
v0315GDA www.renesas.com © 2022 Renesas Electronics. All rights reserved 1 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

Sensor node controller

Powering the future of connected sensors

Author(s)

Revision

Release Date

Marios Iliopoulos, Fotios Kerasiotis, Nikolaos Moschopoulos

Rev. B

February 2022

Dialog Semiconductor

L. Katsoni and Achileos 8, Neue Straße 95
17675 Kalithea Athens, Greece 73230 Kirchheim/Teck
Greece Germany

Phone: +30 210 93 10 580 Phone: +49 7021 805-0
Fax: +30 210 93 10 581 Fax: +49 7021 805-100

Introduction

Today’s portable devices learn about their surrounding environment through continuous activity monitoring and
contextual awareness. To achieve this, the devices integrate more and more sensors and peripherals, generating
lots of data. This in turn makes the integration of more powerful CPUs necessary to perform the increasing
amount of computations. At the same time, design size, cost and power consumption must be reduced without
sacrificing the final product’s evolving feature requirements.

The concept of a sensor hub is increasingly being adopted in today’s SoC designs to meet the requirement for
“always on” sensor / peripheral access and control (even at high rates), without increasing power consumption
and design cost. Sensor hubs may be small CPU cores that can interface with sensors / peripherals and act as
offload engines for the power-hungry main processor by performing background operations and “waking” the
main processor only when needed.

Typical processor-based architectures for sensor acquisition

A typical microcontroller-based architecture applied in systems that integrate multiple sensors consists of the
following components [1]:

v0315GDA 2 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

a) A microcontroller unit (MCU) – also called the processing subsystem, an MCU controls the operation of
all constituents within the system and processes data. It includes a processor, an internal or an external
memory, and all peripherals and subsystems required for local data processing. In a typical MCU-based
architecture the controller performs all sensor data collection, processing and storage.

b) Sensor elements (or sensing subsystem) – a set of sensors that can be any combination of passive or
active, digital or analog. These convert input information from the external environment into electrical
signals. In most applications, sensors are used to monitor motion, light, pressure, vibration, flow rates,
temperature, ventilation, electricity, etc. Commonly, sensor elements generate voltage or current
signals at their outputs. These signals are usually amplified and digitized through an analog-to-digital
converter, before data is processed, stored and transmitted.

c) Radio –a short-range transceiver which provides wireless communication with the host.

d) Power subsystem – usually connected to a battery or an energy harvester. This subsystem acts as a
controllable unit that switches the power supply of the system’s building blocks on and off individually.
It is usually a software block within the MCU software. The power subsystem is responsible for providing
the right supply voltage to each individual hardware component.

In more sophisticated microcontroller-based architectures with multiple sensors, intelligence is integrated in
hardware for controlling the various subsystems. For example, time- and power-consuming data transfers from
sensors to the memory can be offloaded from the processor to a direct memory access (DMA) unit. A power
management unit (PMU) can also be programmed to react to specific events and power down various
subsystems, such as peripherals, sensors and radio.

MCU

Radio

ButtonSensor2

Battery

Memory

ButtonSensor1

Power

Power

Power

Data

MCU

Radio

ButtonSensor2

Battery

DMA

Memory

PMU
ButtonSensor1

Power

Power

Power

Data

Figure 1 Typical microprocessor-based architectures

www.renesas.com © 2022 Renesas Electronics. All rights reserved

v0315GDA 3 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

The aim of such advanced architectures is to reduce the time that the main MCU stays awake as much as
possible. Tasks that would normally require the MCU intervention are now executed by the intelligent
subsystems. However, the problem remains that the MCU should wake-up every time an event comes from the
sensors, radio or various subsystems, as it is the only component which can implement some logic for handling
those events.

