

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Printed in Japan

Document No. U19837EJ1V0AN00
Date Published June 2009 NS

V850ES/Jx3

Sample Program (Initial Settings)

LED Lighting Switch Control

Application Note

 2009

Target devices
V850ES/JG3 microcontroller
V850ES/JJ3 microcontroller

This document summarizes the initial settings for the sample program of the V850ES/Jx3 and describes the basic initial

settings for the microcontroller. In the sample program, the lighting of two LEDs is controlled by using one switch input,

after the basic initial settings for the peripheral functions of the microcontroller, such as selecting the clock frequency or

I/O ports, have been performed.

CONTENTS
CHAPTER 1 OVERVIEW... 3
 1.1 Initial Settings... 3
 1.2 Contents of Main Processing Operation... 3
CHAPTER 2 CIRCUIT DIAGRAM.. 5
 2.1 Circuit Diagram .. 5
 2.2 Peripheral Hardware .. 6
CHAPTER 3 SOFTWARE.. 7
 3.1 File Configuration ... 7
 3.2 On-Chip Peripheral Functions Used... 7
 3.3 Initial Settings and Operation Overview ... 8
 3.4 Flowchart ... 9
 3.5 Differences Between V850ES/JJ3 and V850ES/JG3 10
 3.6 ROMization ... 10
 3.7 Security ID ... 12
 3.8 On-Chip debug with MINICUBE2 ... 14
 3.9 #pragma directives... 17
CHAPTER 4 SETTING REGISTERS ... 18
 4.1 Setting System Wait Control Register (VSWC) .. 19
 4.2 Setting Special Registers ... 20
 4.2.1 Special registers.. 20
 4.2.2 Setting data to special registers .. 20
 4.2.3 Disabling DMA operations ... 21
 4.3 Setting Normal Operation Mode for On-Chip debug mode register 22
 4.4 Setting Internal Oscillation Mode Register (RCM) .. 24
 4.5 Setting Watchdog Timer 2.. 25
 4.6 Clock Setting.. 26
 4.6.1 Processor clock control register (PCC) setting 26
 4.6.2 Setting PLL control register (PLLCTL)... 28
 4.6.3 Lock register (LOCKR) .. 29
 4.6.4 Clock control register (CKC).. 29

4.6.5 Usage.. 30
 4.7 Setting Ports .. 31
 4.7.1 Port n register (Pn) .. 31
 4.7.2 Port n mode register (PMn) ... 32
 4.7.3 Port n mode control register (PMCn) ... 32
 4.8 Main Processing... 35
 4.8.1 Chattering countermeasure ... 35
 4.8.2 Main processing .. 36
CHAPTER 5 RELATED DOCUMENTS.. 39
APPENDIX A PROGRAM LIST .. 40

Application Note U19837EJ1V0AN 2

The information in this document is current as of May, 2009. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets,
etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or
types are available in every country. Please check with an NEC Electronics sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC
Electronics products are not taken measures to prevent radioactive rays in the product design. When customers
use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate
sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in
order to avoid risks of the damages to property (including public or social property) or injury (including death) to
persons, as the result of defects of NEC Electronics products.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E0904E

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

Application Note U19837EJ1V0AN 3

CHAPTER 1 OVERVIEW

In this sample program, the basic initial settings for the V850ES/Jx3 microcontroller, such as selecting the clock

frequency and setting the I/O ports, are performed. In the main processing operation after completing the initial

settings, the lighting of two LEDs is controlled by using one switch input.

1.1 Initial Settings

<Main contents of initial settings>

• Setting the system wait control register to two clock

• Setting on-chip debug mode register to normal operation mode

• Stopping the internal oscillator

• Stopping watchdog timer 2 operation

• Setting the system clock to 32 MHz by multiplying the input clock by 8 using the PLL

• Setting unused ports

• Setting the switch input and LED control ports

< ROMization >

• ROMization processing (initialization of variables with initial values)

1.2 Contents of Main Processing Operation

The lighting of two LEDs (LED1, LED2) is controlled according to the number of switch (SW1) inputs in the

V850ES/Jx3 microcontroller.

SW1

ON
<Input>

LED1 LED2

<Output>

V850ES/Jx3
microcontroller

Switch input and a change in the LED lighting pattern are repeated alternately.

CHAPTER 1 OVERVIEW

Application Note U19837EJ1V0AN 4

Table 1-1. LED Lighting Patterns

Switch (SW1) Input CountNote LED1 LED2

0 OFF OFF

1 ON OFF

2 ON ON

3 OFF ON

Note Inputs 0 to 3 are repeated from the fourth input.

Caution See the product user’s manual (V850ES/Jx3) for cautions when using the device.

[Column] What is chattering?

Chattering is a phenomenon that an electric signal alternates between being on and off when a

connection flip-flops mechanically immediately after a switch is switched.

Application Note U19837EJ1V0AN 5

CHAPTER 2 CIRCUIT DIAGRAM

This chapter describes the circuit diagram and peripheral hardware to be used in this sample program.

2.1 Circuit Diagram

The circuit diagram is shown below.

VDD

FLMD0

P03

V850ES/Jx3
microcontroller

VDD

LED2

VDD

LED1

VDD PCM2

PCM3

VSS

REGC

SW1

VDD

RESET

VDD

X1

X2

XT1

Cautions 1. Connect the EVDD, AVREF0, and AVREF1 pins directly to VDD.

 2. Connect the EVSS and AVSS pins directly to GND.

 3. Connect the FLMD0 pin to GND in normal operation mode.

 4. Connect REGC to GND via a capacitor (recommended value: 4.7 μF).

 5. Leave all unused ports open, because they will be handled as output ports.

 6. See the following user’s manuals for circuit example with on-chip debug.

•V850ES/JJ3 32-bit Single-Chip Microcontrollers

 Hardware User’s Manual

•V850ES/JG3 32-bit Single-Chip Microcontrollers

 Hardware User’s Manual

•QB-MINI2 On-Chip Debug Emulator with Programming Function

 User's Manual

CHAPTER 2 CIRCUIT DIAGRAM

Application Note U19837EJ1V0AN 6

2.2 Peripheral Hardware

The peripheral hardware to be used is shown below.

(1) Switch (SW1)

This switch is used as an input to control the lighting of the LEDs.

(2) LEDs (LED1, LED2)

The LEDs are used as outputs corresponding to the number of switch inputs.

Application Note U19837EJ1V0AN 7

CHAPTER 3 SOFTWARE

This chapter describes the file configuration of the compressed files to be downloaded, on-chip peripheral functions

of the microcontroller to be used, and the initial settings and an operation overview of the sample program. A

flowchart is also shown.

3.1 File Configuration

The following table shows the file configuration of the compressed files to be downloaded.

Compressed (*.zip) Files

Included

File Name (Tree Structure) Description

Startup routine fileNote 1 −

Link directive fileNote 2

Project file for integrated development environment PM+ −

Workspace file for integrated development environment

PM+
−

C language source file including descriptions of

hardware initialization processing and main processing

of microcontroller

Source file for reserving area for MINICUBE2

Notes 1. This is the startup file copied when “Copy and Use the Sample file” is selected when “Specify startup file” is

selected when creating a new workspace. (If the default installation path is used, the startup file will be a

copy of C:\Program Files\NEC Electronics Tools\CA850\Version used\lib850\r32\crtE.s.)

 2. This is the link directive file automatically generated when “Create and Use the Sample file” is selected and

“Memory Usage: Use Internal memory only” is checked when “Specify link directive file” is selected when

creating a new workspace, and to which a segment for MINICUBE2 is added. (If the default installation

path is used, C:\Program Files\NEC Electronics Tools\PM+\Version used\bin\w_data\V850_i.dat is used as

the reference file.)

