

SuperH™ファミリ用 E10A-USB エミュレータ

ユーザーズマニュアル 別冊 SH7047F ご使用時の補足説明 SuperH™ファミリ / SH7047 シリーズ E10A-USB for SH7047F HS7047KCU01HJ

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、 予告なしに、本資料に記載した製品または仕様を変更することがあります。 ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。 万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、 産業用ロボット

高品質水準:輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

Regulatory Compliance Notices

European Union regulatory notices

This product complies with the following EU Directives. (These directives are only valid in the European Union.) CE Certifications:

• Electromagnetic Compatibility (EMC) Directive 2004/108/EC

EN 55022 Class A

This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. WARNING:

EN 55024

Information for traceability

· Authorised representative

Renesas Electronics Corporation Name:

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa, 211-8668, Japan Address:

· Manufacturer

Name:

Renesas Solutions Corp. Nippon Bldg., 2-6-2, Ote-machi, Chiyoda-ku, Tokyo 100-0004, Japan Address:

Person responsible for placing on the market

Name:

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Address:

Environmental Compliance and Certifications:

• Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC

WEEE Marking Notice (European Union Only)

Renesas development tools and products are directly covered by the European Union's Waste Electrical and Electronic Equipment, (WEEE), Directive 2002/96/EC. As a result, this equipment, including all accessories, must not be disposed of as household waste but through your locally recognized recycling or disposal schemes. As part of our commitment to environmental responsibility Renesas also offers to take back the equipment and has implemented a Tools Product Recycling Program for customers in Europe. This allows you to return equipment to Renesas for disposal through our approved Producer Compliance Scheme. To register for the program, click here "http://www.renesas.com/weee".

United States Regulatory notices on Electromagnetic compatibility FCC Certifications (United States Only):

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. CAUTION:

目次

1. エミ	ュレータとユーザシステムとの接続について	
1.1	E10A-USBエミュレータの構成品	
1.2	E10A-USBエミュレータとユーザシステムの接続	
1.3	ユーザシステム上に実装するH-UDIポートコネクタ	4
1.4	H-UDIポートコネクタのピン配置	5
1.5	H-UDIポートコネクタとチップ間の推奨接続例	10
1.5.1	推奨接続例(36 ピンタイプ)	10
1.5.2	推奨接続例(14 ピンタイプ)	13
2. SH70	047F ご使用時のソフトウェア仕様	17
2.1	E10A-USBエミュレータとSH7047Fの相違点	17
2.2	SH7047F ご使用時のエミュレータ特有機能	21
2.2.1	Break Condition 機能	21
2.2.2	AUD 機能	23
2.2.3	[Trace]ウィンドウ表示時の注意事項	25
2.2.4	JTAG クロック(TCK)使用時の注意事項	25
2.2.5		

エミュレータとユーザシステムとの接続について 1.

1.1 E10A-USB エミュレータの構成品

E10A-USB エミュレータは、SH7047F をサポートしています。

サポートしている動作モードを下記に示します。

- MCU 拡張モード 2
- シングルチップモード

【留意事項】

SH7047F をご使用の場合は、FWP 端子を 0(Low) にしてください。MCU 拡張モード 2 を選択するには、FWP=0、 MD3、2 でクロックモードを選択し、MD1=1、MD0=0 を設定してください。シングルチップモードを選択するには、 FWP=0、MD3、2でクロックモードを選択し、MD1=1、MD0=1を選択してください。

表 1.1 に、E10A-USB エミュレータの構成品を示します。

表 1.1 E10A-USB エミュレータの構成品

分	品名	構成品外観	数	備考
類			量	
Ÿ	エミュレータ本体		1	HS0005KCU01H
l F		Denterrate		縦:65.0 mm、横:97.0 mm、
ドウェ				高さ:20.0 mm、質量:72.9 g
ア		A ETO A		または
		00 /01111		HS0005KCU02H
		And Baddelandin		縦:65.0 mm、横:97.0 mm、
				高さ:20.0 mm、質量:73.7 g
	ユーザインタフェース		1	14 ピンタイプ
	ケーブル			長さ:200 mm、質量:33.1 g
	ユーザインタフェース		1	36 ピンタイプ
	ケーブル			長さ:200 mm、質量:49.2 g
				(製品型名:HS0005KCU02H のみ)
	USB ケーブル	E	1	長さ:1500 mm、質量:50.6 g
ソ	E10A-USB エミュレータ セットアップ		1	HS0005KCU01SR
フトウェ	プログラム、			
7) I)) <u>I</u> (
ア				
	SuperH™ファミリ用			HS0005KCU01HJ
	E10A-USB エミュレータ			HS0005KCU01HE
	ユーザーズマニュアル、			THE SECOND STREET
	別冊 SH7047F			HS7047KCU01HJ
	ご使用時の補足説明 ^{【注】} 、			HS7047KCU01HE
	HS0005KCU01H ,			HS0005TM01HJ
	HS0005KCU02H テスト			HS0005TM01HE
	プログラムマニュアル			(CD D 本担件)
				(CD-R で提供)

【注】 その他 E10A-USB でサポートしている MCU の個別マニュアルが収録されています。 対象 MCU を確認の上対象となる個別マニュアルをご参照ください。

1.2 E10A-USB エミュレータとユーザシステムの接続

E10A-USB エミュレータを接続するためには、ユーザシステム上に、ユーザ I/F ケーブルを接続するための H-UDI ポートコネクタを実装する必要があります。ユーザシステム設計の際、下記に示す H-UDI ポートコネクタとチ ップ間の推奨接続例を参考にしてください。

