POWERNAVIGATOR 5.4

DIGITAL POINT OF LOAD USER GUIDE

MARCH 2018

OVERVIEW

- This guide walks a user though the steps to setup and configure a digital power device using Renesas's PowerNavigator GUI.
- For Digital Multiphase products (ISL691xx and ISL681xx), please see the dedicated Digital Multiphase user guide.
- This guide assumes the user has followed the instructions on the website for downloading and installing PowerNavigator and is able to launch the program successfully.

Page 2

OVERVIEW

- The following sections are shown in this guide:
 - Hardware free mode
 - Selection of devices
 - Power architecture setup
 - Current sharing
 - Connecting to hardware
 - Auto scan of devices
 - Device setup with Rail Inspector
 - Changing device parameters
 - Configuration file load and save
 - Sequencing
 - Time based sequencing
 - Event based sequencing
 - RailScope
 - Adding/monitoring devices
 - Logging
 - Production File HEX Creation

Offline Mode (Hardware Free Mode)

PowerNavigator Launch Screen – Offline Mode

The PowerNavigator launch screen allows you to select online (hardware connected) or offline modes of operation.

PowerNavigator – System Screen Offline Mode

Page 6

BIG IDEAS FOR EVERY SPACE

© 2017 Renesas Electronics Corporation. All rights reserved.

PowerNavigator – System Screen Offline Mode

PowerNavigator – System Screen Offline Mode

Page 9

© 2017 Renesas Electronics Corporation. All rights reserved.

Multiple parts can be added to PowerMap, representing system level view.

Example ZL8802 RailBlock (2-PH operation):

Example ZL8802 RailBlock (2-CH operation):

Drag and drop interface for configuration of a rail from 2-phase to dual output.

Drag "Phase Dot" to change from 2-phase to 2-Channel operation

Example ISL68200 RailBlock:

- Controllers which do not support current share will only have one "slot".
- In this case, we have a single phase ISL68200 controller at PMBus address 0x60.

Load Blocks represent system load and can be added to the PowerMap from the Part Library. Double Click to add additional inputs.

© 2017 Renesas Electronics Corporation. All rights reserved.

Page 16

After configuring system, all sources, rails and loads can be wired together.

BIG IDEAS FOR EVERY SPACE

© 2017 Renesas Electronics Corporation. All rights reserved.

Right-click on PowerMap to bring up contextual menu. Select "Auto Wire All Power Lines" to auto wire PowerMap.

Fully wired PowerMap with multi-input loads.

To implement a current sharing rail, drag a part from the part library onto an open RailBlock "slot".

Example ZL8802 RailBlock (4-PH operation):

- The ZL8802 allows for 2-PH, 4-PH, 6-PH or 8-PH operation via current share.
- Each "slot" in the RailBlock represents shows how many controllers can be paralleled in a current share group.
- To create a current share group, a controller can be dragged from the part library into a "slot", creating a current share rail.
- In this case, we have a 4-phase design, with two ZL8802 controllers one at PMBus address 0x44 and another at 0x46.

Readouts

Analog sliding meter with color indicators. Green is within normal limits, yellow in PMBus warning limits, red for exceeding OVP/UVP settings.

Page 25

Output Voltage 0.80 V Operation and fault lights Digital readout of output voltage

Clicking this button will open the window below allowing adjustment of limits

Connecting to Hardware

Connect to Hardware . . .

 To connect to hardware, a USB to PMBus adapter (ZLUSBEVAL3Z, included with all demo kits) is required.

Page 27

- STEP 1: Connect USB cable from PC to USB adapter
- STEP 2: Connect USB to PMBus adapter to demo board hardware
- STEP 3: Power demo board
- STEP 4: Launch PowerNavigator software

Connect to Hardware...

PowerNavigator Launch Screen

All discovered hardware is displayed in the "Scan Attached Devices" window. The PMBus scan range can be adjust – default range is 0x10 to 0x7F.

PowerNavigator 5.4 – Connect to HW

BIG IDEAS FOR EVERY SPACE

© 2017 Renesas Electronics Corporation. All rights reserved.

