

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

MESC TECHNICAL NEWS No. M16C-60-0009

(1/3)

GRADE A

Notes on USB control registers of
M30240 Group

1. Affected devices
M30240 Group

2. Symptom
There is a possibility that using read-modify-write instructions on the USB Control and Status Registers
(CSR) might cause incorrect data to be written to these registers

2.1 Description
The USB CSRs (listed in Table 1) contain control and status bits that can be changed by both software
and hardware. It is possible that while performing a read-modify-write instruction you might miss a bit that
gets changed by hardware during the instruction execution. In other words, after the CPU performs the
read portion of the instruction, a control or status bit might be changed by hardware, and when the write
back portion of the instruction is executed, this change could be overwritten by the previous value that was
read.
A list of read-modify-write instructions is shown in Table 2.

Table 1. USB Control and Status Registers
Symbol Name Address

EP0CS USB Endpoint 0 Control and Status Register 031116

EP1ICS USB Endpoint 1 IN Control and Status Register 031916

EP1OCS USB Endpoint 1 OUT Control and Status Register 031A16

EP2ICS USB Endpoint 2 IN Control and Status Register 032116

EP2OCS USB Endpoint 2 OUT Control and Status Register 032216

EP3ICS USB Endpoint 3 IN Control and Status Register 032916

EP3OCS USB Endpoint 3 OUT Control and Status Register 032A16

EP4ICS USB Endpoint 4 IN Control and Status Register 033116

EP4OCS USB Endpoint 4 OUT Control and Status Register 033216

Function Mnemonic
Bit Manipulation BCLR, BNOT, BSET, BTSTC, BTSTS
Shift ROLC, RORC, ROT, SHA, SHL
Arithmetic ABS, ADC, ADCF, ADD, DEC, EXTS, INC, MUL, MULU,

NEG, SBB, SUB
Logical AND, NOT, OR, XOR
Jump ADJNZ, SBJNZ

Table 2. Read-modify-write Instruction

Related to M30240 group devices.

MESC TECHNICAL NEWS

(2/3)

No. M16C-60-0009

2.2 Example (See Figure 1)
IN_PKT_RDY bit in EP1ICS register is set to “1” by software indicating to the USB Function
Control Unit (FCU) that a packet of data is ready to be sent out to the host. In this condition,
the following is the explanation to set ISO bit to “1” using the BSET instruction.

(1) When the EP1ICS register is read for the BSET instruction, IN_PKT_RDY bit could still be “1”.
(2) Now while this instruction is being executed, the packet of data is done being sent to the host,

and the USB FCU (hardware) clears the IN_PKT_RDY bit to “0” indicating the transfer is
complete.

(3) When the modified EP1ICS register with the ISO bit set to “1” from the BSET instruction is
written back, the value written back to IN_PKT_RDY bit would be “1”, because that’s what
was originally read. This will overwrite the “0” that was set by the hardware.

(4) Writing “1” back to IN_PKT_RDY bit will cause the USB FCU to send out another packet of
data. In this example, the device would accidentally send out an extra USB packet to the host.

Figure 1. Example Error Condition

b7 b0

0 0 0 0 0 01 1

b7 b0

0 0 0 0 0 01 0

b7 b0

0 0 0 1 0 01 1

b7 b0

0 0 0 0 0 01 1

b7 b0

0 0 0 1 0 01 1

(1)

(3)

(2)

(4)

Initial data

IN_PKT_RDY (b0)
Cleared by Hardware

Wrong value written back to
IN_PKT_RDY (b0)

BSET instruction by Software

Read stage

Write stage

Modify ISO (b3)

3. Countermeasure
Do not use read-modify-write instructions on these registers (see Table 2).
To change any bits in these registers, take the following procedure.
(1) First read the value of the register and save it to a variable or a data register.
(2) Change the target bit on the variable or the data register. At the same time, mask out any

bits that you don’t want to change by setting them to a value that won’t change their state (see
Table 3). For example: writing “0” to IN_PKT_RDY bit has no effect on it’s state; writing “1”
to the UNDER_RUN bit has no effect on it’s state, etc.

(3) Then use a transfer instruction such as MOV instruction to write back to the register.
See Table 3 in the next page to identify which bits can be changed by both hardware and
software and can potentially have incorrect data written to them in all of the USB control status
registers.

The example shown in the next page can be used to avoid the possibility of writing incorrect bits
for the situation described in Section 2. In this case we should write “0” to IN_PKT_RDY bit and
“1” to UNDER_RUN bit to be sure and not change their states. These are the only two bits in the
USB IN control status registers that can be changed by both hardware and software.

MESC TECHNICAL NEWS

(3/3)

No. M16C-60-0009

Table 3. Bits that can have incorrect data written back to them
Register Name Bit Name (number) Value to write for “No Change”

EP0CS IN_PKT_RDY (b1) “0”
DATA_END (b3) “0”
FORCE_STALL (b4) “1”

EPxICS (x = 1 to 4) IN_PKT_RDY (b0) “0”
UNDER_RUN (b1) “1”

EPxOCS (x = 1 to 4) OUT_PKT_RDY (b0) “1”
OVER_RUN (b1) “1”
FORCE_STALL (b4) “1”
DATA_ERR (b5) “1”

● Example using C programming
#pragma ADDRESS EP1ICS 0319h

char near Variable;

void Func (void)

{

:

:

Variable = EP1ICS; /* save EP1ICS register to temp variable */
Variable | = 0x0A; /* set ISO bit and write “1” to UNDER_RUN bit (no change) */
Variable & = 0xFE; /* write “0” to IN_PKT_RDY bit (no change)*/
EP1ICS = Variable; /* write back to EP1ICS register */

:

:

}

● Image of extract
:

:

mov.b EP1ICS,Variable ; save EP1ICS register to temp variable
or.b #0Ah,Variable ; set ISO bit and write “1” to UNDER_RUN bit (no change)
and.b #0FEh,Variable ; write “0” to IN_PKT_RDY bit (no change)
mov.b Variable,EP1ICS ; write back to EP1ICS register

:

:

Figure 2. Example using C programming