Remark : Only the source file is included.

 : The files to be used with integrated development environment PM+ are included.

3.2 On-Chip Peripheral Functions Used

The following on-chip peripheral functions of the microcontroller are used in this sample program.

• Input ports (for switch input): P03 (SW1)

• Output ports (for lighting LEDs): PCM3 (LED1), PCM2 (LED2)

conf crtE.s

AppNote_LED.dir

AppNote_LED.prj

AppNote_LED.prw

src main.c

minicube2.s

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 8

3.3 Initial Settings and Operation Overview

In this sample program, the selection of the clock frequency and settings such as the setting for stopping the

watchdog timer and the setting of the I/O ports are performed as the initial settings.

After completing the initial settings, the lighting of two LEDs (LED1 and LED2) is controlled according to the

number of switch (SW1) inputs.

This is described in detail in the state transition diagram shown below.

Initial settings

<Main contents of initial settings>

•Setting the system wait control register (VSWC) to
two clock

•Setting on-chip debug mode register to normal
operation mode

•Stopping the internal oscillator

•Stopping watchdog timer 2 operation

•Setting the system clock to 32 MHz by multiplying
the input clock by 8 using the PLL

•Setting unused ports

•Setting switch, LED, and port modes

<ROMization>

•ROMization processing

Switch-on detection

Only LED2 lights

LED1 & LED2 lights

All LEDs turned off

Only LED1 lights

Display update and output

Switch-on detection

Switch-on detection

Switch-on detection

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 9

3.4 Flowchart

A flowchart for the sample program is shown below.

 Start

Enables interrupt� EI�
the 3.8.2

Set the system wait control
register to 2 clock

Stop the internal oscillator

Multiply the CPU clock by 8 by
using the PLL and set the
operation clock to 32 MHz

Set unused ports

Set on-chip debug mode register to
normal operation mode

Stop watchdog timer 2

Set the switch and LED ports

Refer to

Read the switch input from the
input port (P03)

Update the number of times

the switch was pressed

Update the LED lighting pattern
(change the PCM2 and PCM3

output values)

Wait for 10 ms

Chattering elimination
processing

ROMization processing

Switch-on detected?
YES

NO

Initial settings of

peripheral functions

to be used

ROMization

Main processing

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 10

3.5 Differences Between V850ES/JJ3 and V850ES/JG3

The V850ES/JJ3 is the V850ES/JG3 with its functions, such as I/Os, timer/counters, and serial interfaces,

expanded.

In this sample program, the port initialization range in I/O initialization differs.

See APPENDIX A PROGRAM LIST for details of the sample program.

3.6 ROMization

In this sample program, ROMization information is copied after the on-chip peripheral functions are initialized.

ROMization information is the information of the initial values of variables that have initial values (the section to

which variables that have initial values are placed). Variables that have initial values (the section to which variables

that have initial values are placed) will hold their software-based initial values for the first time by copying the

ROMization information to the RAMNote.

If a variable that has an initial value is used in the program to be created, ROMization information must be

generated and copied. Furthermore, the ROMization information must be copied before using the variable that has an

initial value.

Note The data allocated to a section that has a writable attribute is subject to packing by default in ROMization.

 Other data can also be packed. See the CA850 Help for details.

The ROMization procedure is described below.

Select the [ROM] tab, which is an option common to all PM+ compilers, and then check “Create Object for ROM”.

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 11

The section into which the ROMization information is to be stored (rompsec) will be automatically added

immediately after the program area (.text) section. However, by checking “Create Object for ROM”, a code that

indicates the same address as that of rompsec will be generated for the default label _S_romp defined by rompcrt.o,

and the library libr.a, in which the copy function is stored, will be automatically linked.

An image of memory before the ROMization information is copied, which is created according to the procedure so

far, is shown below.

0x0000
Interrupt vector area

sconst/const section (constant area)

text section (program area)

_S_romp = rompsec

Area in which ROMization information is stored

bss section (area for variables without initial values)

data section (area for variables with initial values)

The contents of RAM are
undefined values for both the
bss and data sections.

The ROMization information must be copied, because the contents of the data section, which is the area for

variables that have initial values will stay undefined if memory remains as is.

An image of the memory after the _rcopy() function is called to copy the ROMization information is shown below.

0x0000
Interrupt vector area

sconst/const section (constant area)

text section (program area)

_S_romp = rompsec

Area in which ROMization information is stored

bss section (area for variables without initial values)

data section (area for variables with initial values)

The bss section has undefined values.

The data section is in a state in
which the initial values are copied
by the copy function.

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 12

3.7 Security ID

The content of the flash memory can be protected from unauthorized reading by using a 10-byte ID code for

authorization when executing on-chip debugging using an on-chip debug emulator.

The debugger authorizes the ID by comparing it with the ID code preset to the 10 bytes from 0x0000070 to

0x0000079 in the internal flash memory area.

If the IDs match, the security code will be unlocked and reading flash memory and using the on-chip debug

emulator will be enabled.

In this sample program (complete-environment version), the security ID is not set and the default security ID value

0xFFFF FFFF FFFF FFFF FFFF is applied.

Remark Set the security ID for a device provided with flash memory in the “Security ID” field, which is an option

common to all compilers.

 Specify the ID as a hexadecimal number of 10 bytes or less starting with 0x.

 If specifying this option or specifying the security ID by using an assembly description (.section

SECURITY_ID) is omitted, 0xFFFF FFFF FFFF FFFF FFFF will be assumed to have been specified.

If a program is downloaded and operated by using this sample program (complete-environment version), 0xFF will

be set to the security ID area of the microcontroller. Caution is therefore required, because the on-chip debug

emulator can be used only if 0xFFFF FFFF FFFF FFFF FFFF (default value) is set in the ID code entry area when the

debugger is connected the next time.

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 13

• Bit 7 (0x0000079) of the 10 bytes of the ID code is the on-chip debug emulator use enable flag (0: Disables use, 1:

Enables use).

• When the on-chip debug emulator is started, the debugger requests ID entry.

 The debugger will be started if the ID code entered in the debugger matches the ID code embedded in addresses

0x0000070 to 0x0000079.

• Even if the ID codes match, debugging cannot be executed if the on-chip debug emulator use enable flag is set to

“0”.

Address 79 Address 70

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 14

3.8 On-Chip debug with MINICUBE2

The following describes how to set an on-chip debug using MINICUBE2 with pins for CSIB0(SIB0, SOB0, SCKB0,

and HS(PCM0)) as debug interfaces. These items need to be set in the user program or using the compiler options.

See the following user’s manuals for details of how to set the items.

• V850ES/JJ3 32-bit Single-Chip Microcontrollers

 Hardware User’s Manual

• V850ES/JG3 32-bit Single-Chip Microcontrollers

 Hardware User’s Manual

• QB-MINI2 On-Chip Debug Emulator with Programming Function

User’s Manual

3.8.1 Securement of debug monitor program area

The shaded portions in Figure 3-1 are the areas where the debug monitor program is allocated. The monitor

program performs initialization processing for debug communication interface and RUN or break processing for the

CPU. The internal ROM area must be filled with 0xFF. In using the NEC Electronics compiler CA850, it is necessary

adding the assemble source file and link directive code for securing the area.

Remark It is not necessarily required to secure this area if the user program does not use this area. To avoid problems

that may occur during the debugger startup, however, it is recommended to secure this area in advance, using

the compiler.

