
 APPLICATION NOTE 

R01AN2063EJ0105  Rev.1.05  Page 1 of 31 

Jul 31, 2017  

RX Family 

DMA Controller DMACA Control Module 

Firmware Integration Technology 

Introduction 

This application note explains how to use the software control module for the DMA controller (DMAC) on RX Family 

microcontrollers. The module is a DMAC control module using Firmware Integration Technology (FIT). The DMAC 

control module controls the DMAC referred to in the User’s Manual: Hardware as the “DMACA”. The module is 

referred to below as the DMACA FIT module. 

In systems where the DMACA FIT module is used simultaneously with the data transfer controller (DTC), it is 

necessary to ensure that the DTC control software does not enable the module stop state while the DMAC is operating, 

because a shared bit is used as both the DMAC module stop setting bit and the DTC module stop setting bit. 

Note that the initialism “DMAC” is sometimes used in the discussion below to match the descriptions in the User’s 

Manual: Hardware, but it refers to the DMACA. 

Target Device 

Supported microcontrollers 

RX231 Group, RX230 Group 

RX64M Group, RX65N Group, RX651 Group 

RX71M Group 
 
When applying the information in this application note to a microcontroller other than the above, modifications should 

be made as appropriate to match the specification of the microcontroller and careful evaluation performed. 

Related Documents 

The application note that is related to the DTC FIT module is listed below. Reference should also be made to this 

application note. 

 Firmware Integration Technology User’s Manual (R01AN1833EU) 

 Board Support Package Module Using Firmware Integration Technology (R01AN1685EJ) 

 Adding Firmware Integration Technology Modules to Projects (R01AN1723EU) 

 Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826EJ) 

 RX Family DTC Module Firmware Integration Technology (R01AN18193EJ) 

 RX Family RSPI Clock Synchronous Single Master Control Module Firmware Integration Technology 

(R01AN1914EJ) 

 RX Family QSPI Clock Synchronous Single Master Control Module Firmware Integration Technology 

(R01AN1940EJ) 

RX Family SCIFA Clock Synchronous Single Master Control Module Firmware Integration Technology 

(R01AN2280EJ) 

 

R01AN2063EJ0105 
Rev.1.05 

Jul 31, 2017 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 2 of 31 

Jul 31, 2017  

 

Contents 

1. Overview ........................................................................................................................................... 3 

1.1 DMACA FIT Module .......................................................................................................................... 3 

1.2 Overview of DMACA FIT Module ...................................................................................................... 3 

1.3 Overview of APIs ............................................................................................................................... 4 

2. API Information .................................................................................................................................. 5 

2.1 Hardware Requirements ................................................................................................................... 5 

2.2 Software Requirements ..................................................................................................................... 5 

2.3 Supported Toolchain ......................................................................................................................... 5 

2.4 Interrupt vector .................................................................................................................................. 5 

2.5 Header Files ...................................................................................................................................... 6 

2.6 Integer Types .................................................................................................................................... 6 

2.7 Compile Settings ............................................................................................................................... 6 

2.8 Code Size .......................................................................................................................................... 6 

2.9 Arguments ......................................................................................................................................... 7 

2.10 Return Values .................................................................................................................................... 8 

2.11 Callback function ............................................................................................................................... 9 

2.12 Adding the FIT Module to Your Project ............................................................................................. 9 

3. API Functions .................................................................................................................................. 10 

3.1 R_DMACA_Init() .............................................................................................................................. 10 

3.2 R_DMACA_Open() .......................................................................................................................... 11 

3.3 R_DMACA_Close() ......................................................................................................................... 12 

3.4 R_DMACA_Create() ........................................................................................................................ 14 

3.5 R_DMACA_Control() ....................................................................................................................... 20 

3.6 R_DMACA_Int_Calback() ............................................................................................................... 25 

3.7 R_DMACA_Int_Enable() ................................................................................................................. 26 

3.8 R_DMACA_Init_Disable() ............................................................................................................... 27 

3.9 R_DMACA_GetVersion() ................................................................................................................ 28 

4. Pin Setting ....................................................................................................................................... 29 

5. Appendices ...................................................................................................................................... 29 

5.1 Operating Confirmation Environment .............................................................................................. 29 

5.2 Troubleshooting ............................................................................................................................... 30 

6. Reference Documents..................................................................................................................... 31 
 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 3 of 31 

Jul 31, 2017  

1. Overview 

1.1 DMACA FIT Module 

The DMACA FIT module can be combined with other FIT modules for easy integration into the target system. 

The functions of DMACA FIT module can be incorporated into software programs by means of APIs. For information 

on incorporating the DMACA FIT module into projects, see”2.12 Adding the FIT Module to Your Project”. 

 

1.2 Overview of DMACA FIT Module 

The DMAC is a module to transfer data without the CPU. When a DMACA transfer request is generated, the DMAC 

transfers data stored at the transfer source address to the transfer destination address. 

For details, see the “DMA Controller” section of the User’s Manual: Hardware. 

 

(1)Transfer Modes 

The DMAC supports the following transfer modes. 

 Normal transfer mode 

 Repeat transfer mode 

 Block transfer mode 
 
 

(2)Extended Repeat Area Function 

The DMAC supports a function to specify the extended repeat areas on the transfer source and destination addresses. 

With the extended repeat areas set, the address registers repeatedly indicate the addresses of the specified extended 

repeat areas. However, the area (of transfer source or transfer destination) which is specified as the repeat area or block 

area should not be specified as the extended repeat area. 

 

(3)Address Update Function using Offset (DMAC0 Only) 

The source and destination addresses can be updated by fixing, increment, decrement, or offset addition. When the 

offset addition is selected, the offset specified by the DMACA offset register (DMOFR of DMAC0) is added to the 

address every time the DMAC performs one data transfer. This function realizes a data transfer where addresses are 

allocated to separated areas. Offset subtraction can also be realized by setting a negative value in DMOFR of DMAC0. 

In this case, the negative value must be 2’s complement. 

For example, on the RX64M the offset setting ranges are 0 bytes to (16 M – 1) bytes (00000000h to 00FFFFFFh) and –

16 M bytes to –1 byte (FF000000h to FFFFFFFFh). 

 

(4)Usage Conditions of DMACA FIT Module 

The usage conditions of the module are as follows. 

 The r_bsp default lock function must be used. 

 A single common bit must be used as the DMAC module stop setting bit and the DTC module stop setting bit. 
 
 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 4 of 31 

Jul 31, 2017  

1.3 Overview of APIs 

Table 1-1 lists the API functions of DMACA FIT module. 

 

Table 1-1   API Functions 

Function Name Description 

R_DMACA_Init() Module information initialization processing 

R_DMACA_Open() Channel-specific initialization processing 

R_DMACA_Close() Channel-specific end processing 

R_DMACA_Create() Channel-specific register and activation source setting processing 

R_DMACA_Control() Operation setting processing 

R_DMACA_Int_Callback() Callback function registration processing for channel-specific transfer 

end interrupt/transfer escape end interrupt 

R_DMACA_Int_Enable() Channel-specific transfer end interrupt/transfer escape end interrupt 

enable processing 

R_DMACA_Int_Disable() Channel-specific transfer end interrupt/transfer escape end interrupt 

disable processing 

R_DMACA_GetVersion() Version information acquisition processing 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 5 of 31 

Jul 31, 2017  

2. API Information 

The names of the APIs of the DMACA FIT module follow the Renesas API naming standard. 

 

2.1 Hardware Requirements  

The microcontroller used must support the following functionality. 

 DMAC(DMACA) 

 ICU 

 

2.2 Software Requirements 

The DMACA FIT module is dependent on the following packages. 

 r_bsp 

 

2.3 Supported Toolchain 

The operation of the DMACA FIT module has been confirmed with the toolchain listed in 5.1. 

 

2.4 Interrupt vector 

When running the R_DMACA_Int_Enable() function, the transfer end interrupt and the escape transfer end interrupt 

according to the argument channel and the interrupt priority level are enabled.  

Table 2-1 lists the interrupt vector used in the DMACA FIT Module.  

