

www.renesas.com

U
ser’

s M
anual

RZ/T1 Group

μNet3/BSD User’s Manual

・RZ/T1

All information of mention is things at the time of this document publication, and Renesas
Electronics may change the product or specifications that are listed in this document without
a notice. Please confirm the latest information such as shown by website of Renesas

Document number : R01US0204EJ0200
Issue date : Nov 1, 2020

http://www.renesas.com/

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the

operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for
any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this
document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in
part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality".
The recommended applications for each Renesas Electronics product depends on the product's quality grade, as
indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and

visual equipment; home electronic appliances; machine tools; personal electronic equipment; and
industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a

direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for
any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate
the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications
or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the
Renesas Electronics products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a
result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Instructions for the use of product
In this section, the precautions are described for over whole of CMOS device.
Please refer to this manual about individual precaution.
When there is a mention unlike the text of this manual, a mention of the text takes first priority

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in

the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through
current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.
- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are

undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the moment when power is supplied until the power reaches the level at which resetting has
been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these

addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching
the clock signal during program execution, wait until the target clock signal has stabilized.
- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset,

ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a
clock signal produced with an external resonator (or by an external oscillator) while program execution is in
progress, wait until the target clock signal is stable.

 Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.
All rights reserved.

 Ethernet is a registered trademark of Fuji Xerox Co., Ltd.
 IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc.
 TRON is an acronym for "The Real-time Operation system Nucleus".
 ITRON is an acronym for "Industrial TRON".
 µITRON is an acronym for "Micro Industrial TRON".
 TRON, ITRON, and µITRON do not refer to any specific product or products.
 Additionally all product names and service names in this document are a trademark or a registered trademark which

belongs to the respective owners.

How to Use This Manual

1. Objective and Target Users
This manual was written to explain the functions and the usage of the BSD interface library to the target users, i.e.
those who will be using this library software in the design of application systems. Target users are expected to
understand the fundamentals of the programming language and microcomputers.

When using this software, take all points to note into account. Points to note are given in their contexts and at the
final part of each section, and in the section giving usage notes.

The list of revisions is a summary of major points of revision or addition for earlier versions. It does not cover all
revised items. For details on the revised points, see the actual locations in the manual.

Contents

1. Introduction .. 6

2. Specification .. 7

2.1 Position in the POSIX Specification ... 7

2.2 Differences from the μNet3 .. 7

2.3 Compatibility of Symbol Name ... 7

3. Module Structure ... 8

3.1 Module Structure ... 8

3.2 Header Structure .. 9

3.3 Source Files ... 10

4. Supported API .. 11

4.1 Supported API Functions .. 11

4.2 Detail for Individual API Functions .. 12

5. Socket Options ... 36

5.1 List of Options ... 36

6. Capabilities .. 37

6.1 Non-Blocking Mode .. 37

6.2 Loopback .. 37

6.3 Error Processing .. 38

6.4 List of errno .. 40

7. Implementing BSD Application .. 42

7.1 Source Code .. 42

7.2 Include Path .. 42

7.3 Configuration .. 43

7.4 Defining Resources ... 43

7.5 Kernel Objects .. 44

7.6 Initialization .. 44

8. Appendix ... 45

8.1 Supported Compilers .. 45

8.2 Sample Application ... 45

8.3 Restrictions on Compilers ... 45

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 6 of 45

RZ/T1 Group
μNet3/BSD User’s Manual

1. Introduction
The μNet3/BSD socket API provides a BSD interface for running BSD applications on the μNet3 TCP/IP stack. The
stack and API allow seamless operation of socket applications from the Linux or BSD environments.

This document describes how to use the μNet3/BSD API and restrictions related to the product.

R01UZ0204EJ0200
Rev.2.00

Nov 1, 2020

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 7 of 45

RZ/T1 Group 2. Specification

2. Specification

2.1 Position in the POSIX Specification
The μNet3/BSD socket API is equivalent to 4.4 BSD-Lite. See Section 4, Supported API for the APIs supported in this
document. Using the μNet3/BSD API allows applications to use both BSD-based socket APIs and μNet3-based APIs.

2.2 Differences from the μNet3
The μNet3/BSD API provides the following functionality for existing μNet3 in addition to a POSIX-compliant socket
API.

• Multiple calls of socket API functions
• A select() function
• Loopback address
• Multicast grouping by sockets
• Listen queue of TCP sockets
• Socket errors

2.3 Compatibility of Symbol Name
The API functions, structures, and macros provided in the μNet3/BSD API are given the unique prefix “unet3_” to avoid
conflicts between symbols in the compiler environment.

The POSIX standard symbol names used in applications are replaced by those ones with the prefix unique to μNet3/BSD
by including sys/socket.h. This allows the operation of applications using BSD sockets under μNet3/BSD without
changing the files of source code.

In this document, the symbols are indicated in the POSIX standard notation for readability.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 8 of 45

RZ/T1 Group 3. Module Structure

BSD socket API

3. Module Structure

3.1 Module Structure
Figure 3.1 shows the module blocks composing the μNet3/BSD.

BSD socket application

BSD socket
management information

BSD Wrapper task Callback function

Constantly
executed without

being blocked

Markers

Task

μNet3

extended API

snd_rdy (), rcv_rdy (),
multicasting by

socket, etc.

TCP/IP timer task μNet3 API

Socket
management
information

Function

Data

Inter-task
communications

Figure 3.1

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 9 of 45

RZ/T1 Group 3. Module Structure

3.2 Header Structure
In the μNet3/BSD API, the POSIX-compliant header files are regarded as dummy files. These files include the open
header file unet3_socket.h, an original file for μNet3/BSD. Table 3.1 lists the header files provided for the μNet3/BSD
API.

