

 RZ/A2M Group

DRP Driver User’s Manual

Rev.1.03 Mar. 2021

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

U
ser's M

anual

www.renesas.com

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical
information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and
application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification,
copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;

home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication

equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other
Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious
property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military
equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising
from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other
Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General
Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the
ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of
the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless
designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing
safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event
of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.
Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of
the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate
the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or
losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control
laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or
otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this
document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly
controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description
in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different part numbers, implement a system-evaluation test for each of the products.

How to Use This Manual

1. Purpose and Target Readers
This manual is intended to provide the user with an understanding of the functions of the DRP driver software and how to
utilize them. It is aimed at users designing application systems making use of the software. In order to use this manual,
you will need a basic knowledge of programming languages and microprocessors.

Particular attention should be paid to the precautionary notes when using the software. These notes occur within the
body of the text, and at the end of each section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

All trademarks and registered trademarks are the property of their respective owners.

Table of Contents

1. Introduction .. 1

1.1 Summary ... 1
1.2 Functions .. 1
1.3 Software Configuration ... 2

2. Operation Conditions ... 3

3. File Structure ... 4

4. API Specifications .. 5

4.1 List of API Functions .. 5
4.2 Error Codes ... 5

5. API Reference ... 6

5.1 How to Read the API Reference ... 6
5.2 R_DK2_Initialize .. 7
5.3 R_DK2_Uninitialize ... 8
5.4 R_DK2_Load .. 9

5.4.1 Tile Patterns ... 13
5.4.2 Load Completion Callback Function ... 14

5.5 R_DK2_Unload .. 15
5.6 R_DK2_Activate .. 16
5.7 R_DK2_Inactivate .. 17
5.8 R_DK2_Start .. 18

5.8.1 Processing Completion Callback Function .. 19
5.9 R_DK2_GetStatus .. 20
5.10 R_DK2_GetInfo ... 21
5.11 R_DK2_GetVersion.. 23

6. State Transitions .. 24

6.1 State Transitions of the DRP Driver Overall .. 24
6.2 State Transitions of Individual Circuits .. 25

7. Control Flowchart .. 26

8. OS-Dependent Portion .. 27

8.1 Support for reentrancy of API functions ... 27
8.2 DRP Driver Interrupt Priority ... 27

9. Memory footprint .. 28

10. Reference Documents ... 29

11. How to Import the Driver .. 30

11.1 e2 studio .. 30
11.2 For Projects created outside e2 studio ... 30

R01US0355EJ0103 Rev.1.03 Page 1 of 30
Mar. 31, 2021

RZ/A2M Group
DRP Driver User’s Manual

1. Introduction

1.1 Summary

This manual describes the functions and usage of the DRP driver software, which controls the dynamic reconfigurable
processor (DRP) of RZ/A2M Group microprocessors.

1.2 Functions

DRP can be implemented a variety of functions corresponding to user’s setting. In this manual the function implemented
by DRP is referred to as “circuit” and the data representing the circuit information is referred to as “configuration
data.”*1 The configuration data consists of binary data allocated in the memory.
As a device driver for the DRP, the DRP driver performs the following functions:

• Supplies a clock to the DRP and initializes the DRP driver.
• Stops supply of the clock to the DRP and terminates the DRP driver.
• Loads configuration data in the DRP.
• Erases configuration data loaded in the DRP. (Calls “unload” in this document.)
• Supplies a clock to and enables circuits written to the DRP.
• Stops supply of the clock to and disables circuits written to the DRP.
• Sets operation parameters of circuits written to the DRP and starts operation.
• Provides notification of operation completion by circuits written to the DRP.
• Gets the status (enabled or disabled, operating or not, etc.) of circuits written to the DRP.
• Gets information (version, etc.) from configuration data in the memory.
• Performs CRC checks on configuration data in the memory.

Note 1. Configuration data provided as DRP library. For details of DRP library, refer to RZ/A2M Group DRP Library

User’s Manual (R01US0367).

R01US0355EJ0103
Rev.1.03

Mar. 31, 2021

RZ/A2M Group 1. 0BIntroduction

R01US0355EJ0103 Rev.1.03 Page 2 of 30
Mar. 31, 2021

1.3 Software Configuration

The software configuration of the DRP driver is shown below. The DRP driver comprises an interface portion and a core
portion, and both are supplied as source code. The DRP driver supports FreeRTOS via an OS abstraction layer.

Figure 1.1 Software Configuration

• The DRP has six memory areas called “tiles” for loading configuration data.
• Configuration data is loaded in tile units.
• Each item of configuration data has its own tile count, represented as an integer value between 1 and 6. The tile count

represents the number of tiles occupied by the configuration data.
• If the configuration data has a tile count of 3 or less, multiple copies can be loaded at the same time.
• In this manual the six tiles of the DRP are referred to as tile 0 to tile 5.
• In the figure above, one copy of configuration data A with tile count 3 is loaded in tile 0 through tile 2, and two

copies of configuration data B with tile count 1 are loaded in tile 4 and tile 5, respectively.