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 15

Figure 3-1. Memory Spaces Where Debug Monitor Programs Are Allocated

(2KB)

 Reset vector
(4 bytes)

Interrupt vector for debugging

(4 bytes)

 CSI0/UART receive

interrupt vector (4 bytes)

0x0000000

 (16 bytes)

Access-prohibited area

� Debugging area
0x0000060

Note 2

Note 1
0x3FFEFF0
0x3FFEFFF

Note 3

� A reset vector includes the jump instruction for the debug monitor program.

Internal ROM
 area

Internal RAM
area

 Notes 1. Address values vary depending on the product.

 Internal ROM Size Address Value

μPD70F3739�μPD70F3743 384 KB 0x005F800 - 0x005FFFF

μPD70F3740�μPD70F3744 512 KB 0x007F800 - 0x007FFFF

μPD70F3741�μPD70F3745 768 KB 0x00BF800 - 0x00BFFFF

μPD70F3742�μPD70F3746 1024 KB 0x00FF800 - 0x00FFFFF

 2. The Address values depending on the debug interfaces. It starts at 0x0000290 when CSIB0 is used,

and at 0x00002F0 when CSIB3 is used, and at 0x0000310 when UARTA0 is used.

 3. Address values vary depending on the product.

 Internal RAM Size Address Value

μPD70F3739�μPD70F3743 32 KB 0x3FF7000

μPD70F3740�μPD70F3744 40 KB 0x3FF5000

μPD70F3741�μPD70F3745

μPD70F3742�μPD70F3746

60 KB 0x3FF0000

Remark The red value indicates the value set in the sample program.

Internal ROM Internal RAM

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 16

 -- Secures 2 KB space for monitor ROM section

 .section "MonitorROM", const

 .space 0x800, 0xff

 -- Secures interrupt vector for debugging

 .section "DBG0"

 .space 4, 0xff

 -- Secures interrupt vector for serial communication

 -- Change the section name according to the serial communication mode used

-- In this sample program, the CSIB0 is used

 .section "INTCB0R"

 .space 4, 0xff

 -- Secures 16-byte space for monitor RAM section

 .section "MonitorRAM", bss

 .lcomm monitorramsym, 16, 4

MROMSEG : !LOAD ?R V0x0ff800{

 MonitorROM = $PROGBITS ?A MonitorROM;

};

MRAMSEG : !LOAD ?RW V0x03ffeff0{

 MonitorRAM = $NOBITS ?AW MonitorRAM;

};

• How to secure areas

In this sample program, the following shows examples for securing the area, using the CA850. Add the assemble

source file and link directive code, as shown below.

(a) Assemble source (Add the following code as an assemble source file.)

(b) Link directive (Add the following code to the link directive file.)

 The following shows an example when the internal ROM has 1024 KB (end address is 0x00FFFFF) and internal

RAM has 60 KB (end address is 0x3FFEFFF).

CHAPTER 3 SOFTWARE

Application Note U19837EJ1V0AN 17

/*---*/

/* MINICUBE2 enable interrupts for on-chip debug */

/*---*/

__EI(); /* Enable interrupt */

#pragma asm

 assembler instruction

#pragma endasm

#pragma ioreg

#pragma ioreg /* Peripheral I/O register name validation specification*/

P0 = 0b00000000; /* register name P0 is able to use as variable */

3.8.2 Enable interrupts (EI) of Serial interfaces

As serial interfaces(for example CSIB0) are used for communication between MINICUBE2 and the target device,

forced breaks cannot be executed when interrupts issued for the serial interface, which is used for communication

between MINICUBE2 and the target device, are masked. Thus the enable interrupt (EI) is executed as following in

sample program.

• Program example

3.9 #pragma directives

The NEC Electronics compiler CA850 can specify the following #pragma directives.

• Description with assembler instruction

 Assembler directives can be described in a C language source program.

• Peripheral I/O register name validation specification

 The peripheral I/O registers of a device are accessed by using peripheral function register names. This specification

can use peripheral function register name as variable in C language source.

• Program example

See the following user’s manuals for details of how to set the items.

•CA850 Ver.3.20 C Compiler Package for C Language

Application Note U19837EJ1V0AN 18

CHAPTER 4 SETTING REGISTERS

This chapter describes details of the system wait control register, on-chip debug mode register, watchdog timer 2,

operation prohibition of DMA, internal system clock, PLL mode, pin function setting, and main processing.

Set up for peripheral function that are not used in this sample program and stopped after reset release is not done.

See the following user’s manuals for details of how to set registers.

• V850ES/JJ3 32-bit Single-Chip Microcontrollers

 Hardware User’s Manual

• V850ES/JG3 32-bit Single-Chip Microcontrollers

 Hardware User’s Manual

See the following user’s manuals for details of extended descriptions in C and assembly languages.

• CA850 C Compiler Package C Language User’s Manual

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 19

VSWC = 0b00010001; /* Inserts two wait cycle when an on-chip peripheral I/O register is accessed.*/

4.1 Setting System Wait Control Register (VSWC)

The VSWC register is used to control wait cycles for bus access to the on-chip peripheral I/O registers.

An on-chip peripheral I/O register can be accessed in three clocks (no wait cycles), but the V850ES/Jx3 requires

wait cycles according to the operating frequency. Set the following values to the VSWC register in accordance with

the operating frequency used.

The VSWC register can be read or written in 8-bit units.

Reset sets this register to 0x77.

Figure 4-1. VSWC Register Format

System wait control register (VSWC)

Address: 0xFFFFF06E

7 6 5 4 3 2 1 0

Operating frequency (fCLK) VSWC setting value Number of wait cycles

32 kHz ≤ fCLK < 16.6 MHz 0x00 0 (no wait cycles)

16.6 MHz ≤ fCLK < 25 MHz 0x01 1

25 MHz ≤ fCLK ≤ 32 MHz 0x11 2

Remark The red values in the table indicate the values set in the sample program.

The value set to VSWC is 0x11.

• Program example

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 20

4.2 Setting Special Registers

The on-chip debug mode register (OCDM) and processor clock control register (PCC) are set in the initial setting

procedure. These registers are special registers and must be written in a specific sequence.

4.2.1 Special registers

Special registers are registers that are protected so that no illegal data will be written due to an infinite loop. The

V850ES/Jx3 is provided with the following eight special registers.

• Power-save control register (PSC)

• Clock control register (CKC)

• Processor clock control register (PCC)

• Clock monitor mode register (CLM)

• Reset source flag register (RESF)

• Low-voltage detection register (LVIM)

• Internal RAM data status register (RAMS)

• On-chip debug mode register (OCDM)

The PRCMD register protects the special registers from being written so that application systems are not

inadvertently stopped by an infinite loop. The special registers are accessed for writing via a special sequence and

illegal store operations are reported to the system status register (SYS).

4.2.2 Setting data to special registers

Write data to a special register in the following sequence.

<1> Disable DMA operations.

<2> Prepare the data to be written to the special register in any general-purpose register.

<3> Write the data prepared in step <2> to the PRCMD register.

<4> Write the data to the special register by using the following instructions.

• Store instruction (ST/SST instruction)

• Bit manipulation instruction (SET1/CLR1/NOT1 instruction)

 (<5> to <9>: Insert five NOP instructions.) (Only when the PSC.STP bit is set to 1.)

<10> Enable DMA operations if required.

Remark After reset is released, the initial values of the DMA channel control registers are 0x00 and DMA

operations are disabled. If it is clear that DMA operations are disabled, such as during the initial settings,

steps <1> and <10> can be omitted. The sample program does not include step <1> and <10>.

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 21

4.2.3 Disabling DMA operations

DMA operations must be disabled in order to write data to a special register.

DMA channel control registers 0 to 3 (DCHC0 to DCHC3) can be used to enable or disable DMA transfer for DMA

channel n.