また、ユーザシステム設計の際には、E10A-USB ユーザーズマニュアルおよび関連するデバイスのハードウェ アマニュアルを必ずよくお読みになってください。

E10A-USB エミュレータ製品型名とそれに対応するコネクタタイプおよび AUD 機能の使用、非使用の関係を 表 1.2 に示します。

表 1.2 製品型名と AUD 機能、コネクタタイプ対応表

製品型名	コネクタタイプ	AUD 機能
HS0005KCU01H, HS0005KCU02H	14 ピンタイプ	使用できません。
HS0005KCU02H	36 ピンタイプ	使用できます。

H-UDI ポートコネクタには、以下に示すように 36 ピンタイプと 14 ピンタイプがありますので、使用目的に 合わせてご使用ください。

(1)36 ピンタイプ(AUD機能有り)

AUD トレース機能に対応した36 ピンコネクタで、大容量のリアルタイムトレースが可能です。また、指 定した範囲内のメモリアクセス(メモリアクセスアドレスやメモリアクセスデータ)をトレース取得する ウィンドウトレース機能もサポートします。

(2)14 ピンタイプ(AUD機能無し)

H-UDI 機能のみをサポートしており、AUD トレース機能を使用することはできません。36 ピンタイプの コネクタより小さい(1/2.5)ため、ユーザシステム上のコネクタ実装面積が少なくてすみます。

1.3 ユーザシステム上に実装する H-UDI ポートコネクタ

E10A-USB エミュレータが推奨する H-UDI ポートコネクタを表 1.3 に示します。

表 1.3 推奨コネクタ

	型 名	メーカ	仕様
14 ピン	7614 - 6002	住友スリーエム株式会社	14 ピンストレートタイプ
コネクタ			
36 ピン	DX10M-36S	ヒロセ電機株式会社	基板ネジ止めタイプ
コネクタ	DX10M-36SE	ヒロセ電機株式会社	基板ロックピン止めタイプ
	DX10G1M-36SE	ヒロセ電機株式会社	基板ロックピン止めタイプ

【留意事項】

H-UDI ポートコネクタ実装時、14 ピンコネクタ使用時は、周囲 3 mm 四方に他の部品を実装しないでください。36 ピ ンコネクタ使用時は、コネクタ実装部に配線しないでください。

H-UDI ポートコネクタのピン配置 1.4

H-UDIポートコネクタの36ピンタイプのピン配置を図1.1に、14ピンタイプのピン配置を図1.2に示します。

【注】 下記に記載の H-UDI ポートコネクタのピン番号の数え方は、コネクタ製造元のピン番号の数え方と異なりますのでご注 意ください。

(1) 36 ピンタイプのピン配置

ピン番号	信号名	入力/ 出力 【注1】	SH7047F ピン 番号	備考	ピン 番号	信号名	入力/ 出力 【注1】	SH7047F ピン 番号	備考
1	AUDCK	入出力	79		19	TMS	入力	59	
2	GND				20	GND			
3	AUDATA0	入出力	92		21	/TRST _{【注2】}	入力	58	
4	GND				22	GND _{【注5】}			
5	AUDATA1	入出力	90		23	TDI	入力	61	
6	GND				24	GND	—		
7	AUDATA2	入出力	88		25	TD0	出力	60	
8	GND				26	GND			
9	AUDATA3	入出力	86		27	/ASEBRKAK 【注2】	出力	11	
10	GND				28	GND			
11	/AUDSYNC 【注2】	入出力	78		29	UVCC [注4]	出力		
12	GND				30	GND			
13	AUDRST	入力	81		31	/RES [注2]	出力	87	ユーザの リセット
14	GND				32	GND			
15	AUDMD	入力	80		33	GND [注3]	出力		
16	GND				34	GND	_		
17	TCK	入力	63		35	NC			
18	GND				36	GND	—		

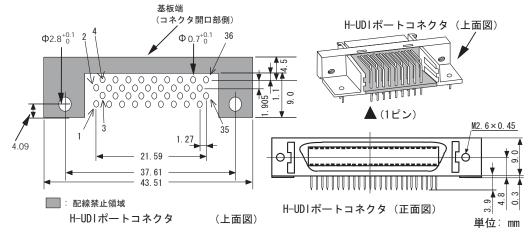


図 1.1 H-UDI ポートコネクタのピン配置(36 ピン)

- 【注】 1. ユーザシステム側からの入出力方向
 - 2 . /信号名: Low レベルで有効な信号
 - 3 . ユーザシステム側の GND を検出することにより、ユーザシステムの接続と非接続を判別しています。
 - 4. UVCC に VccQ 端子を接続しない場合、ユーザインタフェースの I/O 電圧は 5.0V 固定となります。
 - 5 . /DBGMD 端子は、E10A-USB を接続する場合"0"ですが、E10A-USB を未接続状態で動作させる場合、信号レベ ルを"1"にする必要があります。

E10A-USB を使用する場合 : /DBGMD = "0" (ASE モード)

E10A-USB を使用しない場合:/DBGMD = "1"(通常モード)

