Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

V853™

32-Bit Single-Chip Microcontrollers

Hardware

```
μPD703003A
μPD703003A(A)
μPD703004A
μPD703025A
μPD703025A(A)
μPD70F3003A
μPD70F3003A(A)
μPD70F3025A
```

Document No. U10913EJ6V0UM00 (6th edition) Date Published September 2001 N CP(K)

© NEC Corporation 1996 Printed in Japan [MEMO]

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

V853 and V850 Family are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of September, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Hong Kong Ltd.
	NEC Electronics (France) S.A.	Seoul Branch
NEC Electronics (Germany) GmbH	Velizy-Villacoublay, France	Seoul, Korea
Duesseldorf, Germany	Tel: 01-3067-5800	Tel: 02-528-0303
Tel: 0211-65 03 02	Fax: 01-3067-5899	Fax: 02-528-4411
Fax: 0211-65 03 490		
	NEC Electronics (France) S.A.	NEC Electronics Singapore Pte. Ltd.
NEC Electronics (UK) Ltd.	Madrid Office	Novena Square, Singapore
Milton Keynes, UK	Madrid, Spain	Tel: 253-8311
Tel: 01908-691-133	Tel: 091-504-2787	Fax: 250-3583
Fax: 01908-670-290	Fax: 091-504-2860	
1 4X. 01000 010 200	Fax. 091-504-2000	NEC Electronics Taiwan Ltd.
NEC Electronics Italiana s.r.l.	NEC Electronics (Cormonu) CmbH	Taipei, Taiwan
	NEC Electronics (Germany) GmbH	Tel: 02-2719-2377
Milano, Italy	Scandinavia Office	Fax: 02-2719-5951
Tel: 02-66 75 41	Taeby, Sweden	Fax. 02-2719-3931
Fax: 02-66 75 42 99	Tel: 08-63 80 820	
	Fax: 08-63 80 388	NEC do Brasil S.A.
		Electron Devices Division

Electron Devices Divisio Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

Major Revisions in This Edition

Page	Description
Throughout	 Deletion of following products from target devices μPD703003, 70F3003 Addition of following products to target devices
	 μPD703003A(A), 703025A(A), 70F3003A(A) Deletion of description on ROMless mode
p.22	Change of 1.3 Application Fields
p.22	Change of 1.4 Ordering Information
p.34	Modification of description in 2.2 Pin Status
p.46	Modification of description in 3.2 CPU Register Set
p.47	Modification of description in 3.2.1 Program register set
p.47	Modification of Table 3-1 Program Registers
p.49	Modification of Figure 3-3 Program Status Word (PSW)
p.50	Change of description in 3.3.2 (2) Flash memory programming mode
p.75	Addition of Caution 3 in 3.4.10 Specific registers
p.95	Modification of description in CHAPTER 5 INTERRUPT/EXCEPTION PROCESSING FUNCTION
p.126	Addition of 5.8 (1) Acknowledgement of interrupt servicing following El instruction
p.128	Modification of description in 6.3.2 PLL mode
p.129	Change of description in 6.3.3 Clock control resister (CKC)
p.141	Addition of 6.5.6 Cautions
p.183	Addition of Note in 8.2.1 Features
p.198	Addition of description in 8.3.1 Features
p.204	Addition of 8.3.4 (2) (c) Initialization of serial clock controller and serial clock counter
p.218	Addition of Caution 2 in 9.3 (1) A/D converter mode register 0 (ADM0)
p.289	Addition of description in 12.3.8 Port 7
p.299	Modification of Table 13-1 Operating Status of Each Pin During Reset Period
p.300	Change of description and addition of Note in 13.2 (2) Power-on reset
p.303	Addition of Caution in CHAPTER 14 FLASH MEMORY (µPD70F3003A AND 70F3025A)
p.303	Change of description in 14.1 Features
p.304	Addition of Figure 14-1 V853 Flash Memory Writing Adapter (FA-100GC-8EU) Wiring Example
p.305	Addition of Table 14-1 Wiring Table of V853 Flash Writing Adapter (FA-100GC08EU)
p.307	Change of description in 14.4 (1) UART0
p.307	Change of description in 14.4 (2) CSI0
p.307	Addition of 14.4 (3) CSI communication mode supporting handshake
p.308	Addition of description and Note 1 in 14.4 Communication Mode
p.309	Change of description in 14.5.1 VPP pin
p.310	Addition of description in 14.5.2 Serial interface pin
p.312	Change of description in 14.5.5 MODE pin
p.314	Change of description in 14.6.2 Flash memory programming mode
p.314	Addition of description in Table 14-2 Communication Modes
p.315	Modification of description in 14.6.4 Communication command

The mark \star shows major revised points.

INTRODUCTION

Target Readers	This manual is intended for users who wish to understand the functions of the V853 to design application systems using the V853. The target devices are as follows.	
	 Standard version: μPD703003A, Special version: μPD703003A(A) 	703004A, 703025A, 70F3003A, 70F3025A), 703025A(A), 70F3003A(A)
Purpose	This manual is intended to give user in the Organization below.	rs an understanding of the functions described
Organization		nual are available: hardware (this manual) and ecture User's Manual). The organization of
	Hardware	Architecture
	 Pin functions 	Data type
	CPU function	Register set
	On-chip peripheral functions	 Instruction format and instruction set
	 Flash memory programming 	 Interrupts and exceptions
	mode	Pipeline operation
How to Read This Manual	It is assumed that the reader of this electrical engineering, logic circuits,	manual has general knowledge in the fields of , and microcontrollers.
	electrical equipmen examples in this ma "special" quality gra circuits actually use	is manual are for products used in general t with a "standard" quality grade. If anual are used for applications requiring a ade, check the quality grade for the parts and ed before use. ed as for special products, read as follows.
	μ PD703003A $ ightarrow \mu$ PD	703003A(A)
	μ PD703025A \rightarrow μ PD	703025A(A)
	μ PD70F3003A $ ightarrow \mu$ P	D70F3003A(A)
	 To find the details of a register where → Refer to APPENDIX A REGIS To find the details of a function, end → Refer to APPENDIX C INDEX To understand the details of an in → Refer to the V850 Family Arcl To understand the electrical spect → Refer to the Data Sheet. 	STER INDEX. Stc. where the name is known C. Instruction function hitecture User's Manual. Structions of the V853
	To understand the overall function	
	ightarrow Read this manual according to) the CONTENTS.

Conventions	Data significance: Active low representation: Memory map address:	Higher digits on the left and lower digits on the right \overline{xxx} (overscore over pin or signal name) Higher address on the top and lower address on the bottom
	Note:	Footnote for item marked with Note in the text
	Caution:	Information requiring particular attention
	Remark:	Supplementary information
	Numeric representation:	Binary xxxx or xxxxB
		Decimal xxxx
		Hexadecimal xxxxH
	Prefix indicating power of 2:	K (kilo): 2 ¹⁰ = 1024
		M (mega): 2 ²⁰ = 1024 ²
		G (giga): 2 ³⁰ = 1024 ³

Related DocumentsThe related documents indicated in this publication may include preliminary versions.However, preliminary versions are not marked as such.

• Documents related to devices

Document Name	Document No.
V850 Family Architecture User's Manual	U10243E
μPD703003A, 703004A, 703025A, 703003A(A), 703025A(A) Data Sheet	U13188E
μPD70F3003A, 70F3025A, 70F3003A(A) Data Sheet	U13189E
V853 Hardware User's Manual	This manual

• Documents related to development tools (user's manuals)

Document Nan	ne	Document No.
IE-703002-MC (In-Circuit Emulator)		U11595E
IE-703003-MC-EM1 (In-Circuit Emulator Option Board)		U11596E
CA850 (Ver. 2.30 or Later) (C Compiler Package)	Operation	U14568E
	C Language	U14566E
	Project Manager	U14569E
	Assembly Language	U14567E
CA850 (Ver. 2.40 or Later) (C Compiler Package)	Operation	U15024E
	C Language	U15025E
	Project Manager	U15026E
	Assembly Language	U15027E
ID850 (Ver. 2.40 or Later) (Integrated Debugger)	Operation Windows [™] Based	U15181E
SM850 (Ver. 2.40 or Later) (System Simulator)	Operation Windows Based	U15182E
	External Part User Open Interface Specifications	U14873E
RX850 (Ver. 3.13 or Later) (Real-Time OS)	Basics	U13430E
	Installation	U13410E
	Technical	U13431E
RX850 Pro (Ver. 3.13) (Real-Time OS)	Fundamental	U13773E
	Installation	U13774E
	Technical	U13772E
RD850 (Ver. 3.01) (Task Debugger)	·	U13737E
RD850 Pro (Ver. 3.01) (Task Debugger)		U13916E
AZ850 (Ver. 3.0) (System Performance Analyzer)		U14410E
PG-FP3 (Flash Memory Programmer)		U13502E

CONTENTS

CHAPTE	ER 1 INTRODUCTION	20
1.1	General	20
1.2	Features	21
1.3	Applications	
1.4	Ordering Information	
1.5	Pin Configuration (Top View)	23
1.6	Function Block Configuration	25
	1.6.1 Internal block diagram	
	1.6.2 Internal units	
1.7	Differences Among Products	28
СНАРТ	ER 2 PIN FUNCTIONS	
2.1	Pin Function List	
2.2	Pin Status	
2.3	Pin Functions	
2.4	Pin I/O Circuits and Recommended Connection of Unused Pins	
2.5	Pin I/O Circuits	
	ER 3 CPU FUNCTIONS	
3.1	Features	
3.2	CPU Register Set	
	3.2.1 Program register set	
	3.2.2 System register set	
3.3	Operation Modes	
	3.3.1 Operation modes	
	3.3.2 Specifying operation mode	
3.4	Address Space	
	3.4.1 CPU address space	
	3.4.2 Image	
	3.4.3 Wrap-around of CPU address space	
	3.4.4 Memory map	
	3.4.5 Area	56
	3.4.6 External expansion mode	
	3.4.7 Memory expansion mode register (MM)	
	3.4.8 Recommended use of address space	65
	3.4.9 Peripheral I/O registers	69
	3.4.10 Specific registers	74
СНАРТ	ER 4 BUS CONTROL FUNCTION	78
4.1	Features	
4.2	Bus Control Pins	
4.3	Bus Access	
-	4.3.1 Number of access clocks	
	4.3.2 Bus width	

4.4	Memory Block Function	
4.5	Wait Function	82
	4.5.1 Programmable wait function	82
	4.5.2 External wait function	83
	4.5.3 Relationship between programmable wait and external wait	83
4.6	Idle State Insertion Function	84
4.7	Bus Hold Function	85
	4.7.1 Outline of function	85
	4.7.2 Bus hold procedure	85
	4.7.3 Operation in power save mode	85
4.8	Bus Timing	86
4.9	Bus Priority	93
4.10	Memory Boundary Operation Condition	93
	4.10.1 Program space	
	4.10.2 Data space	
4.11	On-Chip Peripheral I/O Interface	94
CHAPTI	ER 5 INTERRUPT/EXCEPTION PROCESSING FUNCTION	95
5.1	Features	95
5.2	Non-Maskable Interrupt	98
	5.2.1 Acknowledgement operation	
	5.2.2 Restore operation	101
	5.2.3 Non-maskable interrupt status flag (NP)	
	5.2.4 Noise elimination of NMI pin	102
	5.2.5 Edge detection function of NMI pin	102
5.3	Maskable Interrupts	103
	5.3.1 Block diagram	104
	5.3.2 Operation	105
	5.3.3 Restore	107
	5.3.4 Priorities of maskable interrupts	108
	5.3.5 Interrupt control register (xxICn)	112
	5.3.6 Noise eliminator	114
	5.3.7 Edge detection function	115
	5.3.8 In-service priority register (ISPR)	116
	5.3.9 Maskable interrupt status flag (ID)	
5.4	Software Exception	
	5.4.1 Operation	
	5.4.2 Restore	
	5.4.3 Exception status flag (EP)	
5.5	Exception Trap	
	5.5.1 Illegal op code definition	
	5.5.2 Operation	
	5.5.3 Restore	
5.6	Multiple Interrupts	
5.7	Interrupt Latency Time	
5.8	Periods in Which Interrupts Are Not Acknowledged	125

СНАРТЕ	ER 6 0	CLOCK GENERATOR FUNCTION	127
6.1	Featu	res	127
6.2	Confi	guration	127
6.3	Selec	ting Input Clock	128
	6.3.1	Direct mode	128
	6.3.2	PLL mode	128
	6.3.3	Clock control register (CKC)	129
6.4	PLL L	.ockup	131
6.5	Powe	r Save Control	132
	6.5.1	General	132
	6.5.2	Control registers	134
	6.5.3	HALT mode	135
	6.5.4	IDLE mode	137
	6.5.5	Software STOP mode	139
*	6.5.6	Cautions	141
6.6	Secu	ring Oscillation Stabilization Time	142
6.7	Clock	Output Control	145
СНАРТЕ	ER 7 1	IMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)	146
7.1	Featu	res	146
7.2	Basic	Configuration	147
	7.2.1	Timer 1	149
	7.2.2	Timer 4	151
7.3	Contr	ol Registers	152
7.4	Timer	1 Operation	160
	7.4.1	Count operation	160
	7.4.2	Selecting count clock frequency	161
	7.4.3	Overflow	162
	7.4.4	Clearing/starting timer by TCLR signal input	163
	7.4.5	Capture operation	164
	7.4.6	Compare operation	167
7.5	Timer	[•] 4 Operation	169
	7.5.1	Count operation	169
	7.5.2	Selecting count clock frequency	169
	7.5.3	Overflow	169
	7.5.4	Compare operation	170
7.6	Appli	cation Examples	172
7.7	Cauti	ons	180
CHAPTE	ER 8 5	SERIAL INTERFACE FUNCTION	182
8.1		res	
8.2	Asyn	chronous Serial Interface 0 and 1 (UART0 and UART1)	183
	8.2.1	Features	183
	8.2.2	Configuration of asynchronous serial interface	184
	8.2.3	Control registers	186
	8.2.4	Interrupt request	193
	8.2.5	Operation	
8.3	Clock	ed Serial Interface 0 to 3 (CSI0 to CSI3)	198

	8.3.1 Features	198
	8.3.2 Configuration	198
	8.3.3 Control registers	200
	8.3.4 Basic operation	202
	8.3.5 Transmission in CSI0 to CSI3	205
	8.3.6 Reception in CSI0 to CSI3	206
	8.3.7 Transmission/reception in CSI0 to CSI3	207
	8.3.8 System configuration example	208
8.4	Baud Rate Generators 0 to 2 (BRG0 to BRG2)	209
	8.4.1 Configuration and function	209
	8.4.2 Baud rate generator compare registers 0 to 2 (BRGC0 to BRGC2)	213
	8.4.3 Baud rate generator prescaler mode registers 0 to 2 (BPRM0 to BPRM2)	
СНАРТ	ER 9 A/D CONVERTER	215
9.1	Features	
9.2	Configuration	-
9.3	Control Registers	
9.4	A/D Converter Operation	
••••	9.4.1 Basic operation of A/D converter	
	9.4.2 Input voltage and conversion results	
	9.4.3 Operation mode and trigger mode	
9.5	Operation in A/D Trigger Mode	
	9.5.1 Select mode operations	
	9.5.2 Scan mode operations	
9.6	Operation in Timer Trigger Mode	
	9.6.1 Select mode operations	
	9.6.2 Scan mode operations	
9.7	Operation in External Trigger Mode	
	9.7.1 Select mode operations (external trigger select)	
	9.7.2 Scan mode operations (external trigger scan)	
9.8	Cautions in Use of A/D Converter	
9.9	Cautions	245
9.10	How to Read A/D Converter Characteristics Table	246
СНАРТ	ER 10 D/A CONVERTER	249
-	Features	-
	2 Configuration	
	Control Registers	
	D/A Converter Operations	
	10.4.1 D/A converter operation during reset	
	10.4.2 D/A converter operation during normal operation	
	10.4.3 Operations during power save	
	ER 11 PWM UNIT	
	Features	
	2 Configuration	
	Control Registers	
11.4	Operations	255

	11.4.1 Basic operations	255
	11.4.2 Repeating frequency	257
11.5	Caution	257
СНАРТЕ	R 12 PORT FUNCTION	258
12.1	Features	258
12.2	Basic Configuration of Port	259
12.3	Port Pin Functions	263
	12.3.1 Port 0	263
	12.3.2 Port 1	267
	12.3.3 Port 2	272
	12.3.4 Port 3	277
	12.3.5 Port 4	283
	12.3.6 Port 5	285
	12.3.7 Port 6	287
	12.3.8 Port 7	289
	12.3.9 Port 9	290
	12.3.10 Port 11	293
12.4	Switching Between External Maskable Interrupt Request Input/Timer External	
	Capture Trigger Input and CSI Pins	296
12.5	Specifying Pull-up Resistors	298
CHAPTE	R 13 RESET FUNCTION	299
10.1	Factures	200
13.1	Features	299
	Peatures Pin Function	
13.2		299
13.2 13.3	Pin Function Initialize	299 300
13.2 13.3 CHAPTE	Pin Function Initialize R 14 FLASH MEMORY (μPD70F3003A AND 70F3025A)	299 300 303
13.2 13.3 CHAPTE 14.1	Pin Function Initialize R 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features	299 300 303 303
13.2 13.3 CHAPTE 14.1 14.2	Pin Function Initialize R 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer	299 300 303 303 303
13.2 13.3 CHAPTE 14.1 14.2 14.3	Pin Function Initialize R 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment	299 300 303 303 303 306
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize R 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode	299 300 303 303 303 306 307
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize IR 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling	299 300 303 303 303 306 307 309
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize IR 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin	299 300 303 303 303 306 307 309
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize IR 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin	299 300 303 303 303 306 307 309 309 310
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin	299 300 303 303 303 303 306 307 309 310 312
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize IR 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin	299 300 303 303 303 306 306 307 309 310 312 312
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize Initialize IR 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin 14.5.5 MODE pin	299 300 303 303 303 306 307 309 309 310 312 312 312
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin 14.5.5 MODE pin 14.5.6 Port pin	299 300 303 303 303 303 306 307 309 310 312 312 312 312
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize Initialize <t< th=""><th> 299 300 303 303 303 306 307 309 310 312 312 312 312</th></t<>	299 300 303 303 303 306 307 309 310 312 312 312 312
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4	Pin Function Initialize Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin 14.5.5 MODE pin 14.5.6 Port pin 14.5.7 WAIT pin 14.5.8 Other signal pin	299 300 303 303 303 303 306 307 309 310 312 312 312 312 312 312
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4 14.5	Pin Function Initialize R 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin 14.5.5 MODE pin 14.5.6 Port pin 14.5.7 WAIT pin 14.5.8 Other signal pin 14.5.9 Power supply	299 300 303 303 303 303 306 307 309 310 312 312 312 312 312 312 312 312 312
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4 14.5	Pin Function Initialize R 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin 14.5.5 MODE pin 14.5.6 Port pin 14.5.7 WAIT pin 14.5.8 Other signal pin 14.5.9 Power supply Programming Method	299 300 303 303 303 306 307 309 310 312 312 312 312 312 312 312 312 312
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4 14.5	Pin Function Initialize Initialize IR 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin 14.5.5 MODE pin 14.5.6 Port pin 14.5.7 WAIT pin 14.5.8 Other signal pin 14.5.9 Power supply Programming Method 14.6.1 Flash memory control	299 300 303 303 303 303 303 309 309 310 312 312 312 312 312 312 313 313
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4 14.5	Pin Function Initialize Initialize IR 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin 14.5.5 MODE pin 14.5.6 Port pin 14.5.7 WAIT pin 14.5.8 Other signal pin 14.5.9 Power supply Programming Method 14.6.1 Flash memory control 14.6.2 Flash memory programming mode	299 300 303 303 303 303 303 306 307 309 310 312 312 312 312 312 312 313 313 314
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4 14.5	Pin Function	299 300 303 303 303 303 306 307 309 310 312 312 312 312 312 312 312 312 313 314 314
13.2 13.3 CHAPTE 14.1 14.2 14.3 14.4 14.5	Pin Function Initialize Initialize IR 14 FLASH MEMORY (μPD70F3003A AND 70F3025A) Features Writing by Flash Programmer Programming Environment Communication Mode Pin Handling 14.5.1 VPP pin 14.5.2 Serial interface pin 14.5.3 Reset pin 14.5.4 NMI pin 14.5.5 MODE pin 14.5.6 Port pin 14.5.7 WAIT pin 14.5.8 Other signal pin 14.5.9 Power supply Programming Method 14.6.1 Flash memory control 14.6.2 Flash memory programming mode	299 300 303 303 303 303 306 307 309 310 312 312 312 312 312 312 312 312 313 314 314

APPENDIX A	REGISTER INDEX	317
APPENDIX B	INSTRUCTION SET LIST	322
APPENDIX C	INDEX	329

LIST OF FIGURES (1/3)

Figure No.	Title	Page
3-1	Program Counter (PC)	47
3-2	Interrupt Source Register (ECR)	
3-3	Program Status Word (PSW)	
3-4	CPU Address Space	
3-5	Image on Address Space	52
3-6	External Memory Area (When Expanded to 64 KB, 128 KB, 256 KB, 512 KB, or 1 MB)	62
3-7	Recommended Memory Map	66
4-1	Example of Inserting Wait States	83
5-1	Non-Maskable Interrupt Servicing	
5-2	Acknowledging Non-Maskable Interrupt Request	100
5-3	RETI Instruction Processing	101
5-4	Maskable Interrupt Block Diagram	104
5-5	Maskable Interrupt Servicing	106
5-6	RETI Instruction Processing	107
5-7	Example of Interrupt Nesting Process	109
5-8	Example of Processing Interrupt Requests Simultaneously Generated	111
5-9	Example of Noise Elimination Timing	114
5-10	Software Exception Processing	117
5-11	RETI Instruction Processing	118
5-12	Exception Trap Processing	120
5-13	RETI Instruction Processing	121
5-14	Pipeline Operation upon Reception of Interrupt Request (Outline)	124
6-1	Block Configuration	144
7-1	Basic Operation of Timer 1	160
7-2	Operation After Occurrence of Overflow (When ECLR1n = 0, OSTn = 1)	162
7-3	Clearing/Starting Timer by TCLR1n Signal Input (When ECLR1n = 1, OSTn = 0)	163
7-4	Relationship Between Clear/Start by TCLR1n Signal Input and Overflow	
	(When ECLR1n, OSTn = 1)	164
7-5	Example of Capture Operation	165
7-6	Example of TM11 Capture Operation (When Both Edges Are Specified)	166
7-7	Example of Compare Operation	167
7-8	Example of TM11 Compare Operation (Set/Reset Output Mode)	168
7-9	Basic Operation of Timer 4	169
7-10	Examples of TM4 Compare Operation	170
7-11	Example of Timing of Interval Timer Operation	172
7-12	Example of Setting Procedure of Interval Timer Operation	172
7-13	Example of Pulse Width Measurement Timing	173
7-14	Example of Setting Procedure for Pulse Width Measurement	174
7-15	Example of Interrupt Request Servicing Routine Calculating Pulse Width	174

LIST OF FIGURES (2/3)

Figure No.	Title	Page
7-16	Example of PWM Output Timing	175
7-17	Example of Programming Procedure of PWM Output	
7-18	Example of Interrupt Request Servicing Routine, Modifying Compare Value	
7-19	Example of Frequency Measurement Timing	
7-20	Example of Setup Procedure for Frequency Measurement	
7-21	Example of Interrupt Request Servicing Routine Calculating Cycle	
8-1	Block Diagram of Asynchronous Serial Interface	185
8-2	Format of Transmit/Receive Data of Asynchronous Serial Interface	194
8-3	Asynchronous Serial Interface Transmission Completion Interrupt Timing	195
8-4	Asynchronous Serial Interface Reception Completion Interrupt Timing	197
8-5	Receive Error Timing	197
8-6	Block Diagram of Clocked Serial Interface	199
8-7	Timing of 3-Wire Serial I/O Mode (Transmission)	205
8-8	Timing of 3-Wire Serial I/O Mode (Reception)	206
8-9	Timing of 3-Wire Serial I/O Mode (Transmission/Reception)	208
8-10	Example of CSI System Configuration	208
8-11	Block Diagram of Baud Rate Generator	209
9-1	Block Diagram of A/D Converter	217
9-2	Relationship Between Analog Input Voltage and A/D Conversion Result	222
9-3	Select Mode Operation Timing: 1-Buffer Mode (ANI1)	225
9-4	Select Mode Operation Timing: 4-Buffer Mode (ANI6)	226
9-5	Scan Mode Operation Timing: 4-Channel Scan (ANI0 to ANI3)	227
9-6	Example of 1-Buffer Mode (A/D Trigger Select 1-Buffer) Operation	228
9-7	Example of 4-Buffer Mode (A/D Trigger Select 4-Buffer) Operation	229
9-8	Example of Scan Mode (A/D Trigger Scan) Operation	230
9-9	Example of 1-Trigger Mode (Timer Trigger Select 1-Buffer 1-Trigger) Operation	232
9-10	Example of 4-Trigger Mode (Timer Trigger Select 1-Buffer 4-Trigger) Operation	233
9-11	Example of 1-Trigger Mode (Timer Trigger Select 4-Buffer 1-Trigger) Operation	234
9-12	Example of 4-Trigger Mode (Timer Trigger Select 4-Buffer 4-Trigger) Operation	235
9-13	Example of 1-Trigger Mode (Timer Trigger Scan 1-Trigger) Operation	237
9-14	Example of 4-Trigger Mode (Timer Trigger Scan 4-Trigger) Operation	239
9-15	Example of 1-Buffer Mode (External Trigger Select 1-Buffer) Operation	240
9-16	Examples of 4-Buffer Mode (External Trigger Select 4-Buffer) Operation	241
9-17	Example of Scan Mode (External Trigger Scan) Operation	243
9-18	Relationships Among A/D Converter, Ports, INTC, and RPU	244
9-19	Overall Error	246
9-20	Quantization Error	246
9-21	Zero Scale Error	247
9-22	Full Scale Error	247
9-23	Nonlinearity Error	247

LIST OF FIGURES (3/3)

Figure No.	Title	Page
11-1	Basic Operation Timing of PWM	256
11-2	Operation Timing When 000H and FFFH Are Set in PWM Buffer Register	
12-1	Block Diagram of P00 and P01 (Port 0)	264
12-2	Block Diagram of P02 to P07 (Port 0)	
12-3	Block Diagram of P10 and P11 (Port 1)	268
12-4	Block Diagram of P12 to P14 (Port 1)	268
12-5	Block Diagram of P15 (Port 1)	269
12-6	Block Diagram of P16 (Port 1)	269
12-7	Block Diagram of P17 (Port 1)	270
12-8	Block Diagram of P20 and P21 (Port 2)	273
12-9	Block Diagram of P22 and P25 (Port 2)	273
12-10	Block Diagram of P23 and P26 (Port 2)	274
12-11	Block Diagram of P24 and P27 (Port 2)	274
12-12	Block Diagram of P30 and P31 (Port 3)	278
12-13	Block Diagram of P32 to P34 (Port 3)	278
12-14	Block Diagram of P35 (Port 3)	279
12-15	Block Diagram of P36 (Port 3)	279
12-16	Block Diagram of P37 (Port 3)	280
12-17	Block Diagram of P40 to P47 (Port 4)	283
12-18	Block Diagram of P50 to P57 (Port 5)	285
12-19	Block Diagram of P60 to P63 (Port 6)	287
12-20	Block Diagram of P70 to P77 (Port 7)	289
12-21	Block Diagram of P90 to P95 (Port 9)	291
12-22	Block Diagram of P96 (Port 9)	291
12-23	Block Diagram of P110 and P111 (Port 11)	294
12-24	Block Diagram of P112 to P117 (Port 11)	294
14-1	V853 Flash Writing Adapter (FA100GC-8EU) Wiring Example	304

LIST OF TABLES

Table No.	Title	Page	
3-1	Program Registers		
3-2	System Register Numbers		
3-3	Interrupt/Exception Table	59	
4-1	Bus Priority		
5-1	Interrupt List		
5-2	Address and Bits of Interrupt Control Register	113	
6-1	Operation of Clock Generator by Power Save Control	133	
6-2	Operating Status in HALT Mode	135	
6-3	Operating Status in IDLE Mode	137	
6-4	Operating Status in Software STOP Mode	139	
6-5	Example of Count Time	144	
7-1	Configuration of Real-Time Pulse Unit (RPU)	147	
7-2	Capture Trigger Signal to 16-Bit Capture Register (TM1n)		
7-3	Interrupt Request Signal from 16-Bit Compare Register (TM1n)	167	
8-1	Default Priority of Interrupts	193	
8-2	Setting Values of Baud Rate Generators 0 to 2	211	
13-1	Operating Status of Each Pin During Reset Period		
13-2	Initial Values of Each Register After Reset		
14-1	Wiring Table of V853 Flash Writing Adapter		
14-2	List of Communication Modes		

CHAPTER 1 INTRODUCTION

The V853 is a product of NEC's V850 Family of single-chip microcontrollers for real-time control applications. This chapter briefly outlines the V853.

1.1 General

The V853 is a 32-bit single-chip microcontroller that employs the CPU core of the V850 Family of high-performance 32-bit single-chip microcontrollers for real-time control applications, and integrates peripheral functions such as ROM/ RAM, a real-time pulse unit, serial interface, A/D converter, and PWM.

The V853 is provided with multiplication instructions that are executed with a hardware multiplier, saturated operation instructions, and bit manipulation instructions that are ideal for digital servo control applications, in addition to the basic instructions that have a high real-time response speed and can be executed in 1 clock cycle. This microcontroller can be employed for many applications including real-time control systems such as cameras and VCRs and other AV applications; engine control and ABS (Anti-lock Braking System); various automobile electronic applications; office equipment applications including PPCs (Plain Paper Copiers), printers, and facsimiles; and industrial applications such as NC (Numerical Control) machine tools. In any of these applications, the V853 demonstrates an extremely high cost effectiveness.

1.2 Features

O Number of instructions:	74			
O Minimum instruction execution time:	30 ns (at internal 33 MH	lz)		
○ General-purpose registers:	32 bits \times 32			
○ Instruction set:	Signed multiply (16 bits \times 16 bits \rightarrow 32 bits): 1 to 2 clocks Saturated operation instructions (with overflow/underflow detection functio 32-bit shift instructions: 1 clock Bit manipulation instructions Load/store instructions with long/short format			
○ Memory space:	16 MB linear address space (up to 1 MB external expansion) Memory block division function: 2 MB/block Programmable wait function Idle state insertion function			
O External bus interface:	16-bit data bus (address Bus hold function External wait function	/data multiplexed)		
\bigcirc Internal memory	Part Number	Internal ROM	Internal RAM	
- ,	μPD703003A	Mask ROM: 128 KB	4 KB	
	μPD70F3003A	Flash memory: 128 KB	4 KB	
	μPD703004A	Mask ROM: 96 KB	4 KB	
	μPD703025A	Mask ROM: 256 KB	8 KB	
	μPD70F3025A	Flash memory: 256 KB	8 KB	
 Interrupts/exceptions: 	External interrupt: 17 (including NMI) Internal interrupt: 32 sources Exception: 1 source Eight levels of priorities can be set.			
○ I/O lines:	Input ports: 8 I/O ports: 67			
○ Real-time pulse unit:	 16-bit timer/event counter: 4 channels 16-bit timer: 4 16-bit capture/compare register: 16 16-bit interval timer: 1 channel 			
○ Serial interface:	Asynchronous serial interface (UART) Clocked serial interface (CSI) UART/CSI: 2 channels CSI: 2 channels Dedicated baud rate generator: 3 channels			
○ PWM (Pulse Width Modulation):	n): 8-/9-/10-/12-bit resolution PWM: 2 channels			
○ A/D converter:	10-bit resolution A/D converter: 8 channels			
○ D/A converter:	8-bit resolution D/A converter: 2 channels			
○ Clock generator:	Multiplication function by	/ PLL clock synthesizer		

\bigcirc Power save function:	HALT/IDLE/software STOP mode
	Clock output stop function

 \bigcirc Package: 100-pin plastic LQFP (fine pitch) (14 × 14)

 \bigcirc CMOS technology

★ 1.3 Applications

μPD703003A, 703004A, 703025A, 70F3003A, 70F3025A: Camcorders, VCRs, PPC, LBP, printers, motor control, NC machine tools, portable phones, etc. μPD703003A(A), 703025A(A), 70F3003A(A): Medical equipment, automotive electricals, etc.

★ 1.4 Ordering Information

Part number	Package	Quality Grade
μPD703003AGC-33-×××-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Standard
		(for general electrical equipment)
μPD703004AGC-33-×××-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Standard
		(for general electrical equipment)
μPD703025AGC-33-×××-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Standard
		(for general electrical equipment)
μPD70F3003AGC-33-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Standard
		(for general electrical equipment)
μPD70F3025AGC-33-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Standard
		(for general electrical equipment)
μPD703003AGC(A)-33-×××-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Special
		(for high-reliability electrical equipment)
μPD703025AGC(A)-33-×××-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Special
		(for high-reliability electrical equipment)
µPD70F3003AGC(A)-33-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14)	Special
		(for high-reliability electrical equipment)

Remark ××× indicates ROM code suffix.

No differences other than the quality grade exist between the μ PD703003A, 703025A, and 70F3003A and the μ PD703003A(A), 703025A(A), and 70F3003A(A).

For details of the quality grade and its application fields, refer to **Quality Grades on NEC Semiconductor Devices** (C11531E).

1.5 Pin Configuration (Top View)

 100 pin plastic LQFP (fine pitch) (14 × 14) μPD703003AGC-33-×××-8EU μPD703004AGC-33-×××-8EU μPD703025AGC-33-×××-8EU μPD70F3003AGC-33-8EU μPD70F3025AGC-33-8EU

μPD703003AGC(A)-33-×××-8EU μPD703025AGC(A)-33-×××-8EU μPD70F3003AGC(A)-33-8EU

Pin identification

A16 to A19:	Address bus	P30 to P37:	Port3
AD0 to AD15:	Address/data bus	P40 to P47:	Port4
ADTRG:	AD trigger input	P50 to P57:	Port5
ANI0 to ANI7:	Analog input	P60 to P63:	Port6
ANO0, ANO1:	Analog output	P70 to P77:	Port7
ASTB:	Address strobe	P90 to P96:	Port9
AVdd:	Analog power supply	P110 to P117:	Port11
AVREF1 to AVREF3:	Analog reference voltage	PWM0, PWM1:	Pulse width modulation
AVss:	Analog ground	RESET:	Reset
CKSEL:	Clock select	R/W:	Read/write status
CLKOUT:	Clock output	RXD0, RXD1:	Receive data
CVDD:	Clock generator power supply	$\overline{\text{SCK0}}$ to $\overline{\text{SCK3}}$:	Serial clock
CVss:	Clock generator ground	SI0 to SI3:	Serial input
DSTB:	Data strobe	SO0 to SO3:	Serial output
HLDAK:	Hold acknowledge	TCLR11 to TCLR14:	Timer clear
HLDRQ:	Hold request	TI11 to TI14:	Timer input
IC:	Internally connected	TO110, TO111,:	Timer output
INTP110 to INTP113,:	Interrupt request from peripherals	TO120, TO121,	
INTP120 to INTP123,		TO130, TO131,	
INTP130 to INTP133,		TO140, TO141	
INTP140 to INTP143		TXD0, TXD1:	Transmit data
LBEN:	Lower byte enable	UBEN:	Upper byte enable
MODE:	Mode	Vdd:	Power supply
NMI:	Non-maskable interrupt request	Vpp:	Programming power supply
P00 to P07:	Port0	Vss:	Ground
P10 to P17:	Port1	WAIT:	Wait
P20 to P27:	Port2	X1, X2:	Crystal

1.6 Function Block Configuration

1.6.1 Internal block diagram

- μPD703025A: 256 KB (Mask ROM)
- μPD70F3025A: 256 KB (Flash memory)
- μPD703003A, 703004A, 70F3003A: 4 KB μPD703025A, 70F3025A: 8 KB
- **3.** μPD70F3003A, 70F3025A

1.6.2 Internal units

(1) CPU

Executes almost all instruction processing such as address calculation, arithmetic/logic operation, and data transfer in 1 clock by using a 5-stage pipeline.

Dedicated hardware devices such as a multiplier (16 bits \times 16 bits \rightarrow 32 bits) and a barrel shifter (32 bits) are provided to increase the speed of processing complicated instructions.

(2) Bus control unit (BCU)

Initiates the necessary number of external bus cycles based on the physical address obtained by the CPU. If the CPU does not issue a request to start a bus cycle when an instruction is fetched from the external memory area, generates a prefetch address to prefetch an instruction code. The prefetched instruction code is loaded to the internal instruction queue.

(3) ROM

The internal ROM is mapped starting from address 00000000H. The ROM is fixed to access-enabled irrespective of the MODE pin status.

This internal ROM is accessed in 1 clock by the CPU when an instruction is fetched.

(4) RAM

The internal RAM is mapped starting from address FFFE000H. This internal RAM can be accessed in 1 clock by the CPU when data is accessed.

(5) Interrupt controller (INTC)

Processes interrupt requests (NMI, INTP110 to INTP113, INTP120 to INTP123, INTP130 to INTP133, and INTP140 to INTP143) from the on-chip peripheral hardware and external sources. Eight levels of priorities can be specified for these interrupt requests, and multiplexed processing control can be performed on an interrupt source.

(6) Clock generator (CG)

Supplies a CPU clock whose frequency is five times, one time, or 1/2 times the frequency of the oscillator connected across the X1 and X2 pins via the internal PLL. Input from an external clock source can also be referenced instead of using the oscillator.

(7) Real-time pulse unit (RPU)

Provides four 16-bit timer/event counter channels, one 16-bit interval timer channel, and capabilities for measuring pulse width and generation of programmable pulse outputs.

(8) Serial interface (SIO)

The serial interface consists of a four asynchronous serial interface (UART) and clocked serial interface (CSI) channels that can be used simultaneously. Two of these channels can be switched between UART and CSI, and the other two channels are fixed to CSI.

UART transfers data by using the TXD and RXD pins and CSI transfers data by using the SO, SI, and SCK pins.

The output of the baud rate generator and system clock can be selected as the serial interface clock source. Of the fixed CSI channels, one channel is the serial clock output. The serial output is an open drain output.

(9) Ports

The ports have functions as general-purpose ports and functions as control pins as shown below.

Port	I/O	Port Function	Control Function
Port 0	8-bit I/O	General-	Timer I/O, external interrupt
Port 1		purpose port	Timer I/O, external interrupt, serial interface
Port 2			PWM output, serial interface
Port 3		Timer I/O, external interrupt	
Port 4		External address/data bus	
Port 5			External address/data bus
Port 6	4-bit I/O	External address bus	
Port 7	8-bit input		A/D analog input
Port 9	7-bit I/O	External bus interface control signal I/O	
Port 11	8-bit I/O		Timer I/O, external interrupt

(10) PWM (Pulse Width Modulation)

The V853 is provided with two PWM signal output channels for which 8-/9-/10-/12-bit resolution can be selected.

The PWM output can be used as a D/A converter output by connecting an external low pass filter. It is suitable for controlling the actuator of motors, etc.

(11) A/D converter (ADC)

The ADC is a high speed, high resolution 10-bit A/D converter with eight analog input pins and uses the successive-approximation method.

(12) D/A converter (DAC)

The DAC incorporates two 8-bit resolution D/A converter channels and uses the R-2R conversion method.

★ 1.7 Differences Among Products

Item	μPD703003A	μPD703004A	μPD703025A	µPD703003A(A)	µPD703025A(A)	μPD70F3003A	μPD70F3025A	µPD70F3003A(A)
Internal ROM	Mask ROM					Flash memory		
	128 KB	96 KB	256 KB	128 KB	256 KB	128 KB	256 KB	128 KB
Internal RAM 4 KB			8 KB	4 KB	8 KB	4 KB	8 KB	4 KB
Flash memory programming mode	Not available					Available		
VPP pin	Not available Available							
Quality grade	Standard			Special Standard		Standard		Special
Electrical specifications Current dissipation varies (refer to the relevant Data Sheet).								
Other	The noise immunity and noise radiation differ due to differences in the circuit scale and mask layout.							

CHAPTER 2 PIN FUNCTIONS

The following table shows the names and functions of the V853's pins. These pins can be divided by function into port pins and non-port pins.

2.1 Pin Function List

(1) Port pins

Pin Name	I/O	Function	(1/2 Alternate Function
P00	I/O	Port 0.	TO110
P01	- "0	8-bit I/O port.	TO111
P02	-	Input/output can be specified in 1-bit units.	TCLR11
P03	_		TI11
P03	_		INTP110
P05	-		INTP110
	_		
P06	_		INTP112
P07		5.44	INTP113/ADTRG
P10	I/O	Port 1. 8-bit I/O port.	TO120
P11	_	Input/output can be specified in 1-bit units.	TO121
P12	_		TCLR12
P13	_		TI12
P14	_		INTP120
P15			INTP121/SO2
P16			INTP122/SI2
P17	7		INTP123/SCK2
P20	I/O	Port 2.	PWM0
P21		8-bit I/O port.	PWM1
P22		Input/output can be specified in 1-bit units.	TXD0/SO0
P23			RXD0/SI0
P24			SCKO
P25			TXD1/SO1
P26	_		RXD1/SI1
P27	-		SCK1
P30	I/O	Port 3.	TO130
P31	1	8-bit I/O port.	TO131
P32		Input/output can be specified in 1-bit units.	TCLR13
P33			TI13
P34	1		INTP130
P35	1		INTP131/SO3
P36	1		INTP132/SI3
P37	1		INTP133/SCK3

			(2/2)
Pin Name	I/O	Function	Alternate Function
P40 to P47	I/O	Port 4. 8-bit I/O port. Input/output can be specified in 1-bit units.	AD0 to AD7
P50 to P57	I/O	Port 5. 8-bit I/O port. Input/output can be specified in 1-bit units.	AD8 to AD15
P60 to P63	I/O	Port 6. 4-bit I/O port. Input/output can be specified in 1-bit units.	A16 to A19
P70 to P77	Input	Port 7. 8-bit input only port.	ANI0 to ANI7
P90	I/O	Port 9.	LBEN
P91		7-bit I/O port.	UBEN
P92		Input/output can be specified in 1-bit units.	R/W
P93			DSTB
P94			ASTB
P95			HLDAK
P96			HLDRQ
P110	I/O	Port 11.	TO140
P111		8-bit I/O port.	TO141
P112		Input/output can be specified in 1-bit units.	TCLR14
P113			TI14
P114			INTP140
P115			INTP141
P116			INTP142
P117			INTP143

(2) Non-port pins

Pin Name	I/O	Function	Alternate Function
TO110	Output	Pulse signal output from timer 11 to 14.	P00
TO111			P01
TO120			P10
TO121	_		P11
TO130			P30
TO131	_		P31
TO140			P110
TO141	_		P111
TCLR11	Input	External clear signal input to timer 11 to 14.	P02
TCLR12			P12
TCLR13			P32
TCLR14	_		P112
TI11	Input	External count clock input to timer 11 to 14.	P03
TI12	_		P13
TI13	_		P33
TI14	_		P113
INTP110	Input	but External capture trigger input to timer 11. Also used to input external maskable interrupt request.	P04
INTP111	_		P05
INTP112	_		P06
INTP113	_		P07/ADTRG
INTP120	Input	External capture trigger input to timer 12. Also used to input external maskable interrupt request.	P14
INTP121			P15/SO2
INTP122			P16/SI2
INTP123			P17/SCK2
INTP130	Input	External capture trigger input to timer 13. Also used to input external maskable interrupt request.	P34
INTP131			P35/SO3
INTP132			P36/SI3
INTP133			P37/SCK3
INTP140	Input	External capture trigger input to timer 14. Also used to input external maskable interrupt request.	P114
INTP141			P115
INTP142			P116
INTP143			P117
SO0	Output	Serial transmit data output from CSI0 to CSI3 (3-wire).	P22/TXD0
SO1			P25/TXD1
SO2			P15/INTP121
SO3			P35/INTP131
SI0	Input	Serial receive data input to CSI0 to CSI3 (3-wire).	P23/RXD0
SI1			P26/RXD1
SI2			P16/INTP122
SI3			P36/INTP132

			(2/3	
Pin Name	I/O	Function	Alternate Function	
SCK0	I/O	Serial clock I/O from/to CSI0 to CSI3 (3-wire).	P24	
SCK1			P27	
SCK2			P17/INTP123	
SCK3			P37/INTP133	
TXD0	Output	Serial transmit data output from UART0 and UART1.	P22/SO0	
TXD1			P25/SO1	
RXD0	Input	Serial receive data input to UART0 and UART1.	P23/SI0	
RXD1			P26/SI1	
PWM0	Output	Pulse signal output from PWM.	P20	
PWM1			P21	
AD0 to AD7	I/O	16-bit multiplexed address/data bus when external memory is used.	P40 to P47	
AD8 to AD15			P50 to P57	
A16 to A19	Output	Higher address bus when external memory is used.	P60 to P63	
LBEN	Output	Lower byte enable signal output of external data bus.	P90	
UBEN		Higher byte enable signal output of external data bus.	P91	
R/W		External read/write status output.	P92	
DSTB		External data strobe signal output.	P93	
ASTB		External address strobe signal output.	P94	
HLDAK	Output	Bus hold acknowledge output.	P95	
HLDRQ	Input	Bus hold request input.	P96	
ANI0 to ANI7	Input	Analog input to A/D converter.	P70 to P77	
ANO0, ANO1	Output	Analog output for D/A converter.	-	
NMI	Input	Non-maskable interrupt request input.	-	
CLKOUT	Output	System clock output.	-	
CKSEL	Input	Input that specifies clock generator operation mode.	CVDD	
WAIT	Input	Control signal input inserting wait state to bus cycle.	-	
MODE	Input	Specifies operation mode of the V853.	_	
RESET	Input	System reset input.	_	
X1	Input	System clock oscillator connecting pins. Supply external clock to X1.	-	
X2	-	1	-	
ADTRG	Input	A/D converter external trigger input.	P07/INTP113	
AV _{REF1}	Input	Reference voltage input for A/D converter.	-	
AV _{REF2}	Input	Reference voltage input for D/A converter.	_	
AV _{REF3}	1		_	

(3/3)

Pin Name	I/O	Function	Alternate Function
AVDD	-	Positive power supply for A/D converter.	_
AVss	-	Ground for A/D converter.	_
CVDD	-	Positive power supply for on-chip clock generator.	CKSEL
CVss	-	Ground for on-chip clock generator.	-
Vdd	-	Positive power supply	_
Vss	-	Ground	_
VPP ^{Note 1}	-	High-voltage application pin for writing/verifying programs.	_
IC ^{Note 2}	-	Internal connection pin (Connect directly to Vss)	_

Notes 1. μPD70F3003A, 70F3025A

2. *μ*PD703003A, 703004A, 703025A

2.2 Pin Status

Operating Status	Reset	STOP Mode	IDLE Mode	Bus Hold	Idle State	HALT Mode
Pin						
AD0 to AD15	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
A16 to A19	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Retained ^{Note 1}	Retained
LBEN, UBEN	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Retained ^{Note 1}	Retained
R/W	Hi-Z	Hi-Z	Hi-Z	Hi-Z	н	н
DSTB	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Н	Н
ASTB	Hi-Z	Hi-Z	Hi-Z	Hi-Z	н	Н
HLDRQ	_	_	_	Operating	Operating	Operating
HLDAK	Hi-Z	Hi-Z	Hi-Z	L	Operating	Operating
WAIT	_	-	_	-	-	-
CLKOUT	Hi-Z	L	L	Operating ^{Note 2}	Operating ^{Note 2}	Operating ^{Note 2}

The operating status of each pin in each operation mode is as follows.