Set the DCHC.Enn bit (bit 0) to enable or disable DMA transfer for DMA channel n.

Figure 4-2. DCHCn Register Format

DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

Address: 0xFFFFF0E0 (DCHC0), 0xFFFFF0E2 (DCHC1), 0xFFFFF0E4 (DCHC2), 0xFFFFF0E6 (DCHC3)

7 6 5 4 3 2 1 0

TCn 0 0 0 0 INITn STGn Enn

Enn Setting for enabling or disabling DMA transfer for DMA channel n

0 Disables DMA transfer.

1 Enables DMA transfer.

After reset is released, DMA stop processing can be omitted, because DMA transfer is disabled (DCHCn.Enn bit = 0).

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 22

4.3 Setting Normal Operation Mode for On-Chip Debug mode register

Use the OCDM register to switch between normal operation mode and on-chip debug mode and to specify whether

to use the alternate-function pin to which the on-chip debug function is assigned as an on-chip debug pin or as a

normal port/peripheral function alternate-function pin. At the same time, use this register to control disconnecting the

on-chip pull-down resistor of the P05/INTP2/DRST pin.

The OCDM register is a special register. It can be written only by using a combination of specific sequences (see

4.2.2 Setting data to special registers).

Writing to the OCDM register is enabled only when the DRST pin is at low level.

The OCDM register can be read or written in 8-bit or 1-bit units.

The value of the ODCM register becomes 0x01 when data is input from the RESET pin. The value of OCDM

register is retained in the case of reset by the watchdog timer, clock monitor, or low-voltage detector.

Figure 4-3. OCDM Register Format

On-chip debug mode register (OCDM)

Address: 0xFFFFF9FC

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 OCDM0

OCDM0 Operation mode

0 [When using MINICUBE2 (QB-MINI2) in normal operation mode]

Operates in normal operation mode (the alternate-function pin to which the on-chip debug function is

assigned is used as a port pin or a peripheral function pin) and disconnects the on-chip pull-down

resistor of the P05/INTP2/DRST pin.

1 [When using MINICUBE (QB-V850MINI)]

When the DRST pin is at low level:

Normal operation mode (uses the alternate-function pin to which the on-chip debug function is

assigned as a port pin or peripheral function pin)

When the DRST pin is at high level:

On-chip debug mode (the alternate-function pin to which the on-chip debug function is assigned is

used as an on-chip debug mode pin)

Remark The red value indicates the value set in the sample program

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 23

 /* Specifies normal operation mode for OCDM. */

#pragma asm

 st.b r0, PRCMD

 st.b r0, OCDM

#pragma endasm

The data set to the OCDM special register is 0x00.

• Program example

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 24

RSTOP = 1; /* Stop the internal oscillator.*/

4.4 Setting Internal Oscillation Mode Register (RCM)

The RCM register is an 8-bit register that is used to set the operation mode of the internal oscillator.

In this sample program, the internal oscillator is stopped, because the watchdog timer is not used.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 0x00.

Figure 4-4. RCM Register Format

Internal oscillation mode register (RCM)

Address: 0xFFFFF80C

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 RSTOP

RSTOP Oscillating or stopping internal oscillator

0 Oscillate the internal oscillator.

1 Stop the internal oscillator.

Remark The red value indicates the value set in the sample program.

The value set to RCM is 0x01.

• Program example

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 25

WDTM2 = 0b00000000; /* Stop watchdog timer 2 operation. */

4.5 Setting Watchdog Timer 2

The WDTM2 register is used to set the overflow time and operating clock of watchdog timer 2.

Watchdog timer 2 automatically starts in reset mode after reset is released. Write data to the WDTM2 register to

specify the operation of watchdog timer 2.

In this sample program, watchdog timer 2 is stopped, because no watchdog timer is used for detecting infinite loop.

This register can be read or written in 8-bit units.

Reset sets this register to 0x67.

Figure 4-5. WDTM2 Register Format

Watchdog timer mode register 2 (WDTM2)

Address: 0xFFFFF6D0

7 6 5 4 3 2 1 0

0 WDM21 WDM20 WDCS24 WDCS23 WDCS22 WDCS21 WDCS20

WDM21 WDM20 Watchdog timer 2 operation mode selection

0 0 Stop operation.

0 1 Non-maskable interrupt request mode (INTWDT2 signal generated)

1 − Reset mode (WDT2RES signal generated)

Remark The red values indicate the values set in the sample program.

The value set to WDTM2 is 0x00.

• Program example

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 26

4.6 Clock Setting

In this sample program, an example in which a 4 MHz ceramic or crystal resonator is connected to the X1 and X2

pins and the clock of the resonator is multiplied by 8 in PLL mode and used as the internal system clock (32 MHz) is

shown. The subclock is not used.

4.6.1 Processor clock control register (PCC) setting

The PCC register is used to select the internal feedback resistor of the main clock and subclock, control the main

clock oscillator, and select the internal system clock.

This register is a special register and can be written only by using a combination of specific sequences.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 0x03.

Figure 4-6. PCC Register Format

Processor clock control register (PCC)

Address: 0xFFFFF828

7 6 5 4 3 2 1 0

FRC MCK MFRC CLS CK3 CK2 CK1 CK0

FRC Subclock internal feedback resistor selection

0 Use internal feedback resistor (subclock connected).

1 Do not use internal feedback resistor (subclock not connected).

MFRC Main clock internal feedback resistor selection

0 Use internal feedback resistor (when using a ceramic or crystal resonator).

1 Does not use internal feedback resistor (when using an external clock).

CK3 CK2 CK1 CK0 Clock selection (fCLK/fCPU)

0 0 0 0 fXX

0 0 0 1 fXX/2

0 0 1 0 fXX/4

0 0 1 1 fXX/8

0 1 0 0 fXX/16

0 1 0 1 fXX/32

0 1 1 X Setting prohibited

1 X X X fXT

Remark The red values indicate the values set in the sample program.

Note The CLS bit is a read-only bit.

 Note

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 27

The value set to PCC is 0x80.

• Program example

 /* Set to not divide the clock. */

#pragma asm

 push r10

 mov 0x80, r10

 st.b r10, PRCMD

 st.b r10, PCC

 pop r10

#pragma endasm

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 28

4.6.2 Setting PLL control register (PLLCTL)

The PLL control register (PLLCTL) is used to select the CPU operation clock.

This register is an 8-bit register that controls the PLL. It can be read or written in 8-bit or 1-bit units.

Reset sets this register to 0x01.

Figure 4-7. PLLCTL Register Format

PLL control register (PLLCTL)

Address: 0xFFFFF82C

7 6 5 4 3 2 1 0

0 0 0 0 0 0 SELPLL PLLON

SELPLL Operation mode

0 Clock-through mode

1 PLL mode

The SELPLL bit can be set to 1 only when the PLL clock frequency has stabilized. If the SELPLL bit is written

while the PLL clock frequency is not stable (unlocked), 0 is written.

PLLON PLL operation stop control

0 Stop PLL.

1 Operate PLL. (A lockup time is required until the frequency stabilizes after the PLL is started.)

Remark The red values indicate the values set in the sample program.

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 29

4.6.3 Lock register (LOCKR)

The LOCKR register is used as a flag to check whether the PLL has stabilized (has been locked).

This register is read-only, in 8-bit or 1- bit units.

Reset sets this register to 0x01. This register becomes 0x00 when the oscillation stabilization time has elapsed

after reset is released.

Figure 4-8. LOCKR Register Format

Lock register (LOCKR)

Address: 0xFFFFF824

7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 LOCK

LOCK Operation mode

0 Locked

1 Unlocked

The LOCK bit does not reflect the lock state of PLL in real time.