Table 3.1 List of Header Files

Header File Name Major Application

POSIX-Compliant Header Files (for Sockets)

arpa/inet.h Define the values for handling IP addresses

netinet/in.h The address families AF_INET and AF_INET6 which include IP
addresses and TCP/UDP port numbers. It is widely used on the
internet.

netinet/ip.h Define the IP-level options and IP packets.

netinet/tcp.h Define the TCP-level options and TCP packets.

sys/socket.h This contains declarations of the core functions for the BSD sockets
and their data structures.

net/if.h Interface related definitions

POSIX-Compliant Header Files (for Systems)

sys/errno.h Definitions of error codes

sys/ioctl.h ioctl related definitions

sys/select.h Definitions of functions including select and fd_set

sys/time.h Definitions of functions including timeval type

sys/times.h Definitions of functions including timeval type

sys/unistd.h Standard header related to the UNIX standard

μNet3/BSD Original Header Files

unet3_cfg.h User-configuration definitions

unet3_socket.h Open header file which defines the socket APIs

unet3_sys.h Header file which defines types and macros specific to the BSD
platform. The header files to be included for system integration of BSD
applications are collected in this file.

unet3_wrap.h For internal control

bsd_param.h For internal control

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 10 of 45

RZ/T1 Group 3. Module Structure

3.3 Source Files
Source files used in the μNet3/BSD API are shown below.

When used in an application, *.c programs under the bsd folder should be incorporated.

Figure 3.2

bsd
unet 3_lodev .c

/* Virtual loopback device */
/* Socket option functions */
/* BSD socket API */
/* μNet3/Wrapper task */

/* Header for controlling μNet3/BSD */

arpa
inet .h

/* POSIX header (dummy) */

net
if.h

netinet

in.h
ip.h

sys
errno .h
ioctl.h
select.h

time.h
times.h
unistd.h

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 11 of 45

RZ/T1 Group 4. Supported API

4. Supported API

4.1 Supported API Functions
Table 4.1 lists the API functions provided by the μNet3/BSD.

Table 4.1 List of API Functions

API Function Description Header for Inclusion

unet3_bsd_init Initialize the μNet3/BSD “sys/socket.h”

get_errno Get the errnos for individual tasks “sys/errno.h”

socket Create an endpoint for communication “sys/socket.h”

bind Assign a name to a socket “sys/socket.h”

listen Waits for a connection on a socket “sys/socket.h”

accept Accept a connection on a socket “sys/socket.h”

connect Make a connection on a socket “sys/socket.h”

send Transmit a message to a socket “sys/socket.h”

sendto Transmit a message to a socket “sys/socket.h”

recv Receive a message from a socket “sys/socket.h”

recvfrom Receive a message from a socket “sys/socket.h”

shutdown Cause parts of a full-duplex connection on the socket to be shut down “sys/socket.h”

close Close a file descriptor (socket) “sys/unistd.h”

select Synchronous I/O multiplexing “sys/select.h”

getsockname Retrieve the name of a socket “sys/socket.h”

getpeername Retrieve the name of the peer connected to a socket “sys/socket.h”

getsockopt Retrieve options associated with a socket “sys/socket.h”

setsockopt Manipulate options associated with a socket “sys/socket.h”

ioctl Control hardware devices (sockets) “sys/ioctl.h”

inet_addr Internet address handling routine “arpa/inet.h”

inet_aton Internet address handling routine “arpa/inet.h”

inet_ntoa Internet address handling routine “arpa/inet.h”

if_nametoindex Map a network interface name to its corresponding index “net/if.h”

if_indextoname Map an interface index to its corresponding name “net/if.h”

rresvport Acquire a socket with a port bound to it “sys/unistd.h”

getifaddrs Retrieve the address of the interface “sys/types.h”

freeifaddrs Free the address of the interface “sys/types.h”

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 12 of 45

RZ/T1 Group 4. Supported API

4.2 Detail for Individual API Functions

socket (create an endpoint for communication)

Format

 #include "sys/socket.h"
int socket(int domain, int type, int protocol);

Parameters

 int domain Domain

 int type Communication type

 int protocol Protocol

Returned value

 int Created socket FD. This function returns -1 on occurrence of an error.

errno

 ENOMEM The number of sockets that can be created has been exceeded.

 Message buffer has been completely used up.

 EINVAL An invalid parameter was specified.

 EINTR Wait state was forcibly released.

• Allowed domains are AF_INET and AF_INET6 only.
• Allowed communication types are SOCK_STREAM and SOCK_DGRAM only.
• Set any value for the protocol as it is not used in this function.
• The number of sockets that can be created at the same time (the sum of TCP and UDP) is the value defined by

#define CFG_NET_SOC_MAX.
• The number of TCP sockets that can be created at the same time is the value defined by #define

CFG_NET_TCP_MAX.
• Setting 0 as the local port of a socket is not allowed. A socket is assigned a temporary local port number

immediately after it is created.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 13 of 45

RZ/T1 Group 4. Supported API

bind (assign a name to a socket)

Format

 #include "sys/socket.h"
int bind(int sockfd, const struct sockaddr *addr, unsigned int addrlen);

Parameters

 int sockfd File descriptor of the socket

 const struct sockaddr * addr Local address

 unsigned int addrlen Local address length

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF Invalid socket FD for binding.

 EPIPE Invalid socket object.

 EAFNOSUPPORT Unsupported address family.

 EADDRINUSE Address already in use.

 EADDRNOTAVAIL Cannot assign requested address.

 EINTR Wait state was forcibly released.

• Local address should be set with the type struct sockaddr_in.
• The only allowed addresses as the IP address (IPv4) for the local address are the one set for the device or

INADDR_ANY(unspecified).
• If the user sets PORT_ANY(0) as the port number of the local address, a port number is assigned by the protocol

stack.
• The only allowed local address length is sizeof(struct sockaddr_in) (= 16).
• Set any value for the “sin_len”, a member of the type struct sockaddr_in, as it is not used in this function.
• To start reception, including listening for incoming connections from TCP (listen()) and receiving UDP packets

(recv(), recvfrom()), the user needs to specify the target socket and execute the bind() function in advance.
• Binding to the well-known port numbers (1 to 1023) is also allowed.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 14 of 45

RZ/T1 Group 4. Supported API

listen (waits for a connection on a socket)

Format

 #include "sys/socket.h"
int listen(int sockfd, int backlog);

Parameters

 int sockfd File descriptor of the socket

 int backlog Backlog

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified, or the file descriptor of the TCP socket that has already
been connected.