*

Hi-Z: High-impedance

Retained: Retains status in external bus cycle immediately before

L: Low-level output

H: High-level output

-: Input not sampled

Notes 1. Undefined immediately after the end of bus hold.

2. In clock output inhibit mode, the operating status is low-level output (L).
2.3 Pin Functions

(1) P00 to P07 (Port 0) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 0. They also serve as control signal pins. P00 to P07 function not only as I/O port pins, but also as the I/O pins of the real-time pulse unit (RPU) and external interrupt request input pins. Each bit of port 0 can be specified in the port or control mode by the port 0 mode control register (PMC0).

(a) Port mode

P00 to P07 can be set in the input or output mode in 1-bit units by the port 0 mode register (PM0).

(b) Control mode

P00 to P07 can be set in the port or control mode in 1-bit units by the PMC0 register.

(i) TO110, TO111 (Timer Output) ... output

These pins output pulse signals from timer 1.

(ii) TCLR11 (Timer Clear) ... input

This pin inputs an external clear signal to timer 1.

(iii) TI11 (Timer Input) ... input

This pin inputs an external count clock to timer 1.

(iv) INTP110 to INTP113 (Interrupt Request from Peripherals) ... input

These pins are the external interrupt request input pins of timer 1.

(v) ADTRG (AD Trigger Input) ... input

This pin inputs an external trigger to A/D converter.

(2) P10 to P17 (Port 1) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 1, which can be set in the input or output mode in 1-bit units. P10 to P17 function not only as ports, but also as the I/O pins of the RPU, external interrupt request input pins, and serial interface (CSI2) I/O pins. Each bit of port 1 can be specified in the port or control mode by the port 1 mode control register (PMC1).

(a) Port mode

P10 to P17 can be set in the input or output mode in 1-bit units by the port 1 mode register (PM1).

(b) Control mode

P10 to P17 can be set in the port or control mode in 1-bit units by the PMC1 register.

(i) TO120, TO121 (Timer Output) ... output

These pins output pulse signals from timer 1.

(ii) TCLR12 (Timer Clear) ... input

This pin inputs an external clear signal to timer 1.

(iii) TI12 (Timer Input) ... input

This pin inputs an external count clock to timer 1.

- (iv) INTP120 to INTP123 (Interrupt Request from Peripherals) ... input These pins are the external interrupt request input pins of timer 1.
- (v) SO2 (Serial Output 2) ... output This pin outputs serial transmit data from CSI.
- (vi) SI2 (Serial Input 2) ... input This pin inputs serial receive data to CSI.
- (vii) SCK2 (Serial Clock 2) ... 3-state I/O This pin inputs/outputs serial clock to/from CSI.

(3) P20 to P27 (Port 2) ... 3-state I/O

These pins constitute an I/O port, port 2, which can be set in the input or output mode in 1-bit units. These pins function not only as port pins but also as PWM output pins and I/O pins for the serial interface (UART0, 1/CSI0, 1).

Each bit of this port can be specified in the port or control mode by the port 2 mode control register (PMC2).

(a) Port mode

P20 to P27 can be set in the input or output mode in 1-bit units by the port 2 mode register (PM2).

(b) Control mode

P20 to P27 can be set in the port or control mode in 1-bit units by the PMC2 register.

- (i) PWM0, PWM1 (Pulse Width Modulation) ... output These pins output pulse signals from PWM.
- (ii) TXD0, TXD1 (Transmit Data) ... output These pins output serial transmit data from UART.
- (iii) RXD0, RXD1 (Receive Data) ... input These pins input serial receive data to UART.
- (iv) SO0, SO1 (Serial Output 0, 1) ... output These pins output serial transmit data from CSI.
- (v) SI0, SI1 (Serial Input 0, 1) ... input These pins input serial receive data to CSI.
- (vi) SCK0, SCK1 (Serial Clock 0, 1) ... 3-state I/O These pins input/output serial clock to/from CSI.

(4) P30 to P37 (Port 3) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 3. They also function as control signal pins. P30 to P37 function not only as I/O port pins but also as I/O pins for the RPU, external interrupt request pins, and serial interface (CSI3) I/O pins in the control mode.

(a) Port mode

P30 to P37 can be set in the input or output mode in 1-bit units by the port 3 mode register (PM3).

(b) Control mode

P30 to P37 can be set in the port or control mode in 1-bit units by the PMC3 register.

(i) TO130, TO131 (Timer Output) ... output

These pins output pulse signals from timer 1.

(ii) TCLR13 (Timer Clear) ... input

This pin inputs an external clear signal to timer 1.

(iii) TI13 (Timer Input) ... input

This pin inputs an external count clock to timer 1.

(iv) INTP130 to INTP133 (Interrupt Request from Peripherals) ... input

These pins are the external interrupt request input pins of timer 1.

(v) SO3 (Serial Output 3) ... output

This pin outputs the serial transmit data of CSI.

(vi) SI3 (Serial Input 3) ... input

This pin inputs the serial receive data of CSI.

(vii) SCK3 (Serial Clock 3) ... 3-state I/O

This pin inputs/outputs the serial clock of CSI.

(5) P40 to P47 (Port 4) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 4. They also form a portion of the address/data bus connected to external memory.

P40 to P47 function not only as I/O port pins but also as multiplexed address/data bus pins (AD0 to AD7) in the control mode (external expansion mode) when an external memory is connected.

Each bit of this port can be set in the port or control mode in 1-bit units by the memory expansion mode register (MM).

(a) Port mode

P40 to P47 can be set in the input or output port mode in 1-bit units by the port 4 mode register (PM4).

(b) Control mode (External Expansion Mode)

P40 to P47 can be specified as AD0 to AD7 by the MM register.

(i) AD0 to AD7 (Address/Data 0 to 7) ... 3-state I/O

These pins constitute a multiplexed address/data bus when the external memory is accessed. They function as the A0 to A7 output pins of a 20-bit address in the address timing state (T1), and as the lower 8-bit data I/O bus pins of 16-bit data in the data timing state (T2, TW, T3). The output status of these pins changes in synchronization with the rising edge of the clock in each state of the bus cycle. AD0 to AD7 go into a high-impedance state in the idle state (TI).

(6) P50 to P57 (Port 5) ... 3-state I/O

These pins constitute an 8-bit I/O port, port 5. They also form a portion of the address/data bus connected to external memory.

P50 to P57 function not only as I/O port pins but also as multiplexed address/data bus pins (AD8 to AD15) in the control mode (external expansion mode) when an external memory is connected.

Each bit of this port can be set in the port or control mode in 1-bit units by the memory expansion mode register (MM).

(a) Port mode

P50 to P57 can be set in the input or output port mode in 1-bit units by the port 5 mode register (PM5).

(b) Control mode (External Expansion Mode)

P50 to P57 can be specified as AD8 to AD15 by the MM register.

(i) AD8 to AD15 (Address/Data 8 to 15) ... 3-state I/O

These pins constitute a multiplexed address/data bus when the external memory is accessed. They function as the A8 to A15 output pins of a 20-bit address in the address timing state (T1), and as the higher 8-bit data I/O bus pins of 16-bit data in the data timing state (T2, TW, T3). The output status of these pins changes in synchronization with the rising of the clock in each state of the bus cycle. AD8 to AD15 go into a high-impedance state in the idle state (TI).

(7) P60 to P63 (Port 6) ... 3-state I/O

These pins constitute a 4-bit I/O port, port 6. They also form a portion of the address bus connected to external memory.

P60 to P63 function not only as I/O port pins but also as address bus pins (A16 to A19) in the control mode (external expansion mode) when an external memory is connected. This port can be set in the port or control mode in 2-bit units by the memory expansion mode register (MM).

(a) Port mode

P60 to P63 can be set in the input or output port mode in 1-bit units by the port 6 mode register (PM6).

(b) Control mode (External Expansion Mode)

P60 to P63 can be specified as A16 to A19 by the MM register.

(i) A16 to A19 (Address 16 to 19) ... output

These pins constitute the higher 4 bits of a 20-bit address bus when the external memory is accessed. The output status of these pins changes in synchronization with the rising edge of the clock in the T1 state. During the idle state (TI), the address of the bus cycle immediately before entering the idle state is retained.

(8) P70 to P77 (Port 7) ... input

Port 7 is an 8-bit input-only port whose pins are all fixed to input.

P70 to P77 function as input ports, as well as A/D converter analog inputs in the control mode. However, the input port and analog input pin cannot be switched.

(a) Port mode

P70 to P77 are dedicated input ports.

(b) Control mode

P70 to P77 also function as the ANI0 to ANI7 pins and cannot be switched.

(i) ANI0 to ANI7 (Analog Input) ... input

These pins are analog input pins for the A/D converter.

To prevent malfunction due to noise, connect a capacitor between these pins and AVss.

Make sure that a voltage outside the range of AVss and AVREF is not applied to the input pin used for A/D converter input. If there is the possibility that noise whose voltage is AVREF or more or noise whose voltage is AVss or less may be generated, clamp the voltage using a diode with a small VF.

(9) P90 to P96 (Port 9) ... 3-state I/O

These pins constitute a 7-bit I/O port, port 9, and are also used to output control signals.

P90 to P96 function not only as I/O port pins, but also as control signal output pins and bus hold control signal I/O pins when an external memory is used in the control mode (external expansion mode).

If port 9 is accessed in 8-bit units, the higher 1-bit is ignored if the access is a write, and undefined if the access is a read.

This port can be set in the port or control mode in 1-bit units by the memory expansion mode register (MM).

(a) Port mode

P90 to P96 can be set in the input or output port mode in 1-bit units by the port 9 mode register (PM9).

(b) Control mode (External Expansion Mode)

P90 to P96 can be used to output control signals when so specified by the MM register when an external memory is used.

(i) **LBEN** (Lower Byte Enable) ... output

This is the lower byte enable signal of the 16-bit external data bus.

This signal changes in synchronization with the rising edge of the clock in the T1 state of the bus cycle. The status of the bus signal remains unchanged in the idle state (TI).

(ii) UBEN (Upper Byte Enable) ... output

This is the upper byte enable signal of the 16-bit external data bus. It becomes inactive (high) during byte access to an even address and becomes active (low) during byte access to an odd address. This signal changes in synchronization with the rising of the clock in the T1 state of the bus cycle. The status of the bus signal remains unchanged in the idle state (TI).

	Access	UBEN	LBEN	A0
Word Access		0	0	0
Halfword Access		0	0	0
Byte Access Even address		1	0	0
	Odd address	0	1	1

(iii) R/W (Read/Write Status) ... output

This is a status signal that indicates whether the bus cycle for external access is a read or write cycle. It goes high in the read cycle and low in the write cycle.

This signal changes in synchronization with the rising edge of the clock in the T1 state of the bus cycle. It goes high in the idle state (TI).

(iv) DSTB (Data Strobe) ... output

This is the access strobe signal of the external data bus. It becomes active (low) in the T2 or TW state of the bus cycle, and becomes inactive (high) in the idle state (TI).

(v) ASTB (Address Strobe) ... output

This is the latch strobe signal of the external address bus.

It becomes active (low) in synchronization with the falling edge of the clock in the T1 state of the bus cycle, and becomes inactive (high) in synchronization with the falling edge of the clock in the T3 state. It goes high in the idle state (TI).

(vi) **HLDAK** (Hold Acknowledge) ... output

This is an acknowledge signal output pin that indicates that the V853 has set the address bus, data bus, and control bus in the high-impedance state in response to a bus hold request. As long as this signal is active, the address bus, data bus, and control bus remain in a high impedance state.

(vii) HLDRQ (Hold Request) ... input

This input pin is used by an external device to request that the V853 relinquish control of the address bus, data bus, and control bus. This signal can be input asynchronously to CLKOUT. When this signal becomes active, the V853 sets the address bus, data bus, and control bus in the high-impedance state, after the current bus cycle completes. If there is no current bus activity, the address bus, data bus, and control bus are immediately set to high-impedance. HLDAK is then made active and the bus and control lines are released.

(10) P110 to P117 (Port 11) ... 3-state I/O

Port 11 is an 8-bit I/O port that can be set in the input or output mode in 1-bit units. In addition to the function as a port, the pins constituting port 11 are used as input/output of RPU and external interrupt request.

(a) Port mode

P110 to P117 can be set in the input or output mode, in 1-bit units, by the port mode register (PM11).

(b) Control mode

P110 to P117 can be set in the port or control mode, in 1-bit units, by port 11 mode control register (PMC11).

(i) TO140, TO141 (Timer Output) ... output

These pins output pulse signals from timer 1.

(ii) TCLR14 (Timer Clear) ... input

This pin inputs an external clear signal to timer 1.

(iii) TI14 (Timer Input) ... input

This pin inputs an external count clock to timer 1.

(iv) INTP140 to INTP143 (Interrupt Request from Peripherals) ... input

These pins are the external interrupt request input pins of timer 1.

(11) CLKOUT (Clock Output) ... output

This pin outputs the system clock. In the single-chip mode, this pin does not output the CLKOUT signal until the PSC register is set.

(12) WAIT (Wait) ... input

This control signal input pin inserts a data wait state to the bus cycle, and can be activated asynchronously to CLKOUT. This pin is sampled at the falling edge of the clock in the T2 and TW states of the bus cycle. If the set/hold time for the sampling timing is not satisfied, the wait state may not be inserted.

(13) MODE (Mode) ... input

This pin specifies the value after the clock control register (CKC) is reset.

MODE	Value after CKC Register Reset	
0	03H	
1	00H	

For details, refer to 6.3.3 Clock control register (CKC).

(14) RESET (Reset) ... input

The RESET signal is an asynchronous input signal. A valid low-level signal on the RESET pin initiates a system reset, regardless of the clock operation.

In addition to normal system initialization/start functions, the RESET signal is also used for exiting power save modes (HALT, IDLE, or STOP).

(15) X1, X2 (Crystal) ... input

An oscillator for system clock generation is connected across these pins. An external clock source can also be referenced by connecting the external clock input to the X1 pin and leaving the X2 pin open.

(16) CVDD (Power Supply for Clock Generator)

This pin supplies positive power to the internal clock generator.

(17) CKSEL (Clock Select) ... input

This pin specifies the operation mode of clock generator. The input value of this pin cannot be changed during operation.

(18) CVss (Ground for Clock Generator)

This is the ground pin of the internal clock generator.

(19) VDD (Power Supply)

This pin supplies positive power. Connect all the V_{DD} pins to a positive power supply.

(20) Vss (Ground)

This is a ground pin. Connect all the Vss pins to ground.

(21) AVDD (Analog Power Supply)

Analog power supply pin for A/D converter.

(22) AVss (Analog Ground)

Ground pin for A/D converter.

- (23) AVREF1 to AVREF3 (Analog Reference Voltage) ... input Reference voltage supply pins for A/D and D/A converter.
- (24) ANO0, ANO1 (Analog Output) ... output Analog output pins for D/A converter.
- (25) NMI (Non-Maskable Interrupt Request) ... input This pin inputs non-maskable interrupt requests.

(26) VPP (Programming Power Supply)

This pin supplies positive power for the flash memory programming mode. This pin is for the μ PD70F3003A, 70F3025A.

(27) IC (Internally Connected)

This is internal connection pin. Connect to Vss directly. This pin is for the μ PD703003A, 703004A, and 703025A.

2.4 Pin I/O Circuits and Recommended Connection of Unused Pins

When connected to V_DD or V_SS via a resistor, it is recommended to use a resistor of 1 to 10 k Ω .

Pin	I/O Circuit Type	Recommended Connection
P00/TO110, P01/TO111	5	Input: Independently connect to VDD or VSS via a resistor
P02/TCLR11, P03/TI11	8	Output: Leave open
P04/INTP110 to P07/INTP113/ADTRG		
P10/TO120, P11/TO121	5	
P12/TCLR12, P13/TI12	8	
P14/INTP120		
P15/INTP121/SO2		
P16/INTP122/SI2		
P17/INTP123/SCK2		
P20/PWM0, P21/PWM1	5	
P22/TXD0/SO0		
P23/RXD0/SI0, P24/SCK0	8	
P25/TXD1/SO1	5	
P26/RXD1/SI1, P27/SCK1	8	
P30/TO130, P31/TO131	5	
P32/TCLR13, P33/TI13	8	
P34/INTP130		
P35/INTP131/SO3	10-A	
P36/INTP132/SI3		
P37/INTP133/SCK3		
P40/AD0 to P47/AD7	5	
P50/AD8 to P57/AD15		
P60/A16 to P63/A19		
P70/ANI0 to P77/ANI7	9	Directly connect to Vss
P90/LBEN	5	Input: Independently connect to VDD or VSS via a resistor
P91/UBEN		Output: Leave open
P92/R/W		
P93/DSTB		
P94/ASTB		
P95/HLDAK		
P96/HLDRQ		
P110/TO140, P111/TO141		
P112/TCLR14, P113/TI14	8	
P114/INTP140 to P117/INTP143		
ANO0, ANO1	12	Leave open
NMI	2	Directly Connect to Vss
CLKOUT	3	Leave open
	2	_
WAIT	1	Directly connect to VDD
MODE	2	_
RESET		
AVREF1 to AVREF3, AVSS	_	Directly connect to Vss
AV _{DD}	_	Directly connect to VDD
Vpp	_	Connect to Vss via a resistor (Rvpp)

2.5 Pin I/O Circuits

CHAPTER 3 CPU FUNCTIONS

The CPU of the V853 is based on RISC architecture and executes most instructions in one clock cycle by using a 5-stage pipeline.

3.1 Features

- Minimum instruction cycle: 30 ns (at 33 MHz operation)
- Address space: 16 MB linear
- \bigcirc 32-bit general-purpose registers \times 32
- Internal 32-bit architecture
- \bigcirc Five-stage pipeline control
- Multiplication/division instructions
- Saturated operation instructions
- \bigcirc 32-bit shift instruction: 1 clock
- \bigcirc Long/short instruction format
- Four types of bit manipulation instructions
 - SET1
 - CLR1
 - NOT1
 - TST1

3.2 CPU Register Set

The registers of the V853 can be classified into two categories: a general-purpose program register set and a dedicated system register set. All the registers are 32 bits wide.

For details, refer to V850 Family Architecture User's Manual.

Program register set

*

31		0
r0	Zero Register	
r1	Reserved for Address Generation	
r2		
r3	Stack Pointer (SP)	
r4	Global Pointer (GP)	
r5	Text Pointer (TP)	
r6		
r7		
r8		
r9		
r10		
r11		
r12		
r13		
r14		
r15		
r16		
r17		
r18		
r19		
r20		
r21		
r22		
r23		
r24		
r25		
r26		
r27		
r28		
r29		
r30	Element Pointer (EP)	
r31	Link Pointer (LP)	
		_
31		0
PC	Program Counter	

System register set

31		0
EIPC	Exception/Interrupt PC	
EIPSW	Exception/Interrupt PSW	
31		0
FEPC	Fatal Error PC	
FEPSW	Fatal Error PSW	
31		0
ECR	Exception Cause Register	
31		0
PSW	Program Status Word	

3.2.1 Program register set

The program register set includes general-purpose registers and a program counter.

(1) General-purpose registers

Thirty-two general-purpose registers, r0 to r31, are available. Any of these registers can be used as a data variable or address variable.

However, r0 and r30 are implicitly used by instructions, and care must be exercised when using these registers. Also, r1, r3 to r5 and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost. The contents must be restored to the registers after the registers have been used. In some case, r2 is used by the real-time OS. Consequently, r2 can be used as a variable register only when r2 is not used by the real-time OS to be used.

Name	Usage	Operation		
r0	Zero register	Always holds 0		
r1	Assembler-reserved register	Working register for generating immediate		
r2	Address/data variable register	Address/data variable registers (when r2 is not used by the real-time OS to be used)		
r3	Stack pointer	Used to generate stack frame when function is called		
r4	Global pointer	Used to access global variable in data area		
r5	Text pointer	Register to indicate the start of the text area ^{Note}		
r6 to r29	Address/data variable registers			
r30	Element pointer	Base pointer register when memory is accessed		
r31	Link pointer	Used by compiler when calling function		
PC	Program counter	Holds instruction address during program execution		

Table	3-1.	Program	Registers
-------	------	---------	-----------

Note Area where program code is allocated.

(2) Program counter

This register holds the address of the instruction under execution. The lower 24 bits of this register are valid, and bits 31 to 24 are fixed to 0. If a carry occurs from bit 23 to 24, it is ignored. Bit 0 is fixed to 0, and branching to an odd address cannot be performed.

Figure 3-1. Program Counter (PC)

3.2.2 System register set

System registers control the status of the CPU and hold interrupt information.

No.	System Register Name	Usage	Operation
0	EIPC	Status saving registers during interrupt	These registers save the PC and PSW when an exception or interrupt occurs. Because only one set of these
1	EIPSW		registers is available, their contents must be saved when multiple interrupts are enabled.
2	FEPC	Status saving registers for NMI	These registers save PC and PSW when NMI occurs.
3	FEPSW		
4	ECR	Interrupt source register	If an exception, maskable interrupt, or NMI occurs, this register will contain information referencing the interrupt source. The high-order 16 bits of this register are called FECC, to which exception code of NMI is set. The low-order 16 bits are called EICC, to which exception code of exception/interrupt is set (refer to Figure 3-2).
5	PSW	Program status word	Program status word is collection flags that indicate program status (instruction execution result) and CPU status (refer to Figure 3-3).
6 to 31	Reserved		

Table 3-2.	System	Register	Numbers
	System	negister	Numbers

To read/write these system registers, specify the system register number indicated by the system register load/ store instruction (LDSR or STSR instruction).

Figure 3-2. Interrupt Source Register (ECR)

Figure 3-3. Program Status Word (PSW)

*

SW RFU NP EP ID SATCY OV S Z After reset 00000020H				
Bit position	Bit name	Function		
31 to 8	RFU	Reserved field (fixed to 0)		
7	NP	Indicates that non-maskable interrupt (NMI) servicing is in progress. This flag is set when an NMI is acknowledged, and disables multiple interrupts. 0: NMI servicing not under execution. 1: NMI servicing under execution.		
6	EP	Indicates that exception processing is in progress. This flag is set when an exception is generated. Moreover, interrupt requests can be acknowledged when this bit is set. 0: Exception processing not under execution. 1: Exception processing under execution.exception is generated.		
5	ID	Indicates whether a maskable interrupt request can be acknowledged or not. 0: Interrupt enabled. 1: Interrupt disabled.		
4	SAT ^{Note}	Indicates that the operation result of a saturated operation processing instruction is saturated due to overflow. Due to the cumulative flag, if the operation result is saturated by the saturation operation instruction, this bit is set (1), but is not cleared (0) even if the operation results of subsequent instructions are not saturated. To clear (0) this bit, load data in PSW. Note that in a general arithmetic operation, this bit is neither set (1) nor cleared (0). 0: Not saturated. 1: Saturated.		
3	CY	This flag is set if a carry or borrow occurs as the result of an operation (if a carry or borrow does not occur, it is reset). 0: Carry or borrow does not occur. 1: Carry or borrow occurs.		
2	OV ^{Note}	This flag is set if an overflow occurs during operation (if an overflow does not occur, it is reset). 0: Overflow does not occur. 1: Overflow occurs.		
1	S ^{Note}	This flag is set if the result of an operation is negative (it is reset if the result is positive). 0: The operation result was positive or 0. 1: The operation result was negative.		
0	Z	This flag is set if the result of an operation is zero (if the result is not zero, it is reset). 0: The operation result was not 0. 1: The operation result was 0.		

Note The result of a saturation-processed operation is determined by the contents of the OV and S flags in the saturation operation. Simply setting the OV flag (1) will set the SAT flag (1) in a saturation operation.

Status of operation result		Flag statu	S	Saturation-processed
	SAT	OV	S	operation result
Maximum positive value exceeded	1	1	0	7FFFFFFH
Maximum negative value exceeded	1	1	1	8000000H
Positive (not exceeding the maximum)	Retains the value	0	0	Operation result itself
Negative (not exceeding the maximum)	before operation		1	

3.3 Operation Modes

3.3.1 Operation modes

The V853 has the following operation modes.

★ (1) Normal operation mode (Single-chip mode)

After the system has been released from the reset status, the pins related to the bus interface are set to port mode, execution branches to the reset entry address of the internal ROM, and instruction processing is started. However, access to external memory and peripheral devices can be enabled by setting the external memory expansion mode register using an instruction (MM: refer to **3.4.7**).

(2) Flash memory programming mode (µPD70F3003A and 70F3025A only)

Specifying this mode enables the program operations to the internal flash memory via the flash programmer.

3.3.2 Specifying operation mode

★ (1) Normal operation mode

The operation mode is fixed to single-chip mode.

(2) Flash memory programming mode

The operation mode of the V853 is specified depending on the MODE pin and VPP pin. The MODE pin specification should be fixed in the application system and should not be changed during operation. The operation is not guaranteed if the status is changed during operation.

Pin Status		Operation Mode
Vpp	MODE	
0 V	1	Normal operation mode
10.3 V	1	Flash memory programming mode

★

Refer to CHAPTER 14 FLASH MEMORY (µPD70F3003A AND 70F3025A).

3.4 Address Space

3.4.1 CPU address space

The CPU of the V853 is of 32-bit architecture and supports up to 4 GB of linear address space (data space) during operand addressing (data access). When referencing instruction addresses, a linear address space (program space) of up to 16 MB is supported.

Figure 3-4 shows the CPU address space.

3.4.2 Image

The core CPU supports 4 GB of "virtual" addressing space, or 256 memory blocks, each containing 16 MB memory locations. In actuality, the same 16 MB block is accessed regardless of the values of bits 31 to 24 of the CPU address. Figure 3-5 shows the image of the virtual addressing space.

Because the higher 8 bits of a 32-bit CPU address are ignored and the CPU address is only seen as a 24-bit external physical address, the physical location XX000000H is equally referenced by multiple address values 00000000H, 010000000H, 02000000H... through FE000000H, FF000000H.

3.4.3 Wrap-around of CPU address space

(1) Program space

Of the 32 bits of the PC (program counter), the higher 8 bits are set to 0, and only the lower 24 bits are valid. Even if a carry or borrow occurs from bit 23 to 24 as a result of branch address calculation, the higher 8 bits ignore the carry or borrow and remain 0.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address 00FFFFFH become contiguous addresses. Wrap-around refers to the situation that the lower-limit address and upper-limit address become contiguous like this.

Caution No instruction can be fetched from the 4 KB area of 00FFF000H to 00FFFFFFH because this area is defined as peripheral I/O area. Therefore, do not execute any branch operation instructions in which the destination address will reside in any part of this area.

(2) Data space

The result of operand address calculation that exceeds 32 bits is ignored.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address FFFFFFFH are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.

3.4.4 Memory map

Area is reserved in the V853 as shown below. The external expansion mode is specified by the MM register.

(1) For µPD703003A, 70F3003A, and 703004A

(2) For µPD703025A and 70F3025A

3.4.5 Area

(1) Internal ROM area

(a) Memory map

<1> µPD703003A and 70F3003A

A 1 MB area in addresses 000000H to 0FFFFFH is reserved for the internal ROM area, and 128 KB area in addresses 000000H to 01FFFFH is provided for physical internal ROM. The image of 000000H to 01FFFFH can be seen in the remaining area (020000H to 0FFFFFH).

<**2**> µ**PD703004A**

A 1 MB area in addresses 000000H to 0FFFFFH is reserved for the internal ROM area, 96 KB area in addresses 000000H to 017FFFH is provided for physical internal ROM, and 32 KB area in addresses 018000H to 01FFFFH is undefined. Also the image of 000000H to 01FFFFH can be seen in the remaining area (020000H to 0FFFFFH).

<3> μ PD703025A and 70F3025A

A 1 MB area in addresses 000000H to 0FFFFFH is reserved for the internal ROM area, and 256 KB area in addresses 000000H to 03FFFFH is provided for physical internal ROM. Also, the image of 000000H to 03FFFFH can be seen in the remaining area (040000H to 0FFFFFH).

(b) Interrupt/exception table

The V853 increases the interrupt response speed by assigning destination addresses corresponding to interrupts/exceptions.

The collection of these destination addresses is called an interrupt/exception table, which is located in the internal ROM area. When an interrupt/exception request is granted, execution jumps to the corresponding destination address, and the program written at that memory address is executed. Table 3-3 shows the sources of interrupts/exceptions, and the corresponding addresses.

Start Address of Interrupt/Exception Table	Interrupt/Exception Source
0000000H	RESET
0000010H	NMI
0000040H	TRAP0n (n = 0 to FH)
0000050H	TRAP1n (n = 0 to FH)
0000060H	ILGOP
0000080H	INTOV11
0000090H	INTOV12
00000A0H	INTOV13
00000B0H	INTOV14
00000C0H	INTP110/INTCC110
00000D0H	INTP111/INTCC111
00000E0H	INTP112/INTCC112
00000F0H	INTP113/INTCC113
00000100H	INTP120/INTCC120
00000110H	INTP121/INTCC121
00000120H	INTP122/INTCC122
00000130H	INTP123/INTCC123
00000140H	INTP130/INTCC130
00000150H	INTP131/INTCC131
00000160H	INTP132/INTCC132
00000170H	INTP133/INTCC133
00000180H	INTP140/INTCC140
00000190H	INTP141/INTCC141
000001A0H	INTP142/INTCC142
000001B0H	INTP143/INTCC143
000001C0H	INTCM4
000001D0H	INTCSI0
000001E0H	INTCSI1
000001F0H	INTCSI2
00000200H	INTCSI3
00000210H	INTSER0
00000220H	INTSR0
00000230H	INTSTO
00000240H	INTSER1
00000250H	INTSR1
00000260H	INTST1
00000270H	INTAD

Table 3-3. Interrupt/Exception Table

(2) Internal RAM area

(a) µPD703003A, 70F3003A, and 703004A

The V853 is provided with 4 KB of addresses FFE000H to FFEFFFH as a physical internal RAM area.

(b) *µ*PD703025A and 70F3025A

Up to 12 MB area in addresses FFC000H to FFEFFFH is reserved for the internal RAM area, and 8 KB area in addresses FFD000H to FFEFFFH is provided for physical internal RAM. Also, the image of FFE000H to FFEFFFH can be seen in the remaining area (FFC000H to FFCFFFH).

(3) Peripheral I/O area

A 4 KB area of addresses FFF000H to FFFFFH is reserved as a peripheral I/O area. The V853 is provided with a 1 KB area of addresses FFF000H to FFF3FFH as a physical peripheral I/O area, and the image of FFF000H to FFF3FFH can be seen on the rest of the area (FFF400H to FFFFFFH).

Peripheral I/O registers associated with the operation mode specification and the state monitoring for the onchip peripherals are all memory-mapped to the peripheral I/O area. Program fetches are not allowed in this area.

- Cautions 1. The least significant bit of an address is not decoded since all registers reside at an even address. If an odd address (2n + 1) in the peripheral I/O area is referenced, the register at the next lowest even address (2n) will be accessed.
 - 2. The V853 does not have a peripheral I/O register that can be accessed in word units. If a register is accessed with a word operation, a word area whose lower 2 bits are ignored is accessed twice in halfword units. The lower halfword is accessed first, and the higher halfword is accessed next.
 - If a register that can be accessed in byte units is accessed in halfword units, the higher 8 bits become undefined, if the access is a read operation. If a write access is made, only the data in the lower 8 bits is written to the register.
 - 4. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed.

(4) External memory area

The V853 can use an area of up to xx100000H to xxFFDFFFH in the single-chip mode for external memory accesses.

In the external memory area, 64 KB, 128 KB, 256 KB, 512 KB, or 1 MB of physical external memory can be allocated when the external expansion mode is specified. The same image as that of the physical external memory can be seen continuously on the external memory area, as shown in Figure 3-6.

The internal RAM area, peripheral I/O area, and internal ROM area in the single-chip mode are not subject to external memory access.

★ 3.4.6 External expansion mode

The V853 allows external devices to be connected to the external memory space by using the pins of ports 4, 5, 6, and 9.

The port/control mode alternate-function pins at reset become port mode, and the external devices cannot be used. To connect an external device, the port pins must be set in the external expansion mode by the memory expansion mode register (MM).

3.4.7 Memory expansion mode register (MM)

This register sets the mode of each pin of ports 4, 5, 6, and 9. In the external expansion mode, an external device can be connected to the external memory area of up to 1 MB. However, the external device cannot be connected to the internal RAM area, peripheral I/O area, and internal ROM area in the single-chip mode (access is restricted to external locations 100000H through FFE00H).

The MM register can be read/written in 8-bit or 1-bit units. Bits 4 to 7 of this register are fixed to 0.

	-	7	,	6	5	4	3	2	1	0	-		
	MM	0		0	0	0	MM3	MM2	MM1	MM0	Address FFFFF04CH	After rese 00H	
	Bit posit	ion	Bi	t name					Functi	on			
	3		MMS	3		y Expansio es operatio		of P95 and P	96 of port	9.			
					MM	3	Operatio	n mode	P95	P96			
					0		mode		Po	-			
					1	Exte	rnal expa	ansion mode	HLDAK	HLDRQ			
	2 to 0 MM2 to MM0							of ports 4, 5, Address space	6 (P60 to		d 9 (P90 to P94). rt 5 Port 6 (P60 to P63	Port 9	
				0	0 0 0 -					Port mode			
					0	1	1	64 KB expansion	AD0 to AD7	D ADE		LBEN, UBEN,	
					1	0	0	256 KB expansion			A16,	R/W,	
				1	0	1	1 MB expansion			A18 A19	ASTB		
l					1	1	1	1 MB expansion ^{Note}					
					Other than above				RFU (reserved)				

3.4.8 Recommended use of address space

The architecture of the V853 requires that a register that serves as a pointer be secured for address generation in accessing operand data in the data space. At the address in this pointer register \pm 32 KB operand data can be accessed directly from an instruction. However, the general register used as a pointer has limitations. Therefore, by minimizing the deterioration of the address calculation performance when changing the pointer value, the number of usable general-purpose registers for handling variables is maximized, and the program size can be saved because instructions for calculating pointer addresses are not required.

To enhance the efficiency of using the pointer in connection with the memory map of the V853, the following points are recommended.

(1) Program space

Of the 32 bits of the PC (program counter), the higher 8 bits are fixed to 0, and only the lower 24 bits are valid. Therefore, a contiguous 16 MB space, starting from address 00000000H, unconditionally corresponds to the memory map of the program space.

(2) Data space

For the efficient use of resources to be performed through the wrap-around feature of the data space, the continuous 8 MB address spaces 0000000H to 007FFFFH and FF800000H to FFFFFFFH of the 4 GB CPU are used as the data space. With the V853, 16 MB physical address space is seen as 256 images in the 4 GB CPU address space. The highest bit (bit 23) of this 24-bit address is assigned as address signextended to 32 bits.

Application of wrap-around

For example, when R = r0 (zero register) is specified for the LD/ST disp16 [R] instruction, an addressing range of 00000000H ±32 KB can be referenced with the sign-extended, 16-bit displacement value. By mapping the external memory in the 24 KB area in the figure, all resources including on-chip hardware can be accessed with one pointer.

The zero register (r0) is a register set to 0 by the hardware, and eliminates the need for additional registers for the pointer.

Figure 3-7. Recommended Memory Map (1/3)

Figure 3-7. Recommended Memory Map (2/3)

3.4.9 Peripheral I/O registers

Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation			After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF000H	Port 0	P0	R/W	0	0		Undefined
FFFFF002H	Port 1	P1	1	0	0		
FFFFF004H	Port 2	P2]	0	0		
FFFFF006H	Port 3	P3]	0	0		
FFFFF008H	Port 4	P4	1	0	0		
FFFFF00AH	Port 5	P5]	0	0		
FFFFF00CH	Port 6	P6	1	0	0		
FFFFF00EH	Port 7	P7	R	0	0		
FFFFF012H	Port 9	P9	R/W	0	0		
FFFFF016H	Port 11	P11		0	0		
FFFFF020H	Port 0 mode register	PM0		0	0		FFH
FFFFF022H	Port 1 mode register	PM1		0	0		
FFFFF024H	Port 2 mode register	PM2		0	0		
FFFFF026H	Port 3 mode register	PM3		0	0		
FFFFF028H	Port 4 mode register	PM4	1	0	0		
FFFFF02AH	Port 5 mode register	PM5		0	0		
FFFFF02CH	Port 6 mode register	PM6		0	0		XFH
FFFFF032H	Port 9 mode register	PM9		0	0		X1111111B
FFFFF036H	Port 11 mode register	PM11	1	0	0		FFH
FFFFF040H	Port 0 mode control register	PMC0		0	0		00H
FFFFF042H	Port 1 mode control register	PMC1	1	0	0		-
FFFFF044H	Port 2 mode control register	PMC2		0	0		
FFFFF046H	Port 3 mode control register	PMC3		0	0		
FFFFF04CH	Memory expansion mode register	MM		0	0		
FFFFF056H	Port 11 mode control register	PMC11		0	0		-
FFFFF05CH	Port control mode register	PCM		0	0		
FFFFF05EH	Pull-up resistor option register	PUO	1	0	0		
FFFFF060H	Data wait control register	DWC				0	FFFFH
FFFFF062H	Bus cycle control register	BCC	1			0	ААААН
FFFFF070H	Power save control register	PSC	1	0	0		СОН
FFFFF072H	Clock control register	СКС	1	0	0		00H/03H
FFFFF078H	System status register	SYS	1	0	0		0000000XB
FFFFF084H	Baud rate generator compare register 0	BRGC0	1	0	0		Undefined
FFFFF086H	Baud rate generator prescaler mode register 0	BPRM0	1	0	0		00H
FFFFF088H	Clocked serial interface mode register 0	CSIM0	1	0	0		1
FFFFF08AH	Serial I/O shift register 0	SIO0	1	0	0		Undefined

* *

Address	Function Register Name	Symbol	R/W	Bit Units for Manipulation			After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF094H	Baud rate generator compare register 1	BRGC1	R/W	0	0		Undefined
FFFFF096H	Baud rate generator prescaler mode register 1	BPRM1		0	0		00H
FFFFF098H	Clocked serial interface mode register 1	CSIM1		0	0		
FFFFF09AH	Serial I/O shift register 1	SIO1	1	0	0		Undefined
FFFFF0A4H	Baud rate generator compare register 2	BRGC2		0	0		
FFFFF0A6H	Baud rate generator prescaler mode register 2	BPRM2		0	0		00H
FFFFF0A8H	Clocked serial interface mode register 2	CSIM2		0	0		
FFFFF0AAH	Serial I/O shift register 2	SIO2		0	0		Undefined
FFFFF0B8H	Clocked serial interface mode register 3	CSIM3		0	0		00H
FFFFF0BAH	Serial I/O shift register 3	SIO3		0	0		Undefined
FFFFF0C0H	Asynchronous serial interface mode register 00	ASIM00]	0	0		00H
FFFFF0C2H	Asynchronous serial interface mode register 01	ASIM01	1	0	0		
FFFFF0C4H	Asynchronous serial interface status register 0	ASIS0	R	0	0		
FFFFF0C8H	Receive buffer 0 (9 bits)	RXB0				0	Undefined
FFFFF0CAH	Receive buffer 0L (lower 8 bits)	RXB0L		0	0		
FFFFF0CCH	Transmit shift register 0 (9 bits)	TXS0	W			0	
FFFFF0CEH	Transmit shift register 0L (lower 8 bits)	TXSOL			0		
FFFFF0D0H	Asynchronous serial interface mode register 10	ASIM10	R/W	0	0		00H
FFFFF0D2H	Asynchronous serial interface mode register 11	ASIM11		0	0		
FFFFF0D4H	Asynchronous serial interface status register 1	ASIS1	R	0	0		
FFFFF0D8H	Receive buffer 1 (9 bits)	RXB1]			0	Undefined
FFFFF0DAH	Receive buffer 1L (lower 8 bits)	RXB1L		0	0		
FFFFF0DCH	Transmit shift register 1 (9 bits)	TXS1	W			0	
FFFFF0DEH	Transmit shift register 1L (lower 8 bits)	TXS1L			0		
FFFFF100H	Interrupt control register	OVIC11	R/W	0	0		47H
FFFFF102H	Interrupt control register	OVIC12		0	0		
FFFFF104H	Interrupt control register	OVIC13		0	0		
FFFFF106H	Interrupt control register	OVIC14		0	0		
FFFFF108H	Interrupt control register	P11IC0		0	0		
FFFFF10AH	Interrupt control register	P11IC1		0	0		
FFFFF10CH	Interrupt control register	P11IC2		0	0		
FFFFF10EH	Interrupt control register	P11IC3	_	0	0		
FFFFF110H	Interrupt control register	P12IC0		0	0		
FFFFF112H	Interrupt control register	P12IC1		0	0		
FFFFF114H	Interrupt control register	P12IC2		0	0		
FFFFF116H	Interrupt control register	P12IC3		0	0		
FFFFF118H	Interrupt control register	P13IC0		0	0		
FFFFF11AH	Interrupt control register	P13IC1		0	0		
Address	Function Register Name	Symbol	R/W		it Units f Ianipulat		After Reset
-----------	------------------------------------	--------	-----	-------	-------------------------	---------	-------------
				1 Bit	8 Bits	16 Bits	
FFFFF11CH	Interrupt control register	P13IC2	R/W	0	0		47H
FFFFF11EH	Interrupt control register	P13IC3		0	0		
FFFFF120H	Interrupt control register	P14IC0		0	0		
FFFFF122H	Interrupt control register	P14IC1		0	0		
FFFFF124H	Interrupt control register	P14IC2		0	0		
FFFFF126H	Interrupt control register	P14IC3		0	0		
FFFFF128H	Interrupt control register	CMIC4		0	0		
FFFFF12AH	Interrupt control register	CSIC0		0	0		
FFFFF12CH	Interrupt control register	CSIC1		0	0		
FFFFF12EH	Interrupt control register	CSIC2		0	0		
FFFFF130H	Interrupt control register	CSIC3		0	0		
FFFFF132H	Interrupt control register	SEIC0		0	0		
FFFFF134H	Interrupt control register	SRIC0		0	0		
FFFFF136H	Interrupt control register	STIC0		0	0		
FFFFF138H	Interrupt control register	SEIC1		0	0		
FFFFF13AH	Interrupt control register	SRIC1		0	0		
FFFFF13CH	Interrupt control register	STIC1		0	0		
FFFFF13EH	Interrupt control register	ADIC		0	0		
FFFFF166H	In-service priority register	ISPR	R	0	0		00H
FFFFF170H	Command register	PRCMD	W		0		ХХН
FFFFF180H	External interrupt mode register 0	INTM0	R/W	0	0		00H
FFFFF182H	External interrupt mode register 1	INTM1		0	0		
FFFFF184H	External interrupt mode register 2	INTM2		0	0		
FFFFF186H	External interrupt mode register 3	INTM3		0	0		
FFFFF188H	External interrupt mode register 4	INTM4		0	0		
FFFFF230H	Timer overflow status register	TOVS		0	0		
FFFFF240H	Timer unit mode register 11	TUM11]			0	0000H
FFFFF242H	Timer control register 11	TMC11		0	0		00H
FFFFF244H	Timer output control register 11	TOC11		0	0		
FFFFF250H	Timer 11	TM11	R			0	0000H
FFFFF252H	Capture/compare register 110	CC110	R/W			0	undefined
FFFFF254H	Capture/compare register 111	CC111				0	
FFFFF256H	Capture/compare register 112	CC112				0	
FFFFF258H	Capture/compare register 113	CC113				0	
FFFFF260H	Timer unit mode register 12	TUM12				0	0000H
FFFFF262H	Timer control register 12	TMC12		0	0		00H
FFFFF264H	Timer output control register 12	TOC12		0	0		
FFFFF270H	Timer 12	TM12	R			0	0000H
FFFFF272H	Capture/compare register 120	CC120	R/W			0	Undefined

Address	Function Register Name	Symbol	R/W		it Units i Ianipulat		After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF274H	Capture compare register 121	CC121	R/W			0	Undefined
FFFFF276H	Capture compare register 122	CC122				0	
FFFFF278H	Capture compare register 123	CC123				0	
FFFFF280H	Timer unit mode register 13	TUM13				0	0000H
FFFFF282H	Timer control register 13	TMC13		0	0		00H
FFFFF284H	Timer output control register 13	TOC13	-	0	0		
FFFFF290H	Timer 13	TM13	R			0	0000H
FFFFF292H	Capture/compare register 130	CC130	R/W			0	Undefined
FFFFF294H	Capture/compare register 131	CC131				0	
FFFFF296H	Capture/compare register 132	CC132				0	
FFFFF298H	Capture/compare register 133	CC133				0	
FFFFF2A0H	Timer unit mode register 14	TUM14	-			0	0000H
FFFFF2A2H	Timer control register 14	TMC14		0	0		00H
FFFFF2A4H	Timer output control register 14	TOC14		0	0		
FFFFF2B0H	Timer 14	TM14	R			0	0000H
FFFFF2B2H	Capture/compare register 140	CC140	R/W			0	Undefined
FFFFF2B4H	Capture/compare register 141	CC141				0	
FFFFF2B6H	Capture/compare register 142	CC142				0	•
FFFFF2B8H	Capture/compare register 143	CC143				0	
FFFFF342H	Timer control register 4	TMC4		0	0		00H
FFFFF350H	Timer 4	TM4	R			0	0000H
FFFFF352H	Compare register 4	CM4	R/W			0	Undefined
FFFFF360H	PWM control register	PWMC		0	0		00H
FFFFF362H	PWM prescaler register	PWPR		0	0		
FFFFF364H	PWM buffer register 0 (12 bits)	PWM0				0	Undefined
FFFFF366H	PWM buffer register 0L (lower 8 bits)	PWM0L			0		
FFFFF368H	PWM buffer register 1 (12 bits)	PWM1				0	
FFFFF36AH	PWM buffer register 1L (lower 8 bits)	PWM1L			0		
FFFFF380H	A/D converter mode register 0	ADM0		0	0		00H
FFFFF382H	A/D converter mode register 1	ADM1		0	0		07H
FFFFF390H	A/D conversion result register 0	ADCR0	R			0	Undefined
FFFFF392H	A/D conversion result register 0H	ADCR0H			0		
FFFFF394H	A/D conversion result register 1	ADCR1				0	
FFFFF396H	A/D conversion result register 1H	ADCR1H			0		
FFFFF398H	A/D conversion result register 2	ADCR2				0	
FFFFF39AH	A/D conversion result register 2H	ADCR2H			0		
FFFFF39CH	A/D conversion result register 3	ADCR3				0	
FFFFF39EH	A/D conversion result register 3H	ADCR3H			0		
FFFFF3A0H	A/D conversion result register 4	ADCR4				0	

Address	Function Register Name	Symbol	R/W	_	it Units I Ianipulat		After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF3A2H	A/D conversion result register 4H	ADCR4H	R		0		Undefined
FFFFF3A4H	A/D conversion result register 5	ADCR5				0	
FFFFF3A6H	A/D conversion result register 5H	ADCR5H			0		
FFFFF3A8H	A/D conversion result register 6	ADCR6				0	
FFFFF3AAH	A/D conversion result register 6H	ADCR6H			0]
FFFFF3ACH	A/D conversion result register 7	ADCR7				0	
FFFFF3AEH	A/D conversion result register 7H	ADCR7H			0		
FFFFF3C0H	D/A converter converted data coefficient register 0	DACS0	R/W		0		00H
FFFFF3C2H	D/A converter converted data coefficient register 1	DACS1]		0		
FFFFF3D0H	D/A converter mode register	DAM		0	0		03H

3.4.10 Specific registers

Specific registers are registers that are protected from being written with illegal data due to erroneous program execution, etc. The write access of these specific registers is executed in a specific sequence, and if abnormal store operations occur, it is reported by the system status register (SYS). The V853 has two specific registers, the clock control register (CKC) and power save control register (PSC). For details of the CKC register, refer to 6.3.3, and for details of the PSC register, refer to 6.5.2.