 

Table 2-1 Interrupt Vector Used in the DMACA FIT Module 

Device Interrupt Vector 

RX230/RX231 DMAC0I interrupt[channel0] (vector no.:198) 

DMAC1I interrupt[channel1] (vector no.:199) 

DMAC2I interrupt[channel2] (vector no.:200) 

DMAC3I interrupt[channel3] (vector no.:201) 

RX64M DMAC0I interrupt[channel0] (vector no.:120) 

DMAC1I interrupt[channel1] (vector no.:121) 

DMAC2I interrupt[channel2] (vector no.:122) 

DMAC3I interrupt[channel3] (vector no.:123) 

DMAC74I interrupt[channel4-7] (vector no.:124) 

RX65N/RX651 DMAC0I interrupt[channel0] (vector no.:120) 

DMAC1I interrupt[channel1] (vector no.:121) 

DMAC2I interrupt[channel2] (vector no.:122) 

DMAC3I interrupt[channel3] (vector no.:123) 

DMAC74I interrupt[channel4-7] (vector no.:124) 

RX71M DMAC0I interrupt[channel0] (vector no.:120) 

DMAC1I interrupt[channel1] (vector no.:121) 

DMAC2I interrupt[channel2] (vector no.:122) 

DMAC3I interrupt[channel3] (vector no.:123) 

DMAC74I interrupt[channel4-7] (vector no.:124) 

 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 6 of 31 

Jul 31, 2017  

2.5 Header Files 

All the API calls and interface definitions used are listed in r_dmaca_rx_if.h. 

 

2.6 Integer Types 

This project uses ANSI C99. These types are defined in stdint.h. 

 

2.7 Compile Settings 

The configuration option settings for the DMACA FIT module are specified in r_dmaca_rx_config.h. 

 

2.8 Code Size 

Table 2-2 lists the code sizes of DMACA FIT module. 

 

Table 2-2   Code Sizes 

MCU Memory Size (Note1, 2, 3, 4) 

RX231 ROM 1,491 bytes 

RAM 36 bytes 

Max. user stack 24 bytes 

Max. interrupt stack 36 bytes 

RX65N ROM 1,670 bytes 

RAM 72 bytes 

Max. user stack 24 bytes 

Max. interrupt stack 44 bytes 

RX71M ROM 1,670 bytes 

RAM 72 bytes 

Max. user stack 24 bytes 

Max. interrupt stack 44 

Note 1 The memory sizes listed apply when the default settings listed in, “Compile Settings”, are used. The memory 

sizes differ according to the definitions selected. 

Note 2 Under confirmation conditions listed the following 

 r_dmaca_rx.c 

 r_dmaca_rx_target.c 

Note 3 The required memory sizes differ according to the C compiler version and the compile conditions. 

Note 4 The memory sizes listed apply when the little endian. The above memory sizes also differ according to endian 

mode. 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 7 of 31 

Jul 31, 2017  

2.9 Arguments 

The structure for the arguments of the API functions is shown below. This structure is listed in r_dmaca_rx_if.h, along 

with the prototype declarations of the API functions. 

 

typedef struct st_dmaca_transfer_data_cfg 

{ 

    dmaca_transfer_mode_t  transfer_mode;      /* Transfer Mode */ 

    dmaca_repeat_block_side_t repeat_block_side;  

          /* Repeat Area in Repeat or Block Transfer Mode */ 

    dmaca_data_size_t    data_size;      /* Transfer Data Size */ 

    dmaca_activation_source_t act_source;     /* Activation Source */ 

    dmaca_request_source_t  request_source;  /* Transfer Request Source */ 

    dmaca_dti_t      dtie_request; 

                /* Transfer End Interrupt Request */ 

    dmaca_esi_t      esie_request; 

             /* Transfer Escape End Interrupt Request */ 

    dmaca_rpti_t     rptie_request;  

               /* Repeat Size End Interrupt Request */ 

    dmaca_sari_t     sarie_request; 

    /* Source Address Extended Repeat Area Overflow Interrupt Request */ 

    dmaca_dari_t     darie_request; 

    /* Destination Address Extended Repeat Area Overflow Interrupt Request */ 

    dmaca_src_addr_mode_t  src_addr_mode;   /* Address Mode of Source */ 

    dmaca_src_addr_repeat_area_t src_addr_repeat_area; 

             /* Source Address Extended Repeat Area */ 

    dmaca_des_addr_mode_t  des_addr_mode; /* Address Mode of Destination */ 

    dmaca_des_addr_repeat_area_t des_addr_repeat_area; 

            /* Destination Address Extended Repeat Area */ 

    uint32_t                 offset_value;   

          /* Offset value for DMA Offset Register (DMOFR) */ 

    dmaca_interrupt_select_t interrupt_sel;   

           /* Configurable Options for Interrupt Select */ 

    void        *p_src_addr;   /* Start Address of Source */ 

    void        *p_des_addr;  /* Start Address of Destination */ 

    uint32_t       transfer_count;     /* Transfer Count */ 

    uint16_t       block_size;   /* Repeat Size or Block Size */ 

    uint8_t  rsv[2]; 

} dmaca_transfer_data_cfg_t; 

 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 8 of 31 

Jul 31, 2017  

typedef enum e_dmaca_command 

{ 

    DMACA_CMD_ENABLE = 0,                          /* Enables DMA transfer. */ 

    DMACA_CMD_ALL_ENABLE,                       /* Enables DMAC activation. */ 

    DMACA_CMD_RESUME,                            /* Resumes DMA transfer. */ 

    DMACA_CMD_DISABLE,                           /* Enables DMA transfer. */ 

    DMACA_CMD_ALL_DISABLE,                    /* Disables DMAC activation. */ 

    DMACA_CMD_SOFT_REQ_WITH_AUTO_CLR_REQ, 

       /* SWREQ bit is cleared automatically after DMA transfer. */ 

    DMACA_CMD_SOFT_REQ_NOT_CLR_REQ,  

          /* SWREQ bit is not cleared after DMA transfer. */ 

    DMACA_CMD_SOFT_REQ_CLR,         /* Clears DMACA Software request flag. */ 

    DMACA_CMD_STATUS_GET,            /* Gets the current status of DMACA. */ 

    DMACA_CMD_ESIF_STATUS_CLR, /* Clears Transfer Escape End Interrupt Flag. */ 

    DMACA_CMD_DTIF_STATUS_CLR          /* Clears Transfer Interrupt Flag. */ 

} dmaca_command_t; 

 

 

2.10 Return Values 

The API function return values are shown below. This enumerated type is listed in r_dmaca_rx_if.h, along with the 

prototype declarations of the API functions. 

 

typedef enum e_dmaca_return 

{ 

    DMACA_SUCCESS_OTHER_CH_BUSY = 0,   /* Other DMAC channels are locked, */ 

           /*  so that cannot set to module stop state. */ 

    DMACA_SUCCESS_DTC_BUSY,           /* DTC is locked, */ 

            /* so that cannot set to module stop state. */ 

    DMACA_SUCCESS, 

    DMACA_ERR_INVALID_CH,                  /* Channel is invalid. */ 

    DMACA_ERR_INVALID_ARG,               /* Parameters are invalid. */ 

    DMACA_ERR_INVALID_HANDLER_ADDR,   /* Invalid function address is set, */ 

         /*  and any previous function has been unregistered. */ 

    DMACA_ERR_INVALID_COMMAND,             /* Command is invalid. */ 

    DMACA_ERR_NULL_PTR,                  /* Argument pointers are NULL. */ 

    DMACA_ERR_BUSY,    /* Resource has been locked by other process. */ 

    DMACA_ERR_SOFTWARE_REQUESTED, 

     /* DMA transfer request by software has been generated already, */ 

              /*  so that cannot execute command. */ 

    DMACA_ERR_SOFTWARE_REQUEST_DISABLED,                     

            /* Transfer Request Source is not Software. */ 

    DMACA_ERR_INTERNAL         /* DMACA driver internal error */ 

 } dmaca_return_t; 

 

 

 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 9 of 31 

Jul 31, 2017  

2.11 Callback function 

In this module, the callback function set by user is called when the transfer end interrupt and the escape transfer end 

interrupt occurred.  

To register the call back function, see “3.6 R_DMACA_Int_Calback()”. 

 

2.12 Adding the FIT Module to Your Project 

This module must be added to each project in which it is used. Renesas recommends using “Smart Configurator” 

described in (1) or (3). However, “Smart Configurator” only supports some RX devices. Please use the methods of (2) 

or (4) for unsupported RX devices. 

 

(1) Adding the FIT module to your project using “Smart Configurator” in e2 studio 

By using the “Smart Configurator” in e2 studio, the FIT module is automatically added to your project. Refer 

to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details. 

 

(2) Adding the FIT module to your project using “FIT Configurator” in e2 studio 

By using the “FIT Configurator” in e2 studio, the FIT module is automatically added to your project. Refer to 

“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details. 

 

(3) Adding the FIT module to your project using “Smart Configurator” on CS+ 

By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically added to 

your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details. 

 

(4) Adding the FIT module to your project in CS+ 

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration 

Technology Modules to CS+ Projects (R01AN1826)” for details. 
 
 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 10 of 31 

Jul 31, 2017  

3. API Functions 

3.1 R_DMACA_Init() 

This function is used to initialize the DMAC’s internal information. 