 ENOMEM Message buffer has been completely used up.

 EBADF Invalid socket FD for listening to.

 EPROTONOSUPPORT Unsupported protocol (non-TCP socket).

 EINTR Wait state was forcibly released.

• This function makes the TCP socket listen for an incoming connection.
• Allowed file descriptors are those ones for TCP sockets.
• The maximum number of back logs is defined by #define CFG_NET_TCP_MAX -1.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 15 of 45

RZ/T1 Group 4. Supported API

accept (accept a connection on a socket)
Format

 #include "sys/socket.h"
int accept(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

Parameters

 int sockfd File descriptor of the socket

 struct sockaddr * addr Remote address (output)

 unsigned int * addrlen Remote address length (output)

Returned value

 int The connected socket FD. This function returns -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF The program is not listening to the specified socket.

 EAGAIN No connections have been made (in asynchronous network).

 ETIMEDOUT Connection attempt timed out (when a timeout is set).

 EINTR Wait state was forcibly released.

• Allowed file descriptors are those ones for TCP sockets for which the listen() function succeeded.
• The remote address is set with the type struct sockaddr_in*.
• If no connections were established, this function blocks further processing until an attempt of connection from a

remote party.

connect (make a connection on a socket)

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 16 of 45

RZ/T1 Group 4. Supported API

connect (make a connection on a socket)

Format

 #include "sys/socket.h"
int connect(int sockfd, const struct sockaddr *addr, unsigned int addrlen);

Parameters

 int sockfd File descriptor of the socket

 const struct sockaddr * addr Remote address

 unsigned int addrlen Remote address length

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF An invalid socket FD to connect.

 EHOSTUNREACH Connection attempted to an inaccessible node.

 ECONNREFUSED Connection refused by server.

 EAFNOSUPPORT Unsupported address family.

 EISCONN The socket is already connected.

 Listening to the socket is currently in progress.

 EALREADY A connection request is already in progress.

 EAGAIN A connection request is in progress (in asynchronous network).

 ETIMEDOUT Connection attempt timed out (when a timeout is set).

 EINTR Wait state was forcibly released.

• The function connect() operates and behaves differently depending on the protocol of the specified socket FD and
the type of transfer.

• When connecting to a TCP socket, the μNet3/BSD API transmits the SYN signal to the address of the remote target
and attempts connection to it. This only applies to TCP sockets other than those which are currently connected or
for which waiting for a connection is in progress.

• In transmission through a UDP socket, the address of the remote target is regarded as the destination of
transmission. If an address different from that of the remote target is set in the sendto() function, the given address is
regarded as that of the destination for transmission.

• Setting AF_UNSPEC in the sa_family member of the remote address clears the setting mentioned above.
• The μNet3/BSD API differs from the POSIX specification in that it does not apply filtering of remote addresses in

reception through UDP sockets.
• The μNet3/BSD API differs from the POSIX specification in that it cannot reissue a connection request for a TCP

socket whose input and output are driven asynchronously, once a connection has been established by the connect()
function. For example, if the ability to write to the target TCP socket has been ensured by select() after EAGAIN
was returned in response to connect(), the session with the socket has been established, so the transmission and
reception of data are possible.

• After a connect() function has been issued to a TCP socket set as asynchronous and processing in response is
completed, if the behavior is as expected in response to a next connect() function to be issued; the return value is 0
on successful connection and the error number set in the previous processing is returned as errno. In case of failure
to connect, the return value is -1 and the error number corresponding to the source of the error is returned as errno.
Issuing a further connect() function is required for another connection request because exit from the processing is
without a handshake regardless of whether connection failed or was successful.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 17 of 45

RZ/T1 Group 4. Supported API

send (transmit a message to a socket)
Format

 #include "sys/socket.h"
int send(int sockfd, const void *buf, unsigned int len, int flags);

Parameters

 int sockfd File descriptor of the socket

 const void * buf Source address of the data for transmission

 unsigned int len Length of the data for transmission

 int flags Flag

Returned value

 int Number of bytes of the transmitted data. This function returns -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified (no address assigned to buf).

 ENOMEM Message buffer has been completely used up.

 The size of the network buffer does not match the value set in len, or the value in len is 0.

 EBADF An invalid socket FD for sending.

 EPIPE Invalid socket object.

 EDESTADDRREQ Destination address is not specified (UDP socket).

 ENOTCONN The socket is not connected (TCP socket).

 EACCES The attempted transmission was blocked because broadcast transmission is not allowed.

 EAGAIN Transmission is in progress (in asynchronous network).

 ETIMEDOUT Connection attempt timed out (when a timeout is set).

 EINTR Wait state was forcibly released.

• Valid values for the length of the data for transmission are between 1 and 65535.
• The behavior differs from that in the POSIX specification in that the transmission of 0-byte UDP packets is not

allowed.
• If the MSG_DONTWAIT flag has been set in transmission to a UDP socket, the transmission is deemed successful

at the point when the data have been placed in a queue in a lower layer*1.
Note 1. "Lower layer" above refers to processing for address resolution in the IP layer or for asynchronous

transmission in the link layer.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 18 of 45

RZ/T1 Group 4. Supported API

sendto (transmit a message to a socket)

Format

 #include "sys/socket.h"
int sendto(int sockfd, const void *buf, unsigned int len, int flags, const struct sockaddr
*dest addr, unsigned int addrlen);

Parameters

 int sockfd File descriptor of the socket

 const void * buf Source address of the data for transmission

 unsigned int len Length of the data for transmission

 int flags Flag

 const struct sockaddr * dest_addr Address of the destination for transmission

 unsigned int addrlen Size of the address of the destination

Returned value

 int Number of the bytes of the transmitted data. This function returns -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified (no address assigned to buf).