The following shows the access sequence of the specific registers.

A specific register is programmed in the following special sequence.

<1> Interrupt-disable is set (PSW NP bit is set to 1).

<2> Any 8-bit data is written in the command register (PRCMD).

<3> The setting data is written in the specific register (using the following instructions).

- Store instruction (ST/SST instruction)
- Bit manipulation instruction (SET1/CLR1/NOT1 instruction)

<4> Interrupt-disable is released (PSW NP bit is set to 0).

<5> The NOP instruction (2 or 5 instructions) is inserted.

No special sequence is necessary for reading a specific register.

Cautions 1. If interrupts are acknowledged in the time between the PRCMD issuance (<2>) and the specific register writing (<3>) directly after, the specific register is not written and a protection error (SYS register PRERR bit is "1") is generated in some cases. Therefore, set the PSW NP bit to 1 (<1>) to disable INT/NMI acknowledgement.

The same applies when a bit manipulation instruction is used to set a specific register. Insert a NOP instruction (<5>) as a dummy instruction so that the routine is executed correctly after the STOP/IDLE mode is released. If the PSW ID bit value is not to be changed by the execution of the instruction which returns the NP bit to 0 (<4>), insert two NOP instructions. If it is to be changed, insert five.

The following are examples.

[Example] : Case of PSC register

```
LDSR rX,5 ; NP bit = 1

ST.B r0,PRCMD [r0] ; Writing in PRCMD

ST.B rD,PSC [r0] ; Sets PSC register

LDSR rY,5 ; NP bit = 0

NOP ; Dummy instruction (2 or 5 instructions)

.

NOP

(next instruction) ; Execution routine after STOP/IDLE mode has been

; released

.

rX: Value written in PSW

rY: Value written back to PSW

rD: PSC setting value
```

 \star

When saving the PSW value, it is necessary to transfer the PSW value before setting the NP bit to the rY register.

- 2. The instruction (<4> interrupt disable release, <5> NOP instruction) after the store instruction for the specific register to be set to the software STOP mode and IDLE mode is executed before each power save mode is set.
- 3. When setting power save mode (IDLE mode or STOP mode) during instruction execution in the external ROM, refer to 6.5.6 Cautions.

(1) Command Register (PRCMD)

The command register (PRCMD) is a register used when write-accessing a specific register to prevent incorrect writing to the specific register due to erroneous program execution.

This register can be read/written in 8-bit units. It becomes undefined in a read cycle.

The occurrence of illegal store operations can be checked by the PRERR bit of the SYS register.

PRCMD	7 REG7	6 REG6	5 REG5	4 REG4	3 REG3	2 REG2	1 REG1	0 REG0	Address FFFFF170H	After reset Undefined
Bit position	Bit na	me				F	unction			
7 to 0	REG7	to F	egistration	Code						
	REG0		Specific r	egister	Re	egistration	code			
			CKC Arbitrary 8-bit data							
			PSC Arbitrary 8-bit data							

(2) System status register (SYS)

This register is allocated with status flags showing the operating state of the entire system. This register can be read/written in 8-bit or 1-bit units.

sys 🗌	0	0	0	PRERR	0	0	0	UNLOCK	Address	After reset
L									FFFFF078H	0000000XB
Bit position	Bit	name					Functio	on		
4 PRERR Protection Error Flag Indicates that writing to a specific register has not be executed in the correct sequence protection error occurred. Accumulate flag 0: Protection error did not occur. 1: Protection error occurred.									t sequence, and	
0 UNLOCK Unlock Status Flag Read-only flag. Indicates the PLL unlock state. (For details, re 0: Locked 1: Unlocked								refer to 6.4 PLI	Lockup.)	

Operation conditions of PRERR flag

 Set conditions: 	(1) If a write operation to a specific register is executed when the store
(PRERR = "1")	instruction operation to peripheral I/Os most recently executed is not a write
	operation to the PRCMD register.
	(0) If the first stars instruction successful after a units an anotice to the DDOMD

- (2) If the first store instruction executed after a write operation to the PRCMD register is to a peripheral I/O register other than a specific register.
- Reset conditions: (1) When "0" is written to the PRERR flag of the SYS register.
 - (PRERR = "0") (2) After system reset.

CHAPTER 4 BUS CONTROL FUNCTION

The V853 is provided with an external bus interface function by which external memories such as ROM and RAM, and I/O can be connected.

4.1 Features

- \bigcirc 16-bit data bus
- External devices connected through multiplexed I/O port pins
- \bigcirc Wait function
 - Programmable wait function, capable of inserting up to 3 wait states per 2 blocks
 - External wait control through WAIT pin
- \bigcirc Idle state insertion function
- Bus mastership arbitration function
- \bigcirc Bus hold function

4.2 Bus Control Pins

The following pins are used for interfacing to external devices.

External Bus Interface Function	Corresponding Port
Address/data bus (AD0 to AD7)	Port 4 (P40 to P47)
Address/data bus (AD8 to AD15)	Port 5 (P50 to P57)
Address bus (A16 to A19)	Port 6 (P60 to P63)
Read/write control (IBEN, UBEN, R/W, DSTB)	Port 9 (P90 to P93)
Address strobe (ASTB)	Port 9 (P94)
Bus hold control (HLDRQ, HLDAK)	Port 9 (P95, P96)
External wait control (WAIT)	_

★ The bus interface function of each pin is enabled by the memory expansion mode register (MM). For details of specifying the operation mode of the external bus interface, refer to **3.4.7 Memory expansion mode register (MM)**.

4.3 Bus Access

4.3.1 Number of access clocks

The number of basic clocks necessary for accessing each resource is as follows.

Bus Cycle Type		Resource (Bus Width)									
	Internal ROM (32 Bits)	Internal RAM (32 Bits)	Peripheral I/O (16 Bits)	External Memory (16 Bits)							
Instruction fetch	1	3	Disabled	3 + n							
Operand data access	3	1	3 + n	3 + n							

Remarks 1. Unit: clock/access

2. n: Number of inserted wait clock

4.3.2 Bus width

The V853 carries out peripheral I/O access and external memory access in 8-, 16-, or 32-bit units. The following shows the operation for each access.

(1) Byte access (8 bits)

Byte access is divided into two types, the access to even address and the access to odd address.

(2) Halfword access (16 bits)

In halfword access to external memory, data is dealt with as it is because the data bus is 16-bit fixed.

(3) Word access (32 bits)

In word access to external memory, the lower halfword is accessed first and then the higher halfword is accessed.

4.4 Memory Block Function

FFFFFH FFFFFFH Block 15 Peripheral I/O area F00000H EFFFFFH FFF000H Block 14 FFEFFFH E00000H DFFFFFH Internal RAM area^{Note} Block 13 D00000H CFFFFFH Block 12 C00000H BFFFFFH Block 11 B00000H AFFFFFH Block 10 A00000H 9FFFFFH Block 9 900000H 8FFFFFH Block 8 800000H External memory area 7FFFFFH Block 7 700000H 6FFFFFH Block 6 600000H 5FFFFFH Block 5 500000H 4FFFFFH Block 4 400000H 3FFFFFH Block 3 300000H 2FFFFFH Block 2 200000H 1FFFFFH Block 1 100000H **OFFFFFH** Internal ROM area Block 0 000000H Note The first address of the internal RAM area is as follows. µPD703003A, 70F3003A, 703004A: FFE000H μPD703025A, 70F3025A: FFC000H

The 16 MB memory space is divided into memory blocks of 1 MB units. The programmable wait function and bus cycle operation mode can be independently controlled for every two memory blocks.

4.5 Wait Function

4.5.1 Programmable wait function

To facilitate interfacing with low-speed memories and I/O devices, up to 3 data wait states can be inserted in a bus cycle for two memory blocks. The number of wait states can be programmed by using data wait control register (DWC). Immediately after the system has been reset, three data wait states are automatically programmed for all memory blocks.

(1) Data wait control register (DWC)

This register can be read/written in 16-bit units.

C DW71 DV	W70 DW61	DW60	DW51	DW50	DW41	DW40	DW31	DW30	DW21	DW20	DW11	DW10	DW01	DW00	Address After re FFFF060H FFFF									
Bit position	Bit r	name									Fur	nction	1											
15 to 0 DWn1 DWn0 (n = 0 to 7)		DWn0 Specifies number of wait states to be inserted.																						
					DW	n1		DWn	0		1	Numb	er of	wait	states to be inserted									
											0			0							0			
											0			1							1			
															1 0 2						2			
											1			1							3			
						n				Block	s inte	o whi	ch wa	ait sta	tes are inserted									
						0		BI	ocks	0/1														
						1		BI	ocks	2/3														
						2		BI	ocks	4/5														
						3		BI	ocks	6/7														
						4		BI	ocks	8/9														
						5		BI	ocks	10/1	1													
							6 Blocks 12/13																	
						7		BI	ocks	14/1	5													

- without wait states.
 2. The internal RAM area of block 15 is not subject to programmable wait control and is always accessed without wait states.
 - always accessed without wait states. The peripheral I/O area of this block is not subject to programmable wait control, either. The only wait control is dependent upon the execution of each peripheral function.

4.5.2 External wait function

When an extremely slow device, I/O, or asynchronous system is connected, any number of wait states can be inserted in a bus cycle by sampling the external wait pin (\overline{WAIT}) to synchronize with the external device.

The external $\overline{\text{WAIT}}$ signal does not affect the access times of the internal ROM, internal RAM, and peripheral I/O areas. Input of the external $\overline{\text{WAIT}}$ signal can be done asynchronously to CLKOUT and is sampled at the falling edge of the clock in the T2 and TW states of a bus cycle. If the setup and hold time of the $\overline{\text{WAIT}}$ input are not satisfied, the wait state may or may not be inserted in the next state.

4.5.3 Relationship between programmable wait and external wait

A wait cycle is inserted as a result of an OR operation between the wait cycle specified by the set value of programmable wait and the wait cycle controlled by the \overline{WAIT} pin. In other words, the number of wait cycles is determined by the programmable wait value or the length of evaluation at the \overline{WAIT} input pin.

For example, if the number of programmable wait states is 2 and the timing of the \overline{WAIT} pin input signal is as illustrated below, three wait states will be inserted in the bus cycle.

4.6 Idle State Insertion Function

To facilitate interfacing with low-speed memory devices and meeting the data output float delay time (tDF) on memory read accesses, one idle state (TI) can be inserted into the current bus cycle after the T3 state. The bus cycle following continuous bus cycles starts after one idle state.

Specifying insertion of the idle state is programmable by using the bus cycle control register (BCC).

Immediately after the system has been reset, idle state insertion is automatically programmed for all memory blocks.

(1) Bus cycle control register (BCC)

This register can be read/written in 16-bit units.

BCC E	8C71 0	BC61	0	BC51	0	BC41	0	BC31	0	BC21	0	BC11	0	BC0	1 0		Address FFFFF062H	After reset AAAAH
Bit posi	tion	Bit n	ame									Fund	ction					
15, 13,	11,	BCn1			Bus (Cycle												
9, 7, 5,	3, 1	(n = 0	0 to 7	') ;	Spec	ifies ir	nsert	tion of	idle	state								
					0: No	t inse	rted											
					1: Ins	serted												
					_													
						n					Block	ks into) whi	ich i	dle st	ate	is inserted	
						0)		BI	ocks)/1							
						1			BI	ocks :	2/3							
						2			BI	ocks -	4/5							
						3	6		BI	ocks	6/7							
						4			BI	ocks	3/9							
						5			Bl	ocks	10/1 ⁻	1						
						6	;		Bl	ocks	12/1:	3						
						7	,		BI	ocks	14/14	5						

Cautions 1. Block 0 is reserved for the internal ROM area in the single-chip mode; therefore, no idle state is specified regardless of the BCC setting.

- 2. The internal RAM area and peripheral I/O area of block 15 are not subject to insertion of the idle state.
- 3. Be sure to set bits 0, 2, 4, 6, 8, 10, 12, and 14 to 0. If these bits are set to 1, the operation is not guaranteed.

4.7 Bus Hold Function

4.7.1 Outline of function

When P95 and P96 of port 9 are programmed to be in the control mode, the functions of the HLDRQ and HLDAK pins become valid.

When the HLDRQ pin becomes active (low) indicating that another bus master is requesting acquisition of the bus, the external address/data bus and strobe pins go into a high-impedance state, and the bus is released (bus hold status). When the HLDRQ pin becomes inactive (high) indicating that the request for the bus is cleared, these pins are driven again.

During bus hold period, the V853 continues internal operation until external memory access.

In the bus hold status, the HLDAK pin becomes active (low).

This feature can be used to design a system where two or more bus masters exist, such as when multi-processor configuration is used and when a DMA controller is connected.

Bus hold request is not acknowledged between the first and the second access in word access. Bus hold request is not acknowledged between read access and write access in read modify write access of bit manipulation instruction.

4.7.2 Bus hold procedure

The procedure of the bus hold function is illustrated below.

4.7.3 Operation in power save mode

In the software STOP or IDLE mode, the system clock is stopped. Consequently, the bus hold status is not set even if the HLDRQ pin becomes active.

In the HALT mode, the HLDAK pin immediately becomes active when the HLDRQ pin becomes active, and the bus hold status is set. When the HLDRQ pin becomes inactive, the HLDAK pin becomes inactive. As a result, the bus hold status is cleared, and the HALT mode is set again.

4.8 Bus Timing

(1) Memory read (0 waits)

(2) Memory read (1 wait)

(3) Memory read (0 waits, idle state)

(5) Memory write (0 waits)

(6) Memory write (1 wait)

(7) Bus hold timing

4.9 Bus Priority

There are four external bus cycles: bus hold, operand data access, instruction fetch (branch), and instruction fetch (continuous). The bus hold cycle is given the highest priority, followed by operand data access, instruction fetch (branch), and instruction fetch (continuous) in that order.

The instruction fetch cycle may be inserted in between the read access and write access of read-modify-write access.

Instruction fetch and bus hold cycle are not inserted between the lower halfword access and higher halfword access of word operations.

External Bus Cycle	Priority
Bus hold	1
Operand data access	2
Instruction fetch (branch)	3
Instruction fetch (continuous)	4

Table	4-1.	Bus	Priority
-------	------	-----	----------

4.10 Memory Boundary Operation Condition

4.10.1 Program space

- (1) Do not execute a branch to the peripheral I/O area or a continuous fetch from the internal RAM area to the peripheral I/O area. If a branch or continuous fetch is executed, the NOP instruction code is continuously fetched, and no processing such as a fetch from the external memory is performed.
- (2) A prefetch operation straddling over the peripheral I/O area (invalid fetch) does not take place if a branch instruction exists at the upper-limit address of the internal RAM area.

4.10.2 Data space

Only the address aligned at the halfword (when the least significant bit of the address is "0")/word (when the lowest 2 bits of the address are "0") boundary is accessed for halfword (16 bits)/word (32 bits) length data .

Therefore, access that straddles over the memory or memory block boundary does not take place. A word access to the external memory is executed in the order of lower halfword followed by higher halfword.

For details, refer to V850 Family Architecture User's Manual.

4.11 On-Chip Peripheral I/O Interface

Access to the on-chip peripheral I/O area is not output to the external bus. Therefore, the on-chip peripheral I/O area can be accessed in parallel with instruction fetch access.

Accesses to the on-chip peripheral I/O area take, in most cases, three clock cycles. However, accesses to the following timer/counter registers may take from 3 to 4 cycles.

Peripheral I/O Register	Access
TM1n	Read
TM4	
CC1n0	Read/write
CC1n1	
CC1n2	
CC1n3	
CM4	Write

Remark n = 1 to 4

CHAPTER 5 INTERRUPT/EXCEPTION PROCESSING FUNCTION

The V853 is provided with a dedicated interrupt controller (INTC) for interrupt servicing and can service a total of 33 interrupt requests.

An interrupt is an event that occurs independently of program execution, and an exception is an event that occurs dependent on program execution.

The V853 can service interrupt requests from the on-chip peripheral hardware and external sources. Moreover, exception processing can be started by the TRAP instruction (software exception) or by generation of an exception event (fetching of an illegal op code).

5.1 Features

÷

○ Interrupt

- Non-maskable interrupt: 1 source
- Maskable interrupt: 32 sources
- 8 levels programmable priorities
- · Multiple interrupt control according to priority
- · Mask specification to each maskable interrupt request
- Noise elimination, edge detection, and valid edge specification of external interrupt request

\bigcirc Exception

- · Software exception: 32 sources
- Exception trap: 1 source (illegal op code exception)

These interrupt/exception sources are listed in Table 5-1.

Туре	Classification	Interrupt/Exception Source				Default	Exception	Vector	Restored
		Name	Control Register	Generating Source	Generating Unit	Priority	Code	Address	PC
Reset	Interrupt	RESET	-	Reset input	-	1	0000H	00000000H	Undefined
Non-maskable	Interrupt	NMI	-	NMI input	-	1	0010H	00000010H	nextPC
Software	Exception	TRAP0n (n = 0 to FH)	-	TRAP instruction	-	-	004nH	00000040H	nextPC
exception	Exception	TRAP1n (n = 0 to FH)	-	TRAP instruction	-	-	005nH	00000050H	nextPC
Exception trap	Exception	ILGOP	-	Illegal op code	-	-	0060H	00000060H	nextPC
Maskable	Interrupt	INTOV11	OVIC11	Timer 11 overflow	RPU	0	0080H	00000080H	nextPC
	Interrupt	INTOV12	OVIC12	Timer 12 overflow	RPU	1	0090H	00000090H	nextPC
	Interrupt	INTOV13	OVIC13	Timer 13 overflow	RPU	2	00A0H	000000A0H	nextPC
	Interrupt	INTOV14	OVIC14	Timer 14 overflow	RPU	3	00B0H	000000В0Н	nextPC
	Interrupt	INTP110/ INTCC110	P11IC0	INTP110 pin/CC110 match	Pin/RPU	4	00C0H	000000C0H	nextPC
	Interrupt	INTP111/ INTCC111	P11IC1	INTP111 pin/CC111 match	Pin/RPU	5	00D0H	000000D0H	nextPC
	Interrupt	INTP112/ INTCC112	P11IC2	INTP112 pin/CC112 match	Pin/RPU	6	00E0H	000000E0H	nextPC
	Interrupt	INTP113/ INTCC113	P11IC3	INTP113 pin/CC113 match	Pin/RPU	7	00F0H	000000F0H	nextPC
	Interrupt	INTP120/ INTCC120	P12IC0	INTP120 pin/CC120 match	Pin/RPU	8	0100H	00000100H	nextPC
	Interrupt	INTP121/ INTCC121	P12IC1	INTP121 pin/CC121 match	Pin/RPU	9	0110H	00000110H	nextPC
	Interrupt	INTP122/ INTCC122	P12IC2	INTP122 pin/CC122 match	Pin/RPU	10	0120H	00000120H	nextPC
	Interrupt	INTP123/ INTCC123	P12IC3	INTP123 pin/CC123 match	Pin/RPU	11	0130H	00000130H	nextPC
	Interrupt	INTP130/ INTCC130	P13IC0	INTP130 pin/CC130 match	Pin/RPU	12	0140H	00000140H	nextPC
	Interrupt	INTP131/ INTCC131	P13IC1	INTP131 pin/CC131 match	Pin/RPU	13	0150H	00000150H	nextPC
	Interrupt	INTP132/ INTCC132	P13IC2	INTP132 pin/CC132 match	Pin/RPU	14	0160H	00000160H	nextPC
	Interrupt	INTP133/ INTCC133	P13IC3	INTP133 pin/CC133 match	Pin/RPU	15	0170H	00000170H	nextPC

Table 5-1. Interrupt List (1/2)

- Caution The INTP1nm (external interrupt) and INTCC1nm (compare register match interrupt) are controlled by the same control registers (when n = 1 to 4, m = 0 to 3). Set either INTP1nm or INTCC1nm interrupt request to be used, using bits 3 to 0 (IMS1nm) of timer unit mode registers 11 to 14 (TUM11 to TUM14) (refer to 7.3 (1) Timer unit mode registers 11 to 14 (TUM11 to TUM14).
- **Remarks 1.** Default Priority: Priority when two or more maskable interrupt requests occur at the same time. The highest priority is 0.
 - Restored PC: The value of the PC saved to EIPC or FEPC when interrupt/exception processing is started. However, the value of the PC saved when an interrupt is granted during the DIVH (division) instruction execution is the value of the PC of the current instruction (DIVH).
 - The execution address of the illegal instruction when an illegal op code exception occurs is calculated with (Restored PC – 4).

Туре	Classification	Interrupt/Exception Source				Default	Exception	Vector	Restored
		Name	Control Register	Generating Source	Generating Unit	Priority	Code	Address	PC
Maskable	Interrupt	INTP140/ INTCC140	P14IC0	INTP140 pin/CC140 match	Pin/RPU	16	0180H	00000180H	nextPC
	Interrupt	INTP141/ INTCC141	P14IC1	INTP141 pin/CC141 match	Pin/RPU	17	0190H	00000190H	nextPC
	Interrupt	INTP142/ INTCC142	P14IC2	INTP142 pin/CC142 match	Pin/RPU	18	01A0H	000001A0H	nextPC
	Interrupt	INTP143/ INTCC143	P14IC3	INTP143 pin/CC143 match	Pin/RPU	19	01B0H	000001B0H	nextPC
	Interrupt	INTCM4	CMIC4	CM4 match	RPU	20	01C0H	000001C0H	nextPC
	Interrupt	INTCSI0	CSICO	CSI0 transmission/ reception completion	SIO	21	01D0H	000001D0H	nextPC
	Interrupt	INTCSI1	CSIC1	CSI1 transmission/ reception completion	SIO	22	01E0H	000001E0H	nextPC
	Interrupt	INTCSI2	CSIC2	CSI2 transmission/ reception completion	SIO	23	01F0H	000001F0H	nextPC
	Interrupt	INTCSI3	CSIC3	CSI3 transmission/ reception completion	SIO	24	0200H	00000200H	nextPC
	Interrupt	INTSER0	SEIC0	UART0 reception error	SIO	25	0210H	00000210H	nextPC
	Interrupt	INTSR0	SRIC0	UART0 reception completion	SIO	26	0220H	00000220H	nextPC
	Interrupt	INTST0	STIC0	UART0 transmission completion	SIO	27	0230H	00000230H	nextPC
	Interrupt	INTSER1	SEIC1	UART1 reception error	SIO	28	0240H	00000240H	nextPC
	Interrupt	INTSR1	SRIC1	UART1 reception completion	SIO	29	0250H	00000250H	nextPC
	Interrupt	INTST1	STIC1	UART1 transmission completion	SIO	30	0260H	00000260H	nextPC
	Interrupt	INTAD	ADIC	A/D conversion end	ADC	31	0270H	00000270H	nextPC

Table 5-1. Interrupt List (2/2)

Caution The INTP1nm (external interrupt) and INTCC1nm (compare register match interrupt) are controlled by the same control registers (when n = 1 to 4, m = 0 to 3). Set either INTP1nm or INTCC1nm interrupt request to be used, using bits 3 to 0 (IMS1nm) of timer unit mode registers 11 to 14 (TUM11 to TUM14) (refer to 7.3 (1) Timer unit mode registers 11 to 14 (TUM11 to TUM14).

Remarks 1. Default F	Priority: P	riority when two or more maskable interrupt requests occur at the same time.
	Т	he highest priority is 0.

- Restored PC: The value of the PC saved to EIPC or FEPC when interrupt/exception processing is started. However, the value of the PC saved when an interrupt is granted during the DIVH (division) instruction execution is the value of the PC of the current instruction (DIVH).
- The execution address of the illegal instruction when an illegal op code exception occurs is calculated with (Restored PC – 4).

5.2 Non-Maskable Interrupt

The non-maskable interrupt is acknowledged unconditionally, even when interrupts are disabled (DI states) in the interrupt disabled (DI) status. The NMI is not subject to priority control and takes precedence over all the other interrupts.

The non-maskable interrupt request is input from the NMI pin. When the valid edge specified by bit 0 (ESN0) of the external interrupt mode register 0 (INTM0) is detected on the NMI pin, the interrupt occurs.

While the service routine of the non-maskable interrupt is being executed (PSW.NP = 1), the acknowledgement of another non-maskable interrupt request is held pending. The pending NMI is acknowledged after the original service routine of the non-maskable interrupt under execution has been terminated (by the RETI instruction), or when PSW.NP is cleared to 0 by the LDSR instruction. Note that if two or more NMI requests are input during the execution of the service routine for an NMI, the number of NMIs that will be acknowledged after PSW.NP goes to "0", is only one.

5.2.1 Acknowledgement operation

If the non-maskable interrupt is generated by NMI input, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the restored PC to FEPC.
- (2) Saves the current PSW to FEPSW.
- (3) Writes exception code 0010H to the higher halfword (FECC) of ECR.
- (4) Sets the NP and ID bits of PSW and clears the EP bit.
- (5) Loads the handler address (00000010H) of the non-maskable interrupt routine to the PC, and transfers control.

Figure 5-1 illustrates how the non-maskable interrupt is serviced.

Figure 5-1. Non-Maskable Interrupt Servicing

Figure 5-2. Acknowledging Non-Maskable Interrupt Request

5.2.2 Restore operation

Execution is restored from the non-maskable interrupt servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of PC and PSW from FEPC and FEPSW, respectively, because the EP bit of PSW is 0 and the NP bit of PSW is 1.
- (2) Transfers control back to the address of the restored PC and the state of PSW.

Figure 5-3 illustrates how the RETI instruction is processed.

Figure 5-3. RETI Instruction Processing

5.2.3 Non-maskable interrupt status flag (NP)

The NP flag is a status flag that indicates that non-maskable interrupt (NMI) processing is under execution. This flag is set when the NMI interrupt has been acknowledged, and masks all interrupt and exceptions to prohibit multiple interrupts from being acknowledged.

5.2.4 Noise elimination of NMI pin

NMI pin noise is eliminated with analog delay. The delay time is 60 to 220 ns. The signal input that changes in less than this time period is not internally acknowledged.

The NMI pin is used for releasing the software stop mode. In the software stop mode, noise elimination does not use system clock for noise elimination because the internal system clock is stopped.

5.2.5 Edge detection function of NMI pin

The external interrupt mode resister 0 (INTM0) is a register that specifies the valid edge of the non-maskable interrupt (NMI). The valid edge of NMI can be specified as the rising or falling edge by the ESN0 bit of this register. This register can be read or written in 8-bit or 1-bit units.

5.3 Maskable Interrupts

Maskable interrupt requests can be masked by interrupt control registers. The V853 has 32 maskable interrupt sources.

If two or more maskable interrupt requests are generated at the same time, they are acknowledged according to the default priority. In addition to the default priority, eight levels of priorities can be specified by using the interrupt control registers, allowing programmable priority control.

When an interrupt request has been acknowledged, the acknowledgement of other maskable interrupts is disabled and the interrupt disabled (DI) status is set.

When the EI instruction is executed in an interrupt servicing routine, the interrupt enabled (EI) status is set which enables interrupts having a higher priority to immediately interrupt the current service routine in progress. Note that only interrupts with a higher priority will have this capability; interrupts with the same priority level cannot be nested.

To use multiple interrupts, the following processes are necessary.

<1> Saves EIPC and EIPSW to memory or general-purpose registers before executing the EI instruction.

<2> Executes the DI instruction, then restores the saving values at <1> to EIPC and EIPSW, before executing the RETI instruction.

5.3.1 Block diagram

104

User's Manual U10913EJ6V0UM

4

5.3.2 Operation

If a maskable interrupt occurs, the CPU performs the following processing, and transfers control to a handler routine.

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower halfword of ECR (EICC).
- (4) Sets the ID bit of PSW and clears the EP bit.
- (5) Loads the corresponding handler address to the PC, and transfers control.

Figure 5-5 illustrates how the maskable interrupts are processed.

Figure 5-5. Maskable Interrupt Servicing

The INT input masked by the interrupt controllers and the INT input that occurs while the other interrupt is being serviced (when PSW.NP = 1 or PSW.ID = 1) are internally pended by the interrupt controller. When the interrupts are unmasked, or when PSW.NP = 0 and PSW.ID = 0 by using the RETI and LDSR instructions, the pending INT input starts the new maskable interrupt servicing.
5.3.3 Restore

To restore execution from the maskable interrupt servicing, the RETI instruction is used.

When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

- (1) Restores the values of PC and PSW from EIPC and EIPSW because the EP bit of PSW is 0 and the NP bit of PSW is 0.
- (2) Transfers control to the address of the restored PC and the state of PSW.

Figure 5-6 illustrates the processing of the RETI instruction.

Figure 5-6. RETI Instruction Processing

5.3.4 Priorities of maskable interrupts

The V853 provides multiple interrupt servicing in which an interrupt is acknowledged while another interrupt is being serviced. Multiple interrupts can be controlled by priority levels.

There are two types of priority level control: control based on the default priority levels, and control based on the programmable priority levels specified by the interrupt priority level specification bit (xxPRn) in an interrupt control register (xxICn). When two or more interrupts having the same priority level specified by xxPRn are generated at the same time, interrupts are serviced in order depending on the priority level allocated to each interrupt request type (default priority level) beforehand. For more information, refer to **Table 5-1**. The programmable priority control customizes interrupt requests into eight levels by setting the priority level specification flag.

Note that when an interrupt is acknowledged, the ID flag of PSW is automatically set to 1. Therefore, when multiple interrupts are to be used, clear the ID flag to 0 beforehand (for example, by placing the EI instruction into the interrupt service program) to set the interrupt enable mode.

Figure 5-7. Example of Interrupt Nesting Process (2/2)

Figure 5-8. Example of Processing Interrupt Requests Simultaneously Generated

5.3.5 Interrupt control register (xxICn)

An interrupt control register is assigned to each maskable interrupt and sets the control conditions for each maskable interrupt request.

The interrupt control register can be read/written in 8-bit or 1-bit units.

[_	_					Address	After reset		
xxICn	xxlFn	xxMKn	0	0	0	xxPRn2	xxPRn1	xxPRn0	FFFFF100H to	47H		
									FFFFF13EH			
Bit positior	I	Bit name				I	unction					
7 xxlFn		Inte C 1	Interrupt Request Flag Interrupt request flag 0: Interrupt request not issued 1: Interrupt request issued xxIFn flag is automatically reset by hardware when interrupt request is acknowledged.									
6	xxMI	٢n	Mas Inte	sk Flag rrupt mas): Enables		ervicing			<u></u>			
2 to 0	xxPF xxPF	Rn2 to Rn0	Prio Spe		nt levels of	priorities fo	or each in	terrupt.				
				xxPRn2	xxPRn1	xxPRn0	Interru	upt priority	specification bit			
				0	0	0	Speci	fies level () (highest)			
				0	0	1	Speci	fies level ?	1			
				0	1	0	Speci	fies level 2	2			
				0	1	1	Speci	fies level 3	3			
				1	0	0	Speci	fies level 4	1			
				1	0	1	Speci	fies level t	5			
				1	1	0	Speci	fies level 6	3			
				1	1	1	Speci	fies level 7	7 (lowest)			

n: Peripheral unit number (none, 0 to 4, or 11 to 14)

The address and bits of each interrupt control register are shown below.

Address	Register				E	Bit			
		7	6	5	4	3	2	1	0
FFFFF100H	OVIC11	OVIF11	OVMK11	0	0	0	OVPR112	OVPR111	OVPR110
FFFFF102H	OVIC12	OVIF12	OVMK12	0	0	0	OVPR122	OVPR121	OVPR120
FFFFF104H	OVIC13	OVIF13	OVMK13	0	0	0	OVPR132	OVPR131	OVPR130
FFFFF106H	OVIC14	OVIF14	OVMK14	0	0	0	OVPR142	OVPR141	OVPR140
FFFFF108H	P11IC0	P11IF0	P11MK0	0	0	0	P11PR02	P11PR01	P11PR00
FFFFF10AH	P11IC1	P11IF1	P11MK1	0	0	0	P11PR12	P11PR11	P11PR10
FFFFF10CH	P11IC2	P11IF2	P11MK2	0	0	0	P11PR22	P11PR21	P11PR20
FFFFF10EH	P11IC3	P11IF3	P11MK3	0	0	0	P11PR32	P11PR31	P11PR30
FFFFF110H	P12IC0	P12IF0	P12MK0	0	0	0	P12PR02	P12PR01	P12PR00
FFFFF112H	P12IC1	P12IF1	P12MK1	0	0	0	P12PR12	P12PR11	P12PR10
FFFFF114H	P12IC2	P12IF2	P12MK2	0	0	0	P12PR22	P12PR21	P12PR20
FFFFF116H	P12IC3	P12IF3	P12MK3	0	0	0	P12PR32	P12PR31	P12PR30
FFFFF118H	P13IC0	P13IF0	P13MK0	0	0	0	P13PR02	P13PR01	P13PR00
FFFFF11AH	P13IC1	P13IF1	P13MK1	0	0	0	P13PR12	P13PR11	P13PR10
FFFFF11CH	P13IC2	P13IF2	P13MK2	0	0	0	P13PR22	P13PR21	P13PR20
FFFFF11EH	P13IC3	P13IF3	P13MK3	0	0	0	P13PR32	P13PR31	P13PR30
FFFFF120H	P14IC0	P14IF0	P14MK0	0	0	0	P14PR02	P14PR01	P14PR00
FFFFF122H	P14IC1	P14IF1	P14MK1	0	0	0	P14PR12	P14PR11	P14PR10
FFFFF124H	P14IC2	P14IF2	P14MK2	0	0	0	P14PR22	P14PR21	P14PR20
FFFFF126H	P14IC3	P14IF3	P14MK3	0	0	0	P14PR32	P14PR31	P14PR30
FFFFF128H	CMIC4	CMIF4	CMMK4	0	0	0	CMPR42	CMPR41	CMPR40
FFFFF12AH	CSIC0	CSIF0	CSMK0	0	0	0	CSPR02	CSPR01	CSPR00
FFFFF12CH	CSIC1	CSIF1	CSMK1	0	0	0	CSPR12	CSPR11	CSPR10
FFFFF12EH	CSIC2	CSIF2	CSMK2	0	0	0	CSPR22	CSPR21	CSPR20
FFFFF130H	CSIC3	CSIF3	CSMK3	0	0	0	CSPR32	CSPR31	CSPR30
FFFFF132H	SEIC0	SEIF0	SEMK0	0	0	0	SEPR02	SEPR01	SEPR00
FFFFF134H	SRIC0	SRIF0	SRMK0	0	0	0	SRPR02	SRPR01	SRPR00
FFFFF136H	STIC0	STIF0	STMK0	0	0	0	STPR02	STPR01	STPR00
FFFFF138H	SEIC1	SEIF1	SEMK1	0	0	0	SEPR12	SEPR11	SEPR10
FFFFF13AH	SRIC1	SRIF1	SRMK1	0	0	0	SRPR12	SRPR11	SRPR10
FFFFF13CH	STIC1	STIF1	STMK1	0	0	0	STPR12	STPR11	STPR10
FFFFF13EH	ADIC	ADIF	ADMK	0	0	0	ADPR2	ADPR1	ADPR0

Table 5-2. Address and Bits of Interrupt Control Register

5.3.6 Noise eliminator

Pins INTPn0 to INTPn3, TIn, TCLRn, and ADTRG are provided with timing controllers for maintaining the following noise elimination time (n = 11 to 14).

A signal input, which changes a level in the time less than the noise elimination time, is not acknowledged internally.

Pin	Noise Elimination Time			
TCLR11 to TCLR14	2 to 3 Tcy			
TI11 to TI14	(Tcy: 1 system clock period)			
INTP110 to INPT112				
INTP120 to INTP123				
INTP130 to INTP133				
INTP140 to INTP143				
INTP113/ADTRG				

Figure 5-9. Example of Noise Elimination Timing

Cautions 1. When the input pulse width is 2 to 3 sampling clocks, it is undefined whether that pulse is detected as a valid edge or eliminated as noise.

2. In order to detect as a pulse, input a signal with same level for more than 3 sampling clocks.

3. When noise is generated in synchronization with the sampling, it may not be recognized as noise. In this case, eliminate the noise by placing filters on the input pins.

5.3.7 Edge detection function

External interrupt mode registers 1 to 4 (INTM1 to INTM4) specify the valid edges of external interrupt requests INTP110 to INTP112, INTP113/ADTRG, INTP120 to INTP123, INTP130 to INTP133, and INTP140 to INTP143 that are input from external pins. The correspondence of each register and the external interrupt request controlled by the register is shown below.

- INTM1: INTP110 to INTP112, INTP113/ADTRG
- INTM2: INTP120 to INTP123
- INTM3: INTP130 to INTP133
- INTM4: INTP140 to INTP143

The INTP113 is also used as the external trigger input (ADTRG) of the A/D converter. Therefore, the ES031 and ES030 bits of the INTM1 are used for specifying the valid edges of the external trigger input (ADTRG) if the A/D converter mode register 1 (ADM1) TRG bit is set to the external trigger mode.

The valid edge of each pin can be specified to be the rising, falling, and both rising and falling edges. Both the registers can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0			
INTM1	ES031	ES030	ES021	ES02	20 ES011	ES010	ES001	ES000	Address FFFFF182H	After reset 00H	
Control pin	INTP1	13/ADTRG	INT	P112	INTF	P111	INTI	P110			
INTM2	ES131	ES130	ES121	ES12	20 ES111	ES110	ES101	ES100	FFFFF184H	00H	
Control pin	IN	TP123	INT	P122	INTF	P121	INTI	P120			
INTM3	ES231	ES230	ES221	ES22	20 ES211	ES210	ES201	ES200	FFFFF186H	00H	
Control pin	IN	TP133	INT	P132	INTE	P131	INTI	P130			
INTM4	ES331	ES330	ES321	ES32	20 ES311	ES310	ES301	ES300	FFFFF188H	00H	
Control pin	IN	TP143		P142	INTF	P141		P140			
Bit posit	ion	Bit name		Function							
7, 5, 3,	1 ES	5 (m – 1) n1	Edge Se	Edge Select							
6, 4, 2,		m = 4 to 1,	Specifies	s valid	edge of INTP	1mn pin a	nd ADTRO	9 pin.			
	'n	= 3 to 0)	ES (m -	– 1) n1	ES (m – 1) n0			Operati	on		
			0)	0	Falling e	edge				
			0)	1	Rising e	dge				
			1		0	RFU (re	served)				
			1		1	Both risi	ng and fal	ling edges			

5.3.8 In-service priority register (ISPR)

This register holds the priority level of the maskable interrupt currently acknowledged. When an interrupt request is acknowledged, the bit of this register corresponding to the priority level of that interrupt is set to 1 and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority is automatically reset to 0 by hardware. However, it is not reset when execution is returned from non-maskable processing or exception processing.

This register is read-only in 8-bit or 1-bit units.

5.3.9 Maskable interrupt status flag (ID)

The interrupt disable status flag (ID) of the PSW controls the enabling and disabling of maskable interrupt requests.

5.4 Software Exception

The software exception is generated when the CPU executes the TRAP instruction, and can be always acknowledged.

5.4.1 Operation

If the software exception occurs, the CPU performs the following processing, and transfers control to the handler routine.

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- (4) Sets the EP and ID bits of PSW.
- (5) Loads the handler address (00000040H or 00000050H) of the software exception routine in the PC, and transfers control.

Figure 5-10 illustrates how the software exception is processed.

Figure 5-10. Software Exception Processing

The handler address is determined by the operand of the TRAP instruction (vector). If vector is 0 to 0FH, the handler address is 00000040H; if the operand is 10H to 1FH, it is 00000050H.

5.4.2 Restore

To restore or return execution from the software exception service routine, the RETI instruction is used. When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

- (1) Restores the restored PC and PSW from EIPC and EIPSW because the EP bit of PSW is 1.
- (2) Transfers control to the address of the restored PC and the state of PSW.

Figure 5-11 illustrates the processing of the RETI instruction.

Figure 5-11. RETI Instruction Processing

5.4.3 Exception status flag (EP)

The EP flag in the PSW is a status flag used to indicate that exception processing is in progress. It is set when an exception occurs.

31 SW 0		8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 NP EP ID SAT CY OV S Z After reset 00000020H
Bit positio	on Bit name	Function
6	EP	Exception Pending Indicates that trap processing is in progress. 0: Exception processing is not in progress 1: Exception processing is in progress

5.5 Exception Trap

The exception trap is an interrupt that is requested when illegal execution of an instruction takes place. In the V853, an illegal op code exception (ILGOP: ILleGal OPcode trap) is considered as an exception trap.

Illegal op code exception occurs if the subop code field of an instruction to be executed next is not a valid op code.

5.5.1 Illegal op code definition

An illegal op code is defined to be a 32-bit word with bits 5 to 10 being 111111B and bits 23 to 26 being 0011B to 1111B.

Caution Since a new instruction could be allocated to the illegal op code in future, it is recommended not to use this illegal op code.

5.5.2 Operation

If an exception trap occurs, the CPU performs the following processing, and transfers control to the handler routine.

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code (0060H) to the lower 16 bits (EICC) of ECR.
- (4) Sets the EP and ID bits of PSW.
- (5) Loads the handler address (00000060H) for the exception trap routine to the PC, and transfers control.

Figure 5-12 illustrates how the exception trap is processed.

5.5.3 Restore

To restore or return execution from the exception trap, the RETI instruction is used.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the restored PC and PSW from EIPC and EIPSW because the EP bit of PSW is 1.
- (2) Transfers control to the address of the restored PC and the state of PSW.

Figure 5-13 illustrates the processing of the RETI instruction.

5.6 Multiple Interrupts

Multiple interrupt servicing is a function that allows the nesting of interrupts. If a higher priority interrupt is generated and acknowledged, it will be allowed to stop a current interrupt service routine in progress. Execution of the original routine will resume once the higher priority interrupt routine is completed.

If an interrupt with a lower or equal priority is generated and a service routine is currently in progress, the later interrupt will be held pending.

Multiple interrupt servicing control is performed when interrupt acknowledgement is enabled (ID = 0). Even in an interrupt servicing routine, the state must be set to interrupt acknowledgement enabled (ID = 0). If a maskable interrupt or exception is generated while a maskable interrupt or exception is being serviced, EIPC and EIPSW must be saved.

The following example shows the procedure of interrupt nesting.

(1) To acknowledge maskable interrupts in service routine

Service routine of maskable interrupt or exception

... • Saves EIPC to memory or register • Saves EIPSW to memory or register

• El instruction (enables interrupt acknowledgement)

... ...

...

- DI instruction (disables interrupt acknowledgement)
- Restores saved value to EIPSW
- · Restores saved value to EIPC
- RETI instruction

(2) To generate exception in service program

Service program of maskable interrupt or exception

 ...

 • Saves EIPC to memory or register

 • Saves EIPSW to memory or register

 ...

 • TRAP instruction

 • Illegal op code

 ...

 • Restores saved value to EIPSW

 • Restores saved value to EIPC

 • RETI instruction

Eight levels of priorities 0 to 7 (0 is the highest) can be programmed for each maskable interrupt request for multiple interrupt servicing control. To set a priority level, write values to the xxPRn0 to xxPRn2 bits of the interrupt request control register (xxICn) corresponding to each maskable interrupt request. After system reset, the interrupt request is masked by the xxMKn bit, and the priority level is set to 7 by the xxPRn0 to xxPRn2 bits.

The priorities of maskable interrupts are as follows.

(High) Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7 (Low)

Interrupt servicing that has been suspended as a result of multiple interrupt servicing is resumed after the interrupt servicing of the higher priority has been completed and the RETI instruction has been executed.

A pending interrupt request is acknowledged after the current interrupt servicing has been completed and the RETI instruction has been executed.

Caution In the non-maskable interrupt servicing routine (time until the RETI instruction is executed), maskable interrupts are not acknowledged but are suspended.

