
 APPLICATION NOTE

R01AN2029EJ0123 Rev.1.23 Page 1 of 23

Mar 31, 2018

RX Family

USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

Introduction

This application note describes the USB peripheral mass storage class driver (PMSC), which utilizes Firmware

Integration Technology (FIT). This module operates in combination with the USB Basic Host and Peripheral Driver

(USB-BASIC-F/W FIT module).

Target Device

RX63N/RX631 Group
RX65N/RX651 Group
RX64M Group
RX71M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

Related Documents

1. Universal Serial Bus Revision 2.0 specification

2. USB Mass Storage Class Specification Overview Revision 1.1

3. USB Mass Storage Class Bulk-Only Transport Revision 1.0, “BOT” protocol

http://www.usb.org/developers/docs/

4. RX63N/RX631 Group User’s Manual: Hardware (Document number. R01UH0041EJ)

5. RX64M Group User's Manual: Hardware (Document number. R01UH0377EJ)

6. RX71M Group User’s Manual: Hardware (Document number. R01UH0493EJ)

7. RX65N/RX651 Group User’s Manual: Hardware (Document number. R01UH0590EJ)

8. RX65N/RX651-2M Group User’s Manual: Hardware (Document number. R01UH0659EJ)

9. USB Basic Host and Peripheral Driver using Firmware Integration Technology Application Note

(Document number. R01AN2025EJ)

 Renesas Electronics Website

http://www.renesas.com

 USB Devices Page

http://www.renesas.com/prod/usb/

R01AN2029EJ0123
Rev.1.23

Mar 31, 2018

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/
http://www.renesas.com/prod/usb/

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 2 of 23

Mar 31, 2018

Contents

1. Overview ... 3

2. Software Configuration ... 4

3. Software Configuration ... 5

4. Class Driver Overview .. 8

5. Peripheral Device Class Driver (PDCD) ... 9

6. API Functions .. 10

7. Configuration (r_usb_pmsc_config.h) .. 11

8. Media Driver Interface .. 12

9. Creating an Application ... 22

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 3 of 23

Mar 31, 2018

1. Overview

The USB PMSC FIT module, when used in combination with the USB-BASIC-F/W FIT module, operates as a USB

peripheral mass storage class driver (PMSC). The USB peripheral mass storage class driver (PMSC) comprises a USB

mass storage class bulk-only transport (BOT) protocol. When combined with a USB peripheral control driver and

media driver, it enables communication with a USB host as a BOT-compatible storage device.

This module supports the following functions.

・ Storage command control using the BOT protocol

・ Response to mass storage device class requests from a USB host

1.1 Please be sure to read

Please refer to the document (Document number: R01AN2025) for USB Basic Host and Peripheral Driver using

Firmware Integration Technology Application Note when creating an application program using this driver.

This document is located in the "reference_documents" folder within this package.

1.2 Limitation

1. This driver returns the value 0 (zero) to the mass storage command (GetMaxLun) sent from USB Host.

2. The sector size which this driver supports is 512 only.

1.3 Note

1. This driver is not guaranteed to provide USB communication operation. The customer should verify operation

when utilizing it in a system and confirm the ability to connect to a variety of different types of devices.

2. The user needs to implements the media driver function which controls the media area used as the storage area.

1.4 Terms and Abbreviations

Terms and abbreviations used in this document are listed below.

APL : Application program

BOT : USB mass storage class bulk only transport. See “Universal Serial Bus

Mass Storage Class Bulk-Only Transport” at USB Implementers Forum..

DDI : Device driver interface, or PMSDD API.

PCD : Peripheral control driver of USB-BASIC-FW

PCI : PCD interface

PMSCD : Peripheral mass storage USB class driver (PMSCF + PCI + DDI)

PMSCF : Peripheral mass storage class function

PMSDD : Peripheral mass storage device driver (ATAPI driver)

RSK : Renesas Starter Kits

USB-BASIC-FW : USB Basic Host and Peripheral Driver for Renesas USB device (non-

OS& RTOS)

1.5 USB PMSC FIT Module

User needs to integrate this module to the project using r_usb_basic. User can control USB H/W by using this module

API after integrating to the project.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 4 of 23

Mar 31, 2018

2. Software Configuration

PMSC FIT module comprises two layers: PMSCD and PMSDD.

PMSCD comprises three layers: PCD API (PCI), PMSDD API (DDI), and BOT protocol control and data sends and

receives (PMSCF).