 ENOMEM Message buffer has been completely used up.

 The size of the network buffer does not match the value set in len, or the value in len is 0.

 EBADF An invalid socket FD for the sendto operation.

 EPIPE Invalid socket FD.

 EDESTADDRREQ Destination address is not specified (UDP socket).

 ENOTCONN The socket is not connected (TCP socket).

 EACCES The attempted transmission was blocked because broadcast transmission is not allowed.

 EAGAIN Transmission is in progress (in asynchronous network).

 ETIMEDOUT Connection attempt timed out (when a timeout is set).

 EINTR Wait state was forcibly released.

• Valid values for the length of the data for transmission are between 1 and 65535.
• The parameters for the address of the destination for transmission and the size of the address of the destination are

not used when connecting to TCP sockets.
• The behavior differs from that in the POSIX specification in that the transmission of 0-byte UDP packets is not

allowed.
• If the MSG_DONTWAIT flag has been set in transmission to a UDP socket, the transmission is deemed successful

at the point when the data have been placed in a queue in a lower layer*1.
Note 1. "Lower layer" above refers to processing for address resolution in the IP layer or for asynchronous transmission

in the link layer.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 19 of 45

RZ/T1 Group 4. Supported API

recv (receive a message from a socket)

Format

 #include "sys/socket.h"
int recv(int sockfd, void *buf, unsigned int len, int flags);

Parameters

 int sockfd File descriptor of the socket

 void * buf Address of the reception buffer

 unsigned int len Length of the reception buffer

 int flags Flag

Returned value

 int Number of the bytes of the received data including 0 byte. This function returns -1 if an error
occurred.

errno

 EINVAL An invalid parameter was specified (no address assigned to buf).

 ENOMEM Message buffer has been completely used up.

 The size of the network buffer does not match the value set in len, or the value in len is 0.

 EBADF An invalid socket FD for the recv operation.

 EPIPE An invalid socket FD was specified.

 ENOTCONN The socket is not connected (TCP socket).

 EAGAIN No packet has been received (in asynchronous network).

 ETIMEDOUT Connection attempt timed out (when a timeout is set).

 EINTR Wait state was forcibly released.

• Setting the MSG_PEEK flag causes the receive operation to return packet of the receive queue without removing
that data from the queue. Thus, a subsequent receive call will return the same packet.

• Valid values for the length of the reception data are between 1 and 65535.
• If no packets are received, this function blocks further processing until packet reception.
• This function returns an error if connection with a remote party has not been established.
• This function returns 0 if the TCP socket is disconnected from the remote party.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 20 of 45

recvfrom (receive a message from a socket)
Format

 #include "sys/socket.h"
int recvfrom(int sockfd, void *buf, unsigned int len, int flags, struct sockaddr *src_addr,
unsigned int *addrlen);

Parameters

 int sockfd File descriptor of the socket

 void * buf Reception buffer address

 unsigned int len Reception buffer length

 int flags Flag

 struct sockaddr * src_addr Source address of the data for transmission

 unsigned int * addrlen Size of the source address

Returned value

 int Number of the bytes of the received data including 0 byte. This function returns -1 if an error
occurred.

errno

 EINVAL An invalid parameter was specified (no address assigned to buf).

 ENOMEM Message buffer has been completely used up.

 The size of the network buffer does not match the value set in len, or the value in len is 0.

 EBADF An invalid socket FD for the recvfrom operation.

 EPIPE An invalid socket FD was specified.

 ENOTCONN The socket is not connected (TCP socket).

 EAGAIN No packet has been received (in asynchronous network).

 ETIMEDOUT Connection attempt timed out (when a timeout is set).

 EINTR Wait state was forcibly released.

• Setting the MSG_PEEK flag causes the receive operation to return packet of the receive queue without removing
that data from the queue. Thus, a subsequent receive call will return the same packet.

• Valid values for the length of the reception data are between 1 and 65535.
• If no packets are received, this function blocks further processing until packet reception.
• This function returns an error if connection with a remote party has not been established.
• This function returns 0 if the TCP socket is disconnected from the remote party.
• The parameters for the source address of the data for transmission and the size of the source address are not used

when connecting to TCP sockets.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 21 of 45

shutdown (cause parts of a full-duplex connection on the socket to be shut down)
Format

 #include "sys/socket.h"
int shutdown(int sockfd, int how);

Parameters

 int sockfd File descriptor of the socket.

 int how Type of shut down

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF An invalid socket FD to shutdown.

 EPIPE The socket is not connected (TCP socket).

 EINTR Wait state was forcibly released.

• The only allowed types of shutdown are SHUT_WR and SHUT_RDWR.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 22 of 45

close (close a socket)
Format

 #include "sys/unistd.h"
int close(int fd);

Parameters

 int fd File descriptor of the socket

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF An invalid socket FD to close.

 EINTR Wait state was forcibly released.

• If a TCP session is active when this function is called, the socket will be closed after the session has been cut off.
• Once the socket with the given FD is closed, it cannot be used again until a new connection is established.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 23 of 45

select (synchronous I/O multiplexing)
Format

 #include "sys/select.h"
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

Parameters

 int nfds An integer one greater than the highest file descriptor in
readfds and writefds. When adding file descriptors to either of
the sets, increment this value by one.

 fd_set * readfds A set of file descriptors to be checked for readability.

 fd_set * writefds A set of file descriptors to be checked for writability.

 fd_set * exceptfds A set of file descriptors to be checked for exceptional
conditions (not supported).

 struct timeval * timeout Time until expiration of the monitoring period

Returned value

 int The total number of file descriptors to be checked for readability or writability. This function
returns 0 on timeout and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF The socket with the specified FD does not support select().