← Acknowledges maskable interrupts

- Acknowledges exception such as TRAP instruction
- ← Acknowledges illegal op code exception

5.7 Interrupt Latency Time

The following table describes the V853 interrupt latency time.

Interrupt L	nterrupt Latency Time (Internal system clock)		Condition
	Internal Interrupt	External Interrupt	
Minimum	11	13	Except: • In IDLE/software STOP mode • When external bus is accessed
Maximum	18	20	 When two or more interrupt request non-sample instructions are executed in succession When interrupt control register is accessed

5.8 Periods in Which Interrupts Are Not Acknowledged

An interrupt is acknowledged while an instruction is being executed. However, no interrupt will be acknowledged between an interrupt request non-sample instruction and the next instruction.

Interrupt request non sample instructions are as follows.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instruction (vs. PSW)

★ (1) Acknowledgement of interrupt servicing following El instruction

The V853 requires a minimum of 7 clocks from the occurrence of an interrupt request until the interrupt request is acknowledged as the interrupt request determination period. Since instructions can continue to be executed during this period, executing the DI (Disable Interrupt) instruction results in the interrupt disabled state. As a result, all interrupt requests are held pending until the EI (Enable Interrupt) instruction is executed. Moreover, since an interrupt determination period is also required when the EI instruction is executed, at least 7 clocks are required between execution of the EI instruction and acknowledgement of the interrupt request. Therefore, if the DI instruction is executed before 7 clocks have elapsed following execution of the EI instruction, interrupts will be held pending. To reliably acknowledge interrupts, insert instructions whose execution clocks total 7 clocks or more between the EI instruction and DI instruction. This does not apply, however, to the following instructions.

- IDLE/STOP mode setting
- El instruction, DI instruction
- RETI instruction
- LDSR instruction (for PSW register)
- Access to interrupt control register (xxICn)

Example: When EI instruction processing is not enabled

[Workaround Program Example]

DI	
•	;MK flag = 0 (interrupt request enable)
•	;Interrupt request occurrence (IF flag = 1)
EI	
NOP	;1 system clock
JR LP1	;3 system clocks (branching to LP1 routine)
DI 🚽	;Interrupt servicing executed at 8th system clock following
÷	;execution of EI instruction

CHAPTER 6 CLOCK GENERATOR FUNCTION

The clock generator (CG) generates and controls the internal system clock (ϕ), which is supplied to all the internal hardware units including the CPU.

6.1 Features

- Multiplication function by PLL (Phase Locked Loop) synthesizer
- \bigcirc Clock source
 - Oscillation by connecting a resonator (PLL mode): fxx = ϕ , 2 × ϕ , ϕ /5
 - External clock (PLL mode): fxx = ϕ , 2 × ϕ , ϕ /5
 - External clock (direct mode): fxx = $2 \times \phi$
- \bigcirc Power save control
 - HALT mode
 - IDLE mode
 - Software STOP mode
 - · Clock output inhibit mode

6.2 Configuration

6.3 Selecting Input Clock

The clock generator consists of an oscillator and a PLL synthesizer. When a 6.5536 MHz crystal resonator or ceramic resonator is connected across the X1 and X2 pins for example, the clock generator can generate a 32.768 (Max. 33) MHz internal system clock (ϕ) in ×5 mode.

An external clock can be directly connected to the oscillator. In this case, input the clock signal only to the X1 pin, and leave the X2 pin open.

The clock generator has two modes as the basic operation mode: PLL mode and direct mode. The operation mode is selected with the CV_{DD}/\overline{CKSEL} pin.

CVDD/CKSEL	Operation Mode
Vdd	PLL mode
Low level	Direct mode

Caution Fix the input level when using the CVDD/CKSEL pin (this pin becomes the power source for the PLL synthesizer in PLL mode). Switching during operation may cause erroneous operation.

6.3.1 Direct mode

An external clock is input in the direct mode. The external clock that is input is divided by the division ratio specified in the clock control register (CKC), and an internal system clock which is 1/2 the frequency of the external clock (fxx) is generated. This mode is mainly used for the applications requiring operation at a lower frequency. To minimize adverse affect by noise, operation under an external clock frequency (fxx) lower than 32 MHz (internal system clock frequency (ϕ) = 16 MHz) is recommended.

6.3.2 PLL mode

In the PLL mode, an external clock is input by connecting an external oscillator, which is multiplied by the PLL synthesizer to generate an internal system clock (ϕ).

The multiplied PLL output is frequency-divided by the frequency division ratio specified by the clock control register (CKC) to generate internal system clocks that are 5, 1, or 1/2 times the external oscillator or external clock frequency (fxx).

When a system clock (5 x fxx) that is 5 times fxx is generated, because a frequency of up to 33 MHz can be generated based on an external oscillator of 4 to 6.6 MHz and an external clock, a low-noise, power saving system can be designed.

If the external oscillator or external clock source fails, the clock generator continues to provide the internal system clock ϕ based on the free-running frequency of the voltage control oscillator (VCO) inside the clock generator.

However, do not devise an application method in which you expect to use this free-running frequency.

Internal System Clock Frequency (ϕ)	External Oscillator/External Clock Frequency (fxx)
32.768 MHz	6.5536 MHz
25.000 MHz	5.0000 MHz
20.000 MHz	4.0000 MHz

Example Clock selecting PLL mode ($\phi = 5 \times fxx$)

Caution when selecting PLL mode ($\phi = 1/2 \times fxx$, $\phi = 1 \times fxx$)

 $\phi = 1/2 \times fxx$, $\phi = 1 \times fxx$ are used when there is no need to operate the V853 at a high frequency. Power consumption can be reduced by lowering the internal system clock frequency using software.

Because $\phi = 5 \times fxx$ is selected at reset, only an fxx value is used which makes $5 \times fxx$ smaller than the internal system clock maximum frequency for the oscillator frequency and external clock frequency.

6.3.3 Clock control register (CKC)

This is an 8-bit register that controls the internal system clock frequency in PLL mode. It can be written only by a specific combination of instruction sequences so that its contents are not overwritten by mistake due to erroneous program execution (refer to **3.4.10 Specific registers**).

In PLL mode, the internal system clock frequency (ϕ) (5 × fxx, fxx, fxx/2) setting can be changed during operation. However, be sure to stop all the on-chip peripheral I/O when changing the internal system clock frequency setting in order to prevent malfunction.

7 6 2 0 5 4 3 1 Address After reset СКС 0 0 0 0 0 CKDIV0 0 CKDIV1 FFFFF072H Note Note 00H (MODE = 1)03H (MODE = 0)Bit position Bit name Function 1, 0 CKDIV1, **Clock Divide** CKDIV0 Sets the internal system clock to the external clock (fxx). Pin CKC register Operation Internal mode system clock (ϕ) CVDD/CKSEL CKDIV1 CKDIV0 Direct mode L 0 0 $f_{xx}/2$ L 0 1 Setting prohibited L 1 0 Setting prohibited L 1 1 Setting prohibited PLL mode Vdd 0 0 $5 imes f_{xx}$ Vdd 0 1 Setting prohibited Vdd 1 0 f_{xx} Vdd 1 1 $f_{xx}/2$

This register can be read/written in 8-bit or 1-bit units.

The sequence of setting data in this register is the same as the power save control register (PSC). However, the limitation items listed in **Caution 2** for the **3.4.10 Specific registers** do not apply.

A setting example is shown below.

×

Operation	Pin	СКС	Register	External Clock	Internal System Clock (ø)	
Mode	CVDD/CKSEL	CKDIV1	CKDIV0	(f _{xx})		
Direct mode	Low level input	0	0	66 MHz	33 MHz	
PLL mode	Vdd	0	0	6.6 MHz	33 MHz	
	Vdd	1	0	6.6 MHz	6.6 MHz	
	Vdd	1	1	6.6 MHz	3.3 MHz	
Other than above	•	Setting prohib	ited			

6.4 PLL Lockup

Following a power-on reset or when releasing the STOP mode, an amount of time will be required for the PLL to stabilize before using any of the V853 hardware functions (PLL lockup time). The state in which the frequency is not stable is called an unlocked state and the state in which it has been stabilized is called a locked status.

Two flags in the system status register are available to check the stabilization of the PLL frequency: the UNLOCK flag, which indicates the stabilization status of the PLL frequency, and the PRERR flag, which indicates the occurrence of a protection error (for the details of the PRERR flag, refer to **3.4.10 (2) System status register (SYS)**).

The SYS register, which contains these UNLOCK and PREERR flags, can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0					
SYS	0	0	0	PRERR	0	0	0	UNLOCK	Address FFFFF078H	After rese 0000000x			
Bit position Bit name Function													
0	U	NLOCK	This is a It holds is reset. 0: Ind	Unlock Status Flag This is a read-only flag and indicates unlocked state of PLL. It holds "0" as long as the locked state is maintained, and is not changed even if the system is reset. 0: Indicates locked state 1: Indicates unlocked state									

Remark For the description of the PRERR flag, refer to **3.4.10 (2) System status register (SYS)**.

If the unlocked state condition should arise, due to a power or clock source failure, the UNLOCK flag should be checked to verify that the PLL has stabilized before performing any operations dependent on the execution speed, such as real-time processing.

Static processing such as setting the on-chip hardware units and initialization of the register data and memory data, however, can be executed before the UNLOCK flag is reset.

The following is the relationship between the oscillation stabilization time (the time from when the oscillator starts oscillating until the input waveform stabilizes) and the PLL lockup time (the time until the frequency stabilizes) when using an oscillator.

Oscillation stabilization time < PLL lockup time

6.5 Power Save Control

6.5.1 General

The V853 is provided with the following power save or standby modes to reduce power consumption when CPU operation is not required.

(1) HALT mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues operation but the operating clock of the CPU stops. Supply of clocks to the other on-chip peripherals continues and they continue to operate. Through intermittent operation by combining normal operation and the HALT mode, the total power consumption of the system can be reduced.

The HALT mode is entered by a dedicated instruction (HALT instruction).

(2) IDLE mode

In this mode, both the CPU clock and the internal system clock are stopped to further reduce power consumption. However, since the clock generator continues to run, normal operation can resume without having to wait for the oscillator and PLL circuits to stabilize.

The IDLE mode is entered by setting the specific register PSC.

The IDLE mode is categorized between the software STOP and HALT modes in terms of clock stabilization time and power consumption, and is used in applications where it is desirable to eliminate the clock oscillation time after standby release but low power consumption is needed.

(3) Software STOP mode

In this mode, the CPU clock, the internal system clock, and the clock generator are stopped, reducing power consumption to only leakage current. In this state, power consumption is minimized. The STOP mode is entered by setting the specific register PSC.

(a) In PLL mode

As soon as the oscillator stops, the clock output of the PLL synthesizer is stopped. After the software STOP mode has been released, it is necessary to allow for the stabilization time of the oscillator and system clock. Moreover, the lockup or stabilization time of the PLL may also be necessary, depending on the application. However, when the processor operates on an external clock, the oscillator stabilization time of the oscillator does not need to be secured.

(b) In direct mode

When stopping the clock, set the X1 pin to low level. Lockup time is not necessary.

(4) Clock output inhibit

Output of the system clock from the CLKOUT pin is inhibited.

The operations of the clock generator in the normal, HALT, IDLE, and software STOP modes are shown in Table 6-1.

By combining and selecting the mode best suited for a specific application, the power consumption of the system can be effectively reduced.

Clock Source		Standby Mode	Oscillator Circuit (OSC)	PLL Synthesizer	Clock Supply to Peripheral I/O	Clock Supply to CPU
PLL mode	Oscillation	Normal	0	0	0	0
	with resonator	HALT	0	0	0	х
		IDLE	0	0	×	×
		Software STOP	×	×	×	×
	External clock	Normal	×	0	0	0
		HALT	×	0	0	×
		IDLE	×	0	×	×
		Software STOP	×	×	×	×
Direct mode		Normal	×	×	0	0
		HALT	×	×	0	×
		IDLE	×	×	×	×
		Software STOP	×	×	×	×

Table 6-1.	Operation of	Clock	Generator b	y Power	Save Control
------------	--------------	-------	-------------	---------	--------------

O: operates

×: stops

Status Transition Diagram

6.5.2 Control registers

(1) Power save control register (PSC)

This is an 8-bit register that controls the power save mode. This is a specific register, and only access by the specific sequence is valid during write cycles. For details, refer to **3.4.10 Specific registers**.

	7	6	5	4	3	2	1	0	1	
PSC	DCLK1	DCLK0	TBCS	CESEL	0	IDLE	STP	0	Address FFFFF070H	After reset C0H
D '' '''										
Bit position		name				ŀ	unction			
7, 6	DCL		Disable CLI			KOUT				
	(n =	1, 0)	Specifies operation mode of CLKOUT pin							
			DCLK1	DCLK)		Ν	lode		
			0	0	Norn	nal output i	node			
			0	1	RFU	(reserved)				
			1	0	RFU	(reserved)				
			1	1	Cloc	k output in	hibit mode	9		
			1: fxx/2 ⁹ For details Oscillation				base co	unter (TB	C)" in section 6.	6 Securing
4	CES		1: Extern When CES	unctions of ator connect al clock co EL = 1, the re STOP	X1 and 2 cted to X onnected feedbac mode.	1 and X2 p to X1 pin k loop of th Time base	e oscillato counter	(TBC) do	to prevent curre es not count th	-
2	IDLI		IDLE Mode Specifies II When "1" is When IDLE	DLE mode written to	this bit,				o 0.	
1	STF		STOP Mod Specifies s When "1" is When softy	oftware ST s written to	this bit,	STOP mod			ally reset to 0.	

*

6.5.3 HALT mode

(1) Entering and operation status

In the HALT mode, the clock generator (oscillator and PLL synthesizer) operates, while the operating clock of the CPU stops. Supply of clocks to the other on-chip peripherals continues and they continue to operate. By entering the HALT mode during the idle time of the CPU, the total power consumption of the system can be reduced.

This mode is entered by the HALT instruction.

In the HALT mode, program execution is stopped, but the contents of the registers and internal RAM immediately before entering the HALT mode are retained. The on-chip peripheral functions that are not dependent on the instruction processing of the CPU continue to operate.

Table 6-2 shows the status of each hardware unit in the HALT mode.

Function Clock generator			Operating Status		
		Operates			
Internal sys	tem clock	Operates			
CPU	CPU		Stops		
I/O ports		Retained			
Peripheral f	Peripheral functions		Operates		
Internal data		Status of internal data before setting of HALT mode, such as CPU registers, status, data, and internal RAM contents, are retained.			
External	AD0 to AD15	High impedance ^{Note}			
expansion	A16 to A19	Retained ^{Note}	High-impedance when HLDAK = 0		
mode	LBEN, UBEN				
	R/W	High-level	-		
	DSTB	output ^{Note}			
	ASTB				
	HLDAK	Operates			
CLKOUT		Clock output (when clock output is not inhibited)			

Table 6-2. Operating Status in HALT Mode

Note The instruction fetch operation continues even after the HALT instruction has been executed, until the internal instruction prefetch queue becomes full. After the queue has become full, the operation is stopped in the status indicated in Table 6-2.

(2) Releasing HALT mode

The HALT mode can be released by the non-maskable interrupt request, an unmasked maskable interrupt request, or **RESET** signal input.

(a) Releasing by interrupt request

The HALT mode is unconditionally released by the NMI request or an unmasked maskable interrupt request, regardless of the priority. However, if the HALT mode is set in an interrupt servicing routine, the operation will differ as follows.

- (i) If an interrupt request with a priority lower than that of the interrupt request under execution is generated, the HALT mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request will be held pending.
- (ii) If an interrupt request with a priority higher (including NMI request) than the interrupt request under execution is generated, the HALT mode is released, and the interrupt request is also acknowledged.

Operation after HALT mode has been released by interrupt request

Releasing Source	Interrupt Enable (EI) Status	Interrupt Disable (DI) Status	
NMI request	Branches to handler address		
Maskable interrupt request	Branches to handler address or executes next instruction	Executes next instruction	

(b) Releasing by RESET signal input

The same operation as the normal reset operation is performed.

6.5.4 IDLE mode

(1) Entering and operation status

In this mode, both the CPU clock and the internal system clock are stopped to further reduce power consumption. However, since the clock generator continues to run, normal operation can resume without having to wait for the oscillator and PLL circuit to stabilize.

The IDLE mode is entered when the PSC register is set by a store (ST/SST) instruction or bit manipulation (SET1/CLR1/NOT1) instruction (Refer to **3.4.10 Specific registers**).

Execution of the program is stopped in the IDLE mode, but the contents of the registers and internal RAM immediately before entering the IDLE mode are retained. The on-chip peripheral functions are stopped in this mode. External bus hold request (HLDRQ) is not acknowledged.

Table 6-3 shows the hardware status in the IDLE mode.

Function		Operating Status
Clock generator		Operates
Internal syst	em clock	Stops
CPU		Stops
I/O ports		Retained
Peripheral functions Internal data		Stops
		Status of all internal data immediately before IDLE mode is entered, such as CPU registers, status, data, and internal RAM contents, are retained.
External expansion	AD0 to AD15	High impedance
	A16 to A19	
mode	LBEN, UBEN	
	R/W	
	DSTB	
	ASTB	
	HLDAK	
CLKOUT		Low-level output

Table 6-3. Operating Status in IDLE Mode

(2) Releasing IDLE mode

The IDLE mode is released by the NMI signal input or RESET signal input.

(a) Releasing by NMI signal input

The NMI request is acknowledged and serviced as soon as the IDLE mode has been released. If the IDLE mode is entered in the NMI processing routine, however, only the IDLE mode is released, and the interrupt will not be acknowledged. The interrupt request will be retained and held pending. The interrupt servicing that is started by the NMI signal input when the IDLE mode is released is treated in the same manner as a normal NMI interrupt that is processed (because there is only one vector address of the NMI interrupt). Therefore, if it is necessary to distinguish between the two types of NMI interrupts, a software flag should be defined in advance, and the flag must be set before setting the IDLE flag by the store/bit manipulation instruction. By checking this flag during the NMI interrupt servicing, the NMI used to released the IDLE mode can be distinguished from the normal NMI.

(b) Releasing by RESET signal input

The same operation as the normal reset operation is performed.

6.5.5 Software STOP mode

(1) Entering and operation status

In this mode, the CPU clock, the internal system clock, and the clock generator are stopped, reducing power consumption to only leakage current. In this state, power consumption is minimized.

The software STOP mode is entered by setting the PSC register (specific register) using a store (ST/SST) or bit manipulation (SET1/CLR1/NOT1) instruction (refer to **3.4.10 Specific registers**).

In the oscillator connection mode (CESEL bit = 0), it is necessary to secure the oscillation stabilization time of the oscillator after the software STOP mode has been released.

In the software STOP mode, program execution is stopped, but all the contents of the registers and internal RAM immediately before entering the STOP mode are retained. The on-chip peripheral functions also stop operation.

Table 6-4 shows the hardware status in the software STOP mode.

Function		Operating Status
Clock generator		Stops
Internal sys	tem clock	Stops
CPU		Stops
I/O ports ^{Note} Peripheral functions Internal data ^{Note}		Retained
		Stops
		Status of all internal data immediately before software STOP mode is set, such as CPU registers, status, data, and internal RAM contents, are retained.
External	AD0 to AD15	High impedance
expansion	A16 to A19	
mode	LBEN, UBEN	
	R/W	
	DSTB	
	ASTB	
	HLDAK	
CLKOUT		Low-level output

Table 6-4. Operating Status in Software STOP Mode

Note When the value of VDD is within the operating range.

Even if VDD drops below the minimum operating voltage, the contents of the internal RAM can be retained if the data retention voltage VDDDR is maintained.

(2) Releasing software STOP mode

The software STOP mode is released by the NMI signal input or $\overrightarrow{\text{RESET}}$ signal input. It is necessary to ensure the oscillation stabilization time when releasing from the software STOP mode in the PLL mode and oscillator connection mode (CESEL bit of the PSC register = 0).

Moreover, the lock up time of the PLL may also be necessary, depending on the application. For details, refer to **6.4 PLL Lockup**.

(a) Releasing by NMI signal input

When the software STOP mode is released by the NMI signal, the NMI request is also acknowledged. If the software STOP mode is set in an NMI processing routine, however, only the software STOP mode is released, and the interrupt is not acknowledged. The interrupt request is retained and held pending.

NMI interrupt servicing on releasing software STOP mode

The interrupt servicing that is started by the NMI signal input when the software STOP mode is released is treated in the same manner as a normal NMI interrupt that is serviced (because there is only one handler address of the NMI interrupt). Therefore, if it is necessary to distinguish between the two types of NMI interrupts, a software flag should be defined in advance, and the flag must be set before setting the STOP flag by a store/bit manipulation instruction. By checking this flag during the NMI interrupt servicing, the NMI used to released the software STOP mode can be distinguished from a normal NMI.

(b) Releasing by RESET signal input

The operation same as the normal reset operation is performed.

6.5.6 Cautions

If the V853 is used under the following conditions^{Note}, a discrepancy occurs between the address indicated by the program counter (PC) and the address at which an instruction is actually read after the power save mode is released.

This may result in the CPU ignoring a 4-byte or 8-byte instruction from between 4 bytes and 16 bytes after an instruction is executed to write to the PSC register, which could in turn result in the execution of an erroneous instruction.

Note PC errors occur only when conditions (i) to (iii) below are all satisfied. If even one of these conditions is not satisfied, a PC error does not occur.

[Conditions]

- (i) Setting of power save mode (IDLE mode or STOP mode) while an instruction is being executed on external ROM
- (ii) Cancelation of power save mode as the result of an NMI interrupt request
- (iii) Execution of the next instruction when an interrupt request is held pending following release of the power save mode

Conditions for interrupt request to be held pending:

When NP flag of PSW register is "1" (NMI servicing in progress/set by software)

Therefore, use the V853 under the following conditions.

[Usage Conditions]

- (i) Do not use a power save mode (IDLE mode or STOP mode) during instruction execution on external ROM.
- (ii) If it is necessary to use a power save mode during instruction execution on external ROM, implement the following software measures.
 - Insert 6 NOP instructions 4 bytes after an instruction that writes to the PSC register.
 - After the NOP instructions, insert a br\$+2 instruction to cancel the PC discrepancy.

[Workaround program example]

LDST	rX,5	;Sets rX value to PSW			
ST.B	r0,PRCMD[r0]	;Writes to PRCMD			
ST.B	rD,PSC[r0]	;Sets PSC register			
LDST	rY,5	;Returns PSW value			
NOP		;6 or more NOP instructions			
NOP					
BR \$	+2	;Cancels PC discrepancy			
Remark It is assumed that rD (PSC setting value), rX (value written to PSW), and rY (value written back to					
	PSW) have been se	it.			

6.6 Securing Oscillation Stabilization Time

The time required for the oscillator to become stabilized after the software STOP mode has been released can be secured in the following two ways.

(1) By using internal time base counter (NMI signal input)

When a valid edge is input to the NMI pin, the software STOP mode is released. When an inactive edge is input to the pin, the time base counter (TBC) starts counting, and the time required for the clock output from the oscillator to become stabilized is specified by that count time.

Oscillation stabilization time \simeq (Active level width after valid edge of NMI input has been detected) + (Count time of TBC)

After a specific time has elapsed, the system clock output is started, and execution branches to the handler address of the NMI interrupt.

During inactivity, the NMI pin should be held at the inactive level (e.g. when the valid edge is specified to be the falling edge).

If the software STOP mode is set in the period between the valid edge input timing of NMI and the interrupt acknowledgement by the CPU, the software STOP mode is immediately released. Program execution is immediately started if the clock generator is driven in direct mode or the external clock connection mode (CESEL = 1). If the clock generator is driven in the PLL mode or the resonator connection mode (CESEL = 0), program execution is started after the oscillation stabilization time specified in the time base counter has elapsed.
(2) To secure time by signal level width (RESET pin input)

The software STOP mode is released when the falling edge is input to the $\overline{\text{RESET}}$ pin.

The time required for the clock output from the oscillator to become stabilized is specified by the low-level width of the signal input to the $\overline{\text{RESET}}$ pin.

After the rising edge has been input to the $\overline{\text{RESET}}$ pin, operation of the internal system clock begins, and execution branches to the vector address that is used when the system is reset.

Time base counter (TBC)

The time base counter is used to secure the oscillation stabilization time of the oscillator when the software STOP mode is released.

- External clock connected (CESEL bit of PSC register = 1) TBC does not count the oscillation stabilization time, and the execution of a program is started immediately after the software STOP mode is released.
- Resonator connected (CESEL bit of PSC register = 0)

TBC counts the oscillation stabilization time after the software STOP mode is released, and the execution of a program is started after counting is completed.

The count clock of TBC is selected by the TBCS bit of the PSC register, and the following count time can be set.

		Count Time						
TBCS	Count Clock	fxx = 4.0000 MHz	fxx = 5.0000 MHz	fxx = 6.5536 MHz				
		φ = 20.000 MHz	φ = 25.000 MHz	φ = 32.768 MHz				
0	fxx/2 ⁸	16.3 ms	13.1 ms	10.0 ms				
1	fxx/2 ⁹	32.7 ms	26.2 ms	20.0 ms				

 Table 6-5.
 Example of Count Time

fxx: external resonator frequency

φ: internal system clock frequency

Figure 6-1. Block Configuration

6.7 Clock Output Control

The operation mode of the CLKOUT pin can be selected by the DCLK0 and DCLK1 bits of the PSC register. By using this operation mode in combination with the HALT, IDLE, or software STOP mode, the power consumption can be effectively reduced (for how to write these bits, refer to **6.5.2 Control registers**).

Clock output inhibit mode

*

The clock output from the CLKOUT pin is inhibited.

This mode is ideal for single-chip mode systems or systems that fetch instructions to external expansion devices or asynchronously access data.

Because the operation of CLKOUT is completely stopped in this mode, the power consumption can be minimized and radiation noise from the CLKOUT pin can be suppressed.

CLKOUT (normal mode)		
CLKOUT (clock output inhibit mode)	L	(Fixed to low level)

In the single-chip mode, the CLKOUT signal is not output until the DCLK1 and DCLK0 bits of the PSC register are set to 00 after releasing reset (low level output).

In the flash memory programming mode, the CLKOUT signal cannot be output (low level output).

7.1 Features

- \bigcirc Measures pulse intervals and frequency, and outputs programmable pulse
 - 16-bit measurement possible
 - Generates pulses of various shapes (interval pulse, one-shot pulse)
- \bigcirc Timer 1
 - 16-bit timer/event counter
 - Count clock sources: 2 types (divided internal system clock and external pulse input)
 - Capture/compare registers: 16
 - Count clear pins: TCLR11 to TCLR14
 - Interrupt sources: 20 types
 - External pulse outputs: 8
- \bigcirc Timer 4
 - 16-bit interval timer
 - Count clock selected from divided internal system clock
 - Compare registers: 1
 - Interrupt sources: 1

7.2 Basic Configuration

Timer	Count Clock	Register	Read/Write	Generated Interrupt Signal	Capture Trigger	Timer Output S/R	Other Function
Timer 1	φ/2	TM1	Read	INTOV11	_	-	External clear
	φ/4	CC110	Read/write	INTCC110	INTP110	TO110 (S)	-
	φ/8	CC111	Read/Write	INTCC111	INTP111	TO110 (R)	-
	<i>ф</i> /16	CC112	Read/Write	INTCC112	INTP112	TO111 (S)	-
	<i>ф</i> /32	CC113	Read/Write	INTCC113	INTP113	TO111 (R)	-
	<i>ф</i> /64	TM12	Read	INTOV12	_	_	External clear
	<i>ф</i> /128	CC120	Read/Write	INTCC120	INTP120	TO120 (S)	_
	TI1n pin input	CC121	Read/Write	INTCC121	INTP121	TO120 (R)	-
	(n = 1 to 4)	CC122	Read/Write	INTCC122	INTP122	TO121 (S)	-
		CC123	Read/Write	INTCC123	INTP123	TO121 (R)	-
		TM13	Read	INTOV13	_	_	External clear
		CC130	Read/Write	INTCC130	INTP130	TO130 (S)	-
		CC131	Read/Write	INTCC131	INTP131	TO130 (R)	-
		CC132	Read/Write	INTCC132	INTP132	TO131 (S)	-
		CC133	Read/Write	INTCC133	INTP133	TO131 (R)	-
		TM14	Read	INTOV14	-	-	External clear
		CC140	Read/Write	INTCC140	INTP140	TO140 (S)	-
		CC141	Read/Write	INTCC141	INTP141	TO140 (R)	-
		CC142	Read/Write	INTCC142	INTP142	TO141 (S)	-
		CC143	Read/Write	INTCC143	INTP143	TO141 (R)	-
Timer 4	φ/2	TM4	Read	-	-	-	-
	φ/4						
	<i>ф</i> /16						
	<i>ф</i> /32						
	<i>ф</i> /64	CM4	Read/write	INTCM4	_	-	-
	<i>ф</i> /128						
	<i>φ</i> /512						
	<i>ф</i> /1024						

Table 7-1. Configuration of Real-Time Pulse Unit (RPU)

Remark ϕ : Internal system clock

S/R: Set/reset

(2) Timer 4 (16-bit interval timer)

7.2.1 Timer 1

(1) Timers 11 to 14 (TM11 to TM14)

TM1n functions as a 16-bit free-running timer or event counter. Timers 11 to 14 are used to measure cycles and frequency, and also for programmable pulse generation.

TM1n is read-only in 16-bit units (n = 1 to 4).

TM1n counts up the internal count clock or external count clock. The timer is started or stopped by the CE1n bits of timer control register 1n (TMC1n).

Whether the internal or external count clock is used is specified by the TMC1n register.

(a) When external count clock is selected

TM1n operates as an event counter. The valid edge is specified by timer unit mode register 1n (TUM1n), and TM1n counts up the signal input from the TI1n pin.

(b) When internal count clock is selected

TM1n operates as a free-running timer, and counts up the internal clock. The internal count clock frequency division by the prescaler is selected from $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, $\phi/64$, and $\phi/128$ by the TMC1 register.

When the timer overflows, an overflow interrupt can be generated. The timer can be stopped after an overflow has occurred, if so specified by the TUM1n register.

The timer can be cleared and started by external TCLR1n input. At this time, the prescaler is also cleared. As a result, the time from the TCLR1n input to the first count up by the timer is held constant, according to the division ratio of the prescaler. The operation is set by the TUM1n register.

Caution The count clock cannot be changed during timer operation.

(2) Capture/compare registers 1n0 to 1n3 (CC1n0 to CC1n3) (n = 1 to 4)

The capture/compare registers are 16-bit registers and are connected to TM1n. These registers can be used as capture or compare registers depending on the specification of timer unit mode register 1n (TUM1n). They can be read/written in 16-bit units.

(a) When used as capture register

When a capture/compare register is used as a capture register, it detects the valid edge of the corresponding external interrupt (INTP1n0 to INTP1n3 signals) as a capture trigger. Timer 1n latches the count value in synchronization with the capture trigger (capture operation). The capture operation is performed asynchronously to the count clock. The latched value is held by the capture register, until the next capture operation is performed.

If the capture (latch) timing of the capture register conflicts with a register write operation by an instruction, the latter takes precedence, and the capture operation is ignored.

The valid edge of the external interrupt (rising, falling, or both edges) can be selected by the external interrupt mode register (INTM2).

When a capture/compare register is used as a capture register, and when the valid edge of the INTP1n0 to INTP1n3 signals is detected, an interrupt is generated. During this time, no interrupt can be generated by the compare register match signals INTCC1n0 to INTCC1n3.

(b) When used as compare register

When a capture/compare register is used as a compare register, it compares its contents with the value of the timer at each clock tick. When the two values match, an interrupt is generated. Compare registers support a set/reset output function. In other words, they set or reset the corresponding timer output (TO1n0 and TO1n1) synchronously with match signal generation.

Whether the interrupt source is used as a capture or compare register depends on the register mode. When used as a compare register, the match signals INTCC1n0 to INTCC1n3 or the valid edge of the INTP1n0 to INTP1n3 signals can be selected as an interrupt signal, depending on the specification of the TUM1n register.

When the INTP1n0 to INTP1n3 signals are selected, the acknowledgement of an external interrupt request and the timer output by the set/reset output function of the compare register can be executed simultaneously.

7.2.2 Timer 4

(1) Timer 4 (TM4)

TM4 is a 16-bit timer and is mainly used as an interval timer for software. This timer is read-only in 16-bit units.

TM4 is started or stopped by the CE4 bit of timer control register 4 (TMC4).

The count clock is selected by the TMC4 register from $\phi/2$, $\phi/4$, $\phi/16$, $\phi/32$, $\phi/64$, $\phi/128$, $\phi/512$, or $\phi/1024$.

Caution When the value of the timer matches the value of the compare register (CM4), the timer is cleared by the next clock tick. If the division ratio is large and results in a slow clock period, the timer value may not have been cleared to zero if the timer is read immediately after the occurrence of the match signal interrupt.

The count clock cannot be changed during timer operation.

(2) Compare register 4 (CM4)

CM4 is a 16-bit register and is connected to TM4. This register can be read/written in 16-bit units.

CM4 compares its value with the value of TM4 at each clock tick of TM4, and generates an interrupt (INTCM4) when the two values match. TM4 is cleared in synchronization with this match.

7.3 Control Registers

(1) Timer unit mode registers 11 to 14 (TUM11 to TUM14)

TUM1n controls the operation of timer 1, and specifies the operation mode of the capture/compare registers (n = 1 to 4).

These registers can be read/written in 16-bit units.

																				(*
TUM11	15 0	14 0	13 0ST1	12 ECLR 11	11 TES 111	10 TES 110	9 CES 111			6 CMS 112			3 IMS 113		1 IMS 111		 F	Addre FFFF2		After rese 0000H
TUM12	0	0	OST2	ECLR 12	TES 121	TES 120	CES 121				CMS 121	CMS 120		IMS 122	IMS 121		 F	FFFF2	260H	0000H
TUM13	0	0	OST3	ECLR 13	TES 131	TES 130	CES 131		CMS (133							IMS 130	F	FFFF2	280H	0000H
TUM14	0	0	OST4	ECLR 14	TES 141	TES 140	CES 141			CMS 142			IMS 143				F	FFFF2	2A0H	0000H
		Rit na	ame										Func	tion						
Bit position)STn				flow	•	ation (of tim	er af	ter o	ccurr	ence	ofo	verflo	W. TI	his fl:	ad is v	alid on	ly for TM1n
•						ifies 0: 1:	opera Timer Timer At this The ti When	cont hold s time imer i ECL	inues s 000 e, CE resum .R1n :	s cour)0H a 1n bi nes c = "0"	nting and s it of count : Wri	after tops FMC ² ing w ting "	ove after n re hen 1" to	rflow over main the fo CE1	has flow s "1". ollow n bit	occur has o ing op	red. ccurr perati	0	erform	ly for TM1n ied:
•	C				Spec Exter	rnal li 0: 1: rnal li oles c 0: 1:	opera Timer Timer At this The ti When	r cont r hold s time mer i ECL ECL Timer ng TM not o clea	inues s 000 e, CE resum .R1n .R1n Clea l1n by cleare red b	s cour 00H a 1n bi nes c = "0" = "1" ur y exte ed by y ext	nting and s count : Wri : Trig ernal r exte	after tops FMC ² ing w ting " gger i gger i clea ernal	ove after n rei hen 1" to nput r input input	rflow over main the fo CE1 to tir	has flow s "1". ollow n bit ner c	occur has o ing op lear p n)	red. ccurr perati	red. on is p	erform	
13	E	OSTr		.0	Spec Exter Enab	ifies 0: 1: 1: oles c 0: 1: Edge	opera Timer Timer At this The ti When When nput T Iearin TM1n	r cont hold s time imer i ECL i ECL Timer ig TM not o clea TM1r	inues s 000 e, CE resum R1n Clea Cleare red b n has	s cour 00H a 1n bi nes c = "0" = "1" ar y exte bed by y ext beer	nting and s count : Wri : Tri ernal ernal n cle	after tops FMC ² ing w ting " gger i gger i gger i gger i gger i	r ove after n rei hen 1" to nput r input input it it sta	rflow over main the fo CE1 to tir ut (T(has flow s "1". bllow n bit ner c CLR1	occur has o ing op lear p n)	red. ccurr perati	red. on is p	erform	
13	E	OSTr	1 1 1 1	.0	Exter Enab	ifies 0: 1: 1: oles c 0: 1: Edge	opera Timer Timer At this The ti When When Nput 1 learin TM1n After	cont hold stimer ECL ECL ECL Timer g TM not clea TM1r cct edge	inues s 000 e, CE resum R1n Clea Cleare red b n has	s cour 00H a 1n bi nes c = "0" = "1" ar y exte bed by y ext beer	nting and s count : Wri : Tri ernal ernal n cle	after tops FMC ² ing w ting " gger i gger i gger i gger i gger i	r ove after n rei hen 1" to nput r input input it it sta	rflow over main the fo CE1 to tir to tir ut (T(arts c	has flow s "1". bllow n bit ner c CLR1	occur has o ing op lear p n) ng.	red. ccurr perati	red. on is p	erform	
13	E	OSTr	1 1 1 1	.0	Spec Exter Enab	ifies 0: 1: 1: rnal li lies c 0: 1: Edge ifies S1n1	opera Timer Timer The ti When When When NUT Ilearin TM1n TM1n TM1n TM1n TM1n TM1n TM1n TM1	c cont c hold s time i ECL ECL Fimer g TM not (c clea TM1r ect edge	inues s 000 e, CE resum R1n : Clea 11n by Cleare red b n has of ex Fallii	could 00H a 1n bi nes c = "0" = "1" y exta beer ded by y exta beer der ng ec	nting and s it of ¹ count : Wri : Tri ernal r exte erna n clea al clo	after tops FMC ² ing w ting " gger i gger i gger i gger i gger i	r ove after n rei hen 1" to nput r input input it it sta	rflow over main the fo CE1 to tir to tir ut (T(arts c	has flow s "1". bllow n bit ner c CLR1	occur has o ing op lear p n) ng.	red. ccurr perati	red. on is p	erform	
13	E	OSTr	1 1 1 1	.0	Spec Exter Enab	ifies 0: 1: 1: nnal li les c 0: 1: Edge sifies S1n1 0 0	opera Timer Timer At this The ti When When MWhen Dearin TM1n TM1n After Valid TES 0 1	c cont i hold s time i ECL i clea t the the the the the the the the the the	inues s 000 e, CE resum R1n Clea red b n has of ex Falli Risir	count 00H a 1n bines c = "0" = "1" rr y extra ded by y extra beer kterna mg er mg er	nting and s it of ¹ count : Wri : Tri ernal ernal ernal n clea al clo dge dge	aften tops FMC ² ing w ting w gger i clea ernal l inpu ared, ck in	r ove after n rei hen 1" to nput r input input it it sta	rflow over main the fo CE1 to tir to tir ut (T(arts c	has flow s "1". bllow n bit ner c CLR1	occur has o ing op lear p n) ng.	red. ccurr perati	red. on is p	erform	
13	E	OSTr	1 1 1 1	.0	Exter Enab	ifies 0: 1: 1: rnal li lies c 0: 1: Edge ifies S1n1	opera Timer Timer The ti When When When NUT Ilearin TM1n TM1n TM1n TM1n TM1n TM1n TM1n TM1	c cont c hold s time i ECL i ECL Timer g TM n tot (c c clea TM1r ect edge	inues s 000 e, CE resum R1n : Clea Clea to Clea to Cle	could 00H a 1n bi nes c = "0" = "1" y exta beer ded by y exta beer der ng ec	nting and s it of ⁻ count : Wri : Trig ernal r exte erna n clee al clo dge dge eerve	aften tops FMC ² ding w ting w clea ernal l inpu ared, ck in ck in d)	r ove after n rei hen 1" to nput r input it sta put (rflow over main the fr CE1 to tir ut (T(arts c TI1n) Va	has fflow s "1". Dillow n bit ner c CLR1 CLR1	occur has o ing op lear p n) ng.	red. ccurr perati	red. on is p	erform	

(2/2)

Bit position	Bit name			Function					
9, 8	CES1n1, CES1n0	TCLR1n Edge Select							
		Specifies	Specifies valid edge of external clear input (TCLR1n).						
		CES1n1	CES1n0	Valid edge					
		0	0	Falling edge					
		0	1	Rising edge					
		1	0	RFU (reserved)					
		1	1	Both rising and falling edge					
7 to 4	CMS1n3 to	Conturo/	Compore A	Node Select					
7 10 4	CMS1n3 to CMS1n0	•	•	node of capture/compare registers (CC1n0 to CC1n3).					
		0: Ca TN	•	ster. However, capture operation is performed only when CE1 of					
3 to 0	IMS1n3 to	Interrupt	Mode Sele	→ Эct					
	IMS1n0			r INTCC1nm as interrupt source (m = 0 to 3). signal of INTCC1nm of compare registers as interrupt signal					
		1: Us	es externa	al input signal INTP1nm as interrupt signal					

Precautions in use of A/D converter

(1) When the A/D converter is set to the timer trigger mode

The match interrupt of the compare register becomes the A/D conversion start trigger and conversion operations are started. At this time, the match interrupt of the compare register also functions as the match interrupt of the compare register for the CPU. To prevent generation of the match interrupt of the compare register for the CPU, disable interrupts using the interrupt mask bit (P11MK0 to P11MK3) of the interrupt control register (P11IC0 to P11IC3).

(2) When the A/D converter is set to the external trigger mode

The external trigger input becomes the A/D conversion start trigger and conversion operations are started. At this time, the external trigger input also functions as a capture trigger and the external interrupt of timer 1. To prevent generation of the capture trigger and external interrupt, set timer 1 as a compare register and disable interrupts using the interrupt mask bit of the interrupt control register.

The operations performed when timer 1 is set as a compare register and interrupts are not disabled by the interrupt control register are as follows.

(a) When the interrupt mask bit (IMS113) of the TUM11 register is 0

Also functions as the match interrupt of the compare register for the CPU.

(b) When the interrupt mask bit (IMS113) of the TUM11 register is 1

The external trigger input of the A/D converter also functions as the external interrupt for the CPU.

(2) Timer control registers 11 to 14 (TMC11 to TMC14)

TMC11 to TMC14 control operation of TM11 to TM14.

These registers can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0	_	
TMC11	CE11	0	0	ETI11	PRS111	PRS110	PRM111	0	Address FFFFF242H	After reset 00H
TMC12	CE12	0	0	ETI12	PRS121	PRS120	PRM121	0	FFFF262H	00H
TMC13	CE13	0	0	ETI13	PRS131	PRS130	PRM131	0	FFFFF282H	00H
TMC14	CE14	0	0	ETI14	PRS141	PRS140	PRM141	0	FFFFF2A2H	00H
Bit position 7	Bit name CE1n	;	Count Ena			F	unction			
				er perform /1n registe					start counting whe	
			When ECL	R1n = 0, s bit. There	starting cou fore, the tir	unting of th	he timer by	CE1n = 1	nput. 1 is triggered by w ECLR1n = 0 after (
4	ETI1n		When ECL the CE1n been set v External T Specifies e 0: ϕ (ir	R1n = 0, s bit. There vith ECLR I1n Input external or	starting cou fore, the tir In = 1. internal co	unting of th mer is not	he timer by started eve	CE1n = 1	1 is triggered by w	
4 3, 2	ETI1n PRS1n1, PRS	\$1n0	When ECL the CE1n been set v External T Specifies e 0: ϕ (ir 1: TI1n Prescaler	R1n = 0, s bit. There vith ECLR I1n Input external or nternal) n (external Clock Sele	starting cou fore, the tin In = 1. internal co) ect	unting of the mer is not	he timer by started eve	CE1n = 1	1 is triggered by w	
		\$1n0	When ECL the CE1n been set v External T Specifies e 0: ϕ (ir 1: TI1n Prescaler Selects int	R1n = 0, s bit. There vith ECLR I1n Input external or nternal) n (external Clock Sele	starting cou fore, the tin In = 1. internal co) ect	unting of the mer is not	he timer by started eve	CE1n = 1 n when E	1 is triggered by w CLR1n = 0 after (
		\$1n0	When ECL the CE1n been set v External T Specifies e 0: ϕ (ir 1: TI1n Prescaler Selects int	R1n = 0, s bit. There vith ECLR I1n Input external or nternal) n (external Clock Sele ernal cour	starting cou fore, the tin In = 1. internal co) ect	unting of the mer is not	he timer by started eve	CE1n = 1 n when E	1 is triggered by w CLR1n = 0 after (
		31n0	When ECL the CE1n been set v External T Specifies of 0: ϕ (ir 1: TI1n Prescaler Selects int PRS1n1	R1n = 0, s bit. There vith ECLR I1n Input external or nternal) n (external Clock Sele ernal cour PRS1n0	starting con- fore, the tin In = 1. internal co-) ect tt clock (ϕ n	unting of the mer is not	he timer by started eve	CE1n = 1 n when E	1 is triggered by w CLR1n = 0 after (
		S1n0	When ECL the CE1n been set v External T Specifies ϕ 0: ϕ (ir 1: TI1n Prescaler Selects int PRS1n1 0	R1n = 0, s bit. There vith ECLR ⁴ [1n Input external or internal) n (external Clock Sele ernal cour PRS1n0 0	starting con- fore, the tin In = 1. internal co- internal co- co- t clock (ϕ n ϕ m ϕ m/4 ϕ m/8	unting of the mer is not	he timer by started eve	CE1n = 1 n when E	1 is triggered by w CLR1n = 0 after (
		31n0	When ECL the CE1n been set v External T Specifies ϕ 0: ϕ (ir 1: TI1n Prescaler Selects int PRS1n1 0 0	R1n = 0, s bit. There vith ECLR I1n Input external or nternal) n (external Clock Sele ernal cour PRS1n0 0 1	starting con- fore, the tin In = 1. internal co-) ect it clock (ϕ in ϕ m ϕ m/4	unting of the mer is not	he timer by started eve	CE1n = 1 n when E	1 is triggered by w CLR1n = 0 after (
3, 2			When ECL the CE1n been set v External T Specifies ϕ 0: ϕ (ir 1: TI1n Prescaler Selects int PRS1n1 0 0 1 1	R1n = 0, 3 bit. There vith ECLR ⁴ In Input external or internal) n (external Clock Sele ernal cour PRS1n0 0 1 0 1	starting con- fore, the tin In = 1. internal co- internal co- pect tt clock (ϕ n ϕ m ϕ m/4 ϕ m/8 ϕ m/32	unting of the mer is not	nediate cloc	CE1n = 1 n when E k) ck freque	1 is triggered by w ECLR1n = 0 after (ency	

(2/2)

Bit position	Bit name	Function
1	PRM1n1	Prescaler Clock Mode Selects intermediate clock (φ m) of count clock (φ is internal system clock). 0: φ/2 1: φ/4
	on Do not ch rk n = 1 to 4	ange the count clock frequency while the timer is operating.