FreeRTOS

User application

DRP Driver

Software

Hardware
(RZ/A2M) DRP

Interface portion

Core portion

A B

Configuration data
(3 tiles) (1 tile)

DRP Driver API

Empty
tile

Configuration data A Configuration data B

Copy of configuration data B

OS
abstraction

layer

Tile 0 1 2 3 4 5

RZ/A2M Group 2. Operation Conditions

R01US0355EJ0103 Rev.1.03 Page 3 of 30
Mar. 31, 2021

2. Operation Conditions
The DRP driver operates under the conditions listed below.

Table 2.1 Operation Conditions

Item Description

Microprocessor The DRP driver runs on the Cortex™-A9 processor of RZ/A2M Group microprocessors.
The product numbers of compatible RZ/A2M Group microprocessors are as follows:*1

R7S921051VCBG
R7S921052VCBG
R7S921053VCBG

Development environment e2 studio V7.8.0
The following toolchain is compatible:
GNU Arm Embedded Toolchain 6-2017-q2-update

Note 1. The DRP driver operates on RZ/A2M Group microprocessors equipped with a DRP function module. It will not
operate on RZ/A2M Group microprocessors without a DRP function module.

RZ/A2M Group 3. File Structure

R01US0355EJ0103 Rev.1.03 Page 4 of 30
Mar. 31, 2021

3. File Structure
Figure 3.1 shows the file structure of the DRP driver.

src
 renesas
 drivers
 drp
 inc
 r_dk2_if.h Header file of DRP Driver interface part
 src
 drp_iodefine.h IO definition file of DRP
 r_dk2_core.c Source file of DRP Driver core part
 r_dk2_core.h Header file of DRP Driver core part
 r_dk2_if.c Source file of DRP Driver interface part

Figure 3.1 The File Structure of The DRP Driver

RZ/A2M Group 4. API Specifications

R01US0355EJ0103 Rev.1.03 Page 5 of 30
Mar. 31, 2021

4. API Specifications
4.1 List of API Functions

Table 4.1 lists the API functions of the DRP driver.

Table 4.1 API Functions of DRP Driver

API Function Name Outline Page
R_DK2_Initialize Initializes DRP driver and initializes DRP. 7
R_DK2_Uninitialize Stops DRP and terminates DRP driver. 8
R_DK2_Load Loads configuration data in DRP. 9
R_DK2_Unload Unloads configuration data from DRP. 15
R_DK2_Activate Enables circuit in DRP. 16
R_DK2_Inactivate Disables circuit in DRP. 17
R_DK2_Start Starts operation of circuit in DRP. 18
R_DK2_GetStatus Gets state of circuit in DRP. 20
R_DK2_GetInfo Gets information from configuration data and checks CRC. 21
R_DK2_GetVersion Gets DRP driver version information. 23

None of the API functions may be called from an interrupt context. For information on the reentrancy of API functions,
refer to section 8, OS-Dependent Portion.

4.2 Error Codes

A return value of 0 or a positive number from a DRP driver API function indicates a normal end, and a negative return
value indicates an abnormal end. When an abnormal end occurs, an error code is returned. Table 4.2 lists the error codes.
For the specific conditions under which errors are generated, refer to the descriptions of the return values of the various
API functions in section 5, API Reference.

Table 4.2 Function Error Codes

Macro Name Value Description
R_DK2_SUCCESS 0 Normal end
R_DK2_ERR_ARG -1 Argument error
R_DK2_ERR_FORMAT -2 Format error
R_DK2_ERR_CRC -3 CRC error
R_DK2_ERR_DEVICE -4 Device error
R_DK2_ERR_BUSY -5 Busy
R_DK2_ERR_INTERNAL -6 Internal error
R_DK2_ERR_OVERWRITE -7 Data overwrite error
R_DK2_ERR_OS -8 OS error
R_DK2_ERR_STATUS -9 Status error
R_DK2_ERR_TILE_PATTERN -10 Tile pattern error
R_DK2_ERR_STOPPED -11 Transfer stopped error

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 6 of 30
Mar. 31, 2021

5. API Reference
5.1 How to Read the API Reference

API function name Category

Function outline Synchronous/asynchronous function
Format Shows the format used to call the API function. The header file designated by #include

“header file” is the standard header file required to run the API function. Do not fail to include
this header file. The designations I and O indicate that the corresponding argument is input
data or output data, respectively. The designation IO indicates input/output data.

Return values Lists the return values of the API function. Comments following the colon (:) after the return
value provide a description of the return value (such as return conditions).

Description Describes the specifications of the API function.
Note Any precautionary notes appear here.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 7 of 30
Mar. 31, 2021

5.2 R_DK2_Initialize

R_DK2_Initialize DRP driver API

Initializes DRP driver and initializes DRP Synchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_Initialize(void);
Return values R_DK2_SUCCESS : Normal end.

R_DK2_ERR_DEVICE : Abnormal end.
This error is generated when initialization of the DRP fails.

R_DK2_ERR_OS : Abnormal end.
This error is generated when securing of an OS resource
fails.

R_DK2_ERR_STATUS : Abnormal end.
This error is generated when the DRP driver has already
been initialized.

Description This API function initializes internal variables and secures OS resources, putting the DRP driver
into a usable state. Also, it restores the DRP from low-power mode, starts supply of the clock,
and initializes the hardware.

Note If the error R_DK2_ERR_DEVICE occurs, check the device used. The DRP driver is compatible
with RZ/A2M Group microprocessors equipped with a DRP function module. For details of the
DRP driver operating conditions, refer to section 2, Operation Conditions. If the value
R_DK2_ERR_OS is returned, reevaluate the OS settings.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 8 of 30
Mar. 31, 2021

5.3 R_DK2_Uninitialize

R_DK2_Uninitialize DRP driver API

Stops DRP and terminates DRP driver Synchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_Uninitalize(void);
Return values R_DK2_SUCCESS : Normal end.

R_DK2_ERR_OS : Abnormal end.
This error is generated when releasing of an OS resource
fails.

R_DK2_ERR_STATUS : Abnormal end.
This error is generated when the DRP driver has already
been terminated.

