Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SuperH[™] Family E10A-USB Emulator Additional Document for User's Ma

Additional Document for User's Manual Supplementary Information on Using the SH7136 and SH7137

Renesas Microcomputer Development Environment System SuperH™ Family

E10A-USB for SH7137 HS7137KCU01HE

Renesas Electronics

Rev.1.00 2007.11

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Contents

Sectio	on 1	Connecting the Emulator with the User System	1
1.1	Comp	ponents of the Emulator	1
1.2	Conne	ecting the Emulator with the User System	
1.3	Instal	ling the H-UDI Port Connector on the User System	4
1.4	Pin A	ssignments of the H-UDI Port Connector	4
1.5	Recor	nmended Circuit between the H-UDI Port Connector and the MCU	6
	1.5.1	Recommended Circuit (14-Pin Type)	6
2.1	Diffe	Software Specifications when Using the SH7136 and SH7137 Se rences between the MCU and the Emulator	9
2.1	Differ	rences between the MCU and the Emulator	9
2.2		fic Functions for the Emulator when Using the SH7136 and SH7137 Series	
	2.2.1	Event Condition Functions	
	2.2.2	Trace Functions	
	2.2.3	Notes on Using the JTAG (H-UDI) Clock (TCK)	
	2.2.4	Notes on Setting the [Breakpoint] Dialog Box	19
	2.2.5	Notes on Setting the [Event Condition] Dialog Box and	
		the BREAKCONDITION_SET Command	19
	2.2.6	Performance Measurement Function	

RENESAS

Section 1 Connecting the Emulator with the User System

1.1 Components of the Emulator

The E10A-USB emulator supports the SH7136 and SH7137. Table 1.1 lists the components of the emulator.

Classi- fication	Component	Appearance	Quan- tity	Remarks
Hard- ware	Emulator box	Standard B	1	HS0005KCU01H: Depth: 65.0 mm, Width: 97.0 mm, Height: 20.0 mm, Mass: 72.9 g
		* E10- 1		or
		Dio faithith		HS0005KCU02H: Depth: 65.0 mm, Width: 97.0 mm, Height: 20.0 mm, Mass: 73.7 g
	User system interface cable		1	14-pin type: Length: 20 cm, Mass: 33.1 g
	User system interface cable		1	36-pin type: Length: 20 cm, Mass: 49.2 g (only for HS0005KCU02H)
	USB cable		1	Length: 150 cm, Mass: 50.6 g
Soft- ware	E10A-USB emulator setup program,		1)	HS0005KCU01SR,
	SuperH [™] Family E10A-			HS0005KCU01HJ,
	USB Emulator User's Manual,			HS0005KCU01HE,
	Supplementary			HS7137KCU01HJ,
	Information on Using the SH7136 and SH7137*, and			HS7137KCU01HE,
	Test program manual for			HS0005TM01HJ, and
	HS0005KCU01H and			HS0005TM01HE
Note:	HS0005KCU02H			(provided on a CD-R) ator is included. Check the target

Table 1.1 Components of the Emulator

Note: Additional document for the MCUs supported by the emulator is included. Check the target MCU and refer to its additional document.

RENESAS

1.2 Connecting the Emulator with the User System

To connect the E10A-USB emulator (hereinafter referred to as the emulator), the H-UDI port connector must be installed on the user system to connect the user system interface cable. When designing the user system, refer to the recommended circuit between the H-UDI port connector and the MCU. In addition, read the E10A-USB emulator user's manual and hardware manual for the related device.

Table 1.2 Type Number and Connector Type

Type Number	Connector
HS0005KCU01H, HS0005KCU02H	14-pin connector

1.3 Installing the H-UDI Port Connector on the User System

Table 1.3 shows the recommended H-UDI port connector for the emulator.

Table 1.3 Recommended H-UDI Port Connector

Connector	Type Number	Manufacturer	Specifications
14-pin connector	2514-6002	Minnesota Mining & Manufacturing Ltd.	14-pin straight type

Note: Do not place any components within 3 mm of the H-UDI port connector.

1.4 Pin Assignments of the H-UDI Port Connector

Figure 1.1 shows the pin assignments of the H-UDI port connector.

Note: Note that the pin number assignments of the H-UDI port connector shown on the following page differ from those of the connector manufacturer.

