
U
ser’s M

anual

RX610 Group
Peripheral Driver Generator
Reference Manual

Rev.1.01 Feb 2011

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corporation without notice. Please review the latest information published
by Renesas Electronics Corporation through various means, including the Renesas Electronics
Corporation website (http://www.renesas.com).

www.renesas.com

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RX610 Group Peripheral Driver Generator Reference Manual Introduction

R20UT0150EJ0101 Rev.1.01 Page 3 of 140
Feb 16, 2011

Introduction
This manual was written to explain how to make the peripheral I/O drivers on the Peripheral Driver Generator
for RX610. For the basic information about the Peripheral Driver Generator, refer to the Peripheral Driver
Generator user’s manual.

RX610 Group Peripheral Driver Generator Reference Manual Table of Contents

R20UT0150EJ0101 Rev.1.01 Page 4 of 140
Feb 16, 2011

Table of Contents

1. Overview .. 7

1.1 Supported peripheral modules .. 7

2. Creating a new project .. 8

3. Setting the Peripheral Modules... 9

3.1 Peripheral Module Setting Windows .. 9
3.2 Pin Functions .. 10

3.2.1 Pin Function Sheet.. 10
3.2.2 Peripheral Pin Usage Sheet... 11

4. Specification of Generated Functions... 14

4.1 Clock-Generation Circuit.. 17
4.1.1 R_PG_Clock_Set.. 17

4.2 Interrupt Controller (ICU)... 18
4.2.1 R_PG_ExtInterrupt_Set_<interrupt type>... 18
4.2.2 R_PG_ExtInterrupt_Disable_<interrupt type>.. 20
4.2.3 R_PG_ExtInterrupt_GetRequestFlag_<interrupt type> .. 21
4.2.4 R_PG_ExtInterrupt_ClearRequestFlag_<interrupt type> ... 22
4.2.5 R_PG_FastInterrupt_Set... 23
4.2.6 R_PG_Exception_Set ... 24

4.3 I/O Ports.. 25
4.3.1 R_PG_IO_PORT_Set_P<port number>.. 25
4.3.2 R_PG_IO_PORT_Set_P<port number><pin number> .. 26
4.3.3 R_PG_IO_PORT_Read_P<port number> .. 27
4.3.4 R_PG_IO_PORT_Read_P<port number><pin number>... 28
4.3.5 R_PG_IO_PORT_Write_P<port number>.. 29
4.3.6 R_PG_IO_PORT_Write_P<port number><pin number> .. 30

4.4 DMAC controller (DMAC) .. 31
4.4.1 R_PG_DMAC_Set_C<channel number>.. 31
4.4.2 R_PG_DMAC_Activate_C<channel number> ... 34
4.4.3 R_PG_DMAC_StartTransfer_C<channel number>.. 35
4.4.4 R_PG_DMAC_Suspend_C<channel number> ... 36
4.4.5 R_PG_DMAC_GetTransferredByteCount_C<channel number> ... 37
4.4.6 R_PG_DMAC_ClearTransferEndFlag_C<channel number> ... 38
4.4.7 R_PG_DMAC_SetReload_SrcAddress_C<channel number> .. 39
4.4.8 R_PG_DMAC_SetReload_DestAddress_C<channel number> .. 40
4.4.9 R_PG_DMAC_SetReload_ByteCount_C<channel number> ... 41
4.4.10 R_PG_DMAC_StopModule... 42

4.5 16-Bit Timer Pulse Unit (TPU)... 43
4.5.1 R_PG_Timer_Start_TPU_U<unit number>_C<channel number> .. 43
4.5.2 R_PG_Timer_HaltCount_TPU<unit number>_C<channel number> .. 44
4.5.3 R_PG_Timer_ResumeCount_TPU_U<unit number>_C<channel number> 45

RX610 Group Peripheral Driver Generator Reference Manual Table of Contents

R20UT0150EJ0101 Rev.1.01 Page 5 of 140
Feb 16, 2011

4.5.4 R_PG_Timer_GetCounterValue_ＴＰＵ_U<unit number>_C<channel number> 46
4.5.5 R_PG_Timer_SetCounterValue_TPU_U<unit number>_C<channel number>................................... 47
4.5.6 R_PG_Timer_GetRequestFlag_TPU_U<unit number>_C<channel number> 48
4.5.7 R_PG_Timer_StopModule_TPU_U<unit number> .. 50

4.6 8-Bit Timer (TMR) ... 51
4.6.1 R_PG_Timer_Start_TMR_U<unit number>(_C<channel number>)... 51
4.6.2 R_PG_Timer_HaltCount_TMR_U<unit number>(_C<channel number>).. 53
4.6.3 R_PG_Timer_ResumeCount_TMR_U<unit number>(_C<channel number>).................................... 54
4.6.4 R_PG_Timer_GetCounterValue_TMR_U<unit number>(_C<channel number>) 55
4.6.5 R_PG_Timer_SetCounterValue_TMR_U<unit number>(_C<channel number>)............................... 56
4.6.6 R_PG_Timer_GetRequestFlag_TMR_U<unit number>(_C<channel number>)................................. 57
4.6.7 R_PG_Timer_StopModule_TMR_U<unit number>... 58

4.7 Compare Match Timer (CMT).. 59
4.7.1 R_PG_Timer_Start_CMT_U<unit number>_C<channel number> ... 59
4.7.2 R_PG_Timer_HaltCount_CMT<unit number>_C<channel number> ... 60
4.7.3 R_PG_Timer_ResumeCount_CMT_U<unit number>_C<channel number> 61
4.7.4 R_PG_Timer_GetCounterValue_CMT_U<unit number>_C<channel number>................................. 62
4.7.5 R_PG_Timer_SetCounterValue_CMT_U<unit number>_C<channel number> 63
4.7.6 R_PG_Timer_StopModule_CMT_U<unit number>... 64

4.8 Serial Communications Interface (SCI) .. 65
4.8.1 R_PG_SCI_Set_C<channel number> ... 65
4.8.2 R_PG_SCI_StartSending_C<channel number> .. 66
4.8.3 R_PG_SCI_SendAllData_C<channel number> .. 68
4.8.4 R_PG_SCI_GetSentDataCount_C<channel number> .. 69
4.8.5 R_PG_SCI_StartReceiving_C<channel number>... 70
4.8.6 R_PG_SCI_ReceiveAllData_C<channel number> ... 72
4.8.7 R_PG_SCI_StopCommunication_C<channel number>.. 73
4.8.8 R_PG_SCI_GetReceivedDataCount_C<channel number>... 74
4.8.9 R_PG_SCI_GetReceptionErrorFlag_C<channel number> ... 75
4.8.10 R_PG_SCI_GetTransmitStatus_C<channel number>... 76
4.8.11 R_PG_SCI_StopModule_C<channel number>... 77

4.9 I2C Bus Interface (RIIC) .. 78
4.9.1 R_PG_I2C_Set_C<channel number>.. 78
4.9.2 R_PG_I2C_MasterReceive_C<channel number>... 79
4.9.3 R_PG_I2C_MasterReceiveLast_C<channel number> .. 81
4.9.4 R_PG_I2C_MasterSend_C<channel number>.. 83
4.9.5 R_PG_I2C_MasterSendWithoutStop_C<channel number> ... 85
4.9.6 R_PG_I2C_GenerateStopCondition_C<channel number> ... 87
4.9.7 R_PG_I2C_GetBusState_C<channel number>... 88
4.9.8 R_PG_I2C_SlaveMonitor_C<channel number>... 89
4.9.9 R_PG_I2C_SlaveSend_C<channel number> .. 91
4.9.10 R_PG_I2C_GetDetectedAddress_C<channel number>.. 92
4.9.11 R_PG_I2C_GetTR_C<channel number>.. 93
4.9.12 R_PG_I2C_GetEvent_C<channel number>.. 94
4.9.13 R_PG_I2C_GetReceivedDataCount_C<channel number> ... 95

RX610 Group Peripheral Driver Generator Reference Manual Table of Contents

R20UT0150EJ0101 Rev.1.01 Page 6 of 140
Feb 16, 2011

4.9.14 R_PG_I2C_GetSentDataCount_C<channel number>... 96
4.9.15 R_PG_I2C_Reset_C<channel number>.. 97
4.9.16 R_PG_I2C_StopModule_C<channel number> ... 98

4.10 A/D Converter... 99
4.10.1 R_PG_ADC_10_Set_AD<unit number> .. 99
4.10.2 R_PG_ADC_10_StartConversionSW_AD<unit number>.. 100
4.10.3 R_PG_ADC_10_StopConversion_AD<unit number> .. 101
4.10.4 R_PG_ADC_10_GetResult_AD_AD<unit number> .. 102
4.10.5 R_PG_ADC_10_StopModule_AD<unit number> .. 103

4.11 Notes on Notification Functions ... 104
4.11.1 Interrupts and processor mode.. 104
4.11.2 Interrupts and DSP instructions .. 104

5. Source File Registration and Building Programs in HEW ... 105

6. Example of Creating an Application .. 106

6.1 Blink the LED on RSK with TMR interrupt... 107
6.2 Execute A/D conversion continuously.. 120
6.3 Output PWM pulse with TPU... 125
6.4 Communicate between I2C channel 0 and channel 1 ... 131

RX610 Group Peripheral Driver Generator Reference Manual Overview

R20UT0150EJ0101 Rev.1.01 Page 7 of 140
Feb 16, 2011

1. Overview

1.1 Supported peripheral modules

The Peripheral Driver Generator supports the following products of RX610 group, peripheral modules and
endian.

(1) Products

Part No. Package

R5F56108VNFPP LQP0144KAA

R5F56107VNFPP LQP0144KAA

R5F56106VNFPP LQP0144KAA

R5F56104VNFPP LQP0144KAA

(2) Products

• Clock Generation Circuit

• Interrupt Control Unit (ICU), Exceptions

• DMA Controller (DMAC)

• I/O Ports

• 16-Bit Timer Pulse Unit (TPU)

• 8-Bit Timer (TMR)

• Compare Match Timer (CMT)

• Serial Communications Interface (SCI)

• I2C Bus Interface (RIIC)

• A/D Converter

(3) Endian

Little endian

RX610 Group Peripheral Driver Generator Reference Manual Creating a new project

R20UT0150EJ0101 Rev.1.01 Page 8 of 140
Feb 16, 2011

2. Creating a new project

To create the new project file, select the menu [File] -> [New Project]. New project dialog box will open.

For RX610 group, select [RX600] as a series and select [RX610] as a group. The package type, ROM capacity
and RAM capacity of selected product are displayed.
By clicking [OK], new project is created and opened.
The EXTAL input clock frequency is not set after opening a new project. Therefore an error icon is displayed.
For error display, refer to the user’s manual.

Set the frequency of the lock to be used here.

Fig 2.1 New project dialog box

Fig 2.2 Error display of new project

RX610 Group Peripheral Driver Generator Reference Manual Setting the Peripheral Modules

R20UT0150EJ0101 Rev.1.01 Page 9 of 140
Feb 16, 2011

3. Setting the Peripheral Modules

3.1 Peripheral Module Setting Windows

Figure 3.1 shows the example of peripheral module setting window display.

The correspondences of the resources to a peripheral modules or functions are shown in table 3.1.

Table 3.1 The correspondences of the resources to a peripheral modules or functions
Peripheral-module
selection tab

Resource pane Corresponding Peripheral Module or Function

SYSTEM Clock Generation Circuit Clock Generation Circuit

 Pin Pinfunctions

ICU Interrupts Interrupt Control Unit (ICU) (Fastinterrupt, NMI, IRQ0 to IRQ15)

 Exceptions Exceptions

DMAC DMAC0 to DMAC3 DMA Controller (DMAC) Channel 0 to Channel 3

I/O Port0 to PortE I/O Port 0 to E

TPU Unit0 (TPU0 to TPU5) 16-Bit Timer Puls Unit (TPU) Unit 0 (Channlel 0 to Channel 5)

 Unit1 (TPU6 to TPU11) 16-Bit Timer Puls Unit (TPU) Unit 1 (Channlel 6 to Channel 11)

TMR Unit0 (TMR0 and TMR1) 8-Bit Timer (TMR) Unit 0 (Channlel 0 and 1)

 Unit1 (TMR2 and TMR3) 8-Bit Timer (TMR) Unit 1 (Channlel 2 and 3)

CMT Unit0 (CMT0 and CMT1) Compare Match Timer (CMT) Unit 0 (Channlel 0 and 1)

 Unit1 (CMT2 and CMT3) Compare Match Timer (CMT) Unit 1 (Channlel 2 and 3)

SCI SCI0 to SCI6 Serial Communications Interface (SCI) Channel 0 to 6

RIIC RIIC0 and RIIC1 I2C Bus Interface (RIIC) Channel 0 and 1

A/D AD0 to AD3 A/D Converter Unit0 to Unit3

For how to make the setting of peripheral modules, refer to the user’s manual. For pin function settings, refer
to 3.2 Pin Functions.

Figure 3.1 The example of peripheral module setting window display

Resource pane

Peripheral-module selection tabs

RX610 Group Peripheral Driver Generator Reference Manual Setting the Peripheral Modules

R20UT0150EJ0101 Rev.1.01 Page 10 of 140
Feb 16, 2011

3.2 Pin Functions

The pin function window opens by selecting [SYSTEM] on the peripheral-module selection tabs and
selecting [Pin] on the resource pane.

The pin function window consists of [Pin function] sheet and [Peripheral pin usage] sheet.

3.2.1 Pin Function Sheet

In the pin function sheet, all pins are displayed in numerical order.

The contents of each column are shown in table 3.2.

Table 3.2 The contents of each column in the pin function sheet
Column Contents

Pin No. Pin number

Pin name The name of the pin (All pin functions assigned to a pin)

Selected function The pin function selected by the peripheral module settings

Direction The direction (Input/Output) of the selected pin function

State State of the setting

When a setting of peripheral module which uses pins is made, the result of setting is displayed in the pin
function sheet. For example, if AD0 is set to convert the analog input signal of AN0 in A/D converter
setting, no. the line of 141 pin which the AN0 is assigned to is displayed as shown in figure 3.4.

In this state, if an I/O port P40 is set up, the confliction will be indicated as shown in figure 3.5.

Figure 3.2 Selection to open the pin function window

Figure 3.3 Pin function sheet

Figre 3.4 Display of selected pin function

Figre 3.5 Display of confliction (Pin function sheet)

RX610 Group Peripheral Driver Generator Reference Manual Setting the Peripheral Modules

R20UT0150EJ0101 Rev.1.01 Page 11 of 140
Feb 16, 2011

Note

• In the RX610 group, the pin function can not be selected for a pin. The pin function is determined by the
settings of the peripheral modules. The pin function cannot be changed in the Pin Function sheet.

• For some pin functions, it is possible to change the pin to which the function is assigned. The pin function
assignment can be changed in the Peripheral Pin Usage sheet.

• If the multiple output pin functions are enabled in one pin, the output pin function of the highest priority
will be active. For details, refer to the RX610 group hardware manual.

3.2.2 Peripheral Pin Usage Sheet

The peripheral pin usage sheet shows the usage of pin functions of each peripheral module. The pin
functions of the peripheral module selected in left pane are displayed in right pane.

The contents of each column are shown in table 3.3.

Table 3.2 The contents of each column in the peripheral pin usage sheet
Column Contents

Pin Name The pin functions of peripheral module selected in left pane

Pin Function The usage of pin function

Assignment The name of pin to which the pin function is assigned

Pin No. Pin number

Direction The direction (Input/Output)

State State of the setting

When a setting of peripheral module which uses pins is made, the result of setting is displayed in the
peripheral pin usage sheet. For example, if the IRQ9 is enabled in the external interrupt setting, the line of
IRQ9 is displayed as shown in figure 3.7.

In this state, if an I/O port P01 is set up, the confliction will be indicated as shown in figure 3.8.

Figure 3.6 Peripheral pin usage sheet

Figre 3.7 Display of pin usage

Figre 3.8 Display of confliction (Peripheral pin usage sheet)

RX610 Group Peripheral Driver Generator Reference Manual Setting the Peripheral Modules

R20UT0150EJ0101 Rev.1.01 Page 12 of 140
Feb 16, 2011

It is possible to change the pin to which the IRQ9 is assigned. To change assignment of pin function, put
the mouse pointer on the Assignment cell. The drop down button to open the assignment selection opens.

Click the drop down button and select P41/IRQ9/AN1 from the drop down menu.

If P41/IRQ9/AN1 is not used by other peripheral modules, the confliction can be solved.

The pin functions of which the assignment can be changed are shown in table 3.4.

Table 3.4 The pin functions of which the assignment can be changed (RX610 144pin)
(Upper row is default)

Peripheral module Pin function Selection of assignment Pin No.
TPU Unit0 TCLKA *1 P32/IRQ2/PO10/TIOCC0/TCLKA 27

(TPU0 to TPU5) P14/IRQ4/TCLKA/SDA1 43

 TCLKB *1 P33/IRQ3/PO11/TIOCC0/TIOCD0/TCLKB 26

 P15/IRQ5/TCLKB/SCK3/SCL1 42

 TCLKC *1 P35/PO13/TIOCA1/TIOCB1/TCLKC 40

 P16/IRQ6/TCLKC/RxD3/SDA0 50

 TCLKD *1 P37/PO15/TIOCA2/TIOCB2/TCLKD 38

 P17/IRQ7/TCLKD/TxD3/SCL0/ADTRG1# 48

TPU0 TIOCA0(IC) *2 P30/IRQ0/PO8/TIOCA0 29

 P31/IRQ1/PO9/TIOCA0/TIOCB0 28

 TIOCC0(IC) *2 P32/IRQ2/PO10/TIOCC0/TCLKA 27

 P33/IRQ3/PO11/TIOCC0/TIOCD0/TCLKB 26

TPU1 TIOCA1(IC) *2 P34/IRQ4/PO12/TIOCA1 25

 P35/PO13/TIOCA1/TIOCB1/TCLKC 50

TPU2 TIOCA2(IC) *2 P36/PO14/TIOCA2 49

 P37/PO15/TIOCA2/TIOCB2/TCLKD 48

TPU3 TIOCA3(IC) *2 P21/PO1/TIOCA3/TMCI0/RxD0 36
 P20/PO0/TIOCA3/TIOCB3/TMRI0/TxD0 37
 TIOCC3(IC) *2 P22/PO2/TIOCC3/TMO0/SCK0 35

 P23/PO3/TIOCC3/TIOCD3 34

TPU4 TIOCA4(IC) *2 P25/PO5/TIOCA4/TMCI1/RxD1 32
 P24/PO4/TIOCA4/TIOCB4/TMRI1 33
TPU5 TIOCA5(IC) *2 P26/PO6/TIOCA5/TMO1/TxD1 31

 P27/PO7/TIOCA5/TIOCB5/SCK1 30

Figre 3.10 Display of drop down menu

Figre 3.11 Display of pin usage (After changing the assignment)

Figre 3.9 Display of drop down button

RX610 Group Peripheral Driver Generator Reference Manual Setting the Peripheral Modules

R20UT0150EJ0101 Rev.1.01 Page 13 of 140
Feb 16, 2011

Peripheral module Pin function Selection of assignment Pin No.
TPU6 TIOCA6(IC) *2 PA0/A0/BC0#/PO16/TIOCA6 101