Description This API function stops supply of the clock to the DRP and transitions the DRP to low-power
mode. It performs a forced stop if the DRP is operating. Also, it releases OS resources and
transitions the DRP driver to the uninitialized state. After this API function runs, the DRP driver
remains in an unusable state until the next time the R_DK2_Initialize function is called.

Note This API function performs a forced stop if the DRP is operating. Note that in this case the
callback function set by the R_DK2_Load function may not be called.
If the value R_DK2_ERR_OS is returned, reevaluate the OS settings.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 9 of 30
Mar. 31, 2021

5.4 R_DK2_Load

R_DK2_Load DRP driver API

Loads configuration data in DRP Synchronous/asynchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_Load(const void *const pconfig, const uint8_t top_tiles, const uint32_t
tile_pattern, const load_comp_t pload, const process_comp_t pprocess, uint8_t *const
paid);

 pconfig I Specifies the address of the configuration data to be
loaded. The configuration data must be aligned with a
32-byte boundary. Also, the configuration data must
exist in physical memory.

 top_tiles I Specifies the start tile position where the configuration
data is allocated using macros R_DK2_TILE_0 to
R_DK2_TILE_5, which represent the six tiles of the
DRP, tile 0 to tile 5. When loading multiple configuration
data items, obtain the logical sum (logical OR) of each
bit of the above macros.

For example, to allocate configuration data A with tile
count 3 to tile 0 through tile 2, specify “R_DK2_TILE0”.

For example, to allocate two copies of configuration
data B with tile count 1 to tile 4 and tile 5, respectively,
specify “R_DK2_TILE_4 | R_DK2_TILE_5”.

 tile_pattern I Specifies the tile pattern. For setting values, refer to
5.4.1, Tile Patterns. Once the tile pattern has been set,
use the same tile pattern setting until the configuration
data for all tiles has been unloaded using the
R_DK2_Unload function. When an attempt is made to
change the tile pattern when the DRP is in a state in
which configuration data has already been loaded, the
API function returns a value of
R_DK2_ERR_TILE_PATTERN.

Configuration data A

Tile 0 1 2 3 4 5

Configuration data B

Copy of configuration data B

Tile 0 1 2 3 4 5

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 10 of 30
Mar. 31, 2021

 pload I Specifies the address of the callback function used to
provide notification when loading of configuration data
completes. For detailed specifications of the callback
function specified by the argument pload, refer to 5.4.2,
Load Completion Callback Function. When a value
other than NULL is specified for this argument, loading
of configuration data can be halted by the
R_DK2_Unload function. When NULL is specified for
this argument, the R_DK2_Unload function cannot halt
loading of configuration data, and this API function
finishes only when loading is complete.

 pprocess I Specifies the address of the callback function used to
provide notification when the processing started using
the R_DK2_Start function completes. For detailed
specifications of the callback function specified by the
argument pprocess, refer to 5.8.1, Processing
Completion Callback Function. This notification does
not occur if NULL is specified.

 paid O Specifies the address of the six-element array used to
perform notification of the ID for identifying the loaded
configuration data. Index 0 to index 5 of the array
represent the six tiles of the DRP, tile 0 to tile 5, and the
array elements represent the IDs of the configuration
data items loaded in the corresponding tiles. If a
configuration data item occupies multiple tiles, the same
ID is stored in all the array elements representing the
corresponding tiles. Each ID is a unique positive
number corresponding to a single circuit, and a value of
0 means that no configuration data is loaded. If multiple
copies of a configuration data item are loaded, each
copy is assigned a different ID. When notification of IDs
is made by this argument, the notification covers the IDs
for all six tiles following execution of the R_DK2_Load
function, including all configuration data that has been
written to that point. This notification does not occur if
NULL is specified.

For example, if configuration data A with tile count 3 is
allocated to tile 0 through tile 2, and two copies of
configuration data B with tile count 1 are allocated to tile
4 and tile 5, respectively, the contents of the array are
as shown below.

Index Description
0 Circuit ID of configuration data A circuit

information
1 Same as index 0
2 Same as index 0
3 0
4 Circuit ID of configuration data B circuit

information
5 Circuit ID of configuration data B circuit

information (different from index 4)

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 11 of 30
Mar. 31, 2021

Return values R_DK2_SUCCESS : Normal end.
R_DK2_ERR_ARG : Abnormal end.

This error is generated in the following cases:
• NULL is specified for argument pconfig.
• A value that is not aligned with a 32-byte boundary

is specified for argument pconfig.
• The argument top_tiles is not in the format of the

logical sum (logical OR) of each bit of
R_DK2_TILE_0 to R_DK2_TILE_5.

• A macro other than those listed in Table 5.1 is
specified for argument tile_pattern.

R_DK2_ERR_FORMAT : Abnormal end.
This error is generated when a format error is detected
in the configuration data.

R_DK2_ERR_DEVICE : Abnormal end.
This error is generated when NULL is specified for
argument pload and a transfer error occurs during
loading of configuration data.

R_DK2_ERR_BUSY : Abnormal end.
This error is generated when a value other than NULL is
specified for argument pload and, during loading of
configuration data, an attempt is made to load other
configuration data.

R_DK2_ERR_OVERWRITE : Abnormal end.
This error is generated when other configuration data
has already been written to the load position of the
specified configuration data.

R_DK2_ERR_OS : Abnormal end.
This error is generated when exclusive control by the
OS fails.

R_DK2_ERR_STATUS : Abnormal end.
This error is generated when the DRP driver has not
been initialized.