• The argument exceptfds is not used in this function.
• The μNet3/BSD API differs from the POSIX specification in that, when this function is executed for a socket file

descriptor immediately after it has been created, the function allows writing but not reading if it is for a UDP socket
(reading is also possible if a packet has already been received). The function allows reading (but not writing) if it is
for a TCP socket.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 24 of 45

getsockname (retrieve the name of a socket)
Format

 #include "sys/socket.h"
int getsockname(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

Parameters

 int sockfd File descriptor of the socket.

 struct sockaddr * addr Pointer to the buffer where the socket address is stored.

 unsigned int * addrlen Size of the buffer where the socket address is stored.

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF An invalid socket FD for the getsockname operation.

 EINTR Wait state was forcibly released.

• The value in *addrlen should be the size of sockaddr_in (16 bytes or more).
• The address is bound to a socket when the following API functions are called.

bind()

connect()

accept()

send/sendto()

recv/recvfrom()

If a function from the above list fails, the value of the address associated with the socket will be undefined.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 25 of 45

getpeername (retrieve the name of the peer connected to a socket)
Format

 #include "sys/socket.h"
int getpeername(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

Parameters

 int sockfd File descriptor of the socket.

 struct sockaddr * addr Pointer to the buffer where the remote address is stored.

 unsigned int * addrlen Size of the buffer where the remote address is stored.

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF An invalid socket FD for the getpeername operation.

 ENOTCONN Destination address required.

 EINTR Wait state was forcibly released.

• The value in *addrlen should be the size of sockaddr_in (16 bytes or more).
• For a TCP connection, this function only allows retrieval of the address of the remote party to which the TCP socket

is connected.
• For a UDP connection, this function only allows retrieval of the address of a remote party with an address

previously specified in a connect or sendto function, or of a socket which has received packets.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 26 of 45

getsockopt (retrieve options associated with a socket)
Format

 #include "sys/socket.h"
int getsockopt(int sockfd, int level, int optname, void *optval, unsigned int *optlen);

Parameters

 int sockfd File descriptor of the socket.

 int level The level of the option

 int optname Option name

 void * optval A pointer to the buffer where the value of the option is to be
stored.

 unsigned int * optlen The size of the buffer pointed to by optval.

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF An invalid socket FD for the getsockopt operation.

 EPROTONOSUPPORT The option is not supported.

 EINTR Wait state was forcibly released.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 27 of 45

setsockopt (manipulate options associated with a socket)
Format

 #include "sys/socket.h"
int setsockopt(int sockfd, int level, int optname, const void *optval, unsigned int optlen);

Parameters

 int sockfd File descriptor of the socket

 int level The level of the option

 int optname Option name

 const void * optval The buffer in which the values of the requested options are to
be returned.

 unsigned int optlen Size of the buffer pointed to by optival

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 ENOMEM Message buffer has been completely used up.

 EBADF An invalid socket FD for the setsockopt operation.

 EPIPE An invalid socket FD was specified.

 EPROTONOSUPPORT The option is not supported.

 EINTR Wait state was forcibly released.

• Allowed option levels are SOL_SOCKET, IPPROTO_IP and IPPROTO_TCP.
• The available option names at each option level are listed in the Section 5.1, List of Options.

• Allowed option levels are SOL_SOCKET, IPPROTO_IP and IPPROTO_TCP.
• The available option names at each option level are listed in the Section 5.1, List of Options.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 28 of 45

ioctl (control hardware devices (sockets))
Format

 #include "sys/ioctl.h"
int ioctl(int d, int request, ...);

Parameters

 int d File descriptor of the socket

 int request Request

 ... Parameter for the request

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 EINVAL An invalid parameter was specified.

 EBADF An invalid socket FD was specified.

 ENOMEM Message buffer has been completely used up.

 EFAULT The parameter for the request is not usable.

 EINTR Wait state was forcibly released.

• Allowed settings for the request parameter are listed in the table below.

Request Code Meaning Parameter

FIONBIO Enable non-blocking communications 1 (enabling) or 0 (disabling)

FIONREAD Get the number of bytes waiting to be read
on a socket.

(unsigned int *) &nread

• See Section 6.1, Non-Blocking Mode for details on non-blocking mode.
• The value obtained by the option FIONREAD is the size of a whole packet in the reception window buffer in the

case of a TCP socket or the size of a received packet block (header only) to be received in the next transaction in the
case of a UDP socket.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 29 of 45

inet_addr (Internet address handling routine)
Format

 #include "arpa/inet.h"
unsigned int inet addr(const char *cp);

Parameters

 const char * cp The IP address in dot-notation

Returned value

 unsigned int The IP address converted into binary data in network byte order

errno

 Not specified

• The function returns 0 if conversion failed.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 30 of 45

inet_aton (Internet address handling routine)
Format

 #include "arpa/inet.h"
int inet aton(const char *cp, struct in addr *inp);

Parameters

 const char * cp The IP address in dot-notation

 struct in_addr * inp Pointer to the buffer where the post-conversion binary value
of the IP address is stored in network byte order.

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 Not specified

• The function returns -1 if conversion failed.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 31 of 45

inet_ntoa (Internet address handling routine)
Format

 #include "arpa/inet.h"
char *inet ntoa(struct in addr in);

Parameters

 struct in_addr in IP address as binary data in network byte order

Returned value

 char * The IP address converted into dot-notation

errno

 Not specified

• The string is returned in a statically allocated buffer in the area for the IP address converted into dot-notation, and
will be overwritten by subsequent calls.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 32 of 45

if_nametoindex (map a network interface name to its corresponding index)
Format

 #include "net/if.h"
unsigned int if nametoindex(const char *ifname)

Parameters

 const char * ifname Interface name

Returned value

 unsigned int The index of the interface. This function returns 0 if an error occurred.

errno

 ENXIO An interface with the given name does not exist.

• The setting for the name of the interface is based on the device name in μNet3 (gNET_DEV[index-1].name[8]).

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 33 of 45

if_indextoname (map an interface index to its corresponding name)
Format

 #include "net/if.h"
char *if indextoname(unsigned int ifindex, char *ifname)

Parameters

 unsigned int ifindex Interface index

 char * ifname Pointer to the buffer where the interface name is stored.