PMSCD uses the BOT protocol to communicate with the host via PCD.

PMSDD analyzes and executes storage commands received from PMSCD. PMSDD accesses media data via the

media driver.

Figure 2-1 shows the configuration of the modules.

USB2.0 Controller (HW)

USB Peripheral Control Driver (PCD)

Peripheral Mass Storage Class Driver (PMSCD)

Sample Application (APL)

Peripheral Mass Storage Device Driver (PMSDD)

Media Driver

Media

P
M

S
C

Media Driver　API

Figure 2-1 Software Configuration Diagram

Table 2-1 Module Function Overview

Module Description

PMSDD Mass Storage Device Driver

・ Processes storage commands from the PMSCD

・ Accesses media via the media driver

DDI PMSDD-PMSCD interface function

PMSCF Mass Storage Class Driver

・ Controls BOT protocol data and responds to class requests.

・ Analyzes CBWs and transmits/receives data.

・ Generates CSWs together with the PMSDD/PCD.

PCI PMSCD – PCD interface function

PCD USB Peripheral H/W Control driver

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 5 of 23

Mar 31, 2018

3. Software Configuration

This Driver API follows the Renesas API naming standards.

3.1 Hardware Requirements

This driver requires your MCU support the following features:

 USB

3.2 Software Requirements

This driver is dependent upon the following packages:

 r_bsp

 r_usb_basic

3.3 Operating Confirmation Environment

Table 3-1 shows the operating confirmation environment of this driver.

Table 3-1 Operation Confirmation Environment

Item Contents

Integrated Development

Environment

Renesas Electronics e2 studio V.6.2.0

C compiler Renesas Electronics C/C++ compiler for RX Family V.2.07.00

Compile Option：-lang = c99

Endian Little Endian, Big Endian

USB Driver Revision Number Rev.1.23

Using Board Renesas Starter Kit for RX63N

Renesas Starter Kit for RX64M

Renesas Starter Kit for RX71M

Renesas Starter Kit for RX65N, Renesas Starter Kit for RX65N-2MB

Host Environment The operation of this USB Driver module connected to the following OSes has been
confirmed.

1. Windows® 7

2. Windows® 8.1

3. Windows® 10

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 6 of 23

Mar 31, 2018

3.4 Usage of Interrupt Vector

Table 3-2 shows the interrupt vector which this driver uses.

Table 3-2 List of Usage Interrupt Vectors

Device Contents

RX63N

RX631

USBI0 Interrupt (Vector number: 35) / USBR0 Interrupt (Vector number: 90)

USB D0FIFO0 Interrupt (Vector number: 33) / USB D1FIFO0 Interrupt (Vector number: 34)

 USBI1 Interrupt (Vector number: 38) / USBR1 Interrupt (Vector number: 91)

USB D0FIFO1 Interrupt (Vector number: 36) / USB D1FIFO1 Interrupt (Vector number: 37)

RX64M

RX71M

USBI0(GROUPB) Interrupt (Vector number: 189, Group interrupt source number：62)

USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)

USBR0 Interrupt (Vector number:90)

 USBAR Interrupt (Vector number: 94)

USB D0FIFO2 Interrupt (Vector number: 32) / USB D1FIFO2 Interrupt (Vector number: 33)

RX65N

RX651

USBI0(GROUPB) Interrupt (Vector number: 185, Group interrupt source number：62)

USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)

USBR0 Interrupt (Vector number:90)

3.5 Header Files

All API calls and their supporting interface definitions are located in r_usb_basic_if.h and r_usb_pmsc_if.h.

3.6 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These

types are defined in stdint.h.

3.7 Compile Setting

For compile settings, refer to chapter 7, Configuration (r_usb_pmsc_config.h) in this document and chapter

"Configuration" in the document (Document number: R01AN2025) for USB Basic Host and Peripheral Driver using

Firmware Integration Technology Application Note.

3.8 ROM / RAM Size

The follows show ROM/RAM size of this driver.

1. RX64M, RX71M, RX65N/RX651

 Checks arguments Does not check arguments

ROM size 21.7K bytes (Note 3) 21.2K bytes (Note 4)

RAM size 42.3K bytes 42.3K bytes

2. RX63N/RX631

 Checks arguments Does not check arguments

ROM size 19.4K bytes (Note 3) 18.9K bytes (Note 4)

RAM size 45.0K bytes 45.0K bytes

[Note]

1. ROM/RAM size for BSP and USB Basic Driver is included in the above size.

2. The default option is specified in the compiler optimization option.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 7 of 23

Mar 31, 2018

3. The ROM size of “Checks arguments” is the value when USB_CFG_ENABLE is specified to

USB_CFG_PARAM_CHECKING definition in r_usb_basic_config.h file.