Remark After reset is released and the oscillation stabilization time has elapsed, the lock register is

locked (LOCKR = 0x00). When shifting to PLL mode without stopping the PLL, such as during

the initial settings, checking the lock register can be omitted.

4.6.4 Clock control register (CKC)

The CKC register controls the internal system clock in the PLL mode.

The CKC register is a special register. Data can be written to this register only in a combination of specific sequence.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 0x0A.

Figure 4-9. CKC Register Format

Clock control register (CKC)

Address: 0xFFFFF822

7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 CKDIV0

CKDIV0 Internal system clock (fXX) in PLL mode

0 fXX = 4 x fX (fX = 2.5 to 5.0 MHz)

1 fXX = 8 x fX (fX = 2.5 to 4.0 MHz)

The PLL mode cannot be used at fX = 5.0 to 10.0 MHz. And before changing the multiplication factor between 4

and 8 by using the CKC register, set the clock-through mode and stop the PLL.

Remark The red values indicate the values set in the sample program.

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 30

4.6.5 Usage

To set to eight multiplication in PLL mode, Crock control register (CKC) is set to 0x0B (The CKC register is a special

register. Data can be written to this register only in a combination of specific sequence.).

 First, stop the PLL, and then changing the multiplication factor for 4 to 8 by using the CKC register.

 • To disable PLL operation

 <1> Set the SELLPLL bit to 0 for changing the clock-through mode.

 <2> Wait for eight clocks or more, then stop the PLL by set PLLON bit to 0.

 Remark After the reset signal has been released, the PLL is operated. Because the default mode of

CPU operation clock selection is the clock-through mode, it is possible to stop PLL (set PLLON

bit to 0) without setting SELPLL bit to 0 and eight clocks waiting.

Second, set the PLL to operated for translated PLL mode.

 • To enable PLL operation

 <1> To enable PLL operation from PLL is stopped, set the PLLON bit to 1, and then set the SELPLL bit to 1

 after the LOCKR.LOCK bit = 0.

• Program example

/* Select the PLL mode (CPU operating clock fXX is 20 to 32 MHz (fX = 2.5 ~ 4.0 MHz)*/

/* Default setting is clock-through mode */

PLLON = 0; /* PLL is stopped */

 /* PLL multiplication is set to 8 */

#pragma asm

 push r10

 mov 0x0B, r10

 st.b r10, PRCMD

 st.b r10, CKC

 pop r10

#pragma endasm

 PLLON = 1; /* Enable PLL operation */

 while(LOCK); /* Wait for PLL stabled */

 SELPLL = 1; /* Set PLL mode */

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 31

4.7 Setting Ports

The ports to be set vary, because the on-chip ports differ for each product.

 V850ES/JG3 V850ES/JJ3

Port 0 P02 to P06 P00 to P06

Port 1 P10, P11 P10 to P11

Port 3 P30 to P39 P30 to P39

Port 4 P40 to P42 P40 to P42

Port 5 P50 to P55 P50 to P55

Port 6 None P60 to P615

Port 7 P70 to P711 P70 to P715

Port 8 None P80 to P81

Port 9 P90 to P915 P90 to P915

Port CD None PCD0 to PCD3

Port CM PCM0 to PCM3 PCM0 to PCM5

Port CS None PCS0 to PCS7

Port CT PCT0, PCT1, PCT4, PCT6 PCT0 to PCT7

Port DH PDH0 to PDH5 PDH0 to PDH7

Port DL PDL0 to PDL15 PDL0 to PDL15

4.7.1 Port n register (Pn)

Inputting data from and outputting data to external devices is performed by writing to and reading from the Pn

register. The Pn register is configured of an output latch that retains the output data and a circuit that reads the pin

statuses.

Each bit of the Pn register corresponds to one pin of port n and can be read or written in 1-bit units.

In this sample program, port 0 is set as [Example 1] and port CM is set as [Example 2] described later. Unused

port pins are set as output ports.

Reset sets this register to 0x00.

Figure 4-10. Pn Register Format

Port n register (Pn)

7 6 5 4 3 2 1 0

Pn7 Pn6 Pn5 Pn4 Pn3 Pn2 Pn1 Pn0

Pnm Output data control (in output mode)

0 Output 0.

1 Output 1.

Remark The red value indicates the value set to unused ports.

[Column] Handling unused pins

Port pins are set as input pins by reset. Consequently, it is recommended to connect unused

pins individually to VDD or GND via a resistor.

Note that unused pins set to output mode can be left open in order to reduce the number of

resistors.

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 32

4.7.2 Port n mode register (PMn)

The PMn register is used to specify input mode or output mode for each port.

Each bit of the PMn register corresponds to one pin of port n and can be specified in 1-bit units.

Reset sets this register to 0xFF.

Figure 4-11. PMn Register Format

Port n mode register (PMn)

7 6 5 4 3 2 1 0

PMn7 PMn6 PMn5 PMn4 PMn3 PMn2 PMn1 PMn0

PMnm I/O mode control

0 Output mode

1 Input mode

Remark The red value indicates the value set to unused ports.

4.7.3 Port n mode control register (PMCn)

The PMCn register is used to specify port mode or alternate-function mode.

Each bit of the PMCn register corresponds to one pin of port n and can be specified in 1-bit units.

Reset sets this register to 0x00.

Figure 4-12. PMCn Register Format

Port n mode control register (PMCn)

7 6 5 4 3 2 1 0

PMCn7 PMCn6 PMCn5 PMCn4 PMCn3 PMCn2 PMCn1 PMCn0

PMCnm Operation mode specification

0 Port mode

1 Alternate-function mode

Remark The red value indicates the value set to unused ports.

[Column] Writing to and reading from the Pn register

Writing to the Pn register results in writing to an output latch.

For pins set to input mode by the PMn register, the input pin status is not affected,

regardless of the value written to the Pn register.

The value written to the output latch is retained until a value is written to the output latch

again.

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 33

PM0 = 0b10001000; /* Sets P00 to P06 to low-level output (except P03). */

[Example 1] • Setting P03 as an input port (V850ES/JJ3)

Remark The value of nameless bit (7 bit) is fixed by each products.

Note V850ES/JG3 doesn't have P00 and P01, then PM01 and PM00 are fixed to 1.

The value set to PM0 is 0x88 (In case of V850ES/JG3, the value set to PM0 is 0x8B.).

• Program example (V850ES/JJ3)

P03 pin I/O selection

1 Input mode

 PM06 PM05 PM04 PM03 PM02 PM01 PM00

PM0 1 0 0 0 1 0 0 0

 Note Note

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 34

PCM = 0b00001100; /* Sets the output latches of PCM2 and PCM3 to high-level output. */

PMCM = 0b11000000; /* Sets PCM0 to PCM5 as output ports. */

[Example 2] • Setting the output latches of PCM2 and PCM3 to high-level output (V850ES/JJ3)

 • Setting PCM2 and PCM3 as output ports (V850ES/JJ3)

 PCM5 PCM4 PCM3 PCM2 PCM1 PCM0

PCM 0 0 0 0 1 1 0 0

Remark The value of nameless bit (6, 7 bit) is fixed by each products.

Note V850ES/JG3 doesn't have PCM4 and PCM5, then PCM4 and PCM5 are fixed to 0,

and PMCM4 and PMCM5 are fixed to 1.

The value set to PCM is 0x0C and the value set to PMCM is 0xC0

(In case of V850ES/JG3, the value set to PCM is 0x0C, and the value set to PMCM is 0xF0).

• Program example (V850ES/JJ3)

PCMn (n = 0 to 5) pin I/O selection

0 Output mode

* In this sample program, PCM2 and PCM3

are used as output ports for lighting LEDs, so

port CM is set as an output port.