Pin No.	Signal		Input/ Output* ¹	SH7136 Pin No.	SH7137 Pin No.	Note
1	TCK		Input	6	7	
2	_TRST	*2	Input	2	2	
3	TDO		Output	4	5	
4	_ASEBRKAK	*2	Input/	7	8	
	/_ASEBRK		output			
5	TMS		Input	3	4	
6	TDI		Input	5	6	
7	_RES	*2	Output	54	70	User reset
8	N.C.					
9	(GND)	*4				
11	UVCC		Output			
10, 12,	GND		—			
and 13						
14	GND	*3	Output			

Notes: 1. Input to or output from the user system.

- 2. The symbol (_) means that the signal is active-low.
- The emulator monitors the GND signal of the user system and detects whether or not the user system is connected.
- 4. When the user system interface cable is connected to this pin and the _ASEMD0 pin is set to 0, do not connect to GND but to the _ASEMD0 pin directly.

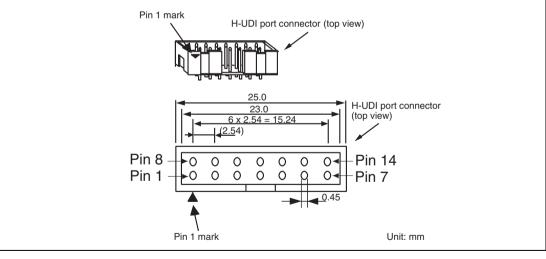


Figure 1.1 Pin Assignments of the H-UDI Port Connector (14 Pins)

RENESAS

1.5 Recommended Circuit between the H-UDI Port Connector and the MCU

1.5.1 Recommended Circuit (14-Pin Type)

Figure 1.2 shows a recommended circuit for connection between the H-UDI port connector (14 pins) and the MCU when the emulator is in use.

Notes: 1. Do not connect anything to the N.C. pins of the H-UDI port connector.

The _ASEMD0 pin must be 0 when the emulator is connected and 1 when the emulator is not connected, respectively.
 (1) When the angle later is used a ASEMD0 = 0

(1) When the emulator is used: $_ASEMD0 = 0$

(2) When the emulator is not used: $_ASEMD0 = 1$

Figure 1.2 shows an example of circuits that allow the _ASEMD0 pin to be GND (0) whenever the emulator is connected by using the user system interface cable. When the _ASEMD0 pin is changed by switches, etc., ground pin 9. Do not connect this pin to the _ASEMD0 pin.

- 3. When a network resistance is used for pull-up, it may be affected by a noise. Separate TCK from other resistances.
- 4. The pattern between the H-UDI port connector and the MCU must be as short as possible. Do not connect the signal lines to other components on the board.
- Supply the operating voltage of the H-UDI of the MCU to the UVCC pin. Make the emulator's switch settings so that the user power will be supplied (SW2 = 1 and SW3 = 1).
- 6. The resistance value shown in figure 1.2 is for reference.
- 7. For the pin processing in cases where the emulator is not used, refer to the hardware manual of the related MCU.

When the circuit is connected as shown in figure 1.2, the switches of the emulator are set as SW2 = 1 and SW3 = 1. For details, refer to section 3.8, Setting the DIP Switches, in the SuperHTM Family E10A-USB Emulator User's Manual.

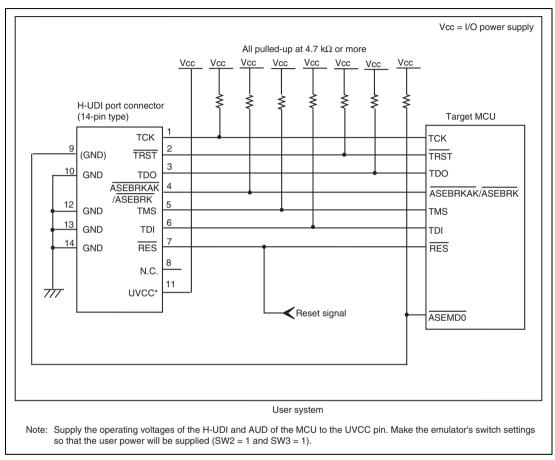


Figure 1.2 Recommended Circuit for Connection between the H-UDI Port Connector and MCU when the Emulator is in Use (14-Pin Type)

RENESAS

Section 2 Software Specifications when Using the SH7136 and SH7137 Series

2.1 Differences between the MCU and the Emulator

1. When the emulator system is initiated, it initializes the general registers and part of the control registers. The initial values of the MCU are undefined. When the emulator is initiated from the workspace, a value to be entered is saved in a session.