Format 
void R_DMACA_Init(void) 

 

Parameters 
None 

 

Return Values 
None 

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h. 

 

Description 
Initializes the usage status of each DMA channel (internal information). Also, cancels the registered callback functions 

for all DMAC transfer end interrupts/transfer escape end interrupts (DMAC0I, DMAC1I, DMAC2I, DMAC3I, and 

DMAC74I). If DMAC transfer end interrupts/transfer escape end interrupts will be used, run the R_DMACA_Init() 

function beforehand, and then use the R_DMACA_Int_Callback() function (described below) to register the callback 

functions. 

 

Reentrant 
Reentrant from a different channel is impossible. 

 

Example 
#include "r_dmaca_rx_if.h" 

 

/* When using the DMACA driver, run the R_DMACA_Init() function first. */ 

R_DMACA_Init(); 

 

Special Notes: 
When using the DMACA driver, run the R_DMACA_Init() function first. It is recommended to run at hardware setup 

operation. 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 11 of 31 

Jul 31, 2017  

3.2 R_DMACA_Open() 

This function is run after calling R_DMACA_Init() when using the APIs of the DMACA FIT module. 

 

Format 
dmaca_return_t R_DMACA_Open( 

    uint8_t channel 

) 

 

Parameters 
channel 

DMAC channel number 

 

Return Values 
DMACA_SUCCESS      /* Successful operation */ 

DMACA_ERR_INVALID_CH    /* Channel is invalid. */ 

DMACA_ERR_BUSY      /* Resource has been locked by other process. */ 

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h. 

 

Description 
Locks*1 the DMAC channel specified by the argument channel, then makes initial settings. Releases the DMAC from 

the module stop state, then activates the DMAC. Also, initializes the activation source selection register for the 

specified DMAC channel. 

Note: 1. The DMACA FIT module uses the r_bsp default lock function. As a result, the specified DMAC channel is in 

the locked state after a successful end. 

 

Reentrant 
Reentrant from a different channel is possible. 

 

Example 
#include “r_dmaca_rx_if.h” 

volatile dmaca_return_t  ret; 

 

ret = R_DMACA_Open(DMACA_CH0); 

 

Special Notes: 
None 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 12 of 31 

Jul 31, 2017  

3.3 R_DMACA_Close() 

This function is used to release the resources of the DMAC channel currently in use.  

 

Format 
dmaca_return_t R_DMACA_Close( 

    uint8_t channel 

) 

 

Parameters 
channel 

DMAC channel number 
 

 

Return Values 
DMACA_SUCCESS     /* Successful operation */ 

DMACA_SUCCESS_OTHER_CH_BUSY  

       /* Successful operation. Other DMAC channels are locked. */ 

DMACA_SUCCESS_DTC_BUSY  /* Successful operation. DTC is locked. */ 

DMACA_ERR_INVALID_CH   /* Channel is invalid. */ 

DMACA_ERR_INTERNAL    /* DMACA driver internal error */ 

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h. 

 

Description 
Unlocks*1 the DMAC channel specified by the argument channel and clears to 0 the DMA transfer enable (DTE) bit of 

the specified DMAC channel to disable DMA transfers. If all DMAC channels are unlocked, the function clears the 

DMAC operation enable (DMST) bit to prevent DMAC activation. If in addition DTC is unlocked, the function sets the 

DMAC and DTC to the module stop state.*2 

Note: 1. The DMACA FIT module uses the r_bsp default lock function. As a result, the specified DMAC channel is in 

the unlocked state after a successful end. 

 2. Because a shared bit is used as both the DMAC module stop setting bit and the DTC module stop setting bit, 

the function confirms that the DTC is unlocked before making the module stop setting. (For details, see the 

“Low Power Consumption” section in the User’s Manual: Hardware. 

Change the processing method to match the combination of modules used, as shown below. 

 

DMAC Control DTC Control Processing Method 

DMACA FIT module 

(lock function control function 

present, DTC lock state checking 

function present) 

DTC FIT module 

(lock function control function 

present, DMAC lock state 

checking function present) 

See case 1. 

Other than the above  See case 2. 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 13 of 31 

Jul 31, 2017  

Case 1: Using the r_bsp Default Lock Function and Controlling the DTC with the DTC FIT Module*1 

The function uses the r_bsp default lock function to confirm that all DMAC channels are unlocked and that the DTC is 

unlocked, then puts the DMAC into the module stop state. 

Note: 1. A necessary condition is that the DTC FIT module has a module stop control function that confirms the 

locked state of the DMAC. 

 

Case 2: Control Other Than the Above 

The user must provide code to confirm that all DMAC channels are unlocked and that the DTC is unlocked (not in use). 

The DMACA FIT module includes an empty function for this purpose. 

If the r_bsp default lock function is not used, insert the program code for checking the locked/unlocked state of all the 

DMAC channels and the DTC after the line marked /* do something */ in the 

r_dmaca_check_DMACA_DTC_locking_byUSER() function in the file r_dmaca_rx_target.c. 

Even if the r_bsp default lock function is used, if the DTC FIT module is not used to control the DTC, insert program 

code for checking the locked/unlocked state of the DTC after the line marked /* do something */ in the 

r_dmaca_check_DTC_locking_byUSER() function in the file r_dmaca_rx_target.c. 

Note that the dmaca_chk_locking_sw_t type shown below should be used for the return value of the 

r_dmaca_check_DMACA_DTC_locking_byUSER() function or r_dmaca_check_DTC_locking_byUSER() function. 

 

dmaca_chk_locking_sw_t type 
DMACA_ALL_CH_UNLOCKED_AND_DTC_UNLOCKED 

                                  /* All DMAC channels and DTC are unlocked. */ 

DMACA_ALL_CH_UNLOCKED_BUT_DTC_LOCKED 

                       /* All DMAC channels are unlocked, but DTC is locked. */ 

DMACA_LOCKED_CH_EXIST                     /* Other DMAC channels are locked. */ 

 

Reentrant 
Reentrant from a different channel is possible. 

 

Example 
#include “r_dmaca_rx_if.h” 

volatile dmaca_return_t  ret; 

 

ret = R_DMACA_Close(DMACA_CH0); 

if (DMACA_SUCCESS != ret) 

{ 

    /* do something */ 

} 

 

Special Notes: 
When controlling the DTC without using the DTC FIT module, make sure to monitor the usage of the DTC and control 

locking and unlocking of the DTC so that calling this function does not set the DTC to the module stop state. Note that 

even if the DTC has not been activated, it is necessary to keep it in the locked state when not making DTC transfer 

settings. 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 14 of 31 

Jul 31, 2017  

3.4 R_DMACA_Create() 

This function is used to make DMAC register settings and to specify the activation source. 

 

Format 
dmaca_return_t R_DMACA_Create( 

    uint8_t channel, 

    damca_transfer_data_cfg_t * p_data_cfg 

) 

 

Parameters 
channel 

DMAC channel number 
 
* p_data_cfg 

Pointer to dmaca_transfer_data_cfg_t DMAC transfer information structure 

 

Setting Values of Members of dmaca_transfer_data_cfg_t Structure 

Structure 

Member Short Description Setting Value Setting Details 

transfer_mode Transfer Mode DMACA_TRANSFER_MODE_NORMAL Normal transfer 

DMACA_TRANSFER_MODE_REPEAT Repeat transfer 

DMACA_TRANSFER_MODE_BLOCK Block transfer 

repeat_block_side 

 

Repeat Area in 

Repeat or Block 

Transfer Mode 

DMACA_REPEAT_BLOCK_DESTINATION The destination is specified as 

the repeat area or block area. 

DMACA_REPEAT_BLOCK_SOURCE The source is specified as the 

repeat area or block area. 

DMACA_REPEAT_BLOCK_DISABLE The repeat area or block area is 

not specified. 

data_size Transfer Data Size DMACA_DATA_SIZE_BYTE 8-bit 

DMACA_DATA_SIZE_WORD 16-bit 

DMACA_DATA_SIZE_LWORD 32-bit 

act_source DMACA Activation 

Source 

Member of enum_ir enumerated type list of constants in 

file Iodefine.h 

Interrupt vector number of 

DMAC activation source 

request_source DMACA Transfer 

Request Source 

DMACA_TRANSFER_REQUEST_SOFTWARE Software 

DMACA_TRANSFER_REQUEST_PERIPHERAL Interrupts from peripheral 

modules or external interrupt 

input pins. 

dtie_request Transfer End 

Interrupt Request 

DMACA_TRANSFER_END_INTERRUPT_DISABLE Disables the transfer end 

interrupt request. 

