
## General Description

The 843N252-45 is a 1 LVPECL and 1 LVCMS output Synthesizer optimized to generate Ethernet reference clock frequencies. The device uses IDT's fourth generation FemtoClock® NG technology for an optimum of high clock frequency and low phase noise performance, combined with a low power consumption and high power supply noise rejection. Using a 25MHz parallel resonant crystal, the following frequencies can be generated: 156.25MHz and 125MHz. With a very low phase noise VCO it is targeted to achieve 0.4ps or lower typical rms phase jitter, easily meeting Ethernet jitter requirements. The 843N252-45 is packaged in a small 16-pin TSSOP package.

## Features

- Fourth generation FemtoClock® Next Generation (NG) technology
- One differential 3.3V LVPECL output and one LVCMS/LVTTL output
- Crystal oscillator interface designed for a 25MHz parallel resonant crystal
- A 25MHz crystal generates output frequencies of: 156.25MHz and 125MHz
- VCO frequency: 625MHz
- RMS Phase Jitter @ 156.25MHz, (12kHz – 20MHz) using a 25MHz crystal: 0.33ps (typical)
- RMS Phase Jitter @ 125MHz, (12kHz – 20MHz) using a 25MHz crystal: 0.39ps (typical)
- Power supply noise rejection PSNR: -60dB (typical)
- Full 3.3V supply mode
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package

## Block Diagram



## Pin Assignment

|                   |   |    |                 |
|-------------------|---|----|-----------------|
| CLK_ENA           | 1 | 16 | CLK_ENB         |
| V <sub>EE</sub>   | 2 | 15 | V <sub>EE</sub> |
| QA                | 3 | 14 | QB              |
| V <sub>CCOA</sub> | 4 | 13 | nQB             |
| nc                | 5 | 12 | V <sub>CC</sub> |
| nc                | 6 | 11 | XTAL_IN         |
| V <sub>CCA</sub>  | 7 | 10 | XTAL_OUT        |
| V <sub>CC</sub>   | 8 | 9  | V <sub>EE</sub> |

**843N252-45**

16-Lead TSSOP

4.4mm x 5.0mm x 0.925mm package body  
G Package

**Table 1. Pin Descriptions**

| Number   | Name                | Type   |        | Description                                                                |
|----------|---------------------|--------|--------|----------------------------------------------------------------------------|
| 1        | CLK_ENA             | Input  | Pullup | Clock enable pin. LVC MOS/LVTTL interface levels. See Table 3A.            |
| 2, 9, 15 | V <sub>EE</sub>     | Power  |        | Negative supply pins.                                                      |
| 3        | QA                  | Output |        | Single-ended clock output. LVC MOS/LVTTL interface levels.                 |
| 4        | V <sub>CCOA</sub>   | Power  |        | Output supply pin for QA output.                                           |
| 5, 6     | nc                  | Unused |        | No connect.                                                                |
| 7        | V <sub>CCA</sub>    | Power  |        | Analog supply pin.                                                         |
| 8, 12    | V <sub>CC</sub>     | Power  |        | Power supply pin.                                                          |
| 10<br>11 | XTAL_OUT<br>XTAL_IN | Input  |        | Crystal oscillator interface XTAL_IN is the input, XTAL_OUT is the output. |
| 13, 14   | nQB, QB             | Output |        | Differential output pair. LVPECL interface levels.                         |
| 16       | CLK_ENB             | Input  | Pullup | Clock enable pin. LVC MOS/LVTTL interface levels. See Table 3B.            |

NOTE: *Pullup* refers to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

**Table 2. Pin Characteristics**

| Symbol              | Parameter                     | Test Conditions                               | Minimum                     | Typical | Maximum | Units |
|---------------------|-------------------------------|-----------------------------------------------|-----------------------------|---------|---------|-------|
| C <sub>IN</sub>     | Input Capacitance             |                                               |                             | 4       |         | pF    |
| C <sub>PD</sub>     | Power Dissipation Capacitance | V <sub>CC</sub> = V <sub>CCO_A</sub> = 3.465V |                             | 7       |         | pF    |
| R <sub>PULLUP</sub> | Input Pullup Resistor         |                                               |                             | 51      |         | kΩ    |
| R <sub>OUT</sub>    | Output Impedance              | QA                                            | V <sub>CCO_A</sub> = 3.465V | 15      |         | Ω     |

## Function Tables

**Table 3A. CLK\_ENA Function Table**

| Input   | Outputs        |
|---------|----------------|
| CLK_ENA | QA             |
| 0       | High-Impedance |
| 1       | Active         |

**Table 3B. CLK\_ENB Function Table**

| Input   | Outputs |
|---------|---------|
| CLK_ENB | QB      |
| 0       | HIGH    |
| 1       | Active  |

## Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

| Item                                                          | Rating                                     |
|---------------------------------------------------------------|--------------------------------------------|
| Supply Voltage, $V_{CC}$                                      | 3.63V                                      |
| Inputs, $V_I$<br>XTAL_IN<br>Other Inputs                      | 0V to $V_{CC}$<br>-0.5V to $V_{CC} + 0.5V$ |
| Outputs, $V_O$ (LVCMOS)                                       | -0.5V to $V_{CCOA} + 0.5V$                 |
| Outputs, $I_O$ (LVPECL)<br>Continuos Current<br>Surge Current | 50mA<br>100mA                              |
| Package Thermal Impedance, $\theta_{JA}$                      | 94.8°C/W (0 mps)                           |
| Storage Temperature, $T_{STG}$                                | -65°C to 150°C                             |

## DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics,  $V_{CC} = V_{CCOA} = 3.3V \pm 5\%$ ,  $V_{EE} = 0V$ ,  $T_A = 0^\circ C$  to  $70^\circ C$

| Symbol     | Parameter             | Test Conditions | Minimum         | Typical | Maximum  | Units |
|------------|-----------------------|-----------------|-----------------|---------|----------|-------|
| $V_{CC}$   | Power Supply Voltage  |                 | 3.135           | 3.3     | 3.465    | V     |
| $V_{CCA}$  | Analog Supply Voltage |                 | $V_{CC} - 0.14$ | 3.3     | $V_{CC}$ | V     |
| $V_{CCOA}$ | Power Supply Voltage  |                 | 3.135           | 3.3     | 3.465    | V     |
| $I_{CCA}$  | Analog Supply Current |                 |                 |         | 14       | mA    |
| $I_{EE}$   | Power Supply Current  | No Load         |                 |         | 124      | mA    |

Table 4B. LVCMOS/LVTTL DC Characteristics,  $V_{CC} = V_{CCOA} = 3.3V \pm 5\%$ ,  $V_{EE} = 0V$ ,  $T_A = 0^\circ C$  to  $70^\circ C$

| Symbol   | Parameter                   | Test Conditions            | Minimum                           | Typical | Maximum        | Units   |
|----------|-----------------------------|----------------------------|-----------------------------------|---------|----------------|---------|
| $V_{IH}$ | Input High Voltage          |                            | 2                                 |         | $V_{CC} + 0.3$ | V       |
| $V_{IL}$ | Input Low Voltage           |                            | -0.3                              |         | 0.8            | V       |
| $I_{IH}$ | Input High Current          | $CLK\_ENA$ ,<br>$CLK\_ENB$ | $V_{CC} = V_{IN} = 3.465V$        |         | 5              | $\mu A$ |
| $I_{IL}$ | Input Low Current           | $CLK\_ENA$ ,<br>$CLK\_ENB$ | $V_{CC} = 3.465V$ , $V_{IN} = 0V$ | -150    |                | $\mu A$ |
| $V_{OH}$ | Output High Voltage; NOTE 1 |                            | $V_{CCOA} = 3.3V \pm 5\%$         | 2.3     |                | V       |
| $V_{OL}$ | Output Low Voltage; NOTE 1  |                            | $V_{CCOA} = 3.3V \pm 5\%$         |         | 0.5            | V       |

NOTE 1: Outputs terminated with  $50\Omega$  to  $V_{CCOA}/2$ . See Parameter Measurement Information section. *Load Test Circuit diagrams*.

**Table 4C. LVPECL DC Characteristics,  $V_{CC} = 3.3V \pm 5\%$ ,  $V_{EE} = 0V$ ,  $T_A = 0^\circ C$  to  $70^\circ C$** 

| Symbol      | Parameter                         | Test Conditions | Minimum        | Typical | Maximum         | Units |
|-------------|-----------------------------------|-----------------|----------------|---------|-----------------|-------|
| $V_{OH}$    | Output High Voltage; NOTE 1       |                 | $V_{CC} - 1.4$ |         | $V_{CC} - 0.75$ | V     |
| $V_{OL}$    | Output Low Voltage; NOTE 1        |                 | $V_{CC} - 2.0$ |         | $V_{CC} - 1.5$  | V     |
| $V_{SWING}$ | Peak-to-Peak Output Voltage Swing |                 | 0.55           |         | 1.05            | V     |

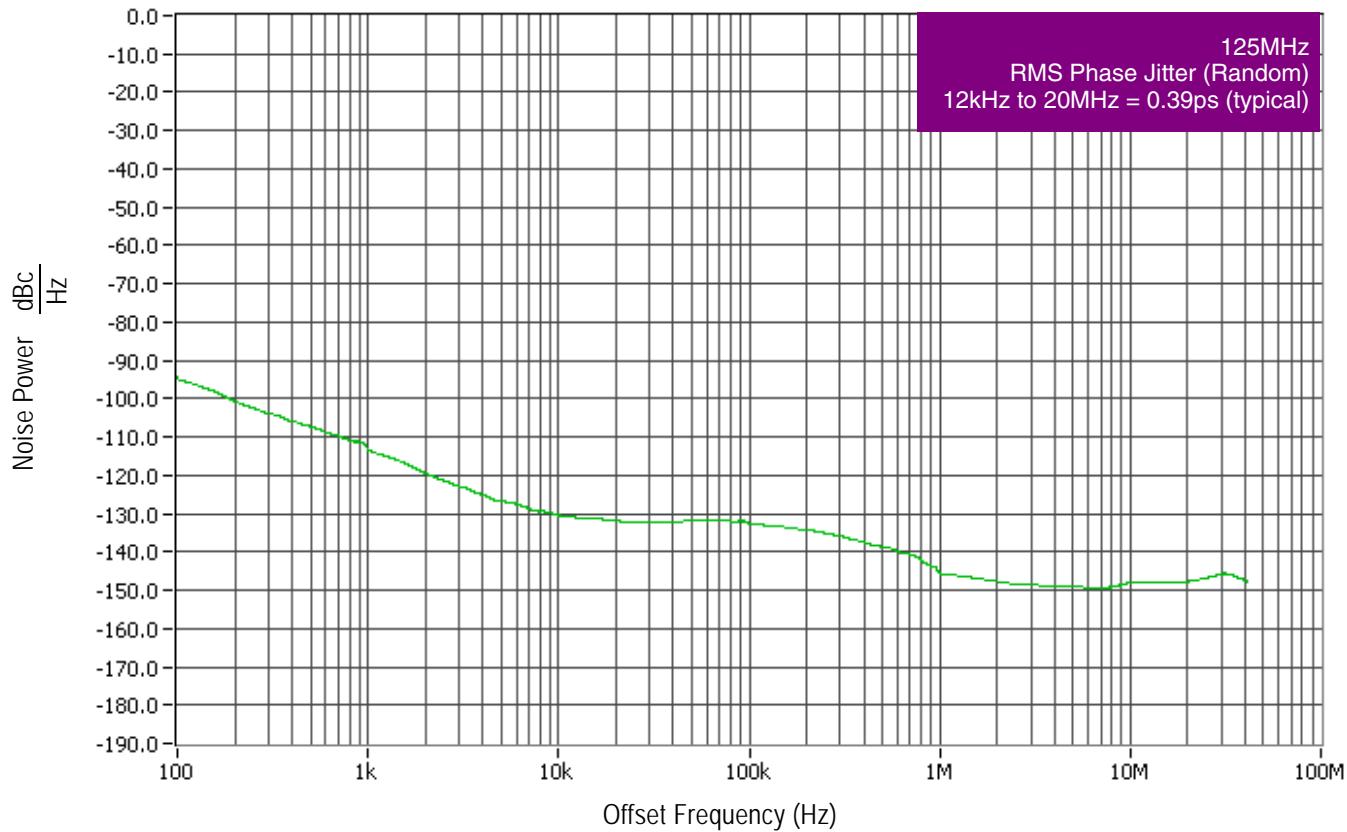
NOTE 1: Output termination with  $50\Omega$  to  $V_{CC} - 2V$ .