R_DK2_ERR_TILE_PATTERN : Abnormal end.
This error is generated in the following cases:
• The tile pattern is changed when the DRP is in a

state in which configuration data has already been
loaded.

• The tile position or tile count in the configuration
data do not match the tile pattern.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 12 of 30
Mar. 31, 2021

Description When a value other than NULL is specified for the argument pload, this API function starts
loading the configuration data in the DRP and notifies when loading completes by means of
a callback function. At this time, other configuration data cannot be loaded until loading
completes. In such cases the value R_DK2_ERR_BUSY is returned, and this API function
fails. Also, if a value other than NULL is specified for the argument pload, it is possible to
halt loading of configuration data with the R_DK2_Unload function.
When NULL is specified for the argument pload, loading of the configuration data continues
until completion when this API function is run. In this case, loading of configuration data
cannot be halted by the R_DK2_Unload function.
It is also possible for this API function to load configuration data to multiple tile positions.
For details of the callback function specified by the argument pload, refer to 5.4.2, Load
Completion Callback Function, and for details of the callback function specified by the
argument pprocess, refer to 5.8.1, Processing Completion Callback Function.
This API function uses OS functionality to provide exclusive control so that multiple DRP
driver API functions are not executed at the same time. If a failure occurs because resource
acquisition times out during exclusive control, the value R_DK2_ERR_OS is returned and
the API function fails.

Note If the value R_DK2_ERR_FORMAT is returned, check to make sure the address specified
for argument pconfig is the correct address of the configuration data.
A return value of R_DK2_ERR_DEVICE indicates that an error occurred during transfer of
the configuration data. Reevaluate the memory settings, etc., for the allocation of the
configuration data.
If the configuration data specified by the argument pconfig exists in the Cortex-A9 cache
and the data in the physical memory does not match the configuration data, proper loading
will not be possible. It may be necessary to clear the cache before calling this API function
or to allocate the configuration data to a non-cached area.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 13 of 30
Mar. 31, 2021

5.4.1 Tile Patterns

The tile count and tile position combinations used when loading configuration data in the DRP are limited to the 11
patterns listed in Table 5.1. Set the appropriate macro value below in the argument tile_pattern of the R_DK2_Load
function to match the combination to be used.

Table 5.1 Tile Patterns

Tile Pattern Macro Setting of Argument tile_pattern of R_DK2_Load Function

R_DK2_TILE_PATTERN_1_1_1_1_1_1

R_DK2_TILE_PATTERN_2_1_1_1_1

R_DK2_TILE_PATTERN_2_2_1_1

R_DK2_TILE_PATTERN_2_2_2

R_DK2_TILE_PATTERN_3_1_1_1

R_DK2_TILE_PATTERN_3_2_1

R_DK2_TILE_PATTERN_3_3

R_DK2_TILE_PATTERN_4_1_1

R_DK2_TILE_PATTERN_4_2

R_DK2_TILE_PATTERN_5_1

R_DK2_TILE_PATTERN_6

1 1 1 1 1 1

2 1 1 1 1

1 1 2 2

2 2 2

1 1 1 3

1 3 2

3 3

1 1 4

4 2

1 5

6

n : Configuration data with tile count n

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 14 of 30
Mar. 31, 2021

5.4.2 Load Completion Callback Function

Load completion callback function Callback function

Completion of loading of configuration data Synchronous function
Format #include "r_dk2_if.h"

void load_comp(uint8_t id, int32_t result);
Note: This function can be given any name.
 id I ID of circuit that has finished loading
 result I R_DK2_SUCCESS:

Indicates that loading has completed successfully.
R_DK2_ERR_DEVICE:
Indicates that a transfer error occurred while loading
configuration data.
R_DK2_ERR_STOPPED:
Indicates that while loading configuration data the transfer
was stopped by calling the R_DK2_Unload function.

Return values None
Description This is the callback function specified by the argument pload of the R_DK2_Load function. It

provides notification when the loading of configuration data finishes. When multiple
configuration data items are loaded, this callback function is called once for each item loaded.
This function is executed in the interrupt context. This function must not call any DRP driver
function.

Note If the value of the argument result is R_DK2_ERR_DEVICE, reevaluate the memory settings,
etc., for the allocation of the configuration data.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 15 of 30
Mar. 31, 2021

5.5 R_DK2_Unload

R_DK2_Unload DRP driver API

Unloads configuration data from DRP Synchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_Unload(const uint8_t id, uint8_t *const paid);
 id I Specifies the ID of the circuit to be unloaded. To unload

multiple circuits, specify the logical sum (logical OR) of each
bit of the IDs of each of the circuits. Specifying 0 causes all
loaded circuits to be unloaded.

 paid O To obtain notification of the DRP load status following
execution of this function, specify the address of a
six-element array prepared by the user. Index 0 to index 5
of the array represent the six tiles of the DRP, tile 0 to tile 5,
and the array elements represent the IDs of the
configuration data items loaded in the corresponding tiles. If
a configuration data item occupies multiple tiles, the same
ID is stored in all the array elements representing the
corresponding tiles. This ID is a unique positive number
corresponding to a single circuit, and a value of 0 means
that no configuration data is loaded. If multiple copies of the
same configuration data item are loaded, each copy is
assigned a different ID. When notification of IDs is made by
this argument, the notification covers the IDs for all six tiles
following execution of the R_DK2_Unload function,
including all configuration data that has been written to that
point. This notification does not occur if NULL is specified.

Return values R_DK2_SUCCESS : Normal end.
R_DK2_ERR_ARG : Abnormal end.