DMACA_TRANSFER_END_INTERRUPT_ENABLE Enables the transfer end 

interrupt request. 

esie_request Transfer Escape 

End Interrupt 

Request 

DMACA_TRANSFER_ESCAPE_END_INTERRUPT_ 

DISABLE 

Disables the transfer escape 

end interrupt request. 

DMACA_TRANSFER_ESCAPE_END_INTERRUPT_ 

ENABLE 

Enables the transfer escape 

end interrupt request. 

rptie_request Repeat Size End 

Interrupt Request 

DMACA_REPEAT_SIZE_END_INTERRUPT_DISABLE Disables the repeat size end 

interrupt request. 

DMACA_REPEAT_SIZE_END_INTERRUPT_ENABLE Enables the repeat size end 

interrupt request. 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 15 of 31 

Jul 31, 2017  

Structure 

Member Short Description Setting Value Setting Details 

sarie_request Source Address 

Extended Repeat 

Area Overflow 

Interrupt Request 

DMACA_SRC_ADDR_EXT_REP_AREA_OVER_ 

INTERRUPT_DISABLE 

Disables an interrupt request for 

an extended repeat area 

overflow on the source address 

DMACA_SRC_ADDR_EXT_REP_AREA_OVER_ 

INTERRUPT_ENABLE 

Enables an interrupt request for 

an extended repeat area 

overflow on the source address 

darie_request Destination Address 

Extended Repeat 

Area Overflow 

Interrupt Request 

DMACA_DES_ADDR_EXT_REP_AREA_OVER_ 

INTERRUPT_DISABLE 

Disables an interrupt request for 

an extended repeat area 

overflow on the destination 

address 

DMACA_DES_ADDR_EXT_REP_AREA_OVER_ 

INTERRUPT_ENABLE 

Enables an interrupt request for 

an extended repeat area 

overflow on the destination 

address 

src_addr_mode Address Mode of 

Source 

DMACA_SRC_ADDR_FIXED Destination address is fixed. 

DMACA_SRC_ADDR_OFFSET Offset addition 

DMACA_SRC_ADDR_INCR Source address is incremented 

DMACA_SRC_ADDR_DECR Source address is decremented 

src_addr_repeat_

area 

Source Address 

Extended Repeat 

Area 

DMACA_SRC_ADDR_EXT_REP_AREA_NONE Not specified 

DMACA_SRC_ADDR_EXT_REP_AREA_2B 

DMACA_SRC_ADDR_EXT_REP_AREA_4B 

DMACA_SRC_ADDR_EXT_REP_AREA_8B 

DMACA_SRC_ADDR_EXT_REP_AREA_16B 

DMACA_SRC_ADDR_EXT_REP_AREA_32B 

DMACA_SRC_ADDR_EXT_REP_AREA_64B 

DMACA_SRC_ADDR_EXT_REP_AREA_128B 

DMACA_SRC_ADDR_EXT_REP_AREA_256B 

DMACA_SRC_ADDR_EXT_REP_AREA_512B 

DMACA_SRC_ADDR_EXT_REP_AREA_1KB 

DMACA_SRC_ADDR_EXT_REP_AREA_2KB 

DMACA_SRC_ADDR_EXT_REP_AREA_4KB 

DMACA_SRC_ADDR_EXT_REP_AREA_8KB 

DMACA_SRC_ADDR_EXT_REP_AREA_16KB 

DMACA_SRC_ADDR_EXT_REP_AREA_32KB 

DMACA_SRC_ADDR_EXT_REP_AREA_64KB 

DMACA_SRC_ADDR_EXT_REP_AREA_128KB 

DMACA_SRC_ADDR_EXT_REP_AREA_256KB 

DMACA_SRC_ADDR_EXT_REP_AREA_512KB 

DMACA_SRC_ADDR_EXT_REP_AREA_1MB 

DMACA_SRC_ADDR_EXT_REP_AREA_2MB 

DMACA_SRC_ADDR_EXT_REP_AREA_4MB 

DMACA_SRC_ADDR_EXT_REP_AREA_8MB 

DMACA_SRC_ADDR_EXT_REP_AREA_16MB 

DMACA_SRC_ADDR_EXT_REP_AREA_32MB 

DMACA_SRC_ADDR_EXT_REP_AREA_64MB 

DMACA_SRC_ADDR_EXT_REP_AREA_128MB 

   2 bytes 

   4 bytes 

   8 bytes 

  16 bytes 

  32 bytes 

  64 bytes 

 128 bytes 

 256 bytes 

 512 bytes 

  1K bytes 

  2K bytes 

  4K bytes 

  8K bytes 

 16K bytes 

 32K bytes 

 64K bytes 

128K bytes 

256K bytes 

512K bytes 

  1M bytes 

  2M bytes 

  4M bytes 

  8M bytes 

 16M bytes 

 32M bytes 

 64M bytes 

128M bytes 

des_addr_mode Address Mode of 

Destination 

DMACA_DES_ADDR_FIXED Destination address is fixed. 

DMACA_DES_ADDR_OFFSET Offset addition 

DMACA_DES_ADDR_INCR Destination address is 

incremented. 

DMACA_DES_ADDR_DECR Destination address is 

decremented. 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 16 of 31 

Jul 31, 2017  

Structure 

Member Short Description Setting Value Setting Details 

des_addr_repeat_

area 

Destination Address 

Extended Repeat 

Area 

DMACA_DES_ADDR_EXT_REP_AREA_NONE Not specified 

DMACA_DES_ADDR_EXT_REP_AREA_2B 

DMACA_DES_ADDR_EXT_REP_AREA_4B 

DMACA_DES_ADDR_EXT_REP_AREA_8B 

DMACA_DES_ADDR_EXT_REP_AREA_16B 

DMACA_DES_ADDR_EXT_REP_AREA_32B 

DMACA_DES_ADDR_EXT_REP_AREA_64B 

DMACA_DES_ADDR_EXT_REP_AREA_128 

DMACA_DES_ADDR_EXT_REP_AREA_256B 

DMACA_DES_ADDR_EXT_REP_AREA_512B 

DMACA_DES_ADDR_EXT_REP_AREA_1KB 

DMACA_DES_ADDR_EXT_REP_AREA_2KB 

DMACA_DES_ADDR_EXT_REP_AREA_4KB 

DMACA_DES_ADDR_EXT_REP_AREA_8KB 

DMACA_DES_ADDR_EXT_REP_AREA_16KB 

DMACA_DES_ADDR_EXT_REP_AREA_32KB 

DMACA_DES_ADDR_EXT_REP_AREA_64KB 

DMACA_DES_ADDR_EXT_REP_AREA_128KB 

DMACA_DES_ADDR_EXT_REP_AREA_256KB 

DMACA_DES_ADDR_EXT_REP_AREA_512KB 

DMACA_DES_ADDR_EXT_REP_AREA_1MB 

DMACA_DES_ADDR_EXT_REP_AREA_2MB 

DMACA_DES_ADDR_EXT_REP_AREA_4MB 

DMACA_DES_ADDR_EXT_REP_AREA_8MB 

DMACA_DES_ADDR_EXT_REP_AREA_16MB 

DMACA_DES_ADDR_EXT_REP_AREA_32MB 

DMACA_DES_ADDR_EXT_REP_AREA_64MB 

DMACA_DES_ADDR_EXT_REP_AREA_128MB 

   2 bytes 

   4 bytes 

   8 bytes 

  16 bytes 

  32 bytes 

  64 bytes 

 128 bytes 

 256 bytes 

 512 bytes 

  1K bytes 

  2K bytes 

  4K bytes 

  8K bytes 

 16K bytes 

 32K bytes 

 64K bytes 

128K bytes 

256K bytes 

512K bytes 

  1M bytes 

  2M bytes 

  4M bytes 

  8M bytes 

 16M bytes 

 32M bytes 

 64M bytes 

128M bytes 

offset_value Offset value for 

DMA Offset Register 

(DMOFR) 

32bit data 

00000000h to 00FFFFFFh (0 bytes to (16M-1) bytes) 

FF000000h to FFFFFFFFh (-16M bytes to -1 byte) 

Note: 

Setting bits 31 to 25 is invalid. A value of bit 24 is 

extended to bits 31 to 25. 

Offset addition can be specified only for DMAC0.  

With R_DMACA_Create() function, setting this data is 

invalid except DMAC0. 

Note: 

Offset subtraction can also be 

realized by setting a negative 

value. 

In this case, the negative value 

must be 2’s complement. 

interrupt_sel Configurable 

Options for Interrupt 

Select 

DMACA_CLEAR_INTERRUPT_FLAG_BEGINNING_ 

TRANSFER 

At the beginning of transfer, 

clears the interrupt flag of the 

activation source to 0. 