**Table 5. Crystal Characteristics**

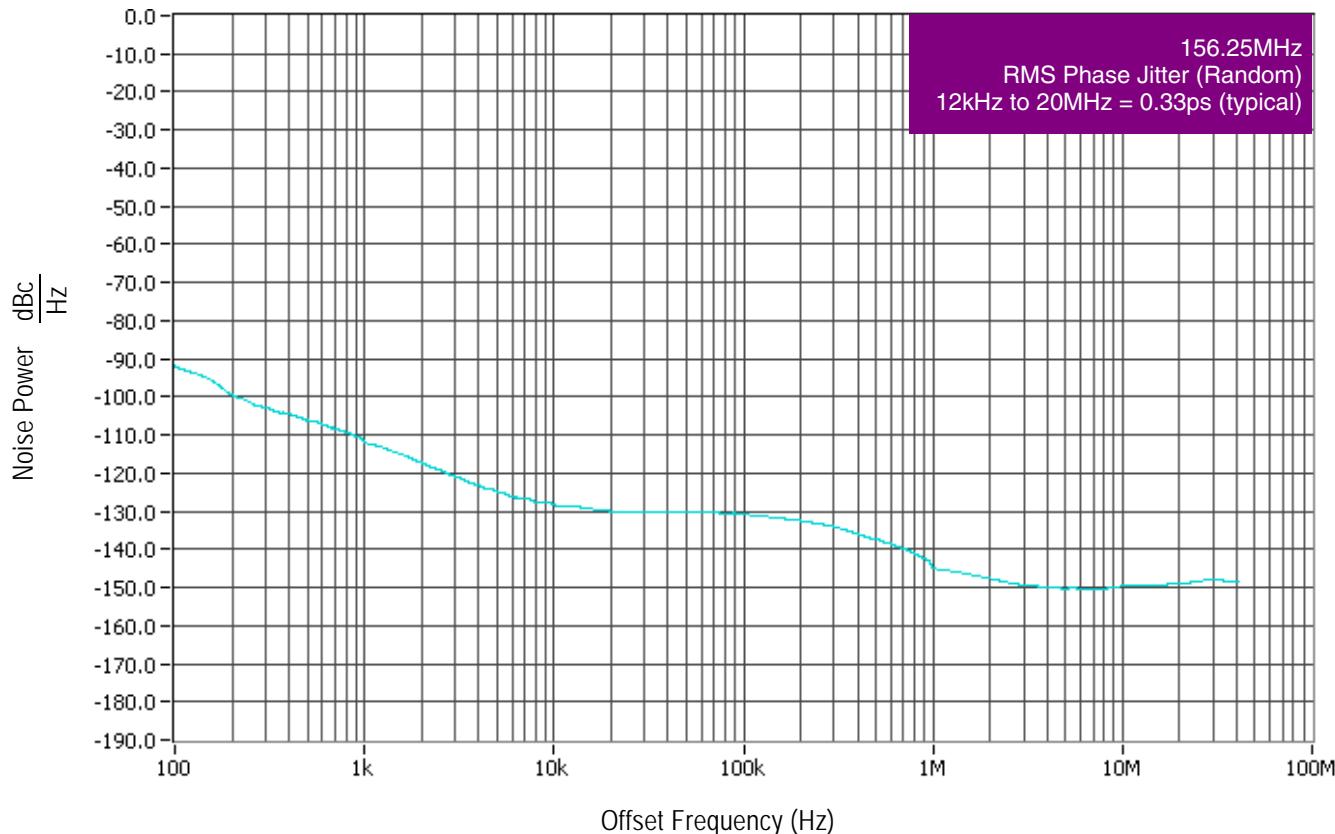
| Parameter                          | Test Conditions | Minimum     | Typical | Maximum | Units    |
|------------------------------------|-----------------|-------------|---------|---------|----------|
| Mode of Oscillation                |                 | Fundamental |         |         |          |
| Frequency                          |                 |             | 25      |         | MHz      |
| Equivalent Series Resistance (ESR) |                 |             |         | 50      | $\Omega$ |
| Shunt Capacitance                  |                 |             |         | 7       | pF       |