(3) Timer control register 4 (TMC4)

TMC4 controls the operation of TM4.

This register can be read/written in 8-bit or 1-bit units.

TMC4	7 CE4	6 0	5	4	3	2 PRS40	1 PRM41	0 PRM40	Address	After rese
TWC4		0	0	0	0	PK340		FRIVI40	FFFFF342H	00H
Bit position	Bit na	ne				F	unction			
7	CE4			peration operation operation of the stops and the stops are stops as the stops as the stops are stops are stops as the stops are stops are stops as the stops are stops are stops are stops are stops as the stops are stop	of timer. at "0000H" ns count op		not operate	э.		
2	PRS4		Prescaler Selects in 0: ϕ m 1: ϕ m	ternal cou	ect nt clock (ø	m is intern	nediate clo	ock).		
1, 0	PRM41, PF		Prescaler Selects in			n) of count	clock (ø is	s internal sy	rstem clock).	
			PRM41	PRM40			<i>φ</i> m			
			0	0	φ/2					
			0	1	φ/4					
			1	0	<i>ф</i> /16					
			1	1	φ/32					
	ion Do n									

(4) Timer output control registers 11 to 14 (TOC11 to TOC14)

TOC1n control the timer outputs from the TO1n0 and TO1n1 pins (n = 1 to 4). These registers can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0		
TOC11	ENTO111	ALV111	ENTO110	ALV110	0	0	0	0	Address FFFFF244H	After reset 00H
									1	
TOC12	ENTO121	ALV121	ENTO120	ALV120	0	0	0	0	FFFFF264H	00H
TOC13	ENTO131	ALV131	ENTO130	ALV130	0	0	0	0	FFFFF284H	00H
TOC14	ENTO141	ALV141	ENTO140	ALV140	0	0	0	0	FFFFF2A4H	00H
Bit position	Bit r	name					Functio	on		

Bit position	Bit name	Function
7, 5	ENTO1n1, ENTO1n0	Enable TO pin
		 Enables corresponding timer output (TO1n0, TO1n1). 0: Timer output is disabled. The reverse-phase levels of ALV1n0 and ALV1n1 bits (inactive levels) are output from the TO1n0 and TO1n1 pins. Even if a match signal is generated from the corresponding compare register, the levels of the TO1n0 and TO1n1 pins do not change. 1: Timer output function is enabled. The timer output changes when match signal is generated from the corresponding compare register. After the timer output has been enabled before the first match signal is generated, the reverse-phase levels of the ALV1n0 and ALV1n1 bits (inactive levels) are output.
6, 4	ALV1n1, ALV1n0	Active Level TO pin Specifies active level of timer output. 0: Active-low 1: Active-high

Remarks 1. The flip-flops of the TO1n0 and TO1n1 outputs give priority to reset.

2. n = 1 to 4

Caution The TO1n0 and TO1n1 outputs are not changed by the external interrupt signals (INTP1n0 to INTP1n3). When using the TO1n0 and TO1n1 signals, specify capture/compare registers as compare registers (CMS = 1).

(5) External interrupt mode registers 1 to 4 (INTM1 to INTM4)

If CC1n0 through CC1n3 of TM1n are used as capture registers, the active edge of the external interrupt INTP1n0 to INTP1n3 signals is used as a capture trigger (n = 1 to 4). For details, refer to **CHAPTER 5 INTERRUPT/EXCEPTION PROCESSING FUNCTION**.

(6) Timer overflow status register (TOVS)

This register is assigned flags that indicate the occurrence of an overflow from TM11 to TM14 and TM4. This register can be read/written in 8-bit or 1-bit units.

By testing and resetting the TOVS register via software, the occurrence of an overflow can be polled.

	7	6	5	4	3	2	1	0		
TOVS	0	0	0	OVF4	OVF14	OVF13	OVF12	OVF11	Address FFFFF230H	After reset 00H
										
Bit position	Bit nam	ne					Function			
4, 1	OVF4, OVF11 OVF14	to		0						
			Caution	interrup the inte other, se by softw	t control rrupt op o the ove vare in the rrupt ree	ler in syn eration erflow fla ne same	chroniza and TO\ g OVF1n manner	tion with the state of the stat	n) is generate the overflow. H dependent fro 1n can be man overflow flags ponding to INT	lowever, om each iipulated
			Therefore	, even if a lag value	an overflo will not be	w occurs e updated	when the and this	e TOVS re	g access from gister is being ondition will be	read, the
Rema	1 rk n = 1	to 4								

7.4 Timer 1 Operation

7.4.1 Count operation

Timer 1 functions as a 16-bit free-running timer or event counter, as specified by timer control register 1n (TMC1n) (n = 1 to 4).

When it is used as a free-running timer, and when the count values of TM1n match the value of any of the CC1n0 to CC1n3 registers, an interrupt signal is generated, and the timer output signals (TO1n0 and TO1n1) can be set/ reset. In addition, a capture operation that holds the current count value of TM1n and loads it into one of the four registers CC1n0 to CC1n3, is performed in synchronization with the valid edge detected from the corresponding external interrupt request pin as an external trigger. The captured value is retained until the next capture trigger is generated.

Figure 7-1. Basic Operation of Timer 1

7.4.2 Selecting count clock frequency

An internal or external count clock can be output to timer 1, selectable by the ETI1n bit of the TMC1n register (n = 1 to 4).

Caution Do not change the count clock frequency while the timer is operating.

(1) Internal count clock (ETI1n bit = 0)

The internal count clock frequency is selected by the PRM1n1, PRS1n0, and PRS1n1 bits of the TMC1n register, from $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, $\phi/64$, and $\phi/128$.

PRS1n1	PRS1n0	PRM1n1	Internal Count Clock Frequency
0	0	0	φ/2
0	0	1	φ /4
0	1	0	φ /8
0	1	1	<i>ϕ</i> /16
1	0	0	<i>ϕ</i> /16
1	0	1	φ/32
1	1	0	φ /64
1	1	1	φ/128

Remark n = 1 to 4

(2) External count clock (ETI1n bit = 1)

The signal input to the TI1n pin is counted. At this time, timer 1 can operate as an event counter. The valid edge of TI1n is specified by the TES1n0 and TES1n1 bits of the TUM1n register.

TES1n1	TES1n0	Valid Edge	
0	0	0 Falling edge	
0	1	Rising edge	
1	0	RFU (reserved)	
1	1	Both rising and falling edges	

Remark n = 1 to 4

7.4.3 Overflow

If the TM1n register overflows as a result of counting the count clock frequency up to FFFFH, the OVF1n bit of the TOVS register is set (to 1), and an overflow interrupt (INTOV1n) is generated.

After the overflow has occurred, the timer can be stopped by setting the OSTn bit of the TUM1n register to 1. If the timer is stopped due to overflow, the counting operation is not resumed until the CE1n bit is set to 1 by software. The operation is not affected even if CE1n bit is set to 1 during a count operation.

7.4.4 Clearing/starting timer by TCLR signal input

Timer 1 usually starts a count operation when the CE1n bit of the TMC1n register is set to 1. It is also possible to clear TM1n and start a count operation by using the external input TCLR1n (n = 1 to 4).

When the valid edge is input to the TCLR1n signal after ECLR1n bit = 1, OSTn bit = 0 is set, and the CE1n bit is set to 1, a count operation is started. If the valid edge is input to TCLR1n signal during operation, the values of TM1n are cleared and TM1n resumes the count operation (refer to **Figure 7-3**).

When the valid edge is input to the TCLR1n signal after setting both the ECLR1n and OSTn bits to 1, and the CE1n bit is set from 0 to 1, a count operation is started. When TM1n overflows, the count operation is stopped once and is not resumed until the valid edge is input to the TCLR1n signal. If the valid edge of the TCLR1n signal is detected during a count operation, TM1n is cleared and continues counting (refer to **Figure 7-4**). The count operation is not resumed even if CE1n bit is set to 1 after an overflow.

Figure 7-3. Clearing/Starting Timer by TCLR1n Signal Input (When ECLR1n = 1, OSTn = 0)

7.4.5 Capture operation

A capture operation that captures and holds the count value of TM1n and loads it to a capture register asynchronously to an external trigger can be performed (n = 1 to 4). The valid edge from the external interrupt request input pins INTP1n0 to INTP1n3 is used as the capture trigger. In synchronization with this capture trigger signal, the count value of TM1n during counting is captured and loaded to the capture register. The value of the capture trigger is generated.

Interrupt requests (INTCC1n0 to INTCC1n3) are generated from the INTP1n0 to INTP1n3 input signals.

CC1n2

CC1n3

1-2.						
	Capture Register	Capture Trigger Signal				
	CC1n0	INTP1n0				
	CC1n1	INTP1n1				

Table 7-2. Capture Trigger Signal to 16-Bit Capture Register (TM1n)

Remarks 1. CC1n0 to CC1n3 are capture/compare registers. Whether these registers are used as capture or compare registers is specified by timer unit mode register 1n (TUM1n).

INTP1n2

INTP1n3

2. n = 1 to 4

The valid edge of the capture trigger is set by the external interrupt mode register (INTMn).

When both the rising and falling edges are specified as the capture trigger, the width of an externally input pulse can be measured. If either the rising or falling edge is specified as the capture trigger, the frequency of the input pulse can be measured.

Figure 7-6. Example of TM11 Capture Operation (When Both Edges Are Specified)

7.4.6 Compare operation

A comparison between the value in a compare register the count value of TM1n can be performed (n = 1 to 4). When the count value of TM1n matches the value of the compare register programmed in advance, a match signal is sent to the output controller (refer to **Figure 7-7**). The levels of the timer output pins (TO1n0, TO1n1) can be changed by the match signal, and an interrupt request signal can be generated at the same time.

Compare Register	Interrupt Request Signal
CC1n0	INTCC1n0
CC1n1	INTCC1n1
CC1n2	INTCC1n2
CC1n3	INTCC1n3

Table 7-3. Interrupt Request Signal from 16-Bit Compare Register (TM1n)

Remarks 1. CC1n0 to CC1n3 are capture/compare registers. Whether these registers are used as capture or compare registers is specified by timer unit mode register 1n (TUM1n).

2. n = 1 to 4

Figure 7-7. Example of Compare Operation

Timer 1 has eight timer output pins (TO1n0, TO1n1).

The count value of TM1n is compared with the value of CC1n2. If the two values match, the output level of the TO1n1 pin is set. The count value of TM1n is also compared with the value of CC1n3. If the two values match, the output level of the TO1n1 pin is reset.

Similarly, the count value of TM1n is compared with the value of CC1n0. If the two values match, the output level of the TO1n0 pin is set. The count value of TM1n is also compared with the value of CC1n1. If the two values match, the output level of TO1n1 pin is reset.

The output levels of the TO1n0 and TO1n1 pins can be specified by the TOC1n register.

Figure 7-8. Example of TM11 Compare Operation (Set/Reset Output Mode)

7.5 Timer 4 Operation

7.5.1 Count operation

Timer 4 functions as a 16-bit interval timer. The operation is specified by timer control register 4 (TMC4).

The operation of timer 4 counts the internal count clocks ($\phi/2$ to $\phi/1024$) specified by the PRS40, PRM41, and PRM40 bits of the TMC4 register.

If the count value of TM4 matches the value of CM4, the value TM4 is cleared while a match interrupt (INTCM4) is simultaneously generated.

7.5.2 Selecting count clock frequency

An internal count clock frequency is selected by the PRS40, PRM40, and PRM41 bits of the TMC4 register, from $\phi/2$, $\phi/4$, $\phi/16$, $\phi/32$, $\phi/64$, $\phi/128$, $\phi/512$, and $\phi/1024$.

PRS40	PRM41	PRM40	Internal Count Clock Frequency
0	0	0	φ/2
0	0	1	φ/4
0	1	0	φ/16
0	1	1	φ/32
1	0	0	φ/64
1	0	1	φ/128
1	1	0	φ/512
1	1	1	φ/1024

Caution Do not change the internal count clock frequency while the timer is operating.

7.5.3 Overflow

If TM4 overflows as a result of counting the internal count clock, the OVF4 bit of the TOVS register is set (1).

7.5.4 Compare operation

A comparison can be performed between the count value of TM4 and the value of the compare register (CM4). If the count value of TM4 matches the value of the compare register, a match interrupt (INTCM4) is generated. As a result, TM4 is cleared to 0 at the next count timing (refer to **Figure 7-10 (a)**). This function allows timer 4 to be used as an interval timer.

CM4 can be also set to 0. In this case, a match is detected when TM4 overflows and is cleared to 0, and INTCM4 is generated. The value of TM4 is cleared to 0 at the next count timing, but INTCM4 is not generated when a match occurs at this time (refer to **Figure 7-10 (b)**).

Figure 7-10. Examples of TM4 Compare Operation (2/2)

7.6 Application Examples

(1) Operation as interval timer (timer 4)

Timer 4 is used as an interval timer that repeatedly generates an interrupt request at time intervals specified by the count value preset to compare register CM4.

Figure 7-11. Example of Timing of Interval Timer Operation

Figure 7-12. Example of Setting Procedure of Interval Timer Operation

(2) Pulse width measurement (timer 1)

Timer 1 is used to measure the pulse width.

In this example, the width of the high or low level of an external pulse input to the INTP112 pins is measured. The value of timer 1 (TM11) is captured to a capture/compare register (CC112) in synchronization with the valid edge of the INTP112 pin (both the rising and falling edges) and is held, as shown in Figure 7-13. To calculate the pulse width, the difference between the count value of TM11 captured to the CC112 register on detection of the nth valid edge (Dn), and the count value on detection of the (n - 1)th valid edge (Dn – 1) is calculated. This difference is multiplied by the count clock.

Figure 7-14. Example of Setting Procedure for Pulse Width Measurement

Figure 7-15. Example of Interrupt Request Servicing Routine Calculating Pulse Width

(3) PWM output (timer 1)

Any square wave can be output to the timer output pins (TO1n0, TO1n1) by combining timer 1 and the timer output function and can be used as a PWM output (n = 1 to 4).

Eight capture/compare registers, CC1n0 and CC1n1, are used in this example of PWM output.

A PWM signal with an accuracy of 16 bits can be output from the TO1n0 pin. Figure 7-16 shows the timing. When timer 1 is used as a 16-bit timer, the rise timing of the PWM output is determined by the value set to capture/compare register CC1n0, and the fall timing is determined by the value set to capture/compare register CC1n1 as shown in Figure 7-16.

(4) Frequency measurement (timer 1)

Timer 1 can be used to measure the cycle or frequency of an external pulse input to the INTP1n0 to INTP1n3 pins (n = 1 to 4).

In this example, the frequency of the external pulse input to the INTP110 pin is measured with an accuracy of 16 bits, by combining the use of timer 1 and the capture/compare register CC110.

The valid edge of the INTP110 input signal is specified by the INTM1 register to be the rising edge.

To calculate the frequency, the difference between the count value of TM11 captured to the CC110 register at the nth rising edge (Dn), and the count value captured at the (n - 1)th rising edge (Dn - 1), is calculated, and the value multiplied by the count clock frequency.

Figure 7-19. Example of Frequency Measurement Timing

Figure 7-20. Example of Setup Procedure for Frequency Measurement

Figure 7-21. Example of Interrupt Request Servicing Routine Calculating Cycle

7.7 Cautions

A match is detected by the compare register immediately after the timer value matches the compare register value, and does not take place in the following cases.

(1) When compare register is rewritten (TM11 to TM14, TM4)

(2) When timer is cleared by external input (TM11 to TM14)

(3) When timer is cleared (TM4)

Remark When timer 1 is used as a free-running timer, the timer value is cleared to 0 when the timer overflows.

CHAPTER 8 SERIAL INTERFACE FUNCTION

8.1 Features

The V853 is provided with two types of serial interfaces which operate as 6-channel transmission/reception channels. Four channels can be used simultaneously.

There are the following two types of interfaces.

- (1) Asynchronous serial interface (UART0, UART1): 2 channels
- (2) Clocked serial interface (CSI0 to CSI3): 4 channels

UART0 and UART1 transmit/receive 1-byte serial data following a start bit and can perform full-duplex communication. CSI0 to CSI3 use three kinds of signal lines to transfer data (3-wire serial I/O): serial clock (SCK0 to SCK3), serial input (SI0 to SI3), and serial output (SO0 to SO3) lines.

Caution UART0 and CSI0, and UART1 and CSI1 share the same pins respectively. Either one of these is selected according to ASIM00 and ASIM10 registers.

8.2 Asynchronous Serial Interface 0 and 1 (UART0 and UART1)

8.2.1 Features

○ Transfer rate: 150 bps to 76800 bps^{Note} (baud rate generator and ϕ = 33 MHz operation) 110 bps to 307200 bps^{Note} (baud rate generator and ϕ = 20 MHz operation)

Max. 1031 Kbps^{Note} ($\phi/2$ and ϕ = 33 MHz operation)

- Full-duplex communication: Internal receive buffer (RXBn)
- Two-pin configuration: TXDn: Transmit data output pin

RXDn: Receive data input pin

 \bigcirc Receive error detection function

- Parity error
- Framing error
- Overrun error
- \bigcirc Three interrupt sources
 - Receive error interrupt (INTSERn)
 - Reception completion interrupt (INTSRn)
 - Transmission completion interrupt (INTSTn)
- Character length of transmit/receive data is specified by ASIMn0 and ASIMn1 registers.
- \bigcirc Character length: 7, 8 bits
 - 9 bits (when extended)
- \bigcirc Parity function: Odd, even, 0, none
- \bigcirc Transmit stop bit: 1, 2 bits
- \bigcirc Internal baud rate generator
- Note For the baud rate error, refer to Table 8-2 Setting Values of Baud Rate Generators 0 to 2.

Remark n = 0, 1

 ϕ : Internal system clock

8.2.2 Configuration of asynchronous serial interface

The asynchronous serial interface is controlled by the asynchronous serial interface mode register (ASIMn0, ASIMn1) and the asynchronous serial interface status register (ASISn) (n = 0, 1). The receive data is stored in the receive buffer (RXBn), and the transmit data is written to the transmit shift register (TXSn).

Figure 8-1 shows the configuration of the asynchronous serial interface.

(1) Asynchronous serial interface mode registers (ASIM00, ASIM01, ASIM10, ASIM11)

ASIMn0 and ASIMn1 are 8-bit registers that specify the operation of the asynchronous serial interface.

(2) Asynchronous serial interface status registers (ASIS0, ASIS1)

ASISn are registers containing flags that indicate receive errors, if any, and a transmit status flag. Each receive error flag is set to 1 when a receive error occurs, and is reset to 0 when data is read from the receive buffer (RXBn), or when new data is received (if the next data contains an error, the corresponding error flag is set (1)).

The transmit status flag is set to 1 when transmission is started, and reset to 0 when transmission ends.

(3) Reception control parity check

The reception operation is controlled according to the contents programmed in the ASIMn0 and ASIMn1 registers. During the receive operation, errors such as parity error are also checked. If an error is found, the appropriate value is set to the ASISn registers.

(4) Receive shift register

This shift register converts the serial data received on the RXDn pin into parallel data. When it receives 1 byte of data, it transfers the receive data to the receive buffer. This register cannot be accessed directly.

(5) Receive buffers (RXB0, RXB0L, RXB1, RXB1L)

RXBn are 9-bit buffer registers that hold receive data. If data of 7 or 8 bits/character is received, 0 is stored to the most significant bit position of these registers.

If these registers are accessed in 16-bit units, RXB0 and RXB1 are specified. To access in lower 8-bit units, RXB0L and RXB1L are specified.

While reception is enabled, the receive data is transferred from the receive shift register to the receive buffer in synchronization with shift-in processing of 1 frame.

When the data is transferred to the receive buffer, a reception completion interrupt request (INTSRn) occurs.

(6) Transmit shift registers (TXS0, TXS0L, TXS1, TXS1L)

TXSn are 9-bit shift registers used for transmit operation. When data is written to these registers, the transmission operation is started.

A transmission complete interrupt request (INTSTn) is generated after each complete data frame is transmitted.

When these registers are accessed in 16-bit units, TXS0 and TXS1 are specified. To access in lower 8-bit units, TXS0L and TXS1L are specified.

(7) Transmission parity control

A start bit, parity bit, and stop bit are appended to the data written to the TXSn registers, according to the contents programmed in the ASIMn0 and ASIMn1 registers, to control the transmission operation.

(8) Selector

Selects the source of the serial clock.

8.2.3 Control registers

(1) Asynchronous serial interface mode registers 00, 01, 10, and 11 (ASIM00, ASIM01, ASIM10, ASIM11) These registers specify the transfer mode of UART0 and UART1. They can be read/written in 8-bit or 1-bit units.

Г	7	6	5	4	3	2	1	0	Address	After rese
ASIM00	TXE0	RXE0	PS01	PS00	CL0	SL0	0	SCLS0	FFFFF0C0H	00H
г					1					
ASIM10	TXE1	RXE1	PS11	PS10	CL1	SL1	0	SCLS1	FFFFF0D0H	00H
_										
Bit positio	n Bit ı	name					Function			
7, 6	TXE	n,	Transmit/F	Receive Er	nable					
	RXE	n	Enable/dis	able trans	mission/re	ception.				
			TXEn	RXEn			Ope	eration		
			0	0	Disables	transmiss	sion/rece	ption (select	ion of CSIn)	
			0	1	Enables	reception				
			1	0	Enables	transmiss	ion			
			1	1	Enables	transmiss	ion/recep	otion		
			When rec	eption is	disabled.	the rece	ive shift	reaister d	oes not detect th	ne start bit.
								-	is any transfer to	
			•			-			eive buffer are reta	
			•	register and trans						
					•				the receive buffer	•
			,	0	•				dance, and when t	
					eing perfo			0 1		

(2/3)

Bit position	Bit name				Function					
5, 4	PSn1, PSn0		ty Select							
		Spe	cifies par	ity bit.						
			PSn1	PSn0	Operation					
			0	0	No parity. Extended bit operation					
			0	1	0 parity Transmission side \rightarrow Transmits with parity bit 0 Reception side \rightarrow Does not generate parity error on reception					
			1	0	Odd parity					
			1	1	Even parity					
		• 0	dd parity	/	nd parity bit are counted. If it is odd, parity error occurs. arity, number of bits included in transmit data and parity bit that are "					
		 that are "1" is even, the parity bit is cleared to 0. In this way, number of bits transmit data and parity bit is controlled to be even. During reception, number of "1" in receive data and parity bit are counted. If it is odd, parity error occurs. Odd parity 								
		D p	me odd. rity error occurs if the number of bits that are "1" in the receive data an up to become even.							
		F	 0 parity Parity bit is cleared to 0 during transmission, regardless of transmit data. During reception, the parity bit is not checked and a parity error does not occur. 							
		• N	• No parity							
						R	eception used, a	is perform parity erro	nded to the transmit data. ned on the assumption that there is no parity bit. Because no parity b or does not occur. on can be specified by the EBSn bit of the ASIMn1 register.	
3	CLn		racter Le	•						
		0	cifies cha : 7 bits : 8 bits	racter len	gth of one frame.					
2	SLn	Spe	o Bit Leng cifies the : 1 bit	gth stop bit le	ength.					

(3/3)

Bit position	Bit name				F	unction						
0	SCLSn	Serial Clock So Specifies seria										
		0: Specified by BRGCn and BPRMn 1: φ/2										
		 When SCLSn = 1 φ/2 (system clock) is selected as the serial clock source. In asynchronous mode, the baud rate is expressed as follows because a sampling rate of ×16 is used. Baud rate = φ/2/16 bps 										
		The value of follows.	10		typical cl	ock is use	ed based o	n the abo	ve expre	ssion is as		
				φ	33 MHz	25 MHz	20 MHz	16 MHz	12.5 MHz	10 MHz	8 MHz	5 MHz
		Baud rate	1031 K	781 K	625 K	500 K	390 K	312 K	250 K	156 K		
		 When SCLSn = 0 The baud rate generator output is selected as the serial clock source. For details of the baud rate generator, refer to 8.4 Baud Rate Generators 0 to 2 (BRG0 to BRG2). 										
		n of UARTn is receiving data.		uarantee	ed if the	ese regi	sters are	change	ed while	e UARTn		
Remark n	,											
4	: Internal sy	stom clock										

1	7	6	5	4	3	2	1	0	Address	After reset			
ASIM01	0	0 0 0 0		0	0	0	0	EBS0	FFFFF0C2H	00H 00H			
									L				
ASIM11	0	0	0	0	0	0	0	EBS1	FFFFF0D2H	00H			
•							l						
Bit positio	n Bit	name	Function										
0	EBS	n	Extended Bit Select										
			Specifies extended bit operation of transmit/receive data when no parity is specified (PSn1, PSn0 = 00).										
			PSn0 = 00	·)·									
				,	nded bit op	peration							
			0: Disa 1: Ena	bles exter	Ided bit op	eration							
			0: Disa 1: Ena When exte	bles exter bles exter nded bit o	ided bit op peration is	eration enabled,		••	d as the most sig	nificant bit to th			
			0: Disa 1: Ena When exte 8-bit trans	bles exter bles exter nded bit o mit/receive	ided bit op peration is e data, and	eration enabled, therefore	e 9-bit dat	a is comm	unicated.				
			0: Disa 1: Ena When exte 8-bit trans Extended	bles exter bles exter nded bit o mit/receive	ided bit op peration is e data, and on is valid	eration enabled, therefore only when	e 9-bit dat no parity	a is commi is specified	0	register. If zer			

(2) Asynchronous serial interface status registers 0 and 1 (ASIS0, ASIS1)

These registers consist of a 3-bit error flag that indicates error status when UARTn receive is completed and a transmit status flag.

The error flags always indicate the status of an error that has occurred most recently. If two or more errors occur before the current received data, only the status of the error that has occurred last is retained.

If a receive error occurs, read the receive buffer (RXBn or RXBnL) after reading the ASISn registers, and then clear the error flag. If RXBn or RXBnL are not read, an overrun error will occur at the next data reception and the reception error state will continue. These registers are read-only in 8-bit or 1-bit units.

	7	,	6	5	4	3	2	1	0		
ASIS0	so	то	0	0	0	0	PE0	FE0	OVE0	Address FFFFF0C4H	After reset 00H
				1			1				
ASIS1	so	T1	0	0	0	0	PE1	FE1	OVE1	FFFFF0D4H	00H
	;			•							
Bit posi	tion	Bit	t name					Function	on		
7		SO	Tn	Status fla Set (⁻ Clear	1): Begin (0): End rial data tr	licates tran nning of tr of transmi	ssion of a	n of a data data fram	a frame (w e (occurre	riting to TXSn or T nce of INTSTn inte ransmit shift registe	rrupt)
2		PE	n	Set (*	ag that ind 1): Tran	smit parity	and recei		do not mate	ch eive buffer.	

Clear (0): Processing to read out the data from the receive buffer.

Clear (0): Processing to read out the receive data from the receive buffer.

Because the contents of receive shift register are transferred to a receive buffer each time one

receive data from the receive buffer.

Set when UARTn has completed the next receive processing before obtaining the

frame of data has been received, if an overrun error occurs, the next receive data is written over
the contents of the receive buffer, and the previous receive data is discarded.

Remark n = 0, 1

1

0

FEn

OVEn

Framing Error

Overrun Error

Set (1):

Status flag that indicates framing error. Set (1): Stop bit is not detected

Status flag that indicates overrun error.

(3) Receive buffers 0, 0L, 1, and 1L (RXB0, RXB0L, RXB1, RXB1L)

RXBn are 9-bit buffer registers that hold the receive data. When 7- or 8-bit character data is received, the higher bit of these registers are 0.

When these registers are accessed in 16-bit units, RXB0 and RXB1 are specified. When accessed in lower 8-bit units, RXB0L and RXB1L are specified.

When reception is enabled, the receive data is transferred from the receive shift register to the receive buffer when one complete frame of data has been received.

When the receive data is transferred to the receive buffer, a reception completion interrupt request (INTSRn) occurs.

When reception is disabled, the data is not shifted into the receive shift register and the reception completion interrupt is not generated. The previous contents of the receive buffer are retained.

RXB0 and RXB1 are read-only in 16-bit units, and RXB0L and RXB1L are read-only in 8-bit or 1-bit units.

(4) Transmit shift registers 0, 0L, 1, and 1L (TXS0, TXS0L, TXS1, TXS1L)

TXSn are 9-bit shift registers for data transmission. The transmit operation is started when data is written to these registers during transmission enable status.

If data is written to the transmit shift register in the transmission disabled status, the values written are ignored. Transmission complete interrupt request (INTSTn) is generated after each complete data frame including TXSn is transmitted.

When these registers are accessed in 16-bit units, TXS0 and TXS1 are specified. When accessed in lower 8-bit units, TXS0L and TXS1L are specified.

TXS0 and TXS1 are write-only in 16-bit units, and TXS0L and TXS1L are write-only in 8-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
TXS0	0	0	0	0	0	0	0	TXEDO	TXS07	TXS06	TXS05	TXS04	TXS03	TXS02	TXS01	TXS00	Address FFFFF0CCH	After reset Undefined
							TXS	0L	7 TXS07	6 TXS06	5 TXS05	4 TXS04	3 TXS03	2 TXS02	1 TXS01	O TXS00	Address	After reset
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF0CEH	Undefined
TXS1	0	0	0	0	0	0	0		TXS17	-			-		1 TXS11		Address FFFFF0DCH	After reset Undefined
							TXS	1L	7 TXS17	6 TXS16	5 TXS15	4 TXS14	3 TXS13	2 TXS12	1 TXS11	O TXS10	Address FFFFF0DEH	After reset Undefined
Bit pos	ition	Bi	it nar	ne									F	uncti	on			
8		ТХ	EDn						d Dat ansm		n of 9	-bit c	hara	cter c	lata.			
7 to	0		(Sn7 (Sn0	to			t Shif ransn		ata.									
Cautio																	an interrupt rec one frame of da	

8.2.4 Interrupt request

UARTn generates the following three interrupt requests (n = 0, 1).

- Receive error interrupt (INTSERn)
- Reception completion interrupt (INTSRn)
- Transmission completion interrupt (INTSTn)

Of these three, the receive error interrupt has the highest default priority, followed by the reception completion interrupt and transmission completion interrupt.

Interrupt	Priority
Receive error	1
Reception completion	2
Transmission completion	3

Table 8-1. Default Priority of Interrupts

(1) Receive error interrupt (INTSERn)

A receive error interrupt occurs as a result of ORing the three types of receive errors described in the description of the ASISn registers when reception is enabled.

This interrupt does not occur when reception is disabled.

(2) Reception completion interrupt (INTSRn)

The reception completion interrupt occurs if data is received in the receive shift register and then transferred to the receive buffer when reception is enabled.

Reception completion interrupt request also occurs when a receive error occurs, but the receive error interrupt has higher priority.

The reception completion interrupt does not occur when reception is disabled.

(3) Transmission completion interrupt (INTSTn)

Because UARTn does not have a transmit buffer, a transmission completion interrupt occurs when one frame of transmit data containing a 7-/8-/9-bit character is shifted out from the transmit shift register. The transmission completion interrupt is output when the last bit of data has been transmitted.

8.2.5 Operation

(1) Data format

Full-duplex serial data is transmitted/received.

One data frame of the transmit/receive data consists of a start bit, character bits, parity bit, and stop bit, as shown in Figure 8-2.

The length of the character bit, parity, and the length of the stop bit in one data frame are specified by the asynchronous serial interface mode registers (ASIMn0, ASIMn1) (n = 0, 1).

Figure 8-2. Format of Transmit/Receive Data of Asynchronous Serial Interface

(2) Transmission

Transmission is started when data is written to the transmit shift registers (TXSn or TXSnL). The next data is written to the TXSn or TXSnL registers by the service routine of the transmission completion interrupt servicing routine (INTSTn).

(a) Transmission enabled status

Set using the TXEn bit of the ASIMn0 register.

TXEn = 1: Transmission enabled status TXEn = 0: Transmission disabled status

However, to set the transmission enabled status, set both the CTXEn and CRXEn bits of the clocked serial interface mode register (CSIMn) to 0.

Because UARTn does not have a CTS (transmission enabled signal) input pin, use a general input port when checking whether the transmission destination is in the reception enabled status.

(b) Starting transmission

In the transmission enabled status, transmission starts when data is written to the transmission shift register (TXSn or TXSnL). The transmit data is transferred LSB first starting from the start bit. The start bit, parity/extended bit, and stop bit are automatically appended.

Data cannot be written to the transmission shift register in the transmission disabled status, and values written in this state are ignored.

(c) Transmission interrupt request

When one frame of data or character has been completely transferred, a transmission completion interrupt request (INTSTn) occurs.

Unless the data to be transmitted next is written to the TXSn or TXSnL registers, the transmission is aborted.

The communication rate drops unless the next transmit data is written to the TXSn or TXSnL registers immediately after transmission has been completed.

- Cautions 1. The transmission completion interrupt request (INTSTn) is generated after each complete data frame is transmitted out of the transmit shift register (TXSn or TXSnL). However, if TXSn or TXSnL becomes empty by RESET input, INTSTn is not generated.
 - 2. During the transmit operation, writing data into the TXSn or TXSnL register is ignored (the data is discarded) until INTSTn is generated.

Figure 8-3. Asynchronous Serial Interface Transmission Completion Interrupt Timing

(3) Reception

When reception is enabled, sampling of the RXDn pin is started, and reception of data begins when the start bit is detected. Each time one frame of data or character has been received, the reception completion interrupt (INTSRn) occurs. Usually, the receive data is transferred from the receive buffer (RXBn or RXBnL) to memory by this interrupt servicing.

(a) Reception enabled status

Reception is enabled when the RXEn bits of the ASIMn0 registers are set to 1.

RXEn = 1: Reception is enabled RXEn = 0: Reception is disabled

However, to set the reception enabled status, set both the CTXEn and CRXEn bits of the clocked serial interface mode register (CSIMn) to 0.

When reception is disabled, the reception hardware stands by in the initial status.

At this time, the reception completion interrupt/receive error interrupt does not occur, and the contents of the receive buffer are retained.

(b) Starting reception

Reception is started when the start bit is detected.

The RXDn pin is sampled with the serial clock from baud rate generator n (BRGn). The RXDn pin is sampled again eight clocks after the low level of the RXDn pin has been detected. If the RXDn pin is low at this time, it is recognized as the start bit, and reception is started. After that, the RXDn pin is sampled every 16 clock ticks.

If the RXDn pin is high eight clocks after the low level of the RXDn pin has been detected, this low level is not recognized as the start bit. The serial clock counter is reinitialized, and UARTn waits for the input of the next low level or valid start bit.

(c) Reception completion interrupt request

When one frame of data has been received with RXEn = 1, the receive data in the shift register is transferred to RXBn, and a reception completion interrupt request (INTSRn) is generated.

If an error occurs, the receive data that contains an error is transferred to the receive buffer (RXBn or RXBnL), and the transmission completion interrupt (INTSRn) and receive error interrupt (INTSERn) occur simultaneously.

If the RXEn bit is reset (0) during receive operation, the receive operation stops immediately. In this case, the contents of the receive buffer (RXBn or RXBnL) and the asynchronous serial interface status register (ASISn) do not change, and neither reception completion interrupt (INTSRn) nor reception error interrupt (INTSERn) is generated.

When RXEn = 0 (reception disabled), reception completion interrupt does not occur.

Figure 8-4. Asynchronous Serial Interface Reception Completion Interrupt Timing

(d) Reception error flag

Three error flags, parity error, framing error, and overrun error flags, are related to the reception operation. The receive error interrupt request occurs as a result of ORing these three error flags.

By reading the contents of the ASISn register, the error which caused the receive error interrupt (INTSERn) can be identified.

The contents of the ASISn register are reset to 0 when the receive buffer (RXBn or RXBnL) is read or the next data frame is received (if the next data contains an error, the corresponding error flag is set).

Receive	Error Cause
Parity error	Parity specified during transmission does not match parity of receive data
Framing error	Stop bit is not detected
Overrun error	Next data is completely received before data is read from receive buffer

Figure 8-5. Receive Error Timing

8.3 Clocked Serial Interface 0 to 3 (CSI0 to CSI3)

8.3.1 Features

×

- Number of channels: 4 channels (CSIn)
- \bigcirc High transfer speed: 8.25 Mbps max. (@ ϕ = 33 MHz operation: CSI0 to CSI2)

2 Mbps max. (@ ϕ = 33 MHz operation: CSI3)

- \bigcirc Half-duplex communication
- \bigcirc Character length: 8 bits
- \bigcirc MSB first/LSB first selectable
- \bigcirc External serial clock input/internal serial clock output selectable
- 3 wires: SOn: Serial data output
 - SIn: Serial data input
 - SCKn: Serial clock I/O
- Interrupt sources: 1
 - Transmission/reception completion interrupt (INTCSIn)

Remark n = 0 to 3 ϕ : Internal system clock

8.3.2 Configuration

CSIn is controlled by the clocked serial interface mode register (CSIMn). The transmit/receive data is read/written from/to the serial I/O shift register (SIOn).

(1) Clocked serial interface mode register (CSIMn)

CSIMn is an 8-bit register that specifies the operation of CSIn.

(2) Serial I/O shift register (SIO0 to SIO3)

SIOn is an 8-bit register that converts serial data into parallel data, and vice versa. SIOn is used for both transmission and reception.

Data is shifted in (received) or shifted out (transmitted) from the MSB or LSB side.

The actual transmitting and receiving of data is performed by writing data to and reading data from the SIOn register.

(3) Selector

Selects the serial clock to be used.

(4) Serial clock controller

Controls supply of the serial clock to the shift register. When the internal clock is used, it also controls the clock output to the \overline{SCKn} pin.

(5) Serial clock counter

Counts the serial clocks being output and the serial clocks received during transmission/reception to check whether 8-bit data has been transmitted or received.

(6) Interrupt controller

Controls whether an interrupt request is generated when the serial clock counter has counted eight serial clocks.

Figure 8-6. Block Diagram of Clocked Serial Interface

8.3.3 Control registers

(1) Clocked serial interface mode registers 0 to 3 (CSIM0 to CSIM3)

These registers specify the basic operation mode of CSI0 to CSI3.

They can be read/written in 8-bit or 1-bit units (note, however, that bit 5 can only be read).

	7	6	5	4	3	2	1	0		
CSIM0	CTXE0	CRXE	0 CSOT0	0	0	MOD0	CLS01	CLS00	Address FFFFF088H	After rese 00H
CSIM1	CTXE1	CRXE	1 CSOT1	0	0	MOD1	CLS11	CLS10	FFFFF098H	00H
CSIM2	CTXE2	CRXE	2 CSOT2	0	0	MOD2	CLS21	CLS20	FFFF0A8H	00H
CSIM3	CTXE3	CRXE	3 CSOT3	0	0	MOD3	CLS31	CLS30	FFFF0B8H	00H
Bit position	Bit na	ame					Function			
7	CTXEn		CSI Transn	t Enchl			Tunction			
			0: Disab 1: Enabl When CTX impedance	es transr En = 0, tl	nission	buffers of b	ooth the S	On and SIn	pins go into the h	igh-
6	CRXEn		"0" is input	enables les recep es recep ck is rece to shift re set to th	reception tion tion ived when egister. e receptic	n transmissi on disabled	status (C		n = 1) and receptio during a receive c	
5	CSOTn		Clear (0)	at transfe Transfer Transfer Transfer	er operation start timi end timir neck whet	ng (writing ng (INTCSI her writing	to SIOn re n occurs) to serial I/	O shift regi	ster n (SIOn) is pe TXEn = 1).	ermitted or
2	MODn Mode Specifies operation mode. 0: MSB first 1: LSB first									

(2/2)

Bit position	Bit name				Function					
1, 0	CLSn1, CLSn0		Clock Source Specifies serial clock.							
		CLSn1 CLSn0 Specifies Serial Clock								
		0	0	External clock	-	Input				
		0	1	Internal clock	Specified by BPRMn registerNote 1	Output				
		1	0		φ/4 ^{Note 2}	Output				
		1	1		φ/2 ^{Note 2}	Output				
			(BRG0 to	BRG2).	ter, refer to section 8.4 Baud Rate G signals (ϕ : Internal system clock).	Generators 0				

(2) Serial I/O shift registers 0 to 3 (SIO0 to SIO3)

Г

These registers convert 8-bit serial data into parallel data, and vice versa. The actual transmitting and receiving of data is performed by writing data to and reading data from the SIOn register.

A shift operation is performed when CTXEn = "1" or CRXEn = "1".

These registers can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0		
SIO0	SIO07	SIO06	SIO05	SIO04	SIO03	SIO02	SIO01	SIO00	Address FFFFF08AH	After rese Undefined
SIO1	SIO17	SIO16	SIO15	SIO14	SIO13	SIO12	SIO11	SIO10	FFFFF09AH	Undefined
SIO2	SIO27	SIO26	SIO25	SIO24	SIO23	SIO22	SIO21	SIO20	FFFF0AAH	Undefined
SIO3	SIO37	SIO36	SIO35	SIO34	SIO33	SIO32	SIO31	SIO30	FFFF0BAH	Undefined
Bit p	osition	Bit name					Functio	on		
7	to 0	SIOn7 to	Serial I		(· · · · · · · · · · · · · · · · · · ·	for a start of the start		
		SIOn0 (n = 0 to 3)		snifted in	(received)	or out (tra	ansmitted)	from the I	MSB or LSB side.	

8.3.4 Basic operation

(1) Transfer format

CSIn transmits/receives data using three lines: one clock line and two data lines (n = 0 to 3). Serial transfer is started by executing an instruction that writes transfer data to the SIOn register. During transmission, the data is output from the SOn pin in synchronization with the falling edge of \overline{SCKn} . During reception, the data input to the SIn pin is latched in synchronization with the rising of \overline{SCKn} . \overline{SCKn} stops when the serial clock counter overflows (at the rising edge of the 8th count), and \overline{SCKn} remains high until the next data transmission or reception is started. At the same time, a transmission/reception completion interrupt (INTCSIn) is generated.

Caution If the CTXEn bit is changed from 0 to 1 after the transmit data is sent to the SIOnL register, serial transfer will not begin.

(2) Enabling transmission/reception

CSIn has only one 8-bit shift register and does not have a buffer. Transmission and reception are therefore performed simultaneously.

(a) Transmission/reception enabling condition

The CTXEn and CRXEn bits of the CSIMn register specify the conditions of CSIn transmission/reception enable.

The following conditions must be set beforehand.

ASIM00 register TXE0 bit = RXE0 bit = 0 in CSI0

ASIM10 register TXE1 bit = RXE1 bit = 0 in CSI1

CTXEn	CRXEn	Transmission/Reception Operation
0	0	Transmission/reception disable
0	1	Reception enable
1	0	Transmission enable
1	1	Transmission/reception enable

Remark n = 0 to 3

Remarks 1. When CTXEn bit = 0, CSIn is as follows.

CSI0, CSI1: The serial output becomes high impedance or UARTn output.

CSI2, CSI3: The serial output becomes high impedance.

When CTXEn = 1, the data of the shift register is output.

- **2.** When CRXEn bit = 0, the shift register input is "0".
- When CRXEn bit = 1, the serial input data is input to the shift register.
- To receive the transmit data and to check whether bus conflict occurs, set the CTXEn and CRXEn bits to 1.

(b) Starting transmission/reception

Transmission/reception is started by reading/writing the SIOn register. Transmission/reception is controlled by setting the transmission enable bit (CTXEn) and reception enable bit (CRXEn) as follows.

CTXEn	CRXEn	Start Condition
0	0	Does not start
0	1	Reads SIOn register
1	0	Writes SIOn register
1	1	Writes SIOn register
0	$0 \rightarrow 1$	Rewrites CRXEn bit

In the above table, note that these bits should be set in advance of data transfer. For example, if the CTXEn bit is not changed from 0 to 1 before reading data from or writing data to the SIOn register, transfer will not begin. The bottom of the table means that, if the CRXEn bit is changed from 0 to 1 when the CTXEn bit is 0, the serial clock will be generated to initiate receive operation.

(c) Initialization of serial clock controller and serial clock counter

The serial clock controller and serial clock counter are initialized by setting the CTXEn and CRXEn bits as follows.

CTXEn	CRXEn	Initialization Condition
1	0	Writes SIOn register
1	1	Writes SIOn register
0	$0 \rightarrow 1$	Rewrites CRXEn bit

Remark n = 0 to 3

8.3.5 Transmission in CSI0 to CSI3

Transmission is started when data is written to the SIOn register after transmission has been enabled by clocked serial interface mode register n (CSIMn) (n = 0 to 3).

(1) Starting transmission

Transmission is started by writing the transmit data to shift register n (SIOn) after the CTXEn bit of clocked serial interface mode register n (CSIMn) has been set (the CRXEn bit is cleared to 0). If the CTXEn bit is reset to 0, the SOn pin goes into a high-impedance state.

(2) Transmitting data in synchronization with serial clock

(a) When internal clock is selected as serial clock

When transmission is started, the serial clock is output from the SCKn pin, and at the same time, data is sequentially output to the SOn pin from the SIOn register in synchronization with the falling edge of the serial clock.

(b) When external clock is selected as serial clock

When transmission is started, the data is sequentially output from the SIOn register to the SOn pin in synchronization with the falling of the serial clock input to the \overline{SCKn} pin immediately after transmission has been started. The shift operation is not performed even if the serial clock is input to the \overline{SCKn} pin if transmission is not enabled, and the output level of the SOn pin will not change.

8.3.6 Reception in CSI0 to CSI3

Reception is started if the status is changed from reception disabled to reception enabled by the clocked serial interface mode register (CSIMn) or if the SIOn register is read by the CPU with reception enabled (n = 0 to 3).

(1) Starting reception

Reception can be started in the following two ways.

- <1> Changing the status of the CRXEn bit of the CSIMn register from "0" (reception disabled) to "1" (reception enabled)
- <2> Reading the receive data from the shift registers (SIOn) when the CRXEn bit of the CSIMn register is "1" (reception enabled)

If the CRXEn bit of the CSIMn register has already been set to 1, writing "1" to these bits does not initiate a receive operation. When the CRXEn bit = 0, the shift register inputs are "0".