DMACA_ISSUES_INTERRUPT_TO_CPU_END_OF_ 

TRANSFER 

At the end of transfer, the 

interrupt flag of the activation 

source issues an interrupt to the 

CPU. 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 17 of 31 

Jul 31, 2017  

Structure 

Member Short Description Setting Value Setting Details 

*p_src_addr Start Address of 

Source 

32bit data 

00000000h to 0FFFFFFFh (256M bytes) 

F0000000h to FFFFFFFFh (256M bytes) 

Note: 

Setting bits 31 to 29 is invalid. A value of bit 28 is 

extended to bits 31 to 29. 

Source address 

*p_des_addr Start Address of 

Destination 

Destination address 

transfer_count Transfer Count 32bit data 

[Normal Transfer Mode] 

00000001h to 0000FFFFh 

When the setting is 0000h, no specific number of 

transfer operations is set (free running mode) 

[Repeat Transfer Mode or Block Transfer Mode]. 

00000001h to 00001000h 

[Normal Transfer Mode] 

This data is set to DMCRAL 

register. 

[Repeat Transfer Mode or Block 

Transfer Mode] 

This data is set to DMCRB 

register. 

block_size Repeat Size or 

Block Size 

16bit data 

[Normal Transfer Mode] 

Invalid 

[Repeat Transfer Mode or Block Transfer Mode]. 

00000001h to 0000400h 

[Normal Transfer Mode] 

Invalid 

[Repeat Transfer Mode or Block 

Transfer Mode] 

This data is set to DMCRAL 

register and DMCRAH register. 

 

 

Return Values 
DMACA_SUCCESS      /* Successful operation */ 

DMACA_ERR_INVALID_CH    /* Channel is invalid. */ 

DMACA_ERR_INVALID_ARG    /* Parameters are invalid. */ 

DMACA_ERR_NULL_PTR     /* Argument pointers are NULL. */ 

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h. 

 

Description 
References the dmaca_transfer_data_cfg_t DMAC transfer information structure passed as an argument and makes 

register settings for the specified DMAC channel. Also specifies the activation source for the DMAC channel. 

 

Reentrant 
Reentrant from a different channel is possible. 

 

Example 
Case 1: Activating the DMAC by Software 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 18 of 31 

Jul 31, 2017  

#include "r_dmaca_rx_if.h" 

 

dmaca_return_t ret; 

dmaca_transfer_data_cfg_t td_cfg; 

uint32_t src = 1234; 

uint32_t des[3]; 

 

/* Operation – No Extended Repeat Area Function and No Offset Subtraction */ 

/* Source address is fixed 

 * Transfer data size is 32-bit (long word). 

 * DMAC transfer mode is Repeat mode & Source side is repeat area 

 * At the beginning of transfer, clear the interrupt flag of the activation 

source to 0. 

 * Transfer Request source is software. */ 

 

/* Set Transfer data configuration. */ 

   td_cfg.transfer_mode         = DMACA_TRANSFER_MODE_REPEAT; 

   td_cfg.repeat_block_side      = DMACA_REPEAT_BLOCK_SOURCE; 

   td_cfg.data_size              = DMACA_DATA_SIZE_LWORD; 

   td_cfg.act_source             = (dmaca_activation_source_t)0; 

   td_cfg.request_source         = DMACA_TRANSFER_REQUEST_SOFTWARE; 

   td_cfg.dtie_request           = DMACA_TRANSFER_END_INTERRUPT_DISABLE; 

   td_cfg.esie_request        = DMACA_TRANSFER_ESCAPE_END_INTERRUPT_DISABLE; 

   td_cfg.rptie_request       = DMACA_REPEAT_SIZE_END_INTERRUPT_DISABLE; 

   td_cfg.sarie_request = DMACA_SRC_ADDR_EXT_REP_AREA_OVER_INTERRUPT_DISABLE; 

   td_cfg.darie_request  = DMACA_DES_ADDR_EXT_REP_AREA_OVER_INTERRUPT_DISABLE; 

   td_cfg.src_addr_mode           = DMACA_SRC_ADDR_FIXED; 

   td_cfg.src_addr_repeat_area   = DMACA_SRC_ADDR_EXT_REP_AREA_NONE; 

   td_cfg.des_addr_mode            = DMACA_DES_ADDR_INCR; 

   td_cfg.des_addr_repeat_area   = DMACA_DES_ADDR_EXT_REP_AREA_NONE; 

   td_cfg.offset_value             = 0x00000000; 

   td_cfg.interrupt_sel    = DMACA_CLEAR_INTERRUPT_FLAG_BEGINNING_TRANSFER; 

   td_cfg.p_src_addr               = (void *)&src; 

   td_cfg.p_des_addr               = (void *)des; 

   td_cfg.transfer_count           = 1; 

   td_cfg.block_size               = 3; 

 

/* Call R_DMACA_Create(). */ 

   ret = R_DMACA_Create(DMACA_CH0, &td_cfg); 

 

Note: When the td_cfg.request_source is DMACA_TRANSFER_REQUEST_SOFTWARE (DMAC transfer request 

source is software), the R_DMACA_Create() function ignores the td_cfg.act_source setting. 

 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 19 of 31 

Jul 31, 2017  

Case 2: Using a Peripheral Module as the DMAC Activation Source (Example of Using CMI1 Interrupt) 

#include "r_dmaca_rx_if.h" 

 

dmaca_return_t ret; 

dmaca_transfer_data_cfg_t td_cfg; 

uint32_t src = 1234; 

uint32_t des[3]; 

 

/* Operation – No Extended Repeat Area Function and No Offset Subtraction */ 

/* Source address is fixed. 

 * Transfer data size is 32-bit (long word). 

 * DMAC transfer mode is Repeat mode & Source side is repeat area 

 * At the beginning of transfer, clear the interrupt flag of the activation 

source to 0. 

 * Transfer Request source is CMI1. */ 

 

/* Set Transfer data configuration. */ 

   td_cfg->transfer_mode        = DMACA_TRANSFER_MODE_REPEAT; 

   td_cfg->repeat_block_side    = DMACA_REPEAT_BLOCK_SOURCE; 

   td_cfg->data_size            = DMACA_DATA_SIZE_LWORD; 

   td_cfg->act_source           = IR_CMT1_CMI1; 

   td_cfg->request_source       = DMACA_TRANSFER_REQUEST_PERIPHERAL; 

   td_cfg->dtie_request         = DMACA_TRANSFER_END_INTERRUPT_DISABLE; 

   td_cfg->esie_request   = DMACA_TRANSFER_ESCAPE_END_INTERRUPT_DISABLE; 

   td_cfg->rptie_request        = DMACA_REPEAT_SIZE_END_INTERRUPT_DISABLE; 

   td_cfg->sarie_request  = DMACA_SRC_ADDR_EXT_REP_AREA_OVER_INTERRUPT_DISABLE; 

   td_cfg->darie_request  = DMACA_DES_ADDR_EXT_REP_AREA_OVER_INTERRUPT_DISABLE; 

   td_cfg->src_addr_mode       = DMACA_SRC_ADDR_FIXED; 

   td_cfg->src_addr_repeat_area  = DMACA_SRC_ADDR_EXT_REP_AREA_NONE; 

   td_cfg->des_addr_mode         = DMACA_DES_ADDR_INCR; 

   td_cfg->des_addr_repeat_area = DMACA_DES_ADDR_EXT_REP_AREA_NONE; 

   td_cfg->offset_addr           = 0; 

   td_cfg->interrupt_sel  = DMACA_CLEAR_INTERRUPT_FLAG_BEGINNING_TRANSFER; 

   td_cfg->p_src_addr           = (void *)&src; 

   td_cfg->p_des_addr           = (void *)des; 

   td_cfg->transfer_count       = 1; 

   td_cfg->block_size           = 3; 

 

/* Disable CMI1 interrupt request before calling R_DTC_Create(). */ 

IR(CMT1,CMI1) = 0; 

IEN(CMT1,CMI1) = 0; 

 

/* Call R_DMACA_Create(). */ 

   ret = R_DMACA_Create(DMACA_CH0, &td_cfg); 

 

Special Notes: 
None 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 20 of 31 

Jul 31, 2017  

3.5 R_DMACA_Control() 

This function is used to control the operation of the DMAC. 

 

Format 
dmaca_return_t R_DMACA_Control( 

    uint8_t channel, 

    dmaca_command_t command, 

    dmaca_stat_t * p_stat 

) 

 

Parameters 
channel 

DMAC channel number 

command 

DMAC control command 
 
Command Description 

DMACA_CMD_ENABLE Enables DMAC transfer (DMA transfer enable bit 

control by channel unit). 

DMACA_CMD_ALL_ENABLE Enables DMAC activation (DMAC operation enable 

bit control). 