## AC Electrical Characteristics

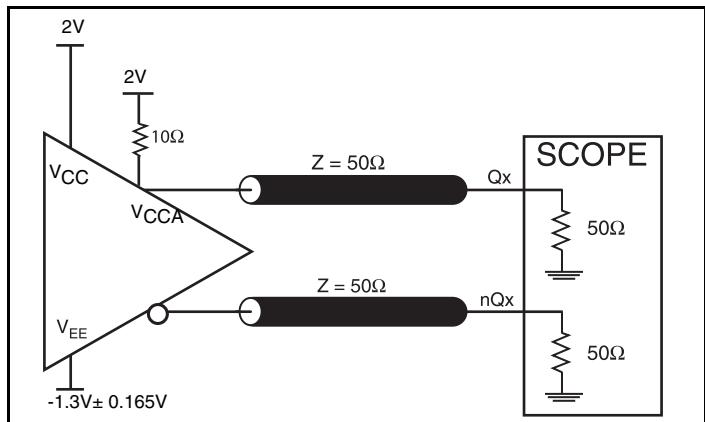
**Table 6. AC Characteristics,  $V_{CC} = V_{CCOA} = 3.3V \pm 5\%$ ,  $V_{EE} = 0V$ ,  $T_A = 0^\circ C$  to  $70^\circ C$** 


| Symbol                    | Parameter                         | Test Conditions  |                                                | Minimum | Typical | Maximum | Units |
|---------------------------|-----------------------------------|------------------|------------------------------------------------|---------|---------|---------|-------|
| $f_{OUT}$                 | Output Frequency                  | QA               |                                                |         | 125     |         | MHz   |
|                           |                                   | QB, nQB          |                                                |         | 156.25  |         | MHz   |
| $\delta_{JIT}(\emptyset)$ | RMS Phase Jitter (Random); NOTE 1 | QA               | 125MHz, Integration Range:<br>12kHz – 20MHz    |         | 0.39    |         | ps    |
|                           |                                   | QB, nQB          | 156.25MHz, Integration Range:<br>12kHz – 20MHz |         | 0.33    |         | ps    |
| PSNR                      | Power Supply Noise Reduction      | From DC to 10MHz |                                                |         | -60     |         | dB    |
| $t_R / t_F$               | Output Rise/Fall Time             | QA               | 20% to 80%                                     | 250     |         | 500     | ps    |
|                           |                                   | QB, nQB          | 20% to 80%                                     | 150     |         | 300     | ps    |
| odc                       | Output Duty Cycle                 | QA               |                                                | 47      |         | 53      | %     |
|                           |                                   | QB, nQB          |                                                | 48      |         | 52      | %     |

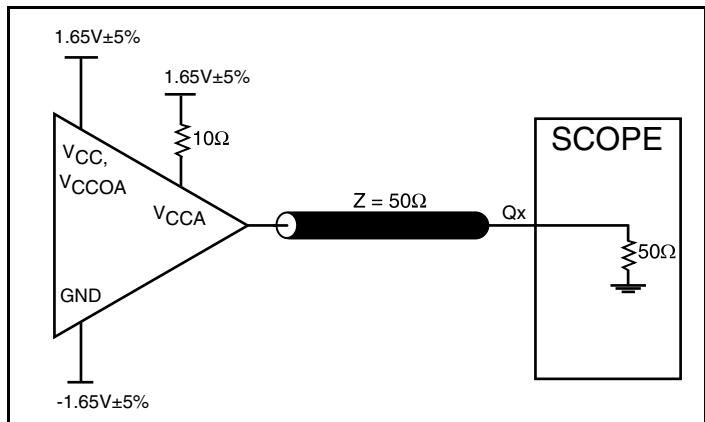
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.


NOTE: Using a 25MHz, 12pF quartz crystal.

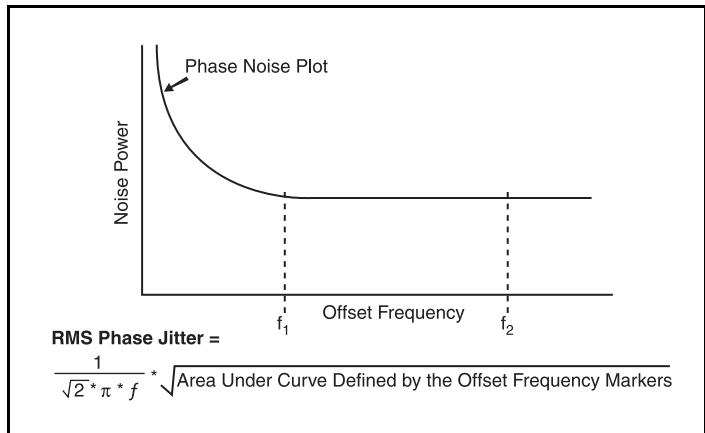
NOTE 1: Please refer to the Phase Noise plots.