E10A-USBのユーザインタフェースケーブルを接続した時、GNDとなるようにする場合、GNDに接続せず/DBGMD 端子に接続(直結)してください。

(2) 14 ピンタイプのピン配置

ピン番号	信号名	入力/出力 【注1】	SH7047F ピン番号
1	TCK	入力	63
2	/TRST【注2】	入力	58
3	TD0	出力	60
4	/ASEBRKAK【注2】	出力	11
5	TMS	入力	59
6	TDI	入力	61
7	/RES 【注2】	出力	87
8	N.C. 【注6】		
9	(GND) 【注5】		
11	UVCC 【注4】		
10, 12, 13	GND		
14	GND 【注3】	出力	

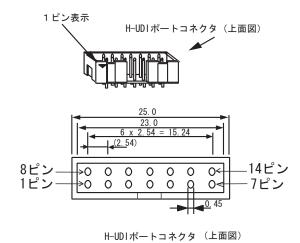


図 1.2 H-UDI ポートコネクタのピン配置(14 ピン)

- 【注】 1. ユーザシステム側からの入出力方向
 - 2 . /信号名: Low レベルで有効な信号
 - 3 . ユーザシステム側の GND を検出することにより、ユーザシステムの接続と非接続を判別しています。
 - 4. UVCC に VccQ 端子を接続しない場合、ユーザインタフェースの I/O 電圧は 5.0V 固定となります。
 - 5 . /DBGMD 端子は、E10A-USB を接続する場合"0"ですが、E10A-USB を未接続状態で動作させる場合、信号レベ ルを"1"にする必要があります。

E10A-USB を使用する場合 : /DBGMD = "0" (ASE モード)

E10A-USB を使用しない場合:/DBGMD = "1"(通常モード)

E10A-USBのユーザインタフェースケーブルを接続した時、GNDとなるようにする場合、GNDに接続せず/DBGMD

6. GND に接続しても問題はありません。

1.5 H-UDI ポートコネクタとチップ間の推奨接続例

1.5.1 推奨接続例(36 ピンタイプ)

E10A-USB エミュレータ使用時の H-UDI+AUD ポートコネクタ(36 ピンタイプ)とチップ間の推奨接続例を図 1.3、UVCC 未接続時の接続例を図 1.4 に示します。

- 【注】 1. H-UDI ポートコネクタの N.C.ピンには何も接続しないでください。
 - 2. /DBGMD 端子は、E10A-USB を接続する場合"0"ですが、E10A-USB を未接続状態で動作させる場合、信号レベ ルを"1"にする必要があります。

E10A-USB を使用する場合 : /DBGMD = "0" (ASE モード)

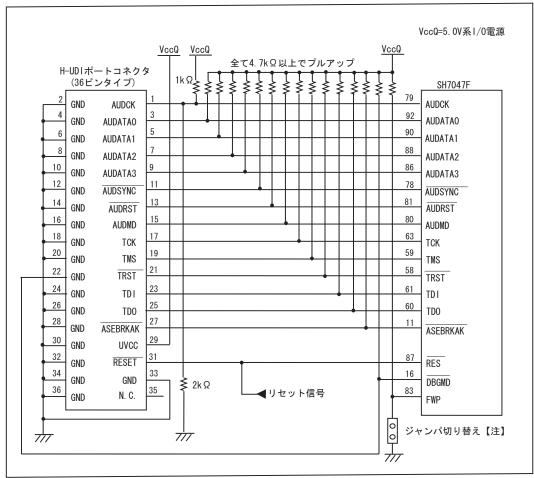
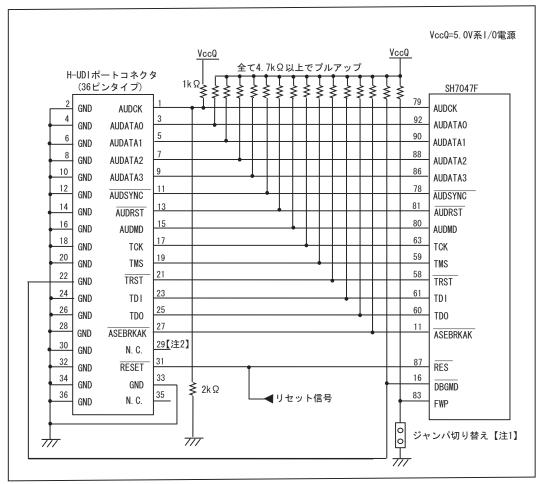

E10A-USB を使用しない場合:/DBGMD = "1"(通常モード)

図 1.3,図 1.4 は、E10A-USB 接続時"0"(GND 接続)になるように、E10A-USB のユーザインタフェースケーブル を接続した時、GND となる回路例です。

もし、/ DBGMD 端子をスイッチ等で切り替える場合、22pin は/ DBGMD 端子に接続せず、GND に接続してくだ

- E10A-USB 使用時、FWP 端子はジャンパ切り替えなどで"0"[Low]に設定してください。
- プルアップに連抵抗を使用する場合、他の端子によるノイズの影響を受ける可能性がありますので TCK は他の 抵抗と分けてください。
- E10A-USB エミュレータを使用する場合、ユーザインタフェースケーブルの反射ノイズによる影響を受ける可能 性がありますので、AUDCK 端子は終端抵抗(数 kΩの抵抗でプルアップ、プルダウン)にしてください。
- H-UDI ポートコネクタとチップ間のパターン長はできるだけ短くしてください。また、基板上で H-UDI ポートコ ネクタとチップ間以外への信号線の引き回しは行わないでください。
- 7. UVCC 端子にユーザ電源を供給することにより、ユーザシステム電源 OFF 時 E10A-USB からユーザシステムへ のリーク電流を抑えることができます。これは、E10A-USB エミュレータ内インタフェース回路には、内部電源 またはユーザ電源(SW により切替)で駆動するバッファが実装されており、UVCC 端子に対しユーザ電源を供給 する回路構成にした場合、ユーザからの電源が供給されない限り、バッファは駆動しません。これにより、ユー ザシステムの電源が切れている状態では、ユーザインタフェースから電流が流れないようになっています。 また、ユーザインタフェースの I/O 電圧をユーザシステムの VccQ と同じ電圧にできますので、低電圧(5.0V 未 満)で動作させる場合、UVCC 端子にユーザ電源(VccQ)を供給するようにしてください。この時、E10A-USB エ ミュレータのスイッチは、ユーザ電源を供給する設定(SW2=1,SW3=1側)としてください。
- 図 1.3,図 1.4 に記載されている抵抗値は、参考値です。
- E10A-USB エミュレータを使用しない場合の端子処理については、関連するデバイスのハードウェアマニュアル を参照してください。