DMACA_CMD_RESUME Restarts DMAC transfer (DMA transfer enable bit 

control by channel unit). 

DMACA_CMD_DISABLE Disables DMAC transfer (DMA transfer enable bit 

control by channel unit). 

DMACA_CMD_ALL_DISABLE Disables DMAC activation (DMAC operation 

enable bit control). 

DMACA_CMD_SOFT_REQ_WITH_AUTO_CLR_REQ Activates the DMAC by software, and automatically 

clears the software activation bit. 

DMACA_CMD_SOFT_REQ_NOT_CLR_REQ Activates the DMAC by software, but does not 

automatically clear the software activation bit. 

DMACA_CMD_SOFT_REQ_CLR Clears the software activation bit. 

DMACA_CMD_STATUS_GET Gets the DMAC status information. 

DMACA_CMD_ESIF_STATUS_CLR Clears the transfer escape interrupt flag (ESIF). 

DMACA_CMD_DTIF_STATUS_CLR Clears the transfer end interrupt flag (DTIF). 

 

* p_stat 

Pointer to dmaca_stat_t DMAC status information structure  

 

Members of dmaca_stat_t Structure 

Structure Member Short Description Setting Value Setting Details 

soft_req_stat Software Request Status false A software transfer is not requested. 

true A software transfer is requested. 

esif_stat Transfer Escape End 

Interrupt Status 

false A transfer escape end interrupt has not been generated. 

true A transfer escape end interrupt has been generated. 

dtif_stat Transfer End Interrupt 

Status 

false A transfer end interrupt has not been generated. 

true A transfer end interrupt has been generated. 

act_stat Active Flag of DMAC false DMAC operation is suspended. 

true DMAC is operating. 

transfer_count Transfer Count 0000h - FFFFh The number of normal transfer operations, block transfer 

operations or repeat transfer operations 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 21 of 31 

Jul 31, 2017  

 

Return Values 
DMACA_SUCCESS      /* Successful operation */ 

DMACA_ERR_INVALID_CH    /* Channel is invalid. */*/ 

DMACA_ERR_INVALID_COMMAND  /* Command is invalid.*/ 

DMACA_ERR_NULL_PTR     /* Argument pointers are NULL. */ 

DMACA_ERR_SOFTWARE_REQUESTED*1  

     /* DMA transfer request by software has been generated already. */ 

DMACA_ERR_SOFTWARE_REQUEST_DISABLED*2  

       /* Transfer Request Source is not Software. */ 

 

Note: 1. When automatic clearing of the DMA software activation bit (SWREQ bit) is specified, 

DMACA_ERR_SOFTWARE_REQUESTED is returned when the SWREQ bit is already set to 1. This value 

may be returned if, for example, the preceding software activation request was executed while automatic 

clearing of the DMA software activation bit was specified, but the request had not yet been accepted. 

 2. If issuing of transfer requests by a peripheral module is specified, 

DMACA_ERR_SOFTWARE_REQUEST_DISABLED is returned when a DMA transfer activation by 

software is executed.  

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h. 

 

Description 
DMACA_CMD_ENABLE command processing 

Sets the DMA transfer enable (DTE) bit to enable transfer operation on the specified DMAC channel. 

DMACA_CMD_ALL_ENABLE command processing 

Sets the DMAC operation enable (DMST) bit to enable activation of the DMAC. 

DMACA_CMD_RESUME command processing 

Sets the DMA transfer enable (DTE) bit to enable a restart of transfer operation on the specified DMAC channel. 

DMACA_CMD_DISABLE command processing 

Clears the DMA transfer enable (DTE) bit to disable transfer operation on the specified DMAC channel. 

Used to stop DMAC transfer operation or when changing the DMAC register settings. 

DMACA_CMD_ALL_DISABLE command processing 

Clears the DMAC operation enable (DMST) bit to disable activation of the DMAC. 

Used to stop DMAC transfer operation or when changing the DMAC register settings. 

DMACA_CMD_SOFT_REQ_WITH_AUTO_CLR_REQ command processing 

Enables automatic clearing of the SWREQ bit (CLRS bit = 0) and issues a DMA transfer request by software. 

DMACA_CMD_SOFT_REQ_NOT_CLR_REQ command processing 

Disables automatic clearing of the SWREQ bit (CLRS bit = 1) and issues a DMA transfer request by software. 

DMACA_CMD_SOFT_REQ_CLR command processing 

Clears the SWREQ bit of the specified DMAC channel. 

DMACA_CMD_STATUS_GET command processing 

Writes the status information of the specified DMAC channel to the address specified by the argument p_stat. 

DMACA_CMD_ESIF_STATUS_CLR command processing 

Clears the transfer escape interrupt flag (ESIF) of the specified DMAC channel. 

DMACA_CMD_DTIF_STATUS_CLR command processing 

Clears the transfer end interrupt flag (DTIF) of the specified DMAC channel. 

 

Reentrant 
Reentrant from a different channel is possible. 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 22 of 31 

Jul 31, 2017  

 

Example 
Case 1: Activating the DMAC by Software 

#include "r_dmaca_rx_if.h" 

 

dmaca_return_t ret; 

dmaca_stat_t dmac_status; 

 

/* Call R_DMACA_Control(). 

Enable DMAC transfer. */ 

ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_ENABLE, &dmac_status); 

 

/* Call R_DMACA_Control(). 

DMAC Software request flag set & request flag is cleared automatically. */ 

ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_SOFT_REQ_NOT_CLR_REQ, 

&dmac_status); 

if (DMACA_SUCCESS != ret) 

{ 

    /* do something */ 

} 

 

/* DMAC transfer end check */ 

do 

{ 

      ret = R_DMACA_Control(DMACA_CN0, DMACA_CMD_STATUS_GET, &dmac_status); 

      if (DMACA_SUCCESS != ret) 

      { 

          /* do something */ 

      } 

}while( false == (dmac_status.dtif_stat)); 

 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 23 of 31 

Jul 31, 2017  

Case 2: Using a Peripheral Module as the DMAC Activation Source (Example of Using CMI1 Interrupt) 

#include "r_dmaca_rx_if.h" 

 

dmaca_return_t ret; 

dmaca_stat_t dmac_status; 

 

/* Disable CMI1 interrupt request before calling R_DTC_Control(). */ 

IR(CMT1,CMI1) = 0; 

IEN(CMT1,CMI1) = 0; 

 

/* Call R_DMACA_Control(). 

Enable DMAC transfer. */ 

ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_ENABLE, &dmac_status); 

   

/* Enable CMI1 interrupt request before calling R_DTC_Create(). */ 

IEN(CMT1,CMI1) = 1; 

 

/* DMAC transfer end check */ 

do 

{ 

      ret = R_DMACA_Control(DMACA_CN0,  DMACA_CMD_STATUS_GET,  &dmac_status); 

      if (DMACA_SUCCESS != ret) 

      { 

          /* do something */ 

      } 

}while( false == (dmac_status.dtif_stat)); 

 

 

Case 3: Continuing or Restarting DMAC Transfer Operation following Case 1 or Case 2 Processing  

/* Update register settings if necessary (see R_DMACA_Create() function). */ 

ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_RESUME, &dmac_status); 

 

 

Case 4: Ending DMAC Transfer Operation after Case 1 or Case 2 Processing  

/* Clear transfer end interrupt flag */ 

ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_DTIF_STATUS_CLR, &dmac_status); 

/* Also use DMACA_CMD_ESIF_STATUS_CLR command to clear transfer escape 

endinterrupt flag if transfer escape end interrupt is enabled. */ 

/* ret = R_DMACA_Control(DMACA_CH0, DMACA_CMD_ESIF_STATUS_CLR, &dmac_status); */ 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 24 of 31 

Jul 31, 2017  

Interrupt request from DMAC

Get status information
R_DMACA_Control()

Command: DMACA_CMD_STATUS_GET
Checks the interrupt source. Gerts transfer count.

Transfer escape end
interrupt occurred?

Yes

No
(Pause transfer) Transfer end

interrupt occurred?

No
(Continue transfer)

Command:
DMACA_CMD_RESUME

Restart DMAC transfer
R_DMACA_Control()

Yes
(Pause transfer)

Restart transfer

Clear transfer end interrupt flag
R_DMACA_Control()

Clear transfer escape end interrupt 
flag

R_DMACA_Control()

Command:
DMACA_CMD_DTIF_STATUS_CLR

Command:
DMACA_CMD_ESIF_STATUS_CLR

Clear transfer end interrupt flag
R_DMACA_Control()

Command:
DMACA_CMD_DTIF_STATUS_CLR

Perform new transfer
End

Perform new transfer

Transfer end

Update register settings

Enable DMAC transfer
R_DMACA_Control()

Command:
DMACA_CMD_ENABLE

Start new transfer

Note: The DMAC is in the paused state during the 
interval between the dotted lines above, so new 
DMAC start requests are not accepted.