4. The ROM size of “Does not check arguments” is the value when USB_CFG_DISABLE is specified to

USB_CFG_PARAM_CHECKING definition in r_usb_basic_config.h file.

5. The RAM size is the value when 64 (numeric value) is specified to USB_CFG_PMSC_TRANS_COUNT

definition in r_usb_pmsc_config.h file.

3.9 Argument

For the structure used in the argument of API function, refer to chapter "Structures" in the document (Document

number: R01AN2025) for USB Basic Host and Peripheral Driver using Firmware Integration Technology

Application Note.

3.10 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the Smart

Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX devices. Please

use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using “Smart Configurator” on e2 studio

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to

“Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to

“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your

project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project on CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration

Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 8 of 23

Mar 31, 2018

4. Class Driver Overview

4.1 Class Requests

Table 4-1 lists the class requests supported by this driver

Table 4-1 MSC Class Requests

Request Code Description

Bulk-Only Mass Storage Reset
0xFF

Resets the connection interface to the mass storage

device.

Get Max Lun 0xFE Reports the logical numbers supported by the device.

4.2 Storage Commands

Table 4-2 lists the storage commands supported by this driver. This driver send the STALL or FAIL error (CSW) to

USB HOST when receiving other than the following command.

Table 4-2 Storage Commands

Command Code Description

TEST_UNIT_READY 0x00 Checks the state of the peripheral device.

REQUEST_SENSE
0x03

Gets the error information of the previous storage

command execution result.

INQUIRY 0x12 Gets the parameter information of the logical unit.

READ_FORMAT_CAPACITY 0x23 Gets the formattable capacity.

READ_CAPACITY 0x25 Gets the capacity information of the logical unit.

READ10 0x28 Reads data.

WRITE10 0x2A Writes data.

MODE_SENSE10 0x5A Gets the parameters of the logical unit.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 9 of 23

Mar 31, 2018

5. Peripheral Device Class Driver (PDCD)

5.1 Basic Functions

The functions of PDCD are to:

1. Supporting SFF-8070i (ATAPI)

2. Respond to mass storage class requests from USB host.

5.2 BOT Protocol Overview

BOT (USB MSC Bulk-Only Transport) is a transfer protocol that, encapsulates command, data, and status (results of

commands) using only two endpoints (one bulk in and one bulk out).

The ATAPI storage commands and the response status are embedded in a “Command Block Wrapper” (CBW) and a

“Command Status Wrapper” (CSW).

Figure 5-1 shows an overview of how the BOT protocol progresses with command and status data flowing between

USB host and peripheral.

Ready

Command Block Wrapper
Command Transfer

(Host→Device)

Command Status Wrapper
Status transfer
(Device→Host)

Data-Out
(Host→Device)

Data-In
(Device→Host)

CBW transfer stage
(Command packet)

Data transfer stage
(Data packet)

CSW transfer stage
(Status packet)

Figure 5-1 BOT protocol Overview.
Command and status flow between USB host and peripheral.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 10 of 23

Mar 31, 2018

6. API Functions

For API used in the application program, refer to chapter "API Functions" in the document (Document number:

R01AN2025) for USB Basic Host and Peripheral Driver using Firmware Integration Technology Application Note.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 11 of 23

Mar 31, 2018

7. Configuration (r_usb_pmsc_config.h)

Please set the following according to your system.

Note:

Be sure to set r_usb_basic_config.h file as well. For r_usb_basic_config.h file, refer to chapter "Configuration" in

the document (Document number: R01AN2025) for USB Basic Host and Peripheral Driver using Firmware

Integration Technology Application Note.

1. Setting pipe to be used

Set the pipe number (PIPE1 to PIPE5) to use for Bulk IN/OUT transfer. Do not set the same pipe number for the

definitions of USB_CFG_PMSC_BULK_IN and USB_CFG_PMSC_BULK_OUT.