Register	Emulator at Link Up
R0 to R14	H'0000000
R15 (SP)	Value of the SP in the power-on reset vector table
PC	Value of the PC in the power-on reset vector table
SR	H'00000F0
GBR	H'0000000
VBR	H'0000000
MACH	H'0000000
MACL	H'0000000
PR	H'0000000

Table 2.1 Register Initial Values at Emulator Link Up

- 2. The emulator uses the H-UDI; do not access the H-UDI.
- 3. Low-Power States
 - When the emulator is used, the sleep state can be cleared with either the clearing function or with the [STOP] button, and a break will occur.
 - The memory must not be accessed or modified in software standby state.
 - When the emulator is used, do not use the deep software standby mode.
- 4. Reset Signals

The MCU reset signals are only valid during emulation started with clicking the GO or STEPtype button. If these signals are enabled on the user system in command input wait state, they are not sent to the MCU.

- Note: Do not break the user program when the /RES, /BREQ, or /WAIT signal is being low. A TIMEOUT error will occur. If the /BREQ or /WAIT signal is fixed to low during break, a TIMEOUT error will occur at memory access. (Some MCUs will incorporate no /BREQ or /WAIT signal.)
- 5. Data Transfer Controller (DTC)

When the MCU incorporates a DTC, the DTC operates even when the emulator is used. When a data transfer request is generated, the DTC executes DTC transfer.

6. Memory Access during User Program Execution

During execution of the user program, memory is accessed by the following two methods, as shown in table 2.2.

Table 2.2 Memory Access during User Program Execution

Method	Description
H-UDI read/write	The stopping time of the user program is short because memory is accessed by the dedicated bus master.
Short break	This method is not used in this product. (Do not set short break.)

The method for accessing memory during execution of the user program is specified by using the [Configuration] dialog box.

Table 2.3 Stopping Time by Memory Access (Reference)

Method	Condition	Stopping Time
H-UDI read/write	Reading of one longword for the internal RAM	Reading: Maximum 2 bus clocks (Bø)
	Writing of one longword for the internal RAM	Writing: Maximum 2 bus clocks (B)

7. Memory Access to the External Flash Memory Area

The emulator can download the load module to the external flash memory area (for details, refer to section 6.22, Download Function to the Flash Memory Area, in the SuperH[™] Family E10A-USB Emulator User's Manual). Neither memory write nor BREAKPOINT setting is enabled for the external flash memory area. To set the break condition for the program on the external flash memory, use the Event Condition function.

RENESAS

Some MCUs will incorporate no external flash memory area.

8. Using WDT

The WDT does not operate during break.

9. Loading Sessions

Information in [JTAG clock] of the [Configuration] dialog box cannot be recovered by loading sessions. Thus the TCK value will be as follows:

```
— When HS0005KCU01H or HS0005KCU02H is used: TCK = 2.5 MHz
```

- 10. [IO] Window
 - Display and modification

For each watchdog timer register, there are two registers to be separately used for write and read operations.

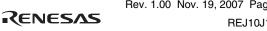
Register Name	Usage	Register
WTCSR (W)	Write	Watchdog timer control/status register
WTCNT (W)	Write	Watchdog timer counter
WTCSR(R)	Read	Watchdog timer control/status register
WTCNT(R)	Read	Watchdog timer counter

Table 2.4 Watchdog Timer Register

- Customization of the I/O-register definition file

After the I/O-register definition file is created, the MCU's specifications may be changed. If each I/O register in the I/O-register definition file differs from addresses described in the hardware manual, change the I/O-register definition file according to the description in the hardware manual. The I/O-register definition file can be customized depending on its format. Note that, however, the emulator does not support the bit-field function.

- Verify


In the [IO] window, the verify function of the input value is disabled.

11. Illegal Instructions

Do not execute illegal instructions with STEP-type commands.

12. MCU Operating Mode

Note that the emulator does not support the boot mode and user boot mode.

13. Multiplexing the Emulator Pins

The emulator pin is assigned as shown in table 2.5.