(2) Receiving data in synchronization with serial clock

(a) When internal clock is selected as serial clock

When reception is started, the serial clock is output from the SCKn pin, and at the same time, data is sequentially loaded from the SIn pin to the SIOn register in synchronization with the rising edge of the serial clock.

(b) When external clock is selected as serial clock

When reception is started, the data is sequentially loaded from the SIn pin to the SIOn register in synchronization with the rising of the serial clock input to the \overline{SCKn} pin immediately after reception has been started. The shift operation is not performed even if the serial clock is input to the \overline{SCKn} pin when reception is not enabled.

Figure 8-8. Timing of 3-Wire Serial I/O Mode (Reception)

8.3.7 Transmission/reception in CSI0 to CSI3

Transmission and reception can be executed simultaneously if both transmission and reception are enabled by clocked serial interface mode register n (CSIMn) (n = 0 to 3).

(1) Starting transmission/reception

Transmission and reception can be performed simultaneously (transmission/reception operation) when both the CTXEn and CRXEn bits of clocked serial interface mode register n (CSIMn) are set to 1. Transmission/reception can be started by writing the transmit data to shift register n (SIOn) when both the CTXEn and CRXEn bits of the CSIMn register are "1" (transmission/reception enabled). If CRXEn has already been set to 1, writing "1" to this bit does not initiate transmit/receive operation.

(2) Transmitting data in synchronization with serial clock

(a) When internal clock is selected as serial clock

When transmission/reception is started, the serial clock is output from the SCKn pin, and at the same time, data is sequentially set to the SOn pin from the SIOn register in synchronization with the falling edge of the serial clock. Simultaneously, the data of the SIn pin is sequentially loaded to the SIOn register in synchronization with the rising edge of the serial clock.

(b) When external clock is selected as serial clock

When transmission/reception is started, the data is sequentially output from the SIOn register to the SOn pin in synchronization with the falling edge of the serial clock input to the \overline{SCKn} pin immediately after transmission/reception has been started. The data of the SIn pin is sequentially loaded to the SIOn register in synchronization with the rising edge of the serial clock. The shift operation is not performed even if the serial clock is input to the \overline{SCKn} pin when transmission/reception is not enabled, and the output level of the SOn pin does not change.

Figure 8-9. Timing of 3-Wire Serial I/O Mode (Transmission/Reception)

8.3.8 System configuration example

Data 8 bits long is transferred by using three types of signal lines: a serial clock (\overline{SCKn}), serial input (SIn), and serial output (SOn). This feature is effective for connecting peripheral I/Os and display controllers that have a conventional clocked serial interface (n = 0 to 3).

To connect two or more devices, a handshake line is necessary.

Various devices can be connected, because it can be specified whether the data is transmitted starting from the MSB or LSB.

Figure 8-10. Example of CSI System Configuration

8.4 Baud Rate Generators 0 to 2 (BRG0 to BRG2)

8.4.1 Configuration and function

The serial clock of the serial interface can be selected for each channel from the baud rate generator output or ϕ (internal system clock).

The serial clock source for UART0 and UART1 is specified by the SCLS0 and SCLS1 bits of the ASIM00 and ASIM10 registers. The serial clock source for CSI0 to CSI3 is specified by the CLSn1 and CLSn0 (n = 0 to 3) bits of the CSIM0 to CSIM3 registers.

When the output of the baud rate generator is specified, the baud rate generator will be used as the clock source. Because the serial clock for transmission/reception is shared by both the transmission and reception portions, the same baud rate is used for both transmission and reception.

Figure 8-11. Block Diagram of Baud Rate Generator

(1) Dedicated baud rate generators 0 to 2 (BRG0 to BRG2)

Dedicated baud rate generator n (BRGn) consists of an 8-bit timer (TMBRGn) that generates a serial clock for transmission/reception, a compare register (BRGCn), and a prescaler (n = 0 to 2).

(a) Input clock

The internal system clock (ϕ) is input to BRGn.

(b) Setting value of BRGn

(i) UART0 and UART1

If the dedicated baud rate generator is specified for UART0 and UART1 as a serial clock source, the actual baud rate can be calculated by the following expression, because a sampling rate of x16 is used.

Baud rate =
$$\frac{\phi}{2 \times k \times 2^m \times 16 \times 2}$$
 [bps]

where,

 ϕ = internal system clock frequency [Hz]

 $k = timer \text{ count value } (1 \le k \le 256^{\text{Note}}):$ Set by BRGCn

m = prescaler setup value (m = 0, 1, 2, 3, 4): Set by BPRMn

Note The value k = 256 is set by writing 0 to the BRGCn register.

(ii) CSI0 to CSI3

If the dedicated baud rate generator is specified for CSI0 to CSI3, the actual baud rate can be calculated by the following expression.

Baud rate =
$$\frac{\phi}{2 \times k \times 2^m \times 2}$$
 [bps]

where,

 $\phi = \text{internal system clock frequency [Hz]}$ $k = \text{timer count value (1 \le k \le 256^{\text{Note}}): Set by BRGCn}$ m = prescaler setup value (m = 0, 1, 2, 3, 4): Set by BPRMn

Note The value k = 256 is set by writing 0 to the BRGCn register.

Table 8-2 shows the setting values of the baud rate generator when a typical clock is used.

Baud R	ate [bps]		$\phi = 33$ N	/Hz		φ = 25 Ι	MHz		$\phi = 16 \text{N}$	/Hz	φ = 12.5 MH		MHz
UARTO , UART1	CSI0 to CSI3	BPR	BRG	Error	BPR	BRG	Error	BPR	BRG	Error	BPR	BRG	Error
110	1760	_	_	_	4	222	0.02%	4	142	0.03%	3	222	0.02%
150	2400	4	215	0.07%	4	163	0.15%	3	208	0.16%	3	163	0.15%
300	4800	3	215	0.07%	3	163	0.15%	2	208	0.16%	2	163	0.15%
600	9600	2	215	0.07%	2	163	0.15%	1	208	0.16%	1	163	0.15%
1200	19200	1	215	0.07%	1	163	0.15%	0	208	0.16%	0	163	0.15%
2400	38400	0	215	0.07%	0	163	0.15%	0	104	0.16%	0	81	0.47%
4800	76800	0	107	0.39%	0	81	0.47%	0	52	0.16%	0	41	0.76%
9600	153600	0	54	0.54%	0	41	0.76%	0	26	0.16%	0	20	1.73%
10400	166400	0	50	0.84%	0	38	1.16%	0	24	1.16%	0	19	1.16%
19200	307200	0	27	0.54%	0	20	1.73%	0	13	1.16%	0	10	1.73%
38400	614400	0	13	3.29%	0	10	1.73%	0	7	6.99% ^{Note}	0	5	1.73%
76800	1228800	0	7	4.09%	0	5	1.73%	_	I	-	0	3	15.2% ^{Note}
153600	2457600	0	3	11.90% ^{Note}	0	2	27.2% ^{Note}	-	I	_	_	-	_

Table 8-2.	Setting	Values	of Baud	Rate	Generators 0 to 2
------------	---------	--------	---------	------	-------------------

Baud R	ate [bps]	φ = 20 MHz		φ = 14.746 MHz			φ = 12.288 MHz			φ = 9.830 MHz			
UART0 , UART1	CSI0 to CSI3	BPR	BRG	Error	BPR	BRG	Error	BPR	BRG	Error	BPR	BRG	Error
110	1760	4	178	0.25%	4	131	0.07%	3	218	0.08%	3	175	0.26%
150	2400	4	130	0.16%	3	192	0.0%	3	160	0.0%	3	128	0.0%
300	4800	3	130	0.16%	2	192	0.0%	2	160	0.0%	2	128	0.0%
600	9600	2	130	0.16%	1	192	0.0%	1	160	0.0%	1	128	0.0%
1200	19200	1	130	0.16%	0	192	0.0%	0	160	0.0%	0	128	0.0%
2400	38400	0	130	0.16%	0	96	0.0%	0	80	0.0%	0	64	0.0%
4800	76800	0	65	0.16%	0	48	0.0%	0	40	0.0%	0	32	0.0%
9600	153600	0	33	1.36%	0	24	0.0%	0	20	0.0%	0	16	0.0%
10400	166400	0	30	0.16%	0	22	0.7%	0	18	2.6%	0	15	1.5%
19200	307200	0	16	1.73%	0	12	0.0%	0	10	0.0%	0	8	0.0%
38400	614400	0	8	1.73%	0	6	0.0%	0	5	0.0%	0	4	0.0%
76800	1228800	0	4	1.73%	0	3	0.0%	0	3	16.7% ^{Note}	0	2	0.0%
153600	2457600	0	2	1.73%	0	2	25.0% ^{Note}	-	-	-	0	1	0.0%
307200	4915200	0	1	1.73%	-	_	-	-	-	-	-	-	_

Note Cannot be used because the error is too great.

Remark BPR: Prescaler setup value (Set by BPRMn register)

BRG: Timer count value (Set by BRGCn register)

 ϕ : Internal system clock

(c) Baud rate error

The baud rate error is calculated as follows.

$$\operatorname{Error} [\%] = \left(\begin{array}{c} \operatorname{Actual \ baud \ rate \ (baud \ rate \ with \ error)}}_{\operatorname{Desired \ baud \ rate \ (normal \ baud \ rate)}} - 1 \right) \times 100$$

Example: (9520/9600 - 1) × 100 = -0.833 [%]
(5000/4800 - 1) × 100 = +4.167 [%]

(2) Allowable baud rate error range

The allowable error range depends on the number of bits of one frame.

The basic limit is $\pm 5\%$ of the baud rate error and $\pm 4.5\%$ of the sample timing with an accuracy of 16 bits. However, the practical limit should be $\pm 2.3\%$ of the baud rate error, assuming that both the transmission and reception sides contain an error.

8.4.2 Baud rate generator compare registers 0 to 2 (BRGC0 to BRGC2)

These are 8-bit compare registers that set a timer/count value for the baud rate generator. These registers can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0		
BRGC0	BRG07	BRG06	BRG05	BRG04	BRG03	BRG02	BRG01	BRG00	Address FFFFF084H	After reset Undefined
					1					
BRGC1	BRG17	BRG16	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	FFFFF094H	Undefined
		1								
BRGC2	BRG27	BRG26	BRG25	BRG24	BRG23	BRG22	BRG21	BRG20	FFFF0A4H	Undefined
Caution			•	-		-	-		gisters. Therefo	-
Remark	x n = 0	to 2								

8.4.3 Baud rate generator prescaler mode registers 0 to 2 (BPRM0 to BPRM2)

These registers control the timer/count operation of the baud rate generator and select a count clock. They can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0		
BPRM0	BRCE	0 0	0	0	0	BPR02	BPR01	BPR00	Address FFFFF086H	After rese 00H
BPRM1 BRCE1 0		0	0	0	BPR12	BPR11	BPR10	FFFF096H	00H	
BPRM2	BRCE	2 0	0	0	0	BPR22	BPR21	BPR20	FFFF0A6H	00H
Bit positi	on	Bit name					Functior	l		
		RCEn	Co Rn0 Ba	aud Rate G ontrols cour 0: Stops c 1: Enables aud Rate G pecifies cou	nt operatio count opera s count op enerator F	n of BRGn ation with t eration Prescaler	his bit clea			
				BPRn2	BPRn1	BPRn0		Coun	t clock	
				0	0	0	<i>ø</i> /2 (m :	= 0)		
				0	0	1	<i>ф</i> /4 (m :	= 1)		
				0	1	0	<i>ф</i> /8 (m :	= 2)		
				0	1	1	<i> </i> /16 (m =	= 3)		
				1	×	×	φ/32 (m =	= 4)		
				m: Set	value of p	rescaler, ϕ	: Internal	svstem clo	ck, x: Don't care	
CHAPTER 9 A/D CONVERTER

9.1 Features

- O Analog input: 8 channels
- 10-bit A/D converter
- \odot On-chip A/D conversion result register (ADCR0 to ADCR7) 10 bits \times 8
- A/D conversion trigger mode
 - A/D trigger mode
 - Timer trigger mode
- External trigger mode
- Sequential conversion

9.2 Configuration

The A/D converter of the V850TM adopts the sequential conversion method, and uses the A/D converter mode register (ADM0, ADM1), and ADCRn register to perform A/D conversion operations (n = 0 to 7).

(1) Input circuit

Selects the analog input (ANI0 to ANI7) according to the mode set to the ADM0 and ADM1 registers.

(2) Sample & hold circuit

The sample & hold circuit samples each of the analog input signals sequentially sent from the input circuit, and sends the sample to the voltage comparator. This circuit also holds the sampled analog input signal voltage during A/D conversion.

(3) Voltage comparator

The voltage comparator compares the analog input signal with the output voltage of the series resistor string.

(4) Series resistor string

The series resistor string is used to generate voltages to match the analog inputs.

The series resistor string is connected between the reference voltage pin (AV_{REF1}) for the A/D converter and the GND pin (AV_{SS}) for the A/D converter. In order to make 1024 equal voltage steps between these 2 pins, it is configured from 1023 equal resistors and 2 resistors with 1/2 those values.

The voltage tap of the series resistor string is selected by a tap selector controlled by the successive approximation register (SAR).

(5) Successive approximation register (SAR)

The SAR is a 10-bit register in which series resistor string voltage tap data, which have values that match the analog input voltage values, is set 1 bit at a time beginning with the most significant bit (MSB). If data is set in the SAR all the way to the least significant bit (LSB) (A/D conversion completed), the contents of the SAR (conversion results) are held in the A/D conversion result register (ADCRn).

(6) A/D conversion result register (ADCRn)

ADCR is a 10-bit register that holds A/D conversion results. Each time A/D conversion is completed, the conversion results are loaded from the successive approximation register (SAR). This register becomes undefined if RESET is input.

(7) Controller

Selects the analog input, generates the sample & hold circuit operation timing, and controls the conversion trigger according to the mode set to the ADM0 and ADM1 registers.

(8) ANI0 to ANI7 pins

8-channel analog input pin for the A/D converter. Inputs the analog signal to be A/D converted.

Caution Make sure that the voltages input to ANI0 through ANI7 do not exceed the rated values. If a voltage higher than V_{DD} or lower than V_{SS} (even within the range of the absolute maximum ratings) is input to a channel, the conversion value of the channel is undefined, and the conversion values of the other channels may also be affected.

(9) AVREF1 pin

Pin for inputting the reference voltage of the A/D converter. Converts signals input to the ANIn pin to digital signals based on the voltage applied between AVREF1 and AVss.

Figure 9-1. Block Diagram of A/D Converter

Cautions 1. If noise is carried on the analog input pins (ANI0 to ANI7) and the reference voltage input pin (AVREF1), illegal conversion results may occur due to the noise. In order to avoid negative effects to the system from these illegal conversion results, software processing is necessary.

The following is an example of software processing.

- Use the average value of multiple A/D conversions as the A/D conversion result.
- Perform A/D conversion multiple times continuously, and if an unusual conversion result is obtained, exclude this value from the conversion results.
- If A/D conversion results are obtained from which it can be judged that an error has occurred in the system, do not immediately begin error processing, but carry out error processing after confirming that the error occurs again.
- 2. Ensure that voltages outside the range of AVss to AVREF1 are not applied to the pins that are used as A/D converter input pins.

9.3 Control Registers

(1) A/D converter mode register 0 (ADM0)

ADM0 is an 8-bit register that selects the analog input pin, specifies the operation mode, and executes conversion operations.

This register can be read/written in 8-bit or 1-bit units, however, when the data is written to the ADM0 register during an A/D conversion operation, the conversion operation is initialized and conversion is executed from the beginning. Bit 6 cannot be written and any writing executed is ignored.

_	7	6	5	4	3	2	1	0		
ADM0	CE	CS	BS	MS	0	ANIS2	ANIS1	ANIS0	Address FFFFF380H	After rese 00H
Dit position	r	Bit name					unction			
Bit position	_	Sit name					unction			
7	CE			/ert Enabl	-					
					ables A/L	conversio	n operatio	n.		
			•	Disabled						
			1:	Enabled						
6	CS			erter Stat						
					status of A	VD convert	er. This b	oit is read c	only.	
				Stops						
			1:	Operates						
5	BS			er Select						
						n the select	mode.			
			•••	1-buffer n						
			1:	4-buffer n	node					
4	MS		Mode	e Select						
			Spec	ifies oper	ation mod	de of A/D c	onverter.			
			0:	Scan mod	de					
			1:	Select mo	ode					

Cautions 1. When the CE bit is 1 in the timer trigger mode and external trigger mode, the trigger signal standby state is set. To clear the CE bit, write "0" or reset. In the A/D trigger mode, the conversion trigger is set by writing 1 to the CE bit. After the operation, when the mode is changed to the timer trigger mode or external trigger mode without clearing the CE bit, the trigger input standby state is set immediately after the change.

2. It takes 3 clocks from the start of A/D conversion to when the CS bit is set to 1. When reading an A/D conversion value, use the A/D conversion end interrupt (INTAD).

★

(2/2)

Bit position	Bit name		Function						
2 to 0	ANIS2 to ANIS0	-	Analog Input Select Specifies analog input pin to be A/D converted.						
		ANIS2	ANIS1	ANIS0	Select mode		Scan mode		
				mode	A/D trigger mode	Timer trigger mode	A/D trigger mode ^{Note}	Timer trigger	
		0	0	0	ANI0	ANIO	ANIO	1	
		0	0	1	ANI1	ANI1	ANIO, ANI1	2	
		0	1	0	ANI2	ANI2	ANI0 to ANI2	3	
		0	1	1	ANI3	ANI3	ANI0 to ANI3	4	
		1	0	0	ANI4	Setting prohibited	ANI0 to ANI4	4 + ANI4	
		1	0	1	ANI5	Setting prohibited	ANI0 to ANI5	4 + ANI4, ANI5	
		1	1	0	ANI6	Setting prohibited	ANI0 to ANI6	4 + ANI4 to ANI6	
		1	1	1	ANI7	Setting prohibited	ANI0 to ANI7	4 + ANI4 to ANI7	

Note In the timer trigger mode during the scan mode, because the scanning sequence of the ANI0 to ANI3 pins is specified by the sequence in which the match signals are generated from the compare register, the number of trigger inputs should be specified instead of a certain analog input pin. When set as ANIS2 = 1, after the trigger input is counted 4 times, the mode is shifted to A/D scan mode and the conversion begins.

(2) A/D converter mode register 1 (ADM1)

ADM1 is an 8-bit register that specifies the conversion operation time and trigger mode. This register can be read/written in 8-bit or 1-bit units. However, when the data is written to the ADM1 register during an A/D conversion operation, the conversion operation is initialized and conversion is executed from the beginning.

	7	6		5	4	3	2	1	0	Addrog		After res
ADM1	0	TRG2	TR	RG1	TRG0	0	FR2	FR1	FR0	Addres FFFFF38		07H
Bit positio	n	Bit name					F	unction				
6 to 4	TR TR	G2 to G0		Trigger Specifie		mode.						
				TRG2	TRG1	TRG0		Tr	igger r	node		
				0	0	x	A/D trigger m	ode				
				0	1	0	Timer trigger	mode (1-	trigger	mode)		
				0	1	1	Timer trigger	mode (4-	trigger	mode)		
				1	1	0	External trigg	er mode				
				Othe	er than a	bove	Setting prohil	oited				
2 to 0				-	2	trigg. trigg of th deta	on't care valid edge of er mode is sp ne external i ils, refer to th ITM1 to INTM	becified b nterrupt le externa	y bits mode al inte	7 and 6 (ES register (IN rrupt mode r	031, ES NTM1). register	S030) For rs 1 to
	FR	2 to FR0		change	s conve of the A	/D conv	peration time. ersion time eve	en if the o	scillatio	on frequency	is chang	
				FR2	FR1	FR0	Conversion	Con	versio	n operation tir	ne (//s) [,]	loto
							clock	4 - 221				
					0	0	clock	φ = 33 I	MHz	φ = 25 MHz	<i>φ</i> = 16	6 MHz
				0	0	0	36	φ = 33 	MHz		$\phi = 16$	6 MHz 25
				0	0	1				φ = 25 MHz 	$\phi = 16$ 2.2 3.0	6 MHz 25 00
							36 48	,	2	1.92	$\phi = 16$	6 MHz 25 00 75
				0	0	1	36 48 60		2		$\phi = 16$ 2.2 3.0 3.7	6 MHz 25 00 75 50
				0 0 0	0 1 1	1 0 1	36 48 60 72		2	1.92 2.40 2.88	$\phi = 16$ 2.2 3.0 3.7 4.5	6 MHz 25 00 75 50 00
				0 0 0 1	0 1 1 0	1 0 1 0	36 48 60 72 96		2 3 1	1.92 2.40 2.88 3.84	$\phi = 16$ 2.2 3.0 3.7 4.5 6.0	MHz 25 00 75 50 00 50
				0 0 0 1 1	0 1 1 0 0	1 0 1 0 1	36 48 60 72 96 120		2 3 1 4 3		$\phi = 16$ 2.2 3.0 3.7 4.5 6.0 7.5	MHz 25 00 75 50 00 50 00

(3) A/D conversion result register (ADCR0 to ADCR7, ADCR0H to ADCR7H)

ADCRn is a 10-bit register that holds the A/D conversion results. ADCRn consists of eight 10-bit registers (n = 0 to 7).

This register is read-only in 16-bit or 8-bit units.

During 16-bit access to this register, the ADCRn register is specified, and during higher 8-bit access, the ADCRnH register is specified.

When reading the 10-bit data of A/D conversion results from the ADCRn register, only the lower 10 bits are valid and the higher 6 bits are always read as 0.

9.4 A/D Converter Operation

9.4.1 Basic operation of A/D converter

A/D conversion is executed in the following order.

- The selection of the analog input and specification of the operation mode and trigger mode, etc. should be set in the ADM0 and ADM1 registers^{Note 1}.
 When the CE bit of the ADM0 register is set (1), A/D conversion starts in the A/D trigger mode. In the timer trigger mode and external trigger mode, the trigger standby state^{Note 2} is set.
- (2) The voltage generated from the voltage tap of the series resistor string and analog input are compared by the comparator.
- (3) When the comparison of the 10 bits ends, the conversion results are stored in the ADCRn register. When the A/D conversion has been performed for the specified number of times, the A/D conversion end interrupt (INTAD) is generated (n = 0 to 7).
- **Notes 1**. When the ADM0 and ADM1 registers are changed during an A/D conversion operation, the A/D conversion operation before the change is stopped and the conversion results are not stored in the ADCRn register.
 - 2. In the timer trigger mode and external trigger mode, if the CE bit of the ADM0 register is set to 1, the mode changes to the trigger standby state. The A/D conversion operation is started by the trigger signal, and the trigger standby state is returned when the A/D conversion operation ends.

9.4.2 Input voltage and conversion results

The following relationship exists between the analog input voltage input to the analog input pins (ANI0 to ANI7) and the A/D conversion results (A/D conversion result register (ADCRn)).

$$ADCRn = INT \left(\frac{V_{IN}}{AV_{REF1}} \times 1024 + 0.5\right)$$

or,

$$(ADCRn - 0.5) \times \frac{AV_{REF1}}{1024} \le V_{IN} < (ADCRn + 0.5) \times \frac{AV_{REF1}}{1024}$$

INT (): Function with the integer portion of the value in parentheses () returned

VIN: Analog input voltage

AVREF1: AVREF1 pin voltage

ADCRn: Value of A/D conversion result register (ADCRn)

Figure 9-2 shows the relationship between the analog input voltage and the A/D conversion results.

Figure 9-2. Relationship Between Analog Input Voltage and A/D Conversion Result

9.4.3 Operation mode and trigger mode

Various conversion operations can be specified for the A/D converter by specifying the operation mode and trigger mode. The operation mode and trigger mode are set by the ADM0 and ADM1 registers.

The following shows the relationship between the operation mode and trigger mode.

Trigger M	lode	Operati	on Mode	Setting	Value	Analog Input
				ADM0	ADM1	
A/D trigger		Select	1 buffer	xx010xxxB	000x0xxxB	ANI0 to ANI7
			4 buffers	xx110xxxB	000x0xxxB	
				xxx00xxxB	000x0xxxB	
Timer trigger	1 trigger	Select	1 buffer	xx010xxxB	00100xxxB	ANI0 to ANI3
			4 buffers	xx110xxxB	00100xxxB	
		Scan		xxx00xxxB	00100xxxB	
	4 trigger	Select	1 buffer	xx010xxxB	00110xxxB	
			4 buffers	xx110xxxB	00110xxxB	
		Scan		xxx00xxxB	00110xxxB	
External trigger	External trigger		1 buffer	xx010xxxB	01100xxxB	
			4 buffers	xx110xxxB	01100xxxB	
		Scan		xxx00xxxB	01100xxxB	

(1) Trigger mode

There are three types of trigger modes that serve as the start timing of the A/D conversion processing: the A/D trigger mode, timer trigger mode, and external trigger mode. The ANI0 to ANI3 pins are able to specify all of these modes, but pins ANI4 to ANI7 can only specify the A/D trigger mode. The timer trigger mode consists of the one-trigger mode and four-trigger mode as the sub-trigger modes. These trigger modes are set by the ADM1 register.

(a) A/D trigger mode

Generates the conversion timing of the analog input for the ANI0 to ANI7 pins inside the A/D converter unit. The ANI4 to ANI7 pins are always set in this mode.

(b) Timer trigger mode

Specifies the conversion timing of the analog input set for the ANI0 to ANI3 pins using the values set to the TM11 compare register. This mode can only be specified by the ANI0 to ANI3 pins. This register creates the analog input conversion timing by generating the match interrupts of the four capture/compare registers (CC110 to CC113) connected to 16-bit TM11.

There are two types of sub-trigger modes: the 1-trigger mode and 4-trigger mode.

• 1-trigger mode

Mode in which one match interrupt from timer 11 is used as the A/D conversion start timing.

• 4-trigger mode

Mode in which four match interrupts from timer 11 are used as the A/D conversion start timing.

(c) External trigger mode

Mode in which the conversion timing of the analog input to the ANI0 to ANI3 pins is specified using the ADTRG pin. This mode can be specified only with the ANI0 to ANI3 pins.

(2) Operation mode

There are two types of operation modes that set the ANI0 to ANI7 pins: the select mode and the scan mode. The select mode has the 1-buffer mode and 4-buffer mode as sub-modes. These modes are set by the ADM0 register.

(a) Select mode

A/D converts one analog input specified by the ADM0 register. The conversion results are stored in the ADCRn register corresponding to the analog input. For this mode, the 1-buffer mode and 4-buffer mode are provided for storing the A/D conversion results (n = 0 to 7).

• 1-buffer mode

A/D converts one analog input specified by the ADM0 register. The conversion results are stored in the ADCRn register corresponding to the analog input. The analog input and ADCRn register correspond one to one, and an A/D conversion end interrupt (INTAD) is generated each time one A/D conversion ends.

• 4-buffer mode

A/D converts one analog input four times and stores the results in the ADCR0 to ADCR3 registers. The A/D conversion end interrupt (INTAD) is generated when the four A/D conversions end.

Figure 9-4. Select Mode Operation Timing: 4-Buffer Mode (ANI6)

(b) Scan mode

Selects the analog inputs specified by the ADM0 register sequentially from the ANI0 pin, after which A/D conversion is executed. The A/D conversion results are stored in the ADCRn register corresponding to the analog input. When the conversion of the specified analog input ends, the INTAD interrupt is generated.

Figure 9-5. Scan Mode Operation Timing: 4-Channel Scan (ANI0 to ANI3)

9.5 Operation in A/D Trigger Mode

When the CE bit of the ADM0 register is set to 1, A/D conversion is started.

9.5.1 Select mode operations

A/D converts the analog input specified by the ADM0 register. The conversion results are stored in the ADCRn register corresponding to the analog input. For the select mode, the 1-buffer mode and 4-buffer mode are supported according to the storage method of the A/D conversion results (n = 0 to 7).

(1) 1-buffer mode (A/D trigger select: 1-buffer)

A/D converts one analog input once. The conversion results are stored in one ADCRn register. The analog input and ADCRn register correspond one to one.

Each time an A/D conversion is executed, an INTAD interrupt is generated and the AD conversion terminates. When 1 is written to the CE bit of the ADM0 register, A/D conversion can be restarted.

This mode is suitable for applications that read out the result in each A/D conversion.

Analog Input	A/D Conversion Result Register
ANIn	ADCRn

Remark n = 0 to 7

(2) 4-buffer mode (A/D trigger select: 4-buffer)

A/D converts one analog input four times and stores the results in four ADCRn registers. When A/D conversion ends four times, an INTAD interrupt is generated and the A/D conversion terminates. When 1 is written to the CE bit of the ADM0 register, A/D conversion can be restarted. This mode is suitable for applications that calculate the average of the A/D conversion result.

Analog InputA/D Conversion Result RegisterANInADCR0ANInADCR1ANInADCR2ANInADCR3

Remark n = 0 to 7

9.5.2 Scan mode operations

Selects the analog inputs specified by the ADM0 register sequentially from the ANI0 pin, and A/D conversion is executed. The A/D conversion results are stored in the ADCRn register corresponding to the analog input.

When the conversion of all the specified analog input ends, the INTAD interrupt is generated, and A/D conversion is terminated.

When 1 is written to the CE bit of the ADM0 register, A/D conversion can be restarted.

This mode is suitable for applications that continuously monitor two or more analog inputs.

Analog Input	A/D Conversion Result Register
ANIn	ADCR0
I	1
ANIn ^{Note}	ADCR1

Note Set in bits ANIS2 to ANIS0 of the ADM0 register.

Remark n = 0 to 7

Figure 9-8. Example of Scan Mode (A/D Trigger Scan) Operation

9.6 Operation in Timer Trigger Mode

The A/D converter is the match interrupt signal of the TM11 compare register, and can set conversion timings to a maximum of four channel analog inputs (ANI0 to ANI3).

TM11 and four capture/compare registers (CC110 to CC113) are used for the timer for specifying the analog conversion trigger.

The following two modes are provided according to the specification of the TUM11 register.

(1) One-shot mode

To use the one-shot mode, 1 should be set to the OST bit of the TUM11 register (one-shot mode). When the A/D conversion period is longer than the TM11 period, the TM11 generates an overflow, holds 0000H and stops. Thereafter, TM11 does not output the match interrupt signal (A/D conversion trigger) of the compare register, and the A/D converter sets into the A/D conversion standby state. The TM11 count operation restarts when the valid edge of the TCLR11 pin input is detected or when 1 is written to the CE11 bit of the TMC11 register.

(2) Loop mode

To use the loop mode, 0 should be set to the OST bit (normal mode) of the TUM11 register.

When the TM11 generates an overflow, the TM11 starts counting from 0000H again, and the match interrupt signal (A/D conversion trigger) of the compare register is repeatedly output and A/D conversion is also repeated.

9.6.1 Select mode operations

A/D converts an analog input (ANI0 to ANI3) specified by the ADM0 register. The conversion results are stored in the ADCRn register corresponding to the analog input. For the select mode, the 1-buffer mode and 4-buffer mode are provided according to the storage method of the A/D conversion results (n = 0 to 7).

(1) 1-buffer mode operations (Timer trigger select: 1-buffer)

A/D converts one analog input once and stores the conversion results in one ADCRn register. There are two one-buffer modes, the 1-trigger mode and 4-trigger mode, according to the number of triggers.

(a) 1-trigger mode (Timer trigger select: 1-buffer, 1-trigger)

A/D converts one analog input once using the trigger of the match interrupt signal (INTCC110) and stores the results in one ADCRn register.

Generates an INTAD interrupt for each A/D conversion and ends the A/D conversion.

When the TM11 is set to the one-shot mode, A/D conversion is ended in one conversion. To restart the A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register. When set to the loop mode, unless the CE bit of the ADM0 register is set to 0, A/D conversion is repeated each time the match interrupt is generated.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANIn	ADCRn

Remark n = 0 to 3

Figure 9-9. Example of 1-Trigger Mode (Timer Trigger Select 1-Buffer 1-Trigger) Operation

(b) 4-trigger mode (Timer trigger select: 1-buffer, 4-trigger)

A/D converts one analog input four times using four match interrupt signals (INTCC110 to INTCC113) as triggers and stores the results in one ADCRn register. The INTAD interrupt is generated with each A/D conversion, and the CS bit of the ADM0 register is reset (0). The results of one A/D conversion are held by the ADCRn register until the next A/D conversion ends. Perform transmission of the conversion results to the memory, and other operations using the INTAD interrupt after each A/D conversion ends. When the TM11 is set to the one-shot mode, A/D conversion ends after four conversions. To restart the A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register to restart TM11. When the first match interrupt after TM11 is restarted is generated, the CS bit is set (1) and A/D conversion is started.

When set to the loop mode, unless the CE bit of the ADM0 register is set to 0, A/D conversion is repeated each time the match interrupt is generated.

The match interrupts (INTCC110 to INTCC113) can be generated in any order. The same trigger, even when it enters several times consecutively, is accepted as a trigger each time.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANIn	ADCRn
INTCC111 interrupt	ANIn	ADCRn
INTCC112 interrupt	ANIn	ADCRn
INTCC113 interrupt	ANIn	ADCRn

Remark n = 0 to 3

Figure 9-10. Example of 4-Trigger Mode (Timer Trigger Select 1-Buffer 4-Trigger) Operation

(2) 4-buffer mode operations (Timer trigger select: 4-buffer)

A/D conversion of one analog input is executed four times, and the results are stored in the ADCRn register. There are two 4-buffer modes, 1-trigger mode and 4-trigger mode, according to the number of triggers. This mode is suitable for applications that calculate the average of the A/D conversion result.

(a) 1-trigger mode (Timer trigger select: 4-buffer, 1-trigger)

A/D converts one analog input four times using the match interrupt signal (INTCC110) as a trigger, and stores the results in four ADCRn registers.

An INTAD interrupt is generated when the four A/D conversions end and the A/D conversion is terminated. When TM11 is set to the one-shot mode, and less than four match interrupts are generated, if the CE bit is set to 0, the INTAD interrupt is not generated and the standby state is set.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANIn	ADCR0
INTCC110 interrupt	ANIn	ADCR1
INTCC110 interrupt	ANIn	ADCR2
INTCC110 interrupt	ANIn	ADCR3

Remark n = 0 to 3

(b) 4-trigger mode (Timer trigger select: 4-buffer, 4-trigger)

A/D converts one analog input four times using four match interrupt signals (INTCC110 to INTCC113) as triggers and stores the results in four ADCRn registers. The INTAD interrupt is generated when the four A/D conversions end, the CS bit is reset (0), and A/D conversion ends.

When the TM11 is set to the one-shot mode, A/D conversion ends after four conversions. To restart the A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register to restart TM11. When the first match interrupt after TM11 is restarted is generated, the CS bit is set (1) and A/D conversion is started.

When set to the loop mode, unless the CE bit is set to 0, A/D conversion is repeated each time the match interrupt is generated.

The match interrupts (INTCC110 to INTCC113) can be generated in any order. The conversion result is stored in the ADCRn register corresponding to the input trigger. The same trigger, even when it enters several times consecutively, is accepted as a trigger each time.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANIn	ADCR0
INTCC111 interrupt	ANIn	ADCR1
INTCC112 interrupt	ANIn	ADCR2
INTCC113 interrupt	ANIn	ADCR3

Remark n = 0 to 3

9.6.2 Scan mode operations

Selects the analog inputs specified by the ADM0 register sequentially from the ANI0 pin and A/D converts them for the specified number of times using the match interrupt signal as a trigger.

In the conversion operation, first the analog input lower channels (ANI0 to ANI3) are A/D converted for the specified number of times. In the ADM0 register, if the lower channels (ANI0 to ANI3) of the analog input are set so that they are scanned, and when the set number of A/D conversions ends, the INTAD interrupt is generated and A/D conversion ends.

When the higher channels (ANI4 to ANI7) of the analog input are set so that they are scanned in the ADM0 register, after the conversion of the lower channel is ended, the mode is shifted to the A/D trigger mode, and the remaining A/D conversions are executed.

The conversion results are stored in the ADCRn register corresponding to the analog input. When the conversion of all the specified analog inputs has ended, the INTAD interrupt is generated and A/D conversion ends.

There are two scan modes, 1-trigger mode and 4-trigger mode, according to the number of triggers.

This mode is suitable for applications that always monitor two or more analog inputs.

(1) 1-trigger mode (Timer trigger scan: 1-trigger)

A/D converts the analog input for the specified number of times using the match interrupt signal (INTCC110) as a trigger.

The analog input and ADCRn register correspond one to one.

When all the A/D specified conversions have ended, the INTAD interrupt is generated and A/D conversion ends. When the match interrupt is generated after all the specified A/D conversions end, A/D conversion is restarted.

When TM11 is set to the one-shot mode, and less than the specified number of match interrupts are generated, if the CE bit is set to 0, the INTAD interrupt is not generated and the standby state is set.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANI0	ADCR0
INTCC110 interrupt	ANI1	ADCR1
INTCC110 interrupt	ANI2	ADCR2
INTCC110 interrupt	ANI3	ADCR3
(A/D trigger mode)	ANI4	ADCR4
	ANI5	ADCR5
	ANI6	ADCR6
	ANI7	ADCR7

Figure 9-13. Example of 1-Trigger Mode (Timer Trigger Scan 1-Trigger) Operation

(2) 4-trigger mode (Timer trigger scan: 4-trigger)

A/D converts analog inputs for the number of times specified using the match interrupt signal (INTCC110 to INTCC113) as a trigger.

The analog input and ADCRn register correspond one to one.

When all the A/D specified conversions have ended, the INTAD interrupt is generated and A/D conversion ends.

To restart conversion when TM11 is set to the one-shot mode, restart TM11. If set to the loop mode and the CE bit is 1, A/D conversion is restarted when a match interrupt is generated after conversion ends.

The match interrupts can be generated in any order. However, because the trigger signal and the analog input correspond one to one, the scanning sequence is determined according to the order in which the match signals of the compare register are generated.

Trigger	Analog Input	A/D Conversion Result Register
INTCC110 interrupt	ANI0	ADCR0
INTCC111 interrupt	ANI1	ADCR1
INTCC112 interrupt	ANI2	ADCR2
INTCC113 interrupt	ANI3	ADCR3
(A/D trigger mode)	ANI4	ADCR4
	ANI5	ADCR5
	ANI6	ADCR6
	ANI7	ADCR7

Figure 9-14. Example of 4-Trigger Mode (Timer Trigger Scan 4-Trigger) Operation

9.7 Operation in External Trigger Mode

In the external trigger mode, the analog inputs (ANI0 to ANI3) are A/D converted at the ADTRG pin input timing. The ADTRG pin is also used as the P07 and INTP113 pins. To set the external trigger mode, set the PMC07 bit of the PMC0 register to 1 and the TRG2 to TRG0 bits of the ADM1 register to 110.

For the valid edge of the external input signal in the external trigger mode, the rising edge, falling edge, or both rising and falling edges can be specified using the ES031 and ES030 bits of the INTM1 register. For details, refer to **5.3.7 Edge detection function**.

9.7.1 Select mode operations (external trigger select)

A/D converts one analog input (ANI0 to ANI3) specified by the ADM0 register. The conversion results are stored in the ADCRn register corresponding to the analog input. There are two select modes, 1-buffer mode and 4-buffer mode, for storing the conversion results (n = 0 to 7).

(1) 1-buffer mode (external trigger select: 1-buffer)

A/D converts one analog input using the ADTRG signal as a trigger. The conversion results are stored in one ADCRn register. The analog input and the A/D conversion result register correspond one to one. INTAD interrupts are generated after each A/D conversion, and A/D conversion ends.

While the CE bit of the ADM0 register is 1, the A/D conversion is repeated every time a trigger is input from the ADTRG pin.

This mode is suitable for applications that read out the result after each A/D conversion.

Trigger	Analog Input	A/D Conversion Result Register
ADTRG signal	ANIn	ADCRn

Remark n = 0 to 3

(2) 4-buffer mode (external trigger select: 4-buffer)

A/D converts one analog input four times using the ADTRG signal as a trigger and stores the results in four ADCRn registers. The INTAD interrupt is generated and conversion ends when the four A/D conversions end. While the CE bit of the ADM0 register is 1, the A/D conversion is repeated every time a trigger is input from the ADTRG pin.

This mode is suitable for applications that calculate the average of the A/D conversion result.

Trigger	Analog Input	A/D Conversion Result Register
ADTRG signal	ANIn	ADCR0
ADTRG signal	ANIn	ADCR1
ADTRG signal	ANIn	ADCR2
ADTRG signal	ANIn	ADCR3

Remark n = 0 to 3

9.7.2 Scan mode operations (external trigger scan)

Selects the analog inputs specified by the ADM0 register sequentially from the ANI0 pin using the ADTRG signal as a trigger, and A/D converts them. The A/D conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 7).

When the lower 4 channels (ANI0 to ANI3) of the analog input are set so that they are scanned in the ADM0 register, the INTAD interrupt is generated when the number of A/D conversions specified end, and A/D conversion ends.

When the higher 4 channels (ANI4 to ANI7) of the analog input are set so that they are scanned in the ADM0 register, after the conversion of the lower 4 channels ends, the mode is shifted to the A/D trigger mode, and the remaining A/D conversions are executed. The conversion results are stored in the ADCRn register corresponding to the analog input. When the conversion of all the specified analog inputs ends, the INTAD interrupt is generated and A/D conversion ends.

When a trigger is input to the ADTRG pin while the CE bit of the ADM0 register is 1, the A/D conversion is started again.

This mode is suitable for applications that continuously monitor two or more analog inputs.

Trigger	Analog Input	A/D Conversion Result Register
ADTRG signal	ANI0	ADCR0
ADTRG signal	ANI1	ADCR1
ADTRG signal	ANI2	ADCR2
ADTRG signal	ANI3	ADCR3
(A/D trigger mode)	ANI4	ADCR4
	ANI5	ADCR5
	ANI6	ADCR6
	ANI7	ADCR7

Figure 9-17. Example of Scan Mode (External Trigger Scan) Operation

9.8 Cautions in Use of A/D Converter

(1) When A/D converter is set in the timer trigger mode

The match interrupt of the compare register becomes the A/D conversion start trigger and conversion operations are started. At this time, the match interrupt of the compare register also functions as the match interrupt of the compare register for the CPU. To prevent generation of the match interrupt of the compare register for the CPU, disable interrupt using the interrupt mask bit (P11MK0 to P11MK3) of the interrupt control register (P11IC0 to P11IC3).

(2) When A/D converter is set in the external trigger mode

The external trigger input becomes the A/D conversion start trigger and conversion operations are started. At this time, the external trigger input also functions as a capture trigger and the external interrupt of timer 1. To prevent capture trigger and external interrupt from generating, set timer 1 to the compare register and disable the interrupt with the interrupt mask bit of the interrupt control register.

The operations performed when timer 1 is set to the compare register and interrupt is not disabled by the interrupt control register are as follows.

(a) When the interrupt mask bit (IMS113) of the TUM11 register is 0

Functions as the match interrupt of the compare register for the CPU.

(b) When the interrupt mask bit (IMS113) of the TUM11 register is 1

The external trigger input of the A/D converter functions as the external interrupt for the CPU.

Figure 9-18. Relationships Among A/D Converter, Ports, INTC, and RPU

9.9 Cautions

- (1) When 0 is written to the CE bit of the ADM0 register during a conversion operation, the conversion operation stops and the conversion results are not stored in the ADCRn register (n = 0 to 7).
- (2) Set the interval (input time interval) of the trigger in the external or timer trigger mode to longer than the conversion time specified by the FR2 to FR0 bits of the ADM1 register.

When interval = 0

When several triggers are input simultaneously, the analog input with the smaller ANIn pin number is converted. The other trigger signals input simultaneously are ignored, and the number of triggers input is not counted. Therefore, the generation of interrupts and storage of results to be stored in the ADCRn register will become abnormal.

When $0 < interval \le conversion$ operation time

When the timer trigger is input during a conversion operation, the conversion operation stops and conversion starts according to the last timer trigger input.

When a conversion operation is stopped, the conversion results are not stored in the ADCRn register. However, the number of triggers input are counted, and when the interrupt is generated, the value at which conversion ended is stored in the ADCRn register.

(3) Standby operations are as follows.

(a) HALT mode

pin to Vss.

A/D conversion continues. When released by NMI input, the ADM0 and ADM1 registers and ADCRn register hold their values.

(b) IDLE mode, software STOP mode

As clock supply to the A/D converter is stopped, no conversion operations are performed. When these modes are released by NMI input, the ADM0 and ADM1 registers and the ADCRn register hold their values. However, when the IDLE and software STOP modes are set during a conversion operation, the conversion operation is stopped. At this time, if released by NMI input, the conversion operation result written to the ADCRn register will become undefined. In the IDLE and software STOP modes, the operation of the comparator is also stopped to reduce the power consumption. However, to further reduce current consumption, set the voltage of the AVREF1

9.10 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by %FSR (Full Scale Range).

When the resolution is 10 bits,

 $1LSB = 1/2^{10} = 1/1024$ = 0.098%FSR

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value. Zero scale error, full scale error, nonlinearity error and errors which are combinations of these express the overall error.

Note that the quantization error is not included in the overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, a $\pm 1/2$ LSB error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB is converted to the same digital code, so a quantization error cannot be avoided.

Note that the quantization error is not included in the overall error, zero scale error, full scale error and nonlinearity error in the characteristics table.

Figure 9-20. Quantization Error

(4) Zero-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2 LSB) when the digital output changes from 0.....000 to 0.....001. If the actual measurement value is greater than the theoretical value, it shows the difference between the actual measurement value of the analog input voltage and the theoretical value (3/2LSB) when the digital output changes from 0.....000 to 0.....010.

(5) Full-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (3/2 LSB) when the digital output changes from 1.....110 to 1.....111.

(6) Nonlinearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero scale error and full scale error are 0.

Figure 9-22. Full Scale Error

Figure 9-23. Nonlinearity Error

(7) Conversion time

This expresses the time from when the analog input voltage was applied to the time when the digital output was obtained.

The sampling time is included in the conversion time in the characteristics table.

(8) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.

CHAPTER 10 D/A CONVERTER

10.1 Features

- \bigcirc 8-bit resolution D/A converter: 2 channels
- \bigcirc R-2R mode

10.2 Configuration

10.3 Control Registers

(1) D/A converted data coefficient register (DACS0, DACS1)

The DACSn register writes the value to be output using the D/A conversion value setting register and outputs the analog value to the ANOn pin (n = 0, 1).

This register can be read/written in 8-bit or 1-bit units.