Returned value

 char* Result of processing. This function returns ifname on success and null if an error occurred.

errno

 ENXIO No index found for the interface.

• The setting for the name of the interface is based on the device name in μNet3 (gNET_DEV[index-1].name[8]).

rresvport (acquire a socket with a port bound to it)
Format

 #include "sys/unistd.h"
int rresvport(int *port)

Parameters

 int* port Pointer to the buffer where the port number is stored.

Returned value

 int A socket file descriptor bound to a port. This function returns -1 if no socket is present.

errno

 Not specified

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 34 of 45

getifaddrs (retrieve the address of the interface)

Format

 #include "sys/types.h"
int getifaddrs(struct ifaddrs **ifap)

Parameters

 struct ifaddrs** ifap The address of the first item in the list of network interfaces

Returned value

 int Result of processing. This function returns 0 on success and -1 if an error occurred.

errno

 ENOMEM Failure to acquire the area where the information about the interfaces is stored.

• This function acquires the information about the interfaces in the chain for the devices (CFG_DEV_MAX) set in the
application.

• On success, this function stores the following values in the argument ifap.
(*ifap)->ifa_next: a pointer to the next structure in the list, or null if this is the last item in the list
(*ifap)->name: a pointer to the interface name
(*ifap)->ifa_flags: the device number
(*ifap)->ifa_addr: a pointer to the sockaddr structure which contains the IP address of the interface.
(*ifap)->ifa_netmask: a pointer to the sockaddr structure which contains the subnet mask.
(*ifap)->ifa_ifu and (*ifap)->ifa_data: not used in this function.

• The data returned by getifaddrs() is dynamically allocated and should be freed by using freeifaddrs() after the
function succeeds.

RZ/T1 Group 4. Supported API

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 35 of 45

freeifaddrs (free list of interface information)
Format

 #include "sys/unistd.h"
void freeifaddrs(struct ifaddrs *ifap)

Parameters

 struct ifaddrs* ifap The address of the first item in the list of network interfaces

Returned value

 void

errno

 Not specified

• This function frees the list of interface information acquired by getifaddrs().

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 36 of 45

RZ/T1 Group 5. Socket Options

5. Socket Options

5.1 List of Options
Table 5.1, List of Options is the options acquired or set by using the functions setsockopt() and getsockopt(). If a value
other than those listed below is specified, the function returns -1. In the list, “GET” represents operations to which
getsockopt() is applicable and “SET” represents operations to which setsockopt() is applicable.

Table 5.1 List of Options

Option Name Type Description

SOL_SOCKET Level
SO_ACCEPTCONN int Retrieve the state of a TCP socket, whether it is in listening mode or not. Only

GET is applicable.

SO_BROADCAST int Configure a socket for transmitting UDP broadcast data. Both GET and SET
are applicable.

SO_DOMAIN int Acquire the socket domain. Only GET is applicable.

SO_ERROR int Acquire a socket error. Only GET is applicable.

SO_KEEPALIVE*1 int Enable sending of keepalive packets by the TCP socket. Only SET is
applicable.

SO_RCVBUF int Make settings for the reception buffer. This is the number of bytes in reception
windows for TCP and the number of received packets (queue size) for the
UDP. Both GET and SET are applicable.

SO_RCVBUFFORCE int Same as SO_RCVBUF.

SO_RCVTIMEO timeval Specify the timeout value for a receiving socket. Both GET and SET are
applicable.

SO_SNDTIMEO timeval Specifies the timeout value for a sending socket. Both GET and SET are
applicable.

SO_TYPE int Retrieves the socket type. Only GET is applicable.

SO_REUSEADDR int Allows a socket to forcibly bind to a local port that is already in use by another
socket. Both GET and SET are applicable.

IPPROTO_IP Level
IP_ADD_MEMBERSHIP ip_mreqn Joins the multicast groups specified, applicable to UDP sockets only. Only

SET is applicable.

IP_DROP_MEMBERSHIP ip_mreqn Drops membership of a multicast group. Only SET is applicable.

IP_MTU int Retrieve the path MTU. Only GET is applicable.

IP_MULTICAST_TTL int Set the TTL (time-to-live) for transmitted multicast packets. Both GET and SET
are applicable.

IP_TOS int Set the TOS (type of service) for transmitted IP packets. Both GET and SET
are applicable.

IP_TTL int Set the TTL for transmitted IP packets. Both GET and SET are applicable.

IPPROTO_TCP Level
TCP_KEEPCNT*1 int Specifies the number of keepalive probes for TCP sockets. Only SET is

applicable.

TCP_KEEPIDLE*1 int Specifies the interval of inactivity that causes the TCP to generate a keepalive
transmission for an application that requests them. Only SET is applicable.

TCP_KEEPINTVL*1 int Specifies the interval between keepalive probes for TCP sockets. Only SET is
applicable.

TCP_MAXSEG int Specifies the MSS (maximum segment size) value for TCP packets. Both GET
and SET are applicable.

Note 1. Enable or disable the TCP keepalive option (SO_KEEPALIVE) before making a TCP connection. Settings associated with the
option keepalive, including this one, are shared among all sockets.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 37 of 45

RZ/T1 Group 5. Socket Options

6. Capabilities

6.1 Non-Blocking Mode
The ioctl() function sets the API call for a socket in non-blocking mode (or blocking mode). All API functions are set to
blocking mode as the initial value. There are some cases where an API in non-blocking mode sets EAGAIN as errno and
returns -1. The APIs which operate in non-blocking mode and the conditions for returning EAGAIN as errno, and the
expected behaviors of the application are listed in Table 6.1, Non-Blocking APIs.

Note that setting the timeout option for a socket is not effective for the APIs which behave in non-blocking mode.
Furthermore, in μNet3/BSD, even if an API function is set to non-blocking mode, it may need to wait for the task to
wake up after being called due to the specification for inter-task transfer.