 

Figure 3.1   Example of Processing when DMAC Transfer Ends or Continues 

 

Special Notes: 
In the case of waiting for the transfer end by using DMAC channel 4-7 and an interrupt, please clear a transfer escape 

interrupt flag (ESIF) or a transfer end interrupt flag (DTIF) using a callback function for transfer end interrupts/transfer 

escape end interrupts. 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 25 of 31 

Jul 31, 2017  

3.6 R_DMACA_Int_Calback() 

This function is used to register the callback function for the DMAC transfer end interrupt/transfer escape end interrupt. 

 

Format 
dmaca_return_t R_DMACA_Int_Callback( 

    uint8_t channel, 

    void * p_callback 

) 

 

Parameters 
channel 

DMAC channel number 
 
* p_callback 

Pointer to function that is called when a DMAC transfer end interrupt/transfer escape end interrupt occurs 

 

Return Values 
DMACA_SUCCESS       /* Successful operation */ 

DMACA_ERR_INVALID_CH     /* Channel is invalid. */ 

DMACA_ERR_INVALID_HANDLER_ADDR  /* Invalid function address is set. */ 

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h. 

 

Description 
Registers the callback function for the DMAC transfer end interrupt/transfer escape end interrupt of the specified 

channel. The registration of an already-registered callback function is canceled if FIT_NO_FUNC or NULL is passed as 

the callback argument. Also, the registration of an already-registered callback function is canceled if 

DMACA_ERR_INVALID_HANDLER_ADDR is returned. 

Note: The callback function arguments and return values should be of void type. 

 

Reentrant 
Reentrant from a different channel is possible. 

 

Example 
#include "r_dmaca_rx_if.h" 

 

dmaca_return_t ret; 

 

/* When using the DMACA driver, run the R_DMACA_Init() function once first. */ 

R_DMACA_Init(); 

 

/* Register the callback function for the DMAC0I interrupt (example: using a 

function with the name dmac0i_callback). */ 

ret = R_DMACA_Int_Callback(DMACA_CH0,(void *)dmac0i_callback); 

if (DMACA_SUCCESS != ret) 

{ 

    /* do something */ 

} 

 

 

Special Notes: 
None 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 26 of 31 

Jul 31, 2017  

3.7 R_DMACA_Int_Enable() 

This function is used to enable DMAC transfer end interrupts/transfer escape end interrupts. 

 

Format 
dmaca_return_t R_DMACA_Int_Enable( 

    uint8_t channel, 

    uint8_t priority 

) 

 

Parameters 
channel 

DMAC channel number 
 
priority 

DMAC transfer end interrupt/transfer escape end interrupt priority level 

 

Return Values 
DMACA_SUCCESS      /* Successful operation */ 

DMACA_ERR_INVALID_CH    /* Channel is invalid. */ 

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h 

 

Description 
Enables the DMAC transfer end interrupt/transfer escape end interrupt for the specified channel. 

 

Reentrant 
Reentrant from a different channel is possible. 

 

Example 
#include "r_dmaca_rx_if.h" 

 

dmaca_return_t ret; 

 

/* Enable DMAC transfer end interrupt/transfer escape end interrupt (DMAC0I) 

on channel 0 with a priority level of 10. */ 

ret = R_DMACA_Int_Enable(DMACA_CH0,10); 

if (DMAC_SUCCESS != ret) 

{ 

    /* do something */ 

} 

 

Special Notes: 
None 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 27 of 31 

Jul 31, 2017  

3.8 R_DMACA_Init_Disable() 

This function is used to disable the DMAC transfer end interrupt/transfer escape end interrupt. 

 

Format 
dmaca_return_t R_DMACA_Int_Disable( 

    uint8_t channel, 

) 

 

Parameters 
channel 

DMAC channel number 

 

Return Values 
DMACA_SUCCESS      /* Successful operation */ 

DMACA_ERR_INVALID_CH    /* Channel is invalid. */ 

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h. 

 

Description 
Disables the DMAC transfer end interrupt/transfer escape end interrupt for the specified channel. 

 

Reentrant 
Reentrant from a different channel is possible. 

 

Example 
#include "r_dmaca_rx_if.h" 

 

dmaca_return_t ret; 

 

/* Disable DMAC transfer end interrupt/transfer escape end interrupt (DMAC0I) 

on channel 0. */ 

ret = R_DMACA_Int_Disable(DMACA_CH0); 

if (DMACA_SUCCESS != ret) 

{ 

    /* do something */ 

} 

 

Special Notes: 
None 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 28 of 31 

Jul 31, 2017  

3.9 R_DMACA_GetVersion() 

This function is used to fetch the driver version information. 

 

Format 
uint32_t R_DMACA_GetVersion(void) 

 

Parameters 
None 

 

Return Values 
Version number 

Upper 2 bytes: major version, lower 2 bytes: minor version 

 

Properties 
Prototype declarations are contained in r_dmaca_rx_if.h. 

 

Description 
Returns the version information. 

 

Reentrant 
Reentrant from a different channel is possible. 

 

Example 
uint32_t version; 

version = R_DMACA_GetVersion(); 

 

Special Notes: 
None 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 29 of 31 

Jul 31, 2017  

4. Pin Setting 

DMACA FIT module don’t use pin setting. 

 

5. Appendices 

5.1 Operating Confirmation Environment 

Table 5-1 lists the conditions under which operation has been confirmed. 

The memory sizes listed apply when the default settings listed in “2.7 Compile Settings”, are used. The memory sizes 

differ according to the definitions selected. 

 

Table 5-1 Operation Confirmation Conditions(Rev.1.05) 

Item Contents 

Integrated development 

environment 

Renesas Electronics  

e2 studio V6.0.0 

C compiler Renesas Electronics 

C/C++ compiler for RX Family V.2.07.00 (Pre-released version) 

Compiler options: The integrated development environment default settings 

are used, with the following option added. 

-lang = c99 

Endian order Big endian/Little endian 

Module version Ver. 1.05 

Board used Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE) 

Renesas Starter Kit for RX64M (product No.: R0K50564MSxxxBE) 

Renesas Starter Kit for RX65N (product No.: RTK500565NSxxxxxBE) 

Renesas Starter Kit for RX65N-2MB (product No.: RTK50565N2SxxxxxBE) 

Renesas Starter Kit for RX71M (product No.: R0K50571MSxxxBE) 

 

 

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 30 of 31 

Jul 31, 2017  

5.2 Troubleshooting 

(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file 

“platform.h”. 

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules is correct 

with the following documents:  

 When using CS+:  

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)” 

 When using e2 studio:  

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)” 

When using a FIT module, the board support package FIT module (BSP module) must also be added to the project. 

For this, refer to the application note “Board Support Package Module Using Firmware Integration Technology 

(R01AN1685)”. 

 

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported by the 

current r_dmaca_rx module. 

A: The FIT module you added may not support the target device chosen in the user project. Check if the FIT module 

supports the target device for the project used.  

 



RX Family DMA Controller DMACA Control Module Firmware Integration Technology 

R01AN2063EJ0105  Rev.1.05  Page 31 of 31 

Jul 31, 2017  

6. Reference Documents 

User’s Manual: Hardware 

Technical Update/Technical News 

User’s Manual: Development Tools 

The latest version can be downloaded from the Renesas Electronics website. 

 

Technical Update 
Not applicable technical update for this module. 

 

 

Website and Support 
Renesas Electronics Website 

http://www.renesas.com/ 
 
Inquiries 

http://www.renesas.com/contact/ 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All trademarks and registered trademarks are the property of their respective owners. 

http://www.renesas.com/
http://www.renesas.com/contact/


 

A-1 

Revision History 

Rev. Date 

Description 

Page Summary 

1.00 Jul 31, 2014 — First edition issued 

1.01 Aug 29, 2014 5 Added 1.3 Related Application Note. 

  12 3.2 R_DMACA_Close() 

in Case 2: Control Other Than the Above, 

Changed ‘dmaca_chk_looking_sw_type’ to 

‘dmaca_chk_locking_sw_type’. 

1.02 Dec 26, 2014 1 Added RX71M Group in Target Devices. 

  1 Added an application note (R01AN1826EJ) in Related 

Documents. 

  3 Moved R_DMACA_Init() to top in Table 1-1, 1.2.1 Overview of 

APIs. 

  3 Changed ‘transfer end interrupt’ to ‘transfer end 

interrupt/transfer escape end interrupt’ in 

R_DAMCA_Int_Callback(),R_DAMCA_Int_Enable() and 

R_DMACA_Int_Disable() of Table 1-1, 1.2.1 Overview of APIs. 