#define USB_CFG_PMSC_BULK_IN Pipe number (USB_PIPE1 to USB_PIPE5)

#define USB_CFG_PMSC_BULK_OUT Pipe number (USB_PIPE1 to USB_PIPE5)

2. Setting the response data for Inquiry command.

This driver sends the data specified in the following definitions to the USB Host as the response data of Inquiry

command.

(1). Setting Vendor Information

Specify the vendor information which is response data of Inquiry command. Be sure to enclose data of 8 bytes

with double quotation marks.

#define USB_CFG_PMSC_VENDOR Vendor Information

e.g)

#define USB_CFG_PMSC_VENDOR "Renesas "

(2). Setting Product Information

Specify the product information which is response data of Inquiry command. Be sure to enclose data of 16 bytes

with double quotation marks.

#define USB_CFG_PMSC_PRODUCT Product Information

e.g)

#define USB_CFG_PMSC_PRODUCT "Mass Storage "

(3). Setting Product Revision Level

Specify the product revision level which is response data of Inquiry command. Be sure to enclose data of 4

bytes with double quotation marks.

#define USB_CFG_PMSC_REVISION Product Revision Level

e.g)

#define USB_CFG_PMSC_REVISION "1.00"

3. Setting the number of transfer sector

Specify the maximum sector size to request to PCD (Peripheral Control Driver) at one data transfer. This driver

specifies the value of "1 sector (512) × USB_CFG_PMSC_TRANS_COUNT" bytes to PCD as the transfer size. By

increasing this value, the number of data transfer requests to the PCD decreases, so the transfer speed performance

may be improved. However, note that "1 sector (512) × USB_CFG_PMSC_TRANS_COUNT" bytes of RAM will

be consumed.

#define USB_CFG_PMSC_TRANS_COUNT Number of transfer sectors (1 to 255)

e.g)

#define USB_CFG_PMSC_TRANS_COUNT 4

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 12 of 23

Mar 31, 2018

8. Media Driver Interface

PMSC uses a common media driver API function to access to the media drivers with different specifications.

8.1 Overview of Media Driver API Functions

Media driver API functions are called by the PMSC and the API functions call the media driver function implemented

by the user. This chapter explains the prototype of the media driver API function and the processing necessary for

implementing each function.

Table 8-1 shows the list of the media driver API functions.

Table 8-1 Media Driver API

Media Driver API Processing Description

R_USB_media_initialize Initializes the media driver.

R_USB_media_open Opens the media driver.

R_USB_media_close Closes the media driver.

R_USB_media_read Reads from the media.

R_USB_media_write Writes to the media.

R_USB_media_ioctl Processing the control instructions specific to the media device.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 13 of 23

Mar 31, 2018

8.1.1 R_USB_media_initialize

Register the media driver function to the media driver

Format

bool R_USB_media_initialize(media_driver_t * p_media_driver);

Arguments

p_meida_driver Point to the structure area for the media driver

Return Value

TRUE Successfully completed

FALSE Error generated

Description

 This API registers the media driver function implemented by the user to the media driver.

 Be sure to call this API at the initialization processing etc in the user application program.

Note

1. The user needs to implement the media driver function based on the contents described in the above

"Arguments", "Return Value" and "Description" etc.

2. For how to register of the media driver function implemented by the user, refer to the chapter 8.3,

Registration of the storage media driver.

3. This API does not do the media device initialization processing and does not do the starting operation

processing of the media device. These processing is done by R_USB_media_open function.

4. PMSC does not support the function to register the multiple type media driver function.

Example

if (!R_USB_media_initialize(&g_ram_mediadriver))

{

 /* Handle the error */

}

result = R_USB_media_open();

if (USB_MEDIA_RET_OK != result)

{

 /* Process the error */

}

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 14 of 23

Mar 31, 2018

8.1.2 R_USB_media_open

Initialize the media driver and the media device

Format

usb_media_ret_t R_USB_media_open(void);

Arguments

--

Return Value

USB_MEDIA_RET_OK Successfully completed

USB_MEDIA_RET_PARAERR Parameter error

USB_MEDIA_RET_DEV_OPEN The device was already opened

USB_MEDIA_RET_NOTRDY The device is not responding or not present

USB_MEDIA_RET_OP_FAIL Any other failure

Description

This API initializes the media device and the media driver and make the media device and the media driver the ready

status.

Be sure to call this API at the initialization processing etc in the user application program.

Note

1. R_USB_media_initialize function has to be called before calling this API.

2. The number of calls this API is only once unless R_USB_media_close is called. After calling

R_USB_media_close function, this API can be called again to return the device to the initial state.