## Typical Phase Noise at 125MHz

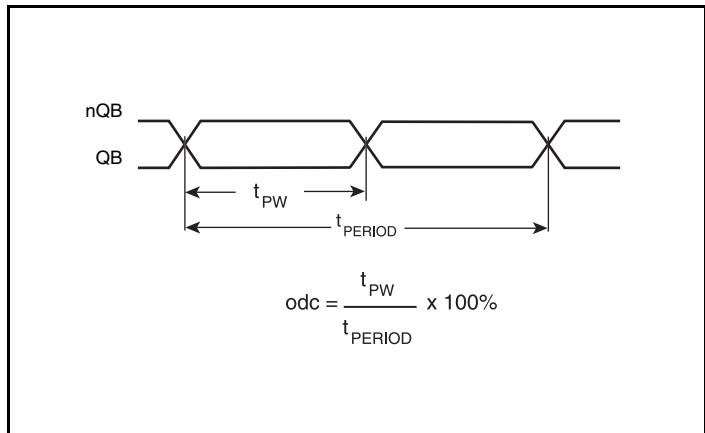



## Typical Phase Noise at 156.25MHz

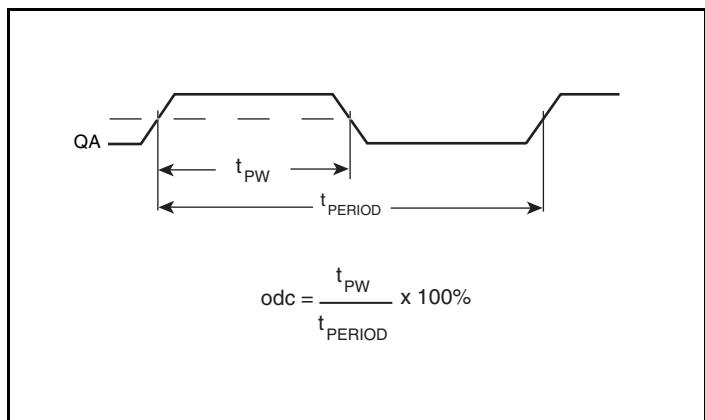



## Parameter Measurement Information

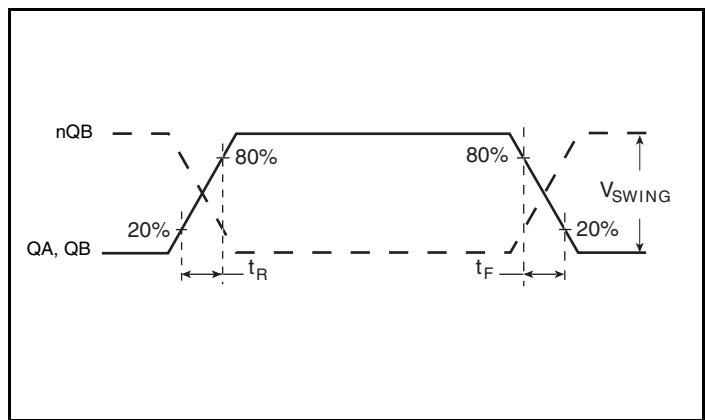



3.3V LVPECL Output Load AC Test Circuit




3.3V LVC MOS Output Load AC Test Circuit




RMS Phase Jitter



LVPECL Output Duty Cycle/Pulse Width/Period



LVC MOS Output Duty Cycle/Pulse Width/Period



Output Rise/Fall Time

## Applications Information

### Recommendations for Unused Input Pins

#### Inputs:

##### LVC MOS Control Pins

All control pins have internal pull-ups; additional resistance is not required but can be added for additional protection. A  $1\text{k}\Omega$  resistor can be used.

#### Outputs:

##### LVPECL Outputs

The unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

##### LVC MOS Outputs

The unused LVC MOS output can be left floating. There should be no trace attached.

### Overdriving the XTAL Interface

The XTAL\_IN input can accept a single-ended LVC MOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 1A*. The XTAL\_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver ( $\text{Ro}$ ) plus the series resistance ( $\text{Rs}$ ) equals the transmission line impedance. In addition,

matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First,  $\text{R1}$  and  $\text{R2}$  in parallel should equal the transmission line impedance. For most 50 $\Omega$  applications,  $\text{R1}$  and  $\text{R2}$  can be 100 $\Omega$ . This can also be accomplished by removing  $\text{R1}$  and making  $\text{R2}$  50 $\Omega$ . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

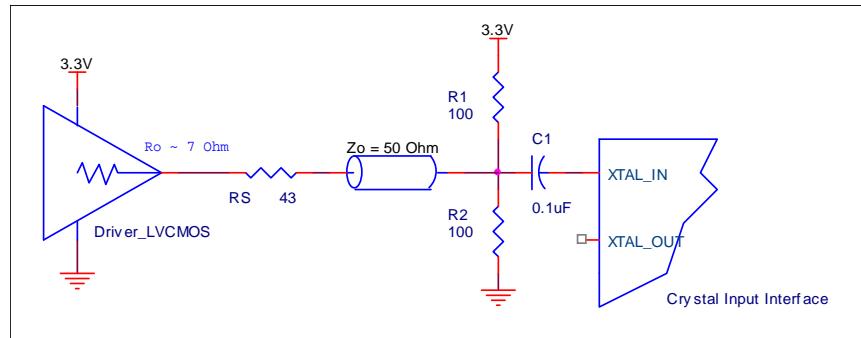



Figure 1A. General Diagram for LVC MOS Driver to XTAL Input Interface

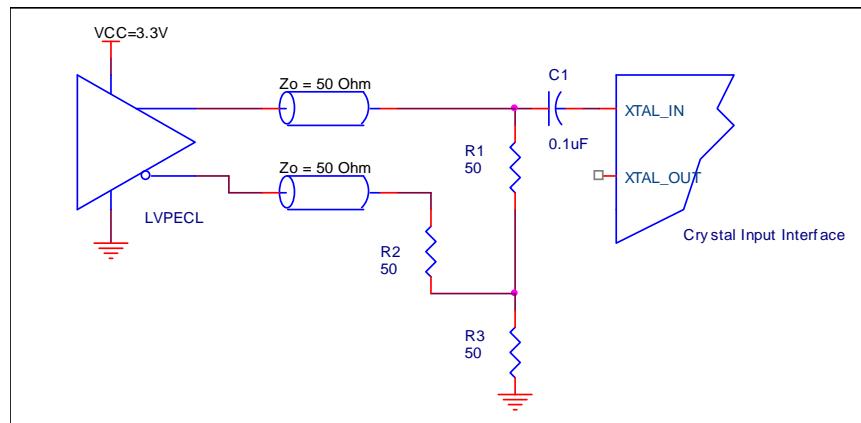
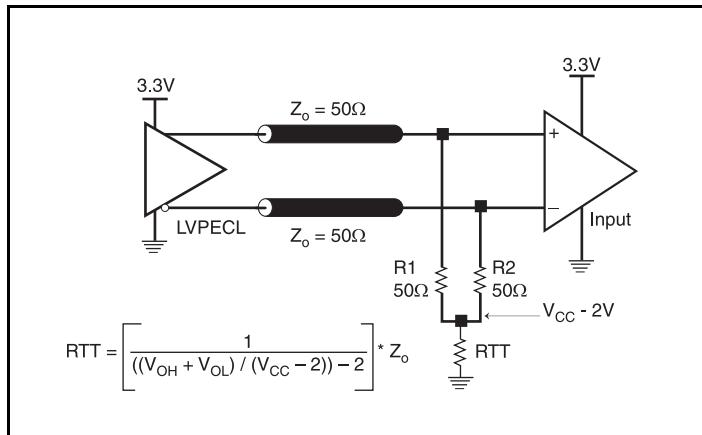
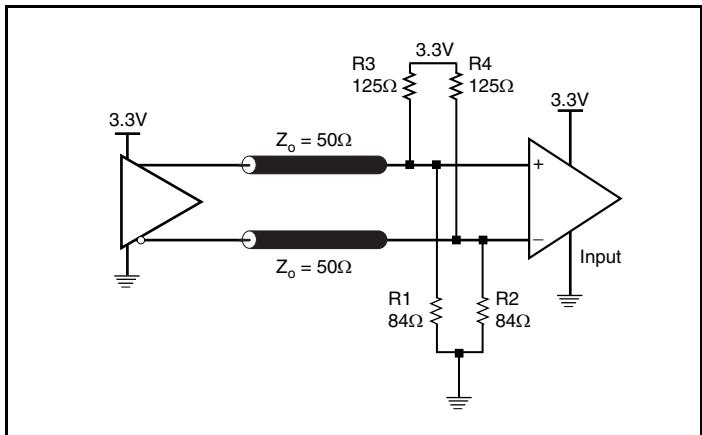
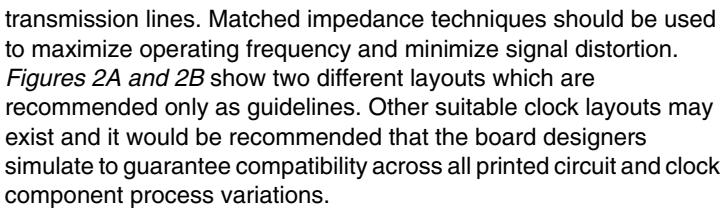




Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface



## Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive  $50\Omega$



## Figure 2A. 3.3V LVPECL Output Termination



## Figure 2B. 3.3V LVPECL Output Termination

## Schematic Example

Figure 3 shows an example of 843N252-45 application schematic. In this example, the device is operated at  $V_{CC} = V_{CCA} = V_{CCOA} = 3.3V$ . If the 12pF parallel resonant 25MHz crystal is used; the load capacitance  $C1 = 5pF$  and  $C2 = 5pF$  are recommended for frequency accuracy. If the 18pF parallel resonant 25MHz crystal is used; the load capacitance  $C1 = 15pF$  and  $C2 = 15pF$  are recommended. Depending on the parasitics of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting  $C1$  and  $C2$ . For this device, the crystal load capacitors are required for proper operation.

As with any high speed analog circuitry, the power supply pins are vulnerable to noise. To achieve optimum jitter performance, power supply isolation is required. The 843N252-45 provides separate power supplies to isolate from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the

PCB as close to the power pins as possible. If space is limited, the 0.1uF capacitor in each power pin filter should be placed on the device side of the PCB and the other components can be placed on the opposite side.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supply frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitances in the local area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set.

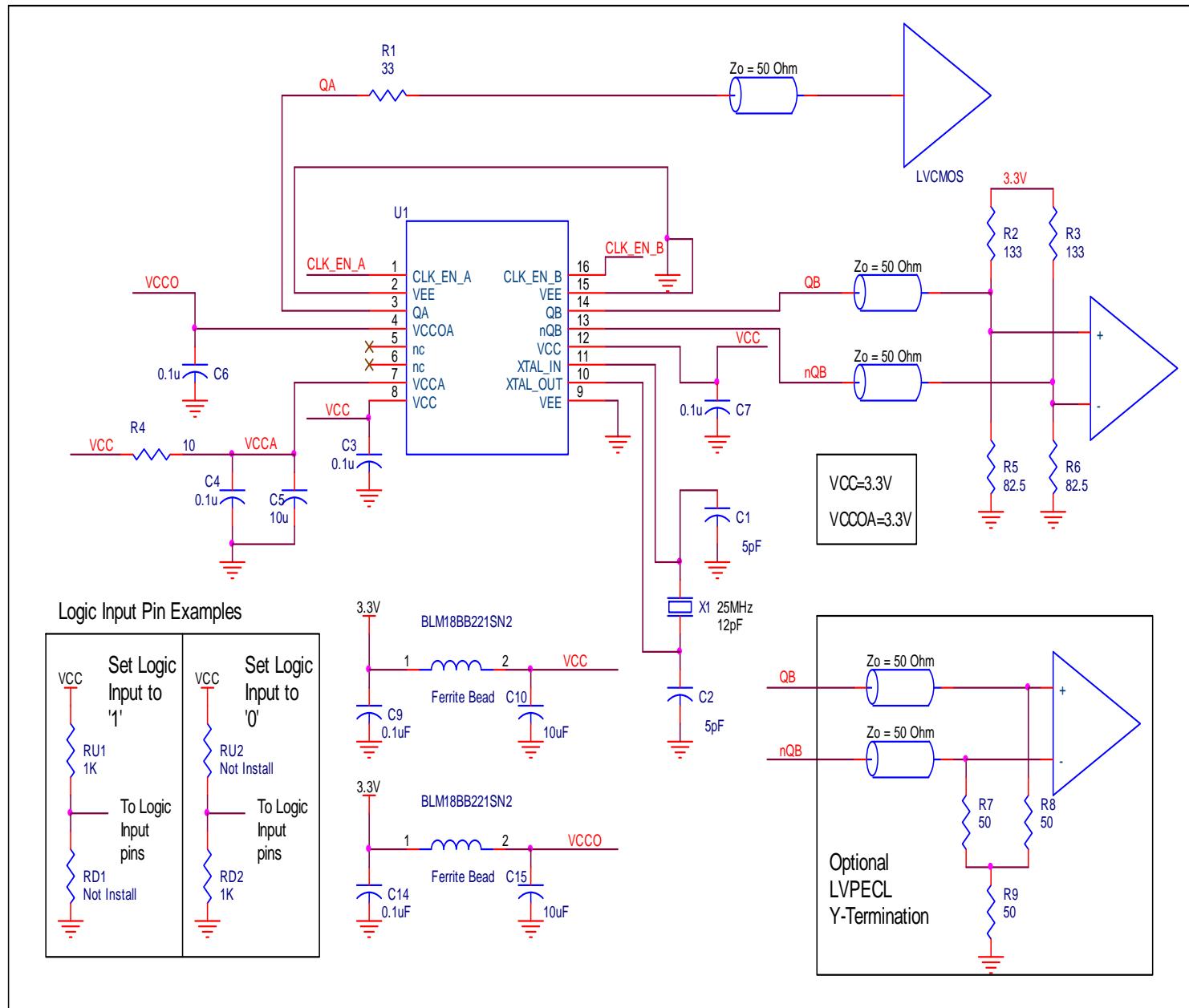



Figure 3. 843N252-45 Schematic Example

## Power Considerations

This section provides information on power dissipation and junction temperature for the 843N252-45. Equations and example calculations are also provided.

### 1. Power Dissipation.

The total power dissipation for the 843N252-45 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for  $V_{CC} = 3.465V$ , which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

#### Core and LVPECL Output Power Dissipation

- Power (core)<sub>MAX</sub> =  $V_{CC\_MAX} * I_{EE\_MAX} = 3.465V * 124mA = 429.66mW$
- Power (LVPECL) = **33.75mW/Loaded Output pair**

#### LVC MOS Output Power Dissipation

- Output Impedance  $R_{OUT}$  Power Dissipation due to Loading  $50\Omega$  to  $V_{CCOA}/2$   