(2) D/A converter mode register (DAM)

The DAM register controls the D/A converter.

This register can be read/written in 8-bit or 1-bit units. However, the higher 6 bits are fixed to 0 by hardware, and even if 1 is written, it will be ignored.

DAM	0	0	0	0	0	0	DACE1	DACE0	Address FFFFF3D0H	After rese 03H
Bit pos	sition	Bit name	•	Function						
1,	0	DACEn		D/A Converter Controls conversion operation of channel n.						
				DACEn Channel n ANOn pin						
				0	Operation	disabled	High impedance			
				1 Operation enabled		Analog voltage output				
10.4 D/A Converter Operations

When values to be output are written in the DACSn register and analog voltage corresponding to the value written from the ANOn pin is immediately output (n = 0, 1). The output voltage is held until the next time a value is written in the DACSn register.

The output voltage from ANOn pin is determined by the following expression.

$$ANOn = \frac{AV_{REF2} - AV_{REF3}}{256} \times DACSn + AV_{REF3} [V] (n = 1, 0)$$

10.4.1 D/A converter operation during reset

When system reset is generated by the RESET pin, the ANOn pin becomes high impedance. The DACSn register is initialized to 00H. After reset is released, the ANOn pin outputs the AVREF3 voltage until the DACSn register is set.

10.4.2 D/A converter operation during normal operation

When the value to be output is written in the DACSn register, and D/A converter operation is enabled by the DAM register, the D/A converter performs D/A conversion and outputs the conversion results from the ANOn pin.

10.4.3 Operations during power save

(1) HALT mode

D/A conversion continues. When released by NMI input, the DACSn register and DAM register hold their values.

(2) IDLE mode, software STOP mode

When the DACEn bit is 1, clock supply to the D/A converter is stopped. Therefore, although the ANOn pin continues output, no new conversion operations are performed. When these modes are released by NMI input, the DACSn register and DAM register hold their values.

To reduce the power consumption, set the DACSn register to 0 before setting the IDLE/software STOP mode or set the voltage of the AVREF2 pin and AVREF3 pin to Vss.

CHAPTER 11 PWM UNIT

11.1 Features

- PWMn: 2 channels
- \bigcirc Active level of PWMn output pulse can be selected.
- \bigcirc Operating clock: Can be selected from ϕ , $\phi/2$, $\phi/4$, $\phi/8$, and $\phi/16$. (ϕ is the internal system clock)
- \bigcirc PWMn output resolution: Can be selected from 8, 9, 10, and 12 bits

Remark n = 0, 1

11.2 Configuration

11.3 Control Registers

(1) PWM control register (PWMC)

Controls PWMn operation, specifies the output active level, and specifies the bit length of the timer counters (TMPn) and compare registers (CMPn) (n = 0, 1).

This register can be read/written in 8-bit or 1-bit units.

PWMC	PWME1	ALV1	PRM11	PRM10	PWME0	ALV0	PRM01	PRM00	Address FFFFF360H	After reset 00H		
							1		1111130011	0011		
Bit position	Bit na	me		Function								
7, 3	PWMEn		Controls PV 0: Stops	WM enable ^{№ee} ontrols PWM operation. 0: Stops operation 1: Enables operation								
6, 2	ALVn		0: Active	ctive level pecifies active levels of PWM. 0: Active-low 1: Active-high								
5, 4, 1, 0	PRMn1, PRMn0		Prescaler mode Specifies bit length of counter (TMPn) and compare register (CMPn).									
			PRMn1	PRMn0		Bit length						
			0	0		8 bits						
			0	1		9 bits						
			1	0		10 bits						
			1	1		12 bits						
Note	bits). T PWM1 a signals	he PW and the becom	Mn signal b operation	becomes clock (pre n be mat	active in escale val ched. Ev	the first o ue) to the ven if "1"	overflow. same va is written	By setting lues, the t to PWME	ting starts from g the bit length iming at which t in when it is alr	of PWM0 ar he two PWM		

Remark n = 0, 1

(2) PWM prescaler register (PWPR)

This register selects the operation clock of PWMn, and can be read/written in 8-bit or 1-bit units. However, bit 7 and bit 3 are fixed to 0 by hardware, so writing 1 in these bits will be ignored.

(3) PWM buffer registers (PWM0, PWM0L, PWM1, PWM1L)

These registers are 12-bit buffer registers that set the control data of the active signal width of the PWMn output. Bits 15 to 12 are fixed to 0 by hardware, so even if 1 is written, it will be ignored. Bits 11 to 8 are not affected by the bit length by the PWMC register, and the written values are read as they are.

During 16-bit access to this register, PWMn is specified. During lower 8-bit access, PWMnL is specified. The contents of the PWMn and PWMnL registers are transmitted to the compare registers (CMPn) at the timing at which the overflow from the PWMn output control counter (TMPn) is generated (n = 0, 1).

11.4 Operations

11.4.1 Basic operations

When outputting the PWMn pulse, after setting the data required for the PWPR register and PWMn register, the PWMEn bits of the PWMC register should be set (1). This resets TMPn, the PWMn output is set to the active level, and the data is transmitted from PWMn to CMPn upon the first overflow. After that, when TMPn and CMPn match, the PWMn output becomes inactive. This is repeated and the active-level PWMn signal specified by the ALVn bit of the PWMC register is output from the PWMn pin.

When the PWMEn bit of the PWMC register is cleared (0), the PWMn output unit stops PWMn output immediately, and the PWMn output becomes the level of ALVn set by the PWMC register.

When the settings of the PWPn0 to PWPn2 bits and PRMn0 and PRMn1 bits are changed while the PWMn signal is being output, the period width and pulse width of the PWMn signal in the changed period cannot be guaranteed.

Figure 11-1. Basic Operation Timing of PWM

Figure 11-2. Operation Timing When 000H and FFFH Are Set in PWM Buffer Register

11.4.2 Repeating frequency

The repeating frequency of the PWMn is shown below.

PWMn Operation Frequency	Resolution	Repeating Frequency
φ	8 bits	φ /2 ⁸
	9 bits	φ /2 ⁹
	10 bits	φ /2 ¹⁰
	12 bits	φ /2 ¹²
φ/2	8 bits	φ /2 ⁹
	9 bits	φ /2 ¹⁰
	10 bits	φ /2 ¹¹
	12 bits	φ /2 ¹³
φ/4	8 bits	φ /2 ¹⁰
	9 bits	φ /2 ¹¹
	10 bits	φ /2 ¹²
	12 bits	φ /2 ¹⁴
φ/8	8 bits	φ /2 ¹¹
	9 bits	φ /2 ¹²
	10 bits	φ /2 ¹³
	12 bits	φ /2 ¹⁵
φ/16	8 bits	φ /2 ¹²
	9 bits	φ /2 ¹³
	10 bits	φ /2 ¹⁴
	12 bits	φ /2 ¹⁶

11.5 Caution

The PWM0 pin and PWM1 pin are also used as P20 and P21 of port 2. When using them as a PWMn output, set the bit corresponding to the PMC2 register to 1.

When the setting of the corresponding bit of the PMC2 register is changed during PWMn pulse output, the PWMn pulse output cannot be guaranteed.

CHAPTER 12 PORT FUNCTION

12.1 Features

The ports of the V853 have the following features.

○ Number of pins: Input: 8

I/O: 67

- \bigcirc Multiplexed with I/O pins of other peripheral functions
- \bigcirc Can be set in input/output mode in 1-bit units
- \bigcirc Noise elimination
- Edge detection

12.2 Basic Configuration of Port

The V853 is provided with a total of 75 input/output port pins (of which eight are input-only port pins) that make up ports 0 to 11. The configuration of the V853's ports is shown below.

(1) Function of each port

The ports of the V853 have the functions shown in the table below. Each port can be manipulated in 8-bit or 1-bit units and performs various types of control operations. In addition to port functions, the ports also have functions as internal hardware I/O pins, when placed in the control mode.

Port Name	Port Function	Function in Control Mode	Remarks
Port 0	8-bit I/O port Can be set to input or output mode in 1-bit units. (Port 6 is a 4-bit port.)	Real-time pulse unit (RPU) I/O External interrupt input A/D converter external trigger input	Can be set to port or control mode in 1-bit units.
Port 1		Real-time pulse unit (RPU) I/O External interrupt input Serial interface (CSI2) I/O	
Port 2		PWM0, PWM1 output Serial interface (UART0/CSI0, UART1/CSI1) I/O	
Port 3		Real-time pulse unit (RPU) I/O External interrupt input Serial interface (CSI3) I/O	
Port 4		Address/data bus (AD0 to AD7) for external memory	Can be set to port or control
Port 5		Address/data bus (AD8 to AD15) for external memory	mode in 8-bit units.
Port 6		Address bus (A16 to A19) for external memory	Can be set to port or control mode in 2-bit units.
Port 7	8-bit input only port	A/D converter (ADC) analog input	_
Port 9	7-bit I/O port Can be set to input or output mode in 1-bit units.	Control signal output for external memory Control signal I/O for system expansion	Can be set to port or control mode in 5- or 1-bit units.
Port 11	8-bit I/O port Can be set to input or output mode in 1-bit units.	Real-time pulse unit (RPU) I/O External interrupt input	Can be set to port or control mode in 1-bit units.

- Caution Be sure to follow the following steps when switching a port that operates as an output pin or an I/O pin in control mode, to the control mode.
 - <1> Set the inactive level of the signal output in the control mode to the relevant bit of port n (Pn) (n = 0 to 6, 9 and 11).
 - <2> Switch to the control mode by the port n mode control register (PMCn).

If the above <1> is not executed, the contents of port n (Pn) may be output momentarily when switching from the port mode to the control mode.

(2) Register for setting function after reset and port/control mode of each port pin

*

Port Name	Pin Name	Function After Reset	Register for		
		In Single-Chip Mode	Setting Mode		
Port 0	P00/TO110	P00 (Input mode)	PMC0		
	P01/TO111	P01 (Input mode)			
	P02/TCLR11	P02 (Input mode)			
	P03/TI11	P03 (Input mode)			
	P04/INTP110	P04 (Input mode)			
	P05/INTP111	P05 (Input mode)			
	P06/INTP112	P06 (Input mode)			
	P07/INTP113/ADTRG	P07 (Input mode)	PMC0, ADM1 ^{Note}		
Port 1	P10/TO120	P10 (Input mode)	PMC1		
	P11/TO121	P11 (Input mode)			
	P12/TCLR12	P12 (Input mode)			
	P13/TI12	P13 (Input mode)			
	P14/INTP120	P14 (Input mode)			
	P15/INTP121/SO2	P15 (Input mode)	PMC1, PCM ^{Note}		
	P16/INTP122/SI2	P16 (Input mode)			
	P17/INTP123/SCK2	P17 (Input mode)			
Port 2	P20/PWM0	P20 (Input mode)	PMC2		
	P21/PWM1	P21 (Input mode)			
	P22/TXD0/SO0	P22 (Input mode)	PMC2, ASIM00 ^{NG}		
	P23/RXD0/SI0	P23 (Input mode)			
	P24/SCK0	P24 (Input mode)	PMC2		
	P25/TXD1/SO1	P25 (Input mode)	PMC2, ASIM10 ^{No}		
	P26/RXD1/SI1	P26 (Input mode)			
	P27/SCK1	P27 (Input mode)	PMC2		
Port 3	P30/TO130	P30 (Input mode)	PMC3		
	P31/TO131	P31 (Input mode)			
	P32/TCLR13	P32 (Input mode)			
	P33/TI13	P33 (Input mode)			
	P34/INTP130	P34 (Input mode)			
	P35/INTP131/SO3	P35 (Input mode)	PMC3, PCM ^{Note}		
	P36/INTP132/SI3	P36 (Input mode)			
	P37/INTP133/SCK3	P37 (Input mode)			
Port 4	P40/AD0 to P47/AD7	P40 to P47 (All input mode)	MM		
Port 5	P50/AD8 to P57/AD15	P50 to P57 (All input mode)	MM		
Port 6	P60/A16 to P63/A19	P60 to P63 (All input mode)	MM		
Port 7	P70/ANI0 to P77/ANI7	P70/ANI0 to P77/ANI7			

Note Select the pin function in the control mode.

Port Name	Pin Name	Function After Reset	Register for
		In Single-Chip Mode	Setting Mode
Port 9	P90/LBEN	P90 (Input mode)	MM
	P91/UBEN	P91 (Input mode)	
	P92/R/W	P92 (Input mode)	
	P93/DSTB	P93 (Input mode)	
	P94/ASTB	P94 (Input mode)	
	P95/HLDAK	P95 (Input mode)	
	P96/HLDRQ	P96 (Input mode)	
Port 11	P110/TO140	P110 (Input mode)	PMC11
	P111/TO141	P111 (Input mode)	
	P112/TCLR14	P112 (Input mode)	
	P113/TI14	P113 (Input mode)	
	P114/INTP140	P114 (Input mode)	
	P115/INTP141	P115 (Input mode)	
	P116/INTP142	P116 (Input mode)	
	P117/INTP143	P117 (Input mode)	

12.3 Port Pin Functions

12.3.1 Port 0

Port 0 is an 8-bit I/O port that can be set to input or output mode in 1-bit units.

In addition to the function as a general I/O port, this port can also be used to input/output signals of the real-time pulse unit (RPU), input external interrupt requests, and input the A/D converter external trigger when placed in the control mode.

Operation in control mode

	Port	Control Mode	Remarks				
Port 0	P00	TO110	Real-time pulse unit (RPU) output				
	P01	TO111					
	P02	TCLR11	Real-time pulse unit (RPU) input				
	P03	TI11					
	P04 to P06	INTP110 to INTP112	External interrupt input				
	P07	INTP113/ADTRG	External interrupt input, A/D converter external trigger input				

(1) Hardware configuration

Figure 12-1. Block Diagram of P00 and P01 (Port 0)

Figure 12-2. Block Diagram of P02 to P07 (Port 0)

(2) Setting input/output mode and control mode

The input/output mode of port 0 is set by the port 0 mode register (PM0). The control mode is set by the port 0 mode control register (PMC0).

Port 0 mode register (PM0)

This register can be read/written in 8-bit or 1-bit units.

Port 0 mode control register (PMC0)

This register can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0					
PMC0	PMC07	PMC06	PMC05	PMC04	PMC03	PMC02	PMC01	PMC00	Address FFFFF040H	After rese 00H			
Rit p		Pit nom											
	sition	Bit nam					Functi	011					
7 PMC07				Port mode Control Sets operation mode of P07 pin. 0: I/O port mode 1: External interrupt request input (INTP113)/A/D converter external trigger input (ADTRG) ^{Note}									
6 to 4 PMC06 to PMC04				Port Mode Control Sets operation mode of P0n pin (n = 6 to 4). 0: I/O port mode 1: External interrupt request input (INTP112 to INTP110)									
3		PMC03 Port Mode Control Sets operation mode of P03 pin. 0: I/O port mode 1: TI11 input mode											
2	2 PMC02			Port Mode Control Sets operation mode of P02 pin. 0: I/O port mode 1: TCLR11 input mode									
1 PMC01 Port Mode Control Sets operation mode of P01 pin. 0: I/O port mode 1: TO111 output mode													
0 PMC00				Port Mode Control Sets operation mode of P00 pin. 0: I/O port mode 1: TO110 output mode									

Note The P07 pin functions as the A/D converter external trigger input (ADTRG) when the PMC07 bit is 1 and the TRG bit of the A/D converter mode register (ADM1) is set in the external trigger mode.

12.3.2 Port 1

Port 1 is an 8-bit I/O port that can be set to input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P1	P17	P16	P15	P14	P13	P12	P11	P10	Address FFFFF002H	After reset Undefined
Bit position Bit name Function										
-	7 to 0	P1n (n = 7 to		Port 1 I/O port						

In addition to the function as a general I/O port, this port can also be used to input/output signals of the real-time pulse unit (RPU), input external interrupts, and input/output signals of the serial interface (CSI2), when placed in the control mode.

Operations in control mode

F	Port Control Mode		Remarks
Port 1	P10	TO120	Real-time pulse unit (RPU) output
	P11	TO121	
	P12	TCLR12	Real-time pulse unit (RPU) input
	P13	TI12	
	P14	INTP120	External interrupt input
	P15	INTP121/SO2	External interrupt input
	P16	INTP122/SI2	Serial interface (CSI2) input/output
	P17	INTP123/SCK2	

(1) Hardware configuration

Figure 12-3. Block Diagram of P10 and P11 (Port 1)

Figure 12-4. Block Diagram of P12 to P14 (Port 1)

Figure 12-5. Block Diagram of P15 (Port 1)

Figure 12-7. Block Diagram of P17 (Port 1)

(2) Setting input/output mode and control mode

The input/output mode of port 1 is set by the port 1 mode register (PM1). The control mode is set by the port 1 mode control register (PMC1) and port control mode register (PCM).

Port 1 mode register (PM1)

This register can be read/written in 8-bit or 1-bit units.

Port 1 mode control register (PMC1)

This register can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0			
PMC1	PMC17	PMC16	PMC15	PMC14	PMC13	PMC12	PMC11	PMC10	Address FFFFF042H	After reset 00H	
PCM	0	0	0	0	PCM3	0	PCM1	0	FFFF05CH	00H	
Bit positi (PMC1		it name					Function				
7	PN	/IC17		Port Mode Control Sets operation mode of P17 pin. Set in combination with PCM1.							
			PMC	17 PC	M1			Functior	ו		
			0	×	: I/O	port mode	9				
			1	0	IN1	FP 123 inp	ut mode				
			1	1	SC	K2 I/O mc	de				
		1010	De et Maral	0.000							
6	6 PMC		Port Mode			sin Catin					
			Sets oper	ation mod		om. Set m	combinati	on with PC	WI1.		
			PMC	16 PC	M1			Functior	1		
			0		< I/O	port mode	9				
			1	(P122 inpu					
			1			input mo					
5	PN	/IC15	Port Mode Control								
			Sets operation mode of P15 pin. Set in combination with PCM1.								
			PMC	15 PC	PCM1 Function						
			0	,	< I/O	port mode	Э				
			1	() INI	P121 inpu	ut mode				
			1		I SO	2 output n	node				
		1011	De et Maral	0							
4		/IC14	Port Mode		le of P14 j	ain					
				port mode		JIII.					
				P120 inpu							
3	PN	/IC13	Port Mode								
			Sets oper	ation mod	le of P13	oin.					
			0: I/O p	oort mode							
				input mo	de						
2	PN	/IC12	Port Mode								
				-	le of P12	oin.					
				port mode							
		1011		R12 input	mode						
1, 0		/C11,	Port Mode								
		/IC10		ation moc	le of P11,	Più pin.					
					0 output m	nde					
			1. 101	-, , , , , , , , , , , , , , , , , , ,	o ourpur n						

For the description of PCM, refer to Port control mode register (PCM) in section 12.4.

12.3.3 Port 2

Port 2 is an 8-bit I/O port that can be set to input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0	1		
P2	P27	P26	P25	P24	P23	P22	P21	P20	Address FFFFF004H	After reset Undefined	
Bit position Bit name				Function							
	7 to 0 P2n			Port 2							
		(n = 7	' to 0)	I/O port							

In addition to the function as a port, this port can also be used to output PWM0 and PWM1 and input/output signals of the serial interface (UART0/CSI0, UART1/CSI1), when placed in the control mode.

Operation in control mode

Р	ort	Control Mode	Remarks
Port 2	P20	PWM0	PWM0 and PWM1 outputs
	P21	PWM1	
	P22	TXD0/SO0	I/O for serial interface (UART0/CSI0,
	P23	RXD0/SI0	UART1/CSI1)
	P24	SCK0	
	P25	TXD1/SO1	
	P26	RXD1/SI1	
	P27	SCK1	

(1) Hardware configuration

Figure 12-8. Block Diagram of P20 and P21 (Port 2)

Figure 12-10. Block Diagram of P23 and P26 (Port 2)

(2) Setting input/output mode and control mode

The input/output mode of port 2 is set by the port 2 mode register (PM2). The control mode is set by the port 2 mode control register (PMC2).

Port 2 mode register (PM2)

This register can be read/written in 8-bit or 1-bit units.

Port 2 mode control register (PMC2)

This register can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0	Address	Attar roo			
MC2	PMC27	PMC26	PMC25	PMC24	PMC23	PMC22	PMC21	PMC20	Address FFFFF044H	After res 00H			
Bit p	osition	Bit name	9				Function						
	7	PMC27	Sets 0:	Port Mode Control Sets operation mode of P27 pin. 0: I/O port mode 1: SCK1 I/O mode									
	6	PMC26	Sets 0:	Port Mode Control Sets operation mode of P26 pin. 0: I/O port mode 1: RXD1/SI1 input mode									
	5	PMC25	Sets 0:	Port Mode control Sets operation mode of P25 pin. 0: I/O port mode 1: TXD1/SO1 output mode									
	4	PMC24	Sets 0:	t Mode Co s operatior : I/O port i : SCK0 I/C	n mode of mode	P24 pin.							
	3	PMC23	Sets 0:	t Mode Co s operatior : I/O port i : RXD0/SI	n mode of mode								
	2	PMC22	Sets 0:	Port Mode Control Sets operation mode of P22 pin. 0: I/O port mode 1: TXD0/SO0 output mode									
0, 1 PMC21, Port Mode Control PMC20 Sets operation mode of P21 and P20 pin. 0: I/O port mode 1: PWM1, PWM0 output mode													

12.3.4 Port 3

Port 3 is an 8-bit I/O port that can be set to input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P3	P37	P36	P35	P34	P33	P32	P31	P30	Address FFFFF006H	After reset Undefined
	position	Bit nar	me				Func	tion		
BIT					Port 3 I/O port					

In addition to the function as a port, this port can also be used to input /output signals of the real-time pulse unit (RPU), input signals of external interrupt, and input/output signals of the serial interface (CSI3), when placed in the control mode.

Operation in control mode

Р	ort	Control Mode	Remarks					
Port 3	P30	TO130	Real-time pulse unit (RPU) I/O					
	P31	TO131						
	P32	TCLR13	Real-time pulse unit (RPU) input					
	P33	TI13						
	P34	INTP130	External interrupt input					
	P35	INTP131/SO3	External interrupt input					
	P36	INTP132/SI3	Serial interface (CSI3) I/O					
	P37	INTP133/SCK3						

(1) Hardware configuration

Figure 12-12. Block Diagram of P30 and P31 (Port 3)

Figure 12-13. Block Diagram of P32 to P34 (Port 3)

Figure 12-14. Block Diagram of P35 (Port 3)

Figure 12-16. Block Diagram of P37 (Port 3)

(2) Setting input/output mode and control mode

The input/output mode of port 3 is set by the port 3 mode register (PM3). The control mode is set by the port 3 mode control register (PMC3) and port control mode register (PCM).

Port 3 mode register (PM3)

This register can be read/written in 8-bit or 1-bit units.

Port 3 mode control register (PMC3)

This register can be read/written in 8-bit or 1-bit units.

	7	6	5	4	3	2	1	0			
PMC3	PMC37	PMC36	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30	Address FFFFF046H	After reset 00H	
PCM	0	0	0	0	PCM3	0	PCM1	0	FFFF05CH	00H	
Bit position (PMC1)	Bit nar	me				F	unction				
7	PMC37		Port Mode Control Sets operation mode of P37 pin. Set in combination with PCM3.								
			PMC3	7 PCM	3		F	unction			
			0	х	I/O	I/O port mode					
			1 0 INTP133 input mode								
			1	1	SCI	K3 input/ou	utput mode	9			
6	PMC36		Port Mode Control Sets operation mode of P36 pin. Set in combination with PCM3. PMC36 PCM3 Function								
			РМС3 0			port mode		unction			
			1	x 0		P132 input					
			1	1		input mod					
5	PMC35		ort Mode C ets operati		of P35 pir	n. Set in c	ombinatio	n with PCN	13.		
			PMC3	35 PCM	3		F	unction			
			0	X		port mode					
			1	0		P131 input					
			1	1	SO	3 output m	ode				
4	PMC34		ort Mode C ets operati 0: I/O po 1: INTP1	on mode rt mode		l.					
3	PMC33		ort Mode C ets operati 0: I/O po	on mode		1.					

(1/2)

(2/2)

Bit position (PMC1)	Bit name	Function
2	PMC32	Port Mode Control Sets operation mode of P32 pin. 0: I/O port mode 1: TCLR13 input mode
1	PMC31	Port Mode Control Sets operation mode of P31 pin. 0: I/O port mode 1: TO131 output mode
0	PMC30	Port Mode Control Sets operation mode of P30 pin. 0: I/O port mode 1: TO130 output mode

For the description of PCM, refer to Port control mode register (PCM) in section 12.4.

12.3.5 Port 4

Port 4 is an 8-bit I/O port that can be set to input or output mode in 1-bit units.

1	7	6	5	4	3	2	1	0		
P4	P47	P46	P45	P44	P43	P42	P41	P40	Address FFFFF008H	After reset Undefined
Bit p	osition	Bit nan	ne				Functio	on		
7	to 0	P4n (n = 7 to		Port 4 I/O port						

In addition to the function as a general I/O port, this port also serves as an external address/data bus for external memory expansion, when placed in the control mode (external expansion mode).

Operation in control mode

	P	ort	Control Mode	Remarks
I	Port 4	P40 to 47	AD0 to AD7	Address/data bus for external memory

(1) Hardware configuration

*

(2) Setting input/output mode and control mode

The input/output mode of port 4 is set by the port 4 mode register (PM4). The control mode (external expansion mode) is set by the memory expansion mode register (MM: refer to **3.4.7**).

Port 4 mode register (PM4)

*

This register can be read/written in 8-bit or 1-bit units.

Operation mode of port 4

Bit of	MM Re	gister	Operation Mode										
MM2	MM1	MM0	P40	P40 P41 P42 P43 P44 P45 P46 P47									
0	0	0		Port									
0	1	1											
1	0	0			A	ddress/	data bu	IS					
1	0	1				(AD0 te	o AD7)						
1	1	1											
Othe	r than a	above				RFU (r	eserved	I)					

12.3.6 Port 5

Port 5 is an 8-bit I/O port that can be set to input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0				
P5	P57	P56	P55	P54	P53	P52	P51	P50	Address FFFFF00AH	After reset Undefined		
Bit	position	Bit nar	ne				Functi	on				
7 to 0		P5n (n = 7 to		Port 5 I/O port								

In addition to the function as a general I/O port, this port also serves as an external address/data bus for external memory expansion, when placed in the control mode (external expansion mode).

Operation in control mode

P	ort	Control Mode	Remarks
Port 5	P50 to 57	AD8 to AD15	Address/data bus for external memory

(1) Hardware configuration

*

(2) Setting input/output mode and control mode

The input/output mode of port 5 is set by the port 5 mode register (PM5). The control mode (external expansion mode) is set by the memory expansion mode register (MM: refer to **3.4.7**).

Port 5 mode register (PM5)

*

This register can be read/written in 8-bit or 1-bit units.

Operation mode of port 5

Bit of	MM Re	egister	Operation Mode										
MM2	MM1	MM0	P50	P50 P51 P52 P53 P54 P55 P56 P57									
0	0	0		Port									
0	1	1											
1	0	0			Ad	dress/d	ata bus						
1	0	1			(/	AD8 to	AD15)						
1	1	1											
Othe	r than a	above			R	FU (res	served)						
12.3.7 Port 6

Port 6 is a 4-bit I/O port that can be set to input or output mode in 1-bit units.

1	7	6	5	4	3	2	1	0		
P6	_	_	_	-	P63	P62	P61	P60	Address FFFFF00CH	After reset Undefined
Bit p	osition	Bit nam	e				Functio	n		
	to 0	P6n (n = 3 to 0		ort 6) port						

In addition to the function as a general I/O port, this port also serves as an external address bus for external memory expansion, when placed in the control mode (external expansion mode). When port 6 is accessed in 8-bit units for write, the higher 4 bits are ignored. When it is accessed in 8-bit units for read, undefined data is read.

Operation in control mode

P	ort	Control Mode	Remarks
Port 6	P60 to 63	A16 to A19	Address bus for external memory

(1) Hardware configuration

*

(2) Setting input/output mode and control mode

The input/output mode of port 6 is set by the port 6 mode register (PM6). To enable the external address/ data bus function, the control mode (external expansion mode) is set by the memory expansion mode register (MM: refer to **3.4.7**).

Port 6 mode register (PM6)

*

This register can be read/written in 8-bit or 1-bit units. However, the higher 4 bits are ignored if the access is a write, and undefined if the access is a read.

	7	6	5	4	3	2	1	0		
PM6	-	-	-	-	PM63	PM62	PM61	PM60	Address FFFFF02CH	After reset XFH
Bit	t position	Bit na	me				Functio	on		
3 to 0		PM6n (n = 3 to	o 0)		t mode (ou		r on)			

Operation mode of port 6

Bit of	MM Re	egister		Operati	on Mod	е
MM2	MM1	MM0	P60	P61	P62	P63
0	0	0		Po	ort	
0	1	1				
1	0	0	A16	A17		
1	0	1			A18	A19
1	1	1				
Othe	r than a	above		RFU (re	eserved)

12.3.8 Port 7

Port 7 is an 8-bit input-only port and all the pins of port 7 are fixed to the input mode.

	7	6	5	4	3	2	1	0		
P7	P77	P76	P75	P74	P73	P72	P71	P70	Address FFFFF0EH	After reset Undefined
Bit p	osition	Bit nam	ne				Functio	n		
7 to 0		P7n (n = 7 to		ort 7 out-only po	ort					

In addition to the function as a port, this port can also be used to input analog voltages for the A/D converter in the control mode.

This port is used also as the analog input pins (ANI0 to ANI7), but the input port and analog input pin cannot be switched. By reading the port, the state of each pin can be read.

The value read from the pin specified as the analog input pin is undefined. In addition, do not read the P7 value during A/D conversion. When some pins of port 7 are used as analog inputs, the rest of the pins cannot be used as input port pins (for example, when the ANI0 to ANI2 pins are used as A/D converter inputs, do not use the P73 to P77 pins as input port pins).

Operation in control mode

Po	ort	Control Mode	Remarks
Port 7	P70 to P77	ANI0 to ANI7	Analog input for A/D converter

12.3.9 Port 9

Port 9 is a 7-bit I/O port that can be set to input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P9	_	P96	P95	P94	P93	P92	P91	P90	Address FFFFF012H	After rese Undefine
Bit po	osition	Bit name	e				Function	1		
6 t	o 0	P9n (n = 6 to 0	Por	t 9 port						

In addition to the function as a general I/O port, this port can also be used to output external bus control signals and output bus hold control signals, when placed in the control mode (external expansion mode). When port 9 is accessed in 8-bit units for write, the highest bit is ignored. When it is accessed in 8-bit units for read, undefined data is read.

Operation in control mode

Po	ort	Control Mode	Remarks
Port 9	P90	LBEN	Control signal output for external memory
	P91	UBEN	
	P92	R/W	
	P93	DSTB	
	P94	ASTB	
	P95	HLDAK	Bus hold acknowledge signal output
	P96	HLDRQ	Bus hold request signal input

(1) Hardware configuration

 \star

Figure 12-21. Block Diagram of P90 to P95 (Port 9)

(2) Setting input/output mode and control mode

The input/output mode of port 9 is set by the port 9 mode register (PM9). The control mode (external expansion mode) is set by the memory expansion mode register (MM: refer to **3.4.7**).

Port 9 mode register (PM9)

*

This register can be read/written in 8- or 1-bit units. However, bit 7 is ignored if the access is a write, and undefined if the access is a read.

	7	6	5	4	3	2	1	0		
M9	-	PM96	PM95	PM94	PM93	PM92	PM91	PM90	Address FFFFF032H	After reset X1111111B
Bit p	position	Bit nan	ne				Functio	on		
6 to 0		PM9n (n = 6 to	0) Se	0: Output	t mode (ou	output moo utput buffe	r on)			

Operation mode of port 9

P90 to P94

Bit of	MM Re	egister		Ope	ration N	Node	
MM2	MM1	MM0	P90	P91	P92	P93	P94
0	0	0			Port		
0	1	1	LBEN	UBEN	R/W	DSTB	ASTB
1	0	0					
1	0	1]				
1	1	1					
Othe	r than a	above		RFL	J (reser	ved)	

P95, P96

MM3	Operation Mode	P95	P96
0	Port mode	Po	rt
1	External expansion mode	HLDAK	HLDRQ

12.3.10 Port 11

Port 11 is an 8-bit I/O port that can be set to input or output mode in 1-bit units.

	7	6	5	4	3	2	1	0		
P11	P117	P116	P115	P114	P113	P112	P111	P110	Address FFFFF016H	After reset Undefined
Bit	position	Bit na	me				Functi	on		
7 to 0		P11n (n = 7 to		Port 11 I/O port						

In addition to the function as a port, this port can also be used to input/output signals of the real-time pulse unit (RPU) and input external interrupt requests, when placed in the control mode.

Operation in control mode

	Port	Control Mode	Remarks
Port 11	P110	TO140	Real-time pulse unit (RPU) output
	P111	TO141	
	P112	TCLR14	Real-time pulse unit (RPU) input
	P113	TI14	
	P114 to P117	INTP140 to INTP143	External interrupt request input

(1) Hardware configuration

Figure 12-23. Block Diagram of P110 and P111 (Port 11)

Figure 12-24. Block Diagram of P112 to P117 (Port 11)

(2) Setting input/output mode and control mode

The input/output mode of port 11 is set by the port 11 mode register (PM11). The control mode is set by the port 11 mode control register (PMC11).

Port 11 mode register (PM11)

This register can be read/written in 8-bit or 1-bit units.

Port 11 mode control register (PMC11)

This register can be read/written in 8-bit or 1-bit units.

PMC11	7 PMC		6 PMC116	5 PMC115	4 PMC114	3 PMC113	2 PMC112	1 PMC111	0 PMC110	Address FFFFF056H	After reset 00H
Bit posi	ition	F	Bit name				Fu	nction			
7 to		PN	MC117 to MC114	Sets o 0: I	Port Mode Control Sets operation mode of P117 to P114 0: I/O port mode 1: INTP143 to INTP140 input mode						
3		PI	MC113	Sets c 0: I	Port Mode Control Sets operation mode of P113 pin. 0: I/O port mode 1: TI14 input mode						
2		PI	MC112	Sets c 0: I	Port Mode Control Sets operation mode of P112 pin 0: I/O port mode 1: TCLR14 input mode						
1, 0)		ИС111, ИС110	Sets c 0: I	Port Mode Control Sets operation mode of P111, P110 pin. 0: I/O port mode 1: TO141, TO140 output mode						

12.4 Switching Between External Maskable Interrupt Request Input/Timer External Capture Trigger Input and CSI Pins

The higher 3 bits of port 1 of the V853 are used by the external maskable interrupt request input/timer external capture trigger input (INTP121 to INTP123) as well as the CSI2 output (S02, SI2, SCK2) together in the control mode. The higher 3 bits of port 3 are used by the external maskable interrupt request input/timer external capture trigger input (INTP131 to INTP133) as well as the CSI3 output (S03, SI3, SCK3) together in the control mode.

The switching of these pins can be specified in units of the above 3 bits by software using the port control mode register (PCM).

Port control mode register (PCM)

This register can be read/written in 8-bit or 1-bit units. However, bits other than bit 1 and bit 3 are fixed to 0 by hardware, so even if 1 is written, it is ignored.

is invalid.

Unselected functions operate as follows.

(1) CSI operations when the INTP signal input mode is selected

Even when the INTP signal is selected, the CSI2, CSI3, and BRG3 registers can be accessed. However, serial data input and serial clock input from the pins, and serial data output and serial clock output to the pins can not be performed.

To reduce power consumption, it is recommended that CSI2 and CSI3 be set to the transmission/reception disabled state and BRG3 to the count operation stopped state during INTP signal input mode.

(2) Timer (TM12, TM13), external maskable interrupt operations in CSI2 and CSI3 I/O mode

Although an external maskable interrupt can be specified by the corresponding INTP signal using the timer unit mode register (TUM2, TUM3) in the CSI2 and CSI3 I/O mode, the external maskable interrupt function cannot be used.

Although it is possible to specify the corresponding capture/compare register for the capture register using TUM2 and TUM3, because capture trigger input cannot be performed using the INTP signal, the capture register function cannot be used. There are no restrictions on other timer functions.

12.5 Specifying Pull-up Resistors

The V853 has on-chip pull-up resistors, which can be specified for use at the higher three bits (P35 to P37) of port 3 by means of software.

Whether to use an internal pull-up resistor can be specified for each pin using the pull-up resistor option register (PUO) and port mode register (PM).

When PUO3 is 1, if the corresponding bit is set to the input mode in the PM3 register, the internal pull-up resistor becomes valid.

Pull-up resistor option register (PUO)

This register can be read/written in 8-bit or 1-bit units. However, bits other than bit 3 are fixed to 0 by hardware, so even if 1 is written, it is ignored. Set in combination with the PM3 register.

For the description of PM3 register, refer to Port 3 mode register (PM3) in section 12.3.4 (2).

CHAPTER 13 RESET FUNCTION

When a low level is input to the RESET pin, the system is reset and each on-chip hardware is initialized to its initial state.

When the RESET pin changes from low level to high level, the reset state is released and the CPU starts executing the program. Initialize the contents of each register in the program as necessary.

13.1 Features

 \bigcirc Analog noise eliminator (delay of approx. 60 ns) provided on reset pin

13.2 Pin Function

*

During the reset state, all the pins (except CLKOUT, RESET, X2, VDD, Vss, CVDD/CKSEL, CVss, AVDD, AVss, and the AVREF1 to AVREF3 pins) are in the high-impedance state.

When an external memory is connected, a pull-up (or pull-down) resistor must be connected to each pin of ports 4, 5, 6, and 9. Otherwise, the memory contents may be lost if these pins go into a high-impedance state.

Also handle the signal outputs of the on-chip peripheral I/O functions and the output ports so that they will not be affected.

In the single-chip mode, the CLKOUT signal is not output until the PSC register is set.

Table 13-1 shows the operating status of each pin during the reset period.

Pin	Operating Status
AD0 to AD15	Hi-Z
A16 to A19	
LBEN, UBEN	
R/W	
DSTB	
ASTB	
HLDRQ	_
HLDAK	Hi-Z
WAIT	_
CLKOUT	Hi-Z

Table 13-1. Operating Status of Each Pin During Reset Period

(1) Acknowledging reset signal

(2) Power-on reset

In the reset operations at power-on (when the power is turned on), oscillation stabilization time must be secured from the start up of the power until reset is acknowledged by the low-level width^{Note} of the $\overrightarrow{\text{RESET}}$ pin. Sufficiently evaluate the oscillation stabilization time.

Note Retain a low-level input at RESET pin from power on to reset signal acknowledgement.

13.3 Initialize

Table 13-2 shows the initial value of each register after reset.

The contents of the registers must be initialized in the program as necessary. Especially, set the following registers as necessary because they are related to system setting.

- Power save control register (PSC) ... X1 and X2 pin function, CLKOUT pin operation, etc.
- \bigcirc Data wait control register (DWC) ... Number of data wait states

	Register	Initial Value After Reset
r0		0000000H
r1 to r31		Undefined
PC		00000000H
PSW		0000020H
EIPC		Undefined
EIPSW		Undefined
FEPC		Undefined
FEPSW		Undefined
ECR		0000000H
Internal RAM		Undefined
Port	I/O latch (P0 to P6, P9, P11)	Undefined
	Input latch (P7)	Undefined
	Mode register (PM0 to PM5, PM11)	FFH
	Mode register (PM6)	×FH
	Mode register (PM9)	×1111111B
	Mode control register (PMC0 to PMC3, PMC11)	00H
	Memory expansion mode register (MM)	00H
	Port control mode register (PCM)	00H
	Pull-up resistor option register (PUO)	00H
Clock generator	Clock control register (CKC)	00H/03H
	System status register (SYS)	0000000×B
Real-time pulse unit	Timer unit mode register (TUM11 to TUM14)	0000H
	Timer control register (TMC11 to TMC14, TMC4)	00H
	Timer output control register 1 (TOC11 to TOC14)	00H
	Timer (TM11 to TM14, TM4)	0000H
	Capture/compare register (CC110 to CC113, CC120 to CC123, CC130 to CC133, CC140 to CC143)	Undefined
	Compare register 4 (CM4)	Undefined
	Timer overflow status register (TOVS)	00H
A/D converter	A/D converter mode register (ADM0)	00H
	A/D converter mode register (ADM1)	07H
	A/D conversion result register (ADCR0 to ADCR7, ADCR0H to ADCR7H)	Undefined
D/A converter	D/A-converted data coefficient register (DACS0, DACS1)	00H
	D/A converter mode register (DAM)	03H

Table 13-2. Initial Values of Each Register After Reset (1/2)

Remark ×: Don't care

 \star

	Register	Initial Value After Reset
Serial interface	Asynchronous serial interface mode register (ASIM00, ASIM10)	00H
	Asynchronous serial interface mode register (ASIM01, ASIM11)	00H
	Asynchronous serial interface status register (ASIS0, ASIS1)	00H
	Receive buffer (RXB0, RXB0L, RXB1, RXB1L)	Undefined
	Transmit shift register (TXS0, TXS0L, TXS1, TXS1L)	Undefined
	Clocked serial interface mode register 0 (CSIM0 to CSIM3)	00H
	Serial I/O shift register (SIO0 to SIO3)	Undefined
	Baud rate generator register (BRGC0 to BRGC2)	Undefined
	Baud rate generator prescaler mode register (BPRM0 to BPRM2)	00H
PWM	PWM control register (PWMC)	00H
	PWM prescaler register (PWPR)	00H
	PWM buffer register (PWM0, PWM0L, PWM1, PWM1L)	Undefined
Interrupt/exception processing function	Interrupt control register (xxICn)	47H
	In-service priority register (ISPR)	00H
	External interrupt mode register (INTM0 to INTM4)	00H
Memory management function	Data wait control register (DWC)	FFFFH
	Bus cycle control register (BCC)	ААААН
Power save control	Command register (PRCMD)	Undefined
	Power save control register (PSC)	СОН

Table 13-2.	Initial Values	of Each Register	After Reset (2/2)
-------------	----------------	------------------	-------------------

 \star

Caution "Undefined" means an undefined value due to power-on reset or data corruption when a falling edge of $\overline{\text{RESET}}$ coincides with a data write operation. The previous status of data is retained by a falling edge of $\overline{\text{RESET}}$ in cases other than the above.

CHAPTER 14 FLASH MEMORY (µPD70F3003A AND 70F3025A)

The μ PD70F3003A and 70F3025A are V853 on-chip flash memory products. The μ PD70F3003A incorporates a 128 KB flash memory and the μ PD70F3025A incorporates a 256 KB flash memory. In the instruction fetch to this flash memory, 4 bytes can be accessed by a single clock, in the same way as in the mask ROM version.

Writing to a flash memory can be performed with the memory mounted on the target system (on board). A dedicated flash programmer is connected to the target system to perform writing.

The following can be considered as the development environment and the applications using a flash memory.

- Software can be altered after the V853 is solder-mounted on the target system.
- Small scale production of various models is made easier by differentiating software.
- Data adjustment in starting mass production is made easier.
- Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing and application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

14.1 Features

*

- 4-byte/1-clock access (in instruction fetch access)
- All area one-shot erase
- · Communication through serial interface from the dedicated flash programmer
- Erase/write voltage: VPP = 10.3 V
- On-board programming

14.2 Writing by Flash Programmer

Writing can be performed either on-board or off-board using the dedicated flash programmer.

(1) On-board programming

The contents of the flash memory is rewritten after the V853 is mounted on the target system. Mount connectors, etc., on the target system to connect the dedicated flash programmer.

(2) Off-board programming

Writing to flash memory is performed by the dedicated program adapter (FA series), etc., before mounting the V853 on the target system.

Remark The FA series are products of Naito Densei Machida Mfg. Co., Ltd.

3. This figure indicates the connection when CSI supporting handshake is used.

*

Flas	Flash Programmer (PG-FP3) Connection Pins		When Using CSI + HS		When Using CSI0		When Using UART0	
Signal Name	I/O	Pin Function	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.
SI/RxD	Input	Receive signal	P22/SO0	94	P22/SO0	94	P22/TXD0	94
SO/TxD	Output	Transmit signal	P23/SI0	95	P23/SI0	95	P23/TXD0	95
SCK	Output	Transfer clock	P24/SCK0	96	P24/SCK0	96	Not required	Not required
CLK	Output	Clock to V853	X1	45	X1	45	X1	45
/RESET	Output	Reset signal	RESET	42	RESET	42	RESET	42
VPP	Output	Write voltage	Vpp	40	Vpp	40	Vpp	40
HS	Input	Handshake signal of CSI0 + HS communication	P21/PWM1	93	Not required	Not required	Not required	Not required
VDD	I/O	VDD voltage	Vdd	Note 1	Vdd	Note 1	Vdd	Note 1
		generation/	CVDD/	43	CVDD/	43	CVdd/	43
		voltage	CKSEL		CSKEL		CSKEL	
		monitoring	AVDD	80	AVdd	80	AVdd	80
			MODE	41	MODE	41	MODE	41
GND	_	Ground	Vss	Note 2	Vss	Note 2	Vss	Note 2
			CVss	46	CVss	46	CVss	46
			AVss	79	AVss	79	AVss	79
			AVREF1	78	AVREF1	78	AVREF1	78
			AVREF2	67	AVREF2	67	AVREF2	67
			AVREF3	66	AVREF3	66	AVREF3	66
			NMI	91	NMI	91	NMI	91

Table 14-1.	Wiring	Table	of V853	Flash	Writing	Adapter
-------------	--------	-------	---------	-------	---------	---------

Notes 1. 13, 29, 49, 90

 \star

2. 12, 28, 48, 89

14.3 Programming Environment

The following shows the environment required for writing programs to the flash memory of the V853.

A host machine is required for controlling the dedicated flash programmer.

UART0 or CSI0 is used for the interface between the dedicated flash programmer and the V853 to perform writing, erasing, etc. A dedicated program adapter (FA series) is required for off-board writing.

14.4 Communication Mode

The communication between the dedicated flash programmer and the V853 is performed by serial communication using UART0 or CSI0.

(1) UART0

Transfer rate: 4800 to 76800 bps (LSB first)

(2) CSI0

Transfer rate: 200 kHz to 1 MHz (MSB first)

The dedicated flash programmer outputs the transfer clock, and the V853 operates as a slave.