 PA1/A1/PO17/TIOCA6/TIOCB6 100

 TIOCC6(IC) *2 PA2/A2/PO18/TIOCC6/TCLKE 99

 PA3/A3/PO19/TIOCC6/TIOCD6/TCLKF 98

TPU7 TIOCA7(IC) *2 PA4/A4/PO20/TIOCA7 97

 PA5/A5/PO21/TIOCA7/TIOCB7/TCLKG 96

TPU8 TIOCA8(IC) *2 PA6/A6/PO22/TIOCA8 95

 PA7/A7/PO23/TIOCA8/TIOCB8/TCLKH 94

TPU9 TIOCA9(IC) *2 PB0/A8/PO24/TIOCA9 92

 PB1/A9PO25/TIOCA9/TIOCB9 85

 TIOCC9(IC) *2 PB2/A10/PO26/TIOCC9 84

 PB3/A11/PO27/TIOCC9/TIOCD9 83

TPU10 TIOCA10(IC) *2 PB4/A12/PO28/TIOCA10 82

 PB5/A13/PO29/TIOCA10/TIOCB10 81

TPU11 TIOCA11(IC) *2 PB6/A14/PO30/TIOCA11 80

 PB7/A15/PO31/TIOCA11/TIOCB11 79

ICU IRQ0 P30/IRQ0/PO8/TIOCA0 29

(External Interrupts) P10/IRQ0 47

 IRQ1 P31/IRQ1/PO9/TIOCA0/TIOCB0 28

 P11/IRQ1/SCK2 46

 IRQ2 P32/IRQ2/PO10/TIOCC0/TCLKA 27

 P12/IRQ2/RxD2 45

 IRQ3 P33/IRQ3/PO11/TIOCC0/TIOCD0/TCLKB 26

 P13/IRQ3/TxD2/ADTRG0# 44

 IRQ4 P34/IRQ4/PO12/TIOCA1 25

 P14/IRQ4/TCLKA/SDA1 43

 IRQ5 PE5/IRQ5/D13 104

 P15/IRQ5/TCLKB/SCK3/SCL1 42

 IRQ6 PE6/IRQ6/D14 103

 P16/IRQ6/TCLKC/RxD3/SDA0 40

 IRQ7 PE7/IRQ7/D15 102

 P17/IRQ7/TCLKD/TxD3/SCL0/ADTRG1# 38

 IRQ8 P00/IRQ8/TMRI2/TxD6 8

 P40/IRQ8/AN0 141

 IRQ9 P01/IRQ9/TMCI2/RxD6 7

 P41/IRQ9/AN1 139

 IRQ10 P02/IRQ10/TMO2/SCK6/TRST# 6

 P42/IRQ10/AN2 138

 IRQ11 P03/IRQ11/TMRI3/SCK4/TMS 2

 P43/IRQ11/AN3 137

 IRQ12 P04/IRQ12/TMCI3/TxD4/TDI 1

 P44/IRQ12/AN4 136

 IRQ13 P05/IRQ13/TMO3/RxD4/TCK 144

 P45/IRQ13/AN5 135

 IRQ14 P76/IRQ14 67

 P46/IRQ14/AN6 134

 IRQ15 P65/IRQ15 9

 P47/IRQ15/AN7 133

*1 The settings are linked together
*2 When using as an input capture pin

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 14 of 140
Feb 16, 2011

4. Specification of Generated Functions

Table 4.1 shows generated functions for the RX610.

Table 4.1 Generated Functions for the RX610

Clock-generation circuit

Generated Function Description

R_PG_Clock_Set Set up the clocks

Interrupt controller (ICU)

Generated Function Description

R_PG_ExtInterrupt_Set_<interrupt type> Set up an external interrupt

R_PG_ExtInterrupt_Disable_<interrupt type> Disable the setting of an external interrupt

R_PG_ExtInterrupt_GetRequestFlag_<interrupt type> Get an external interrupt request flag

R_PG_ExtInterrupt_ClearRequestFlag_<interrupt type> Clear an external interrupt request flag

R_PG_FastInterrupt_Set Set an interrupt as the fast interrupt

R_PG_Exception_Set Set exception handlers

I/O port

Generated Function Description

R_PG_IO_PORT_Set_P<port number> Set the I/O ports

R_PG_IO_PORT_Set_P<port number><pin number> Set an I/O port (one pin)

R_PG_IO_PORT_Read_P<port number> Read data from an I/O port register

R_PG_IO_PORT_Read_P<port number><pin number> Read a bit from an I/O port register

R_PG_IO_PORT_Write_P<port number> Write data to an I/O port data register

R_PG_IO_PORT_Write_P <port number><pin number> Write a bit to an I/O port data register

DMAC controller (DMAC)

Generated Function Description

R_PG_DMAC_Set_C<channel number> Set up a DMAC channel

R_PG_DMAC_Activate_C<channel number> Have the DMAC be ready for the start trigger

R_PG_DMAC_StartTransfer_C<channel number> Start the data transfer (Software trigger)

R_PG_DMAC_Suspend_C<channel number> Stop the data transfer

R_PG_DMAC_GetTransferredByteCount_C<channel number> Get the current transfer data size

R_PG_DMAC_ClearTransferEndFlag_C<channel number> Clear the transfer end flag

R_PG_DMAC_SetReload_SrcAddress_C<channel number> Set the source address reload value

R_PG_DMAC_SetReload_DestAddress_C<channel number> Set the destination address reload value

R_PG_DMAC_SetReload_ByteCount_C<channel number> Set the transfer data size reload value

R_PG_DMAC_StopModule Shut down the all channels of DMAC

(e) 16-Bit Timer Pulse Unit (TPU)

Generated Function Description

R_PG_Timer_Start_TPU_U<unit number>_C<channel number> Set up the TPU and start the count

R_PG_Timer_HaltCount_TPU_U<unit number>_C<channel number> Halt the TPU count

R_PG_Timer_ResumeCount_TPU_U<unit number>_C<channel number> Resume the TPU count

R_PG_Timer_GetCounterValue_TPU_U<unit number>_C<channel number> Acquire the TPU counter value

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 15 of 140
Feb 16, 2011

R_PG_Timer_SetCounterValue_TPU_U<unit number>_C<channel number> Set the TPU counter value

R_PG_Timer_GetRequestFlag_TPU_U<unit number>_C<channel number> Acquire and clear the TPU interrupt flags

R_PG_Timer_StopModule_TPU_U<unit number> Shut down the TPU unit

(d) 8-bit timer (TMR)

Generated Function Description

R_PG_Timer_Start_TMR_U<unit number>(_C<channel number>) Set a TMR and start it counting

R_PG_Timer_HaltCount_TMR_U<unit number>(_C<channel number>) Halt counting by a TMR

R_PG_Timer_ResumeCount_TMR_U<unit number>(_C<channel number>) Resume counting by a TMR

R_PG_Timer_GetCounterValue_TMR_U<unit number>(_C<channel number>) Get the counter value of a TMR

R_PG_Timer_SetCounterValue_TMR_U<unit number>(_C<channel number>) Set the counter value of a TMR

R_PG_Timer_GetRequestFlag_TMR_U<unit number>(_C<channel number>) Acquire and clear the TMR interrupt flags

R_PG_Timer_StopModule _TMR_U<unit number> Stop a TMR unit

(e) Compare Match Timer (CMT)

Generated Function Description

R_PG_Timer_Start_CMT_U<unit number>_C<channel number> Set up the CMT and start the count

R_PG_Timer_HaltCount_CMT_U<unit number>_C<channel number> Halt the CMT count

R_PG_Timer_ResumeCount_CMT_U<unit number>_C<channel number> Resume the CMT count

R_PG_Timer_GetCounterValue_CMT_U<unit number>_C<channel number> Acquire the CMT counter value

R_PG_Timer_SetCounterValue_CMT_U<unit number>_C<channel number> Set the CMT counter value

R_PG_Timer_StopModule _CMT_U<unit number> Shut down the CMT unit

(e) Serial Communications Interface (SCI)

Generated Function Description

R_PG_SCI_Set_C<channel number> Set a SCI channel

R_PG_SCI_StartSending_C<channel number> Start the data transmission

R_PG_SCI_SendAllData_C<channel number> Transmit all data

R_PG_SCI_GetSentDataCount_C<channel number> Acquire the number of transmitted data

R_PG_SCI_StartReceiving_C<channel number> Start the data reception

R_PG_SCI_ReceiveAllData_C<channel number> Receive all data

R_PG_SCI_StopCommunication_C<channel number> Stop transmission and reception

R_PG_SCI_GetReceivedDataCount_C<channel number> Acquire the number of received data

R_PG_SCI_GetReceptionErrorFlag_C<channel number> Get the serial reception error flag

R_PG_SCI_GetTransmitStatus_C<channel number> Get the state of transmission

R_PG_SCI_StopModule_C<channel number> Shut down a SCI channel

(e) I2C Bus Interface (RIIC)

Generated Function Description

R_PG_I2C_Set_C<channel number> Set up the I2C bus interface channel

R_PG_I2C_MasterReceive_C<channel number> Master data reception

R_PG_I2C_MasterReceiveLast_C<channel number> Complete a master reception process

R_PG_I2C_MasterSend_C<channel number> Master data transmission

R_PG_I2C_MasterSendWithoutStop_C<channel number> Master data transmission (No stop condition)

R_PG_I2C_GenerateStopCondition_C<channel number> Generate the stop condition

R_PG_I2C_GetBusState_C<channel number> Get the bus state

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 16 of 140
Feb 16, 2011

R_PG_I2C_SlaveMonitor_C<channel number> Slave bus monitor

R_PG_I2C_SlaveSend_C<channel number> Slave data transmission

R_PG_I2C_GetDetectedAddress_C<channel number> Get the detected address

R_PG_I2C_GetTR_C<channel number> Get the transmit/receive mode

R_PG_I2C_GetEvent_C<channel number> Get the detected event

R_PG_I2C_GetReceivedDataCount_C<channel number> Acquires the count of transmitted data

R_PG_I2C_GetSentDataCount_C<channel number> Acquires the count of received data

R_PG_I2C_Reset_C<channel number> Reset the bus

R_PG_I2C_StopModule_C<channel number> Shut down the I2C bus interface channel

(f) A/D converter

Generated Function Description

R_PG_ADC_10_Set_AD<unit number> Set an A/D converter

R_PG_ADC_10_StartConversionSW_AD<unit number> Start A/D conversion (software trigger)

R_PG_ADC_10_StopConversion_AD<unit number> Stop A/D conversion

R_PG_ADC_10_GetResult_AD<unit number> Get the result of A/D conversion

R_PG_ADC_10_StopModule_AD<unit number> Stop an A/D converter

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 17 of 140
Feb 16, 2011

4.1 Clock-Generation Circuit

4.1.1 R_PG_Clock_Set

Definition bool R_PG_Clock_Set(void)

Description Set up the clocks

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_Clock.c

RPDL function R_CGC_Set

Details • Sets registers in the clock-generation circuit and multiplication ratios to derive the system
clock (ICLK), peripheral module clock (PCLK), and external bus clock (BCLK) from
EXTAL.

Example

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Set the clock-generation circuit.
 R_PG_Clock_Set();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 18 of 140
Feb 16, 2011

4.2 Interrupt Controller (ICU)

4.2.1 R_PG_ExtInterrupt_Set_<interrupt type>

Definition bool R_PG_ExtInterrupt_Set_<interrupt type> (void)
 <interrupt type>: IRQ0 to IRQ15 or the NMI

Description Set up an external interrupt

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_ExtInterrupt_<interrupt type>.c

 <interrupt type>: IRQ0 to IRQ15 or the NMI
RPDL function R_INTC_CreateExtInterrupt

Details •

•

•

Enables an external interrupt (IRQ0 to IRQ15 or the NMI) and sets the input direction and
input buffer for the pins to be used for the external interrupt signal. For IRQn, the pin to
be used (IRQn-A/B) is set according to the selection in the [Peripheral Pin Usage]
window.
When the name of the interrupt notification function has been specified in the GUI, if an
interrupt occurs in the CPU, the function having the specified name will be called. Create
the interrupt notification function as follows:
void <name of the interrupt notification function> (void)

For the interrupt notification function, note the contents of 4.11, Notes on Notification
Functions.
If a name of the interrupt notification function is not specified in the GUI, an interrupt
handler will not be called even if the external interrupt is input. The state of a request flag
can be acquired by calling R_PG_ExtInterrupt_GetRequestFlag_<interrupt type>.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 19 of 140
Feb 16, 2011

Example1 A case where Irq0ExtIntFunc has been specified as the name of an interrupt notification
function:

 //Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Set IRQ0.
 R_PG_ExtInterrupt_Set_IRQ0();

 While(1);
}

//IRQ0 notification function
void Irq0ExtIntFunc (void)
{
 func_irq0(); //Processing of IRQ0
}

Example2 A case where a name has not been specified for an interrupt notification function:

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Set IRQ0.
 R_PG_ExtInterrupt_Set_IRQ0();

 While(1){
 bool flag;

 //Acquire the interrupt request flag for IRQ0.
 R_PG_ExtInterrupt_GetRequestFlag_IRQ0(&flag);
 if(flag){
 func_irq0(); //Processing of IRQ0
 }

 //Clear the interrupt request flag for IRQ0.
 R_PG_ExtInterrupt_ClearRequestFlag_IRQ0();
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 20 of 140
Feb 16, 2011

4.2.2 R_PG_ExtInterrupt_Disable_<interrupt type>

Definition bool R_PG_ExtInterrupt_Disable_<interrupt type> (void)
 <interrupt type>: IRQ0 to IRQ15

Description Disable an external interrupt

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_ExtInterrupt_<interrupt type>.c

 <interrupt type>: IRQ0 to IRQ15

RPDL function R_INTC_ControlExtInterrupt

Details • Disables an external interrupt (IRQ0 to IRQ15).
Settings of the input/output direction and input buffer for the pin being used for the
external interrupt signal are retained.

Example A case where Irq0ExtIntFunc has been specified as the name of an interrupt notification

function:

 //Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Set IRQ0.
 R_PG_ExtInterrupt_Set_IRQ0();

 While(1);
}

//External interrupt (IRQ0) notification function
void Irq0ExtIntFunc (void)
{
 //Disable IRQ0.
 R_PG_ExtInterrupt_Disable_IRQ0();

 func_irq0(); //Processing of IRQ0
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 21 of 140
Feb 16, 2011

4.2.3 R_PG_ExtInterrupt_GetRequestFlag_<interrupt type>

Definition bool R_PG_ExtInterrupt_GetRequestFlag_<interrupt type> (bool * flag)
 <interrupt type>: IRQ0 to IRQ15 or the NMI

Description Get an external interrupt request flag

Parameter bool * flag Destination for storage of the interrupt request flag

Return value true Acquisition of the flag succeeded.
 false Acquisition of the flag failed.

File for output R_PG_ExtInterrupt_<interrupt type>.c

 <interrupt type>: IRQ0 to IRQ15 or the NMI

RPDL function R_INTC_GetExtInterruptStatus

Details • Acquires the interrupt request flag for an external interrupt (IRQ0 to IRQ15 or the NMI).
When an interrupt is requested, ‘true’ is entered in the specified destination for storage of
the flag’s value.

Example A case where a name has not been specified for an interrupt notification function:

 //Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Set IRQ0.
 R_PG_ExtInterrupt_Set_IRQ0();

 While(1){
 bool flag;

 //Acquire the interrupt request flag for IRQ0.
 R_PG_ExtInterrupt_GetRequestFlag_IRQ0(&flag);
 if(flag){
 func_irq0(); //Processing of IRQ0
 }

 //Clear the interrupt request flag for IRQ0.
 R_PG_ExtInterrupt_ClearRequestFlag_IRQ0();
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 22 of 140
Feb 16, 2011

4.2.4 R_PG_ExtInterrupt_ClearRequestFlag_<interrupt type>

Definition bool R_PG_ExtInterrupt_ClearRequestFlag_<interrupt type> (void)
 <interrupt type>: IRQ0 to IRQ15 or the NMI

Description Clear an external interrupt request flag

Parameter None

Return value true Clearing succeeded.
 false Clearing failed.

File for output R_PG_ExtInterrupt_<interrupt type>.c

 <interrupt type>: IRQ0 to IRQ15 or the NMI

RPDL function R_INTC_ControlExtInterrupt

Details •

•
Clears the interrupt request flag for an external interrupt (IRQ0 to IRQ15 or the NMI).
This operation will not work for a level-sensitive interrupt if the input signal is still low.

Example A case where a name has not been specified for an interrupt notification function:

 //Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Set IRQ0.
 R_PG_ExtInterrupt_Set_IRQ0();

 While(1){
 bool flag;

 //Acquire the interrupt request flag for IRQ0.
 R_PG_ExtInterrupt_GetRequestFlag_IRQ0(&flag);
 if(flag){
 func_irq0(); //Processing of IRQ0
 }

 //Clear the interrupt request flag for IRQ0.
 R_PG_ExtInterrupt_ClearRequestFlag_IRQ0();
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 23 of 140
Feb 16, 2011

4.2.5 R_PG_FastInterrupt_Set

Definition bool R_PG_FastInterrupt_Set (void)

Description Set up the fast interrupt

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_FastInterrupt.c

RPDL function R_INTC_CreateFastInterrupt

Details •

•

•

Sets the interrupt source specified in the GUI as the fast interrupt. The specified interrupt
source is not set or enabled. The interrupt source to be set as the fast interrupt must be set
and enabled by the functions for the peripheral module.
This function uses an unconditional trap instruction (BRK) to set the fast-interrupt vector
register (FINTV). If interrupts are disabled (the interrupt enable bit (I) of the processor
status word is 0), this function will be locked.
The interrupt handler that is specified as a fast interrupt will be compiled as a fast
interrupt handler by specifying fint in #pragma interrupt declaration.

Example A case where IRQ0 has been specified as the fast interrupt in the GUI:

 //Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Set IRQ0 as the fast interrupt.
 R_PG_FastInterrupt_Set ();

 //Set IRQ0.
 R_PG_ExtInterrupt_Set_IRQ0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 24 of 140
Feb 16, 2011

4.2.6 R_PG_Exception_Set

Definition bool R_PG_Exception_Set (void)

Description Set the exception handlers

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_Exception.c

RPDL function R_INTC_CreateExceptionHandlers

Details • Sets the exception notification functions. If an exception for which the name of the
exception notification function was specified in the GUI occurs after this function is
called, the function with the specified name will be called.
Create the exception notification function as follows:
 void <name of the exception notification function> (void)
For the exception notification function, note the contents of 4.11, Notes on Notification
Functions.

Example A case where the following exception notification functions have been set in the GUI:

 Privileged instruction exception: PrivInstExcFunc
 Undefined instruction exception: UndefInstExcFunc
 Floating-point exception: FpExcFunc

 //Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Set the exception handlers.
 R_PG_Exception_Set();
}

void PrivInstExcFunc(){
 func_pi_excep(); //Processing in response to a privileged instruction exception
}

void UndefInstExcFunc (){
 func_ui_excep(); //Processing in response to an undefined instruction exception
}

void FpExcFunc (){
 funct_fp_excep(); //Processing in response to a floating-point exception
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 25 of 140
Feb 16, 2011

4.3 I/O Ports

4.3.1 R_PG_IO_PORT_Set_P<port number>

Definition bool R_PG_IO_PORT_Set_P<port number> (void)
 <port number>: 0 to 9 and A to E

Description Set up the I/O port

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_IO_PORT_P<port number>.c

 <port number>: 0 to 9 and A to E

RPDL function R_IO_PORT_Set

Details •

•

Selects the direction (input or output), input buffer, pull-up, and open-drain output for
pins for which [Used as I/O port] was specified in the GUI.
This function is used to set all pins in a port for which [Used as I/O port] has been
selected.

