RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RA*-A0064A/E	Rev.	1.00				
Title	RA6T2 Group Changes of Low Power mode specifi for ADC	Information Category	Technical Notification						
		Lot No.							
Applicable Product	RA6T2 Group	All	Reference Document	RA6T2 Group User's Manual : Hardware Rev.1.20					
The specif	ication of Low Power mode for ADC ha	as been m	odified for the	e following items					
	10.0								
1) Table ²	rating conditions of each low power m	ode (2 of 2	2)						
2) Table ²	•		-)						
,	rupt Source for canceling Snooze, Sol	tware Sta	ndby, and De	ep Software Standby	y mode	es			
3) Section	n 10.2.11								
SNZ	EDCR0 : Snooze End Control Registe	er O							
4) Section	n 10.8.3								
Retu	Irning from Snooze Mode to Software	Standby m	node						
Table 2	10.8								
Avai	lable snooze end requests (triggers to	return to S	Software Star	ndby mode)					
Table '	10.9								
Sno	oze end conditions								
,	n 10.10.12								
	ditions of A/D Conversion Start in Snoo	oze Mode							
	n 10.10.13								
	Events in Snooze Mode								
6) Table ²									
	nt table (7 of 9)								
7) Table ²	ociation between event signal names s	et in El QI	2n El SIROI F	nits and signal number	ore (5 /	of 6)			
7350	Selation between event signal names s			no and oignaí numbh	513 (5 (<i>.</i> 0)			

[Modified]

Table 10.2 Operating conditions of each low power mode (2 of 2)

ltem	Sleep mode	Software Standby mode	Snooze mode	Deep Software Standby mode	
DMA Controller (DMAC)	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)	
Data Transfer Controller (DTC)	Selectable	Stop (Retained)	Selectable	Stop (Undefined)	
Watchdog Timer (WDT)	Selectable*1	Stop (Retained)	Stop (Retained)	Stop (Undefined)	
Independent Watchdog Timer (IWDT)	Selectable*1	Selectable*1	Selectable ^{*1}	Stop (Undefined)	
Asynchronous General Purpose Timer (AGTn (n = 0, 1))	Selectable	Selectable ^{*12}	Selectable*12	Stop (Undefined)	
12-Bit A/D Converter (ADC)	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)	
Programmable Gain Amplifiers (PGAs)	Selectable ^{*13}	Stop (Retained)	Selectable*13	Stop (Undefined)	
12-Bit D/A Converter (DAC12)	Selectable	Stop (Retained)	Selectable	Stop (Undefined)	
Data Operation Circuit (DOC)	Selectable	Stop (Retained)	Selectable	Stop (Undefined)	
Serial Communications Interface (SCI0)	Selectable	Stop (Retained)	Selectable (RXD0 falling edge is available, to enter snooze mode) (only in asynchronous mode). ^{*5}	Stop (Undefined)	
Serial Communications Interface (SCIn (n = 1 to 4, 9))	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)	
I2C Bus Interface (IIC0)	Selectable	Selectable ^{*3}	Selectable ^{*3} Only wakeup interrupt is available.	Stop (Undefined)	
I2C Bus Interface (IIC1)	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)	
Event Link Controller (ELC)	Selectable	Stop (Retained)	Selectable ^{*6}	Stop (Undefined)	
High-Speed Analog Comparator (ACMPHSn, n = 0 to 3)	Selectable	Stop (Retained)	Selectable VCOUT function only.*9	Stop (Undefined)	
IRQn (n = 0 to 15) pin interrupt	Selectable	Selectable	Selectable	Stop (Undefined)	
NMI, IRQn-DS (n = 0 to 15) pin interrupt	Selectable	Selectable	Selectable	Selectable	
Key Interrupt Function (KINT)	Selectable	Selectable	Selectable	Stop (Undefined)	
Low voltage detection (LVD)	Selectable	Selectable	Selectable	Selectable*10	
Power-on reset circuit	Operating	Operating	Operating	Operating*11	
Other peripheral modules	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)	
I/O Ports	Operating	Retained	Operating	Retained	

Stop (Undefined) means that the contents of the internal registers are undefined and power to the internal circuit is cut off. All modules whose module-stop bits are 0 start as soon as PCLKs are supplied after entering Snooze mode. In order to avoid increase in power consumption in Snooze mode, module-stop bit of modules which are unnecessary in Snooze mode must be set to 1 before entering Software Standby mode.

Note 1. In IWDT-dedicated on-chip oscillator and IWDT, operating or stopping is selected by setting the IWDT Stop Control bit (IWDTSTPCTL) in Option Function Select register 0 (OFS0) in IWDT auto start mode. In WDT, operating or stopping is selected by setting the WDT Stop Control bit (WDTSTPCTL) in Option Function Select Register 0 (OFS0) in WDT auto start mode.Power consumption can be reduced in Normal and Sleep modes by selecting an appropriate operating power control mode according to the operating frequency.

Note 2. Stopped when the clock output source select bits (CKOCR.CKOSEL[2:0]) are set to a value other than 010b (LOCO).