PowerNavigator 5.4 – Connect to HW

PowerNavigator 5.4 – Project Save

PowerNavigator – Rail Inspector

PowerNavigator 5.4 – Rail Inspector

- Rail Inspector tool eases device configuration
 - Double click on RailBlocks to bring up individual Rail Inspector for each device.
 - Each device in PowerNavigator can have its own, customized Rail Inspector.
- Rail Inspector tool can be used to:
 - Quickly see rail summary, including PMBus addresses, controller type, PMBus status, device options, fault status, etc.
 - Save/Load Configuration Files
 - Configure device using command tool
- Allows for future expandability
 - Future releases of PowerNavigator will expand Rail Inspector features

PowerNavigator 5.4 – Rail inspector

Example Rail Inspector – ISL68200

Design Requirements - Enter Vin, Vout and lout requirements

Component Selection – Enter FET, Inductor and Output Cap information

Efficiency – Real time plot of efficiency with selected components and switching frequency.

Page 39

BIG IDEAS FOR EVERY SPACE

Current Sense – Automatic calculation of current sense resistor settings based on desired OC trip point.

Page 40

BIG IDEAS FOR EVERY SPACE

Pinstrap Configuration – Select pinstrap resistors to setup device default settings.

Design Verification—Bode and Output Impedance plots of design.

© 2017 Renesas Electronics Corporation. All rights reserved.

Schematic Generation – Final schematic, with customized components, generated automatically.

Phase Scope – Real time plotting of all telemetry parameters.

BIG IDEAS FOR EVERY SPACE

BIG IDEAS FOR EVERY SPACE

Sequencing

PowerNavigator – Sequencing

- All Renesas Digital Power Controllers and modules with a DDC bus support autonomous sequencing between rails.
- Sequencing is configured using the PowerNavigator sequencing tool.
- Once configured, all sequencing events are handled automatically using Renesas's proprietary DDC bus.
 - Controllers and/or modules will automatically communicate via DDC bus, synchronizing sequencing events.

PowerNavigator – System Screen

The sequencing tab allows for power up and power down sequencing of devices in the PowerMap.

PowerNavigator GUI – Sequencing

PowerNavigator – Sequencing

- Event based sequencing waits for the device PGOOD to transition high (the event) before sequential rails start-up
 - Sequence order is set by Prequel/Sequel using the SEQUENCE PMBus command
 - TON_DELAY is used to set the time delay between sequenced rails
- Timed based sequencing uses a timer from a global enable to sequence rails at start-up.
 - TON_DELAY sets the sequence order on the way up. TOFF_DELAY sets the order on the way down.

Event Based Sequence Example

Event Based Sequence Example

Time Based Sequence Example

Time Based Sequence Example

Railscope

PowerNavigator 5.4 – RailScope

- New RailScope allows the user to plot telemetry parameters from up to 4 devices.
 - Similar to a Low Bandwidth Oscilloscope integrated into PowerNavigator.
 - Allows user to plot multiple telemetry values at a time.
- Logging capability is also built-in.
 - All telemetry values can be logged to a .csv file for later viewing.
 - Status registers are also logged.

© 2017 Renesas Electronics Corporation. All rights reserved.

- Adjustable update rate allows users to control how much data they collect.
 - Data can be updated as fast as 1ms and as slow as 1000ms.
 - Displayed points can be as few as 50 to as many as 500.

PowerNavigator – RailScope

BIG IDEAS FOR EVERY SPACE

RailScope: Initial Setup

RailScope: 2 Telemetry Parameters

RailScope: 4 Telemetry Parameters

RailScope: Example Zoom-in

RailScope: Example X & Y-axis Scale Options

RailScope: Logging Feature

- Once enabled, logging feature will automatically log all selected telemetry parameters and the STATUS_WORD register for each device.
- All data is saved to a .csv file, which can be opened in Excel for later data analysis.

- Once the .csv file size exceeds 50MB, a new file will automatically be created.
- There is no limit on how long logging can run for.
- The log file name and path can be changed by the end user.