Table 6.1 Non-Blocking APIs
API Condition Application Behavior

connect If the target is a TCP socket, the returned
value is always -1, and the error code
otherwise is EAGAIN.

Even after -1 is returned, the TCP socket keeps sending SYN
packets for the specified time while waiting for SYN and ACK
packets from the remote party. The socket is monitored by
the select function with the parameter writefds, for readiness
for writing on reception of SYN and ACK. Once the socket
becomes ready for writing, further execution of the connect
function is not needed.

accept If there is no connection attempted to the
listen socket, the returned value is -1 and the
error code is EAGAIN.

The socket is monitored by the select function with the
parameter readfds, for readiness for reading on reception of
SYN. Once the socket becomes ready for reading, the accept
function is executed again.

send
sendto

When the send buffer is full in the transfer
with the TCP sockets and when a
transmission is in progress in the transfer
with the UDP sockets, the error code is
EAGAIN.

EAGAIN for the functions send and sendto means that
packet transmission failed (and will not be transmitted again)
due to conditions of sockets.

recv
recvfrom

When no packet has been received, the error
code is EAGAIN.

The socket is monitored by the select function with the
parameter readfds, for readiness for reading on reception of
packets from the remote party. Once the socket becomes
ready for reading, the recv function is executed again.

6.2 Loopback
When local loopback addresses (127.0.0.1 to 127.255.255.254) are specified as destination for transmission, the
transmitted packets are conveyed to the network interface of the local device.

In μNet3/BSD, the loopback addresses are not assigned to any specific device interface and are regarded as send-only
addresses. Therefore, they cannot be used in the bind() operation.

R01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 38 of 45

RZ/T1 Group

6. Capabilities

6.3 Error Processing
The symbol errno is the only global variable used in the μNet3/BSD API. Its value is updated on the occurrence of errors
during the execution of API functions. When the user executes API functions from multiple tasks, we recommend
acquiring the last errno by using get_errno(), to maintain consistency between errno values and the errors.

Format

 #include "sys/errno.h"
int get_errno(void)

Parameters

 void

Returned value

 int The errno of the last error to have occurred during the API function calls by a given task.

errno

 Not specified

• The errno for each task will be stored in the global variable UW tsk_errno[], provided in the application. The array
should have the same number of elements as the maximum number of tasks.

RZ/T1 Group

6. Capabilities

RR01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 40 of 45

6.4 List of errno
The values defined for errno may vary according to the compiler.

[Definition pattern 1]

Applicable compilers:

• RealView Developer Suite from Arm
• Embedded Workbench (EWARM) from IAR
• Code Composer Studio from TI
• GNU C Compiler

errno Value Description

EINTR 4 Wait state of the API was forcibly released

ENXIO 6 No interface found

EBADF 9 Invalid socket file descriptor

ENOMEM 12 Not enough memory

EACCES 13 Access for the requested process was blocked

EFAULT 14 Error in a parameter

ENODEV 19 Critical (or unknown) error in the system

EINVAL 22 Invalid parameter value

EPIPE 32 Invalid socket object

EAGAIN 35 Connection is blocked

EALREADY 37 The operation is already in progress

EDESTADDRREQ 39 Destination address required

EPROTONOSUPPORT 43 Protocol not supported

EAFNOSUPPORT 47 Address family not supported by protocol

EADDRINUSE 48 Address already in use

EADDRNOTAVAIL 49 Cannot assign requested address

EISCONN 56 The socket is already connected

ENOTCONN 57 The socket is not connected

ETIMEDOUT 60 Connection attempt timed out

ECONNREFUSED 61 Connection is refused by server

EHOSTUNREACH 65 Connection attempted for an inaccessible node

RZ/T1 Group

6. Capabilities

RR01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 41 of 45

[Definition pattern 2]

Applicable compiler:

• CubeSuite+ * from Renesas Electronics

errno Value Description

ENXIO * No interface found

EBADF * Invalid socket file descriptor

ENOMEM * Not enough memory

EACCES * Access for the requested process was blocked

EFAULT * Error in a parameter

ENODEV * Critical (or unknown) error in the system

EINVAL * Invalid parameter value

EPIPE * Invalid socket object

EAGAIN * Connection is blocked

EALREADY 0x1025 The operation is already in progress

EDESTADDRREQ 0x1027 Destination address required

EPROTONOSUPPORT 0x102B Protocol not supported

EAFNOSUPPORT 0x102F Address family not supported by protocol

EADDRINUSE 0x1030 Address already in use

EADDRNOTAVAIL 0x1031 Cannot assign requested address

EISCONN 0x1038 The socket is already connected

ENOTCONN 0x1039 The socket is not connected

ETIMEDOUT * Connection attempt timed out

ECONNREFUSED 0x103D Connection refused by server

• Restrictions

– Do not use the name “errno” as the name of a variable where error codes are stored.
The name “errno” is used as the variable defining errors in the CubeSuite+ standard library. With the μNet3/BSD
API, use unet_errno instead.

– Part of the values defined for errno are the same as those used in the compiler (as indicated with * (asterisk) in
the above list)
If the same name is defined for an errno value in the μNet3/BSD API and the CubeSuite+, the one in the compiler
is used.

RR01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 42 of 45

RZ/T1 Group

7. Implementing BSD Application

7. Implementing BSD Application

7.1 Source Code
An application which uses the μNet3/BSD API must be combined in projects with four files of source code from the
Network/bsd/ folder (see Section 3.3, Source Files.)

Also, link the version of μNet3/BSD which is prepared for BSD (uNet3BSDxxxx.lib) as the library.

Figure 7.1

7.2 Include Path
An application which uses the μNet3/BSD API requires additional settings for “include” paths. The header file is found
in the Network/bsd/unet3_posix folder with the POSIX-compatible files.