Note 3. IIC0 wakeup interrupt is available.

Note 4. When using SCI0 in Snooze mode, MOSCCR.MOSTP and PLLCR.PLLSTP and PLL2CR.PLL2STP bits must be 1.

Note 5. Serial communication modes of SCI0 is only in asynchronous mode.

Note 6. Event lists the restrictions described in section 10.10.13. ELC Events in Snooze Mode.

Note 7. If the DPSBYCR.DEEPCUT[1:0] bits are 00b, the oscillator status is the same as before entering Deep Software Standby mode. When the DPSBYCR.DEEPCUT[1:0] bits are not 00b, the oscillator stops when the MCU enters Deep Software Standby mode. Note 8. If the DPSBYCR.DEEPCUT[1:0] bits are 00b, data in the Standby SRAM is retained in Deep Software Standby mode. When the

DPSBYCR.DEEPCUT[1:0] bits are not 00b, data in the Standby SRAM is undefined in Deep Software Standby mode. Note 9. Only VCOUT function is permitted. The VCOUT pin operates when ACMPHS uses no digital filter. For details on digital filter, see section 39, High-Speed Analog Comparator (ACMPHS).

Note 10. When using LVD in Deep Software Standby mode, DPSBYCR.DEEPCUT[1:0] bits must be 00b or 01b before entering Deep Software Standby mode.

Note 11. When the MCU enters Deep Software Standby mode with the DPSBYCR.DEEPCUT[1:0] bits set to 11b, the LVD circuit stops and the low-power function of the power-on reset circuit is enabled.

Note 12. AGT0 operation is possible when 100b (AGTLCLK) is selected by the AGT0.AGTMR1.TCK[2:0] bits. AGT1 operation is possible when 100b (AGTLCLK) or 101 (Underflow event signal from AGT0) is selected by the AGT1.AGTMR1.TCK[2:0] bits. Note 13. When using the Programmable Gain Amplifiers, MSTPD16 must be set to 0. For details, see section 36.3.13. Programmable Gain

Amplifier.

No.13 was removed, and No.14 was updated and moved up to No. 13.

Interrupt source	Name	Software Standby mode	Snooze mode	Deep Software Standby mod	
NMI		Yes	Yes	Yes	
Port	PORT_IRQn (n = 0 to 15)	Yes	Yes	Yes*3	
LVD	LVD_LVD1	Yes	Yes	Yes	
	LVD_LVD2	Yes	Yes	Yes	
IWDT	IWDT_NMIUNDF	Yes	Yes	No	
KINT	KEY_INTKR	Yes	Yes	No	
AGT1	AGT1_AGTI	Yes	Yes*2	No	
	AGT1_AGTCMAI	Yes	Yes	No	
	AGT1_AGTCMBI	Yes	Yes	No	
IIC0	IIC0_WU	Yes	Yes	No	
ADC	ADC_CCMPM0	No	Yes with SELSR0 ⁺ ≠ 4	No	
	ADC_CCMPM1	No	Yes with SELSR0*1*2	No	
SCI0	SCI0_AM	No	Yes with SELSR0 ^{*1}	No	
DTC	DTC_COMPLETE	No	Yes with SELSR0 ^{*1 *2}	No	
DOC	DOC_DOPCI	No	Yes with SELSR0 *1	No	

Note 1. To use the interrupt request as a trigger for exiting the Snooze mode, the request must be selected in SELSR0. See section 12, Interrupt Controller Unit (ICU) for the setting of SELSR0. When a trigger selected in SELSR0 occurs after executing WFI instruction and during the transition from Normal mode to Software Standby mode, the request might or might not be accepted, depending on the timing of the occurrence. Note 2. The event which is enabled by the SNZEDCR0 must not be used. Note 3. IRQn-DS pin interrupt is available. IRQn pin interrupt is not available.

10.2.11 SNZEDCR0 : Snooze End Control Register 0

Base address: SYSC = 0x4001_E000

Offset address: 0x094

Bit position	7	6	5	4	3	2	1	0
	SCIOU MTED	-	-	-	-	DTCN ZRED	DTCZ RED	AGTU NFED
Value after reset	0	0	0	0	0	0	0	0

Bit	Symbol	Function	R/W
	0 AGTUNFED	AGT1 Underflow Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W
	1 DTCZRED	Last DTC Transmission Completion Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W
	2 DTCNZRED	Not Last DTC Transmission Completion Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W
	3-	This bit is read as 0. The write value should be 0.	R/W
	4 -	This bit is read as 0. The write value should be 0.	R/W
	5 -	This bit is read as 0. The write value should be 0.	R/W
	6-	This bit is read as 0. The write value should be 0.	R/W
	7 SCI0UMTED	SCI0 Address Mismatch Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W

Note: If the security attribution is configured as secure:

• Secure access and Non-secure read access are allowed

• Non-secure write access is ignored, and TrustZone access error is not generated.

If the security attribution is configured as Non-secure:

• Secure and Non-secure access are allowed.