Example //Include "R_PG_<PDG project name>.h" to use this function.

#include "R_PG_default.h"

void func(void)
{
 //Set P0.
 R_PG_IO_PORT_Set_P0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 26 of 140
Feb 16, 2011

4.3.2 R_PG_IO_PORT_Set_P<port number><pin number>

Definition bool R_PG_IO_PORT_Set_P<port number><pin number> (void)
 <port number>: 0 to 9 and A to E
 <pin number>: 0 to 7

Description Set up the I/O port pin

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_IO_PORT_P<port number>.c

 <port number>: 0 to 9 and A to E

RPDL function R_IO_PORT_Set

Details •

•

Selects the direction (input or output), input buffer, pulling up, and open-drain output for
a pin for which [Used as I/O port] was specified in the GUI.
The setting only applies to one pin.

Example //Include "R_PG_<PDG project name>.h" to use this function.

#include "R_PG_default.h"

void func(void)
{
 //Set P00.
 R_PG_IO_PORT_Set_P00();

 //Set P01.
 R_PG_IO_PORT_Set_P01();

 //Set P02.
 R_PG_IO_PORT_Set_P02();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 27 of 140
Feb 16, 2011

4.3.3 R_PG_IO_PORT_Read_P<port number>

Definition bool R_PG_IO_PORT_Read_P<port number> (uint8_t * data)
 <port number>: 0 to 9 and A to E

Description Read data from the I/O port register

Parameter uint8_t * data Destination for storage of the read pin state

Return value true Reading proceeded correctly.
 false Reading failed.

File for output R_PG_IO_PORT_P<port number>.c

 <port number>: 0 to 9 and A to E

RPDL function R_IO_PORT_Read

Details • Reads an I/O port register to acquire the states of the pins.

Example //Include "R_PG_<PDG project name>.h" to use this function.

#include "R_PG_default.h"

void func(void)
{
 uint8_t data

 //Acquire the states of P0 pins.
 R_PG_IO_PORT_Read_P0(&data);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 28 of 140
Feb 16, 2011

4.3.4 R_PG_IO_PORT_Read_P<port number><pin number>

Definition bool R_PG_IO_PORT_Read_P<port number><pin number> (uint8_t * data)
 <port number>: 0 to 9 and A to E
 <pin number>: 0 to 7

Description Read 1-bit data from the I/O port register

Parameter uint8_t * data Destination for storage of the read pin state

Return value true Reading proceeded correctly.
 false Reading failed.

File for output R_PG_IO_PORT_P<port number>.c

(<port number>: 0 to 9 and A to E)

RPDL function R_IO_PORT_Read

Details •
•

Reads an I/O port register to acquire the state of one pin.
The value is stored in the lowest-order bit of *data.

Example //Include "R_PG_<PDG project name>.h" to use this function.

#include "R_PG_default.h"

void func(void)
{
 uint8_t data_p00, data_p01, data_p02;

 //Acquire the state of pin P00.
 R_PG_IO_PORT_Read_P00(& data_p00);

 //Acquire the state of pin P01.
 R_PG_IO_PORT_Read_P01(& data_p01);

 //Acquire the state of pin P02.
 R_PG_IO_PORT_Read_P02(& data_p02);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 29 of 140
Feb 16, 2011

4.3.5 R_PG_IO_PORT_Write_P<port number>

Definition bool R_PG_IO_PORT_Write_P<port number> (uint8_t data)
 <port number>: 0 to 9 and A to E

Description Write data to the I/O port data register

Parameter uint8_t data Value to be written

Return value true Writing proceeded correctly.
 false Writing failed.

File for output R_PG_IO_PORT_P<port number>.c

 <port number>: 0 to 9 and A to E

RPDL function R_IO_PORT_Write

Details • Writes a value to an I/O port data register. A value written to the register is output from
the output port.

Example //Include "R_PG_<PDG project name>.h" to use this function.

#include "R_PG_default.h"

void func(void)
{
 //Set P0.
 R_PG_IO_PORT_Set_P0();

 //Output 0x03 from P0.
 R_PG_IO_PORT_Set_P0(0x03);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 30 of 140
Feb 16, 2011

4.3.6 R_PG_IO_PORT_Write_P<port number><pin number>

Definition bool R_PG_IO_PORT_Write_P<port number><pin number> (uint8_t data)
 <port number>: 0 to 9 and A to E
 <pin number>: 0 to 7

Description Write 1-bit data to the I/O port data register

Parameter uint8_t data Value to be written

Return value true Writing proceeded correctly.
 false Writing failed.

File for output R_PG_IO_PORT_P<port number>.c

 <port number>: 0 to 9 and A to E

RPDL function R_IO_PORT_Write

Details •

Writes a value to an I/O port data register. A value written to an output port is output.
Store the value in the lowest-order bit of data.

Example //Include "R_PG_<PDG project name>.h" to use this function.

#include "R_PG_default.h"

void func(void)
{
 //Set P00.
 R_PG_IO_PORT_Set_P00();

 //Set P01.
 R_PG_IO_PORT_Set_P01();

 //Output low level from P00.
 R_PG_IO_PORT_Write_P00(0x00);

 //Output high level from P01.
 R_PG_IO_PORT_Write_P01(0x01);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 31 of 140
Feb 16, 2011

4.4 DMAC controller (DMAC)

4.4.1 R_PG_DMAC_Set_C<channel number>

Definition bool R_PG_DMAC_Set_C<channel number> (void)
<channel number>: 0 to 3

Description Set up a DMAC channel

Parameter None
Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3
RPDL function R_DMAC_Create

•
•

•

•

Releases the DMAC from the module-stop and makes initial settings.
If an interrupt was selected as a transfer start trigger, the DMAC channel will be ready for
the interrupt signal by calling R_PG_DMAC_Activate_C<channel number> after calling
this function. If the software trigger was selected as a transfer start trigger, DMAC channel
will start the data transfer when calling R_PG_DMAC_StartTransfer_C<channel number>
after calling this function.
The DMAC interrupt is set by this function. When the name of the interrupt notification
function has been specified in the GUI, if a CPU interrupt occurs, the function having the
specified name will be called. Create the interrupt notification function as follows:
 void <name of the interrupt notification function> (void)
For the interrupt notification function, note the contents of 4.11, Notes on Notification
Functions.
To transfer the SCI transmission data by DMAC, make the following settings.
DMAC settings

Transfer system : Single-operand transfer
Destination start address : Address of serial transmit data register
Address addition direction : Fixed
Unit data size : 1 byte
Single operand data count : 1

SCI setting
 Data transmission method : Transfer the transmitted serial data by DMAC

For usage of function, refer to example 2.

To transfer the SCI transmission data by DMAC, make the following settings.
DMAC settings

Transfer system : Single-operand transfer
Source start address : Address of serial receive data register
Address addition direction : Fixed
Unit data size : 1 byte

Details

•

Single operand data count : 1

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 32 of 140
Feb 16, 2011

 SCI setting
 Data transmission method : Transfer the received serial data by DMAC
 For usage of function, refer to example 3.

Example 1 A case where IRQ0 activates DMA transfer

 •
•
•

IRQ0 interrupt was selected as a transfer start trigger of DMAC0 in GUI.
Dmac0IntFunc was specified as the DMA interrupt notification function name in the GUI.
DMAC was selected as an interrupt request destination for IRQ0.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Set IRQ0
 R_PG_ExtInterrupt_Set_IRQ0();

 // Have DMAC0 ready for the transfer start trigger
 R_PG_DMAC_Activate_C0();
}

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 //Stop the DMAC
 R_PG_DMAC_StopModule();
}

Example 2 A case where the SCI transmission data is transferred by DMAC
 •

•
Dmac0IntFunc was specified as the DMA interrupt notification function name in the GUI.
The SCI0 transmit data empty interrupt is selected as a DAM transfer trigger.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

//DMA transfer end flag
volatile bool sci_dma_transfer_complete;

void func(void)
{
 //Initialize DMA transfer end flag
 sci_dma_transfer_complete = false;

 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Set up SCI0
 R_PG_SCI_Set_C0();
 //Have DMAC0 ready for the transfer start trigger
 R_PG_DMAC_Activate_C0();

 //Enable the SCI0 transmission (TXI interrupt occurs and DMA transfer starts)
 R_PG_SCI_SendAllData_C0(
 PDL_NO_PTR,
 PDL_NO_DATA
);
 // Wait for the DMAC to complete the transfer
 while (sci_dma_transfer_complete == false);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 33 of 140
Feb 16, 2011

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 //SCI transmit end flag
 bool sci_transfer_cmplete;
 sci_transfer_cmplete = false;

 // Wait for the SCI to complete the transmission
 do{
 R_PG_SCI_GetTransmitStatus_C0(&sci_transfer_cmplete);
 } while(! sci_transfer_cmplete);

 //Stop the SCI
 R_PG_SCI_StopCommunication();

 //Stop the DMAC
 R_PG_DMAC_StopModule();

 sci_dma_transfer_complete = ture;
}

Example 3 A case where the SCI reception data is transferred by DMAC
 •

•
Dmac0IntFunc was specified as the DMA interrupt notification function name in the GUI.
The SCI0 receive data empty interrupt is seleclted as a DAM transfer trigger.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

//DMA transfer end flag
volatile uint8_t sci_dma_transfer_complete;

void func(void)
{
 //Initialize DMA transfer end flag
 sci_dma_transfer_complete = false;

 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Set up SCI0
 R_PG_SCI_Set_C0();

 //Have DMAC0 be ready for the transfer start trigger
 R_PG_DMAC_Activate_C0();

 //Enable the SCI0 reception
 R_PG_SCI_ReceiveAllData_C0(
 PDL_NO_PTR,
 PDL_NO_DATA
);
}

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 //Stop the SCI reception
 R_PG_SCI_StopCommunication

 //Stop the DMAC
 R_PG_DMAC_StopModule();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 34 of 140
Feb 16, 2011

4.4.2 R_PG_DMAC_Activate_C<channel number>

Definition bool R_PG_DMAC_Activate_C<channel number> (void)
 < channel number > : 0 to 3

Description Have the DMAC be ready for the start trigger

Conditions for
output

An interrupt is selected as a transfer start trigger

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3

RPDL function R_DMAC_Control

Details •
•
•

This function has the DMAC channel ready for the transfer start trigger.
This function is genetarted when an interrupt is selected as a transfer start trigger.
Call R_PG_DMAC_Set_C<channel number> to set up a DMAC channel before calling
this function.

A case where the setting is made as follows. Example
•
•

IRQ0 was selected as a transfer start trigger of DMAC0
Dmac0IntFunc was specified as the DMA0 interrupt notification function name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Set IRQ0
 R_PG_ExtInterrupt_Set_IRQ0();

 // Have DMAC0 ready for the transfer start trigger
 R_PG_DMAC_Activate_C0();
}

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 //Stop the DMAC
 R_PG_DMAC_StopModule();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 35 of 140
Feb 16, 2011

4.4.3 R_PG_DMAC_StartTransfer_C<channel number>

Definition bool R_PG_DMAC_StartTransfer_C<channel number> (void)
 < channel number > : 0 to 3

Description Start the data transfer (Software trigger)

Conditions for
output

The software trigger is selected as a transfer start trigger

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3

RPDL function R_DMAC_Control

Details •
•
•

This function triggers the DMA transfer.
This function is genetarted when the software trigger is selected as a transfer start trigger.
Call R_PG_DMAC_Set_C<channel number> to set up a DMAC channel before calling
this function.

A case where the setting is made as follows. Example
•
•

The software trigger was selected as a transfer start trigger of DMAC0
Dmac0IntFunc was specified as the DMA interrupt notification function name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Start the DMA transfer of DMAC0
 R_PG_DMAC_StartTransfer_C0();
}

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 //Stop the DMAC
 R_PG_DMAC_StopModule();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 36 of 140
Feb 16, 2011

4.4.4 R_PG_DMAC_Suspend_C<channel number>

Definition bool R_PG_DMAC_Suspend_C<channel number> (void)
 < channel number > : 0 to 3

Description Suspend the data transfer

Parameter None

Return value true Suspending succeeded.
 false Suspending failed.

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3

RPDL function R_DMAC_Control

Details • This function suspends the DMA transfer.

A case where the setting is made as follows. Example
•
•

IRQ0 interrupt was selected as a transfer start trigger of DMAC0
Dmac0IntFunc was specified as the DMA interrupt notification function name
Irq1ExtIntFunc was specified as the IRQ1 interrupt notification function name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Set IRQ0
 R_PG_ExtInterrupt_Set_IRQ0();

 //Set IRQ1
 R_PG_ExtInterrupt_Set_IRQ1();

 // Have DMAC0 ready for the transfer start trigger
 R_PG_DMAC_Activate_C0();
}

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 //Stop the DMAC
 R_PG_DMAC_StopModule();
}

//IRQ1 interrupt notification function
void Irq1ExtIntFunc (void)
{
 //Suspend the DMA transfer
 R_PG_DMAC_Suspend_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 37 of 140
Feb 16, 2011

4.4.5 R_PG_DMAC_GetTransferredByteCount_C<channel number>

Definition bool R_PG_DMAC_GetTransferredByteCount_C<channel number> (uint32_t * data)
 < channel number > : 0 to 3

Description Get the current transfer byte count register value

Parameter uint32_t * data The address of storage area for the current transfer byte count
register value

Return value true Acquisition succeeded
 false Acquisition failed.

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3

RPDL function R_DMAC_GetStatus

Details • This function gets the current transfer byte count register value.

A case where the setting is made as follows. Example
• The software trigger was selected as a transfer start trigger of DMAC0

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 uint32_t count;

 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Start the DMA transfer of DMAC0
 R_PG_DMAC_StartTransfer_C0();

 //Wait for the current transfer byte count register value to become 10
 do{
 R_PG_DMAC_GetTransferredByteCount_C0(& count);
 } while(count > 10);

 //Suspend the DMA transfer
 R_PG_DMAC_Suspend_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 38 of 140
Feb 16, 2011

4.4.6 R_PG_DMAC_ClearTransferEndFlag_C<channel number>

Definition bool R_PG_DMAC_ClearTransferEndFlag_C<channel number> (void)
 < channel number > : 0 to 3

Description Clear the DMA transfer end flag

Parameter None

Return value true Clearing succeeded
 false Clearing failed

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3

RPDL function R_DMAC_Control

Details •
•

This function clears the DMA transfer end flag.
This flag is cleared automatically if a notification function is enabled in GUI.

A case where the setting is made as follows. Example
•
•

The software trigger was selected as a transfer start trigger of DMAC0
The DMA interrupt was not enabled

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Start the DMA transfer of DMAC0
 R_PG_DMAC_StartTransfer_C0();

 //Clear the DMA transfer end flag of DMAC0
 R_PG_DMAC_ClearTransferEndFlag_C0();

 //Start the DMA transfer of DMAC0
 R_PG_DMAC_StartTransfer_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 39 of 140
Feb 16, 2011

4.4.7 R_PG_DMAC_SetReload_SrcAddress_C<channel number>

Definition bool R_PG_DMAC_SetReload_SrcAddress_C<channel number> (uint32_t data)
 < channel number > : 0 to 3

Description Set the source address reload value
Conditions for
output

Enable the source address reload

Parameter uint32_t data The source address reload value

Return value true Setting was made correctly
 false Setting failed.

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3

RPDL function R_DMAC_Control
Details •

•
This function sets the source address reload value.
Call this function from DMA interrupt notification function.

A case where the source address reload, the destination address reload, and the transfer data
size reload are enabled.

Example

•
•
•
•

Consecutive-operand transfer is selected as a transfer system.
IRQ0 interrupt was selected as a transfer start trigger of DMAC0
Dmac0IntFunc was specified as the DMA interrupt notification function name
The source address reload, the destination address reload, and the transfer data size reload
are enabled.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.
void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Set IRQ0
 R_PG_ExtInterrupt_Set_IRQ0();

 // Have DMAC0 ready for the transfer start trigger
 R_PG_DMAC_Activate_C0();
}
//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 if(contimue){ //Reload and continue
 R_PG_DMAC_SetReload_SrcAddress_C0(src_address); //Source address reload
 R_PG_DMAC_SetReload_DestAddress_C0(dest_address); //Destination address reload
 R_PG_DMAC_SetReload_ByteCount_C0(byte_count); //Transfer data size reload
 }
 else{ //Stop the DMAC0
 R_PG_DMAC_Suspend_C0();
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 40 of 140
Feb 16, 2011

4.4.8 R_PG_DMAC_SetReload_DestAddress_C<channel number>

Definition bool R_PG_DMAC_SetReload_DestAddress_C<channel number> (uint32_t data)
 < channel number > : 0 to 3

Description Set the destination address reload value

Conditions for
output

Enable the destination address reload

Parameter uint32_t data The destination address reload value

Return value true Setting was made correctly
 false Setting failed.

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3

RPDL function R_DMAC_Control

Details •
•

This function sets the destination address reload value.
Call this function from DMA interrupt notification function.

A case where the source address reload, the destination address reload, and the transfer data
size reload are enabled.

Example

•
•
•
•

Consecutive-operand transfer is selected as a transfer system.
IRQ0 interrupt was selected as a transfer start trigger of DMAC0
Dmac0IntFunc was specified as the DMA interrupt notification function name
The source address reload, the destination address reload, and the transfer data size reload
are enabled.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Set IRQ0
 R_PG_ExtInterrupt_Set_IRQ0();

 // Have DMAC0 ready for the transfer start trigger
 R_PG_DMAC_Activate_C0();
}

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 if(contimue){ //Reload and continue
 R_PG_DMAC_SetReload_SrcAddress_C0(src_address); //Source address reload
 R_PG_DMAC_SetReload_DestAddress_C0(dest_address); //Destination address reload
 R_PG_DMAC_SetReload_ByteCount_C0(byte_count); //Transfer data size reload
 }
 else{ //Stop the DMAC0
 R_PG_DMAC_Suspend_C0();
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 41 of 140
Feb 16, 2011

4.4.9 R_PG_DMAC_SetReload_ByteCount_C<channel number>

Definition bool R_PG_DMAC_SetReload_ByteCount_C<channel number> (uint32_t data)
 < channel number > : 0 to 3

Description Set the transfer data size reload value

Conditions for
output

Enable the transfer data size reload

Parameter uint32_t data The transfer data size reload value

Return value true Setting was made correctly
 false Setting failed.

File for output R_PG_DMAC_C <channel number>.c

 <unit number>: 0 to 3

RPDL function R_DMAC_Control

Details •
•

This function sets the transfer data size reload value.
Call this function from DMA interrupt notification function.

A case where the source address reload, the destination address reload, and the transfer data
size reload are enabled.

Example

•
•
•
•

Consecutive-operand transfer is selected as a transfer system.
IRQ0 interrupt was selected as a transfer start trigger of DMAC0
Dmac0IntFunc was specified as the DMA interrupt notification function name
The source address reload, the destination address reload, and the transfer data size reload
are enabled.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Set IRQ0
 R_PG_ExtInterrupt_Set_IRQ0();

 // Have DMAC0 ready for the transfer start trigger
 R_PG_DMAC_Activate_C0();
}

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 if(contimue){ //Reload and continue
 R_PG_DMAC_SetReload_SrcAddress_C0(src_address); //Source address reload
 R_PG_DMAC_SetReload_DestAddress_C0(dest_address); //Destination address reload
 R_PG_DMAC_SetReload_ByteCount_C0(byte_count); //Transfer data size reload
 }
 else{ //Stop the DMAC0
 R_PG_DMAC_Suspend_C0();
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 42 of 140
Feb 16, 2011

4.4.10 R_PG_DMAC_StopModule

Definition bool R_PG_DMAC_StopModule (void)

Description Shut down the all channels of DMAC

Parameter None

Return value true Shutting down succeeded.
 false Shutting down failed.