MCU	Function 1	Function 2
SH7136	PE16/TIOC3BS	_ASEBRKAK/_ASEBRK
	PE17/TIOC3DS	ТСК
	PE18/TIOC4AS	TDI
	PE19/TIOC4BS	TDO
	PE20/TIOC4CS	TMS
	PE21/TIOC4DS	_TRST
SH7137	PE16/_WAIT/TIOC3BS	_ASEBRKAK/_ASEBRK
	PE17/_CS0/TIOC3DS	ТСК
	PE18/_CS1/TIOC4AS	TDI
	PE19/_RD/TIOC4BS	TDO
	PE20/TIOC4CS	TMS

Table 2.5 Multiplexed Functions

The emulator pins are multiplexed with other pins. When the emulator is connected, function 1 cannot be used because the emulator uses the pins that TCK, TMS, TDI, TDO, _TRST, and _ASEBRKAK/_ASEBRK have been multiplexed.

2.2 Specific Functions for the Emulator when Using the SH7136 and SH7137 Series

2.2.1 Event Condition Functions

The emulator is used to set event conditions for the following two functions:

- Break of the user program
- Start or end of performance measurement

Table 2.6 lists the types of Event Condition.

Table 2.6 Types of Event Condition

Event Condition Type	Description		
Address bus condition (Address)	Sets a condition when the address bus (data access) value or the program counter value (before or after execution of instructions) is matched.		
Data bus condition (Data)	Sets a condition when the data bus value is matched. Byte, word, or longword can be specified as the access data size.		
Bus state condition	There are two bus state condition settings:		
(Bus State)	Bus state condition: Sets a condition when the data bus value is matched.		
	Read/Write condition: Sets a condition when the read/write condition is matched.		
Count	Sets a condition when the specified other conditions are satisfied for the specified counts.		
Action	Selects the operation when a condition (such as a break, a trace halt condition, or a trace acquisition condition) is matched.		

Using the [Combination action (Sequential or PtoP)] dialog box, which is opened by selecting [Combination action (Sequential or PtoP)] from the pop-up menu on the [Event Condition] sheet, specifies the sequential condition and the start or end of performance measurement.

Table 2.7 lists the combinations of conditions that can be set under Ch1 to Ch4.

		Function					
Dialog Box		Address Bus Condition (Address)	Data Bus Condition (Data)	Bus State Condition (B State)	Count usCondition (Count)	Action	
[Event Condition 1]	Ch1	0	0	0	0	O (B and P)	
[Event Condition 2]	Ch2	0	0	0	Х	O (B and P)	
[Event Condition 3]	Ch3	0	Х	Х	Х	O (B)	
[Event Condition 4]	Ch4	0	Х	Х	Х	O (B)	

Table 2.7	Dialog Boxes for Setting E	vent Conditions
-----------	----------------------------	-----------------

Notes: 1. O: Can be set in the dialog box. X: Cannot be set in the dialog box.

2. For the Action item,

B: Setting a break is enabled. (For the count condition, setting a break is only enabled.)

P: Setting a performance-measurement start or end condition is enabled.

Sequential Setting: Using the [Combination action (Sequential or PtoP)] dialog box specifies the sequential condition and the start or end of performance measurement.

Classification	Item	Description
[Ch1, 2, 3] list box	Sets the sequential condition and the start or end of performance measurement using Event Conditions 1 to 3.	
	Don't care	Sets no sequential condition or the start or end of performance measurement.
	Break: Ch3-2-1	Breaks when a condition is satisfied in the order of Event Condition 3, 2, 1.
	Break: Ch2-1	Breaks when a condition is satisfied in the order of Event Condition 2, 1.
	Ch2 to Ch1 PA	Sets the performance measurement period during the time from the satisfaction of the condition set in Event Condition 2 (start condition) to the satisfaction of the condition set in Event Condition 1 (end condition).
	Ch1 to Ch2 PA	Sets the performance measurement period during the time from the satisfaction of the condition set in Event Condition 1 (start condition) to the satisfaction of the condition set in Event Condition 2 (end condition).

Table 2.8 Conditions to Be Set

Notes: 1. If the start condition is satisfied after the end condition has been satisfied by measuring performance, performance measurement will be restarted. For the measurement result after a break, the measurement results during performance measurement are added.

2. When the start or end of performance measurement is used, the count for specifying the condition of Event Condition 1 must be once.

Usage Example of Sequential Break Extension Setting: A tutorial program provided for the product is used as an example. For the tutorial program, refer to section 6, Tutorial, in the SuperHTM Family E10A-USB Emulator User's Manual.

The conditions of Event Condition are set as follows:

1. Ch3

Breaks address H'00001068 when the condition [Only program fetched address after] is satisfied.

2. Ch2

Breaks address H'0000107a when the condition [Only program fetched address after] is satisfied.