This error is generated when the argument id does not
correspond to a circuit currently loaded in the DRP.

R_DK2_ERR_OS : Abnormal end.
This error is generated when exclusive control by the OS
fails.

R_DK2_ERR_STATUS : Abnormal end.
This error is generated in the following cases:
The DRP driver has not been initialized.

Description This API function unloads the circuit corresponding to the specified ID from the DRP. After the
circuit is unloaded, configuration data can once again be loaded in the same tile position. This
API function will forcibly unload the circuit even if it is in the process of being loaded or if it is
operating.
If this API function is called during loading of configuration data, loading of data is canceled and
the callback function specified by the pload argument of the R_DK2_Load function is called. At
this point, the value of the callback function’s result argument is R_DK2_ERR_STOPPED. Also,
if this API function is called during circuit operation, the circuit stops operating and the callback
function specified by the pprocess argument of the R_DK2_Load function is called. At this point,
the value of the callback function’s result argument is R_DK2_ERR_STOPPED.
It is also possible to unload multiple circuits or all currently loaded circuits.
This API function uses OS functionality to provide exclusive control so that multiple DRP driver
API functions are not executed at the same time. If a failure occurs because resource
acquisition times out during exclusive control, the value R_DK2_ERR_OS is returned and the
API function fails.

Note None.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 16 of 30
Mar. 31, 2021

5.6 R_DK2_Activate

R_DK2_Activate DRP driver API

Enables circuit in DRP Synchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_Activate(const uint8_t id, const uint32_t freq);
 id I Specifies the ID of the circuit to be enabled. To enable

multiple circuits, specify the logical sum (logical OR) of each
bit of the IDs of each of the circuits. Specifying 0 causes all
loaded circuits to be enabled.

 freq I Specifies 0.
Return values R_DK2_SUCCESS : Normal end.

R_DK2_ERR_ARG : Abnormal end.
This error is generated when the value of the argument id
does not correspond to a circuit currently loaded in the
DRP.

R_DK2_ERR_OS : Abnormal end.
This error is generated when exclusive control by the OS
fails.

R_DK2_ERR_STATUS : Abnormal end.
This error is generated in the following cases:
• The DRP driver has not been initialized.
• The circuit specified by the argument id is not in the

loaded state.
• 0 was specified for the argument id and no circuit is

currently in the loaded state.
(For information on circuit states, refer to 6.2, State
Transitions of Individual Circuits.)

Description This API function enables a circuit currently loaded in the DRP, supplies a clock to the
corresponding tile, and puts the circuit into a usable state.
It is also possible to activate multiple circuits or all currently loaded circuits. When 0 is specified
as the argument id in order to enable all circuits, only circuits currently in the loaded state are
affected. (For information on circuit states, refer to 6.2, State Transitions of Individual Circuits.)
This API function uses OS functionality to provide exclusive control so that multiple DRP driver
API functions are not executed at the same time. If a failure occurs because resource
acquisition times out during exclusive control, the value R_DK2_ERR_OS is returned and the
API function fails.

Note None.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 17 of 30
Mar. 31, 2021

5.7 R_DK2_Inactivate

R_DK2_Inactivate DRP driver API

Disables circuit in DRP Synchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_Inactivate(const uint8_t id);
 id I Specifies the ID of the circuit to be disabled. To disable

multiple circuits, specify the logical sum (logical OR) of each
bit of the IDs of each of the circuits. Specifying 0 causes all
loaded circuits to be disabled.

Return values R_DK2_SUCCESS : Normal end.
R_DK2_ERR_ARG : Abnormal end.

This error is generated when the value of the argument id
does not correspond to a circuit currently loaded in the
DRP.

R_DK2_ERR_OS : Abnormal end.
This error is generated when exclusive control by the OS
fails.

R_DK2_ERR_STATUS : Abnormal end.
This error is generated in the following cases:
• The DRP driver has not been initialized.
• The circuit specified by the argument id is not in the

activated or started state.
• 0 was specified for the argument id and no circuit is

currently in the activated or started state.
(For information on circuit states, refer to 6.2, State
Transitions of Individual Circuits.)

Description This API function disables a circuit currently loaded in the DRP, stops supply of the clock to the
corresponding tile, and puts the circuit into the low-power state.
It is also possible to disable multiple circuits or all currently loaded circuits. When 0 is specified
as the argument id in order to disable all circuits, only circuits currently in the activated or
started state are affected.
This API function uses OS functionality to provide exclusive control so that multiple DRP driver
API functions are not executed at the same time. If a failure occurs because resource
acquisition times out during exclusive control, the value R_DK2_ERR_OS is returned and the
API function fails.

Note None

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 18 of 30
Mar. 31, 2021

5.8 R_DK2_Start

R_DK2_Start DRP driver API

Starts operation of circuit in DRP Asynchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_Start(const uint8_t id, const void *const pparam, const uint32_t size);
 id I Specifies the ID of the circuit that will start operating.
 pparam I Specifies the area for storing parameters for circuit

operation. The area where parameters are stored must
exist in physical memory. The parameter storage area for
each circuit is read independently, so it is not possible for
one area to be shared by multiple circuits.
The parameter specifications are different for each
configuration data. For the parameter specifications of
each configuration data, refer to RZ/A2M Group DRP
Library User’s Manual (R01US0367).

 size I Specifies the size of the parameter area specified by the
argument pparam.

Return values R_DK2_SUCCESS : Normal end.
R_DK2_ERR_ARG : Abnormal end.

This error is generated in the following cases:
• The value of the argument id does not correspond to a

circuit currently loaded in the DRP.
• NULL is specified for the argument pparam.
• 0 is specified for the argument size.