$$\text{Output Current } I_{OUT} = V_{CCOA\_MAX} / [2 * (50\Omega + R_{OUT})] = 3.465V / [2 * (50\Omega + 15\Omega)] = 26.65mA$$
- Power Dissipation on the  $R_{OUT}$  per LVC MOS output  
$$\text{Power } (R_{OUT}) = R_{OUT} * (I_{OUT})^2 = 15\Omega * (26.65mA)^2 = 10.65mW \text{ per output}$$
- **Dynamic Power Dissipation at 125MHz**  
$$\text{Power } (125MHz) = C_{PD} * \text{Frequency} * (V_{CCOA})^2 = 7pF * 125MHz * (3.465V)^2 = 10.51mW$$

#### Total Power Dissipation

- **Total Power**  
$$\begin{aligned} &= \text{Power (core)} + \text{Power (LVPECL)} + \text{Power } (R_{OUT}) + \text{Power } (125MHz) \\ &= 429.66mW + 33.75mW + 10.65mW + 10.51mW \\ &= \mathbf{484.57mW} \end{aligned}$$

## 2. Junction Temperature.

Junction temperature,  $T_j$ , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature,  $T_j$ , to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for  $T_j$  is as follows:  $T_j = \theta_{JA} * P_{d\_total} + T_A$

$T_j$  = Junction Temperature

$\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

$P_{d\_total}$  = Total Device Power Dissipation (example calculation is in section 1 above)

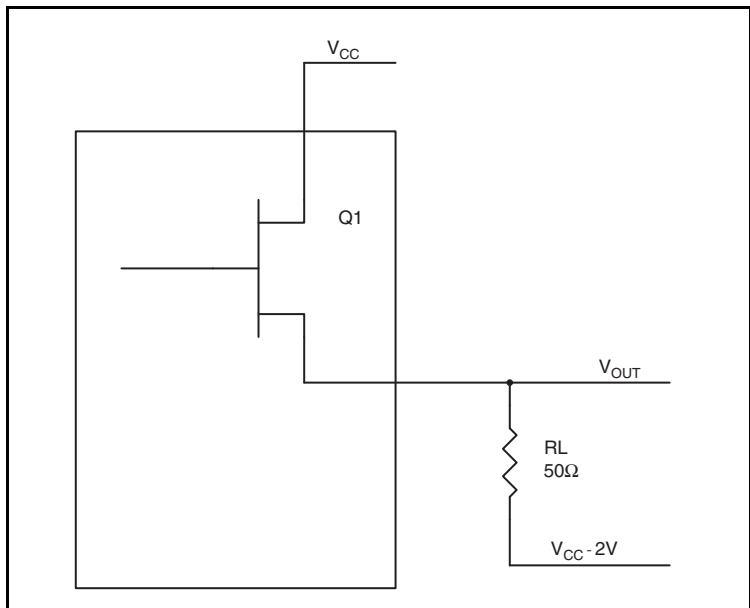
$T_A$  = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance  $\theta_{JA}$  must be used. Assuming no air flow and a multi-layer board, the appropriate value is 94.8°C/W per Table 7 below.

Therefore,  $T_j$  for an ambient temperature of 70°C with all outputs switching is:

70°C + 0.485W \* 94.8°C/W = 116°C. This is below the limit of 125°C.

This calculation is only an example.  $T_j$  will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).


**Table 7. Thermal Resistance  $\theta_{JA}$  for 16 Lead TSSOP Forced Convection**

| $\theta_{JA}$ by Velocity                   |          |          |          |
|---------------------------------------------|----------|----------|----------|
| Meters per Second                           | 0        | 1        | 2.5      |
| Multi-Layer PCB, JEDEC Standard Test Boards | 94.8°C/W | 90.4°C/W | 88.3°C/W |

### 3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

LVPECL output driver circuit and termination are shown in *Figure 4*.



**Figure 4. LVPECL Driver Circuit and Termination**

To calculate worst case power dissipation into the load, use the following equations which assume a  $50\Omega$  load, and a termination voltage of  $V_{CC} - 2V$ .