File for output R_PG_DMAC.c

RPDL function R_DMAC_Destroy

Details •
•

Stops the all DMAC channels and places it in the module-stop state.
Call To R_PG_DMAC_Suspend_C<channel number> to stop a single channel.

A case where the setting is made as follows. Example
•
•

The software trigger was selected as a transfer start trigger of DMAC0
Dmac0IntFunc was specified as the DMA interrupt notification function name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 //Set up DMAC0
 R_PG_DMAC_Set_C0();

 //Start the DMA transfer of DMAC0
 R_PG_DMAC_StartTransfer_C0();
}

//The notification function which is called when the transfer completes
void Dmac0IntFunc (void)
{
 //Stop the DMAC
 R_PG_DMAC_StopModule();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 43 of 140
Feb 16, 2011

4.5 16-Bit Timer Pulse Unit (TPU)

4.5.1 R_PG_Timer_Start_TPU_U<unit number>_C<channel number>

Definition bool R_PG_Timer_Start_TPU_U<unit number>_C<channel number> (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 11

Description Set up the TPU and start the count

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_Timer_TPU_U<unit number>_C<channel number>.c

 <unit number>: 0 and 1
 <channel number>: 0 to 11

RPDL function R_TPU_Create

Details •

•

•

•

Releases the TPU from the module-stop, makes initial settings, and starts the TPU
counting.
Interrupts of the TPU are set by this function. When the name of the interrupt notification
function has been specified in the GUI, if an interrupt occurs in the CPU, the function
having the specified name will be called. Create the interrupt notification function as
follows:
 void <name of the interrupt notification function> (void)
For the interrupt notification function, note the contents of 4.11, Notes on Notification
Functions.
If a name for the interrupt notification function is not specified in the GUI, an interrupt
handler will not be called even if the interrupt occurs. The state of a request flag can be
acquired by calling R_PG_Timer_GetRequestFlag_TPU_U<unit number>_C<channel
number>.
When counting driven by an externally input clock, the external reset signal, input
capture, or pulse output is in use, the direction (input or output) and input buffer for the
pin to be used is set in this function.

Example A case where the setting is made as follows.
 •

•
TPU unit 1 channel 6 was set up
Tpu6IcCmAIntFunc was specified as a compare match A interrupt notification function
name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 R_PG_Timer_Start_TPU_U1_C6(); //Set up the TPU6 and start count
}

void Tpu6IcCmAIntFunc(void)
{
 func_cmA(); //Processing in response to a compare match A interrupt
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 44 of 140
Feb 16, 2011

4.5.2 R_PG_Timer_HaltCount_TPU<unit number>_C<channel number>

Definition bool R_PG_Timer_HaltCount_TPU_U<unit number>_C<channel number> (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 11

Description Halt the TPU count

Parameter None

Return value true Halting succeeded.
 false Halting failed.

File for output R_PG_Timer_TPU_U<unit number>_C<channel number>.c

 <unit number>: 0 or 1
 <channel number>: 0 to 11

RPDL function R_TPU_Control

Details • Halts counting by a TPU. To make the TPU resume counting, call the following function.

R_PG_Timer_ResumeCount_TPU_U<unit number>_C<channel number>

Example A case where the setting is made as follows.
 •

•
TPU unit 1 channel 6 was set up
Tpu6IcCmAIntFunc was specified as the compare match A interrupt notification function
name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 R_PG_Timer_Start_TPU_U1_C6(); //Set up the TPU6 and start count
}

void Tpu6IcCmAIntFunc(void)
{
 R_PG_Timer_HaltCount_TPU_U1_C6(); //Halt the TPU6 count

 func_cmA(); //Processing in response to a compare match A interrupt

 R_PG_Timer_ResumeCount_TPU_U1_C6(); //Resume the TPU6 count
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 45 of 140
Feb 16, 2011

4.5.3 R_PG_Timer_ResumeCount_TPU_U<unit number>_C<channel number>

Definition bool R_PG_Timer_ResumeCount_TPU_U<unit number>_C<channel number> (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 11

Description Resume the TPU count

Parameter None

Return value true Resuming count succeeded.
 false Resuming count failed.

File for output R_PG_Timer_TPU_U<unit number>_C<channel number>.c

 <unit number>: 0 or 1
 <channel number>: 0 to 11

RPDL function R_TPU_Control

Details • Resumes counting by a TPU that was halted by R_PG_Timer_HaltCount_TPU_U<unit

number>_C<channel number>.

Example A case where the setting is made as follows.
 •

•
TPU unit 1 channel 6 was set up
Tpu6IcCmAIntFunc was specified as the compare match A interrupt notification function
name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 R_PG_Timer_Start_TPU_U1_C6(); //Set up the TPU6 and start count
}

void Tpu6IcCmAIntFunc(void)
{
 R_PG_Timer_HaltCount_TPU_U1_C6(); //Halt the TPU6 count

 func_cmA(); //Processing in response to a compare match A interrupt

 R_PG_Timer_ResumeCount_TPU_U1_C6(); //Resume the TPU6 count
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 46 of 140
Feb 16, 2011

4.5.4 R_PG_Timer_GetCounterValue_ＴＰＵ_U<unit number>_C<channel number>

Definition bool R_PG_Timer_GetCounterValue_TPU_U<unit number>_C<channel number>
(uint16_t * data)
 <unit number>: 0 or 1
 <channel number>: 0 to 11

Description Acquire the TPU counter value

Parameter uint16_t * data Destination for storage of the counter value

Return value true Acquisition of the counter value succeeded.
 false Acquisition of the counter value failed.

File for output R_PG_Timer_TPU_U<unit number>_C<channel number>.c

<unit number>: 0 or 1
<channel number>: 0 to 11

RPDL function R_TPU_Read

Details • Acquires the counter value of a TPU.

Example A case where the setting is made as follows.
 •

•
•

TPU unit 0 channel 0 was set up
Set TGRA as an input capture register and enable an input capture interrupt
Tpu0IcCmAIntFunc was specified as the input capture A interrupt notification function
name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

uint16_t counter;

void func(void)
{
 R_PG_Timer_Start_TPU_U0_C0(); //Set up the TPU0 and start count
}

void Tpu0IcCmAIntFunc(void)
{
 // Acquire the value of a TPU0 counter
 R_PG_Timer_GetCounterValue_TPU_U0_C0(&counter);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 47 of 140
Feb 16, 2011

4.5.5 R_PG_Timer_SetCounterValue_TPU_U<unit number>_C<channel number>

Definition bool R_PG_Timer_SetCounterValue_TPU_U<unit number>_C<channel number>
(uint16_t data)
 <unit number>: 0 or 1
 <channel number>: 0 to 11

Description Set the TPU counter value

Parameter uint16_t data Value to be set to the counter

Return value true Setting of the counter value succeeded.
 false Setting of the counter value failed.

File for output R_PG_Timer_TPU_U<unit number>_C<channel number>.c

 <unit number>: 0 or 1
 <channel number>: 0 to 11

RPDL function R_TPU_Control

Details • Set the counter value of a TPU.

Example A case where the setting is made as follows.
 •

•
•

TPU unit 0 channel 1 was set up
Set TGRA as an output compare register and enable a compare match interrupt
Tpu1IcCmAIntFunc was specified as the compare match A interrupt notification function
name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func1(void)
{
 R_PG_Timer_Start_TPU_U0_C1(); //Set up the TPU1 and start count
}

void Tpu1IcCmAIntFunc(void)
{
 R_PG_Timer_SetCounterValue_TPU_U0_C1(0); // Set the value of a TPU1
counter
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 48 of 140
Feb 16, 2011

4.5.6 R_PG_Timer_GetRequestFlag_TPU_U<unit number>_C<channel number>

Definition bool R_PG_Timer_GetRequestFlag_TPU_U<unit number>_C<channel number> (
 bool* a,
 bool* b,
 bool* c,
 bool* d,
 bool* ov,
 bool* un
);
 <unit number>: 0 or 1
 <channel number>: 0 to 11

Description Acquire and clear the TPU interrupt flags

Parameter bool* a The address of storage area for the compare match/input capture A flag
 bool* b The address of storage area for the compare match/input capture B flag
 bool* c The address of storage area for the compare match/input capture C flag
 bool* d The address of storage area for the compare match/input capture D flag
 bool* ov The address of storage area for the overflow flag
 bool* un The address of storage area for the underflow flag

Return value true Acquisition of the flags succeeded
 false Acquisition of the flags failed

File for output R_PG_Timer_TPU_U<unit number>.c

 <unit number>: 0 or 1
 <channel number>: 0 to 11

RPDL function R_TPU_Read

Details •

•
•

•

This function acquires the interrupt flags of TPU.
All flags will be cleared in this function.
Specify the address of storage area for the flags to be acquired.
Specify 0 for a flag that is not required.
The flags of compare match/imput capture C and D are available in channel 0, 3, 6, and 9. Specify 0
for other channels.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 49 of 140
Feb 16, 2011

Example A case where the setting is made as follows.
 •

•
TPU unit 0 channel 1 was set up
Set TGRA as an output compare register and enable an output compare interrupt

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

uint16_t counter;

void func(void)
{
 R_PG_Timer_Start_TPU_U0_C1(); //Set up the TPU1 and start count

 //Wait for the compare match A
 do{
 R_PG_Timer_GetRequestFlag_TPU_U0_C1(
 & cma_flag,
 0,
 0,
 0,
 0,
 0
);
 } while(!cma_flag);

 func_cmA(); //Processing in response to a compare match A

 // Stop the TPU unit 0
 R_PG_Timer_StopModule_TPU_U0(&counter);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 50 of 140
Feb 16, 2011

4.5.7 R_PG_Timer_StopModule_TPU_U<unit number>

Definition bool R_PG_Timer_StopModule_TPU_U<unit number> (void)
 <unit number>: 0 or 1

Description Shut down the TPU unit

Parameter None

Return value true Shutting down succeeded.
 false Shutting down failed.

File for output R_PG_Timer_TPU_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_TPU_Destroy

Details •

Stops a TPU unit and places it in the module-stop state per unit. If two or more channels
are running when this function is called, all channels are stopped. Call the following
function to stop a single channel.
R_PG_Timer_HaltCount_TPU_U<unit number>_C<channel number>

Example A case where the setting is made as follows.
 •

•
TPU unit 0 channel 1 was set up
Tpu1IcCmAIntFunc was specified as the compare match A interrupt notification function
name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

uint16_t counter;

void func(void)
{
 R_PG_Timer_Start_TPU_U0_C1(); //Set up the TPU1 and start count
}

void Tpu1IcCmAIntFunc(void)
{
 // Stop the TPU unit 0
 R_PG_Timer_StopModule_TPU_U0(&counter);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 51 of 140
Feb 16, 2011

4.6 8-Bit Timer (TMR)

4.6.1 R_PG_Timer_Start_TMR_U<unit number>(_C<channel number>)

Definition bool R_PG_Timer_Start_TMR_U<unit number>(_C<channel number>) (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 3
((_C<channel number>) is added in the 8-bit mode)

Description Set up the TMR and start the count

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_Timer_TMR_U<unit number>.c

 <unit number>: 0 and 1

RPDL function R_TMR_CreateChannel (8-bit mode)

R_TMR_CreateUnit (16-bit mode)

Details •

•

•

Releases the TMR from the module-stop, makes initial settings, and starts the TMR
counting. The initial settings are made per channel in the 8-bit mode and per unit in the
16-bit mode (when the two channels of a unit are cascade-connected).
Interrupts of the TMR are set by this function. When the name of the interrupt notification
function has been specified in the GUI, if an interrupt occurs in the CPU, the function
having the specified name will be called. Create the interrupt notification function as
follows:
 void <name of the interrupt notification function> (void)
For the interrupt notification function, note the contents of 4.11, Notes on Notification
Functions.
If a name for the interrupt notification function is not specified in the GUI, an interrupt
handler will not be called even if the interrupt occurs. The state of a request flag can be
acquired by calling R_PG_Timer_GetRequestFlag_TMR_U<unit number>(_C<channel
number>).
When counting driven by an externally input clock, the external reset signal, or pulse
output is in use, the direction (input or output) and input buffer for the pin to be used is set
in this function.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 52 of 140
Feb 16, 2011

Example1 The 16-bit timer mode has been specified for TMR unit 1.
In this case, the following interrupt notification functions have been set in the GUI.
 Overflow interrupt: TmrOf2IntFunc
 Compare match A interrupt: TmrCma2IntFunc
 Compare match B interrupt: TmrCma2IntFunc

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Place TMR unit 1 in the 16-bit mode.
 R_PG_Timer_Start_TMR_U0();
}

void TmrOf2IntFunc(void)
{
 func_of(); //Processing in response to an overflow interrupt
}

void TmrCma2IntFunc(void)
{
 func_cma(); //Processing in response to a compare match A interrupt
}

void TmrCma2IntFunc(void)
{
 func_cmb(); //Processing in response to a compare match B interrupt
}

Example2 The 8-bit timer mode has been specified for TMR0 in the GUI.
Whether an interrupt has been requested or not is confirmed by checking the interrupt flag
in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func1(void)
{
 bool cma_flag;

 //Place TMR0 in the 8-bit mode and start it counting.
 R_PG_Timer_Start_TMR_U0_C0();

 While(1){
 bool flag;
 //Acquire the compare match A interrupt request flag.
 R_PG_PG_Timer_GetRequestFlag_TMR_U0_C0(cma_flag, 0, 0);

 if(cma_flag){
 func_cma0(); //Processing of IRQ0
 }
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 53 of 140
Feb 16, 2011

4.6.2 R_PG_Timer_HaltCount_TMR_U<unit number>(_C<channel number>)

Definition bool R_PG_Timer_HaltCount_TMR_U<unit number>(_C<channel number>) (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 3
((_C<channel number>) is added in the 8-bit mode.)

Description Halt the TMR count

Parameter None

Return value true Halting succeeded.
 false Halting failed.

File for output R_PG_Timer_TMR_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_TMR_ControlChannel (8-bit mode)

R_TMR_ControlUnit (16-bit mode)

Details • Halts counting by a TMR. To make the TMR resume counting, call the following

function.
R_PG_Timer_ResumeCount_TMR_U<unit number>(_C<channel number>)

Example The 8-bit timer mode was specified for TMR0 in the GUI.

TmrCma0IntFunc was specified as the name of the compare match A interrupt function in
the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Place TMR0 in the 8-bit mode.
 R_PG_Timer_Start_TMR_U0_C0();
}

void TmrCma0IntFunc(void)
{
 //Halt counting by TMR0.
 R_PG_Timer_HaltCount_TMR_U0_C0();

 func_cma(); //Processing in response to a compare match A interrupt

 //Resume counting by TMR0.
 R_PG_Timer_ResumeCount_TMR_U0_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 54 of 140
Feb 16, 2011

4.6.3 R_PG_Timer_ResumeCount_TMR_U<unit number>(_C<channel number>)

Definition bool R_PG_Timer_ResumeCount_TMR_U<unit number>(_C<channel number>) (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 3
((_C<channel number>) is added in the 8-bit mode.)

Description Resume the TMR count

Parameter None

Return value true Resuming count succeeded.
 false Resuming count failed.

File for output R_PG_Timer_TMR_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_TMR_ControlChannel (8-bit mode)

R_TMR_ControlUnit (16-bit mode)

Details • Resumes counting by a TMR that was halted by R_PG_Timer_HaltCount_TMR_U<unit

number>(_C<channel number>).

Example The 8-bit timer mode was selected for TMR0 in the GUI.

TmrCma0IntFunc was specified as the name of the compare match A interrupt function in
the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Place TMR0 in the 8-bit mode.
 R_PG_Timer_Start_TMR_U0_C0();
}

void TmrCma0IntFunc(void)
{
 //Halt counting by TMR0.
 R_PG_Timer_HaltCount_TMR_U0_C0();

 func_cma(); //Processing in response to a compare match A interrupt

 //Resume counting by TMR0.
 R_PG_Timer_ResumeCount_TMR_U0_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 55 of 140
Feb 16, 2011

4.6.4 R_PG_Timer_GetCounterValue_TMR_U<unit number>(_C<channel number>)

Definition •8-bit mode

 bool R_PG_Timer_GetCounterValue_TMR_U<unit number>_C<channel number>
(uint8_t * data)

 <unit number>: 0 or 1
 <channel number>: 0 to 3
•16-bit mode
 bool R_PG_Timer_GetCounterValue_TMR_U<unit number> (uint16_t * data)
 <unit number>: 0 or 1

Description Acquire the TMR counter value

Parameter uint8_t * data (8-bit mode)

uint16_t * data (16-bit mode)
Destination for storage of the counter value

Return value true Acquisition of the counter value succeeded.
 false Acquisition of the counter value failed.

File for output R_PG_Timer_TMR_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_TMR_ReadChannel (8-bit mode)

R_TMR_ReadUnit (16-bit mode)

Details • Acquires the counter value of a TMR.

The value of the 8-bit counter for the specified channel is stored if the TMR unit is in the
8-bit timer mode. The counter values for both channels are stored as follows if the TMR
unit is in the 16-bit mode.

 Unit b15 to b8 b7 to b0

 0 TMR0 counter TMR1 counter

 1 TMR2 counter TMR3 counter

 *When the TMR unit is in the 16-bit mode, the higher-order bits are in TMR0 (or TMR2).

Example The 8-bit timer mode was selected for TMR0 in the GUI.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func1(void)
{
 R_PG_Timer_Start_TMR_U0_C0(); //Place TMR0 in the 8-bit mode.
}

uint8_t func2(void)
{
 uint8_t data;

 //Acquire the value of a counter of TMR0.
 R_PG_Timer_GetCounterValue_TMR_U0_C0(&data);

 return data;
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 56 of 140
Feb 16, 2011

4.6.5 R_PG_Timer_SetCounterValue_TMR_U<unit number>(_C<channel number>)

Definition •8-bit mode
 bool R_PG_Timer_SetCounterValue_TMR_U<unit number>_C<channel number>
 (uint8_t data)
 <unit number>: 0 or 1
 <channel number>: 0 to 3
•16-bit mode
 bool R_PG_Timer_SetCounterValue_TMR_U<unit number> (uint16_t data)
 <unit number>: 0 or 1

Description Set the TMR counter value

Parameter uint8_t data (8-bit mode)

uint16_t data (16-bit mode)
Value to be set to the counter

Return value true Setting of the counter value succeeded.
 false Setting of the counter value failed.

File for output R_PG_Timer_TMR_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_TMR_ControlChannel (8-bit mode)

R_TMR_ControlUnit (16-bit mode)

Details • Set the counter value of a TMR.

The value of the 8-bit counter for the specified channel is stored if the TMR unit is in the
8-bit timer mode. The counter values for both channels are stored as follows if the TMR
unit is in the 16-bit mode.

 Unit b15 to b8 b7 to b0

 0 TMR0 counter TMR1 counter

 1 TMR2 counter TMR3 counter

 *When the TMR unit is in the 16-bit mode, the higher-order bits are in TMR0 (or TMR2).