 図1.3 推奨接続例で回路を組んだ場合のE10A-USBエミュレータのスイッチ設定:SW2=1,SW3=1スイッチ 設定の詳細は、「SuperH™ファミリ用 E10A-USB エミュレータユーザーズマニュアル 3.8 DIPスイッチ の設定」を参照してください。



ユーザ実機

図 1.3 E10A-USB 使用時の H-UDI ポートコネクタ - チップ間の推奨接続例 (36 ピンタイプ UVCC 接続時)

【注】 E10A-USB 使用時、FWP 端子はジャンパ切り替えなどで"0"[Low]に設定してください。

● 図1.4 接続例で回路を組んだ場合のE10A-USBエミュレータのスイッチ設定: SW2=0, SW3=1スイッチ設定 の詳細は、「SuperH™ファミリ用 E10A-USB エミュレータユーザーズマニュアル 3.8 DIPスイッチの設定」を参照してください。

ユーザ実機

図 1.4 E10A-USB 使用時の H-UDI ポートコネクタ - チップ間の接続例 (36 ピンタイプ UVCC 未接続時 (注21)

- 【注】 1. E10A-USB 使用時、FWP 端子はジャンパ切り替えなどで"0"[Low]に設定してください。
 - 2. UVCC 未接続の場合、ユーザシステム電源 OFF 時 E10A-USB からユーザシステムへリーク電流が流れますので注意してください。

1.5.2 推奨接続例(14 ピンタイプ)

E10A-USB エミュレータ使用時のH-UDIポートコネクタ(14 ピンタイプ)とチップ間の推奨接続例を図 1.5、UVCC 未接続時の接続例を図 1.6 に示します。

- 【注】 1. H-UDIポートコネクタの N.C.ピンには何も接続しないでください。
 - /DBGMD 端子は、E10A-USB を接続する場合"0"ですが、E10A-USB を未接続状態で動作させる場合、信号レベルを"1"にする必要があります。

E10A-USB を使用する場合 : /DBGMD = "0" (ASE モード)

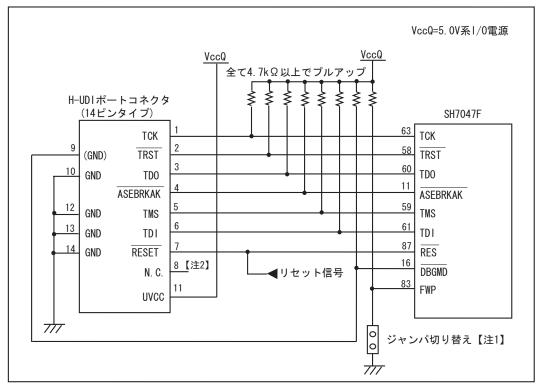
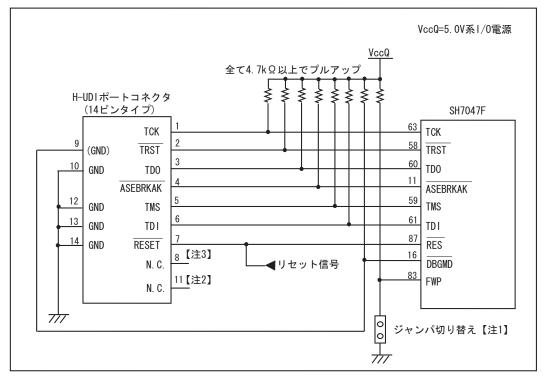

E10A-USB を使用しない場合:/DBGMD = "1"(通常モード)

図 1.5,図 1.6 は、E10A-USB 接続時"0"(GND 接続)になるように、E10A-USB のユーザインタフェースケーブルを接続した時、GND となる回路例です。