Techniques for optimizing power – adding a sensor node controller

In order to extend the lifetime of systems with multiple sensors, a wide variety of techniques for minimizing
energy consumption have been proposed [2], [3]. Some deal with saving energy at the Media Access Control
level [4], [5], others with dissemination of data aggregations or fusion [6], [7], and others use chip design
optimization techniques such as on-chip power gating [8] or dynamic voltage scaling [9].

This paper introduces a different technique to optimize power usage in systems with multiple sensors while
minimizing wake-up time of the main processor for data acquisition. The technique is based on integrating a
sophisticated hardware state machine that can take over repetitive tasks such as sensor polling and reading
from the main processor, thus implementing the notion of an integrated low-power sensor hub. A dedicated
hardware state machine can wake up much faster and uses fewer blocks to transfer data from sensors /
peripherals to memory and vice versa, while the main processor remains in sleep. Additionally, the sensor hub
can perform simple operations on data, so the main processor only needs to wake up when complex data
manipulations are required.

A good example of this approach is the sensor node controller (SNC) hardware block integrated in Dialog
Semiconductor’s DA1469x Bluetooth Low Energy System-on-Chip solution, [10]. The SNC is a tiny hardware state
machine capable of running microcode (µcode) consisting of a limited instruction set that enables developers to
manipulate communication controllers (i.e. SPI, I2C etc.), sensors and peripherals. It can operate autonomously
without the rest of the system being awake by employing its minimum instruction set. This allows it to perform
many operations – such as polling sensor status bits, comparing register to memory address contents (values),
transferring data from communication interfaces to system RAM and branching on comparisons – while
dissipating minimal current.

www.renesas.com © 2022 Renesas Electronics. All rights reserved

v0315GDA 4 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

MCU

Radio

ButtonSensor2

Battery

DMA

Memory

PMU
ButtonSensor1

Power

Power

Power

Data

SNC

Figure 2 Application processor architecture with a sensor node controller peripheral

The main features of the SNC (figure 3) are:

• A sensor node instruction set (SeNIS) of 10 instructions for µcode generation, tailored for:
o easy creation of pointers to memory buffers

o polling of serial interface status bits

o comparing thresholds

• System RAM used for both µcode storage and data

• DMA capabilities for transferring data directly from communication interfaces to the system RAM

• Direct access to all peripherals and registers

• Immediate execution after interrupt triggering and domain power up (e.g. timer, GPIO) via PMU

• SNC to main processor notification and vice versa

While residing in the same power domain as all the communication interfaces (SPI, I2C and UART), the SNC
can also control other power domains. It executes a µcode residing in the system RAM, where the SNC has
a direct memory connection; operates at system clock speed; and can generate an interrupt to notify the
PMU that all operations are complete so that the entire system can be powered off.

www.renesas.com © 2022 Renesas Electronics. All rights reserved

v0315GDA 5 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

Instructions
FSM

Peripheral1

Peripheral 2

PMU

Memory

Ucode and data

Configuration

ARM M33

Config
registers

Figure 3: Sensor node controller block diagram

The major advantages of an architecture that uses such dedicated hardware to perform sensor and peripheral

data manipulation are:

• Power consumption savings because the main CPU sleeps for a longer time

• MIPS savings as the CPU doesn’t have to access slow peripherals or perform simple data manipulation

However, there are some disadvantages. The very simple instruction set of the SNC’s programming model allows
only basic operations. Also, programming the SNC requires the use of assembly language. Finally, because the
SNC is a very simple block, debugging can become complex.

Power consumption and MIPS savings

We have performed a variety of measurements that demonstrate the power consumption and MIPS savings of
using an SNC. The measurements were carried out on Dialog’s ARM Cortex-M33 based DA1469x SoC and
compared transactions that used just the main CPU with identical transactions carried out with support from
the SNC. The first set of measurements focuses on power / MIPS savings when accessing slow peripherals (like
I2C and SPI) commonly used for sensor readings. The second set looks at real application use cases that employ
the Bluetooth Low Energy (BLE) communication block included in the DA1469x.