3. Ch1

Breaks address H'00001086 when the condition [Only program fetched address after] is satisfied.

Note: Do not set other channels.

- 4. Sets the content of the [Ch1,2,3] list box to [Break: Ch 3-2-1] in the [Combination action (Sequential or PtoP)] dialog box.
- 5. Enables the condition of Event Condition 1 from the popup menu by clicking the right mouse button on the [Event Condition] sheet.

Then, set the program counter and stack pointer (PC = H'00000800, R15 = H'00010000) in the [Registers] window and click the [Go] button. If this does not execute normally, issue a reset and execute the above procedures.

The program is executed up to the condition of Ch1 and halted. Here, the condition is satisfied in the order of Ch3 -> 2 -> 1.

Figure 2.1 [Source] Window at Execution Halted (Sequential Break)

If the sequential condition, performance measurement start/end, or point-to-point for the internal trace is set, conditions of Event Condition to be used will be disabled. Such conditions must be enabled from the popup menu by clicking the right mouse button on the [Event Condition] sheet.

- Notes: 1. If the Event condition is set for the slot in the delayed branch instruction by the program counter (after execution of the instruction), the condition is satisfied before executing the instruction in the branch destination (when a break has been set, it occurs before executing the instruction in the branch destination).
 - Do not set the Event condition for the SLEEP instruction by the program counter (after execution of the instruction).
 Do not set the data access condition before executing one or two instructions in the SLEEP instruction.
 - 3. If the power-on reset and the Event condition are matched simultaneously, no condition will be satisfied.
 - 4. If a condition of which intervals are satisfied closely is set, no sequential condition will be satisfied. Set the Event conditions sequentially, which are satisfied closely, by the program counter with intervals of two or more instructions.

The CPU is structured as a pipeline; the order between the instruction fetch cycle and the memory cycle is determined by the pipeline. Accordingly, when the channel condition is matched in the order of bys cycle, the sequential condition is satisfied.

RENESAS

- 5. If the settings of the Event condition or the sequential conditions are changed during execution of the program, execution will be suspended. (The number of clocks to be suspended during execution of the program is a maximum of about 52 bus clocks ($B\phi$). If the bus clock ($B\phi$) is 10.0 MHz, the program will be suspended for 5.2 µs.)
- 6. If the settings of Event conditions or the sequential conditions are changed during execution of the program, the emulator temporarily disables all Event conditions to change the settings. During this period, no Event condition will be satisfied.
- 7. If the satisfaction is contended between the DTC transfer and conditions of Event Condition including the external bus access condition, the followings may be disabled: generation of a break after the satisfaction of conditions of Event Condition, halting and acquisition of the internal trace, and the start or end of performance measurement.
- 8. When the emulator is being connected, the user break controller (UBC) function is not available.

2.2.2 Trace Functions

The internal trace is available for acquiring information on up to four branch instructions (including both the branch source and destination addresses). The AUD trace is not available when the SH7136 or SH7137 is in use.

2.2.3 Notes on Using the JTAG (H-UDI) Clock (TCK)

- 1. Set the JTAG clock (TCK) frequency to 1/4 or lower than the frequency of the peripheral clock (P ϕ) and to 2 MHz or more.
- 2. The initial value of the JTAG clock (TCK) is 2.5 MHz.
- 3. A value to be set for the JTAG clock (TCK) is initialized after executing [Reset CPU] or [Reset Go]. Thus the TCK value will be 2.5 MHz.

2.2.4 Notes on Setting the [Breakpoint] Dialog Box

- 1. When an odd address is set, the next lowest even address is used.
- 2. A BREAKPOINT is accomplished by replacing instructions of the specified address. . It cannot be set to the following addresses:
 - An area other than CS, the internal RAM, and the internal flash memory
 - An instruction in which Break Condition 2 is satisfied
 - A slot instruction of a delayed branch instruction
- 3. During step operation, specifying BREAKPOINTs and Event Condition breaks are disabled.
- 4. When execution resumes from the address where a BREAKPOINT is specified and a break occurs before Event Condition execution, single-step operation is performed at the address before execution resumes. Therefore, realtime operation cannot be performed.
- If an address of a BREAKPOINT cannot be correctly set in the ROM or external flash memory area, a mark will be displayed in the [BP] area of the address on the [Source] or [Disassembly] window by refreshing the [Memory] window, etc. after Go execution. However, no break will occur at this address. When the program halts with the event condition, the mark disappears.