もし、/DBGMD 端子をスイッチ等で切り替える場合、9pin は/DBGMD 端子に接続せず、GND に接続してください。

- 3. E10A-USB 使用時、FWP 端子はジャンパ切り替えなどで"0"[Low]に設定してください。
- 4. プルアップに連抵抗を使用する場合、他の端子によるノイズの影響を受ける可能性がありますので TCK は他の抵抗と分けてください。
- 5. H-UDI ポートコネクタとチップ間のパターン長はできるだけ短くしてください。また、基板上で H-UDI ポートコネクタとチップ間以外への信号線の引き回しは行わないでください。
- 6. UVCC 端子にユーザ電源を供給することにより、ユーザシステム電源 OFF 時 E10A-USB からユーザシステムへのリーク電流を抑えることができます。これは、E10A-USB エミュレータ内インタフェース回路には、内部電源またはユーザ電源(SW により切替)で駆動するパッファが実装されており、UVCC 端子に対しユーザ電源を供給する回路構成にした場合、ユーザからの電源が供給されない限り、パッファは駆動しません。これにより、ユーザシステムの電源が切れている状態では、ユーザインタフェースから電流が流れないようになっています。また、ユーザインタフェースの I/O 電圧をユーザシステムの VccQ と同じ電圧にできますので、低電圧(5.0V 未満)で動作させる場合、UVCC 端子にユーザ電源(VccQ)を供給するようにしてください。この時、E10A-USB エミュレータのスイッチは、ユーザ電源を供給する設定(SW2=1,SW3=1 側)としてください。
- 7. 図 1.5,図 1.6 に記載されている抵抗値は、参考値です。
- 8. E10A-USB エミュレータを使用しない場合の端子処理については、関連するデバイスのハードウェアマニュアルを参照してください。

• 図1.5 推奨接続例で回路を組んだ場合のE10A-USBエミュレータのスイッチ設定: SW2=1, SW3=1スイッチ 設定の詳細は、「SuperH™ファミリ用 E10A-USB エミュレータユーザーズマニュアル3.8 DIPスイッチの 設定」を参照してください。



ユーザ実機

図 1.5 E10A-USB 使用時の H-UDI ポートコネクタ - チップ間の推奨接続例 (14 ピンタイプ UVCC 接続時)

- 【注】 1. E10A-USB 使用時、FWP 端子はジャンパ切り替えなどで"0"[Low]に設定してください。
 - GND に接続しても問題はありません。

 図1.6 接続例で回路を組んだ場合のE10A-USBエミュレータのスイッチ設定: SW2=0, SW3=1スイッチ設定 の詳細は、「SuperH™ファミリ用 E10A-USB エミュレータユーザーズマニュアル 3.8 DIPスイッチの設 定」を参照してください。

ユーザ実機

図 1.6 E10A-USB 使用時の H-UDI ポートコネクタ - チップ間の接続例 (14 ピンタイプ UVCC 未接続時 ^[注2])

- 【注】 1. E10A-USB 使用時、FWP 端子はジャンパ切り替えなどで"0"[Low]に設定してください。
 - 2. UVCC 未接続の場合、ユーザシステム電源 OFF 時 E10A-USB からユーザシステムへリーク電流が流れますので注意してください。
 - 3. GND に接続しても問題はありません。

2. SH7047F ご使用時のソフトウェア仕様

2.1 E10A-USB エミュレータと SH7047F の相違点

(1) E10A-USBエミュレータは、システム起動時に汎用レジスタやコントロールレジスタの一部を初期化していますので注意してください(表2.1)。なお、SH7047Fの初期値は不定です。

ワークスペースから起動する場合は、セッションで保存されている値が入力されます。

状態	レジスタ名	E10A-USB エミュレータ
E10A-USB エミュレータ	R0~R14	H'00000000
起動時	R15 (SP)	ベクタアドレステーブル中の SP の値
	PC	ベクタアドレステーブル中の PC の値
	SR	H'00000F0
	GBR	H'00000000
	VBR	H'00000000
	MACH	H'00000000
	MACL	H'00000000
	PR	H'00000000

表 2.1 E10A-USB エミュレータでのレジスタ初期値

- (2) H-UDIはE10A-USBエミュレータで使用しているので、アクセスしないでください。
- (3) 低消費電力状態 (スリープ、ソフトウェアスタンバイ、モジュールスタンバイ)

SH7047Fには、低消費電力状態としてスリープ状態、ソフトウェアスタンバイ状態、モジュールスタンバイ状態があります。スリープ状態は通常の解除要因の他に、強制プレークによっても状態が解除され、プレークします。ただし、ソフトウェアスタンバイ状態、モジュールスタンバイ状態は通常の解除要因でのみ解除されますので、これらの状態でコマンド入力等を行うとE10A-USBエミュレータからのコマンドは使用できなくなります。

【留意事項】

ソフトウェアスタンバイ状態中に、メモリ参照や変更をしないでください。

- 1. MSTCR2 レジスタ (アドレス H'FFFF861E) の MSTP2 ビットを 1、MSTP27 ビットを 1、及び SYSCR レジスタ (アドレス H'FFFF8618) の RAME ビットを 0 にしないでください。E10A-USB エミュレータが正常に動作しなくなります。
- 2. HS0005KCU02H を使用している場合、MSTCR2 レジスタ (アドレス H'FFFF861E) の MSTP3 ビットを 0、及 び SYSCR レジスタ (アドレス H'FFFF8618) の AUDSRST ビットを 0 にしないでください。AUD 機能が使用できなくなります。

(4) RESET信号(RES)

RESET信号は、ユーザプログラムブレーク中でも受け付けることができます。その際、周辺モジュールはリセットされます。

PC、SR、SPレジスタについては初期化されませんので、ユーザプログラムをリセットベクタから実行する場合は、これらのレジスタを再設定してからGo実行してください。

【留意事項】

/RES、/BREQ、/WAIT 端子が"Low"状態のままユーザプログラムをブレークしないでください。TIMEOUT エラーが発生します。また、ブレーク中に/WAIT端子または/BREQ端子が"Low"固定状態になると、メモリアクセス時にTIMEOUT エラーが発生します。

(5) データトランスファコントローラ(DTC)