PCM2 and PCM3 pin output latch level selection

1 High-level output

PCMn (n = 0, 1, 4 , 5) pin output latch level selection

0 Low-level output

* In this sample program, PCM2 and PCM3

are used as output ports for lighting LEDs, so

the output latch levels of PCM2 and PCM3

are preset to high-level output in the initial

settings. (The LED lights up when a low

level is output from PCM2 and PCM3 (see

2.1 Circuit Diagram).)

 Note Note

 PMCM5 PMCM4 PMCM3 PMCM2 PMCM1 PMCM0

PMCM 1 1 0 0 0 0 0 0

 Note Note

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 35

unsigned long loop_wait; /* Counter for loop */

/* 10 ms wait */

for (loop_wait = 0; loop_wait <= VAL_TIMER_WAIT; loop_wait++)

{

__nop();

}

4.8 Main Processing

4.8.1 Chattering countermeasure

To eliminate chattering, a change in the switch (P03) status is determined by reading inputs every 10 ms and

detecting the same level for the switch status two times in succession.

The following operation is performed as 10 ms wait processing.

• Program example

Switch(P03) status

Switch status baffer

 The LED output status is determined according to the

 number of times the switch was pressed when the

 switch status is "1 1 0 0".

Switch isn't pressed Switch isn't pressed Switch is pressed

Switch input

10 ms

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 36

4.8.2 Main processing

In the main processing in C language, the following operation is performed.

In this sample program, the correspondence between the input and output data is set in an array.

START

Count value = 4

Clear the counter

10 ms wait

Yes

No

Yes

No

Output to the LEDs

Initialize
variables

Initialize periphe ra l
functions

Acqu ire the s w itc h
s ta tus

The four most recent switch

statuses are " 1 , 1 , 0 , 0 "

C o un t up the n um b er of tim es
th e sw itc h w as press ed

CHAPTER 4 SETTING REGISTERS

Application Note U19837EJ1V0AN 37

/**

 Main processing

***/

void main(void)

{

 extern unsigned int _S_romp; /* External reference of ROMization symbol */

 /*--*/

 /* Variable declaration and initial variable setting */

 /*--*/

 const unsigned char outdata[] = { /* Array for the LED display pattern data */

 0x0c, /* Turns off all LEDs. */

 0x04, /* Lights LED1. */

 0x00, /* Lights LED1 and LED2. */

 0x08 /* Lights LED2. */

 };

 unsigned char indata = 0b00000001; /* To memorize the Switch status

(initialized if the previous value is “1”) */

 unsigned char count; /* Number of times the switch input */

 unsigned long loop_wait; /* Counter for loop */

 count = VAL_RST_COUNT; /* Initializes the number of times the switch input */

 /*--*/

 /* Peripheral-function initialization */

 /*--*/

 f_init_vswc(); /* Sets the VSWC register */

 f_init_ocdm(); /* Sets on-chip debug mode register to normal

 operation mode */

 f_init_rcm(); /* Disables the internal oscillator */

 f_init_wdtm2(); /* Sets watchdog timer 2 */

 f_init_lock(); /* Sets the CPU operation clock to PLL mode

*/

 f_init_blank_port(); /* Sets unused ports */

 f_init_use_port(); /* Sets the SW1 and LED ports */

 /*------------------------------------*/

 /* ROMization processing */

 /*------------------------------------*/

 _rcopy(&_S_romp, -1); /* Executes ROMization */

 /*------------------------------------*/

 /* MINICUBE2 : Enable interrupt for OCD*/

 /*------------------------------------*/

 __EI(); /* Enable interrupt */

Four units of data are defined in the

braces, within the output data is set.

CHAPTER 4 SETTING REGISTERS

Application Note U19479EJ1V0AN 38

 /*------------------------------------*/

 /* LED lighting processing */

 /*------------------------------------*/

 while (1)

 {

 indata <<= 1; /* Updates the previous switch status value */

 indata |= P0.3; /* Updates the current switch status value */

 if ((indata & 0b00001111) == 0b00001100)

 {

 count++; /* Updates the number of times the switch input */

 count &= 0b00000011

 PCM = outdata[count]; /* Displays the LED display data read from the table */;

 }

 /* 10 ms wait */

 for (loop_wait = 0; loop_wait <= VAL_TIMER_WAIT; loop_wait++)

 {

 __nop();

 }

 }

 return;

}

The correspondence between the input and output data is shown below.

Switch input count COUNT OUTDATA LED lighting

0 0 0b00001100 All LEDs turned off.

1 1 0b00000100 Only LED1 lights.

2 2 0b00000000 LED1 and LED2 light.

3 3 0b00001000 Only LED 2 lights.

Application Note U19837EJ1V0AN 39

CHAPTER 5 RELATED DOCUMENTS

Document document number

V850ES/JJ3 Hardware User’s Manual U18376E

V850ES/JG3 Hardware User’s Manual U18708E

V850ES 32-Bit Microprocessor Core for Architecture U15943E

PM+ Ver. 6.30 User’s Manual U18416E

CA850 Ver. 3.20 C Compiler Package Operation U18512E

CA850 Ver. 3.20 C Compiler Package C Language U18513E

CA850 Ver.3.20 C Compiler Package for Link Directives U18515E

QB-MINI2 User's Manual U18371E

ID850QB Ver.3.40 Integrated Debugger for Operation U18604E

 Document Search URL http://www.necel.com/search/en/index.html#doc

http://www.necel.com/search/en/index.html#doc

Application Note U19837EJ1V0AN 40

APPENDIX A PROGRAM LIST

The V850ES/Jx3 microcontroller source program is shown below as a program list example.

● minicube2.s
#--

NEC Electronics V850ES/Jx3 series

#--

V850ES/JJ3 JG3 sample program

#--

LED lighting switch control

#--

#[History]

2009.6.-- Released

#--

#[Overview]

This sample program secures the resources required when using MINICUBE2.

(Example of using MINICUBE2 via CSIB0)

#--

 -- Securing a 2 KB space as the monitor ROM section

 .section "MonitorROM", const

 .space 0x800, 0xff

 -- Securing an interrupt vector for debugging

 .section "DBG0"

 .space 4, 0xff

 -- Securing a reception interrupt vector for serial communication

 .section "INTCB0R"

 .space 4, 0xff

 -- Securing a 16-byte space as the monitor RAM section

 .section "MonitorRAM", bss

 .lcomm monitorramsym, 16, 4

 Set the section name according to use serial

 interface.

 when interface is CSIB3 : INTCB3R

 when interface is UARTA0 : INTUA0R

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 41

● AppNote_LED.dir

Sample link directive file (not use RTOS/use internal memory only)

Copyright (C) NEC Electronics Corporation 2002

All rights reserved by NEC Electronics Corporation.

This is a sample file.

NEC Electronics assumes no responsibility for any losses incurred by customers or

third parties arising from the use of this file.

Generated : PM+ V6.31 [9 Jul 2007]

Sample Version : E1.00b [12 Jun 2002]

Device : uPD70F3746 (C:\Program Files\NEC Electronics Tools\DEV\DF3746.800)

Internal RAM : 0x3ff0000 - 0x3ffefff

NOTICE:

Allocation of SCONST, CONST and TEXT depends on the user program.

If interrupt handler(s) are specified in the user program then

the interrupt handler(s) are allocated from address 0 and

SCONST, CONST and TEXT are allocated after the interrupt handler(s).

SCONST : !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

};

CONST : !LOAD ?R {

 .const = $PROGBITS ?A .const;

};

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

};

For MINICUBE2 ###

MROMSEG : !LOAD ?R V0x0ff800{

 MonitorROM = $PROGBITS ?A MonitorROM;

};

SIDATA : !LOAD ?RW V0x3ff0000 {

Difference from the default link directive

 file(additional code).