R_DK2_ERR_OS : Abnormal end.
This error is generated when exclusive control by the OS fails.

R_DK2_ERR_STATUS : Abnormal end.
This error is generated in the following cases:
• The DRP driver has not been initialized.
• The circuit specified by the argument id is not in the

activated state.
(For information on circuit states, refer to 6.2, State Transitions
of Individual Circuits.)

Description This API function starts operation of a circuit loaded in the DRP. Notification of the completion
of processing is provided by the processing completion callback function specified by the
argument pprocess of the R_DK2_Load function. For details of the processing completion
callback function, refer to 5.8.1, Processing Completion Callback Function.
This API function uses OS functionality to provide exclusive control so that multiple DRP driver
API functions are not executed at the same time. If a failure occurs because resource
acquisition times out during exclusive control, the value R_DK2_ERR_OS is returned and the
API function fails.

Note If the DRP is in a state where the area set by the argument pparam for storing parameters or
the circuit’s I/O data exists in the cache of the Cortex-A9, and the parameters or circuit I/O data
in physical memory do not match, the circuit will not operate properly. It may be necessary to
clear the cache before calling this API function or to allocate the parameters and circuit I/O data
to a non-cached area.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 19 of 30
Mar. 31, 2021

5.8.1 Processing Completion Callback Function

Processing completion callback function Callback function

Completion of processing started by R_DK2_Start Synchronous function
Format #include "r_dk2_if.h"

void process_comp(uint8_t id, int32_t result);
Note: This function can be given any name.
 id I ID of circuit whose processing has finished
 result I R_DK2_SUCCESS:

Indicates that processing has completed successfully.
R_DK2_ERR_DEVICE:
Indicates that a transfer error occurred while transferring
parameters set by the R_DK2_Start function or while
transferring circuit I/O data.
R_DK2_ERR_STOPPED:
Indicates that while transferring parameters set by the
R_DK2_Start function or while transferring circuit I/O data
the transfer was stopped by calling the R_DK2_Unload
function or the R_DK2_Inactivate function.

Return values None
Description This is the callback function specified by the argument pprocess of the R_DK2_Load function. It

provides notification when the processing started by R_DK2_Start function finishes. The
number of times this callback function is called is the same as the number of times the
R_DK2_Start function is called, unless an event such as a forced unload by the R_DK2_Unload
function occurs.
This function is executed in the interrupt context. This function must not call any DRP driver
function.

Note If the value of the argument result is R_DK2_ERR_DEVICE, reevaluate the memory settings,
etc., for the allocation of the parameters set by the R_DK2_Start function or circuit I/O data.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 20 of 30
Mar. 31, 2021

5.9 R_DK2_GetStatus

R_DK2_GetStatus DRP driver API

Gets state of circuit in DRP Synchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_GetStatus(const uint8_t id);
 id I Specifies the ID of the circuit to be whose state is to be

acquired.
Return values R_DK2_STATUS_LOADED : Normal end.

Indicates that the specified circuit is in the loaded state.
R_DK2_STATUS_ACTICATE
D

: Normal end.
Indicates that the specified circuit is in the activated state

R_DK2_STATUS_STARTED : Normal end.
Indicates that the specified circuit is in the started state.

R_DK2_STATUS_LOADING : Normal end.
Indicates that the specified circuit is in the loading state.

R_DK2_ERR_ARG : Abnormal end.
This error is generated when the value of the argument id
does not correspond to a circuit currently loaded in the
DRP.

R_DK2_ERR_OS : Abnormal end.
This error is generated when exclusive control by the OS
fails.

Description This API function gets the state of a circuit currently loaded in the DRP. A positive return value
means that the function completed successfully, and the value returned indicates the state of
the circuit. A negative return value means that the function failed, and the value returned
represents an error code. For information on circuit states in the DRP, refer to 6.2, State
Transitions of Individual Circuits.
This API function uses OS functionality to provide exclusive control so that multiple DRP driver
API functions are not executed at the same time. If a failure occurs because resource
acquisition times out during exclusive control, the value R_DK2_ERR_OS is returned and the
API function fails.

Note None

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 21 of 30
Mar. 31, 2021

5.10 R_DK2_GetInfo

R_DK2_GetInfo DRP driver API

Gets information from configuration data and checks CRC. Synchronous function
Format #include "r_dk2_if.h"

int32_t R_DK2_GetInfo(const void *const pconfig, config_info_t *const pinfo, const bool
crc_check);
 pconfig I Specifies the address of the configuration data from which

information is obtained. The configuration data must be
aligned with a 32-byte boundary.

 pinfo O Specifies the address of the structure config_info_t type
variable. This API function stores the following information
from the configuration data in the members of the structure:

Member
Name

Type Description

type uint8_t This area is reserved. The
data stored here consists of
zeros.

pname char * Stores a pointer to a character
string of up to 31 bytes
representing the circuit name.

ver uint32_t Stores the version of the
configuration data.*1

cid uint32_t Stores a unique ID
representing the circuit stored
in the configuration data.

Note 1. The storage format of the member ver is as
follows:

Bit Position Description
0 to 7 Stores the build number.
8 to 15 Stores the minor version.
16 to 23 Stores the major version.
24 to 31 This area is reserved. The data stored

here consists of zeros.

For example, a ver value of 0x00010201 represents version
1.21.

 crc_check I Specifies as a truth value whether or not a CRC check is
performed on the configuration data when getting
information.

Return values R_DK2_SUCCESS : Normal end.
R_DK2_ERR_ARG : Abnormal end.