Example The 8-bit timer mode was selected for TMR0 in the GUI.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func1(void)
{
 //Place TMR0 in the 8-bit mode.
 R_PG_Timer_Start_TMR_U0_C0();
}

void func2(void)
{

 //Set the value of a counter of TMR0.
 R_PG_Timer_SetCounterValue_TMR_U0_C0(0);

 return;
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 57 of 140
Feb 16, 2011

4.6.6 R_PG_Timer_GetRequestFlag_TMR_U<unit number>(_C<channel number>)

Definition bool R_PG_Timer_GetRequestFlag_TMR_U<unit number>_C<channel number>
(bool* cma, bool* cmb, bool* ov);
 <unit number>: 0 or 1
 <channel number>: 0 to 3
((_C<channel number>) is added in the 8-bit mode.)

Description Acquire and clear the TMR interrupt flags

Parameter bool* cma The address of storage area for the compare match A flag
 bool* cmb The address of storage area for the compare match B flag
 bool* ov The address of storage area for the overflow flag

Return value true Acquisition of the flags succeeded
 false Acquisition of the flags failed

File for output R_PG_Timer_TMR_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_TMR_ReadChannel (8-bit mode)

R_TMR_ReadUnit (16-bit mode)

Details •

•
•
•

This function acquires the interrupt flags of TMR.
All flags will be cleared in this function.
Specify the address of storage area for the flags to be acquired.
Specify 0 for a flag that is not required.

Example The 8-bit timer mode was selected for TMR0 in the GUI.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

uint16_t counter;

void func(void)
{
 //Place TMR0 in the 8-bit mode.
 R_PG_Timer_Start_TMR_U0_C0();

 //Wait for the compare match A
 do{
 R_PG_Timer_GetRequestFlag_TMR_U0_C0(
 & cma_flag,
 0,
 0
);
 } while(!cma_flag);

 func_cmA(); //Processing in response to a compare match A interrupt
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 58 of 140
Feb 16, 2011

4.6.7 R_PG_Timer_StopModule_TMR_U<unit number>

Definition bool R_PG_Timer_StopModule_TMR_U<unit number> (void)
 <unit number>: 0 or 1

Description Shut down a TMR unit

Parameter None

Return value true Shutting down succeeded.
 false Shutting down failed.

File for output R_PG_Timer_TMR_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_TMR_Destroy

Details •

Stops a TMR unit and places it in the module-stop state per unit. If both TMR0 and
TMR1 of unit 0 (or both TMR2 and TMR3 of unit 1) are running when this function is
called, both channels are stopped. Call the following function to stop a single channel.
R_PG_Timer_HaltCount_TMR_U<unit number>_C<channel number>

Example The 8-bit timer mode was selected for TMR0 in the GUI.

TmrCma0IntFunc was specified as the name of the compare match A interrupt function in
the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 //Place TMR0 in the 8-bit mode.
 R_PG_Timer_Start_TMR_U0_C0();
}

void TmrCma0IntFunc(void)
{
 func_cma(); //Processing in response to a compare match A interrupt

 //Stop TMR unit 0.
 R_PG_Timer_StopModule_TMR_U0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 59 of 140
Feb 16, 2011

4.7 Compare Match Timer (CMT)

4.7.1 R_PG_Timer_Start_CMT_U<unit number>_C<channel number>

Definition bool R_PG_Timer_Start_CMT_U<unit number>_C<channel number> (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 3

Description Set up the CMT and start the count

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_Timer_CMT_U<unit number>.c

 <unit number>: 0 and 1

RPDL function R_CMT_Create

Details •

•

Releases the CMT from the module-stop, makes initial settings, and starts the CMT
counting.
Interrupts of the CMT are set by this function. When the name of the interrupt notification
function has been specified in the GUI, if an interrupt occurs in the CPU, the function
having the specified name will be called. Create the interrupt notification function as
follows:
 void <name of the interrupt notification function> (void)
For the interrupt notification function, note the contents of 4.11, Notes on Notification
Functions.

Example A case where the setting is made as follows.
 • Cmt0IntFunc was specified as a compare match interrupt notification function name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 R_PG_Timer_Start_CMT_U0_C0 (); //Set up the CMT0 and start count
}

void Cmt0IntFunc (void)
{
 func_cmt0(); //Processing in response to a compare match interrupt
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 60 of 140
Feb 16, 2011

4.7.2 R_PG_Timer_HaltCount_CMT<unit number>_C<channel number>

Definition bool R_PG_Timer_HaltCount_CMT_U<unit number>_C<channel number> (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 3

Description Halt the CMT count

Parameter None

Return value true Halting succeeded.
 false Halting failed.

File for output R_PG_Timer_CMT_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_CMT_Control

Details • Halts counting by a CMT. To make the CMT resume counting, call the following

function.
R_PG_Timer_ResumeCount_CMT_U<unit number>_C<channel number>

Example A case where the setting is made as follows.
 •

•
CMT unit 0 channel 0 was set up
Cmt0IntFunc was specified as the compare match interrupt notification function name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 R_PG_Timer_Start_CMT_U0_C0(); //Set up the CMT0 and start count
}

void Cmt0IntFunc(void)
{
 //Halt the CMT0 count
 R_PG_Timer_HaltCount_CMT_U0_C0();

 func_cmt0(); //Processing in response to a compare match interrupt

 //Resume the CMT0 count
 R_PG_Timer_ResumeCount_CMT_U0_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 61 of 140
Feb 16, 2011

4.7.3 R_PG_Timer_ResumeCount_CMT_U<unit number>_C<channel number>

Definition bool R_PG_Timer_ResumeCount_CMT_U<unit number>_C<channel number> (void)
 <unit number>: 0 or 1
 <channel number>: 0 to 3

Description Resume the CMT count

Parameter None

Return value True Resuming count succeeded.
 False Resuming count failed.

File for output R_PG_Timer_CMT_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_CMT_Control

Details • Resumes counting by a CMT that was halted by R_PG_Timer_HaltCount_CMT_U<unit

number>_C<channel number>.

Example A case where the setting is made as follows.
 •

•
CMT unit 0 channel 0 was set up
Cmt0IntFunc was specified as the compare match interrupt notification function name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 R_PG_Timer_Start_CMT_U0_C0(); //Set up the CMT0 and start count
}

void Cmt0IntFunc(void)
{
 //Halt the CMT0 count
 R_PG_Timer_HaltCount_CMT_U0_C0();

 func_cmt0(); //Processing in response to a compare match interrupt

 //Resume the CMT0 count
 R_PG_Timer_ResumeCount_CMT_U0_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 62 of 140
Feb 16, 2011

4.7.4 R_PG_Timer_GetCounterValue_CMT_U<unit number>_C<channel number>

Definition bool R_PG_Timer_GetCounterValue_CMT_U<unit number>_C<channel number>
(uint16_t * data)
 <unit number>: 0 or 1
 <channel number>: 0 to 3

Description Acquire the CMT counter value

Parameter uint16_t * data Destination for storage of the counter value

Return value true Acquisition of the counter value succeeded.
 false Acquisition of the counter value failed.

File for output R_PG_Timer_CMT_U<unit number>.c

<unit number>: 0 or 1

RPDL function R_CMT_Read

Details • Acquires the counter value of a CMT.

Example A case where the setting is made as follows.
 • CMT unit 0 channel 0 was set up

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

uint16_t counter;

void func1(void)
{
 R_PG_Timer_Start_CMT_U0_C0(); //Set up the CMT0 and start count
}

unt16_t func2(void)
{
 uint16_t data;

 // Acquire the value of a CMT0 counter
 R_PG_Timer_GetCounterValue_CMT_U0_C0(&data);

 return data;
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 63 of 140
Feb 16, 2011

4.7.5 R_PG_Timer_SetCounterValue_CMT_U<unit number>_C<channel number>

Definition bool R_PG_Timer_SetCounterValue_CMT_U<unit number>_C<channel number>
(uint16_t data)
 <unit number>: 0 or 1
 <channel number>: 0 to 3

Description Set the CMT counter value

Parameter uint16_t data Value to be set to the counter

Return value true Setting of the counter value succeeded.
 false Setting of the counter value failed.

File for output R_PG_Timer_CMT_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_CMT_Control

Details • Set the counter value of a CMT.

Example A case where the setting is made as follows.
 • CMT unit 0 channel 0 was set up

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func1(void)
{
 R_PG_Timer_Start_CMT_U0_C0(); //Set up the CMT0 and start count
}

void func2(void)
{
 R_PG_Timer_SetCounterValue_CMT_U0_C0(0); // Set the value of a CMT0 counter

 return;
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 64 of 140
Feb 16, 2011

4.7.6 R_PG_Timer_StopModule_CMT_U<unit number>

Definition bool R_PG_Timer_StopModule_CMT_U<unit number> (void)
 <unit number>: 0 or 1

Description Shut down the CMT unit

Parameter None

Return value true Shutting down succeeded.
 false Shutting down failed.

File for output R_PG_Timer_CMT_U<unit number>.c

 <unit number>: 0 or 1

RPDL function R_CMT_Destroy

Details •

Stops a CMT unit and places it in the module-stop state per unit. If both CMT0 and
CMT1 of unit 0 (or both CMT2 and CMT3 of unit 1) are running when this function is
called, both channels are stopped. Call the following function to stop a single channel.
R_PG_Timer_HaltCount_CMT_U<unit number>_C<channel number>

Example A case where the setting is made as follows.
 •

CMT unit 0 channel 0 was set up
Cmt0IntFunc was specified as the compare match interrupt notification function name

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.

void func(void)
{
 R_PG_Timer_Start_CMT_U0_C0(); //Set up the CMT0 and start count
}

void Cmt0IntFunc(void)
{
 func_cmt(); //Processing in response to a compare match interrupt

 R_PG_Timer_StopModule_CMT_U0(); // Stop the CMT unit 0
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 65 of 140
Feb 16, 2011

4.8 Serial Communications Interface (SCI)

4.8.1 R_PG_SCI_Set_C<channel number>

Definition bool R_PG_SCI_Set_C<channel number> (void)
 <channel number>: 0 to 6

Description Set up a SCI channel

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_Create

Details •

•
•

•

Releases a SCI channel from the module-stop state, makes initial settings, and the
direction (input or output) and input buffer for the pin to be used is set. This function also
disables the alternative modes on those pins.
Function R_PG_Clock_Set must be called before any use of this function.
When the name of the notification function has been specified in the GUI, if
corresponding event occurs, the function having the specified name will be called. Create
the notification function as follows:
 void <name of the notification function> (void)
For the notification function, note the contents of 4.11, Notes on Notification Functions.
For pin TXD5 it is not possible for this function to ensure that external bus signals CS4 or
CS7 are not output. If channel SCI5 is used for transmission, the pin TXD5 cannot be
used as CS4#_D or CS7#_D.

Example SCI0 has been set in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 66 of 140
Feb 16, 2011

4.8.2 R_PG_SCI_StartSending_C<channel number>

Definition bool R_PG_SCI_StartSending_C<channel number> (uint8_t * data, uint16_t count)
 <channel number>: 0 to 6

Description Start the data transmission

Conditions for
output

•
•

The function of transmission is selected for a SCI channel in GUI.
"Notify the transmission completion of all data by function call" is selected as the data
transmission method in GUI.

Parameter uint8_t * data The start address of the data to be sent.
 uint16_t count The number of the data to be sent.

Set this to 0 if the transmit data is a character string (ending with a null
character).

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_Send

Details •
•

•

•

This function starts the data transmission.
This function is generated when "Notify the transmission completion of all data by
function call" is selected as the data transmission method in GUI. This function returns
immediately and the notification function having the specified name will be called when
the last byte has been sent.
Create the notification function as follows:
 void <name of the notification function> (void)
For the notification function, note the contents of 4.11, Notes on Notification Functions.
The number of transmitted data can be aquired by
R_PG_SCI_GetSentDataCount_C<channel number>. The transmission can be
terminated by calling R_PG_SCI_StopCommunication_C<channel number> before all
bytes have been sent.
The count of transmitted characters will loop back to 0 if 65536 characters are sent.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 67 of 140
Feb 16, 2011

Example SCI0 has been set as transmitter in the GUI.
Sci0TrFunc was specified as the name of the transmit end notification function in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint8_t data[255];

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_StartSending_C0(data, 255); //Send 255 bytes of binary data.
}

//Transmit end notification function that called when all bytes have been sent
void Sci0TrFunc(void)
{
 //Shut down the SCI0
 R_PG_SCI_StopModule_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 68 of 140
Feb 16, 2011

4.8.3 R_PG_SCI_SendAllData_C<channel number>

Definition bool R_PG_SCI_SendAllData_C<channel number> (uint8_t * data, uint16_t count)
 <channel number>: 0 to 6

Description Transmit all data

Conditions for
output

•
•

The function of transmission is selected for a SCI channel in GUI.
Other than "Notify the transmission completion of all data by function call" is selected as
the data transmission method in GUI.

Parameter uint8_t * data The start address of the data to be sent.
 uint16_t count The number of the data to be sent.

Set this to 0 if the transmit data is a character string (ending with a null
character).

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_Send

Details •
•

•
•

This function transmits all data.
This function is generated when other than "Notify the transmission completion of all data
by function call" is selected as the transmission method in GUI. This function waits until
the last byte has been sent.
The count of transmitted characters will loop back to 0 if 65536 characters are sent.
For usage of function for transferring the SCI transmission data by DMAC, refer to 4.4.1
R_PG_DMAC_Set_C<channel number>.

Example SCI0 has been set as transmitter in the GUI.

"Wait at the transmission function until the last byte has been transmitted" is selected as the
transmission method in GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint8_t data[255];

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_SendAllData_C0(data, 255); //Send 255 bytes of binary data.
 R_PG_SCI_StopModule_C0(); //Shut down the SCI0
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 69 of 140
Feb 16, 2011

4.8.4 R_PG_SCI_GetSentDataCount_C<channel number>

Definition bool R_PG_SCI_GetSentDataCount_C<channel number> (uint16_t * count)
 <channel number>: 0 to 6

Description Acquire the number of transmitted data

Conditions for
output

The function of transmission is selected for a SCI channel and "Notify the transmission
completion of last byte by function call" is selected as the transmit end notification in GUI.

Parameter uint16_t * count The storage location for the number of bytes that have been

transmitted in the current transmission.

Return value true Acquisition of the data count succeeded
 false Acquisition of the data count failed

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_GetStatus

Details • When "Notify the transmission completion of last byte by function call" is selected as the
transmit end notification in GUI, the number of transmitted data can be aquired by calling
this function.

Example SCI0 has been set as transmitter in the GUI.

Sci0TrFunc was specified as the name of the transmit end notification function in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint8_t data[255];

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_Send_C0(data, 255); //Send 255 bytes of binary data.
}

//The transmit end notification function that called when all bytes have been sent
void Sci0TrFunc(void)
{
 //Shut down the SCI0
 R_PG_SCI_StopModule_C0();
}

//The function to check the number of transmitted data and terminate the transmission
void func_terminate_SCI(void)
{
 uint16_t count;
 // Acquire the number of transmitted data
 R_PG_SCI_GetSentDataCount_C0(&count);

 if(count > 32){
 R_PG_SCI_StopSending_C0(); //Terminate the transmission

}
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 70 of 140
Feb 16, 2011

4.8.5 R_PG_SCI_StartReceiving_C<channel number>

Definition bool R_PG_SCI_StartReceiving_C<channel number> (uint8_t * data, uint16_t count)
 <channel number>: 0 to 6

Description Start the data reception

Conditions for
output

•
•

The function of reception is selected for a SCI channel in GUI
"Notify the reception completion of all data by function call" is selected as the data
reception method in GUI

Parameter uint8_t * data The start address of the storage area for the expected data.
 uint16_t count The number of the data to be received.

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_Receive

Details •
•

•

•

This function starts the data reception.
This function is generated when "Notify the reception completion of all data by function
call" is selected as the data reception method in GUI. This function returns immediately
and the notification function having the specified name will be called when the last byte
has been received.
Create the notification function as follows:
 void <name of the notification function> (void)
For the notification function, note the contents of 4.11, Notes on Notification Functions.
The number of received data can be aquired by R_PG_SCI_GetReceivedDataCount_C
<channel number>. The reception can be terminated by calling
R_PG_SCI_StopReceiving_C<channel number> before all bytes have been received.
The maximum number of characters to be received is 65535.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 71 of 140
Feb 16, 2011

Example SCI0 has been set as receiver in the GUI.
Sci0ReFunc was specified as the name of the receive end notification function in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint8_t data[255];

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_StartReceiving_C0(data, 255); //Receive 255 bytes of binary data.
}

//Receive end notification function that called when all bytes have been received
void Sci0ReFunc(void)
{
 //Shut down the SCI0
 R_PG_SCI_StopModule_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 72 of 140
Feb 16, 2011

4.8.6 R_PG_SCI_ReceiveAllData_C<channel number>

Definition bool R_PG_SCI_ReceiveAllData_C<channel number> (uint8_t * data, uint16_t count)
 <channel number>: 0 to 6

Description Receive all data

Conditions for
output

•
•

The function of reception is selected for a SCI channel in GUI.
Other than "Notify the reception completion of all data by function call" is selected as the
data reception method in GUI

Parameter uint8_t * data The start address of the storage area for the expected data.
 uint16_t count The number of the data to be received.

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_Receive

Details •
•

•
•

This function receives all data.
This function is generated when other than "Notify the reception completion of all data by
function call" is selected as the data reception method in GUI. This function waits until the
last byte has been received.
The maximum number of characters to be received is 65535.
For usage of function for receiving the SCI transmission data by DMAC, refer to 4.4.1
R_PG_DMAC_Set_C<channel number>.

Example SCI0 has been set as receiver in the GUI.

"Wait at the reception function until all data has been transmitted" is selected as the reception
method in GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint8_t data[255];

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_ReceiveAllData_C0(data, 255); //Receive 255 bytes of binary data.
 R_PG_SCI_StopModule_C0(); //Shut down the SCI0
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 73 of 140
Feb 16, 2011

4.8.7 R_PG_SCI_StopCommunication_C<channel number>

Definition R_PG_SCI_StopCommunication_C<channel number> (void)
 <channel number>: 0 to 6

Description Stop transmission and reception of serial data

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6
RPDL function R_SCI_Control

Details •
•

•

This function stops data transmission and reception.
When "Notify the transmission completion of all data by function call" is selected as the
data transmission method in GUI, the reception can be terminated by calling this function
before the number of bytes specified at R_PG_SCI_StartSending_C<channel number>
have been received.
When "Notify the reception completion of all data by function call" is selected as the data
reception method in GUI, the reception can be terminated by calling this function before
the number of bytes specified at R_PG_SCI_StartReceiving_C<channel number> have
been received.

Example SCI0 has been set as receiver in the GUI.
Sci0ReFunc was specified as the name of the receive end notification function in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"
uint8_t data[255];
void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_StartReceiving_C0(data, 255); //Send 255 bytes of binary data.
}
//The receive end notification function that called when all bytes have been received.
void Sci0ReFunc(void)
{
 //Shut down the SCI0
 R_PG_SCI_StopModule_C0();
}
//The function to check the number of received data and terminate the reception
void func_terminate_SCI(void)
{
 uint8_t count;
 //Acquire the number of received data
 R_PG_SCI_GetReceivedDataCount_C0(&count);
 if(count > 32){
 R_PG_SCI_StopCommunication_C0(); //Terminate the reception

}
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 74 of 140
Feb 16, 2011

4.8.8 R_PG_SCI_GetReceivedDataCount_C<channel number>

Definition bool R_PG_SCI_GetReceivedDataCount_C<channel number> (uint16_t * count)
 <channel number>: 0 to 6

Description Acquire the number of received data

Conditions for
output

The function of reception is selected for a SCI channel and "Notify the reception completion
of all data by function call" is selected as the data reception method in GUI.