 A reserved area for MINICUBE2 is

 secured.

 Address values vary depending on the

 product internal ROM size.

 This is an example of the product that's

internal ROM size is 1024KB.

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 42

 .tidata.byte = $PROGBITS ?AW .tidata.byte;

 .tibss.byte = $NOBITS ?AW .tibss.byte;

 .tidata.word = $PROGBITS ?AW .tidata.word;

 .tibss.word = $NOBITS ?AW .tibss.word;

 .tidata = $PROGBITS ?AW .tidata;

 .tibss = $NOBITS ?AW .tibss;

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBITS ?AW .sibss;

};

DATA : !LOAD ?RW V0x3ff0100 {

 .data = $PROGBITS ?AW .data;

 .sdata = $PROGBITS ?AWG .sdata;

 .sbss = $NOBITS ?AWG .sbss;

 .bss = $NOBITS ?AW .bss;

};

For MINICUBE2 ###

MRAMSEG : !LOAD ?RW V0x03ffeff0{

 MonitorRAM = $NOBITS ?AW MonitorRAM;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA @ %EP_SYMBOL;

Difference from the default link directive

 file(additional code).

 A reserved area for MINICUBE2 is

 secured.

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 43

● main.c
/*--*/

/*

/* NEC Electronics V850ES/Jx3 series

/*

/*--*/

/* V850ES/JJ3 sample program

/*--*/

/* LED lighting switch control

/*--*/

/*[History]

/* 2009.06.-- Released

/*--*/

/*[Overview]

/* This sample program selects the clock frequency, sets the port I/Os, and performs

/* the basic initial settings of the V850ES/JJ3 microcontroller.

/* The main processing operation performed after the completion of the initial

/* settings controls the lighting of two LEDs by using one switch input.

/*

/* Of the peripheral functions that are stopped after reset is released, those that

/* are not used in this sample program are not set.

/*

/*

/* <Main contents of initial settings>

/* • Setting the system wait control register to two clock

/* • Setting on-chip debug mode register to normal operation mode

/* • Stopping the internal oscillator

/* • Stopping watchdog timer 2 operation

/* • Setting the system clock to 32 MHz by multiplying the input clock by 8 using the

PLL

/* • Setting unused ports

/* • Setting the switch input and LED control ports

/*

/* <Main contents of main processing>

/* • Detecting the number of switch inputs

/* • Lighting the LEDs

/*

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 44

/* <Switch input and LED lighting>

/*

/* │---------------―-----------------------------―----------+

/* │Number of times the switch is pressed │ LED1 │ LED2 │

/* │ (P03) │ (PCM3) │ (PCM2) │

/* │――――---------―-------------------- │-------- │-------- │

/* │ 0 times │ OFF │ OFF │

/* │ 1 time │ ON │ OFF │

/* │ 2 times │ ON │ ON │

/* │ 3 times │ OFF │ ON │

/* │---------------―-----------------------------―----------+

/* *Inputs 0 to 3 are repeated from the fourth input.

/*

/*

/*[I/O port settings]

/*

/* �Input port : P03

/* �Output ports : PCM2, PCM3

/* �Unused ports : P00-P02, P04-P06, P10-P11, P30-P39, P40-P42, P50-P55, P60-P615,

/* P70-P715, P80-P81, P90-P915, PCD0-PCD3, PCM0-PCM1, PCM4-PCM5,

/* PCS0-PCS7, PCT0-PCT7, PDH0-PDH7, PDL0-PDL15

/* *Preset all unused ports as output ports (low-level output).

/*

/*---*/

/*---------------------------*/

/* pragma directives */

/*---------------------------*/

#pragma ioreg /* Specifies enabling the names of the peripheral

 I/O registers. */

/*---------------------------*/

/* Constant definitions */

/*---------------------------*/

#define VAL_RST_COUNT (0) /* Initial value of the number of times the switch

 input */

#define VAL_TIMER_WAIT (40193) /* 10 ms wait */

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 45

/*-----------------------------*/

/* Prototype declarations */

/*-----------------------------*/

static void f_init_vswc(void); /* VSWC register setting processing */

static void f_init_ocdm(void); /* On-chip debug mode register normal operation

 mode setting processing */

static void f_init_rcm(void); /* Internal oscillator stop setting */

static void f_init_wdtm2(void); /* Watchdog timer 2 setting processing */

static void f_init_lock(void); /* CPU operation clock setting processing */

static void f_init_blank_port(void); /* Unused port setting initialization

 processing */

static void f_init_use_port(void); /* SW1 and LED port setting initialization

 processing */

 void main(void); /* Main processing */

/***/

/* Initial settings of peripheral functions */

/***/

/*-----------------------------*/

/* Setting the VSWC register */

/*-----------------------------*/

static void f_init_vswc(void)

{

 VSWC = 0b00010001; /* Inserts two wait cycle when the on-chip

 peripheral I/O register is accessed. */

 return;

}

/*--*/

/* Setting on-chip debug mode register to normal operation mode */

/*--*/

static void f_init_ocdm(void)

{

 /* Specifies normal operation mode for OCDM. */

#pragma asm

 st.b r0, PRCMD

 st.b r0, OCDM

#pragma endasm

 return;

}

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 46

/*--*/

/* Setting the internal oscillation mode register (RCM) */

/*--*/

static void f_init_rcm(void)

{

 RSTOP = 1; /* Stops the internal oscillator. */

 return;

}

/*------------------------------------*/

/* Setting watchdog timer 2 (WDTM2) */

/*------------------------------------*/

static void f_init_wdtm2(void)

{

 WDTM2 = 0b00000000; /* Stops watchdog timer 2 operation. */

 return;

}

/*--*/

/* Setting the CPU operation clock to PLL mode */

/*--*/

static void f_init_lock(void)

{

/* Select the PLL mode (CPU operating clock fXX is 20 to 32 MHz (fX = 2.5 ~ 4.0 MHz)*/

/* Default setting is clock-through mode */

PLLON = 0; /* PLL is stopped */

 /* PLL multiplication is set to 8 */

#pragma asm

 push r10

 mov 0x0B, r10

 st.b r10, PRCMD

 st.b r10, CKC

 pop r10

#pragma endasm

 PLLON = 1; /* Enable PLL operation */

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 47

 while(LOCK); /* Wait for PLL stabled */

 SELPLL = 1; /* Set PLL mode */

 /* Setting the PCC register */

 /* Sets to not divide the clock. */

#pragma asm

 push r10

 mov 0x80, r10

 st.b r10, PRCMD

 st.b r10, PCC

 pop r10

#pragma endasm

 return;

}

/*---------------------------*/

/* Setting unused ports */

/*---------------------------*/

static void f_init_blank_port(void)

{

 P0 = 0b00000000; /* Sets P00 to P06 to low-level output (except P03) */

 PM0 = 0b10001000;

 P0 = 0b00000000; /* Sets P02 to P06 to low-level output (except P03) */

 PM0 = 0b10001011;

 P1 = 0b00000000; /* Sets P10 and P11 to low-level output. */

 PM1 = 0b11111100;

 P3H = 0b00000000; /* Sets P38 and P39 to low-level output. */

 PM3H = 0b11111100;

 P3L = 0b00000000; /* Sets P30 to P37 to low-level output. */

 PM3L = 0b00000000;

 P4 = 0b00000000; /* Sets P40 to P42 to low-level output. */

 PM4 = 0b11111000;

In the V850ES/JG3, sets only P02 to P06.