This error is generated when pconfig has a value of NULL
or pinfo has a value of NULL.

R_DK2_ERR_FORMAT : Abnormal end.
This error is generated when a format error is detected in
the configuration data.

R_DK2_ERR_CRC : Abnormal end.
This error is generated when the argument crc_check is set
to true and a CRC error is detected in the configuration
data.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 22 of 30
Mar. 31, 2021

Description This API function gets information from the configuration data at the address specified by the
argument pconfig. It writes the information obtained from the configuration data to the address
specified by the argument pinfo.
This API function also performs a CRC check on the configuration data. If the CRC check fails,
the value R_DK2_ERR_CRC is returned and an abnormal end occurs.

Note If a value of R_DK2_ERR_FORMAT is returned, confirm that the address specified by the
argument pconfig is the correct address of the configuration data.

RZ/A2M Group 5. API Reference

R01US0355EJ0103 Rev.1.03 Page 23 of 30
Mar. 31, 2021

5.11 R_DK2_GetVersion

R_DK2_GetVersion DRP driver API

Gets DRP driver version information Synchronous function
Format #include "r_dk2_if.h"

uint32_t R_DK2_GetVersion(void);
Return values DRP driver version

information
: The storage format is as shown below.

Bit Position Description
0 to 7 Stores the build number.
8 to 15 Stores the minor version.
16 to 23 Stores the major version.
24 to 31 This area is reserved. The data stored

here consists of zeros.

For example, a return value of 0x00010201 represents
version 1.21.

Description This API function gets the version number of the DRP driver.
Note None

RZ/A2M Group 6. State Transitions

R01US0355EJ0103 Rev.1.03 Page 24 of 30
Mar. 31, 2021

6. State Transitions

6.1 State Transitions of the DRP Driver Overall

Figure 6.1 shows state transitions and the clock supply status of the DRP driver overall.

Figure 6.1 State Transitions and Clock Supply Status of DRP Driver Overall

(Initially it is in this
state.)

DRP

The clock is supplied to the DRP
except for six tiles in the initialized
state.

DRP

The clock is not supplied to the
DRP in the uninitialized state
(low power consumption).

Tiles

Uninitialized
state

Initialized
state

R_DK2_Uninitialize

R_DK2_Initialize

Tiles

State transition diagram
of individual circuits

The clock is supplied to the portion in blue.

RZ/A2M Group 6. State Transitions

R01US0355EJ0103 Rev.1.03 Page 25 of 30
Mar. 31, 2021

6.2 State Transitions of Individual Circuits

Figure 6.2 shows state transitions and the clock supply status of individual circuits.

Note 1. When argument pload is set to anything other than NULL.
Note 2. When argument pload is set to NULL.

Figure 6.2 State Transitions and Clock Supply Status of Individual Circuits

DRP

The clock is supplied to the tiles of
circuits in the activated and started
states.

DRP

The clock is not supplied to the
tiles of circuits in the loaded state
(low power consumption).

Loaded
state

Started
state

R_DK2_Start R_DK2_Activate R_DK2_Load*2

Circuit Circuit … … … …

Circuit is not
generated

R_DK2_Inactivate

R_DK2_Unload

R_DK2_Unload

R_DK2_Unload R_DK2_Inactivate

State transition
diagram of the DRP
driver overall

The clock is supplied to the portion in blue.

Loading
state

R_DK2_Load*1

Loading
successful.

Processing
successful or failed.

R_DK2_Unload
or loading failed.

Activated
state

RZ/A2M Group 7. Control Flowchart

R01US0355EJ0103 Rev.1.03 Page 26 of 30
Mar. 31, 2021

7. Control Flowchart
Figure 7.1 is a flowchart of a DRP driver usage example.

Figure 7.1 DRP Driver Usage Example

Start

Same
process

Start
R_DK2_Start()

When using multiple configuration data items
at the same time, call R_DK2_Load as many
times as necessary.

Initialize
R_DK2_Initialize()

Load
R_DK2_Load()

Activate
R_DK2_Activate()

Wait for callback function

What processing next?

Other
process

Unload
R_DK2_Unload()

Multiple calls of R_DK2_Activate are required
when loading multiple items.

Multiple calls of R_DK2_Start is required
when loading multiple items.

Multiple calls of R_DK2_Unload is required
when loading multiple items.

RZ/A2M Group 8. OS-Dependent Portion

R01US0355EJ0103 Rev.1.03 Page 27 of 30
Mar. 31, 2021

8. OS-Dependent Portion

8.1 Support for reentrancy of API functions

The OS-dependent portion of the DRP driver is separated from the rest as an OS abstraction layer. The DRP driver
supports FreeRTOS via this OS abstraction layer.
The functionality provided by the DRP driver by means of the OS-dependent portion is support for reentrancy of API
functions. Exclusive control employing the mutual exclusion (Mutex) capability of FreeRTOS is used to enable
reentrancy for some of the API functions, as indicated in Table 8.1.
To implement reentrancy the DRP driver uses a single Mutex to provide exclusive control. When an API function
supporting reentrancy is running and another API function supporting reentrancy is called, the second API function waits
until the first API function finishes.
It is possible to use the macro MUTEX_WAIT defined in r_dk2_if.c to set the timeout duration during exclusive control.
To specify the timeout duration, assign an integer between 0 and 0xFFFFFFFF to the macro MUTEX_WAIT. The setting
value represents the timeout duration in millisecond units. A value of 0 means no wait. The default timeout duration
setting is 100 milliseconds.