Figure 7.2

Network

lib
uNet3cortexal.lib /* Ordinary library for μNet3 */
uNet3BSDcortexal.lib /* μNet3 library for BSD */

Network

bsd

unet 3_posix

/* Include base folder for μNet3/BSD */

inc /* Include base folder for μNet3/ */

RR01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 43 of 45

RZ/T1 Group

7. Implementing BSD Application

7.3 Configuration
In the μNet3/BSD API, the maximum number of sockets to be used in an application and tasks to be executed should be
defined in the below macro in unet3_cfg.h in advance.

Maximum number of sockets
#define BSD_SOCKET_MAX

The maximum number of sockets, regardless of the protocol, shows the number of sockets that an application can
create at the same time (including backlog from listening). This macro definition is used for defining the number of
entries in the management table for BSD sockets and fd_set type settings, which will be described later. This value
must be same as the maximum number of the sockets used by μNet3 (CFG_NET_SOC_MAX).

Number of application tasks
#define NUM_OF_TASK_ERRNO

The number of application tasks shows the number of tasks that can be created in the kernel. This macro definition
is used for the number of entries in the management table for error codes, which will be described later. Set the
number of tasks that can be created, regardless of whether you are using μNet3/BSD.

7.4 Defining Resources
Applications which use the μNet3/BSD API should provide resources required for operating the program, which are, the
tables for managing information of the μNet3/BSD as listed below.

BSD socket management table
T_UNET3_BSD_SOC gNET_BSD_SOC[BSD_SOCKET_MAX];

This table defines a global variable as the number of elements BSD_SOCKET_MAX in the T_UNET3_BSD_SOC
array.

Error code management table
UW tsk_errno[NUM_OF_TASK_ERRNO];

This table defines a global variable as the number of elements NUM_OF_TASK_ERRNO in the array of UW.

RR01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 44 of 45

RZ/T1 Group

7. Implementing BSD Application

7.5 Kernel Objects
The Kernel objects used in the μNet3/BSD are shown below.

Resource name Usage ID

Task BSD wrapper task ID TSK_BSD_API

 Loopback device task ID_LO_IF_TSK

Mailbox Communication between BSD wrapper tasks ID MBX_BSD_REQ

 Communication between loopback device tasks ID_LO_IF_MBX

Memory pool Message buffer ID MPF_BSD_MSG

7.6 Initialization
When an application uses the socket API functions of the μNet3/BSD API, the module must be initialized in advance by
calling the unet3_bsd_init() function. This operation should be performed after successful initialization of μNet3 and the
device driver.

Format

 #include "sys/socket.h"
ER unet3 bsd init(void)

Parameters

 void

Returned value

 ER Result of processing. This function returns E_OK on success and the error code if an error
occurred.

Error code

 E_SYS Initialization of the kernel object failed.

RR01UZ0204EJ0200 Rev.2.00
Nov 1, 2020

Page 45 of 45

RZ/T1 Group

8. Appendix

8. Appendix

8.1 Supported Compilers
The μNet3/BSD guarantees operation in the following compilers.

• RealView Developer Suite from Arm
• Embedded Workbench (EWARM) from IAR
• Code Composer Studio from TI
• GNU C Compiler
• CubeSuite+ from Renesas Electronics

Note: Restrictions are given depending on the compiler.

8.2 Sample Application
Sample applications using the μNet3/BSD API are included in the Sample folder. These sample programs are also
available in the POSIX environment (Linux).

• API Console (sample_sockcmd.c)
The user can run the API functions through the command prompt (with a UART connection) by input of the socket
API function and required parameters. For details, refer to the Readme_command.txt.

8.3 Restrictions on Compilers
Restrictions are given to some compilers when they are used with μNet3/BSD.

• CubeSuite+ from Renesas Electronics

– Do not use the name “errno” as the name of a variable where error codes are stored.
The name “errno” is used as the variable defining errors in the CubeSuite+ standard library. With the μNet3/BSD
API, use unet_errno instead.

Rev.

Date

Description

Page Summary

1.00 ― First edition, issued

2.00 Nov 1, 2020 4. Supported API

11, 35, 36 Functions getifaddrs() and freeifaddrs(), added

12 to 36 Additions and modifications to section 4.2, Detail for Individual API Functions

19, 20 Option MSG_PEEK and related description, added

28 Option FIONREAD and related description, added

5. Socket Options

37 Complementary description of socket options regarding TCP Keep-Alive, added

37 Operation of the option SO_BROADCAST and related description in section 5.1, List of
Options, modified

37 Option SO_REUSEADDR and related description in section 5.1, List of Options, added

6. Capabilities

40 Description in section 6.4, List of errno, modified

40, 41 Descriptions of EACCES and EHOSTUNREACH, added in section 6.4, List of errno

8. Appendix

45 CubeSuite+, added to the supported compilers

45 Section 8.3, Restrictions on Compilers, added

REVISION HISTORY RZ/T1 μNet3/BSD User’s Manual

RZ/T1 Group User’s Manual: μNet3/BSD

Publication Date: Rev.1.00 Jul. 27, 2013
 Rev.2.00 Nov. 1, 2020

Published by: Renesas Electronics Corporation

R01US0204EJ0200

RZ/T1 Group User’s Manual

μNet3/BSD

	1. Introduction
	2. Specification
	2.1 Position in the POSIX Specification
	2.2 Differences from the μNet3
	2.3 Compatibility of Symbol Name

	3. Module Structure
	3.1 Module Structure
	3.2 Header Structure
	3.3 Source Files

	4. Supported API
	4.1 Supported API Functions
	4.2 Detail for Individual API Functions

	5. Socket Options
	5.1 List of Options

	6. Capabilities
	6.1 Non-Blocking Mode
	6.2 Loopback
	6.3 Error Processing
	6.4 List of errno

	7. Implementing BSD Application
	7.1 Source Code
	7.2 Include Path
	7.3 Configuration
	7.4 Defining Resources
	7.5 Kernel Objects
	7.6 Initialization

	8. Appendix
	8.1 Supported Compilers
	8.2 Sample Application
	8.3 Restrictions on Compilers