(3) CSI communication mode supporting handshake

Transfer rate: 200 kHz to 1 MHz (MSB first)

When PG-FP3 is used as the dedicated flash programmer, it generates the following signals to the V853. For the details, refer to **PG-FP3 Flash Memory Programmer User's Manual (U13502E)**.

	PG-FF	V853		irement onnected	
Signal Name	I/O	Pin Function	Pin Name ^{Note 1}	CSI0	UART0
Vpp	Output	Writing voltage	Vpp	O	O
Vdd	I/O	Vbb voltage generation/ voltage monitoring	Vdd	Ø	O
GND	-	Ground	Vss	0	O
CLK	Output	Clock output to V853	X1 ^{Note 2}	0	0
RESET	Output	Reset signal	RESET	O	O
SI/RxD	Input	Receive signal	SO0/TXD0	Ø	O
SO/TxD	Output	Transmit signal	SI0/RXD0	O	O
SCK	Output	Transfer clock	SCKO	Ø	×
HS (VPP2)	Input	Handshake signal of CSI0 + HS communication	P21	Δ	×

*

*

Notes 1. Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as immediately after reset. Therefore, if the external devices do not acknowledge the port state immediately after reset, handling such as connecting to V_{DD} via a resistor or connecting to V_{SS} via a resistor is required.

2. Only for off-board writing

Remark O: Always connected

- $\bigcirc:$ Do not need to connect, if generated on the target board
- \times : Do not need to connect
- \triangle : In handshake mode

14.5 Pin Handling

When performing on-board writing, install a connector on the target system to connect to the dedicated flash programmer. Also, install a function on-board to switch from the normal operation mode (single-chip mode) to the flash memory programming mode.

When switched to the flash memory programming mode, all the pins not used for the flash memory programming become the same status as that immediately after reset in the single-chip mode. Therefore, all the ports become high-impedance, so pin handling is required when the external device does not acknowledge the high-impedance status.

14.5.1 VPP pin

★

*

In the normal operation mode, 0 V is input to the VPP pin. In the flash memory programming mode, a 10.3 V writing voltage is supplied to the VPP pin. The following shows an example of the connection of the VPP pin.

14.5.2 Serial interface pin

*

The following shows the pins used by each serial interface.

Serial Interface	Pins Used
CSIO	SO0, SI0, SCK0
CSI0 + HS	SO0, SI0, <u>SCK0</u> , P21
UART0	TXD0, RXD0

When connecting a dedicated flash programmer to a serial interface pin that is connected to other devices onboard, care should be taken to avoid a conflict of signals and the malfunction of the other device, etc.

(1) Conflict of signals

When connecting a dedicated flash programmer (output) to a serial interface pin (input) that is connected to another device (output), a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the other device or set the other device to the high-impedance status.

(2) Malfunction of other device

When connecting a dedicated flash programmer (output or input) to a serial interface pin (input or output) connected to another device (input), the signal output to the other device may cause the device to malfunction. To avoid this, isolate the connection to the other device or make the setting so that the input signal to the other device is ignored.

14.5.3 Reset pin

When connecting the reset signals of the dedicated flash programmer to the RESET pin connected to the reset signal generator on-board, a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the reset signal generator.

When a reset signal is input from the user system in the flash memory programming mode, the programming operation will not be performed correctly. Therefore, do not input signals other than the reset signals from the dedicated flash programmer.

14.5.4 NMI pin

The input signal to the NMI pin is ignored in the flash memory programming mode.

14.5.5 MODE pin

★

To switch to the flash memory programming mode, connect the MODE pin to V_{DD}, apply a writing voltage (10.3 V) to the V_{PP} pin, and release the reset.

14.5.6 Port pin

When the flash memory programming mode is set, all the port pins except the pins that communicate with the dedicated flash programmer become output high impedance. These port pins do not require handling. If problems such as disabling the output high-impedance status should occur in the external devices connected to the port, connect them to VDD or VSS via resistors.

14.5.7 WAIT pin

Connect the \overline{WAIT} pin directly to V_{DD} .

14.5.8 Other signal pin

Connect X1, X2, CKSEL, and AVREF1 to AVREF3 to the same state as that in the normal operation mode.

14.5.9 Power supply

Supply the power supply (VDD, VSS, AVDD, AVSS, CVDD, CVSS) in the same way as in normal operation mode. Connect VDD and GND of the dedicated flash programmer to VDD and VSS. Always connect VDD of the dedicated flash programmer because it is provided with a power supply monitoring function.

14.6 Programming Method

14.6.1 Flash memory control

The following shows the procedure for manipulating the flash memory.

14.6.2 Flash memory programming mode

When rewriting the contents of a flash memory using the dedicated flash programmer, set the V853 in the flash memory programming mode. When switching modes, set the MODE, V_{PP} , and \overline{WAIT} pins as follows before releasing reset.

When performing on-board writing, change modes using jumpers, etc.

- MODE: VDD
- Vpp: 10.3 V

*

*

• WAIT: VDD

14.6.3 Selection of communication mode

In the V853, a communication mode is selected by inputting a pulse (16 pulses max.) to the VPP pin after switching to the flash memory programming mode. The VPP pulse is generated by the dedicated flash programmer. The following shows the relationship between the number of pulses and the communication mode.

	Table 14-2.	List of	Communication	Modes
--	-------------	---------	---------------	-------

VPP Pulse	Communication Mode	Remarks
0	CSI0	V853 performs slave operation, MSB first
3	CSI0 + HS	V853 performs slave operation, MSB first
8	UART0	Communication rate: 9600 bps (after reset), LSB first
Other than above	RFU	Setting prohibited

Caution When UART0 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash programmer after receiving the VPP pulse.

14.6.4 Communication commands

The V853 communicates with the dedicated flash programmer by means of commands. The command sent from the dedicated flash programmer to the V853 is called a "command". The response signal sent from the V853 to the dedicated flash programmer is called a "response command".

The following shows the commands for controlling the flash memory of the V853. All of these commands are issued from the dedicated flash programmer, and the V853 performs the various processing corresponding to the command.

Category	Command Name	Function
Area verify	Area verify command	Compares the contents of the specified memory area and the input data.
Area erase	Area erase command	Erases the contents of the specified mem- area.
Area blank check	Area blank check command	Checks the erase state of the specified mem- area.
Data write	High-speed write command	Writes data to the specified write address a the number of bytes to be written, and execu verify check.
	Continuous write command	Writes data from the address following the hig speed write command executed immediat before, and executes verify check.
System setting and control	Status read out command	Acquires the status of operations.
	Oscillation frequency setting command	Sets the oscillation frequency.
	Erase time setting command	Sets the erasing time of area erase.
	Write time setting command	Sets the writing time of data write.
	Baud rate setting command	Sets the baud rate when using UART0.
	Silicon signature command	Reads outs the silicon signature information
	Reset command	Escapes from each state.

*

The V853 sends back response commands to the commands issued from the dedicated flash programmer. The following shows the response commands the V853 sends out.

Response Command Name	Function
ACK (acknowledge)	Acknowledges command/data, etc.
NAK (not acknowledge)	Acknowledges illegal command/data, etc.

14.6.5 Resources used

The resources used by the flash memory programming mode setting and are all the areas except FFE000H to FFE7FFH of the internal RAM and all the registers. The FFE800H to FFEFFFH area of the internal RAM retains data as long as the power is on. The registers that are initialized by reset are changed to their default values.

APPENDIX A REGISTER INDEX

Symbol	Name	Unit	(1/ Page
ADCR0	A/D conversion result register 0	ADC	221
ADCR0H	A/D conversion result register 0H	ADC	221
ADCR1	A/D conversion result register 1	ADC	221
ADCR1H	A/D conversion result register 1H	ADC	221
ADCR2	A/D conversion result register 2	ADC	221
ADCR2H	A/D conversion result register 2H	ADC	221
ADCR3	A/D conversion result register 3	ADC	221
ADCR3H	A/D conversion result register 3H	ADC	221
ADCR4	A/D conversion result register 4	ADC	221
ADCR4H	A/D conversion result register 4H	ADC	221
ADCR5	A/D conversion result register 5	ADC	221
ADCR5H	A/D conversion result register 5H	ADC	221
ADCR6	A/D conversion result register 6	ADC	221
ADCR6H	A/D conversion result register 6H	ADC	221
ADCR7	A/D conversion result register 7	ADC	221
ADCR7H	A/D conversion result register 7H	ADC	221
ADIC	Interrupt control register	INTC	112
ADM0	A/D converter mode register 0	ADC	218
ADM1	A/D converter mode register 1	ADC	220
ASIM00	Asynchronous serial interface mode register 00	UART	186
ASIM01	Asynchronous serial interface mode register 01	UART	186
ASIM10	Asynchronous serial interface mode register 10	UART	186
ASIM11	Asynchronous serial interface mode register 11	UART	186
ASIS0	Asynchronous serial interface status register 0	UART	140
ASIS1	Asynchronous serial interface status register 1	UART	140
BCC	Bus cycle control register	BCU	84
BPRM0	Baud rate generator prescaler mode register 0	BRG	214
BPRM1	Baud rate generator prescaler mode register 1	BRG	214
BPRM2	Baud rate generator prescaler mode register 2	BRG	214
BRGC0	Baud rate generator compare register 0	BRG	213
BRGC1	Baud rate generator compare register 1	BRG	213
BRGC2	Baud rate generator compare register 2	BRG	213
CC110	Capture/compare register 110	RPU	150
CC111	Capture/compare register 111	RPU	150
CC112	Capture/compare register 112	RPU	150
CC113	Capture/compare register 113	RPU	150
CC120	Capture/compare register 120	RPU	150
CC121	Capture/compare register 121	RPU	150

Symbol	Name	Unit	Page
CC122	Capture/compare register 122	RPU	150
CC123	Capture/compare register 123	RPU	150
CC130	Capture/compare register 130	RPU	150
CC131	Capture/compare register 131	RPU	150
CC132	Capture/compare register 132	RPU	150
CC133	Capture/compare register 133	RPU	150
CC140	Capture/compare register 140	RPU	150
CC141	Capture/compare register 141	RPU	150
CC142	Capture/compare register 142	RPU	150
CC143	Capture/compare register 143	RPU	150
СКС	Clock control register	CG	129
CM4	Compare register 4	RPU	151
CMIC4	Interrupt control register	INTC	112
CSIC0	Interrupt control register	INTC	112
CSIC1	Interrupt control register 1	INTC	112
CSIC2	Interrupt control register 2	INTC	112
CSIC3	Interrupt control register 3	INTC	112
CSIM0	Clocked serial interface mode register 0	CSI	200
CSIM1	Clocked serial interface mode register 1	CSI	200
CSIM2	Clocked serial interface mode register 2	CSI	200
CSIM3	Clocked serial interface mode register 3	CSI	200
DACS0	D/A converted data coefficient register 0	DAC	250
DACS1	D/A converted data coefficient register 1	DAC	250
DAM	D/A converter mode register	DAC	250
DWC	Data wait control register	BCU	82
ECR	Interrupt source register	CPU	48
EIPC	Interrupt status save register	CPU	48
EIPSW	Interrupt status save register	CPU	48
FEPC	NMI status save register	CPU	48
FEPSW	NMI status save register	CPU	48
INTM0	External interrupt mode register 0	INTC	102
INTM1	External interrupt mode register 1	INTC	115
INTM2	External interrupt mode register 2	INTC	115
INTM3	External interrupt mode register 3	INTC	115
INTM4	External interrupt mode register 4	INTC	115
ISPR	In-service priority register	INTC	116
MM	Memory expansion mode register	Port	64
OVIC11	Interrupt control register	INTC	112
OVIC12	Interrupt control register	INTC	112

INTC

112

OVIC13

Interrupt control register

Symbol	Name	Unit	Page
OVIC14	Interrupt control register	INTC	112
P0	Port 0	Port	263
P1	Port 1	Port	267
P2	Port 2	Port	272
P3	Port 3	Port	277
P4	Port 4	Port	283
P5	Port 5	Port	285
P6	Port 6	Port	287
P7	Port 7	Port	289
P9	Port 9	Port	290
P11	Port 11	Port	293
P11IC0	Interrupt control register	INTC	112
P11IC1	Interrupt control register	INTC	112
P11IC2	Interrupt control register	INTC	112
P11IC3	Interrupt control register	INTC	112
P12IC0	Interrupt control register	INTC	112
P12IC1	Interrupt control register	INTC	112
P12IC2	Interrupt control register	INTC	112
P12IC3	Interrupt control register	INTC	112
P13IC0	Interrupt control register	INTC	112
P13IC1	Interrupt control register	INTC	112
P13IC2	Interrupt control register	INTC	112
P13IC3	Interrupt control register	INTC	112
P14IC0	Interrupt control register	INTC	112
P14IC1	Interrupt control register	INTC	112
P14IC2	Interrupt control register	INTC	112
P14IC3	Interrupt control register	INTC	112
PCM	Port control mode register	Port	296
PM0	Port 0 mode register	Port	265
PM1	Port 1 mode register	Port	270
PM2	Port 2 mode register	Port	275
PM3	Port 3 mode register	Port	280
PM4	Port 4 mode register	Port	284
PM5	Port 5 mode register	Port	286
PM6	Port 6 mode register	Port	288
PM9	Port 9 mode register	Port	292
PM11	Port 11 mode register	Port	295
PMC0	Port 0 mode control register	Port	266
PMC1	Port 1 mode control register	Port	271
PMC2	Port 2 mode control register	Port	276

(3/5)

(4,0)

Symbol	Name	Unit	Page
PMC3	Port 3 mode control register	Port	281
PMC11	Port 11 mode control register	Port	295
PRCMD	Command register	CG	76
PSC	Power save control register	CG	134
PSW	Program status word	CPU	49
PUO	Pull-up resistor option register	Port	298
PWM0	PWM buffer register 0 (12 bits)	PWM	255
PWM0L	PWM buffer register 0L (lower 8 bits)	PWM	255
PWM1	PWM buffer register 1 (12 bits)	PWM	255
PWM1L	PWM buffer register 1L (lower 8 bits)	PWM	255
PWMC	PWM control register	PWM	253
PWPR	PWM prescaler register	PWM	254
RXB0	Receive buffer 0	UART	191
RXB0L	Receive buffer 0L	UART	191
RXB1	Receive buffer 1	UART	191
RXB1L	Receive buffer 1L	UART	191
SEIC0	Interrupt control register	INTC	112
SEIC1	Interrupt control register	INTC	112
SIO0	Serial I/O shift register 0	CSI	201
SIO1	Serial I/O shift register 1	CSI	201
SIO2	Serial I/O shift register 2	CSI	201
SIO3	Serial I/O shift register 3	CSI	201
SRIC0	Interrupt control register	INTC	112
SRIC1	Interrupt control register	INTC	112
STIC0	Interrupt control register	INTC	112
STIC1	Interrupt control register	INTC	112
SYS	System status register	CG	77, 131
TM11	Timer 11	RPU	149
TM12	Timer 12	RPU	149
TM13	Timer 13	RPU	149
TM14	Timer 14	RPU	149
TM4	Timer 4	RPU	151
TMC11	Timer control register 11	RPU	155
TMC12	Timer control register 12	RPU	155
TMC13	Timer control register 13	RPU	155
TMC14	Timer control register 14	RPU	155
TMC4	Timer control register 4	RPU	157
TOC11	Timer output control register 11	RPU	158
TOC12	Timer output control register 12	RPU	158
TOC13	Timer output control register 13	RPU	158

			(5/5)
Symbol	Name	Unit	Page
TOC14	Timer output control register 14	RPU	158
TOVS	Timer overflow status register	RPU	159
TUM11	Timer unit mode register 11	RPU	152
TUM12	Timer unit mode register 12	RPU	152
TUM13	Timer unit mode register 13	RPU	152
TUM14	Timer unit mode register 14	RPU	152
TXS0	Transmit shift register 0	UART	192
TXSOL	Transmit shift register 0L	UART	192
TXS1	Transmit shift register 1 (9 bits)	UART	192
TXS1L	Transmit shift register 1L (lower 8 bits)	UART	192

APPENDIX B INSTRUCTION SET LIST

Conventions

(1) Symbols used for operand description

Symbol	Description	
reg1	General-purpose register (r0 to r31): Used as source register	
reg2	General-purpose register (r0 to r31): Mainly used as destination register	
immx	x-bit immediate	
dispx	x-bit displacement	
regID	System register number	
bit#3	3-bit data for bit number specification	
ер	Element pointer (r30)	
сссс	4-bit data for condition code	
vector	5-bit data for trap vector number (00H to 1FH)	

(2) Symbols used for op code

Symbol	Description	
R	1-bit data of code that specifies reg1 or regID	
r	1-bit data of code that specifies reg2	
d	1-bit data of displacement	
i	1-bit data of immediate	
сссс	4-bit data that indicates condition code	
bbb	3-bit data specified by bit number	

(3) Symbols used for operation description (1/2)

Symbol	Description
<i>←</i>	Assignment
GR[]	General-purpose register
SR[]	System register
zero-extend(n)	Zero-extends n to word length
sign-extend(n)	Sign-extends n to word length
load-memory(a,b)	Reads data of size b from address a
store-memory(a,b,c)	Writes data b of size c to address a
load-memory-bit(a,b)	Reads bit b of address a
store-memory-bit(a,b,c)	Writes c to bit b of address a
saturated(n)	Performs saturated processing of n (n is 2's complement). If n is $n \ge 7FFFFFFH$ as result of calculation, 7FFFFFFFH. If n is $n \le 80000000H$ as result of calculation, 80000000H.
result	Reflects result on flag
Byte	Byte (8 bits)
(3) Symbols used for operation description (2/2)

Symbol	Description
Halfword	Halfword (16 bits)
Word	Word (32 bits)
+	Add
-	Subtract
Ш	Bit concatenation
x	Multiply
÷	Divide
AND	Logical product
OR	Logical sum
XOR	Exclusive logical sum
NOT	Logical negate
logically shift left by	Logical left shift
logically shift right by	Logical right shift
arithmetically shift right by	Arithmetic right shift

(4) Symbols used for execution clock description

Symbol	Description
i: issue	To execute another instruction immediately after instruction execution
r: repeat	To execute same instruction immediately after instruction execution
I: latency	To reference result of instruction execution by the next instruction

(5) Symbols used for flag operation

Identifier	Description
(Blank)	Not affected
0	Cleared to 0
x	Set or cleared according to result
R	Previously saved value is restored

Condition Co	ae
--------------	----

Condition Name (cond)	Condition Code (cccc)	Conditional Expression	Description
V	0000	OV = 1	Overflow
NV	1000	OV = 0	No overflow
C/L	0001	CY = 1	Carry
			Lower (Less than)
NC/NL	1001	CY = 0	No carry
			No lower (Greater than or equal)
Z/E	0010	Z = 1	Zero
			Equal
NZ/NE	1010	Z = 0	Not zero
			Not equal
NH	0011	(CY or Z) = 1	Not higher (Less than or equal)
Н	1011	(CY or Z) = 0	Higher (Greater than)
Ν	0100	S = 1	Negative
Р	1100	S = 0	Positive
Т	0101	_	Always (unconditional)
SA	1101	SAT = 1	Saturated
LT	0110	(S xor OV) = 1	Less than signed
GE	1110	(S xor OV) = 0	Greater than or equal signed
LE	0111	((S xor OV) or Z) = 1	Less than or equal signed
GT	1111	((S xor OV) or Z) = 0	Greater than signed

Instruction Set (Alphabetical Order) (1/4)

Mnemonic	Operand	Op Code	Operation		Execution Clock				Flag	j		
					i	r	Ι	СҮ	ov	s	Z	SAT
ADD	reg1, reg2	rrrr001110RRRRR	GR[reg2]←GR[reg2]+GR[reg1]		1	1	1	x	x	x	x	
	imm5, reg2	rrrrr010010iiiii	GR[reg2]←GR[reg2]+sign-extend(ir	mm5)	1	1	1	x	x	х	x	
ADDI	imm16, reg1, reg2	rrrrr110000RRRRR	GR[reg2]←GR[reg1]+sign-extend(ir	mm16)	1	1	1	x	x	x	x	
AND	reg1, reg2	rrrr001010RRRRR	GR[reg2]←GR[reg2]AND GR[reg1]		1	1	1		0	x	x	
ANDI	imm16, reg1, reg2	rrrr110110RRRRR	GR[reg2]←GR[reg1]AND zero-exte	nd(imm16)	1	1	1		0	0	x	
		111111111111111111										
Bcond	disp9	ddddd1011dddcccc	if conditions are satisfied	When condition satisfied	3	3	3					
		Note 1	then $PC \leftarrow PC$ +sign-extned(disp9)	When condition not satisfied	1	1	1					
CLR1	bit#3, disp16[reg1]	10bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)	4	4	4				x	
		dddddddddddddd	Z flag←Not(Load-memory-bit(adr, b	oit#3))								
			Store-memory-bit(adr, bit#3.0)									
CMP	reg1, reg2	rrrr001111RRRRR	result←GR[reg2]–GR[reg1]		1	1	1	x	x	х	x	
	imm5, reg2	rrrrr010011iiiii	result←GR[reg2]–sign-extend(imm	5)	1	1	1	x	x	x	x	
DI		0000011111100000	PSW.ID←1		1	1	1					
		0000000101100000	(Maskable interrupt disabled)									
DIVH	reg1, reg2	rrrr000010RRRRR	GR [reg2]←GR [reg2]÷GR [reg1] ^{No}	ote 2	36	36	36		x	x	x	
			(signed division)									
EI		1000011111100000	PSW.ID←0		1	1	1					
		0000000101100000	(Maskable interrupt enabled)									
HALT		0000011111100000	Stops		1	1	1					
		000000100100000										
JARL	disp22, reg2	rrrrr11110ddddd	GR[reg2]←PC+4		3	3	3					
		ddddddddddddd	PC←PC+sign-extend(disp22)									
		Note 3										
JMP	[reg1]	00000000011RRRRR	PC←GR[reg1]		3	3	3					
JR	disp22	0000011110ddddd	$PC \leftarrow PC + sign - extend(disp22)$		3	3	3					
		dddddddddddddd										
		Note 3										
LD.B	disp16[reg1], reg2	rrrr111000RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	2					
		dddddddddddddd	GR[reg2]←sign-extend(Load-memo	ory(adr, Byte))								
LD.H	disp16[reg1], reg2	rrrr111001RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	2					
		ddddddddddddd	GR[reg2]sign-extend(Load-memory	(adr, Halfword))								
		Note 4										
LD.W	disp16[reg1], reg2	rrrr111001RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	2					
		dddddddddddddd	GR[reg2]←Load-memory(adr, Word	(k								
		Note 4										

Notes 1. dddddddd is the higher 8 bits of disp9.

- **2.** Only the lower halfword is valid.
- **3.** dddddddddddddd ddddd is the higher 21 bits of disp22.
- 4. dddddddddddd is the higher 15 bits of disp16.

Instruction Set (Alphabetical Order) (2/4)

Mnemonic	Operand	Op Code	Oper	ration		ecut Cloc				Flag	J	
					i	r	Ι	CY	ov	s	Ζ	SAT
LDSR	reg2, regID	rrrr111111RRRRR	SR[regID]←GR[reg2]	regID = EIPC, FEPC	1	1	3					
		000000000100000		regID = EIPSW, FEPSW	1		1					
		Note 1		regID = PSW	1		1	x	x	x	х	x
MOV	reg1, reg2	rrrr000000RRRRR	GR[reg2]←GR[reg1]		1	1	1					
	imm5, reg2	rrrr010000iiiii	GR[reg2]←sign-extend(im	nm5)	1	1	1					
MOVEA	imm16, reg1, reg2	rrrr110001RRRRR	GR[reg2]←GR[reg1]+sign	-extend(imm16)	1	1	1					
		111111111111111111										
MOVHI	imm16, reg1, reg2	rrrr110010RRRRR	GR[reg2]←GR[reg1]+(imr	n16 0 ¹⁶)	1	1	1					
		111111111111111111										
MULH	reg1, reg2	rrrr000111RRRRR	GR[reg2]←GR[reg2] ^{Note 2}	² xGR[reg1] ^{Note 2}	1	1	2					
			(Signed multiplication)									
	imm5, reg2	rrrrr010111iiiii	GR[reg2]←GR[reg2] ^{Note 2}	1	1	2						
				(Signed multiplication)								
MULHI	imm16, reg1, reg2	rrrr110111RRRRR	GR[reg2]←GR[reg1] ^{Note 2}	² ximm16	1	1	2					
				(Signed multiplication)								
NOP		000000000000000000000000000000000000000	Uses 1 clock cycle without	it doing anything	1	1	1					
NOT	reg1, reg2	rrrr000001RRRRR	GR[reg2]←NOT(GR[reg1])	1	1	1		0	x	х	
NOT1	bit#3, disp16[reg1]	01bbb111110RRRRR	adr←GR[reg1]+sign-exter	nd(disp16)	4	4	4				х	
		dddddddddddddd	Z flag Not(Load-memory	v-bit(adr, bit#3))								
			Store-memory-bit(adr, bit#	#3, Z flag)								
OR	reg1, reg2	rrrr001000RRRRR	GR[reg2]←GR[reg2]OR GR[reg1]		1	1	1		0	x	х	
ORI	imm16, reg1, reg2	rrrr110100RRRRR	GR[reg2]←GR[reg1]OR z	ero-extend(imm16)	1	1	1		0	x	х	
RETI		0000011111100000	if PSW.EP=1		4	4	4	R	R	R	R	R
		000000101000000	then PC ←EIPC									
			$PSW \leftarrow EIPSW$									
			else if PSW.NP=1									
			then PC ←FEPC									
				N								
			else PC ←EIPC									
			PSW ←EIPSW	I								
SAR	reg1, reg2	rrrr111111RRRRR	GR[reg2]←GR[reg2]arithn	netically shift right	1	1	1	x	0	x	х	
		000000010100000		by GR[reg1]								
	imm5, reg2	rrrr010101iiiii	GR[reg2]←GR[reg2]arithn	netically shift right	1	1	1	x	0	x	х	
				by zero-extend(imm5)								

- **Notes 1.** The op code of this instruction uses the field of reg1, even though the source register is shown as reg2 in the above table. Therefore, the meaning of register specification for the mnemonic description and op code is different from that of the other instructions.
 - rrrrr = regID specification
 - RRRRR = reg2 specification
 - 2. Only the lower halfword data is valid.

Instruction Set (Alphabetical Order) (3/4)

Mnemonic	Operand	Op Code	Operation		ecu Cloc	k		Flag			
				i	r	Ι	CY	ov	S	Z	SAT
SATADD	reg1, reg2	rrrrr000110RRRRR	GR[reg2]←saturated(GR[reg2]+GR[reg1])	1	1	1	x	x	x	х	х
	imm5, reg2	rrrrr010001iiiii	GR[reg2]←saturated(GR[reg2]+sign-extend(imm5))	1	1	1	x	x	х	х	х
SATSUB	reg1, reg2	rrrr000101RRRRR	GR[reg2]←saturated(GR[reg2]–GR[reg1])	1	1	1	х	х	х	х	x
SATSUBI	imm16, reg1, reg2	rrrr110011RRRRR	$GR[reg2] \leftarrow saturated(GR[reg1] - sign-extend(imm16))$	1	1	1	x	x	х	х	х
		111111111111111111									
SATSUBR	reg1, reg2	rrrr000100RRRRR	GR[reg2]←saturated(GR[reg1]–GR[reg2])	1	1	1	x	х	х	х	х
SETF	cccc, reg2	rrrr1111110cccc	if conditions are satisfied	1	1	1					
		000000000000000000000000000000000000000	then GR[reg2]←0000001H								
			else GR[reg2]←0000000H								
SET1	bit#3, disp16[reg1]	00bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)	4	4	4				х	
		dddddddddddddd	Z flag←Not(Load-memory-bit(adr, bit#3))								
			Store-memory-bit(adr, bit#3, 1)								
SHL	reg1, reg2	rrrr111111RRRRR	GR[reg2]←GR[reg2] logically shift left by GR[reg1]	1	1	1	x	0	x	х	
		0000000011000000									
	imm5, reg2	rrrrr010110iiiii	GR[reg2]←GR[reg1] logically shift left by	1	1	1	x	0	x	х	
			zero-extend(imm5)								
SHR	reg1, reg2	rrrr111111RRRRR	GR[reg2]←GR[reg2] logically shift right by GR[reg1]	1	1	1	x	0	x	х	
		000000001000000									
	imm5, reg2	rrrrr010100iiiii	GR[reg2]←GR[reg2] logically shift right by	1	1	1	x	0	x	х	
			zero-extend(imm5)								
SLD.B	disp7[ep], reg2	rrrr0110dddddd	adr←ep+zero-extend(disp7)	1	1	2					
			GR[reg2]←sign-extend(Load-memory(adr, Byte))								
SLD.H	disp8[ep], reg2	rrrr1000dddddd	adr←ep+zero-extend(disp8)	1	1	2					
		Note 1	GR[reg2]←sign-extend(Load-memory(adr, Halfword))								
SLD.W	disp8[ep], reg2	rrrrr1010dddddd	adr←ep+zero-extend(disp8)	1	1	2					
		Note 2	GR[reg2]←Load-memory(adr, Word)								
SST.B	reg2, disp7[ep]	rrrrr0111dddddd	adr←ep+zero-extend(disp7)	1	1	1					
			Store-memory(adr, GR[reg2], Byte)								
SST.H	reg2, disp8[ep]	rrrrr1001dddddd	adr←ep+zero-extend(disp8)	1	1	1					
		Note 1	Store-memory(adr, GR[reg2], Halfword)								
SST.W	reg2, disp8[ep]	rrrr1010ddddd1	adr←ep+zero-extend(disp8)	1	1	1					
		Note 2	Store-memory(adr, GR[reg2], Word)								
ST.B	reg2, disp16[reg1]	rrrr111010RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					
			Store-memory(adr, GR[reg2], Byte)								

Notes 1. ddddddd is the higher 7 bits of disp8.

2. dddddd is the higher 6 bits of disp8.

Instruction Set (Alphabetical Order) (4/4)

Mnemonic	Operand	Op Code	Operation		ecu Cloc		(Flag	J	
				i	r	Ι	CY	ov	S	ΖS	SAT
ST.H	reg2, disp16[reg1]	rrrrr111011RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					
		0ppppppppppppppppppppppppppppppppppppp	Store-memory(adr, GR[reg2], Halfword)								
		Note									
ST.W	reg2, disp16[reg1]	rrrrr111011RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	1					
		dddddddddddddd	Store-memory(adr, GR[reg2], Word)								
		Note									
STSR	regID, reg2	rrrr111111RRRRR	GR[reg2]←SR[regID]	1	1	1					
		000000001000000									
SUB	reg1, reg2	rrrr001101RRRRR	GR[reg2]←GR[reg2]–GR[reg1]	1	1	1	x	х	х	x	
SUBR	reg1, reg2	rrrr001100RRRRR	GR[reg2]←GR[reg1]–GR[reg2]	1	1	1	x	х	х	x	
TRAP	vector	00000111111iiii	EIPC ←PC+4(Restored PC)	4	4	4					
		00000010000000	EIPSW ←PSW								
			ECR.EICC ←Interrupt code								
			PSW.EP ←1								
			PSW.ID ←1								
			PC ←00000040H(vector = 00H to 0FH)								
			00000050H(vector = 10H to 1FH)								
TST	reg1, reg2	rrrr001011RRRRR	result—GR[reg2] AND GR[reg1]	1	1	1		0	х	x	
TST1	bit#3, disp16[reg1]	11bbb111110RRRRR	adr←GR[reg1]+sign-extend(disp16)	3	3	3				x	
		ddddddddddddd	Z flag←Not(Load-memory-bit(adr, bit#3))								
XOR	reg1, reg2	rrrr001001RRRRR	GR[reg2]←GR[reg2] XOR GR[reg1]	1	1	1		0	х	x	
XORI	imm16, reg1, reg2	rrrr110101RRRRR	GR[reg2]←GR[reg1] XOR zero-extend(imm16)	1	1	1		0	х	x	

Note dddddddddddd is the higher 15 bits of disp16.

[0]

1-buffer mode	225
4-buffer mode	226
100-pin plastic LQFP	22

[A]

A/D conversion result register	
A/D converter	27, 215
mode register 0	218
mode register 1	
A/D trigger mode	223, 228
A16 to A19	
AD0 to AD7	
AD8 to AD15	
ADC	27
ADCR0 to ADCR7	221
ADCR0H to ADCR7H	221
Address/data variable register	47
Address space	51, 65
ADIC	112, 113
ADIF	112, 113
ADM0	218
ADM1	
ADMK	112, 113
ADPR0 to ADPR2	112, 113
ADTRG	35
ALV0, ALV1	
ALV1n0, ALV1n1 (n = 1 to 4)	158
ANI0 to ANI7	
ANIS0 to ANIS2	218
ANO0, ANO1	42
Applications	22
ASIM00, ASIM01, ASIM10, ASIM11	
ASIS0, ASIS1	
Assembler-reserved register	47
ASTB	
Asynchronous serial interface	
mode registers 00, 01, 10, 11	
status registers 0, 1	
AVdd	
AVREF1 to AVREF3	
AVss	

[B]

Baud rate generator 0 to	2	210
--------------------------	---	-----

compare registers 0 to 2213
prescaler mode registers 0 to 2 214
setting value211
BCC
BCn1 (n = 0 to 7)
BCU
BPRM0 to BPRM2 214
BPRn0 to BPRn2 (n = 0 to 2)214
BRCE0 to BRCE2214
BRG
BRGC0 to BRGC2
BRGn0 to BRGn7 (n = 0 to 2)213
BS218
Bus
access
control function78
control pin78
control unit26
cycle control register84
hold 85, 92
priority93
timing
width79
Byte access79

[C]

Capture operation (timer 1)	164
Capture/compare registers 1n0 to 1n3	
(n = 1 to 4)	150
Cautions (A/D converter)	245
Cautions (power save function)	141
Cautions (PWM unit)	257
Cautions (timer/counter function)	180
CC1n0 to CC1n3 (n = 1 to 4)	153
CE	218
CE11 to CE14	155
CE4	157
CES1n0, CES1n1 (n = 1 to 4)	153
CESEL	134
CG	. 26
CKC	129
CKDIV0, CKDIV1	129
CKSEL	. 41
CL0, CL1	187
Clearing/starting timer (timer 1)	166

CLKOUT	. 41
Clock	
control register	129
generator	. 26
generator function	127
output control	145
output inhibit 132, 1	145
Clocked serial interface	198
Clocked serial interface mode registers 0 to 3 2	200
CLSn0, CLSn1 (n = 0 to 3)	201
СМ4	151
CMIC4 112, 1	113
CMIF4 112, 1	113
СММК4 112, 1	113
CMPR40 to CMPR42 112, 1	113
CMS1n0 to CMS1n3 (n = 1 to 4)	152
Command register	. 76
Compare operation (timer 1)	167
Compare operation (timer 4)	170
Compare register 4	151
Connection of unused pins	. 43
Conversion time	248
Count operation (timer 1)	160
Count operation (timer 4)	169
CPU	. 26
address space 51,	53
function	. 45
register set	. 46
CRXE0 to CRXE3	200
CS	218
CSI	198
CSIC0 to CSIC3 112, 1	113
CSIF0 to CSIF3 112, 1	113
CSIM0 to CSIM3	200
CSMK0 to CSMK3 112, 1	113
CSOT0 to CSOT3	200
CSPRmn (m = 0 to 3, n = 0 to 2) 112, 1	113
CTXE0 to CTXE3	200
CVDD	. 41
CVss	. 41
CY	.49

[D]

D/A converted data coefficient register	250
D/A converter	27, 249
D/A converter mode register	250
DAC	27
DACE0, DACE1	250
DACS0, DACS1	250

DAM	
DAn0 to DAn7 (n = 0, 1)	
Data space	53, 65, 93
Data wait control register	
DCLK0, DCLK1	
DSTB	
DWC	
DWn0, DWn1 (n = 0 to 7)	

[E]

EBS0, EBS1	189
ECLR11 to ECLR14	152
ECR	48
Edge detection function of NMI pin	102
EICC	48
EIPC	48
EIPSW	48
Element pointer	47
ENTO1n0, ENTO1n1 (n = 1 to 4)	158
EP 4	9, 119
ESN0	102
ESn0, ESn1 (n = 00 to 03, 10 to 13,	
20 to 23, 30 to 33)	115
ETI11 to ETI14	155
Example of inserting wait states	83
Exception processing function	95
Exception status flag	119
Exception table	58
Exception trap	120
External expansion mode	63
External interrupt mode register 0	102
External interrupt mode register 1 to 4 11	5, 158
External memory area	62
External trigger mode 22	4, 240
External wait function	83

[F]

FE0, FE1	
FECC	
FEPC	
FEPSW	
Flash memory	
Flash memory programming mode	50
FR0 to FR2	
Frequency measurement	178
Full scale error	247
Function block configuration	25

[G]

General-purpose registers	47
Global pointer	47

[H]

Halfword access	79
HALT mode	
HLDAK	
HLDRQ	

[I]

IC	42
I/O circuits of pins	43, 44
ID	49, 116
IDLE	134
IDLE mode	137
Idle state insertion function	
ILGOP	96
Illegal op code definition	120
IMS1n0 to IMS1n3 (n = 1 to 4)	152
In-service priority register	116
Initial value of each register after reset	301
Initialize	300
Instruction set list	322
INTAD	96
INTC	26
INTCM4	96
INTCSI0 to INTCSI3	96
Internal block diagram	25
Internal RAM area	60
Internal ROM area	
Internal units	26
Interrupt	
control register	112
controller	26
latency time	124
list	
processing function	95
source register	
table	58
Interval timer	172
INTM0	102
INTM1 to INTM4	115, 158
INTOV11 to INTOV14	
INTP110 to INTP113	
INTP120 to INTP123	
INTP130 to INTP133	
INTP140 to INTP143	41

INTP1mn/INTCC1mn

(m = 1 to 4, n = 0 to 3)	
INTSER0, INTSER1	96, 193
INTSR0, INTSR1	96, 193
INTST0, INTST1	96, 193
ISPR	116
ISPR0 to ISPR7	116

[L]

LBEN	39
Link pointer	47

[M]

Maskable interrupt	103
Maskable interrupt status flag	116
Memory	
block function	81
boundary operation condition	93
expansion mode register	64
map	54
read	
write	
MM	64
MM0 to MM3	64
MOD0 to MOD3	
MODE	41
MS	218
Multiple interrupt servicing	122

[N]

NMI	42
Noise elimination of NMI pin	102
Noise eliminator	114
Nonlinearity error	
Non-maskable interrupt	98
Non-maskable interrupt status flag	102
Normal operation mode	50
NP	49, 102

[0]

Off-board programming	303
On-board programming	303
On-chip peripheral I/O interface	94
Operation in power save mode	85
Operation mode	50
Ordering information	22
OST1 to OST4	152
OV	

OVE0, OVE1	
Overall error	
Overflow (timer 1)	162
Overflow (timer 4)	169
OVFn (n = 4, 11 to 14)	159
OVIC11 to OVIC14	112, 113
OVIF11 to OVIF14	112, 113
OVMK11 to OVMK14	112, 113
OVPR1mn (m = 1 to 4, n = 0 to 2)	112, 113

[P]

P0
P1
P2
P3277
P4
P5
P6
P7
P9
P11
P00 to P07 35, 263
P10 to P17 35, 267
P20 to P27 36, 272
P30 to P37 37, 277
P40 to P47 37, 283
P50 to P57 38, 285
P60 to P63 38, 287
P70 to P77 39, 289
P90 to P96 39, 290
P110 to P117 40, 293
P11IC0 to P11IC3 112, 113
P11IF0 to P11IF3 112, 113
P11MK0 to P11MK3 112, 113
P11PRmn (m = 0 to 3, n = 0 to 2) 112, 113
P12IC0 to P12IC3 112, 113
P12IF0 to P12IF3 112, 113
P12MK0 to P12MK3 112, 113
P12PRmn (m = 0 to 3, n = 0 to 2) 112, 113
P13IC0 to P13IC3 112, 113
P13IF0 to P13IF3 112, 113
P13MK0 to P13MK3 112, 113
P13PRmn (m = 0 to 3, n = 0 to 2) 112, 113
P14IC0 to P14IC3 112, 113
P14IF0 to P14IF3 112, 113
P14MK0 to P14MK3 112, 113
P14PRmn (m = 0 to 3, n = 0 to 2) 112, 113
PC47

PCM	296
PCM1, PCM3	296
PE0, PE1	190
Periods where interrupt is not acknowledged	125
Peripheral I/O area	61
Peripheral I/O register	69
Pin configuration	23
Pin function	29, 35
Pin status	34
PLL lockup	131
PLL mode	128
PM0	265
PM1	270
PM2	275
PM3	280
PM4	
PM5	286
PM6	
PM9	
PM11	
PM00 to PM07	
PM10 to PM17	
PM20 to PM27	
PM30 to PM37	
PM40 to PM47	
PM50 to PM57	
PM60 to PM63	
PM90 to PM96	
PM10 to PM117	
PMC0	
PMC0	
PMC1 PMC2	
PMC3	
PMC11	
PMC00 to PMC07	
PMC10 to PMC17	
PMC20 to PMC27	
PMC30 to PMC37	
PMC110 to PMC117	
Port	
port 0	
port 1	
port 2	
port 3	277
port 4	
port 5	285
port 6	287
port 7	289

port 9 290
port 11 293
Port control mode register
Port function
Port mode control register
port 0 mode control register
port 1 mode control register271
port 2 mode control register
port 3 mode control register
port 11 mode control register
Port mode register
port 0 mode register
port 1 mode register
port 2 mode register
port 3 mode register
port 4 mode register
port 5 mode register
port 6 mode register
port 9 mode register
port 11 mode register
Power save control
Power save control register
PRCMD
PRERR 77, 131
PRM00, PRM01, PRM10, PRM11253
PRM1n1 (n = 1 to 4)156
PRM40, PRM41 157
Program counter47
Program register set
Program space 53, 65, 93
Program status word 48, 49
Programmable wait function82
PRS1n0, PRS1n1 (n = 1 to 4)155
PRS40
PS00, PS01, PS10, PS11
PSC
PSW
Pull-up resistor option register
Pulse width measurement
PUO
PUO3
PWM27
buffer register255
control register
output
prescaler register
unit
PWM0 to PWM11255

PWM0, PWM0L, PWM1, PWM1L	255
PWM0, PWM1	. 36
PWMC	253
PWME0, PWME1	253
PWPn0 to PWPn2 (n = 0, 1)	254
PWPR	254

[Q]

Quantization error	246
--------------------	-----

[R]

R/W	40
r0 to r31	47
RAM	26
Real-time pulse unit	26, 146
Receive buffers 0, 0L, 1, 1L	
Receive error interrupt	193
Reception completion interrupt	193
REG0 to REG7	76
RESET	
RESET	41
Reset function	
Resolution	246
ROM	26
RPU	26
RXB0, RXB0L, RXB1, RXB1L	191
RXBn0 to RXBn7 (n = 0, 1)	
RXD0, RXD1	
RXE0, RXE1	184
RXEB0, RXEB1	

[S]

S	
Sampling time	
SAT	
Scan mode	230, 236, 242
SCK0, SCK1	
SCK2	
SCK3	
SCLS0, SCLS1	
Securing oscillation stabilization time.	
SEIC0, SEIC1	112, 113
SEIF0, SEIF1	112, 113
Selecting count clock frequency (time	r 1)161
Selecting count clock frequency (time	r 4) 169
Selecting input clock	
Select mode	228, 232, 240
SEMK0, SEMK1	112, 113

SEPRmn (m = 0, 1, n = 0 to 2) 112, 113
Serial I/O shift register 0 to 3201
Serial interface
Serial interface function182
SI0, SI1
SI2
SI3
Single-chip mode50
SIO
SIO0 to SIO3
SIOn0 to SIOn7 (n = 0 to 3)201
SL0, SL1
SO0, SO1
SO2
SO3
Software exception117
Software STOP mode139
SOT0, SOT1
Specific register74
Specifying operation mode50
SRIC0, SRIC1 112, 113
SRIF0, SRIF1 112, 113
SRMK0, SRMK1 112, 113
SRPRmn (m = 0, 1, n = 0 to 2) 112, 113
Stack pointer
Status saving register during interrupt 48
Status saving register for NMI 48
Status transition diagram133
STIC0, STIC1 112, 113
STIF0, STIF1 112, 113
STMK0, STMK1 112, 113
STP134
STPRmn (m = 0, 1, n = 0 to 2) 112, 113
SYS 77, 131
System register set48
System status register77

[T]

TBC	143
TBCS	134
TCLR11	35
TCLR12	35
TCLR13	
TCLR14	
TES1n0, TES1n1 (n = 1 to 4)	152
Text pointer	
TI11	35
TI12	

TI13	37
TI14	40
Time base counter	143
Timer	
control register 4	157
control register 11 to 14	155
output control register 11 to 14	158
overflow status register	159
trigger mode 2	23, 231
unit mode register 11 to 14	152
Timer 1	149
Timer 1 operation	160
Timer 4	151
Timer 4 operation	169
Timer 11 to 14	149
Timer/counter function	146
TM4	151
TM11 to TM14	149
TMC4	157
TMC11 to TMC14	155
TO110, TO111	35
TO120, TO121	35
TO130, TO131	37
TO140, TO141	40
TOC11 to TOC14	158
TOVS	159
Transmission completion interrupt	193
Transmit shift register 0, 0L, 1, 1L	192
TRAP0n, TRAP1n (n = 0 to FH)	
TRG0 to TRG2	220
TUM11 to TUM14	151
TXD0, TXD1	36
TXE0, TXE1	186
TXED0, TXED1	192
TXS0, TXS0L, TXS1, TXS1L 1	85, 192
TXSn0 to TXSn7 (n = 0, 1)	192

[U]

UARTO, UART1	
UBEN	
UNLOCK	77, 131

[V]

Vdd	. 41
Vpp	42
Vss	42

[W]

WAIT	41
Wait function	82
Word access	80
Wrap-around	53, 65

[X]

X1, X2	11
--------	----

[**Z**]

Ζ	49
Zero register	47
Zero scale error	

[MEMO]

Facsimile Message

From:

Name

Company

Tel.

FAX

Address

Thank you for your kind support.

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that

errors may occur. Despite all the care and precautions we've taken, you may

encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest

improvements to us.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: +1-800-729-9288 +1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: +82-2-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608
South America NEC do Brasil S.A. Fax: +55-11-6462-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: +886-2-2719-5951	

I would like to report the following error/make the following suggestion:

Document title:

Document number: _____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				