Parameter uint16_t * count The storage location for the number of bytes that have been

received in the current reception process.

Return value true Acquisition of the data count succeeded
 false Acquisition of the data count failed

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_GetStatus

Details • When "Notify the reception completion of last byte by function call" is selected as the
receive end notification in GUI, the number of received data can be aquired by calling this
function.

Example SCI0 has been set as receiver in the GUI.

Sci0ReFunc was specified as the name of the receive end notification function in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint8_t data[255];

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_Receive_C0(data, 255); //Send 255 bytes of binary data.
}

//The receive end notification function that called when all bytes have been received.
void Sci0ReFunc(void)
{
 //Shut down the SCI0
 R_PG_SCI_StopModule_C0();
}

//The function to check the number of received data and terminate the reception
void func_terminate_SCI(void)
{
 uint16_t count;
 //Acquire the number of received data
 R_PG_SCI_GetReceivedDataCount_C0(&count);
 if(count > 32){
 R_PG_SCI_StopReceiving_C0(); //Terminate the reception

}
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 75 of 140
Feb 16, 2011

4.8.9 R_PG_SCI_GetReceptionErrorFlag_C<channel number>

Definition bool R_PG_SCI_GetReceptionErrorFlag_C<channel number>
(bool * parity, bool * framing, bool * overrun)
 <channel number>: 0 to 6

Description Get the serial reception error flag

Conditions for
output

The function of reception is selected for a SCI channel

Parameter bool * parity The address of storage area for the parity error flag
 bool * framing The address of storage area for the framing error flag
 bool * overrun The address of storage area for the overrun error flag

Return value true Acquisition of the flags succeeded
 false Acquisition of the flags failed

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_GetStatus

Details •
•
•
•

This function acquires the reception error flags.
Specify the address of storage area for the flags to be acquired.
Specify 0 for a flag that is not required.

1 is set to detected error flag

Example SCI0 has been set as receiver in the GUI.

Sci0ReFunc was specified as the name of the receive end notification function in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint8_t data[255];

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_Receive_C0(data, 1); //Send 1bytes of binary data.
}

//The receive end notification function that called when all bytes have been received.
void Sci0ReFunc(void)
{
 // Acquire the reception error flags
 R_PG_SCI_GetReceptionErrorFlag_C0(&parity, &framing, & overrun);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 76 of 140
Feb 16, 2011

4.8.10 R_PG_SCI_GetTransmitStatus_C<channel number>

Definition bool R_PG_SCI_GetTransmitStatus_C<channel number> (bool * complete)
 <channel number>: 0 to 6

Description Get the state of transmission

Conditions for
output

The function of transmission is selected for a SCI channel

Parameter bool * complete The address of storage area for the transmission completion flag

Return value true Acquisition of the transmission status succeeded
 false Acquisition of the transmission status failed

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_GetStatus

This function acquires the state of transmission.

Transmission completion flag
0 Active

Details •

1 Complete

Example Refer to the example 2 of R_PG_DMAC_Set_C<channel number>

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 77 of 140
Feb 16, 2011

4.8.11 R_PG_SCI_StopModule_C<channel number>

Definition bool R_PG_SCI_StopModule_C<channel number> (void)
 <channel number>: 0 to 6

Description Shut down a SCI channel

Parameter None

Return value true Shutting down succeeded.
 false Shutting down failed.

File for output R_PG_SCI_C<channel number>.c

 <channel number>: 0 to 6

RPDL function R_SCI_Destroy

Details • Stops a SCI channel and places it in the module-stop state.

Example SCI0 has been set as transmitter in the GUI.

"Wait at the transmission function until the last byte has been transmitted" is selected as
the transmit end notification instead of specifying the transmit end notification function
name in GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint8_t data[255];

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_SCI_Set_C0(); //Set up SCI0.
 R_PG_SCI_Send_C0(data, 255); //Send 255 bytes of binary data.
 R_PG_SCI_StopModule_C0(); //Shut down the SCI0
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 78 of 140
Feb 16, 2011

4.9 I2C Bus Interface (RIIC)

4.9.1 R_PG_I2C_Set_C<channel number>

Definition bool R_PG_I2C_Set_C<channel number> (void)
 <channel number>: 0 or 1

Description Set up a I2C bus interface channel

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_Create

Details • Releases an I2C bus interface channel from the module-stop state, makes initial settings,
and the direction (input or output) and input buffer for the pin to be used is set. This
function also disables the alternative modes on those pins.
Function R_PG_Clock_Set must be called before any use of this function.

Example RIIC0 has been set in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first
 R_PG_I2C_Set_C0(); //Set up RIIC0
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 79 of 140
Feb 16, 2011

4.9.2 R_PG_I2C_MasterReceive_C<channel number>

Definition bool R_PG_I2C_MasterReceive_C<channel number>
 (uint16_t slave, uint8_t* data, uint16_t count)
 <channel number>: 0 or 1

Description Master data reception

Conditions for
output

The function of master is selected for an I2C bus interface channel in GUI.

Parameter uint16_t slave Target slave address
 uint8_t* data The start address of the storage area for the expected data.
 uint16_t count The number of the data to be received.

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_MasterReceive

Details •

•

•

•

•

•

This function reads data from slave module. The stop condition is generated when the
specified number of data has been received and reception completes.
If "Wait at the reception function until all data has been transmitted" is selected as the
master reception method in GUI, this function waits until the last byte has been received.
If "Notify the reception completion of all data by function call" is selected as the master
reception method in GUI, this function returns immediately and the notification function
having the specified name will be called when the last byte has been receive.
Create the notification function as follows:
 void <name of the notification function> (void)
For the notification function, note the contents of 4.11, Notes on Notification Functions.
A Start condition will be generated automatically. If the previous transfer did not issue a
stop condition, a repeated start condition will be generated.
In the 7-bit address mode, [8:1] of specified slave address value will be output. In 10-bit
address mode, [10:9] and [8:0] of specified slave address will be output.
The number of received data can be aquired by R_PG_I2C_GetReceivedDataCount_C
<channel number>.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 80 of 140
Feb 16, 2011

Example A case where the setting is made as follows.
 •

•
The function of master is selected for a RIIC0
"Wait at the reception function until all data has been transmitted" is selected as the
master reception method

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

// The storage area for the received data
uint8_t iic_data[10];

void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();

 //Set up RIIC0
 R_PG_I2C_Set_C0();

 //Master reception
 R_PG_I2C_MasterReceive_C0(
 6, //Slave address
 &data, // The start address of the storage area for the received data
 10 // The number of the data to be received
);

 //Stop RIIC0
 R_PG_I2C_StopModule_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 81 of 140
Feb 16, 2011

4.9.3 R_PG_I2C_MasterReceiveLast_C<channel number>

Definition bool R_PG_I2C_MasterReceiveLast_C< channel number >
 (uint8_t* data)
 < channel number >: 0,1

Description Complete a master reception process

• The function of master is selected for an I2C bus interface channel in GUI. Conditions for
output

• Select DMAC or DTC transfer as a master reception method

Parameter uint8_t* data The address of the storage area for the expected data.

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_MasterReceiveLast

Details •

•
•

•

•
•

This function is genetarted when [Transfer the received serial data by DMAC] or
[Transfer the received serial data by DTC] is selected as a master reception method.
In the master reception process that has used the DMAC or DTC transfer, NACK and
stop condition will be issued by calling this function and the reception process will be
terminated.
To complete reception process when the DMAC or DTC transfer completes, call this
function from DMAC or DTC interrupt notification function.
Extra 1 byte is acquired from the receive data register in this function.
The events that has been detected during the reception process or the received data count
can be acquired by calling R_PG_I2C_GetEvent_Cn or
R_PG_I2C_GetReceivedDataCount_Cn.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 82 of 140
Feb 16, 2011

Example A case where the setting is made as follows.
 •

•

"Transfer the received serial data by DMAC" is selected as the master reception method
in RIIC0 setting.
DMAC0 is set as follows
 Transfer request source : ICRXI0(receive data full interrupt of TIIC0)
 Transfer system : Single-operand transfer
 Unit data size : 1 byte
 Single operand data count : 1
 Total transfer data size : Number of dtat to be received by RIIC0
 Source start address : Address of RIIC0 received data register
 Destination start address : Destination address of the data transfer
 DMA interrupt notification fuction name : Dmac0IntFunc

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void Dmac0IntFunc(){
 uint8_t data; //Strage area of extra data

 //Isse NACK and STOP condition and complete the reception
 R_PG_PG_I2C_MasterReceiveLast(&data);
}

void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();

 //Set up RIIC0
 R_PG_I2C_Set_C0();

 //Set up the DMAC0
 R_PG_PG_DMAC_Set_C0();

 //Activate the DMAC0
 R_PG_PG_DMAC_Activate_C0();

 //Master reception
 R_PG_PG_I2C_MasterReceive_C0(
 6, //Slave address
 &data, // The address of the storage area (For DMAC transfer, set PDL_NO_PTR)
 10 // The number of the data (For DMAC transfer, set 0)
);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 83 of 140
Feb 16, 2011

4.9.4 R_PG_I2C_MasterSend_C<channel number>

Definition bool R_PG_I2C_MasterSend_C<channel number>
 (uint16_t slave, uint8_t* data, uint16_t count)
 <channel number>: 0 or 1

Description Master data transmission

Conditions for
output

The function of master is selected for an I2C bus interface channel in GUI.

Parameter uint16_t slave Target slave address
 uint8_t* data The start address of the data to be sent
 uint16_t count The number of the data to be sent

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_MasterSend

Details •

•

•

•

•

•

This function sends data to the slave module. The stop condition is generated when the
specified number of data has been transmitted and transmission completes.
If "Wait at the transmission function until all data has been transmitted" is selected as the
data transmission method in GUI, this function waits until the last byte has been
transmitted or other events are detected.
If "Notify the transmission completion of all data by function call" is selected as the data
transmission method in GUI, this function returns immediately and the notification
function having the specified name will be called when the last byte has been transmitted.
Create the notification function as follows:
 void <name of the notification function> (void)
For the notification function, note the contents of 4.11, Notes on Notification Functions.
A Start condition will be generated automatically. If the previous transfer did not issue a
stop condition, a repeated start condition will be generated.
In the 7-bit address mode, [8:1] of specified slave address value will be output. In 10-bit
address mode, [10:9] and [8:0] of specified slave address will be output.
The number of transmitted data can be aquired by R_PG_I2C_GetSentDataCount_C
<channel number>.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 84 of 140
Feb 16, 2011

Example A case where the setting is made as follows.
 •

•
The function of master is selected for a RIIC0
"Wait at the transmission function until all data has been transmitted" is selected as the
data transmission method

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

// The storage area for the data to be transmitted
uint8_t iic_data[10];

void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();

 //Set up RIIC0
 R_PG_I2C_Set_C0();

 //Master transmission
 R_PG_I2C_MasterSend_C0(
 6, //Slave address
 &data, // The start address of the storage area for the data to be transmitted
 10 // The number of the data to be transmitted
);

 //Stop RIIC0
 R_PG_I2C_StopModule_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 85 of 140
Feb 16, 2011

4.9.5 R_PG_I2C_MasterSendWithoutStop_C<channel number>

Definition bool R_PG_I2C_MasterSendWithoutStop_C<channel number>
 (uint16_t slave, uint8_t* data, uint16_t count)
 <channel number>: 0 or 1

Description Master data transmission (No stop condition)

Conditions for
output

The function of master is selected for an I2C bus interface channel in GUI.

Parameter uint16_t slave Target slave address
 uint8_t* data The start address of the data to be sent
 uint16_t count The number of the data to be sent

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_MasterSend

Details •

•

•

•

•

•

This function sends data to the slave module. The stop condition will not be generated.
To generate a stop condition, call R_PG_I2C_GenerateStopCondition_C<channel
number>.
If "Wait at the transmission function until all data has been transmitted" is selected as the
data transmission method in GUI, this function waits until the last byte has been
transmitted or other events are detected.
If "Notify the transmission completion of all data by function call" is selected as the data
transmission method in GUI, this function returns immediately and the notification
function having the specified name will be called when the last byte has been transmitted.
Create the notification function as follows:
 void <name of the notification function> (void)
For the notification function, note the contents of 4.11, Notes on Notification Functions.
A Start condition will be generated automatically. If the previous transfer did not issue a
stop condition, a repeated start condition will be generated.
In the 7-bit address mode, [8:1] of specified slave address value will be output. In 10-bit
address mode, [10:9] and [8:0] of specified slave address will be output.
The number of transmitted data can be aquired by R_PG_I2C_GetSentDataCount_C
<channel number>.

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 86 of 140
Feb 16, 2011

Example A case where the setting is made as follows.
 •

•

•

The function of master is selected for a RIIC0
"Notify the transmission completion of all data by function call" is selected as the data
transmission method
IIC0MasterTrFunc was specified as the name of the transmit end notification function

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

// The storage area for the data to be transmitted
uint8_t iic_data[10];

void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();

 //Set up RIIC0
 R_PG_I2C_Set_C0();

 //Master transmission
 R_PG_I2C_MasterSendWithoutStop_C0(
 6, //Slave address
 &data, // The start address of the storage area for the data to be transmitted
 10 // The number of the data to be transmitted
);
}

void IIC0MasterTrFunc(void){

 //Generate stop condition
 R_PG_I2C_GenerateStopCondition_C0();

 //Stop RIIC0
 R_PG_I2C_StopModule_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 87 of 140
Feb 16, 2011

4.9.6 R_PG_I2C_GenerateStopCondition_C<channel number>

Definition bool R_PG_I2C_GenerateStopCondition_C<channel number> (void)
 <channel number>: 0 or 1

Description Generate a stop condition

Conditions for
output

The function of master is selected for an I2C bus interface channel in GUI.

Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_Create

Details • This function generates a stop condition for the reception started by
R_PG_I2C_MasterReceiveWithoutStop_C<channel number> or the transmission started
by R_PG_I2C_MasterSendWithoutStop_C<channel number>.

Example RIIC0 has been set in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

// The storage area for the data to be transmitted
uint8_t iic_data[10];

void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();

 //Set up RIIC0
 R_PG_I2C_Set_C0();

 //Master transmission
 R_PG_I2C_MasterSendWithoutStop_C0(
 6, //Slave address
 &data, // The start address of the storage area for the data to be transmitted
 10 // The number of the data to be transmitted
);
}

void IIC0MasterTrFunc(void){

 //Generate stop condition
 R_PG_I2C_GenerateStopCondition_C0();

 //Stop RIIC0
 R_PG_I2C_StopModule_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 88 of 140
Feb 16, 2011

4.9.7 R_PG_I2C_GetBusState_C<channel number>

Definition bool R_PG_I2C_GetBusState_C<channel number> (bool *busy)
 <channel number>: 0 or 1

Description Get the bus state

Conditions for
output The function of master is selected for an I2C bus interface channel in GUI.

Parameter bool *busy The address of storage area for the bus busy detection flag

Return value true Acquisition of the flag succeeded
 false Acquisition of the flag failed

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_GetStatus

This function acquires the bus busy detection flag.

Bus busy detection flag

0 The I2C bus is released (bus free state)

Details •

1 The I2C bus is occupied (bus busy state or in the bus free state)

Example RIIC0 has been set in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"
// The storage area for the data to be transmitted
uint8_t iic_data[10];
//Storage for bus busy detection flag
uint8_t busy;
void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();
 //Set up RIIC0
 R_PG_I2C_Set_C0();
 // Wait for the I2C bus to be free
 do{
 R_PG_I2C_GetBusState_C0(& busy);
 } while(busy);
 //Master transmission
 R_PG_I2C_MasterSend_C0(
 6, //Slave address
 &data, // The start address of the storage area for the data to be transmitted
 10 // The number of the data to be transmitted
);

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 89 of 140
Feb 16, 2011

4.9.8 R_PG_I2C_SlaveMonitor_C<channel number>

Definition bool R_PG_I2C_SlaveMonitor_C<channel number> (uint8_t *data, uint16_t count)
 <channel number>: 0 or 1

Description Slave bus monitor

Conditions for output The function of slave is selected for an I2C bus interface channel in GUI.

Parameter uint8_t* data The start address of the received data
 uint16_t count The number of the data to be received

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_SlaveMonitor

Details •

•

•

•

•

•

This function monitors the accesses from master modules.
If "Notify the reception completion of all data, slave read request, or a stop condition
detection by function call" is selected as the slave monitor method in GUI, this function
returns immediately and the notification function having the specified name will be called
when a read access from master module or a stop condition is detected. Create the
notification function as follows:
 void <name of the notification function> (void)
For the notification function, note the contents of 4.11, Notes on Notification Functions.
If "Wait at the monitor function until reception completion, slave read request, or a stop
condition detection" is selected as the slave monitor method in GUI, this function waits
until a read access from master module or a stop condition is detected.
The received data from a master module is stored in the storage area of specified address.
Specify the number of data to not exceed the size of storage area. If the number of the
data from the master module exceeds the specified number, NACK shall be generated.
The transmit/receive mode can be aquired by calling R_PG_I2C_GetRW_C<channel
number>. The data can be transmitted by calling R_PG_I2C_SlaveSend_C<channel
number> to respond to a transmission (read) request from the master.
Call R_PG_I2C_GetDetectedAddress_C<channel number> to acquire a detected slave
address. Call R_PG_I2C_GetEvent_C<channel number> to acquire the detected events
(e.g. a stop condition or a start condition).

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 90 of 140
Feb 16, 2011

Example A case where the setting is made as follows.

 •
•

The function of slave is selected for a RIIC0
IIC0SlaveFunc was specified as the name of the slave monitor function

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"
// The storage area for the data to be received
uint8_t iic_data_re[10];
// The storage area for the data to be transmitted (slave address 0)
uint8_t iic_data_tr_0[10];
// The storage area for the data to be transmitted (slave address 1)
uint8_t iic_data_tr_1[10];
//Storage for bus busy detection flag
uint8_t busy;
void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();
 //Set up RIIC0
 R_PG_I2C_Set_C0();
 // Slave monitor
 R_PG_I2C_SlaveMonitor_C0(
 &data, // The start address of the storage area for the received data
 10 //The number of the data to be received
);
}
void IIC0SlaveFunc (void)
{
 bool transmit, start, stop;
 bool addr0, addr1;
 //Get the detected events
 R_PG_I2C_GetEvent_C0(0, &stop, &start, 0, 0);
 //Get an access type
 R_PG_PG_I2C_GetTR_C0(&transmit);
 //Get a detected address
 R_PG_I2C_GetDetectedAddress_C0(&addr0, &addr1, 0, 0, 0, 0);
 if (start && transmit && address0) {
 R_PG_I2C_SlaveSend_C(
 iic_data_tr_0,
 10
);
 }
 else if (start && read && address1) {
 R_PG_I2C_SlaveSend_C(
 iic_data_tr_1,
 10
);
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 91 of 140
Feb 16, 2011

4.9.9 R_PG_I2C_SlaveSend_C<channel number>

Definition bool R_PG_I2C_SlaveSend_C<channel number> (uint8_t *data, uint16_t count)
 <channel number>: 0 or 1

Description Slave data transmission

Conditions for output The function of slave is selected for an I2C bus interface channel in GUI.

Parameter uint8_t* data The start address of the data to be transmitted
 uint16_t count The number of the data to be transmitted

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_SlaveSend

Details •

•
This function transmits the data to the master module.
If the master requires more data than is supplied, this function shall loop back to the start
of the data.