3. The user needs to implement the media driver function based on the contents described in the above

"Arguments", "Return Value" and "Description" etc.

Example

if (!R_USB_media_initialize(&g_ram_mediadriver))

{

 /* Handle the error */

}

result = R_USB_media_open();

if (USB_MEDIA_RET_OK != result)

{

 /* Process the error */

}

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 15 of 23

Mar 31, 2018

8.1.3 R_USB_media_close

Release the resource for the media driver and return the media device to the non active state.

Format

usb_media_ret_t R_USB_media_close(void);

Arguments

--

Return Value

USB_MEDIA_RET_OK Successfully completed

USB_MEDIA_RET_PARAERR Parameter error

USB_MEDIA_RET_OP_FAIL Any other failure

Description

This API releases the resource for the media driver and return the media device to the non active state.

Note

1. R_USB_media_initialize function has to be called before calling this API.

2. The user needs to implement the media driver function based on the contents described in the above

"Arguments", "Return Value" and "Description" etc.

Example

result = R_USB_media_close();

if (USB_MEDIA_RET_OK != result)

{

 /* Process the error */

}

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 16 of 23

Mar 31, 2018

8.1.4 R_USB_media_read

Read the data blocks from the media device

Format

usb_media_ret_t R_USB_media_read(uint8_t *p_buf, uint32_t lba, uint8_t count);

Argument

p_buf Pointer to the area to store the read data from the media device

lba Read start logical block address

count Number of read block (Number of sector)

Return Value

USB_MEDIA_RET_OK Successfully completed

USB_MEDIA_RET_PARAERR Parameter error

USB_MEDIA_RET_NOTRDY The device is not ready state

USB_MEDIA_RET_OP_FAIL Any other failure

Description

This API reads the data blocks from the media device. (Read the data blocks for the number of blocks specified by the

third argument (count) from the LBA (Logical Block Address) specified by the second argument.)

The read data is stored in the specified area by the first argument (p_buf).

Note

1. R_USB_media_initialize function has to be called before calling this API.

2. The user needs to implement the media driver function based on the contents described in the above

"Arguments", "Return Value" and "Description" etc.

Example

result = R_USB_media_read(&buffer, lba, 1);

if (USB_MEDIA_RET_OK != result)

{

 /* Process the error */

}

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 17 of 23

Mar 31, 2018

8.1.5 R_USB_media_write

Write the data block to the media device

Format

usb_media_ret_t R_USB_media_write(uint8_t *p_buf, uint32_t lba, uint8_t count);

Arguments

p_buf Pointer to the area where data to be written to the media device is stored

lba Write start logical block address

count Number of write blocks (Number of sector)

Return Value

USB_MEDIA_RET_OK Successfully completed

USB_MEDIA_RET_PARAERR Parameter error

USB_MEDIA_RET_NOTRDY The device is not ready state

USB_MEDIA_RET_OP_FAIL Any other failure

Description

This API write the data blocks to the media device. (Write the data blocks for the number of blocks specified by the

third argument (count) to the LBA (Logical Block Address) specified by the second argument.)

Store the write data in the area specified by the first argument (p_buf).

Note

1. R_USB_media_initialize function has to be called before calling this API.

2. The user needs to implement the media driver function based on the contents described in the above

"Arguments", "Return Value" and "Description" etc.

Example

result = R_USB_media_write(&buffer, lba, 1);

if (MEDIA_RET_OK != result)

{

/* Process the error */

}

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 18 of 23

Mar 31, 2018

8.1.6 R_USB_media_ioctl

Get the information of the media driver etc

Format

usb_media_ret_t R_USB_media_ioctl(ioctl_cmd_t command, void *p_data);

Arguments

command Command code

p_data Pointer to the area to store the media information

Return Value

USB_MEDIA_RET_OK Successfully completed

USB_MEDIA_RET_PARAERR Parameter error

USB_MEDIA_RET_NOTRDY The device is not ready state

USB_MEDIA_RET_OP_FAIL Any other failure

Description

This API gets the return information from the media driver by specifying the media driver specific command.

PMSC uses the following commands as the command code to the media driver.

MEDIA_IOCTL_GET_NUM_BLOCKS Number of block for the media area

MEDIA_IOCTL_GET_BLOCK_SIZE 1 block size

Note

1. R_USB_media_initialize function has to be called before calling this API.

2. The user can ndefine the command code specified in the argument(command) newly.

3. The user needs to implement the media driver function based on the contents described in the above

"Arguments", "Return Value" and "Description" etc.