2.2.5 Notes on Setting the [Event Condition] Dialog Box and the BREAKCONDITION_ SET Command

- 1. When [Go to cursor], [Step In], [Step Over], or [Step Out] is selected, the settings of Event Condition 3 are disabled.
- 2. When an Event Condition is satisfied, emulation may stop after two or more instructions have been executed.

2.2.6 Performance Measurement Function

The emulator supports the performance measurement function.

1. Setting the performance measurement conditions

To set the performance measurement conditions, use the [Performance Analysis] dialog box and the PERFORMANCE_SET command. When any line in the [Performance Analysis] window is clicked with the right mouse button, a popup menu is displayed and the [Performance Analysis] dialog box can be displayed by selecting [Setting].

Note: For the command line syntax, refer to the online help.

(a) Specifying the measurement start/end conditions

The measurement start/end conditions are specified by using Event Condition 1,2. The [Ch1,2,3] list box of the [Combination action (Sequential PtoP)] dialog box can be used.

Classification	ltem	Description
Selection in the [Ch1, 2, 3] list box	Ch2 to Ch1 PA	The period from the satisfaction of the condition set in Event Condition 2 (start condition) to the satisfaction of the condition set in Event Condition 1 (end condition) is set as the performance measurement period.
	Ch1 to Ch2 PA	The period from the satisfaction of the condition set in Event Condition 1 (start condition) to the satisfaction of the condition set in Event Condition 2 (end condition) is set as the performance measurement period.
	Other than above	The period from the start of execution of the user program to the occurrence of a break is measured.

Table 2.15 Measurement Period

Elapsed time		•
Disabled		•
Disabled		•
Disabled		•
		Cancel
	Disabled Disabled	Elapsed time Disabled Disabled

Figure 2.2 [Performance Analysis] Dialog Box

For measurement tolerance,

- The measured value includes tolerance.
- Tolerance will be generated before or after a break.
- Note: When [Ch2 to Ch1 PA] or [Ch1 to Ch2 PA] is selected, to execute the user program, specify conditions set in Event Condition 2 and Event Condition 1 and one or more items for performance measurement.
 - (b) Measurement item

Items are measured with [Channel 1 to 4] in the [Performance Analysis] dialog box. Maximum four conditions can be specified at the same time. Table 2.16 shows the measurement items.

Table 2.16 Measurement Item

Selected Name	Option
Disabled	None
Elapsed time	AC (The number of execution cycles (I ϕ) is set as the measurement item.)
Number of execution states	VS
Branch instruction counts	BT
Number of execution instructions	1
Exception/interrupt counts	EA
Interrupt counts	INT
URAM area access counts	UN
URAM area instruction access counts	UIN
URAM area data access counts	UDN

Note: Selected names are displayed for CONDITION in the [Performance Analysis] window. Options are parameters for <mode> of the PERFORMANCE_SET command.

Each measurement condition is also counted when a condition in table 2.17 is generated.

Table 2.17 Performance Measurement Condition to be Counted

Measurement Condition	Notes
Branch count	The counter value is incremented by 2. This means that two cycles are valid for one branch.

- Notes: 1. In the non-realtime trace mode of the AUD trace, normal counting cannot be performed because the generation state of the stall or the execution cycle is changed.
 - 2. When the CPU clock is halted in the mode, such as sleep, counting is also halted.
 - 3. When the measurement start or end condition is set, counting is halted if a power-on reset is input after and before the satisfaction of measurement start and end conditions.
- 2. Displaying the measured result

The measured result is displayed in the [Performance Analysis] window or the PERFORMANCE_ANALYSIS command with hexadecimal (32 bits).

Note: If a performance counter overflows as a result of measurement, "*******" will be displayed.

RENESAS

3. Initializing the measured result

To initialize the measured result, select [Initialize] from the popup menu in the [Performance Analysis] window or specify INIT with the PERFORMANCE_ANALYSIS command.

SuperH[™] Family E10A-USB Emulator Additional Document for User's Manual Supplementary Information on Using the SH7136 and SH7137

Publication Date:	Rev.1.00, November 19, 2007
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.
-	Renesas Technology Corp. Customer Support Department Global Strategic Communication Div.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukije Center Bidg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

SuperH[™] Family E10A-USB Emulator Additional Document for User's Manual Supplementary Information on Using the SH7136 and SH7137

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ10J1757-0100