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

The SNZEDCR0 register controls the condition of switching from Snooze mode to Software Standby mode. In order to use a trigger shown in Table 10.8 as a condition to switch from Snooze mode to Software Standby mode, the corresponding bitin the SNZEDCR0 register must be set to 1.

The event that is used to return from snooze mode to normal mode as shown in Table 10.3 must not be enabled in the SNZEDCR0 register.

AGTUNFED bit (AGT1 Underflow Snooze End Enable)

The AGTUNFED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on an AGT1 underflow. For details on the trigger conditions, see section 23, Low Power Asynchronous General Purpose Timer (AGTW).

DTCZRED bit (Last DTC Transmission Completion Snooze End Enable)

The DTCZRED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on completion of the last DTC transmission, that is, when CRA or CRB registers in the DTC is 0. For details on the trigger conditions, see section 16, Data Transfer Controller (DTC).

DTCNZRED bit (Not Last DTC Transmission Completion Snooze End Enable)

The DTCNZRED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on completion of each DTC transmission, that is, when CRA or CRB registers in the DTC is not 0. For details on the trigger conditions, see section 16, Data Transfer Controller (DTC).

AD0MATED bit (ADC Compare Match 0 Snooze End Enable)

The AD0MATED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on an ADC event when a conversion result matches the expected data. For details on the trigger conditions, see section 36, 12-Bit A/D Converter (ADC).

AD1MATED bit (ADC Compare Match 1 Snooze End Enable)

The AD1MATED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on an ADC event when a conversion result matches the expected data. For details on the trigger conditions, see section 36, 12-Bit A/D Converter (ADC).

SCI0UMTED bit (SCI0 Address Mismatch Snooze End Enable)

The SCI0UMTED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on an SCI0 event when an address received in Software Standby mode does not match the expected data. For details on the trigger conditions, see section 26, Serial Communications Interface (SCI). Only set this bit to 1 when SCI0 operates in asynchronous mode.

10.8.3 Returning from Snooze Mode to Software Standby Mode

Table 10.8 shows the snooze end request that can be used as triggers to return to Software Standby mode. The snooze end requests are available only in Snooze mode. If the requests are generated when the MCU is not in Snooze mode, they are ignored. When multiple requests are selected, each of the requests invokes transition to Software Standby mode from Snooze mode.

Table 10.9 shows the snooze end conditions that consist of the snooze end requests and the conditions of the peripheralmodules. The SCI0 $\overrightarrow{ADC_1}$ and DTC modules can keep the MCU in Snooze mode until they complete the operation.However, an AGTn (n = 1) underflow as a trigger to return to Software Standby mode cancels Snooze mode without waitingfor the completion of SCI0 operation.

Figure 10.7 shows the timing diagram for the transition from Snooze mode to Software Standby mode. This mode transition occurs according to which snooze end requests are set in the SNZEDCR0 register. A snooze request is cleared automatically after returning to Software Standby mode.

Table 10.8 Available snooze end requests (triggers to return to Software Standby mode)

Peripheral Module	Snooze end request	Enable/Disab	Enable/Disable Control			
		Register	Bit			
AGT1	AGT1 underflow (AGT1_AGTI)	SNZEDCR0	AGTUNFED			
DTC	Last DTC transmission completion (DTC_COMPLETE)	SNZEDCR0	DTCZRED			
DTC	Not Last DTC Transmission Completion (DTC_TRANSFER)	SNZEDCR0	DTCNZRED			
ADC	Composite compare match 0 (ADC_CCMPM0)	SNZEDCR0	AD0MATED			
ADC	Composite compare match 1 (ADC_CCMPM1)	SNZEDCR0	AD1MATED			
SCI0	SCI0 address mismatch (SCI0_DCUF)	SNZEDCR0	SCIOUMTED			

Table 10.9 Snooze end conditions

Operating	Snooze end request						
module when a snooze end request occurs	AGT1 underflow	Other than AGT1 underflow					
DTC A DC	The MCU transitions to the Software Standby mode after DTC and ADC complete operation.	The MCU transitions to the Software Standby mode after DTC, ADC, and SCI0 complete the operation.					
SCI0	The MCU transitions to the Software Standby mode immediately after the snooze end request is generated.						
Other than specified	The MCU transitions to the Software Standby mode immediately after a snooze end request is generated.						

Note: If the DTC is used to activate the ADC, or SCI, the MCU transitions to Software Standby mode immediately after a snooze end request is generated.

10.10.12 Conditions of A/D Conversion Start in Snooze Mode

ADC can only be triggered by the ELC in Snooze mode. Do not use software trigger or ADTRGn (n = 0, 1) pin.

10.10.13 ELC Events in Snooze Mode

This section lists available ELC events in Snooze mode. Do not use any other events. If starting peripheral modules for the first time after entering Snooze mode, the Event Link Setting Register (ELSRn) must set a Snooze mode entry event (SYSTEM_SNZREQ) as the trigger.

- Snooze mode entry (SYSTEM_SNZREQ)
- DTC transfer end (DTC_DTCEND)

ADC Composite compare match 0 (ADC_CCMPM0)
ADC Composite compare match 1 (ADC_CCMPM1)

• Data operation circuit interrupt (DOC_DOPCI).