Example

uint32_t num_blocks;

uint32_t block_size;

uint64_t capacity;.

result = R_USB_media_ioctl(MEDIA_IOCTL_GET_NUM_BLOCKS, (void *)&num_blocks);

result = R_USB_media_ioctl(MEDIA_IOCTL_GET_BLOCK_SIZE, (void *)&block_size);

capacity = (uin64_t)block_size * (uint64_t)num_blocks;

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 19 of 23

Mar 31, 2018

8.2 Structure / Enum type definition

The following shows the structure and enum type used by the media driver API.

These are defined in r_usb_media_driver_if.h file.

8.2.1 usb_media_driver_t (Structure)

 usb_media_driver_t is the structure to hold the pointer to the media driver function implemented by the user.

 The following shows usb_media_driver_t structure.

typedef struct media_driver_t

{

 usb_media_open_t pf_media_open; /* Pointer to the open function */

 usb_media_close_t pf_media_close; /* Pointer to the close function */

 usb_media_read_t pf_media_read; /* Pointer to the read function */

 usb_media_write_t pf_media_write; /* Pointer to the write function */

 usb_media_ioctl_t pf_media_ctrl; /* Pointer to the control function */

} usb_media_driver_t

8.2.2 usb_media_ret_t (Enum)

 The return value is defined in usb_media_ret_t (Enum).

typedef enum

{

 USB_MEDIA_RET_OK = 0, /* Successfully Completed */

 USB_MEDIA_RET_NOTRDY, /* The device is not ready state */

 USB_MEDIA_RET_PARERR, /* Parameter error */

 USB_MEDIA_RET_OP_FAIL, /* Any other failure */

 USB_MEDIA_RET_DEV_OPEN, /* The device was already opened */

} usb_media_ret_t

8.2.3 ioctrl_cmd_t (Enum)

 The command code specified in the argument of the R_USB_media_ioctl function is defined in ioctl_cmd_t (Enum).

typedef enum

{

 USB_MEDIA_IOCTL_GET_NUM_BLOCKS, /* Get the number of the logical block */

 USB_MEDIA_IOCTL_GET_BLOCK_SIZE, /* Get the logical block size */

} ioctl_cmd_t

Note:

 Please add the command code in the ioctl_cmd_t when adding the user own command code.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 20 of 23

Mar 31, 2018

8.3 Registration of the storage media driver

To change the PMSC’s storage media from RAM to something else, such as flash memory, the user has to implement

media driver functions to handle reading from and writing to the new storage media and register them to the media

driver API functions.

The example below shows the procedure for changing from RAM media to serial SPI flash.

1. Creating Media Driver Functions

Assume that the following functions are implemented by the user as media driver functions for serial SPI flash.

1. usb_media_ret_t spi_flash_open (void)

2. usb_media_ret_t spi_flash_close (void)

3. usb_media_ret_t spi_flash_read(uint8_t *p_buf,uint32_t lba, uint8_t count)

4. usb_media_ret_t spi_flash_write(uint8_t *p_buf,uint32_t lba, uint8_t count)

5. usb_media_ret_t spi_flash_ioctl(ioctl_cmd_t ioctl_cmd,void * ioctl_data)

2. Registering the Media Driver Functions with the Media API

(1). Define the structure usb_media_driver_t for the serial SPI flash. As the members of this structure, specify

pointers to the relevant media driver functions.

struct media_driver_t g_spi_flash_mediadriver =
{
 &spi_flash_open,
 &spi_flash_close,
 &spi_flash_read,
 &spi_flash_write,
 &spi_flash_ioctl
};

(2). In the application program, specify the pointer to usb_media_driver_t structure to the argument in

R_USB_media_initialize function (API), and perform initialization processing.

== Application Program ==

R_USB_media_initialize(& g_spi_flash_mediadriver);

The serial SPI flash function is registered as the media driver function called by the media drvier by doing the

above order.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 21 of 23

Mar 31, 2018

8.4 Implementation of the strorage media dirver

The user needs to implement the media driver function for controlling the storage media to be used.

The implemented media driver function is called from PMSC via the API described in chapter 8.1, Overview of

Media Driver API Functions from PMSC.