Table 8.1 Reentrancy Support of DRP Driver API Functions

API Function Name Reentrancy Support Page
R_DK2_Initialize Reentrancy not supported 7
R_DK2_Uninitialize Reentrancy not supported 8
R_DK2_Load Reentrancy supported 9
R_DK2_Unload Reentrancy supported 15
R_DK2_Activate Reentrancy supported 16
R_DK2_Inactivate Reentrancy supported 17
R_DK2_Start Reentrancy supported 18
R_DK2_GetStatus Reentrancy supported 20
R_DK2_GetInfo Reentrancy not supported 21
R_DK2_GetVersion Reentrancy not supported 23

8.2 DRP Driver Interrupt Priority

The DRP Driver interrupt priority levels are defined in the macros in Table 8.2.
FreeRTOS API functions cannot be called in interrupts that have a higher priority than the value of
configMAX_API_CALL_INTERRUPT_PRIORITY defined in FreeRTOSConfig.h. Be careful when using FreeRTOS
service calls to wait for DRP to complete.

Table 8.2 DRP Driver Interrupt Priority Macro Definition (r_dk2_if.h)

Macro Name Value Description
DRP_INTERRUPT_PRIORITY 26 DRP Driver interrupt priority level

RZ/A2M Group 9. Memory footprint

R01US0355EJ0103 Rev.1.03 Page 28 of 30
Mar. 31, 2021

9. Memory footprint

Table 9.1 lists the approximate sizes of memory used by the DRP Driver.

Table 9.1 Memory Resources

Section name Size (approx.)

Code 12k bytes

Constant Data 0.1 Kbytes or less

Data 0.5k bytes

Stack size 400 bytes

RZ/A2M Group 10. Reference Documents

R01US0355EJ0103 Rev.1.03 Page 29 of 30
Mar. 31, 2021

10. Reference Documents
User’s Manual: Hardware
 RZ/A2M Group User’s Manual: Hardware (R01UH0746)
 (Download the latest version of the manual from the Renesas Electronics website.)

User’s Manual: Software
 RZ/A2M Group DRP Library User’s Manual (R01US0367)
 (Download the latest version of the manual from the Renesas Electronics website.)

User’s Manual: Development Environment
 For the Renesas Electronics integrated development environment (e2 studio), please visit the Renesas

Electronics website to download the latest version.

Technical Update/Technical News
 (Download the latest version of the update or news from the Renesas Electronics website.)

RZ/A2M Group 11. How to Import the Driver

R01US0355EJ0103 Rev.1.03 Page 30 of 30
Mar. 31, 2021

11. How to Import the Driver
11.1 e2 studio
Please refer to the RZ/A2M Smart Configurator User's Guide: e² studio R20AN0583EJ for details on how to import
drivers into projects in e2 studio using the Smart Configurator tool.

11.2 For Projects created outside e2 studio
This section describes how to import the driver into your project.
Generally, there are two steps in any IDE:

1) Copy the driver to the location in the source tree that you require for your project.
2) Add the link to where you copied your driver to the compiler.

Other required drivers, e.g. r_cbuffer, must be imported similarly.

REVISION HISTORY RZ/A2M Group DRP Driver User’s Manual

Rev. Date Description
Page Summary

1.00 Sep. 14, 2018 － First Edition Issued
1.01 May. 31, 2019 29 Added the chapter of “10. How to Import the Driver”.
1.02 Jun. 30, 2020 3 2 Operation Conditions, the version of RENESAS e2 studio was changed to 7.8.0.

25 6.2 State Transitions of Individual Circuits, updated State transition diagram.
1.03 Mar. 31, 2021 － Changed the DRP interrupt priority level from 8 to 26.

27 Added the chapter of “8.2 DRP Driver Interrupt Priority”.
28 Added the chapter of “9. Memory footprint”.

RZ/A2M Group DRP Driver User’s Manual

Publication Date: Rev.1.00 Sep. 14, 2018
 Rev.1.03 Mar. 31, 2021

Published by: Renesas Electronics Corporation

RZ/A2M Gruop

R01US0355EJ0103

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc. Milpitas Campus
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics America Inc. San Jose Campus
6024 Silver Creek Valley Road, San Jose, CA 95138, USA
Tel: +1-408-284-8200, Fax: +1-408-284-2775
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, #06-02 Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2020 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

http://www.renesas.com
http://www.renesas.com/

	Introduction
	1.1 Summary
	1.2 Functions
	1.3 Software Configuration

	2. Operation Conditions
	3. File Structure
	4. API Specifications
	4.1 List of API Functions
	4.2 Error Codes

	5. API Reference
	5.1 How to Read the API Reference
	5.2 R_DK2_Initialize
	5.3 R_DK2_Uninitialize
	5.4 R_DK2_Load
	5.4.1 Tile Patterns
	5.4.2 Load Completion Callback Function

	5.5 R_DK2_Unload
	5.6 R_DK2_Activate
	5.7 R_DK2_Inactivate
	5.8 R_DK2_Start
	5.8.1 Processing Completion Callback Function

	5.9 R_DK2_GetStatus
	5.10 R_DK2_GetInfo
	5.11 R_DK2_GetVersion

	6. State Transitions
	6.1 State Transitions of the DRP Driver Overall
	6.2 State Transitions of Individual Circuits

	7. Control Flowchart
	8. OS-Dependent Portion
	8.1 Support for reentrancy of API functions
	8.2 DRP Driver Interrupt Priority

	9. Memory footprint
	10. Reference Documents
	11. How to Import the Driver
	11.1 e2 studio
	11.2 For Projects created outside e2 studio