Event	Interrupt	Name IELSRn		DELSRn	Canceling	Canceling	Canceling	
number request source	request source		Connect to NVIC	Invoke DTC	Invoke DMAC	Snooze	Software Standby	Deep Software Standby
0x157	ADC	ADC_LIMCLPI	1	—	_	—	—	—
0x158		ADC_FIFOOVF	1	—	—	—	—	—
0x159		ADC_ADI0	✓	1	1	—	_	—
0x15A		ADC_ADI1	1	1	1	—	—	—
0x15B		ADC_ADI2	1	1	1	—	—	—
0x15C		ADC_CMPI0	1	—	—	—	—	—
0x15D		ADC_CMPI1	1	—	—	—		—
0x15E		ADC_CCMPM0	1	1	1	-	—	—
0x160		ADC_ERR0	<i>✓</i>	—	—	—	—	—
0x161		ADC_RESOVF0	1	_	—	_	_	—
0x163	1	ADC_CALEND0	1	—	—	—	_	—
0x164		ADC_FIFOREQ0	✓	1	1	—	_	_
0x165		ADC_FIFOREQ1	1	1	1	_	_	_
0x166		ADC_FIFOREQ2	1	1	1		_	_
0x167		ADC_ADI3	1	1	1		_	_
0x168		ADC_ADI4	1	1	1	_	_	1_
0x169		ADC_ADI5678	1	1	1	_	_	-
0x16A		ADC_CMPI2	1		_			_
0x16B		ADC_CMPI3	1	_	—		_	—
0x16C		ADC_CCMPM1	1	1	1	—	1-	_
0x16E		ADC_ERR1	1	_	—	_		—
0x16F		ADC_RESOVF1	1					_
0x171		ADC_CALEND1	√ √	_	_		_	_
0x172		ADC_FIFOREQ3	✓ ✓	1	1	_	_	_
0x172		ADC_FIFOREQ4	✓ ✓	✓ ✓	✓ ✓			_
0x170		ADC_FIFOREQ5678	✓ ✓	✓ ✓	✓ ✓	_	_	
0x18D	SCI0	SCI0_RXI	✓ ✓	✓ ✓	✓ ✓			
0x18E		SCI0_TXI	✓ ✓	✓ ✓	✓ ✓			
0x18E		SCI0_TEI	✓ ✓	-	• 			
0x101		SCI0_FEI	✓ ✓	-	-			
			✓ ✓	-	-	—	-	_
0x191 0x192		SCI0_AED SCI0_BFD	✓ ✓	—	—	—	—	+
				—	—		—	—
0x193	SCI1	SCI0_AM	1	-	-	✓*1	—	—
0x195	0011	SCI1_RXI	1	✓ ✓	1		—	—
0x196		SCI1_TXI	1	1	1		<u> —</u>	-
0x197		SCI1_TEI	1	—	—		—	—
0x198		SCI1_ERI	1	—	—		—	—
0x199		SCI1_AED	1	—	—		—	—
0x19A		SCI1_BFD	1	—	—		—	—
0x19B		SCI1_AM	1	—	—	—	—	—

Event number	Interrupt request source	Name	Description
0x140	llC0	IIC0_RX	Rx Data buffer full
0x141		IIC0_TX	Tx Data buffer empty
0x142		IIC0_TEND	Transmit end
0x145		IIC0_COM	Communication event
0x146	IIC1	IIC1_RX	Rx Data buffer full
0x147		IIC1_TX	Tx Data buffer empty
0x148		IIC1_TEND	Transmit end
0x14A		IIC1_COM	Communication event
0x159	ADC	ADC_ADI0	A/D scan end for scan group 0
0x15A		ADC_ADI1	A/D scan end for scan group 1
0x15B		ADC_ADI2	A/D scan end for scan group 2
0x15E		ADC_CCMPM0	Composite compare match 0
0x167		ADC_ADI3	A/D scan end for scan group 3
0x168		ADC_ADI4	A/D scan end for scan group 4
0x169		ADC_ADI5678	A/D scan end for scan group 5 to 8
0x16C		ADC_CCMPM1	Composite compare match 1
0x18D	SCI0	SCI0_RXI*4	Receive data full
0x18E		SCI0_TXI*4	Transmit data empty
0x18F		SCI0_TEI*4	Transmit end
0x190		SCI0_ERI	Receive error
0x191		SCI0_AED	Effective edge detection
0x193		SCI0_AM	Address match event
0x195	SCI1	SCI1_RXI*4	Received data full
0x196		SCI1_TXI*4	Transmit data empty
0x197		SCI1_TEI*4	Transmit end
0x198		SCI1_ERI	Receive error
0x199		SCI1_AED	Effective edge detection
0x19B		SCI1_AM	Address match event
0x19C	SCI2	SCI2_RXI*4	Received data full
0x19D		SCI2_TXI*4	Transmit data empty
0x19E		SCI2_TEI*4	Transmit end
0x19F		SCI2_ERI	Receive error
0x1A0		SCI2_AED	Effective edge detection
0x1A2		SCI2_AM	Address match event
0x1A3	SCI3	SCI3_RXI*4	Received data full
0x1A4		SCI3_TXI*4	Transmit data empty
0x1A5		SCI3_TEI*4	Transmit end
0x1A6		SCI3_ERI	Receive error
0x1A7		SCI3_AED	Effective edge detection
0x1A9		SCI3_AM	Address match event