 Note:

For the necessary processing to implement the media driver function, refer to each API specification described in

chapter 8.1, Overview of Media Driver API Functions.

8.5 Prototype Declaration of Media Driver function

The following shows the prototype declaration of the media driver function.

1. usb_media_ret_t (*media_open_t) (uint8_t); /* Open function type */

2. usb_media_ret_t (*media_close_t)(uint8_t); /* Close function type */

3. usb_media_ret_t (*media_read_t)(uint8_t, uint8_t*, uint32_t, uint8_t); /* Read function type */

4. usb_media_ret_t (*media_write_t)(uint8_t, uint8_t*, uint32_t, uint8_t); /* Write function type */

5. usb_media_ret_t (*media_ioctl_t)(uint8_t, ioctl_cmd_t, void *); /* Control function type */

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 22 of 23

Mar 31, 2018

9. Creating an Application

Refer to the chapter “Creating an Application Program” in the document (Document number: R01AN2025) for

USB Basic Host and Peripheral Driver using Firmware Integration Technology Application Note.

Note:

Be sure to call R_USB_media_initialize function (API) and R_USB_media_open function (API) at the initialize processing etc in

the user application program.

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

R01AN2029EJ0123 Rev.1.23 Page 23 of 23

Mar 31, 2018

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/
http://www.renesas.com/inquiry
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description

Page Summary

1.00 Aug 1, 2014 — First edition issued

1.10 Dec 26, 2014 — RX71M is added in Target Device.

1.11 Sep 30, 2015 — RX63N and RX631 are added in Target Device.

1.20 Sep 30, 2016 — 1. RX65N and RX651 are added in Target Device.

2. Supporting DMA transfer.

3. Supporting USB Host and Peripheral Interface Driver application

note(Document No.R01AN3293EJ)

1.21 Mar 31, 2017 — 1. Supported Technical Update (Document number. TN-RX*-A172A/E)

2. The chapter API Functions is moved to the document (Document

number: R01AN2025) of USB Basic Host and Peripheral Driver

Firmware Integration Technology.

1.22 Sep 30, 2017 — Supporting RX65N/RX651-2M

1.23 Mar 31, 2018 — Supporting the Smart Configurator.

 General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as

well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the

vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur

due to the false recognition of the pin state as an input signal become possible. Unused pins

should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings

and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of

pins are not guaranteed from the moment when power is supplied until the reset process is

completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset

function are not guaranteed from the moment when power is supplied until the power

reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock

signal. Moreover, when switching to a clock signal produced with an external resonator (or

by an external oscillator) while program execution is in progress, wait until the target clock

signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same

group but having a different part number may differ in terms of the internal memory capacity,

layout pattern, and other factors, which can affect the ranges of electrical characteristics,

such as characteristic values, operating margins, immunity to noise, and amount of radiated

noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.

Colophon 7.0

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

	1. Overview
	1.1 Please be sure to read
	1.2 Limitation
	1.3 Note
	1.4 Terms and Abbreviations
	1.5 USB PMSC FIT Module

	2. Software Configuration
	3. Software Configuration
	3.1 Hardware Requirements
	3.2 Software Requirements
	3.3 Operating Confirmation Environment
	3.4 Usage of Interrupt Vector
	3.5 Header Files
	3.6 Integer Types
	3.7 Compile Setting
	3.8 ROM / RAM Size
	3.9 Argument
	3.10 Adding the FIT Module to Your Project

	4. Class Driver Overview
	4.1 Class Requests
	4.2 Storage Commands

	5. Peripheral Device Class Driver (PDCD)
	5.1 Basic Functions
	5.2 BOT Protocol Overview

	6. API Functions
	7. Configuration (r_usb_pmsc_config.h)
	8. Media Driver Interface
	8.1 Overview of Media Driver API Functions
	8.1.1 R_USB_media_initialize
	8.1.2 R_USB_media_open
	8.1.3 R_USB_media_close
	8.1.4 R_USB_media_read
	8.1.5 R_USB_media_write
	8.1.6 R_USB_media_ioctl

	8.2 Structure / Enum type definition
	8.2.1 usb_media_driver_t (Structure)
	8.2.2 usb_media_ret_t (Enum)
	8.2.3 ioctrl_cmd_t (Enum)
	8.3 Registration of the storage media driver
	8.4 Implementation of the strorage media dirver
	8.5 Prototype Declaration of Media Driver function

	9. Creating an Application