DTCはコマンド待ち状態でも機能しています。転送要求が発生すると、DTC転送を実行します。

(6) ユーザプログラム実行中のメモリアクセス

ユーザプログラム実行中にメモリウィンドウ等からメモリアクセスした場合、E10A-USBエミュレータ内部でユーザプログラムの実行を一旦停止してメモリアクセスし、その後ユーザプログラムを再実行しています。したがって、ユーザプログラムのリアルタイム性はありません。

参考値として、以下の環境でのユーザプログラムの停止時間を示します。

環境

ホストPC : Pentium® 650MHz

OS : Windows®2000

 SH7047F
 : CPUクロック 40MHz

 JTAGクロック
 : TCKクロック 10MHz

コマンドラインウインドウから1バイトメモリリードを行った場合、停止時間は約35 msとなります。

(7) ユーザプログラムブレーク中のメモリアクセス

メモリライト操作はRAM領域および内蔵フラッシュメモリに対してのみ可能です。したがって、メモリライト、BREAKPOINT等の設定はRAMおよび内蔵フラッシュメモリ領域のみに行ってください。

(8) マルチプレクスについて

AUD、H-UDI端子は、以下に示すようにマルチプレクスされていますので、E10A-USBエミュレータ使用時、表2.2に示す機能1は使用できません。

機能1 機能2 PA15/CK/POE6/BACK TRST (H-UDI) PA14/RD/POE5 TMS (H-UDI) PA13/POE4/BREQ TDO (H-UDI) PA12/WRL/UBCTRG TDI (H-UDI) PA10/CS0/RD/SCK2 TCK (H-UDI) AUDSYNC (AUD) PD7/D7 [注] PD6/D6 [注] AUDCK (AUD) PD5/D5 [注] AUDMD (AUD) PD4/D4 [注] AUDRST (AUD) PD3/D3 [注] AUDATA3 (AUD) PD2/D2/SCK2 [注] AUDATA2 (AUD) PD1/D1/TXD2 [注] AUDATA1 (AUD) PD0/D0/RXD2 [注] AUDATA0 (AUD)

表 2.2 マルチプレクス一覧表

【注】 デバイスの AUD 端子を E10A-USB エミュレータに接続していない場合、機能 1 が使用できます。

(9) セッションロードについて

[Configuration]ダイアログボックスの[JTAG clock]の情報は、セッションロードで回復されません。このため、TCKの値は0.625MHzになります。

(10) [IO]ウィンドウ

• 表示と変更

ウォッチドッグタイマ(Watchdog Timer)の各レジスタは、読み出し/書き込みの2つを用意しています。

レジスタ名 用途 レジスタ TCSR (R) 読み出し用 ウォッチドッグタイマコントロール / ステータスレジスタ TCNT (R) 読み出し用 ウォッチドッグタイマカウンタ RSTCSR (R) 読み出し用 リセットコントロール / ステータスレジスタ TCSR (W) ウォッチドッグタイマコントロール / ステータスレジスタ 書き込み用 ウォッチドッグタイマカウンタ TCNT (W) 書き込み用 RSTCSR (W) 書き込み用 リセットコントロール / ステータスレジスタ

表 2.3 ウォッチドッグタイマのレジスタ

E10A-USBエミュレータでは[IO]ウィンドウから内蔵I/Oレジスタにアクセスできます。I/Oレジスタファイルは、I/Oレジスタファイル作成後、デバイス仕様が変更になることがあります。I/Oレジスタファイルの各 I/Oレジスタと、デバイスマニュアル記載のアドレスに相違がある場合は、デバイスマニュアルの記載にしたがって修正してご使用ください。I/Oレジスタは、I/Oレジスタファイルのフォーマットにしたがい、カスタマイズすることが可能です。なお、E10A-USBエミュレータでは、ビットフィールド機能についてはサポートしていませんので、ご了承ください。

• ベリファイ

[IO]ウィンドウにおいては、入力値のベリファイ機能は無効です。

(11) 不当命令

不当命令をSTEP実行すると、次のプログラムカウンタに進みません。

(12) 割込み

ユーザプログラムブレーク中は、NMI以外のすべての割込みをマスクしています。

- (13) 予約空間をアクセスするとき、[Memory]ウィンドウ以外ではアクセスしないでください。
- (14) フラッシュメモリ内容更新処理時間

プログラムロード、メモリウィンドウ、メモリコマンドなどによってフラッシュメモリ領域の内容が変更された場合、また、ソフトウェアブレークを設定している場合、ユーザプログラムの実行前にフラッシュメモリ内容の読み出しを行うため、 持ち時間が生じます。

参考値として、以下の環境でのフラッシュメモリ内容更新のための処理時間は最大で約60秒です。

環境

ホストコンピュータ : Pentium® 500MHz

SH7047F : システムクロック周波数 40MHz

2.2 SH7047F ご使用時のエミュレータ特有機能

以下の機能をサポートしていません。

- MMU関連機能 (SH7047FはMMUを搭載していません)
 - VPMAP 関連コマンド
 - [Configuration]ウィンドウにおける Virtual、Physical 指定
 - コマンドライン機能における Virtual、Physical 指定
 - [Breakpoint]ウィンドウにおける Virtual、Physical 指定
 - LDTLB 命令実行ブレーク機能
 - MEMORYAREA_SET コマンド
- 内蔵I/Oアクセスブレーク機能
- UBC_MODEコマンド(E10A-USBエミュレータ使用中は、UBCを使用できません。)
- [Configuration]ウィンドウ、コマンドライン機能におけるUBC_MODE指定
- プロファイラ機能
- パフォーマンス測定機能