[Original]

Table 10.2 Operating conditions of each low power mode (2 of 2)

Item	Sleep mode	Software Standby mode	Snooze mode	Deep Software Standby mode
DMA Controller (DMAC)	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)
Data Transfer Controller (DTC)	Selectable	Stop (Retained)	Selectable	Stop (Undefined)
Watchdog Timer (WDT)	Selectable*1	Stop (Retained)	Stop (Retained)	Stop (Undefined)
Independent Watchdog Timer (IWDT)	Selectable*1	Selectable*1	Selectable ^{*1}	Stop (Undefined)
Asynchronous General Purpose Timer (AGTn (n = 0, 1))	Selectable	Selectable*12	Selectable ^{*12}	Stop (Undefined)
12-Bit A/D Converter (ADC)	Selectable	Stop (Retained)	Selectable*13	Stop (Undefined)
Programmable Gain Amplifiers (PGAs)	Selectable*14	Stop (Retained)	Selectable*14	Stop (Undefined)
12-Bit D/A Converter (DAC12)	Selectable	Stop (Retained)	Selectable	Stop (Undefined)
Data Operation Circuit (DOC)	Selectable	Stop (Retained)	Selectable	Stop (Undefined)
Serial Communications Interface (SCI0)	Selectable	Stop (Retained)	Selectable (RXD0 falling edge is available, to enter snooze mode) (only in asynchronous mode). ^{*5}	Stop (Undefined)
Serial Communications Interface (SCIn (n = 1 to 4, 9))	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)
I2C Bus Interface (IIC0)	Selectable	Selectable*3	Selectable ^{*3} Only wakeup interrupt is available.	Stop (Undefined)
I2C Bus Interface (IIC1)	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)
Event Link Controller (ELC)	Selectable	Stop (Retained)	Selectable ^{*6}	Stop (Undefined)
High-Speed Analog Comparator (ACMPHSn, n = 0 to 3)	Selectable	Stop (Retained)	Selectable VCOUT function only.*9	Stop (Undefined)
IRQn (n = 0 to 15) pin interrupt	Selectable	Selectable	Selectable	Stop (Undefined)
NMI, IRQn-DS (n = 0 to 15) pin interrupt	Selectable	Selectable	Selectable	Selectable
Key Interrupt Function (KINT)	Selectable	Selectable	Selectable	Stop (Undefined)
Low voltage detection (LVD)	Selectable	Selectable	Selectable	Selectable*10
Power-on reset circuit	Operating	Operating	Operating	Operating ^{*11}
Other peripheral modules	Selectable	Stop (Retained)	Operation prohibited	Stop (Undefined)
I/O Ports	Operating	Retained	Operating	Retained

Note: Selectable means that operating or not operating can be selected by the control registers.

Stop (Retained) means that the contents of the internal registers are retained but the operations are suspended.

Operation prohibited means that the function must be stopped before entering Software Standby mode.

Stop (Undefined) means that the contents of the internal registers are undefined and power to the internal circuit is cut off. All modules whose module-stop bits are 0 start as soon as PCLKs are supplied after entering Snooze mode. In order to avoid increase in power consumption in Snooze mode, module-stop bit of modules which are unnecessary in Snooze mode must be set to 1 before entering Software Standby mode.

Note 1. In IWDT-dedicated on-chip oscillator and IWDT, operating or stopping is selected by setting the IWDT Stop Control bit (IWDTSTPCTL) in Option Function Select register 0 (OFS0) in IWDT auto start mode. In WDT, operating or stopping is selected by setting the WDT Stop Control bit (WDTSTPCTL) in Option Function Select Register 0 (OFS0) in WDT auto start mode.Power consumption can be reduced in Normal and Sleep modes by selecting an appropriate operating power control mode according to the operating frequency.

Note 2. Stopped when the clock output source select bits (CKOCR.CKOSEL[2:0]) are set to a value other than 010b (LOCO).

Note 3. IIC0 wakeup interrupt is available.

Note 4. When using SCI0 in Snooze mode, MOSCCR.MOSTP and PLLCR.PLLSTP and PLL2CR.PLL2STP bits must be 1.

Note 5. Serial communication modes of SCI0 is only in asynchronous mode.

Note 6. Event lists the restrictions described in section 10.10.13. ELC Events in Snooze Mode.

Note 7. If the DPSBYCR.DEEPCUT[1:0] bits are 00b, the oscillator status is the same as before entering Deep Software Standby mode. When the DPSBYCR.DEEPCUT[1:0] bits are not 00b, the oscillator stops when the MCU enters Deep Software Standby mode. Note 8. If the DPSBYCR.DEEPCUT[1:0] bits are 00b, data in the Standby SRAM is retained in Deep Software Standby mode. When the

DPSBYCR.DEEPCUT[1:0] bits are not 00b, data in the Standby SRAM is undefined in Deep Software Standby mode.

