Xcs
	-Xcv
	-cl
	+err_file
	-err_file
	-h/-help
	-ns
	-o
	-size_tidata
	-size_tidata_byte
	-size_sidata
	-size_sedata
	-size_sdata
	-sname
	-ssection
	-ssize
	-v
	@

	B.7.4 Cautions

	B.8 Dump Tool
	B.8.1 Method for manipulating
	B.8.2 Option
	Dump tool
	-A
	-T
	-V
	-a
	-b
	-c
	-d
	+d
	-e
	-f
	-g
	-h
	-i
	-k
	-l
	-m
	-n
	-p
	-r
	-s
	-t
	+t
	-v
	-z
	+z
	@

	B.9 Disassembler
	B.9.1 Method for manipulating
	B.9.2 Option
	Disassembler
	-A
	-F
	-V
	-a
	-c
	-e
	-l
	-m
	-o
	-p
	-r
	-s
	-t
	-v
	@

	B.9.3 Cautions

	B.10 Cross Reference Tool
	B.10.1 Input/Output
	B.10.2 Method for manipulating
	B.10.3 Option
	Common options
	-V
	-all
	-cpp850
	-d
	-file
	-h/-help
	-i
	-ni
	-o
	@

	Cross reference
	-x
	-xstd

	Tag information
	-t
	-tstd

	Call tree
	-c
	-cc
	-call
	-ce
	-cf
	-cl
	-cp
	-cr
	-cs
	-cstd
	-ct

	Function metrics
	-m
	-mc
	-mall
	-ms
	-mstd

	Call database
	-b
	-bc
	-ball
	-bstd

	B.11 Memory Layout Visualization Tool
	B.11.1 Input/Output
	B.11.2 Method for manipulating
	B.11.3 Option
	Memory layout visualization tool
	-V
	-all
	-h/-help
	-m
	-mall
	-mc
	-mr
	-mstd
	-o
	@

	APPENDIX C INDEX