Table 1 depicts the energy consumption when transferring small SPI or I2C data transactions like writing / reading
16 / 128 bytes.

www.renesas.com © 2022 Renesas Electronics. All rights reserved

v0315GDA 6 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

SPI@8 MHz 16B write / 128B read Duration (ms) Charge (µC) Charge diff.

SNC 0.5 1.24

CM33 + DMA 1.5 2.95 138 %

I2C@High speed 16B write / 128B read Duration (ms) Charge (µC) Charge diff.

SNC 2.12 2.44

CM33 + DMA 2.67 4.55 86 %

Table 1: Energy consumption when transferring small data transactions (numbers are for 1.8 V, 8-bit transfers)

Looking at the time required to perform a transaction shows more savings possible with the SNC compared to
the CPU (CM33), as shown in table 2. These time savings translate to MIPS savings as the CPU may need to
perform busy waits.

Master Durations (µs)

CS -
Write

Write Write -
Read

Read Read -
CS

Total Time
diff.

SNC
(8-bit mode SPI)

13.98 26.1 16.68 209.64 5.5 271.9

CM33
(DMA, with adapter)

46.96 18.06 139.18 145.04 87.3 436.5 60.5 %

Table 2: Time required by the SNC to write/read 8 bits of data and the respective time for the CPU

For real life use cases, we compare the energy consumed when advertising every 1500 ms (table 3), and 500 ms
(table 4), while performing an accelerometer sensor reading every 100 ms using SPI.

Advertising (every 1500 ms) & sensor reading
every 100 ms – for 15 sec

Charge (µC) Saving

SNC 223.6

CM33 374.8 40.3 %

Table 3: energy consumption when advertising every 1500 ms, sensor reading every 100 ms using SPI

Advertising (every 500 ms) & sensor reading
every 100 ms – for 15 sec

Charge (µC) Saving

SNC 255.6

CM33 406.8 37.2 %

Table 4: energy consumption when advertising every 500 ms, sensor reading every 100 ms using SPI

www.renesas.com © 2022 Renesas Electronics. All rights reserved

v0315GDA 7 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

In complex applications, with more than one sensor being accessed, the overhead using the MCU becomes even
larger due to cache misses and task switching that must also be taken into account.

Reducing programming complexity

As mentioned earlier, one of the biggest challenges when using an integrated sensor node controller is to ensure
easy programming, debugging and full exploitation of the underlying system capabilities in a similar manner as
with a common MCU. The challenge’s main aspects are:

• Providing a developer-friendly programming abstraction for efficiently controlling the underlying
functionality that corresponds to driving the communication interfaces to connected sensors /
peripherals and communication with the main CPU

• Leveraging the 10-instruction assembly-style programming and providing higher-level programming
constructs to ease and speed-up software development

• Support complete and system-as-a-whole debugging – instead of debugging each CPU core separately
which may fail to detect faulty system behavior when the cores operate in parallel

To address this a complete, easy-to-use programming framework is needed. It must include abstractions and
procedures that extend the paradigm of concurrent operating system tasks to the corresponding (parallel)
processing performed on the SNC. Such a programming framework has been developed for the Dialog DA1469x
solution (Figure 4). It has the following characteristics:

• Simplified SNC µcode development
o by defining a C-like programming language based on SeNIS, so that both assembly and C-like

programming can be supported

• “Hybrid” coding model for programming
o covering code development for both SNC and main processor context in the same source and

header files – a C pre-processor is used for defining the SeNIS-based language constructs in a
developer friendly way

• Abstractions of the underlying mechanisms and functionality related to driving communication
interfaces, exchanging SNC notifications, and manipulating system resources with the main processor
as a complete and easy to use set of API procedures / C-like functions

• Observability and an advanced debugging mechanism applied to both SNC and main processor
execution contexts at the same time

www.renesas.com © 2022 Renesas Electronics. All rights reserved

v0315GDA 8 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

Figure 4: Block diagram of SNC programming framework

The SNC programming model characteristics can be summarized as follows:

• A DA1469x application includes processes executed by OS tasks and SNC ucodes in parallel.