Note 9. Only VCOUT function is permitted. The VCOUT pin operates when ACMPHS uses no digital filter. For details on digital filter, see section 39, High-Speed Analog Comparator (ACMPHS).

Note 10. When using LVD in Deep Software Standby mode, DPSBYCR.DEEPCUT[1:0] bits must be 00b or 01b before entering Deep Software Standby mode.

Note 11. When the MCU enters Deep Software Standby mode with the DPSBYCR.DEEPCUT[1:0] bits set to 11b, the LVD circuit stops and the low-power function of the power-on reset circuit is enabled.

Note 12. AGT0 operation is possible when 100b (AGTLCLK) is selected by the AGT0.AGTMR1.TCK[2:0] bits. AGT1 operation is possible when 100b (AGTLCLK) or 101 (Underflow event signal from AGT0) is selected by the AGT1.AGTMR1.TCK[2:0] bits.

Note 13. When using the 12-bit A/D Converter in Snooze mode, the ADCMPENR.CMPENn bits must be 1. (The precautions for using the 12-Bit A/D Converter in snooze mode are determined after evaluation.)

Note 14. When using the Programmable Gain Amplifiers, MSTPD16 must be set to 0. For details, see section 36.3.13. Programmable Gain Amplifier. (The precautions for using the PGAs are determined after evaluation.)

Interrupt source	Name	Software Standby mode Snooze mode		Deep Software Standby mode		
NMI		Yes	Yes	Yes		
Port	PORT_IRQn (n = 0 to 15)	Yes	Yes	Yes* ³		
LVD	LVD_LVD1	Yes	Yes	Yes		
	LVD_LVD2	Yes	Yes	Yes		
IWDT	IWDT_NMIUNDF	Yes	Yes	No		
KINT	KEY_INTKR	Yes	Yes	No		
AGT1	AGT1_AGTI	Yes	Yes*2	No		
	AGT1_AGTCMAI	Yes	Yes	No		
	AGT1_AGTCMBI	Yes	Yes	No		
IIC0	IIC0_WU	Yes	Yes	No		
ADC	ADC_CCMPM0	No	Yes with SELSR0*1*2	No		
	ADC_CCMPM1	No	Yes with SELSR0*1*2	No		
SCI0	SCI0_AM	No	Yes with SELSR0 ^{*1}	No		
DTC	DTC_COMPLETE	No	Yes with SELSR0 ^{*1 *2}	No		
DOC	DOC_DOPCI	No	Yes with SELSR0 *1	No		

Note 1. To use the interrupt request as a trigger for exiting the Snooze mode, the request must be selected in SELSR0. See section 12, Interrupt Controller Unit (ICU) for the setting of SELSR0. When a trigger selected in SELSR0 occurs after executing WFI instruction and during the transition from Normal mode to Software Standby mode, the request might or might not be accepted, depending on the timing of the occurrence. Note 2. The event which is enabled by the SNZEDCR0 must not be used. Note 3. IRQn-DS pin interrupt is available. IRQn pin interrupt is not available.

10.2.11 SNZEDCR0 : Snooze End Control Register 0

Base address: SYSC = 0x4001_E000

Offset address: 0x094

Bit position	7	6	5	4	3	2	1	0
	SCIOU MTED	-	AD1M ATED	-	AD0M ATED	DTCN ZRED	DTCZ RED	AGTU NFED
Value after reset	0	0	0	0	0	0	0	0

Bit	Symbol	Function	R/W		
	0 AGTUNFED	GTUNFED AGT1 Underflow Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request			
	1 DTCZRED	Last DTC Transmission Completion Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W		
	2 DTCNZRED	Not Last DTC Transmission Completion Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W		
	3 AD0MATED	ADC Compare Match 0 Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W		
	4 -	This bit is read as 0. The write value should be 0.	R/W		
	5 AD1MATED	ADC Compare Match 1 Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W		
	6 -	This bit is read as 0. The write value should be 0.	R/W		
	7 SCI0UMTED	SCI0 Address Mismatch Snooze End Enable 0: Disable the snooze end request 1: Enable the snooze end request	R/W		

Note: If the security attribution is configured as secure:

• Secure access and Non-secure read access are allowed

• Non-secure write access is ignored, and TrustZone access error is not generated.

If the security attribution is configured as Non-secure:

• Secure and Non-secure access are allowed.

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

The SNZEDCR0 register controls the condition of switching from Snooze mode to Software Standby mode. In order to use a trigger shown in Table 10.8 as a condition to switch from Snooze mode to Software Standby mode, the corresponding bitin the SNZEDCR0 register must be set to 1.

The event that is used to return from snooze mode to normal mode as shown in Table 10.3 must not be enabled in the SNZEDCR0 register.

AGTUNFED bit (AGT1 Underflow Snooze End Enable)

The AGTUNFED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on an AGT1 underflow. For details on the trigger conditions, see section 23, Low Power Asynchronous General Purpose Timer (AGTW).