  4 Changed type name of ‘Board used’ in (1)RX64M, 1.2.2 

Operating Environment and Memory Sizes. 

  5 Added (2)RX71M, 1.2.2 Operating Environment and Memory 

Sizes. 

  6 Added an application note (R01AN2280EJ) in 1.3 Related 

Application. 

  10 Changed from r_dmaca_config.h to r_dmaca_rx_config.h in 9, 

2.9.1 Adding the DMACA FIT module (when not using the 

plug-in). 

  11 Moved R_DMACA_Init() from 3.5 to 3.1 in 3. API Functions.  

  11 Changed ‘transfer end interrupt’ to ‘transfer end 

interrupt/transfer escape end interrupt’ in Description, 3.1 

R_DMACA_Init().  

  11 Added contents in Special Notes, 3.1 R_DMACA_Init().  

  12 Changed from ‘first’ to ‘after calling R_DMACA_Init()’ in 3.2 

R_DMACA_Open(). 

  21 Added ‘(ESIF)’ to Description of 

DMACA_CMD_ESIF_STATUS_CLR in Command table, 3.5 

R_DMACA_Control(). 

  21 Added ‘(DTIF)’ to Description of 

DMACA_CMD_DTIF_STATUS_CLR in Command table, 3.5 

R_DMACA_Control(). 

  22 Added ‘(ESIF)’ to DMACA_CMD_ESIF_STATUS_CLR 

command processing in Description, 3.5 R_DMACA_Control(). 

  22 Added ‘(DTIF)’ to DMACA_CMD_DTIF_STATUS_CLR 

command processing in Description, 3.5 R_DMACA_Control(). 

  24 Changed ‘transfer escape interrupt’ to ‘transfer escape end 

interrupt’ in Example, 3.5 R_DMACA_Control(). 

  25 Changed ‘transfer escape interrupt’ to ‘transfer escape end 

interrupt’ in Figure 3.1 of Example, 3.5 R_DMACA_Control(). 

  25 Added content in Special Notes, 3.5 R_DMACA_Control(). 

  26 Changed ‘transfer escape interrupt’ to ‘transfer escape end 

interrupt’ in 3.6 R_DMACA_Int_Callback(). 

  26 Changed ‘transfer escape interrupt’ to ‘transfer escape end 

interrupt’ in Parameters and Descriptions, 3.6 

R_DMACA_Int_Callback(). 

  28 Changed ‘transfer escape interrupt’ to ‘transfer escape end 

interrupt’ in 3.7 R_DMACA_Int_Enable(). 

  28 Changed ‘transfer escape interrupt’ to ‘transfer escape end 



 

 

interrupt’ in Parameters, Descriptions and Example, 3.7 

R_DMACA_Int_Enable(). 

  29 Changed ‘transfer escape interrupt’ to ‘transfer escape end 

interrupt’ in 3.8 R_DMACA_Int_Disable(). 

  29 Changed ‘transfer escape interrupt’ to ‘transfer escape end 

interrupt’ in Descriptions and Example, 3.8 

R_DMACA_Int_Disable(). 

1.03 Jun 15, 2015 1 Added RX230 and RX231 Group in Target Devices. 

  6 Added (3)RX231, 1.2.2 Operating Environment and Memory 

Sizes. 

1.04 Sep 30, 2016 － Changed Title “DMA Controller DMACA Control Module Using 

Firmware Integration Technology” to “DMA Controller DMACA 

Control Module Firmware Integration Technology”. 

  1 Added RX65N Group in Target Devices 

  7 Added (4)RX65N, 1.2.2 Operating Environment and Memory 

Sizes. 

  8 1.3 Related Application Note 

Changed title of application notes “ ---Using Firmware 

Integration Technology” to “ --- Firmware Integration 

Technology”. 

  10 Added “uint8_t rsv[2]” in 2.7 Arguments. 

  12 Updated explanation in 2.9 Adding Driver to Your Project. 

  23 Added transfer_count of table of Members of dmaca_stat_t 

Structure. 

  27 Added “Gets transfer count” of Figure 3.1. 

1.05 Jul 07, 2017 - Moved the following chapter contents. 

- Moved from 1. Overview to 1.2 Overview of APIs 

Changed the following chapter number. 

- Changed form 1.2.2 Operating Environment and Memory 

Size to 5.1 Operating Confirmation environment 

- Changed form 4. Appendices to 5.Appendices. 

- Changed form 5. Reference Documents to 6. Reference 

Documents 

Added the following chapter. 

- Added 2.4 Interrupt vector 

- Added 2.8 Code Size 

- Added 2.12 Adding FIT Module to your Project. 

- Added 4 Pin Setting. 

- Added 5.2 Troubleshooting 

  1 Added RX651 Group in Target Devices. 

  5 Deleted “r_cgc_rx” of 2.2 Software Requirements. 

 

 

 



 

A-1 

General Precautions in the Handling of MPU/MCU Products 
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the 

products covered by this document, refer to the relevant sections of the document as well as any technical updates that 

have been issued for the products. 

1. Handling of Unused Pins 

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual. 

 The input pins of CMOS products are generally in the high-impedance state. In operation with an 

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an 

associated shoot-through current flows internally, and malfunctions occur due to the false 

recognition of the pin state as an input signal become possible. Unused pins should be handled as 

described under Handling of Unused Pins in the manual. 

2. Processing at Power-on 

The state of the product is undefined at the moment when power is supplied. 

 The states of internal circuits in the LSI are indeterminate and the states of register settings and 

pins are undefined at the moment when power is supplied. 

In a finished product where the reset signal is applied to the external reset pin, the states of pins 

are not guaranteed from the moment when power is supplied until the reset process is completed. 

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function 

are not guaranteed from the moment when power is supplied until the power reaches the level at 

which resetting has been specified. 

3. Prohibition of Access to Reserved Addresses 

Access to reserved addresses is prohibited. 

 The reserved addresses are provided for the possible future expansion of functions. Do not access 

these addresses; the correct operation of LSI is not guaranteed if they are accessed. 

4. Clock Signals 

After applying a reset, only release the reset line after the operating clock signal has become stable. 

When switching the clock signal during program execution, wait until the target clock signal has 

stabilized. 

 When the clock signal is generated with an external resonator (or from an external oscillator) 

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. 

Moreover, when switching to a clock signal produced with an external resonator (or by an external 

oscillator) while program execution is in progress, wait until the target clock signal is stable. 

5. Differences between Products 

Before changing from one product to another, i.e. to a product with a different type number, confirm 

that the change will not lead to problems. 

 The characteristics of an MPU or MCU in the same group but having a different part number may 

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect 

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity 

to noise, and amount of radiated noise. When changing to a product with a different part number, 

implement a system-evaluation test for the given product. 



 

  

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.  You are fully responsible for 

the incorporation or any other use of the circuits, software, and information in the design of your product or system.  Renesas Electronics disclaims any and all liability for any losses and damages incurred by 

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or 

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application 

examples.  

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  Renesas Electronics disclaims any and all liability for any losses or damages 

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality".  The intended applications for each Renesas Electronics product depends on the 

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic 

equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical 

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas 

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas 

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the 

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation 

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified 

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a 

certain rate and malfunctions under certain use conditions.  Further, Renesas Electronics products are not subject to radiation resistance design.  Please ensure to implement safety measures to guard them 

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and 

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty 

for your products/system.  Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product.  Please investigate applicable laws and 

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all 

these applicable laws and regulations.  Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws 

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, 

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, 

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics 

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, 

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the 

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, 

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1)  "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2)  "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com 
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel:  +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany   
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.  
Colophon 6.0 

(Rev.3.0-1  November 2016)

  

http://www.renesas.com
http://www.renesas.com/

	1.  Overview
	1.1 DMACA FIT Module
	1.2 Overview of DMACA FIT Module
	1.3  Overview of APIs

	2.  API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Interrupt vector
	2.5  Header Files
	2.6 Integer Types
	2.7 Compile Settings
	2.8 Code Size
	2.9  Arguments
	2.10 Return Values
	2.11  Callback function
	2.12 Adding the FIT Module to Your Project

	3. API Functions
	3.1 R_DMACA_Init()
	3.2  R_DMACA_Open()
	3.3  R_DMACA_Close()
	3.4  R_DMACA_Create()
	3.5  R_DMACA_Control()
	3.6  R_DMACA_Int_Calback()
	3.7  R_DMACA_Int_Enable()
	3.8  R_DMACA_Init_Disable()
	3.9  R_DMACA_GetVersion()

	4.  Pin Setting
	5. Appendices
	5.1 Operating Confirmation Environment
	5.2  Troubleshooting

	6.  Reference Documents