• An SNC µcode is registered to – or unregistered from – the DA1469x system by the SNC adapter, which
creates a list of SNC µcode each triggered by a specific PMU event

• The SNC adapter employs a special SNC µcode that both implements scheduling of the registered SNC
µcode execution based on the respective µcode list and controls the SNC hardware module via its low-
level driver

• A set of SeNIS-based construct pre-processor macros are defined, resulting in a set of assembly and C-
like language constructs for SNC µcode development

• A set of low-level driver SNC µcode are provided which can be used to drive communication peripherals
such as SPI, I2C etc.

• A mechanism is provided for operating system tasks and SNC µcode comprising an application to
exchange:

o notifications
o data (i.e. SNC queues)

On top of the above constructs that allow easy programming of SNC functions, the following are provided to
support debugging:

• A mechanism for debugging SNC µcode, using SNC breakpoints and step-by-step debugging regions

• An SNC emulator, instead of the SNC hardware module, to improve and simplify the SNC µcode
debugging process

www.renesas.com © 2022 Renesas Electronics. All rights reserved

v0315GDA 9 of 9

White Paper

Sensor Node Controller - Powering the future of
connected sensors

Conclusion

This paper introduces a new architecture to minimize power consumption in portable systems that integrate
several sensors and peripherals. The architecture uses a sophisticated hardware state machine to offload
repetitive tasks such as sensor/peripheral polling and reading from the main processor. It provides great
advantages compared to other architectures in terms of power consumption and MIPS optimization, but makes
the programming model more complex. Hence, a developer friendly programming framework is also introduced
to overcome this problem.

References

[1] Goran Nikolić, Mile Stojčev, Zoran Stamenković, Goran Panić, Branislav Petrović, “Wireless Sensor

Node with low power sensing”, Electronics and Energetics Vol. 27, No 3, September 2014, pp. 435 - 453

[2] V. Raghunathan, S. Ganerival, and M. Srivastava, "Emerging Techniques for Long Lived Wireless

Sensor Networks", IEEE Communication Magazine, 2006, Vol.41, No. 4, (pp. 130-141)

[3] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, "Energy Conservation in Wireless

Sensor Networks: A survey", Ad Hoc Networks, 2009, Vol. 7, (pp. 537–568)

[4] W. Ye, J. Heidemann, and D. Estrin, "An Energy-Efficient Mac Protocol for Wireless Sensor

Networks," Proc. IEEE Infocom, New York (USA) 2002, (pp. 1567-1576).

[5] M. Al Ameen, S.M. Riazul Islam, and K. Kwak, "Energy Saving Mechanisms for MAC Protocols

in Wireless Sensor Networks", Hindawi Publishing Corporation International Journal of Distributed

Sensor Networks, Volume 2010 (2010), Article ID 163413, (pp 1-16)

[6] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and D. Brooks, "An Ultra Low Power System

Architecture for Sensor Network Applications," Proc. 32nd Annual International Symposium on

Computer Architecture, Madison (USA) 2005, (pp. 208-219).

[7] A. Boulis, S. Ganeriwal, and M. Srivastava, "Aggregation in Sensor Networks: An Energy

Accuracy Trade-Off", Ad Hoc Networks, Vol. 1, 2003, (pp. 317–331)

[8] G. Panić, Z. Stamenković, and R. Kraemer, "Power Gating in Wireless Sensor Networks", Wireless

Pervasive Computing, 2008. ISWPC2008. 3rd International Symposium on Santorini, Greece, May

2008, (pp. 499-503)

[9] T. Burd, and R. Brodersen, "Energy Efficient Microprocessor Design", Kluwer Academic

Publishers, Norwell MA, USA, 2002

[10] Dialog Semiconductor, “DA1469x Datasheet”

www.renesas.com © 2022 Renesas Electronics. All rights reserved