DTCZRED bit (Last DTC Transmission Completion Snooze End Enable)

The DTCZRED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on completion of the last DTC transmission, that is, when CRA or CRB registers in the DTC is 0. For details on the trigger conditions, see section 16, Data Transfer Controller (DTC).

DTCNZRED bit (Not Last DTC Transmission Completion Snooze End Enable)

The DTCNZRED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on completion of each DTC transmission, that is, when CRA or CRB registers in the DTC is not 0. For details on the trigger conditions, see section 16, Data Transfer Controller (DTC).

AD0MATED bit (ADC Compare Match 0 Snooze End Enable)

The AD0MATED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on an ADC event when a conversion result matches the expected data. For details on the trigger conditions, see section 36, 12-Bit A/D Converter (ADC).

AD1MATED bit (ADC Compare Match 1 Snooze End Enable)

The AD1MATED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on an ADC event when a conversion result matches the expected data. For details on the trigger conditions, see section 36, 12-Bit A/D Converter (ADC).

SCI0UMTED bit (SCI0 Address Mismatch Snooze End Enable)

The SCI0UMTED bit specifies whether to enable a transition from Snooze mode to Software Standby mode on an SCI0 event when an address received in Software Standby mode does not match the expected data. For details on the trigger conditions, see section 26, Serial Communications Interface (SCI). Only set this bit to 1 when SCI0 operates in asynchronous mode.

10.8.3 Returning from Snooze Mode to Software Standby Mode

Table 10.8 shows the snooze end request that can be used as triggers to return to Software Standby mode. The snooze end requests are available only in Snooze mode. If the requests are generated when the MCU is not in Snooze mode, they are ignored. When multiple requests are selected, each of the requests invokes transition to Software Standby mode from Snooze mode.

Table 10.9 shows the snooze end conditions that consist of the snooze end requests and the conditions of the peripheral modules. The SCI0 ADC, and DTC modules can keep the MCU in Snooze mode until they complete the operation. However, an AGTn (n = 1) underflow as a trigger to return to Software Standby mode cancels Snooze mode without waiting for the completion of SCI0 operation.

Figure 10.7 shows the timing diagram for the transition from Snooze mode to Software Standby mode. This mode transition occurs according to which snooze end requests are set in the SNZEDCR0 register. A snooze request is cleared automatically after returning to Software Standby mode.

Table 10.8 Available snooze end requests (triggers to return to Software Standby mode)

Peripheral Module	Snooze end request	Enable/Disab	Enable/Disable Control	
		Register	Bit	
AGT1	AGT1 underflow (AGT1_AGTI)	SNZEDCR0	AGTUNFED	
DTC	Last DTC transmission completion (DTC_COMPLETE)	SNZEDCR0	DTCZRED	
DTC	Not Last DTC Transmission Completion (DTC_TRANSFER)	SNZEDCR0	DTCNZRED	
ADC	Composite compare match 0 (ADC_CCMPM0)	SNZEDCR0	ADOMATED	
ADC	Composite compare match 1 (ADC_CCMPM1)	SNZEDCR0	AD1MATED	
SCI0	SCI0 address mismatch (SCI0_DCUF)	SNZEDCR0	SCIOUMTED	

Table 10.9 Snooze end conditions

Operating	Snooze end request					
module when a snooze end request occurs	AGT1 underflow	Other than AGT1 underflow				
DTC ADC	The MCU transitions to the Software Standby mode after DTC and ADC complete operation.	The MCU transitions to the Software Standby mode after DTC, ADC, and SCI0 complete the operation.				
SCI0	The MCU transitions to the Software Standby mode immediately after the snooze end request is generated.					
Other than specified	The MCU transitions to the Software Standby mode immediately after a snooze end request is generated.					

Note: If the DTC is used to activate the ADC, or SCI, the MCU transitions to Software Standby mode immediately after a snooze end request is generated.

10.10.12 Conditions of A/D Conversion Start in Snooze Mode ADC can only be triggered by the ELC in Snooze mode. Do not use software trigger or ADTRGn (n = 0, 1) pin.

10.10.13 ELC Events in Snooze Mode

This section lists available ELC events in Snooze mode. Do not use any other events. If starting peripheral modules for the first time after entering Snooze mode, the Event Link Setting Register (ELSRn) must set a Snooze mode entry event (SYSTEM_SNZREQ) as the trigger.

- Snooze mode entry (SYSTEM_SNZREQ)
- DTC transfer end (DTC_DTCEND)
- ADC Composite compare match 0 (ADC_CCMPM0)
- ADC Composite compare match 1 (ADC_CCMPM1)
- Data operation circuit interrupt (DOC_DOPCI).