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 48

 P5 = 0b00000000; /* Sets P50 to P55 to low-level output. */

 PM5 = 0b11000000;

P6H = 0b00000000; /* Sets P68 to P615 to low-level output. */

PM6H = 0b00000000;

P6L = 0b00000000; /* Sets P60 to P67 to low-level output. */

PM6L = 0b00000000;

 P7H = 0b00000000; /* Sets P78 to P715 to low-level output. */

 PM7H = 0b00000000;

 P7L = 0b00000000; /* Sets P70 to P77 to low-level output. */

 PM7L = 0b00000000;

 P7H = 0b00000000; /* Sets P78 to P711 to low-level output. */

 PM7H = 0b11110000;

 P7L = 0b00000000; /* Sets P70 to P77 to low-level output. */

 PM7L = 0b00000000;

 P8 = 0b00000000; /* Sets P80 to P81 to low-level output. */

 PM8 = 0b11111100;

 P9H = 0b00000000; /* Sets P98 to P915 to low-level output. */

 PM9H = 0b00000000;

 P9L = 0b00000000; /* Sets P90 to P97 to low-level output. */

 PM9L = 0b00000000;

 PCD = 0b00000000; /* Sets PCD0 to PCD3 to low-level output. */

 PMCD = 0b11110000;

In the V850ES/ JG3 sets only P70 to P711.

This settings are unnecessary

In the V850ES/ JG3, P6 settings are unnecessary.

This settings are unnecessary

In the V850ES/ JG3, P8 settings are unnecessary.

This settings are unnecessary

In the V850ES/ JG3, PCD settings are unnecessary.

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 49

 PCM = 0b00000000; /* Sets PCM0 and PCM5 to low-level output. */

 PMCM = 0b11000000;

 PCM = 0b00000000; /* Sets PCM0 and PCM3 to low-level output. */

 PMCM = 0b11110000;

 PCS = 0b00000000; /* Sets PCS0 to PCS7 to low-level output. */

 PMCS = 0b00000000;

 PCT = 0b00000000; /* Sets PCT0 to PCT7 to low-level output. */

 PMCT = 0b00000000;

 PCT = 0b00000000; /* Sets PCT0, PCT1, PCT4 and PCT6 to low-level output. */

 PMCT = 0b10101100;

 PDH = 0b00000000; /* Sets PDH0 to PDH7 to low-level output. */

 PMDH = 0b00000000;

 PDH = 0b00000000; /* Sets PDH0 and PDH5 to low-level output. */

 PMDH = 0b11000000;

 PDLH = 0b00000000; /* Sets PDL8 to PDL15 to low-level output. */

 PMDLH = 0b00000000;

 PDLL = 0b00000000; /* Sets PDL0 to PDL7 to low-level output. */

 PMDLL = 0b00000000;

 return;

}

In the V850ES/ JG3, sets only PDH0 to PDH5.

In the V850ES/ JG3, sets only PCM0 to PCM3.

This settings are unnecessary

In the V850ES/ JG3, PCS settings are unnecessary.

In the V850ES/ JG3, sets only PCT0, PCT1, PCT4 and PCT6.

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 50

/*---*/

/* Setting the switch input and LED control ports */

/*---*

/static void f_init_use_port(void)

{

 /* Setting the switch output port */

 P0 = 0b00000000; /* Sets P03 as an input. */

 PM0 = 0b10001000;

 /* Setting the LED output port */

 PCM = 0b00001100; /* Sets PCM2 and PCM3 to high-level output. */

 PMCM = 0b11000000;

 return;

}

/*****************************/

/* Main module */

/*****************************/

void main(void)

{

 extern unsigned int _S_romp; /* External reference of ROMization symbol*/

 /*--*/

 /* Variable declaration and initial variable setting */

 /*--*/

 const unsigned char outdata[] = { /* Array for the LED display pattern data */

 0x0c, /* Turns off all LEDs. */

 0x04, /* Lights LED1. */

 0x00, /* Lights LED1 and LED2. */

 0x08 /* Lights LED2. */

 };

 unsigned char indata = 0b00000001; /* To memorize the pressed status of the switch

 (initialized if the previous value is “1”) */

 unsigned char count; /* Number of times the switch input */

 unsigned long loop_wait; /* Counter for loop */

 count = VAL_RST_COUNT; /* Initializes the number of times the switch was

 pressed */

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 51

 /*--*/

 /* Peripheral-function initialization */

 /*--*/

 f_init_vswc(); /* Sets the VSWC register */

 f_init_ocdm(); /* Sets on-chip debug mode register to normal

operation mode */

 f_init_rcm(); /* Disables the internal oscillator */

 f_init_wdtm2(); /* Sets watchdog timer 2 */

 f_init_lock(); /* Sets the CPU operation clock to PLL mode */

 f_init_blank_port(); /* Sets unused ports */

 f_init_use_port(); /* Sets the SW input and LED control ports */

 /*--*/

 /* ROMization processing */

 /*--*/

 _rcopy(&_S_romp, -1); /* Executes ROMization */

 /*------------------------------------*/

 /* MINICUBE2 : Enable interrupt for OCD*/

 /*------------------------------------*/

 __EI(); /* Enable interrupt */

 /*--*/

 /* LED lighting processing */

 /*--*/

 while (1)

 {

 indata <<= 1; /* Updates the previous switch status value */

 indata |= P0.3; /* Updates the current switch status value */

 if ((indata & 0b00001111) == 0b00001100)

 {

 count++; /* Updates the number of times the switch input */

 count &= 0b00000011;

 PCM = outdata[count]; /* Displays the LED display data read from the table*/

 }

 /* 10 ms wait */

 for (loop_wait = 0; loop_wait <= VAL_TIMER_WAIT; loop_wait++)

 {

 __nop();

 }

 }

APPENDIX A PROGRAM LIST

Application Note U19837EJ1V0AN 52

 return;

}

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	CHAPTER 1 OVERVIEW
	1.1 Initial Settings
	1.2 Contents of Main Processing Operation

	CHAPTER 2 CIRCUIT DIAGRAM
	2.1 Circuit Diagram
	2.2 Peripheral Hardware

	CHAPTER 3 SOFTWARE
	3.1 File Configuration
	3.2 On-Chip Peripheral Functions Used
	3.3 Initial Settings and Operation Overview
	3.4 Flowchart
	3.5 Differences Between V850ES/JJ3 and V850ES/JG3
	3.6 ROMization
	3.7 Security ID
	3.8 On-Chip debug with MINICUBE2
	3.8.1 Securement of debug monitor program area
	3.8.2 Enable interrupts (EI) of Serial interfaces

	3.9 #pragma directives

	CHAPTER 4 SETTING REGISTERS
	4.1 Setting System Wait Control Register (VSWC)
	4.2 Setting Special Registers
	4.2.1 Special registers
	4.2.2 Setting data to special registers
	4.2.3 Disabling DMA operations

	4.3 Setting Normal Operation Mode for On-Chip Debug mode register
	4.4 Setting Internal Oscillation Mode Register (RCM)
	4.5 Setting Watchdog Timer 2
	4.6 Clock Setting
	4.6.1 Processor clock control register (PCC) setting
	4.6.2 Setting PLL control register (PLLCTL)
	4.6.3 Lock register (LOCKR)
	4.6.4 Clock control register (CKC)
	4.6.5 Usage

	4.7 Setting Ports
	4.7.1 Port n register (Pn)
	4.7.2 Port n mode register (PMn)
	4.7.3 Port n mode control register (PMCn)

	4.8 Main Processing
	4.8.1 Chattering countermeasure
	4.8.2 Main processing

	CHAPTER 5 RELATED DOCUMENTS
	APPENDIX A PROGRAM LIST