2.2.1 Break Condition 機能

E10A-USB エミュレータは、Break Condition 条件を設定することができます。表 2.4 に Break Condition の条件の内容を示します。

表 2.4 Break Condition の条件

項	ブレーク条件	説明
番		
1	アドレスバス条件(Address)	MCUのアドレスバスまたはプログラムカウンタの値が一致したときにブレークします。
2	データサイズ条件(Size)	アクセスしたデータサイズが一致したときにブレークします。バイト、ワード、ロング アクセスのデータサイズを指定できます。
3	リード、ライト条件(Read および Write)	リード、ライトサイクルでブレークします。
4	アクセスタイプ	バスサイクルが指定されたサイクルのときにブレークします。

表 2.5 に [Break Condition]ダイアログボックスで設定できる条件ついて説明します。

表 2.5 [Break Condition]ダイアログボックスで設定できる条件

ダイアログボックス	条件	
	アドレスバス条件	アクセスタイプ条件
	([Address]ページ)	リード、ライト条件
		データサイズ条件
		([Bus state]ページ)
[Break Condition 1]ダイアログボックス		
[Break Condition 2]ダイアログボックス		
[Break Condition 3]ダイアログボックス		
[Break Condition 4]ダイアログボックス		
[Break Condition R]ダイアログボックス		_

【注】 は、ダイアログボックスのラジオボタンをチェックすることにより、設定できることを表します。

表 2.6 に BREAKCONDITION_SET コマンドで設定できる条件について示します。

表 2.6 BREAKCONDITION_SET コマンドで設定できる条件

チャネル		条件
	アドレスバス条件	アクセスタイプ条件
	(オプション <addropt>)</addropt>	(オプション <accessopt>)</accessopt>
		リード、ライト条件
		(オプション <r wopt="">)</r>
		データサイズ条件
		(オプション <sizeopt>)</sizeopt>
Break Condition チャネル 1		
Break Condition チャネル 2		
Break Condition チャネル 3		
Break Condition チャネル 4		
Break Condition チャネルR		_

【注】 は、BREAKCONDITION_SET コマンドで設定できることを表します。

[Break Condition]ダイアログボックス、BREAKCONDITION_SET コマンド設定時の注意事項

- (1) Break Condition3はGo to cursor、Step In、Step Over、Step Out使用時は無効です。
- (2) BREAKPOINTが設定されている命令を実行する際に、Break Condition3の条件は無効となります。したがって、Break Condition3の条件が成立する命令にはBREAKPOINTを設定しないでください。
- (3) Break Conditionの条件成立後に複数命令を実行してから停止することがあります。
- (4) 遅延分岐命令のスロット命令ではPCブレークの実行前にプログラムを停止することができません。遅延分岐命令のスロット命令にPCブレーク(実行前停止条件)を設定した場合、分岐先の命令実行前で停止します。

2.2.2 AUD 機能

SH7047F ご使用時は、AUD機能を使用した以下の機能を使用できます。

AUD 機能は、MCU の AUD 端子を E10A-USB エミュレータに接続している場合に有効です。

AUD 機能を有効にするには、[オプション->エミュレータ->システム...]を選択するか、[Emulator System]ツールバーボタン をクリックすると開く[Configuration]ダイアログボックスの[AUD Port]ドロップダウンリストを AUD used に設定してください。

【注】 AUD used を選択の他、ユーザプログラムにて下記の設定を行う必要があります。

ユーザプログラム実行開始から以下の設定を行うまでの間は、AUD 機能は正常に動作しません。

- ・ SYSCR レジスタ.AUDSRST ビットに 1 を設定して、AUD のリセットを解除してください。
- ・ ピンファンクションコントローラの設定を行い、AUDの入出力端子(/AUDSYNC、AUDCK、AUDMD、/AUDRST、AUDATA3、AUDATA2、AUDATA1、AUDATA0)を有効にしてください。

表 2.7 AUD 機能一覧

機能	説明		
分岐トレース機能	分岐先アドレスと、分岐先の命令語を表示します。		
RAM モニタ機能	ユーザプログラム実行中に、リアルタイムにメモリをリード/ライトできる機能です。		

【留意事項】

- 1. 製品型名 HS0005KCU01H をご使用の際は、AUD 機能は使用できません。
- 2. MCU 動作モードが MCU 拡張モード 2 の場合、AUD 機能は使用できません。

(1) 分岐トレース機能

ユーザプログラム実行中に分岐が発生した場合、分岐先アドレスを取得します。

トレース情報を出力中に次の分岐が発生した場合、出力中のトレース情報を中断して次のトレース情報を出力します。

このため、ユーザプログラムはリアルタイムに動作しますが、トレース情報が一部取得できないことがあります。

【留意事項】

Trace Acquisition ダイアログボックスの Trace mode ページ AUD mode で Trace stop を選択し、E10A-USB エミュレータのトレースバッファがフルになった場合、その後のトレースを取得しません。ユーザプログラムは継続して実行されます。

(2) リアルタイムメモリアクセス機能

ユーザプログラム実行中に、リアルタイムにメモリをリード/ライトできる機能です。

ステータスパーに、指定されたメモリアドレス内容を最大3つまで表示でき、コマンドラインからメモリ内容を変更できます。また、[Memory]ウィンドウでメモリ内容を参照できます。