- For logic high,  $V_{OUT} = V_{OH\_MAX} = V_{CC\_MAX} - 0.75V$   
 $(V_{CC\_MAX} - V_{OH\_MAX}) = 0.75V$
- For logic low,  $V_{OUT} = V_{OL\_MAX} = V_{CC\_MAX} - 1.5V$   
 $(V_{CC\_MAX} - V_{OL\_MAX}) = 1.5V$
- 

$P_{d\_H}$  is power dissipation when the output drives high.

$P_{d\_L}$  is the power dissipation when the output drives low.

$$P_{d\_H} = [(V_{OH\_MAX} - (V_{CC\_MAX} - 2V))/R_L] * (V_{CC\_MAX} - V_{OH\_MAX}) = [(2V - (V_{CC\_MAX} - V_{OH\_MAX}))/R_L] * (V_{CC\_MAX} - V_{OH\_MAX}) \\ = [(2V - 0.75V)/50\Omega] * 0.75V = 18.75mW$$

$$P_{d\_L} = [(V_{OL\_MAX} - (V_{CC\_MAX} - 2V))/R_L] * (V_{CC\_MAX} - V_{OL\_MAX}) = [(2V - (V_{CC\_MAX} - V_{OL\_MAX}))/R_L] * (V_{CC\_MAX} - V_{OL\_MAX}) \\ = [(2V - 1.5V)/50\Omega] * 1.5V = 15mW$$

$$\text{Total Power Dissipation per output pair} = P_{d\_H} + P_{d\_L} = 33.75mW$$

## Reliability Information

Table 8.  $\theta_{JA}$  vs. Air Flow Table for a 16 Lead TSSOP

| $\theta_{JA}$ vs. Air Flow                  |          |          |          |
|---------------------------------------------|----------|----------|----------|
| Meters per Second                           | 0        | 1        | 2.5      |
| Multi-Layer PCB, JEDEC Standard Test Boards | 94.8°C/W | 90.4°C/W | 88.3°C/W |

## Transistor Count

The transistor count for 843N252-45 is: 2039

## Package Outline and Package Dimensions

Package Outline - G Suffix for 16-Lead TSSOP

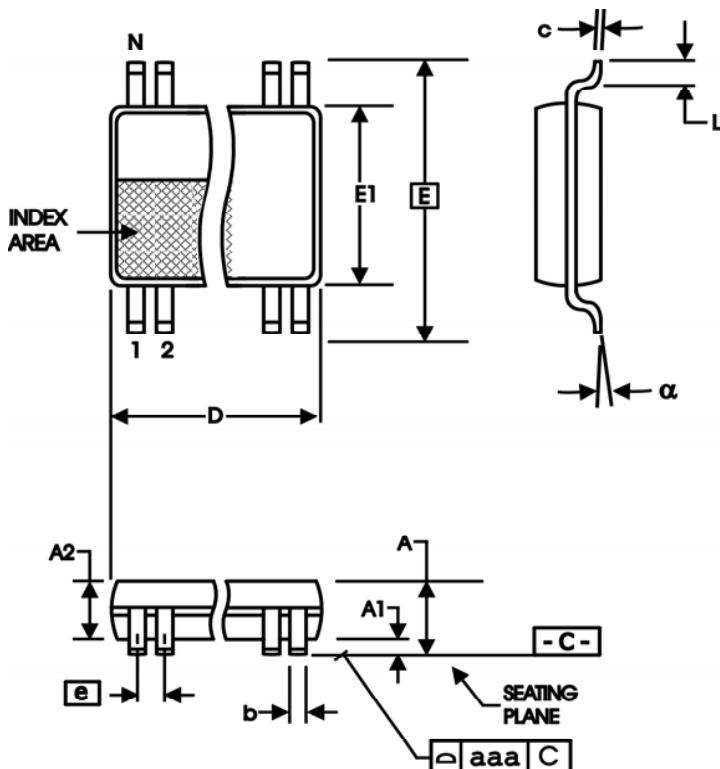



Table 9. Package Dimensions for 16 Lead TSSOP

| All Dimensions in Millimeters |            |         |
|-------------------------------|------------|---------|
| Symbol                        | Minimum    | Maximum |
| N                             | 16         |         |
| A                             |            | 1.20    |
| A1                            | 0.05       | 0.15    |
| A2                            | 0.80       | 1.05    |
| b                             | 0.19       | 0.30    |
| c                             | 0.09       | 0.20    |
| D                             | 4.90       | 5.10    |
| E                             | 6.40 Basic |         |
| E1                            | 4.30       | 4.50    |
| e                             | 0.65 Basic |         |
| L                             | 0.45       | 0.75    |
| $\alpha$                      | 0°         | 8°      |
| aaa                           |            | 0.10    |

Reference Document: JEDEC Publication 95, MO-153

## Ordering Information

Table 10. Ordering Information

| Part/Order Number | Marking  | Package                   | Shipping Packaging | Temperature |
|-------------------|----------|---------------------------|--------------------|-------------|
| 843N252GG-45LF    | N252G45L | "Lead-Free" 16 Lead TSSOP | Tube               | 0°C to 70°C |
| 843N252GG-45LFT   | N252G45L | "Lead-Free" 16 Lead TSSOP | Tape & Reel        | 0°C to 70°C |

## Revision History Sheet

| Rev | Table | Page | Description of Change                                                                                                                                                               | Date    |
|-----|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| A   |       | 3    | Supply Voltage, $V_{CC}$ . Rating changed from 4.5V min. to 3.63V per Errata NEN-11-03.                                                                                             | 6/10/11 |
| A   |       |      | Removed ICS from the part number where needed.<br>Ordering information - Removed quantity from tape and reel. Deleted LF note below table.<br>Updated data sheet header and footer. | 4/20/16 |



## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit [www.renesas.com/contact-us/](http://www.renesas.com/contact-us/).