RailScope: Example Log File

© 2017 Renesas Electronics Corporation. All rights reserved.

HEX File Creation

Configuration File Overview

- Renesas Digital Power controllers use configuration files to program important device parameters.
 - Configuration files are basically a list of PMBus commands defining device operation. i.e. Vout Command = 1.0V, lout Cal Gain = 0.5mV/A, etc.
- Device configuration only needs to be done one time programmed parameters are stored inside non-volatile memory for future use. NVM supports multiple writes and is re-programmable.

Page 67

 Several Options are available for programming devices in a production environment.

Programming Devices in Manufacturing Environment

Option 1: Program controllers pre-board assembly

- Devices are programmed on a high speed production programmer before being assembled on a board.
- Can use a supported 3rd party programming house OR offline programmer at subcontractor.

Option 2: Program controllers after board assembly

- Devices are programmed on PCB post board assembly
- Can be done at ICT (using a bed of nails approach or onboard microcontroller) OR using Renesas dongle and Production Configuration Tool (PCT).
- Requires board to be powered up with all controllers DISABLED until they are fully programmed.

Typical Flow – Pre-Programmed Devices

- Controllers are programmed prior to PCB manufacture.
- Hex files are created using PowerNavigator software (File->Export Production Hex).
- Programming is done either with a 3rd party or using offline programmer at subcon.
- Typical programming time: 4-7 seconds per device.
- Individual part numbers are assigned to each device after programming to make sure boards are assembled correctly.

Typical Flow – Programming Parts on Board

- Controllers are programmed after board assembly.
- Typical Programming time: 5-10s per device.
- Simplified inventory and configuration file management.
- Controllers must be powered to program, but output must remain disabled until part is fully programmed.
- Special attention to sequencing must be made when using self-enabled parts.

BIG IDEAS FOR EVERY SPACE

HEX File Creation – Step 1, Project Save

HEX File Creation – Step 2, Export HEX Files

BIG IDEAS FOR EVERY SPACE

Example HEX File Creation

Example Configuration File

```
# ZL8800-0 0x28
                                                                    Header information with device type,
# connected: true
                                     ZL8800----01.04
# DEVICE_ID
                                                                   FW version, creation date, etc.
                                     0x49A02400
# IC_DEVICE_ID
# IC_DEVICE_REV
                                     0x01040000
# 2014/01/16 17:55:45000
RESTORE_FACTORY
                                           This sequence of commands is
STORE_DEFAULT_ALL
STORE_USER_ALL
                                           used to clear contents of NVM.
### Begin User Store
RESTORÉ_USER_ALL
# Global commands
                                   0xfa50
                                                       # 296 kHz
FREQUENCY_SWITCH
                                   0xd380
VIN_OV_FAULT_LIMIT
                                                       # 14 V
VIN_OV_FAULT_RESPONSE
                                   0x80
                                                       # 13.5 V
                                                                    Programmed device parameters
VIN_OV_WARN_LIMIT
                                   0xd360
                                                       # 4.734 V
VIN_UV_WARN_LIMIT
                                   0xca5e
                                                       # 4.594 V
VIN_UV_FAULT_LIMIT
                                   0xca4c
VIN_UV_FAULT_RESPONSE
                                   0x80
                                   0xba00
                                                       # 1 mV/A
IIN_CAL_GAIN
USER_GLOBAL_CONFIG
                                   0x80
                                   0x80
VMON_OV_FAULT_RESPONSE
VMON_UV_FAULT_RESPONSE
                                   0x80
PRIVATE_PASSWORD
PUBLIC_PASSWORD
```

Example HEX File

000340F499 000440F10087 0003401530 000440F10087 000340112C 000440F10087 00054046C0DB82 0005404B80D562 l000540E720DBE2 l000540E800D628 000440D80193 00054038E9C295 l0005403924C4E8 000540D0C0AB01 000440DCAC8D 000D40D50940CC7BF0AEFC60997B74 l000540D750A2C9 0003401120 000440F10087 0003401225 000440F10087

Configuration file translated into machine readable HEX format.

BIG IDEAS FOR EVERY SPACE Renesas.com