メモリのリード/ライト方法を以下に説明します。

(a) [Memory]ウィンドウを使用する場合

ユーザプログラム実行中のメモリリード/ライトが可能です。

参照するアドレスを[Memory]ウィンドウから開いてください。参照時は[Memory]メニューの Refresh を選択するか、コマンドラインウインドウから Refresh コマンドを発行してください。

(b) コマンドラインを使用する場合

MEMORY_EDIT コマンド : ユーザプログラム実行中のメモリリード / ライトが可能です。

RAM_R コマンド : ユーザプログラム実行中、ステータスバーに表示するアドレスとサイズを指

定します。

RAM_W コマンド : ユーザプログラム実行中のメモリ変更が可能です。最大 3 アドレスを 1 コマ

ンドで変更できます。

【留意事項】

RAM_W コマンドでフラッシュメモリ領域のライトはできません。

(3) AUD 機能が使用できる製品と注意事項

表 2.8 製品型名と AUD 機能対応表

製品型名	コネクタタイプ	AUD 機能	
HS0005KCU01H, HS0005KCU02H	14 ピンタイプ	使用できません。	
HS0005KCU02H	36 ピンタイプ	使用できます。	

【留意事項】

- 1. AUD 機能を使用するためにはシステムクロックを 40MHz 以下としてください。
- RAM モニタ機能を使用してユーザプログラム実行中にメモリリ・ド/ライトを行っている間のトレースは取得できません。

2.2.3 [Trace]ウィンドウ表示時の注意事項

- (1) AUDトレースは分岐先アドレス出力時に、前回出力した分岐先アドレスとの差分を出力しています。 前回出力した分岐先アドレスと上位16ビットが同じであれば下位16ビット、上位24ビットが同じであ れば下位8ビット、上位28ビットが同じであれば下位4ビットのみ出力します。E10A-USBエミュレータ ではこの差分から32ビットアドレスを再生して[Trace]ウィンドウに表示していますが、32ビットアド レスを表示できない場合があります。この場合は前の32ビットアドレス表示からの差分を表示します。
- (2) 例外分岐取得時において、完了型例外が発生したとき、例外が発生したアドレスの次のアドレスが取得されます。
- (3) [Trace]ウィンドウのポップアップメニューから[Halt]オプションをご使用の場合、リアルタイム性は保持されます。
- (4) E10A-USBエミュレータでは、[Trace]ウィンドウの最大トレース表示数は65535行(32767分岐)となります。 しかしトレースバッファに格納される最大個数は、出力されるAUDトレース情報によって異なります。 したがって常に上記の個数を取得することはできません。
- (5) トレース取得行が1行の場合、表示データが更新されません。この場合、[Trace]ウィンドウを再度オープンしてください。

2.2.4 JTAG クロック (TCK) 使用時の注意事項

- (1) JTAGクロック (TCK) をご使用の場合、JTAGクロック (TCK) の周波数は、システムクロック以下としてください。
- (2) JTAGクロック (TCK)を設定する場合、20MHzを設定しないでください。

2.2.5 [Breakpoint]ダイアログボックス設定時の注意事項

- (1) 指定アドレスが奇数時は、偶数に切り捨てます。
- (2) BREAKPOINTは、命令を置き換えることにより実現するので、RAM領域および内蔵フラッシュメモリ にだけ設定できます。ただし、次に示すアドレスには指定できません。
 - CSO 空間、内蔵 RAM、内蔵フラッシュメモリ以外の領域
 - Break Condition 3 が成立する命令
 - 遅延分岐命令のスロット命令
- (3) ステップ実行中は、BREAKPOINTは無効です。
- (4) BREAKPOINTが設定されている命令を実行する際、Break Condition 3は無効です。したがって、Break Condition 3が成立する命令には、BREAKPOINTを設定しないでください。
- (5) BREAKPOINTで停止後、再度そのアドレスから実行を再開した場合、一度そのアドレスをシングルステップにより実行してから実行を継続するので、リアルタイム性はなくなります。
- (6) 遅延分岐命令のスロット命令にBREAKPOINTを設定した場合、PC値は不当な値となります。したがって、遅延分岐命令のスロット命令にBREAKPOINTを設定しないでください。
- (7) BREAKPOINTのアドレスがROM、フラッシュ領域などで正しく設定できなかった場合、Go実行後に [Memory]ウィンドウ等でREFRESHを行うと[Source], [Disassembly]ウィンドウの該当アドレスの[BP]エリアに が表示されることがあります。ただし、このアドレスではブレークしません。また、ブレーク条件で停止すると の表示は消えます。

SuperH™ファミリ用 E10A-USBエミュレータ ユーザーズマニュアル 別冊 SH7047F ご使用時の補足説明

発行年月日 2004年8月25日 Rev.1.00

2010年11月18日 Rev.2.00

発行 ルネサス エレクトロニクス株式会社

〒211-8668 神奈川県川崎市中原区下沼部1753

ルネサスエレクトロニクス株式会社

■営業お問合せ窓口

http://www.renesas.com

※営業お問合せ窓口の住所・電話番号は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。 ルネサス エレクトロニクス販売株式会社 〒100-0004 千代田区大手町2-6-2 (日本ビル) (03)5201-5307

■技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口:http://japan.renesas.com/inquiry

 $\ensuremath{\texttt{©}}$ 2010 Renesas Electronics Corporation and Renesas Solutions Corp. All rights reserved. Colophon 1.0

SuperH™ファミリ用 E10A-USB エミュレータ ユーザーズマニュアル 別冊 SH7047F ご使用時の補足説明

R20UT0371JJ0200 (旧番号:RJJ10B0153-0100)