Example Refer to the example of R_PG_I2C_SlaveMonitor_C<channel number>

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 92 of 140
Feb 16, 2011

4.9.10 R_PG_I2C_GetDetectedAddress_C<channel number>

Definition bool R_PG_I2C_GetDetectedAddress_C<channel number>
(bool *addr0, bool *addr1, bool *addr2, bool *general, bool *device, bool *host)
 <channel number>: 0 or 1

Description Get the detected address

Conditions for output The function of slave is selected for an I2C bus interface channel in GUI.

Parameter bool *addr0 The address of storage area for slave address 0 detection flag
 bool *addr1 The address of storage area for slave address1 detection flag
 bool *addr2 The address of storage area for slave address 2 detection flag
 bool *general The address of storage area for general call address detection flag
 bool *device The address of storage area for device-ID command detection flag
 bool *host The address of storage area for host address detection flag

Return value true Acquisition succeeded
 false Acquisition failed

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_GetStatus

Details •

•
•
•

This function acquires the detected address.
Specify the address of storage area for the flags to be acquired.
Specify 0 for a flag that is not required.

1 is set to detected address
Example Refer to the example of R_PG_I2C_SlaveMonitor_C<channel number>

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 93 of 140
Feb 16, 2011

4.9.11 R_PG_I2C_GetTR_C<channel number>

Definition bool R_PG_I2C_GetTR_PG_C<channel number> (bool * transmit)
 <channel number>: 0 or 1

Description Get the transmit/receive mode

Conditions for output The function of slave is selected for an I2C bus interface channel in GUI.

Parameter bool * transmit The address of storage area for the transmit mode flag

Return value true Acquisition succeeded
 false Acquisition failed

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_GetStatus

Details •

•
•
•

This function acquires the detected address.
Specify the address of storage area for the flags to be acquired.
Specify 0 for a flag that is not required.

1 is set to detected address

This function acquires the the transmit/receive mode.

Transmit mode flag

0 Receive mode

Details •

1 Transmit mode

Example Refer to the example of R_PG_I2C_SlaveMonitor_C<channel number>

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 94 of 140
Feb 16, 2011

4.9.12 R_PG_I2C_GetEvent_C<channel number>

Definition bool R_PG_I2C_GetEvent_C<channel number>
(bool *nack, bool *stop, bool *start, bool *lost, bool *timeout)
 <channel number>: 0 or 1

Description Get the detected event

Parameter bool *nack The address of storage area for a NACK detection flag
 bool *stop The address of storage area for a stop condition detection flag
 bool *start The address of storage area for a start condition detection flag
 bool *lost The address of storage area for an arbitration lost
 bool *timeout The address of storage area for a timeout detection

Return value true Acquisition succeeded
 false Acquisition failed

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_GetStatus

Details •

•
•

This function acquires the detected event.
Specify 0 for a flag that is not required.

1 is set to detected event.
Example Refer to the example of R_PG_I2C_SlaveMonitor_C<channel number>

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 95 of 140
Feb 16, 2011

4.9.13 R_PG_I2C_GetReceivedDataCount_C<channel number>

Definition bool R_PG_I2C_GetReceivedDataCount_C<channel number> (uint16_t *count)
 <channel number>: 0 or 1

Description Acquires the count of received data
Parameter uint16_t *count The address of storage area for the number of bytes that have been

received

Return value true Acquisition of the data count succeeded
 false Acquisition of the data count failed

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_GetStatus

Details • This function acquires the number of bytes that have been received in the current

reception process.
Example A case where the setting is made as follows.
 •

•
The function of master is selected for a RIIC0
"Notify the reception completion of all data by function call" is selected as the master
reception method

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"
// The storage area for the data to be received
uint8_t iic_data[256];
// The storage area for the number of received data
uint16_t count;
void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();
 //Set up RIIC0
 R_PG_I2C_Set_C0();
 //Master receive
 R_PG_I2C_MasterReceive_C0(
 6, //Slave address
 &data, // The address of storage area for the data to be received
 256 //The number of data to be received
);
 //Wait until 64 bytes have been received
 do{
 R_PG_I2C_GetReceivedDataCount_C0(&count);
 } while(count < 64);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 96 of 140
Feb 16, 2011

4.9.14 R_PG_I2C_GetSentDataCount_C<channel number>

Definition bool R_PG_I2C_GetSentDataCount_C<channel number> (uint16_t *count)
 <channel number>: 0 or 1

Description Acquires the count of transmitted data
Parameter uint16_t *count The address of storage area for the number of bytes that have been

transmitted
Return value true Acquisition of the data count succeeded
 false Acquisition of the data count failed

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_GetStatus

Details • This function acquires the number of bytes that have been transmitted in the current

transmission process.
Example A case where the setting is made as follows.
 •

•
The function of master is selected for a RIIC0
"Notify the transmission completion of all data by function call" is selected as the data
transmission method

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"
// The storage area for the data to be transmitted
uint8_t iic_data[256];
// The storage area for the number of transmitted data
uint16_t count;
void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();
 //Set up RIIC0
 R_PG_I2C_Set_C0();
 //Master send
 R_PG_I2C_MasterSend_C0(
 6, //Slave address
 &data, // The address of storage area for the data to be transmitted
 256 //The number of data to be transmitted
);
 //Wait until 64 bytes have been transmitted
 do{
 R_PG_I2C_GetSentDataCount_C0(&count);
 } while(count < 64);
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 97 of 140
Feb 16, 2011

4.9.15 R_PG_I2C_Reset_C<channel number>

Definition bool R_PG_I2C_Reset_C<channel number> (void)
 <channel number>: 0 or 1

Description Reset the bus
Parameter None

Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_Control

Details •

•
This function resets the module
The settings of the module are preserved.

Example A case where the setting is made as follows.
 •

•
The function of master is selected for a RIIC0
"Notify the transmission completion of all data by function call" is selected as the data
transmission method
IIC0MasterTrFunc was specified as the name of the transmit end notification function

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"
// The storage area for the data to be transmitted
uint8_t iic_data[256];
void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();
 //Set up RIIC0
 R_PG_I2C_Set_C0();
 //Master send
 R_PG_I2C_MasterSend_C0(
 6, //Slave address
 &data, // The address of storage area for the data to be transmitted
 10 //The number of data to be transmitted
);
}

void IIC0MasterTrFunc(void)
{
 if (error){
 R_PG_I2C_Reset_C0();
 }
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 98 of 140
Feb 16, 2011

4.9.16 R_PG_I2C_StopModule_C<channel number>

Definition bool R_PG_I2C_StopModule_C<channel number> (void)
 <channel number>: 0 or 1

Description Shut down the I2C bus interface channel
Parameter None

Return value true Shutting down succeeded.
 false Shutting down failed.

File for output R_PG_I2C_C<channel number>.c

 <channel number>: 0 or 1

RPDL function R_IIC_Destroy

Details • Stops a I2C bus interface channel and places it in the module-stop state.

Example A case where the setting is made as follows.
 •

•
The function of master is selected for a RIIC0
"Wait at the reception function until all data has been transmitted" is selected as the
master reception method

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"
// The storage area for the data to be transmitted
uint8_t iic_data[256];
void func(void)
{
 //The clock-generation circuit has to be set first
 R_PG_Clock_Set();
 //Set up RIIC0
 R_PG_I2C_Set_C0();
 //Master receive
 R_PG_I2C_MasterReceive _C0(
 6, //Slave address
 &data, // The address of storage area for the data to be received
 10 //The number of data to be received
);
 //Stop the RIIC0
 R_PG_I2C_StopModule_C0();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 99 of 140
Feb 16, 2011

4.10 A/D Converter

4.10.1 R_PG_ADC_10_Set_AD<unit number>

Definition bool R_PG_ADC_10_Set_AD<unit number> (void) <unit number>: 0 to 4

Description Set up an A/D converter
Parameter None
Return value true Setting was made correctly.
 false Setting failed.

File for output R_PG_ADC_10_AD<unit number>.c <unit number>: 0 to 4
RPDL function R_ADC_10_Create

Details •

•

•

•

Releases an A/D converter from the module-stop state, makes initial settings, and places it
in the conversion-start trigger-input wait state. When the software trigger is selected to
start conversion, conversion is started by calling
R_PG_ADC_10_StartConversionSW_AD<channel number>.
In this function, the clock frequency is used to set the sampling interval. When the
clock-generation circuit is in the initial state after a reset, call R_PG_Clock_Set to set the
clock before calling this function.
The input direction is set for pins used as analog inputs and the input buffers for the pins
are disabled.
The A/D-conversion end interrupt is set in this function. When the name of the interrupt
notification function has been specified in the GUI, if an interrupt request is conveyed to
the CPU, the function having the specified name will be called. Create the interrupt
notification function as follows:
 void <name of the interrupt notification function> (void)
For the interrupt notification function, note the contents of 4.11, Notes on Notification
Functions.

Example AD2 has been set in the GUI.
Ad2IntFunc has been specified as the name of the A/D-conversion end interrupt notification
function in the GUI.

#include "R_PG_default.h" //Include "R_PG_<PDG project name>.h" to use this function.
uint16_t data; //Destination for storage of the result of A/D conversion

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_ADC_10_Set_AD2(); //Set up AD2.
}

//AD-conversion end interrupt notification function
void Ad2IntFunc(void)
{
 R_PG_ADC_10_GetResult_AD2(&data) //Acquire the result of A/D conversion.
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 100 of 140
Feb 16, 2011

4.10.2 R_PG_ADC_10_StartConversionSW_AD<unit number>

Definition bool R_PG_ADC_10_StartConversionSW_AD<unit number> (void)
 <unit number>: 0 to 4

Description Start A/D conversion (Software trigger)

Conditions for
output

Setting of the A/D converter and specification of the software trigger as the activation
source

Parameter None

Return value true Triggering conversion succeeded.
 false Triggering conversion failed.

File for output R_PG_ADC_10_AD<unit number>.c

 <unit number>: 0 to 4

RPDL function R_ADC_10_Control

Details • Starts A/D conversion by an A/D converter for which the software trigger is selected as
the activation source.

Example The continuous scan mode has been specified as the AD2 mode in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_ADC_10_Set_AD2(); //Set up AD2.

 //Start A/D conversion by the software trigger.
 R_PG_ADC_10_StartConversionSW_AD2();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 101 of 140
Feb 16, 2011

4.10.3 R_PG_ADC_10_StopConversion_AD<unit number>

Definition bool R_PG_ADC_10_StopConversion_AD<unit number> (void)
 <unit number>: 0 to 4

Description Stop A/D conversion

Parameter None

Return value true Stopping conversion succeeded.
 false Stopping conversion failed.

File for output R_PG_ADC_10_AD<unit number>.c

 <unit number>: 0 to 4

RPDL function R_ADC_10_Control

Details • Stops A/D conversion in the continuous scan mode. In the single mode and single-cycle
scan mode, this function need not be called after A/D conversion has ended.
After this function has stopped A/D conversion, continuous scanning is resumed on
input of the A/D-conversion start trigger. To end continuous scanning, stop the A/D
conversion unit by calling R_PG_ADC_10_StopModule_AD<unit number>.

Example The software trigger has been specified as the activation source for AD2 in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint16_t data; //Destination for storage of the result of A/D conversion

void func1(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_ADC_10_Set_AD2(); //Set up AD2.
}

void func2(void)
{
 //Stop continuous scanning.
 R_PG_ADC_10_StopConversion_AD2();

 //Acquire the result of A/D conversion.
 R_PG_ADC_10_GetResult_AD2(&data)
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 102 of 140
Feb 16, 2011

4.10.4 R_PG_ADC_10_GetResult_AD_AD<unit number>

Definition bool R_PG_ADC_10_GetResult_AD<unit number> (uint16_t * data)
 <unit number>: 0 to 4

Description Get the result of A/D conversion
Parameter uint16_t * data Destination for storage of the result of A/D conversion

Return value true Acquisition of the result succeeded.
 false Acquisition of the result failed.

File for output R_PG_ADC_10_AD<unit number>.c <unit number>: 0 to 4

RPDL function R_ADC_10_Read

Details •

•

The amount of data to be acquired depends on the number of A/D-conversion channels
that are in use. Reserve the area required for storing the result of A/D conversion for the
given number of channels.
When a name for the interrupt notification function has not been specified in the GUI, and
A/D conversion is not completed by the time this function is called, this function waits
until the end of A/D conversion before reading the result. If the A/D-conversion start
trigger is not input, processing will not return from this function. If registers of the A/D
converter are modified by the program, this function will be locked.

Example The single-cycle scan mode has been specified for AD0 in in the GUI.
Four channels (AN0 to AN3) are in use.
Ad0IntFunc has been specified as the name of the A/D-conversion end interrupt notification
function in the GUI.

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"
void func(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_ADC_10_Set_AD0(); //Set up AD0.
}

//AD-conversion end interrupt notification function
void Ad0IntFunc(void)
{
 uint16_t data[4]; //Result of A/D conversion on all channels
 uint16_t data_an0; //Result of A/D conversion on AN0
 uint16_t data_an1; //Result of A/D conversion on AN1
 uint16_t data_an2; //Result of A/D conversion on AN2
 uint16_t data_an3; //Result of A/D conversion on AN3

 R_PG_ADC_10_GetResult_AD2(&data) //Acquire the results of A/D conversion.

 data_an0 = data[0];
 data_an1 = data[1];
 data_an2 = data[2];
 data_an3 = data[3];
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 103 of 140
Feb 16, 2011

4.10.5 R_PG_ADC_10_StopModule_AD<unit number>

Definition bool R_PG_ADC_10_StopModule_AD<unit number> (void)
 <unit number>: 0 to 4

Description Shut down an A/D converter

Parameter None

Return value true Shutting down succeeded.
 false Shutting down failed.

File for output R_PG_ADC_10_AD<unit number>.c

 <unit number>: 0 to 4

RPDL function R_ADC_10_Destroy

Details • Stops an A/D converter and places it in the module-stop state.

Example

//Include "R_PG_<PDG project name>.h" to use this function.
#include "R_PG_default.h"

uint16_t data; //Destination for storage of the result of A/D conversion

void func1(void)
{
 R_PG_Clock_Set(); //The clock-generation circuit has to be set first.
 R_PG_ADC_10_Set_AD2(); //Set up AD2.
}

void func2(void)
{
 //Stop continuous scanning.
 R_PG_ADC_10_StopConversion_AD2();

 //Acquire the result of A/D conversion.
 R_PG_ADC_10_GetResult_AD2(&data)

 //Stop the A/D converter.
 R_PG_ADC_10_StopModule_AD2();
}

RX610 Group Peripheral Driver Generator Reference Manual Specification of Generated Functions

R20UT0150EJ0101 Rev.1.01 Page 104 of 140
Feb 16, 2011

4.11 Notes on Notification Functions

4.11.1 Interrupts and processor mode

The RX CPU has two processor modes; supervisor and user.The driver functions will be executed by the CPU
in user mode.However any notification functions which are called by the interrupt handlers in RPDL will be
executed by the CPU in supervisor mode.This means that the privileged CPU instructions (RTFI, RTE and
WAIT) can be executed by the notification function and any function that is called by the notification function.
The user must:

1. Avoid using the RTFI and RTE instructions.

These instructions are issued by the API interrupt handlers, so there should be no need for the
user’s code to use these instructions.

2. Use the wait() intrinsic function with caution.

This instruction is used by some API functions as part of power management, so there should be no
need for the user’s code to use this instruction.

More information on the processor modes can be found in §1.4 of the RX Family software manual.

4.11.2 Interrupts and DSP instructions

The accumulator (ACC) register is modified by the following instructions:

• DSP (MACHI, MACLO, MULHI, MULLO, MVTACHI, MVTACLO and RACW).

• Multiply and multiply-and-accumulate (EMUL, EMULU, FMUL, MUL, and RMPA)

The accumulator (ACC) register is not pushed onto the stack by the interrupt handlers in RPDL.
If DSP instructions are being utilised in the users’ code, notification functions which are called by the interrupt
handlers in RPDL should either

1. Avoid using instructions which modify the ACC register.

2. Take a copy of the ACC register and restore it before exiting the callback function.

RX610 Group Peripheral Driver Generator Reference Manual Source File Registration and Building Programs in HEW

R20UT0150EJ0101 Rev.1.01 Page 105 of 140
Feb 16, 2011

5. Source File Registration and Building Programs in HEW

Note the following about registering the generated source files in HEW and building the program.

• The startup programs are not included in the source files generated by PDG. Select "Application" as a project
type when making the HEW project to generate the startup program.

• The interrupt handlers and the vector table are included in the sources files that PDG registers in HEW. To avoid
the duplication of the interrupt handlers and the vector table in startup programs generated by HEW, PDG
excludes intprg.c and vecttbl.c from the build when registering the source files in HEW.

• The source files "Interrupt_xxx.c"that includes interrupt handlers are overwritten when PDG registers the source
files in HEW.

• The RPDL library is produced using the default compiler options. If you specify the compiler options other than
the defaults in your project, you have to utilize RPDL source under your responsibility.

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 106 of 140
Feb 16, 2011

6. Example of Creating an Application
This section describes a procedure for creating an application with PDG. The created sample application can
work on the RSK board.

• Blink the LED on RSK with TMR interrupt

• Execute A/D conversion continuously

• Output PWM pulse with TPU

• Communicate between I2C channel 0 and channel 1

The following signs mean operation on PDG or HEW.

PDG

HEW

: This means the operation on PDG

: This means the operation on HEW

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 107 of 140
Feb 16, 2011

6.1 Blink the LED on RSK with TMR interrupt

The LED2 on RSK board is connected to P33. In this tutorial, 8-bit Timer and I/O port will be set up to blink
this LED as follows.

- Turn on the LED
 at compare match A
- Turn off the LED
 at compare match B
- Clear the counter
 at compare match B

The LED2 turns on when the output from P33 is 0, and turns off when the output from P33 is 1.

LED ON LED ON LED OFF LED OFF

TMR counter value

Compare match B

Compare match A

Counter clear Counter clear

t
1 [s]

0.5 [s]
(Duty:50%)

LED2

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 108 of 140
Feb 16, 2011

(1) Make the PDG project

1. Start the PDG.
2. Select [File]->[New Project] menu.

3. Specify "tutorial" as the project name.

PDG

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 109 of 140
Feb 16, 2011

(2) Initial state

-Immediately after making new project, clock setting window opens and an error icon is displayed.

・Place the mouse pointer on the error icon, then the contents of error is displayed.

There are 3 types of icons in PDG

 Error
 The setting is not allowed.
 The source filese cannot be generated if there is an error setting.
 Warning
 The setting is possible but may be wrong.
 Source files can be generated.
 Information
 Additional information for the complex setting.

Only icons on the setting window can display the tooltip.

PDG

Clock setting window

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 110 of 140
Feb 16, 2011

(3) Clock setting

1. It is necessary to set the EXTAL clock frequency first.
External clock frequency of the RSK board is 12.5 MHz. Set 12.5.

2. PCLK is used in 25MHz.
Select the multiplication "EXTAL x 2" to set the PCLK to 25MHz.

PDG

1

2

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 111 of 140
Feb 16, 2011

(4) I/O Port setting

The LED1 on RSK is connected to P33 so set P33 to output port.

PDG

1

2

3

4

1. Select “I/O” tab
2. Select “Port 3”
3. Check “Pn3”
4. Select “Output”

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 112 of 140
Feb 16, 2011

(5) TMR setting-1

In this tutorial, TMR (8-bit timer) Unit0 is used in 16 bit mode (two 8-bit timers cascade connection)

PDG

1. Select "TMR" tab
2. Select "Unit0"
3. Select "16 bit timer mode"
4. Check "Use this channel"

1

2 3

4

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 113 of 140
Feb 16, 2011

(6) TMR setting-2

Set the other items as follows.