Event number	Interrupt request source	Name	IELSRn		DELSRn	Canceling	Canceling	Canceling
			Connect to NVIC	Invoke DTC	Invoke DMAC	- Snooze	Software Standby	Deep Software Standby
0x157	ADC	ADC_LIMCLPI	1	_	—	—	—	—
0x158		ADC_FIFOOVF	1	_	_	—	—	_
0x159		ADC_ADI0	1	1	1	—	—	—
0x15A		ADC_ADI1	1	1	1	—	—	_
0x15B		ADC_ADI2	1	1	1	—	—	_
0x15C		ADC_CMPI0	1	_	_	_	—	_
0x15D		ADC_CMPI1	1	—	—	—	—	—
0x15E		ADC_CCMPM0	1	1	1	√ *1	—	—
0x160		ADC_ERR0	1	—	—	—	—	—
0x161		ADC_RESOVF0	1	_	—	_	_	_
0x163	1	ADC_CALEND0	1	_	_	_	—	—
0x164		ADC_FIFOREQ0	1	1	1	_	—	_
0x165		ADC_FIFOREQ1	1	1	1	_	—	_
0x166		ADC_FIFOREQ2	1	1	1	_	—	_
0x167		ADC_ADI3	1	1	1	_	—	_
0x168		ADC_ADI4	1	1	1	_	—	_
0x169		ADC_ADI5678	1	1	1	_	—	_
0x16A		ADC_CMPI2	1	_	_	_	—	_
0x16B		ADC_CMPI3	1	—	_	—	—	_
0x16C		ADC_CCMPM1	1	1	1	√ *1	—	—
0x16E		ADC_ERR1	1	—	_	—	—	_
0x16F		ADC_RESOVF1	1	_	_		_	_
0x171		ADC_CALEND1	1	_	-		_	_
0x172		ADC_FIFOREQ3	1	1	1		_	_
0x173		ADC_FIFOREQ4	1	✓ ✓	1			_
0x174		ADC_FIFOREQ5678	✓	✓ ✓	1			_
0x18D	SCI0	SCI0_RXI	✓	✓ ✓	1		_	_
0x18E		SCI0_TXI	· ·	1	1	_	_	_
0x18F		SCI0 TEI	<u> </u>	_	_		_	_
0x190		SCI0_ERI	✓	_	_		_	_
0x191		SCI0_AED	✓	<u> </u>	_		_	_
0x192		SCI0_BFD	· ·	1_	_	_	_	_
0x193		SCI0_AM	· ·	1_	_	✓*1	1_	
0x195	SCI1	SCI1_RXI	· ✓	1	1		_	_
0x196		SCI1_TXI	✓ ✓	1	✓ ✓	_	_	
0x197		SCI1_TEI	· ·	_	_		_	
0x198		SCI1_ERI	✓ ✓		_	_	1_	_
0x199		SCI1_AED	✓ ✓	_	_	_		<u> _</u>
0x19A		SCI1_BFD	✓ ✓	_	_		_	<u> _</u>
0x19B		SCI1_AM	✓ ✓				_	_

Event number	n between event signal names set in Interrupt request source	Name	Description
0x140	liCo	IIC0_RX	Rx Data buffer full
0x141		IIC0_TX	Tx Data buffer empty
0x142		IIC0_TEND	Transmit end
0x145		IIC0_COM	Communication event
0x146	IIC1	IIC1_RX	Rx Data buffer full
0x147		IIC1_TX	Tx Data buffer empty
0x148		IIC1_TEND	Transmit end
0x14A		IIC1_COM	Communication event
0x159	ADC	ADC_ADI0	A/D scan end for scan group 0
0x15A		ADC_ADI1	A/D scan end for scan group 1
0x15B		ADC_ADI2	A/D scan end for scan group 2
0x15E		ADC_CCMPM0 ^{*2}	Composite compare match 0
0x167		ADC_ADI3	A/D scan end for scan group 3
0x168		ADC_ADI4	A/D scan end for scan group 4
0x169		ADC_ADI5678	A/D scan end for scan group 5 to 8
0x16C		ADC_CCMPM1*2	Composite compare match 1
0x18D	SCI0	SCI0_RXI*4	Receive data full
0x18E		SCI0_TXI*4	Transmit data empty
0x18F		SCI0_TEI*4	Transmit end
0x190		SCI0_ERI	Receive error
0x191		SCI0_AED	Effective edge detection
0x193		SCI0_AM	Address match event
0x195	SCI1	SCI1_RXI*4	Received data full
0x196		SCI1_TXI*4	Transmit data empty
0x197		SCI1_TEI*4	Transmit end
0x198		SCI1_ERI	Receive error
0x199		SCI1_AED	Effective edge detection
0x19B		SCI1_AM	Address match event
0x19C	SCI2	SCI2_RXI*4	Received data full
0x19D		SCI2_TXI*4	Transmit data empty
0x19E		SCI2_TEI*4	Transmit end
0x19F		SCI2_ERI	Receive error
0x1A0		SCI2_AED	Effective edge detection
0x1A2		SCI2_AM	Address match event
0x1A3	SCI3	SCI3_RXI*4	Received data full
0x1A4		SCI3_TXI*4	Transmit data empty
0x1A5		SCI3_TEI*4	Transmit end
0x1A6		SCI3_ERI	Receive error
0x1A7		SCI3_AED	Effective edge detection
0x1A9		SCI3_AM	Address match event