(7) TMR setting-3

Set the interrupt notification functions.
These functions are called when the interrupt occurs.

PDG

Compare match values are
automatically calculated

-Count source : Internal clock(PCLK/8192)
-Counter clearing source : Compare match B
-Interval : 1000 ms
-Duty cycle : 50%

PDG

-Check compare match A interrupt
Notification function name is

"Tmr0CmAIntFunc"
-Check compare match B interrupt

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 114 of 140
Feb 16, 2011

(8) Generate source files

1. To generate source files, click on the tool bar.

2. Save confirmation dialog box is displayed. Click [OK].

3. Click [OK] on the message box.

4. Generated functions are listed in lower pane.

By double clicking the line of function, source file can be opened.

PDG

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 115 of 140
Feb 16, 2011

(9) Prepare the HEW project

Start the HEW and make RX610 workspace.

HEW

Project type : Application

Endian ： Little

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 116 of 140
Feb 16, 2011

Specify the target emulator.

Project is complete

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 117 of 140
Feb 16, 2011

(10) Make the program on HEW

Make the following program on HEW.

HEW

//Include "R_PG_<PDG project name>.h"
#include "R_PG_tutorial.h"

void main(void)
{
 //Set Clock
 R_PG_Clock_Set();

 //Set port P33
 R_PG_IO_PORT_Set_P3();

 //Set TMR Unit0 and start count
 R_PG_Timer_Start_TMR_U0();

 while(1);
}

// Compare match A interrupt notification function
void Tmr0CmAIntFunc(void)
{
 // Turn on the LED
 R_PG_IO_PORT_Write_P33(0);
}

// Compare match B interrupt notification function
void Tmr0CmBIntFunc(void)
{
 // Turn off the LED
 R_PG_IO_PORT_Write_P33(1);
}

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 118 of 140
Feb 16, 2011

(11) Add PDG generated source file to HEW

1. To add source files to HEW, click on the tool bar.

2. Click [OK] on the confirmation dialog box.

3. This is a linkage setting of RPDL library.

When using multiple lib files, linkage order can be set in this dialog box.

4. Source fiels are added to HEW

Added source files are
put in "AddFromPDG" folder.

PDG

HEW

Source files are registered via HEW Target Server.
Make sure that the HEW Target Server has been set up before executing
registration.

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 119 of 140
Feb 16, 2011

(12) Connect to the emulator, build the program and execute

HEW

3. Just by clicking [Build] button, program can be built because RPDL library and include
directory are automatically registered in build setting.

5. Execute the program and see the LED on RSK board.

2. Connect to the emulator

1. Before connecting the emulator, make sure the MDE on RSK board is “L” to set CPU to
little endian.

MDE : L

4. Download the program

Connect button

Build button

Reset go button

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 120 of 140
Feb 16, 2011

6.2 Execute A/D conversion continuously

In RX610 RSK board, the potentiometer is connected to AN0 analog input. In this tutorial, set up the AD0 to
execute A/D conversion continuously. And check the result of A/D conversion real time on HEW.

(Use the PDG and HEW project made at 6.1, Blink the LED on RSK with TMR interrupt.)

(1) A/D converter setting-1

Select A/D tab and click AD0 on tree view

Potentiometer

PDG

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 121 of 140
Feb 16, 2011

(2) A/D converter setting-2

Make the following setting for AD0.

PDG

1. Check "Use this unit"
2. Select "Continuous scan mode"
3. Start trigger is "Software"
4. Use PCLK/4 as conversion clock
5. Leave the default sampling state register value 25.
6. Set A/D conversion end interrupt notification function "Ad0IntFunc".

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 122 of 140
Feb 16, 2011

(3) Pin usage check

- It is possible to check the usage of pins on the Pin Function Window

- State of pin usage for each peripheral module is displayed in the Peripheral Pin Usage Window

PDG

1. After setting up the AD0, select SYSTEM tab and click Pin.
2. On the Pin function window, you can see that No.141 pin is used as AN0.

Select Peripheral pin usage sheet and click AD0 to check the usage of AN0 pins.

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 123 of 140
Feb 16, 2011

(4) Make the program on HEW

Make the following program on HEW.

1. Modify the main function as follows.

2. Add the following function.

HEW

//Include "R_PG_<PDG project name>.h"
#include "R_PG_tutorial.h"

void main(void)
{
 //Set Clock
 R_PG_Clock_Set();

 //Set ADC
 R_PG_ADC_10_Set_AD0();

 //Set port P33
 R_PG_IO_PORT_Set_P3();

 //Set TMR Unit0 and start count
 R_PG_Timer_Start_TMR_U0();

 //Start A/D conversion
 R_PG_ADC_10_StartConversionSW_AD0();

 while(1);
}

// Variable to store the result
uint16_t result;

// AD0 conversion end interrupt notification function
void Ad0IntFunc(void)
{
 // Get the result of conversion
 R_PG_ADC_10_GetResult_AD0(&result);
}

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 124 of 140
Feb 16, 2011

(5) Generate and add the source files to HEW

Generate the source fiels and add it to HEW (Refer to 6.1 (8)(11))

(6) Build and execute the program on HEW

1. Build and download the program
2. Open the Watch window and add the variable "result" to the Watch window
 Set it to the real time update.

3. Eexecute the program
4. Screw the potentiometer to change the analog input voltage during execution.

5. The value of “result” on Watch window changes

PDG

HEW

Potentiometer

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 125 of 140
Feb 16, 2011

6.3 Output PWM pulse with TPU

In this tutorial, set up the 16 bit timer pulse unit (TPU) channel 0 to output a pulse to TIOCA0 pin.
TIOCA0 is No.29 of J1 connector on RSK board. Connect oscilloscope to TIOCA0 pin.

(Use the PDG and HEW project made until section 6.2.)

(1) TPU setting-1

 Select TPU tab and click TPU0 on tree view

PDG

P30/TIOCA0

J1

1
2

35 33 31 29 27

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 126 of 140
Feb 16, 2011

(2) TPU setting-2

Make the following setting for TPU0.

PDG

1. Check [Use this channel]
2. Select PWM mode 1
3. Select [Compare match A] as a counter clearing source.
4. Select [PCLK/64] as a count source.
5. Set the period to 2 msec

Explanation of each mode

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 127 of 140
Feb 16, 2011

(3) TPU setting-3

Set the output control as follows.

(4) Check the waveform

The pulse waveform is displayed

PDG

1. Select low output at TGRA compare match
2. Set the TGRB register value (Compare match B value) to 600.
3. Select high output at TGRB compare match
4. Disable the output control of TGRC and TGRD.

PDG

Period

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 128 of 140
Feb 16, 2011

(5) Check the pin usage

Check the status of TIOCA0 pin on the Pin Function Window and the Peripheral Pin Usage Window.

PDG

Pin Function Window

Peripheral Pin Usage Window

TIOCA0 output is No.29 pin

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 129 of 140
Feb 16, 2011

(6) Output the pin list

To output the contents of pin windows to CVS file select [Tool] -> [Generate pin lists] menu or click
on the tool bar.
Output directory is "PDG project folder¥PIN".

PDG

PinFUnction.csv

PinFunctionWindow

PeripheralPinUsage.csv

PeripheralPinUsageWindow

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 130 of 140
Feb 16, 2011

(7) Make the program on HEW

Make the following program on HEW.

(8) Generate and add the source files to HEW

Generate the source fiels and add it to HEW (Refer to 6.1 (8)(11))

(9) Build and execute the program on HEW

HEW

//Include "R_PG_<PDG project name>.h"
#include "R_PG_tutorial.h"

void main(void)
{
 //Set Clock
 R_PG_Clock_Set();

 //Set ADC
 R_PG_ADC_10_Set_AD0();

 //Set port P33
 R_PG_IO_PORT_Set_P3();

 //Set TMR Unit0 and start count
 R_PG_Timer_Start_TMR_U0();

 //Start A/D conversion
 R_PG_ADC_10_StartConversionSW_AD0 ();

 //Set up TPU0 and start the count
 R_PG_Timer_Start_TPU_U0_C0();

 while(1);
}

1. Build, download and execute the program.
2. Check the output pulse of TIOCA0 by oscilloscope.

PDG

HEW

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 131 of 140
Feb 16, 2011

6.4 Communicate between I2C channel 0 and channel 1

RX610 has two I2C channels RIIC0 and RIIC1. In this tutorial, set up these channels to transfer data from
RIIC0 (master) to RIIC1 (slave).
Connect SCL0-SCL1, SDA0-SDA1 on the RSK board. RIICpins are J2/No.2, 4, 6, and 7 on the RSK board.

(Use the PDG and HEW project made until section 6.3.)

(1) RIIC setting

 Select RIIC tab.

SCL1

SDA1

J2

1 2
3 4
5 6

7 8

SDA0
SCL0

PDG

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 132 of 140
Feb 16, 2011

(2) RIIC0 (master) setting

Set RIIC0 as follows.

2. Check [Use this channel]
3. Select [I2C format standard mode]
4. Select [Master] for device attribute
5. Set bit rate to 10 kbps
6. The rise time and fall time of SCLN depend on the HW system. For RSK board, set 420 ns and 300

ns.

PDG

1. Select RIIC0 on the tree view

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 133 of 140
Feb 16, 2011

7. Select [Notify the reception completion of all data by function call] as the master reception
method. Specify “IIC0MasterReFunc” as a notification function name.

8. Select [Notify the transmission completion of all data by function call] as the master transmission
method. Specify “IIC0MasterTrFunc” as a notification function name.

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 134 of 140
Feb 16, 2011

(3) RIIC1 (Slave) setting

Set RIIC1 as follows.

2. Check [Use this channel]
3. Select [I2C format standard mode]
4. Select [Slave] for device attribute
5. Set bit rate is same asRIIC0
6. SCLｎ rise time and fall time are same as RIIC0.

PDG

1. Select RIIC1 on the tree view

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 135 of 140
Feb 16, 2011

7. Set the slave address to 0 (7 bit)
8. Select [Notify the transmission completion of all data, slave read request, or a stop condition

detection by function call] as the slave monitor method. Specify “IIC1SlaveFunc” as a
notification function name.

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 136 of 140
Feb 16, 2011

(4) Make the program on HEW

Make the following program on HEW.

HEW

//Include "R_PG_<PDG project name>.h"
#include "R_PG_tutorial.h"

uint8_t tr[]="renesas";
uint8_t re[]="----------";

void main(void)
{
 //Set Clock
 R_PG_Clock_Set();

 //Set RIIC0 ans RIIC1
 R_PG_I2C_Set_C0();
 R_PG_I2C_Set_C1();

 //RIIC0 Slave Monitor (Wait receiving)
 R_PG_I2C_SlaveMonitor_C1(
 re, //Storage area of data
 8 //Number of data to be receive
);

 //RIIC0 Master Send
 R_PG_I2C_MasterSend_C0(
 6, //Slave address
 tr, //Start address of the data to be sent
 8 //Number of the data to be sent
);
 while(1);
}

uint16_t tr_count;
uint16_t re_count;

//Master transmission notification function
void IIC0MasterTrFunc(void)
{
 R_PG_I2C_GetSentDataCount_C0(&tr_count);
}

//Master reception notification function
void IIC0MasterReFunc(void)
{
}

//Slave monitor notification function
void IIC1SlaveFunc (void)
{
 R_PG_I2C_GetReceivedDataCount_C1(& re_count);
}

RX610 Group Peripheral Driver Generator Reference Manual Example of Creating an Application

R20UT0150EJ0101 Rev.1.01 Page 137 of 140
Feb 16, 2011

(5) Generate and add the source files to HEW

Generate the source fiels and add it to HEW (Refer to 6.1 (8)(11))

(6) Build and execute the program on HEW

1. Build, download and execute the program.
2. Check the value of reception data “re” on watch window.

PDG

HEW

RX610 Group
Peripheral Driver Generator
Reference Manual

Publication Date: Feb 16, 2011 Rev.1.01

Published by: Renesas Electronics Corporation

Edited by:
Microcomputer Tool Development Department 1
Renesas Solutions Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation and Renesas Solutions Corporation. All rights reserved.
Colophon 1.0

R20UT0150EJ0101

RX610 Group
Peripheral Driver Generator

Reference Manual

	1. Overview
	1.1 Supported peripheral modules

	2. Creating a new project
	3. Setting the Peripheral Modules
	3.1 Peripheral Module Setting Windows
	3.2 Pin Functions
	3.2.1 Pin Function Sheet
	3.2.2 Peripheral Pin Usage Sheet

	4. Specification of Generated Functions
	4.1 Clock-Generation Circuit
	4.1.1 R_PG_Clock_Set

	4.2 Interrupt Controller (ICU)
	4.2.1 R_PG_ExtInterrupt_Set_<interrupt type>
	4.2.2 R_PG_ExtInterrupt_Disable_<interrupt type>
	4.2.3 R_PG_ExtInterrupt_GetRequestFlag_<interrupt type>
	4.2.4 R_PG_ExtInterrupt_ClearRequestFlag_<interrupt type>
	4.2.5 R_PG_FastInterrupt_Set
	4.2.6 R_PG_Exception_Set

	4.3 I/O Ports
	4.3.1 R_PG_IO_PORT_Set_P<port number>
	4.3.2 R_PG_IO_PORT_Set_P<port number><pin number>
	4.3.3 R_PG_IO_PORT_Read_P<port number>
	4.3.4 R_PG_IO_PORT_Read_P<port number><pin number>
	4.3.5 R_PG_IO_PORT_Write_P<port number>
	4.3.6 R_PG_IO_PORT_Write_P<port number><pin number>

	4.4 DMAC controller (DMAC)
	4.4.1 R_PG_DMAC_Set_C<channel number>
	4.4.2 R_PG_DMAC_Activate_C<channel number>
	4.4.3 R_PG_DMAC_StartTransfer_C<channel number>
	4.4.4 R_PG_DMAC_Suspend_C<channel number>
	4.4.5 R_PG_DMAC_GetTransferredByteCount_C<channel number>
	4.4.6 R_PG_DMAC_ClearTransferEndFlag_C<channel number>
	4.4.7 R_PG_DMAC_SetReload_SrcAddress_C<channel number>
	4.4.8 R_PG_DMAC_SetReload_DestAddress_C<channel number>
	4.4.9 R_PG_DMAC_SetReload_ByteCount_C<channel number>
	4.4.10 R_PG_DMAC_StopModule

	4.5 16-Bit Timer Pulse Unit (TPU)
	4.5.1 R_PG_Timer_Start_TPU_U<unit number>_C<channel number>
	4.5.2 R_PG_Timer_HaltCount_TPU<unit number>_C<channel number>
	4.5.3 R_PG_Timer_ResumeCount_TPU_U<unit number>_C<channel number>
	4.5.4 R_PG_Timer_GetCounterValue_ＴＰＵ_U<unit number>_C<channel number>
	4.5.5 R_PG_Timer_SetCounterValue_TPU_U<unit number>_C<channel number>
	4.5.6 R_PG_Timer_GetRequestFlag_TPU_U<unit number>_C<channel number>
	4.5.7 R_PG_Timer_StopModule_TPU_U<unit number>

	4.6 8-Bit Timer (TMR)
	4.6.1 R_PG_Timer_Start_TMR_U<unit number>(_C<channel number>)
	4.6.2 R_PG_Timer_HaltCount_TMR_U<unit number>(_C<channel number>)
	4.6.3 R_PG_Timer_ResumeCount_TMR_U<unit number>(_C<channel number>)
	4.6.4 R_PG_Timer_GetCounterValue_TMR_U<unit number>(_C<channel number>)
	4.6.5 R_PG_Timer_SetCounterValue_TMR_U<unit number>(_C<channel number>)
	4.6.6 R_PG_Timer_GetRequestFlag_TMR_U<unit number>(_C<channel number>)
	4.6.7 R_PG_Timer_StopModule_TMR_U<unit number>

	4.7 Compare Match Timer (CMT)
	4.7.1 R_PG_Timer_Start_CMT_U<unit number>_C<channel number>
	4.7.2 R_PG_Timer_HaltCount_CMT<unit number>_C<channel number>
	4.7.3 R_PG_Timer_ResumeCount_CMT_U<unit number>_C<channel number>
	4.7.4 R_PG_Timer_GetCounterValue_CMT_U<unit number>_C<channel number>
	4.7.5 R_PG_Timer_SetCounterValue_CMT_U<unit number>_C<channel number>
	4.7.6 R_PG_Timer_StopModule_CMT_U<unit number>

	4.8 Serial Communications Interface (SCI)
	4.8.1 R_PG_SCI_Set_C<channel number>
	4.8.2 R_PG_SCI_StartSending_C<channel number>
	4.8.3 R_PG_SCI_SendAllData_C<channel number>
	4.8.4 R_PG_SCI_GetSentDataCount_C<channel number>
	4.8.5 R_PG_SCI_StartReceiving_C<channel number>
	4.8.6 R_PG_SCI_ReceiveAllData_C<channel number>
	4.8.7 R_PG_SCI_StopCommunication_C<channel number>
	4.8.8 R_PG_SCI_GetReceivedDataCount_C<channel number>
	4.8.9 R_PG_SCI_GetReceptionErrorFlag_C<channel number>
	4.8.10 R_PG_SCI_GetTransmitStatus_C<channel number>
	4.8.11 R_PG_SCI_StopModule_C<channel number>

	4.9 I2C Bus Interface (RIIC)
	4.9.1 R_PG_I2C_Set_C<channel number>
	4.9.2 R_PG_I2C_MasterReceive_C<channel number>
	4.9.3 R_PG_I2C_MasterReceiveLast_C<channel number>
	4.9.4 R_PG_I2C_MasterSend_C<channel number>
	4.9.5 R_PG_I2C_MasterSendWithoutStop_C<channel number>
	4.9.6 R_PG_I2C_GenerateStopCondition_C<channel number>
	4.9.7 R_PG_I2C_GetBusState_C<channel number>
	4.9.8 R_PG_I2C_SlaveMonitor_C<channel number>
	4.9.9 R_PG_I2C_SlaveSend_C<channel number>
	4.9.10 R_PG_I2C_GetDetectedAddress_C<channel number>
	4.9.11 R_PG_I2C_GetTR_C<channel number>
	4.9.12 R_PG_I2C_GetEvent_C<channel number>
	4.9.13 R_PG_I2C_GetReceivedDataCount_C<channel number>
	4.9.14 R_PG_I2C_GetSentDataCount_C<channel number>
	4.9.15 R_PG_I2C_Reset_C<channel number>
	4.9.16 R_PG_I2C_StopModule_C<channel number>

	4.10 A/D Converter
	4.10.1 R_PG_ADC_10_Set_AD<unit number>
	4.10.2 R_PG_ADC_10_StartConversionSW_AD<unit number>
	4.10.3 R_PG_ADC_10_StopConversion_AD<unit number>
	4.10.4 R_PG_ADC_10_GetResult_AD_AD<unit number>
	4.10.5 R_PG_ADC_10_StopModule_AD<unit number>

	4.11 Notes on Notification Functions
	4.11.1 Interrupts and processor mode
	4.11.2 Interrupts and DSP instructions

	5. Source File Registration and Building Programs in HEW
	6. Example of Creating an Application
	6.1 Blink the LED on RSK with TMR interrupt
	6.2 Execute A/D conversion continuously
	6.3 Output PWM pulse with TPU
	6.4 Communicate between I2C channel 0 and channel 1

